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PREFACE

This is the final report on IIT Research Institute (IITRI)
Project J6378 entitled, "Theoretical Investigation of Loads on
Buried Structures'". This research project was performed for the
Air Force Weapons Laboratory (AFWL) under contract F29601-76-C-0124
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The AFWL Project Officer was Capt. Stanton A. Chang, Struc-
tural Dynamics, Survivability Branch. The project was initially
under the direction of R. E. Welch (1 June 1976 to 31 December 1976)
and completed by R. R. Robinson under the general supervision of
A. Longinow Structural Analysis Section and K. E. McKee Director,
Engineering Division. IITRI personnel who made significant tech-
nical contributions include A. K. Gupta, R. R. Robinson and R. E.
Welch. Professors N. M. Newmark, W. J. Hall and J. D. Haltiwanger
of N. M. Newmark Consulting Engineering Services acted as consultants
throughout the project and provided a simplified procedure for de-
termining loads on buried structures during the early phases of
the project. M. A. Plamondon of the AFWL Survivability Branch pro-
vided a good deal of the incentive associated with the attempts to
chracterize dynamic loads on huried structures by a few of the
modal components.
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SECTION I

INTRODUCTION

1. BACKGROUND

It is a well established fact that the structural response of
hardened weapon system facilities to nuclear airblast and ground
shock loading is significantly affected by the manner in which
the structure is founded upon or buried within the soil media.
Although there is an acknowledged awareness that the structure
interacts with the adjacent medium, the exact nature of this in-
teraction is imprecisely defined.

These phenomena and related aspects have generally been re-
ferred to as soil structure interaction (SSI). SSI has been in-
vestigated extensively for a number of years from different points
of view, and the determination of loads on buried structures is
an integral part of the subject.

The subject of SSI constantly recurs in connection with facil-
ity response problems simply because there is no logical and con-
sistent way of avoiding it. The dynamic characteristics of a
structure in contact with an extended material (i.e., the earth)
differ substantially from its dynamic characteristics in vacuo.
The surrounding medium has the effect of providing:

e Resistance, stiffening the structure in both rigid body

and flexible modes of motion;

e An apparent damping of the structural motions by trans-
porting energy in the form of a dynamic disturbance away
from the structure (i.e., radiation damping) ;

e Additional, real damping due to the dissipative effects
in the medium;

@ "hock mitigation or amplification at the soil-structure
interface depending on the properties of the medium; and

e Arching action above and around the structure.

In terms of the free field, the inclusion response consists
of a perturbation of free field stress waves to the extent that
the inclusion displays stiffness or mass properties which differ

from the material for which the free field stress waves are
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defined. This perturbation also displays the described charac-

teristic effects.

Despite previous research efforts in SSI, it remains diffi-
cult to distinguish and identify such effects in real structures.
One reason for this is that in most real structures the gross mo-
tions (rigid body) tend to follow the associated free field dis-
placement fields with relatively small displacement perturbations.
However, the fact that interaction effects are relatively small
in terms of displacement fields means only that they have their
greatest influence in terms of velocities, accelerations and,
structural deformation (i.e., stresses and strains) which are more
difficult to analyze and observe. 1In this connection note that:

e If a structure closely follows the free field, this

implies that there is enough damping, real or appar-
ent, in the interaction process to suppress any major
oscillation about the free field motions.

e If there were a strictly imposed condition that the
structure follow the free field, the stress-strain field
throughout the whole or part of the structure would
be known from compatibility and, except for very flex-
ible structures, these would be completely unrealistic.

Although the subject of SSI and loads on buried structures

has been studied to some extent in connection with such applica-
tions as culvert design and mining operations, early attempts

to design hardened ground facilities gave great impetus to the
field; and for the last 20 years it has been the subject of ex-
tensive research in connection with military facilities and,
more recently, with the seismic design of nuclear power plants.
The literature associated with the field is so substantial and
widely scattered that only some brief comments on thz development
of the field with an emphasis on the generation of sources of
data and the application of such data to the design process are
given here. References 1 through 57 are cited for potential
application to the subject investigation. The results presented
in these references have either been used directly or reviewed
for possible use in this research program. Several attempts at
a detailed literature review have been made including those in
references 1 through 6.
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Numerous research investigations have been undertaken to
study and quantify various phenomena associated with buried
structures under dynamic loads in connection with the need to de-
sign or harden military facilities against nuclear attack. These
early studies employed data from nuclear tests, small-scale lab-
oratory experiments, existing solutions for classical inclusion
problems, and a design rationale largely adopted from soil me-
chanics. Early centers for studies of this type were at IIT Re-
search Institute (IITRI), then Armour Research Foundation, the
University of Illinois, and the Massachusetts Institute of Tech-
nology. This phase of research culminated with the appearance
of a variety of handbooks and technical summaries such as the
early Air Force Design Manual (Ref. 5), the Compendium of Air-
blast Effects (Ref. 6) and a series of Corps of Engineers manuals
entitled Design of Structures to Resist the Effects of Atomic
Weapons (Ref. 7). These documents generally, and the Air Force
Design Manual in particular, took a conventional and somewhat
conservative approach to the question of loads on buried struc-
tures. The design process employed was basically quasi-static
and the structure was essentially designed for the estimated free
field pressure wave. The beneficial effects of soil arching above
and around the structure were also taken into account; however,
the possibility of load magnification on the structure due to
reflection of the soil stress wave at the interface was generally
dismissed on the grounds that little or no evidence for such phe-
nomena could be found in the available test data.

Subsequent activity saw the decreased reliance on full-scale
test data (the moratorium on aboveground testing had come into
effect), the increased use of medium-scale field simulations, and
especially, the increased use of large-scale computations and com-
puter programs. Early computer work involved the extension of

more or less classical approaches (i.e., series and modal solu-

tions) as in references 8,9 and 10, and the development of so-called

SST models in which effects at the structure-soil interface were

represented by stiffness and damping terms. An early model of this

type was developed at IITRI (Ref. 11, 12, and 13) in which the
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normal stress B (i.e., unit load) on the surface of the structure

was represented as

o = of+k(uf-us)+s(flf-ﬁs) (1)

where O is the normal stress in the free field (i.e., in the soil
if the structure were not present); ue and u, are corresponding
normal displacements of the free field and the structure; and ﬁf
and &s are the velocities. Such representations were for a time
extensively used by IITRI and others in the evaluation and design
of facilities including the MINUTEMAN and SAFEGUARD system struc-
tures (see Ref. 14 through 19 for instance). The approach was
developed as a generalization of fairly old techniques related to
culvert and tunnel design; and while it has fallen into disuse in
recent years due to theoretical objections and the development of
finite element and other techniques, it remains a potentially val-
uable tool for the evaluation of loads on buried structures and
known classical solutions can be set up in this form. The method
displays several known ingredients of the inclusion response solu-
tion, namely, the explicit dependence on the free field stress,
the recognition that the surrounding medium has stiffness, and the
incorporation of wave dispersion or interface reflection in the

damping term.

The solution to classical inclusion problems has been the sub-
ject of numerous investigations throughout the most active period
of SSI research. The response to spherical, elastic inclusions to
steady state dilatational wave strains has been studied with re-
spect to stress concentrations in the surrounding medium (Ref. 20)
and scattering phenomena (Ref. 21). In both cases the numerical
results are few and apply principally to the limiting cases of rig-
id and hollow spheres. The analogous acoustic inclusion problem
(i.e., acoustic sphere in acoustic medium) has been solved in refer-
ence 22. The rigid spherical inclusion has also been studied by
C. C. Mow in references 23 through 25, with emphasis on the inclu-
sion response for a transient compressive pulse with exponential
decay. These papers, especially reference 24, contain the principal
qualitative information derivable from the classic inclusion lit-
erature in terms useful for the structural inclusion problem.

4
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Briefly these findings are:

e The velocity of the inclusion exceeds the incident
free field particle velocity only when the inclusion
is heavier than the same volume of the surrounding
medium,

® The solution contains a free vibration term which de-
cays exponentially as energy is carried away from the
inclusion response by wave action.

e The velocity and acceleration response of the inclu-
sion may differ substantially from the corresponding
free field motions even though the differences in
displacement components are not great.

The first of these observations is often cited as an argument
that there can be no amplification in the gross motion of a struc-
tural inclusion since these are inherently hollow, lined cavi-
ties and therefore of lower average density than the surrounding
media.

The corresponding two-dimensional inclusion problems have
been more extensively studied although they generally remain lim-
ited to elastic materials and simple geometries. References 26
through 31 are concerned with the impingement of plane waves on

cylindrical cavities. Stress concentrations are obtained in refer-

ence 30 for harmonic dilatational wave trains as functions of
wavelength and Poisson's ratio. References 27, 28 and 29 consider
the response of cylindrical cavities for transient compression
pulses and generate influence functions which are subsequently
used in obtaining the response of a cylindrical shell used as

a cavity liner (Ref. 32 and 33). The equivalent problem for a
cylindrical shell in an acoustic medium is given in references

34 and 35.

The rigid circular inclusion is treated for harmonic dilata-
tional waves in references 36 and 37, with reference 36 providing
information on the relation of inclusion response to wavelength
and inclusion mass (similar to that given in Ref. 24), and refer-
ence 37 giving stress concentration data. Exact elasticity solu-
tions for thick cylindrical inclusions are given in reference 38
for harmonic dilatational waves and in reference 39 for incident
shear waves. References 40 and 41 consider the response of

5
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cylindrical cavities and shells to plane waves which are obliquely
incident (i.e., propagate along, in addition to across, the axis
of the cylinder).

A class of problems that can be called the surface inclusion
or footing problem involves the response of various types of slabs
resting on the surface of a semi-infinite, and perhaps layered,
elastic medium. These differ from the spherical and cylindrical
classical problems only in that the slab does not replace any of
the surrounding medium. The classic papers for this problem are
by Bycroft (Ref. 42 and 43) and deal with the forced harmonic vi-
bration of a rigid, circular surface footing in four distinct
modes. The solutions consist of driving force versus frequency,
amplitude, and dimensionless constants and have proved useful in
the analysis of the response of surface structures. Reference 44
provides similar solutions for the rectangular slab and indicates
that these results are similar over a range of footing aspect
ratios to those for the circular slab. Unlike fully buried struc-
tures, heavy surface structures can display significant amplifi-
cation effects since they are not limited by a displaced volume

of soil and can generate significant surface mass densities.

More recent activity in the SSI research has seen the increased
reliance on large-scale computations and simulations of the re-
sponse of buried structures. This is due almost entirely to the
emergence of the finite element analysis technique as a powerful
tool making such simulation possible. Although a wide variety of
programs and techniques have been used for the analysis of buried
structures, some programs which have been developed and used spe-
cifically for this purpose include INDEPS (Ref. 45), NOFEAR (Ref. 46)
and DYNAX (Ref. 47), and SAMSON (Ref. 48); the last two were de-
veloped at IITRI.

It is noteworthy that throughout these later developments com-
paratively little effort has been devoted to extract design type
data on loads and response or to the preparation of summaries and
systematic simplified procedures. The new edition of the Air
Force Design Manual (Ref. 49) presents little new data relating
to the loads on buried structures over that which were available

6
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in the earlier editions. In fact, the 1 sanual treats tnis
phase of design almost exclusively in terms of response of rigid
structures with soil response represented by dissipative terms of
the form pcV corresponding to plane elastic wave propagation. This
is equivalent to the simplest form of the SSI model described in
equation (1) with k=0 and s =pc.

2., OBJECTIVES

This research project has been directed toward the develop-
ment of simplified techniques for determining loads on buried
structures of cylindrical geometry subjected to severe dynamic
blast load environments. The data forming the basis for these
design loads have been primarily derived from numerical, finite
element analyses for a wide range of loading, soil, and structural
parameters. The numerical results presented herein have been
generated exclusively from this research investigation.

The primary objective of this program has been to generate
SSI loads and internal cylinder forces for horizontally oriented
cylinders. Both static and dynamic solutions have been obtained
in order to study in a more or less systematic manner the SSI
loads and internal cylinder forces for variations of the struc-
tural stiffness, depth of burial, and soil media parameters.

During the course of this project, a concept was postulated
that air blast induced SSI loads could be represented by only a
few components of the modal representation of the SSI loads. For
example, a buried cylinder in an infinite elastic medium is sub-
jected to only the uniform (mode 0) and ovaling (mode 2) load
components for a statically applied biaxial state of free field
stress. With this concept in mind, various static and dynamic
buried structure analyses were performed to determine the appro-
priateness of characterizing SSI loads by a few modes for a wide
range of structure, soil, depth of burial and loading parameters.

3. SCOPE OF WORK

Attempts have been made throughout the project to cover a

rather wide rang2 of loading, structure, and soil media parameters.




However, the depths of burial of the structure that were consid-
ered are relatively shallow since it has been postulated that
ground surface effects can be generally ignored for depths of

burial greater than two times the cylinder diameter. Most of the
results are presented in nondimensional form; however, if any spe-
cific dimensions were required, such as the diameter of the cylin-
der, then a 4 meter inside diameter has been employed. The cylin-
der has also been idealized throughout the stud& as an elastic

material with thicknesses and material parameters corresponding to
| concrete.

The initial phase of the project was devoted to a brief review
of the literature which was summarized in section I.l. Other ac-
tivities required early in the project were to establish a commu-
nication link with the AFWL computer facilities at Kirtland AFB,
New Mexico. This effort was required since the majority of the
numerical calculations were to be performed on the CDC 6600 and

e T ————

7600 computers at Kirtland AFB through a remote batch configura-
tion via a dial-up terminal at IITRI in Chicago.

Several simplified methods of analysis for determining loads

e e E———

on buried structures have been developed in the past. Cne such
technique that is based on experimental results, analytical inves-
tigations, and engineering judgement was defined early in this proj-
ect by N. M. Newmark Consulting Engineering Services and is pre-
sented in appendix II. This method does not reflect the numerical
results of the analyses conducted in this investigation.

The early numerical results were devoted to the generation of
some elastic material, static load solutions for variations of the
cylinder and soil media parameters. The results of these studies

Y ——

are given in section II.

There are some indications that the principal components of
SSI loading on a horizontally oriented cylinder can be represented
by a relatively few modal components of the loading. This simpli-
fied loading concept appeared to be plausible since the uniform
component (mode 0) and ovaling component (mode 2) are the only

sources of loading for an elastic cylinder embedded in an isotropic

8
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elastic media of infinite extent subjected to a free field biaxial
state of static loading. The major effort undertaken during the
project was devoted to the generation of dynamic finite element
numerical results in an effort to ascertain whether or not a few
modes can be selected which will adequately represent the loading
on a structure. The SAMSON computer code was used for these anal-
yses to obtain solutions to a basic set of structure, soil, and
loading parameters. A total of 32 cases was defined to represent
what was considered to be reasonable extreme values of the param-

eters that were varied. The five parameters considered were:

Radius to thickness ratio of cylinder
Depth of burial
Peak airblast overpressure

Duration of overpressure loading

Soil types (nonlinear material)

Two additional elementary cases were also solved using nonlinear
reinforced concrete cylinder parameters. Also, two solutions were
obtained using an elastic soil material in conjunction with the
elastic concrete tunnel liner. These finite element SAMSON solu-
tions and the manner in which the numerical results are processed
and displayed are presented in section III.

Section III also contains the method of analysis that was used
to judge the postulation that only a few of the modal components
of the load are required to adequately represent the essential
SSI loads. A discussion of the results of the SAMSON analyses and
the problems encountered in determining which modal load components
are important is given in section III. Conclusions and recommen-

dations for future work are in section IV.

Appendix A gives the results of a number of free field solu-
tions that were generated involving the two soils considered and
the four airblast loading waveforms. Appendix B presents a simple
method for determining loads on buried structures that was defined
by N. M. Newmark Consulting Engineering Services at the beginning




of this project. Appendix C 1is presented to indicate the mag-
nitude of errors that can be expected if the stresses in the soil

elements surrounding the structure are used to determine the SSI
loads.

Volume II of this report contains the bulk of the SAMSON solu-
tions for each of the cases that were run. These results include:
(1) tables of maximum and minimum values of the cylinder internal
forces and SSI stresses around the liner, (2) modal amplitude his-
tories of the cylinder forces and the SSI stress, (3) time history
plots of the cylinder moment and thrust and the SSI radial stress
at the crown, springline, and invert points.

10
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SECTION II
STATIC ANALYSES

This section presents the results of several static-elastic
analyses that were performed to investigate the effects of depth
of burial and structure and soil media stiffness on the SSI stresses
and the cylinder* internal forces. These investigations are limi-
ted to plane strain analyses of horizontally oriented cylinders,
and hence they are applicable to the analysis of a long cylinder
where the effects of the ends of the cylinder can be neglected.
Both the structure and the soil media have been indealized as linear
elastic materials.

1. INFINITE MEDIA ANALYSES

These analyses consider an elastic liner embedded in a homo-
genous elastic soil media of infinite extent. A biaxial free field
state of stress in the soil is assumed, and the interface between
the soil and structure can be idealized as either free to slip (i.e.,
no interface friction) or fully bonded (i.e., infinite interface
friction). This problem has been treated extensively in the past
by Burns and Richards (Ref. 50) and Hoeg (Ref. 51 and 52). Burns
and Richards restricted their investigation to the case where the
biaxial free field stress state is derived from a uniaxial state
of strain, and solutions are given for the calculation of the media
stresses and the cylinder force resultants. The major disadvantage
of the uniaxial strain case is that the biaxial stress ratio is

dependent on Poisson's ratio of the soil.

Hoeg's studies are not restricted to a uniaxial strain case,
and the biaxiality ratio can be arbitrarily specified. However,
these investigations do not include solutions for internal force
resultants of the cylinder and a typographic sign error exists in
one of the equations which can lead an unsuspecting user to
erroneous conclusions.

* The terms cylinder, tunnel, and liner are used interchangeably
to denote the right circular cylinder buried structure.

11
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The following equations are based on appropriately modified and,
where necessary, corrected results from reference 51.

2. SOIL MEDIA STRESS ANALYSIS

Referring to figure 1, the nondimensional media stresses at
any nondimensional polar coordinate in the media (p,0) are given
by

Radial Stress, o = or/p = o0_g+0,, cos 26 (2)

Circumferential Stress, Eg = og/p = 590-+692 cos 20 (3)

Shear Stress, ?rQ T,.9/P = T.gp sin 20 (4)

where

k = biaxiality ratio of free field soil stress and the sub-

scripts 0 and 2 refer to the uniform and ovaling components.

o = R/r (< 1.0) (5a)

5.0 " -(1+k)(1-a1p2)/2 (5b)

5., = -(1-k)(1-3a, p4-4a3 0%y /2 E
Ggo = - (1+k) (L+a, 02y/2 (5d)
Ggy = (1-k)(1-3a, p*)/2 (5e)
Tray = (1-X)(1+3a, o*+2ay 0%)/2 (5£)

The coefficients aj, ap, aj have been determined for two ideal-
ized soil-structure interface conditions; namely, the fully bonded
or no slip (IS) case and the zero friction or free slip (FS) case.
For the NS case the coefficients are

o = ity o (6a)

a, = [(1-2v>(1-c> F-(1-2v)2 ¢/2 +2]/b (6b)

a; = {[1+(1-2v) C]F < (d=2v) Cf2-2 }/b (6¢)

where b = [(3-2v)+(1-2v) C]F+(2.5-8v+6v%) C+6-8v  (7a)

and C = a(R/t)/(1-V), compressibility ratio (7b)
12
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F = 2C(l-2v)(R/t)2, flexibility ratio (7¢)
* _
o =M /Ec, material modulus ratio (74d)
M* = TTgé%%%%ZU)’ constrained modulus of soil (7e)

E,v = modulus of elasticity and Poisson's ratio of soil media

Ec = Ec/(l-vf), apparent modulus of cylinder (7£)

Ec,vc = modulus of elasticity and Poisson's ratio of cylinder

For the FS case the coefficients are

_ (1-2v)(Cc-1) (82)
(1-2v) C+1

&

2F+1 - 2v
" IFF5 -6y by

&3

= 2F-1
33 = 2FF5 - 69 ge

If the free field is in a state of uniaxial strain, i.e., only
the vertical strain is nonzero, then the biaxiality ratio is de-

termined from Poisson's ratio of the soil as
k = v/(l-v), uniaxial strain case 9

Equations (2) through (8) for the calculation of soil stress
are independent of equation (9), and the biaxiality ratio can be
any value desired.

The solutions for the FS and the NS idealizations have been
used to compute the radial and circumferential stress variation
in the vicinity of the cylinder along the crcwn ray (8 =0) and
the springline ray (8 =90 deg). Since the solution is for the
unbounded or infinite media case, the invert ray (8 =180 deg)
stress variation is the same as for the crown ray. Results were
obtained for several cylinder stiffnesses and a typical soil
media with

14
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E = 25 ksi (172.4 MPa) or M" = 30 ksi (206.9 MPa)
0.25
1/3

!
|

\%

k

These soil and structure parameters will be referred to as Case A. i
The cylinder material parameters are appropriate for a concrete

tunnel liner, viz., 1

E, = 3000 ksi (20,700 MPa) ]

Vo = 0.2

Results are shown in figure 2 for four cylinder geometries rep-
resented by radius to thickness ratios (R/t) of 15, 8, 6 and 4.
For a tunnel with a 6.6 ft (2 m) inside radius, these R/t ratios
correspond to cylinder thicknesses ranging from approximately 0.5
to 2 ft (0.152 to 0.610 m). For this figure, a rather unconven-
tional method has been used to display the radial and circumferen-
tial soil stress variations in a condensed manner. Note that all
of the stresses are compression (negative) except the circumferen-
tial stress near the crown for the FS case. The compressive (-)
radial stresses have been displayed above the abscissa (crown or
springline ray); whereas, the compressive (-) circumferential
stresses are displayed below the abscissa. Hence, the tension (+)
circumferentizl stresses at the crown are plotted above the

abscissa.

An examination of the curves in this figure indicates that the
soil stresses are very nearly equal to the free field stress for
points approximately 1 to 1.5 diameters away from the edge of the
liner. These curves also show that the soil stresses adjacent to :
the cylinder are significantly different for the NS and the FS
solutions, especially the circumferential stresses. The NS case
is considered a more realistic occurrence than the FS case. For
example, it has been observed that when highway tunnel liners that
have been in service for some time are excavated, soil particles
are attached or bonded to the entire surface of the liner. This

indicates that if relative tangential motion occurs between the

15
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i structure and the soil, it takes place in the soil because the
! shear capacity of the soil is exceeded and not because there is
| low friction strength at the soil-structure interface.

3. CYLINDER FORCE RESULTANT ANALYSIS

The internal force resultants (moment and thrust) of the cylin-

y der can be computed in the following manner. The elastic law for
1 the cylinder moment is (Ref. 53, p 211)

F. K dzw)
| M= - W+ (10a)
] EZ de” |
;_ where
§ K =E, e3/12 (10b)
3 The radial displacement of the cylinder is

v = 0.5p g (1+k)(1-v)(1-+1?%;)

(10¢)

+ (1-k) f%f%[l%—a24-4(l-v) a3]cos 20
J

The nondimensional radial displacement of the cylinder can be
written as

w = wM*/(pR) = Go + ﬁz cos 20 (10d)
where

— S|

W, = 0.5(1+k)(1-v)(1 + =55 (10e)

Wy = 0.5(1-k) %5§3 [1 +a, + 4(1-v)a3] (10€)

From equations (10a) and (10b) the nondimensional cylinder moment
is obtained as

M= M/pR2 = ﬁ0-+ﬁ2 cos 20 (10g)
where &
TR =y I = 1

18
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M, = 3¢, (1-k) 5% 1-+a2-+4(1-v)a3] (101)
3
e S ;
‘17 qwd TS ® -

The differential equation of radial equilibrium for the cylinder
is (Ref. 53, p 211)

Z
4 _ gr - o R? (11)
de
The radial stress (or) referred to in this equation is the inter-
face SSI stress, computed from equations (2) and (5) with

p = 1. Performing the indicated operations in equation (11) and

T T

solving for the nondimensional thrust yields

T =T/pR = TO-PTZ cos 29 (11a)
where T, = -0 ]
0 rOJ@ el

= (1+k) (1-a;)/2 (11b)

—_ ~ . I _ —_

Ty = _GrZJ@ il 4 Mz

1- -~

= 0.5 (k_l){g-3az-4a3-24 Cl(Tfft [1+a2+4(1-v)a3]}. (11c)

A very close approximation to the nondimensional cylinder

PP ¥ T

force modal amplitudes can be written as a function of the non-
dimensional SSI modal stresses as

—
-~

M, = IE—%§7E;7 (11d)

My = (-G, + Toq9/2)/3 (11e)

T, = - 3, GINIES

Ty &G,y = 2 tu5)/3 (11g)
19
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The following four fundamental nondimensional parameters
are sufficient to completely specify the material and geometric
characteristics of the problem:

a, modulus ratio, equation (7d)

k, biaxiality ratio of free field stress
v, soil Poisson's ratio

R/t, cylinder radius to thickness ratio

In an effort to study the nondimensional variation of the SSI
stresses (Er,?rg) and the cylinder internal forces (M,T) around
the cylinder (6=0 to 90 deg), a number of elementary solutions
have been computed using the appropriate equations (2) through
(11) for the NS case at the interface idealization.

As before, a typical soil medium postulated (E = 25 ksi =
172 MPa, v = 0.25, k = 1/3) and a concrete cylinder is assumed
(Ec = 3000 ksi = 20,690 MPa, Vo = 0.2) with the same four radius-

F to-thickness ratios. For this cace, the fundamental parameters are
Case A: o = 0.0096

] k = 0.333

v = 0.25

: R/t = 15, 8, 6, 4

The circumferential variations of the nondimensional SSI

stresses and the cylinder internal forces for this case are shown

in figure 3.

Solutions to three additional cases have also been obtained
to indicate the influence of the parameter  on the results. For
these cases, the biaxiality ratio k has been taken as zero so that
the results can be used to obtain solutions for any biaxiality
ratio. This can be done by transforming the k=0 results by
90 deg, multiplying by the desired biaxiality ratio, and adding
this solution to the original k = 0 solution. Only the param-
eter o has been varied between these three cases; the remaining
fundaniental parameters for each case have been taken as

20
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k=0
v = 0.25 cases B, C and D
R/t = 15, 8, 6, 4

The modulus ratio and figures containing the SSI stresses and

cylinder internal forces for each case are:

Case B c D
a 0.0096 0.096 0.96
figure 4 5 6

Case B has the same value of o as case A, but assumes there is no
horizontal free field stress. Cases C and D use values of o that
are one and two orders of magnitude greater than case B. Thus, if
the tunnel liner material is again assumed to be concrete, then the
constrained modulus of the soil media, M*, would be 30, 300 and
3000 ksi (206.9, 2069 and 20,690 MPa) for cases B, C and D, re-
spectively. Case D is representative of a very competent rock-
like soil media, and case C would represent a material intermediate

between a typical soil and rock-like media.

Table I gives the mode O and mode 2 component amplitudes of
the nondimensional SSI stresses and the cylinder internal forces
for each of the four sets of material parameters (cases A, B, C
and D). These amplitudes have been computed for each of the
structure-soil media interface idealizations, i.e., the fully
bonded or NS assumption and the zero friction or FS condition.

The results of cases B, C and D demonstrate a number of in-
teresting things such as the arching action through the soil
around the liner for the more flexible cylinders of case Band very
high magnitudes of arching around the liner for all cylinders con-
sidered for cases C and D. Also, the SSI shear stress (Trg) and
the cylinder thrust (T) are not terribly sensitive to the cylinder
stiffness (R/t) or the material modulus ratio (o) until the soil
media modulus approaches that of the _ylinder. As expected, the
bending moments in the liner (M) are very sensitive to both the

modulus ratio (a) and the cylinder stiffness (R/t).
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4. DEPTH OF BURIAL ANALYSIS

This portion of the static analysis investigations again con-
siders an elastic, horizontally oriented cylinder embedded in a
homogeneous elastic soil media. The influence of depth of burial
of the cylinder was studied by performing static finite element
analyses for ratios of depth of burial to cylinder radius (h/R)
values of 0.5, 1.0, 2.0 and 4.0. The SAP4 computer code (Ref. 54)
was employed for all of these investigations. The following soil
media and structural parameters were used for each of the four
depth of burial finite element investigations:

25 ksi (172.4 MPa)
0.25

Soil Parameters: E
v

Cylinder Parameters: EC = 3000 ksi (20,700 MPa)
VRS 0.2
R/t = 15, 8, 6, 4

The ground surface is subject to a uniform pressure loading
(p) as indicated in figure 1. Since the postulated problem is
symmetric about a vertical plane through the axis of the cylinder,
only half of the system needs to be modeled. A plane strain anal-
ysis has been employed for the soil media for each of the SAP4
numerical solutions. The results of the infinite media analyses
illustrated in figure 2 imply that for a static analysis the in-
fluence of the cylindrical inclusion is essentially negligible
for points greater than 1.5 times the cylinder diameter. This
conclusion is based on the observation that the state of stress
for points 1.5 diameters from the cylinder is essentially the same
as the free field state of stress. Therefore, the finite element
mesh boundaries (vertical '"'lateral' and horizontal "lower') were
located at two diameters from the edge of the cylinder. The
boundary conditions imposed on the vertical and lower horizontal
finite element mesh perimeters were such that the nodes were free
to translate parallel to the boundary but were restrained from
all motion normal to the boundary and were also not permitted to
rotate. These conditions simulate a roller bearing surface at the
boundaries. The remaining grid points, including the upper ground
surface nodes, were unrestrained.
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A considerable effort was made to keep the aspect ratio of
each element close to 1 for each of the finite element meshes
used. The resulting grid works are shown in figures 7 through 10
for the four depth of burial h/R values of 0.5, 1.0, 2.0 and 4.0,
respectively. As previously indicated, two-dimension plane strain
elements were used to model the soil media (type 4 elements -
SAP4) . ‘

Twenty-five equally spaced node points were used to simulate
the half-model of the soil-structure interface. Thus, each pair
of adjacent nodes is located 7.5 deg apart at the soil-structure
interface. The tunnel liner was modeled by interconnecting 24
beam "line" elements (type 2 elements - SAP4) to these 25 node

points. Therefore, the finite element mesh simulates the NS condi-

tion at the structure media interface.

Each of the four depth-of-burial meshes (figures 7 through 10)
was used to obtain numerical solutions for the four cylinder
stiffnesses (R/t = 15, 8, 6, 4); thus, solutions were obtained for
a total of 16 cases. The cylinder stiffness (R/t) was simulated
by specifying appropriate moments of inertia and cross-sectional
areas for the beam elements. The number of nodes and media ele-
ments used for each of the finite element meshes is indicated

below.
h/R Nodes Elements
0.5 173 159
1.0 186 177
2.0 190 188
4.0 202 198

The results from the 16 SAP4 numerical solutions are summar-
ized in table II and figure 11. Also included on these displays
are the infinite media or infinite depth of burial analytical solu-
tions described in section I for the appropriate material param-
eters, i.e., case A with NS at the soil-structure interface.

An examination of figure 11 indicates that for a depth of
burial of two diameters, the soil stresses are essentially the
same as the infinite media soil stresses along the crown and
springline rays for all of the liner stiffness considered.
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Figure &. Finite Element Mesh for SAP4 Static Analysis, h/R=1.0
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h/R = 2.0
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Finite Element Mesh for SAP4 Static Analysis,

Figure 9.
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Figure 10. Finite Element Mesh for SAP4 Static Analysis, h/R=4.0
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Table II

CYLINDER NONDIMENSIONAL THRUST AND MOMENT
1 FOR VARIOUS DEPTHS OF BURIAL - SAP4 RESULTS (R/t =15,8,6,4)

Th rust Moment _
8 0 & 180° ¢ 180°
h/R o/ 0 90 0 90
0.5 15  0.514 1.292 0.536  0.01195 -0.00801  0.00812
8  0.504 1.314 0.556 0.05020  -0.04420  0.04430
6  0.477 1.315  0.549  0.08430 -0.08190  0.08270
4 0.428 1.312  0.531  0.13600 -0.14270  0.14600
1.0 15 0.540  1.295 0.549  0.00928  -0.00816  0.00812
8 0.545 1.331  0.566  0.04610  -0.04450  0.04450
6  0.527 1.341  0.556  0.08290  -0.08300  0.08360
4 0.490 1.350  0.531 0.14320  -0.14790  0.15020
2.0 15 0.554 1.290  0.554 0.00838  -0.00820  0.00812
8 0.567 1.340  0.569  0.04520  -0.04500  0.04490
6 0.552 1.370  0.556  0.08460 -0.08500  0.08520
4 0.519 1.390  0.526 0.15300  =-0.15500 0.15600
4.0 15 0.555 1.290  0.556  0.00816  ~0.00814 0.00808
8  0.569 1.350  0.569  0.04520  -0.04510  0.04500
6  0.555 1.376  0.555 0.08600 -0.08600  0.08600
4 0.521  1.413  0.517 0.15890  -0.15930  0.15990
® 15 0.523  1.301  0.523  0.00867  -0.00935 0.00867
(case A) 8  0.539 1.364 0.539 0.04810  -0.05050  0.04810
6 0.532 1.395 0.532  0.08970  -0.09420  0.08970
4  0.512 1.438  0.512  0.16060 -0.17070  0.16060

The curves also show that the state of stress in the soil immediately
adjacent to the structure, i.e., the SSI stresses, at the crown is
essentially unaffected by the depth of burial for the flexible

liner case (R/t = 15). As the structural stiffness decreases, the
SSI stresses at the crown are somewhat but not drastically reduced.
There is a moderately pronounced depth of burial effect on the state
of soil stress for points that are slightly away from the crown.

The soil stresses along the springline ray (8 = 90 deg) are not
drastically affected by the depth of burial. In fact, it can be
argued that the springline ray soil stress differences between the
infinite media and the SAP4 results can be attributed to the in-
herent difference in the solution technique, i.e., continuous versus
discrete.
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Table II gives the nondimensional thrust and bending moment at
the crown, springline, and invert locations (8 = 0, 90, 180 deg)
for the 16 SAP4 depth of burial solutions and the infinite depth
of burial analytical solution (case A). These results show that
the thrusts and moments for a depth of burial of two diameters
are generally well within 10 percent of the infinite depth of
burial resulsts. The largest difference, 13 percent, occurs for
the springline moment, and these differences can again be essen-
tially attributed to the different solution schemes that were
employed.

Using the SAP4 results only, it is observed that the cylinder
thrusts are reduced as the depth of burial is reduced for all ex-

cept the springline thrust for the most flexible cylinder (R/t = 15)

which increases very slightly. As the depth of burial decreases,
the crown moment increases for the flexible liner and decreases

for the stiffer liner. For the more flexible liners, the depth of
burial has very little influence on the springline and invert
moment; but for the stiffer liners, these moments slightly decrease
(as much as 12 percent) as the depth of burial decreases.

The overall depth of burial effect for static:loads on buried
structures appears to be the negating influence or moderation of
the soil arching phenomena. For example, the soil arching around
a flexible structure is reduced and hence the loading is increased
as the depth of burial decreases. Conversely, the action of the
soil arching onto a stiff structure is also reduced as the depth
of burial is reduced.

For depths of burial equal to one tunnel liner radius or more,
the primary SSI loads are essentially derived from modes 0 and 2
as evidenced by the Table II results. This is apparent since the
crown and invert moment and thrust are nearly equal which implies
that the uniform and ovaling load components dominate. For a depth
of burial of one-half the tunnel radius, additional (higher) modes
of the SSI loading are required to accurately determine the load-
ing; however, modes 0 and 2 will still produce quite credible re-
sults even for this depth of burial case for all but the most
flexible liner.
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The mode 0 and 2 SSI stresses can be approximated in the fol-
t lowing manner by using the liner force resultants given in table
II. First the mode 0 and 2 thrust and moment modes are calculated

from the crown, springline, and invert values in the table
(6 = 0, 90, 180) as

To = (Ter *+ Trny) /4 + Tgpp/2
T; = Ty - Tepr |
My = (Meg + Hypgy) /4 + Hgpp/2

My = M, - Mgpp

Neglecting the ﬁo solution, the desired SSI modal stresses

(6}0 6&2, ?rez) can be obtained by application of equations (lle)
through (1lg).
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SECTION III
DYNAMIC ANALYSES

The dynamic airblast loading finite element investigations
and the related processing of the numerical results undertaken
during this project are described in this section. - The fundamen-
tal purpose of these dynamic solutions was to see if the important
aspects of the SSI loads, i.e., radial and shear stresses, could
be satisfactorily characterized by a few time varying amplitudes
of the modal components of the SSI loads. This concept was pos-
tulated as a logical extension of the technique discussed in the
static analyses in section II, where it was shown that modes 0
and 2 generally provide an accurate definition of the SST loads.
For the static analyses, both the tunnel liner and the soil media
were idealized as elastic materials and the results are propor-
tional to the loading. Since the dynamic analyses employ a non-
linear soil material, the solutions are sensitive to the magnitude
of the loading and therefore both high and low values of peak air-
blast overpressure have been included in these analyses. These
dynamic investigations use the same range of tunnel liner radius
to thickness ratios and depths of burial that were used in the
static analyses.

A plane strain solution procedure has been used; in general,
the soil medium has been modeled as a nonlinear material and the
buried cylinder liner was representative of a linear elastic con-
crete material with a 13.12 ft (4.0 m) inside diameter (see fig-
ure 12). The dynamic loading is assumed to originate from a
nuclear weapon airblast overpressure. The passage of the airblast
shock front over the ground surface has not been included in
these in tigations, and the airblast loading is applied uni-
formly to the entire ground surface. Referring to figure 12 the
airblast loading is represented by a time varying pressure acting
uniformly over the ground surface. Table III presents the time
duration of an equivalent triangular pulse of intense airblast
overpressures for a reasonable range of weapon yields, 0.125,
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1.0, and 8.0 MT (0.53x10%, 4.2x10%, and 33.6x10° MJ) and peak

overpressures, p,, of 500, 1000, and 1500 psi (3.448, 6.895, and
10.343 MPa).

Table III

APPROXIMATE EQUIVALENT TRIANGULAR PULSE AIRBLAST
OVERPRESSURE DURATION (msec)

Weapon Yield, MT (MJ
Overpressure, p eapon > MJ3)

BEi Aiial 0.125 (0.525x10°) 1.0 (4.2x10°) 8.0 (33.6x10°)
500 (3.448) to0 10 20 4o
50
1000 (6.895) EOO 12 §3 28
50
1500 (10.343) g, 5 10 20
a2 10 20 40

The duration parameters were derived from reference 49 for two

triangular idealizations:

t derived by using the slope of the triangular pulse
as equal to the initial decay slope of the actual
pressure time curve.

06’

tsg» derived by assuming that the triangular pulse passes
through the actual curve at 0.5 Po-
The primary objective of these dynamic solutions was to obtain
SSI loads acting on the structure and internal liner forces for
a reasonable variation of the significant soil and structure param-
eters,

1. RUN MATRIX OF DYNAMIC CASES

A desirable matrix of solution parameters that might be se-
lected consistent with the static investigations could conceiv-
ably include three or four variations for each fundamental param-
eter. For example, consider a run matrix that includes these five
parameters:
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o Structural Stiffness (elastic concrete)
R/t = 15, 8, 6, &4

Depth of Burial
h/R = 0.5, 1.0, 2.0, 4.0

® Peak Airblast Overpressure
Bg = 500, 1000, 1500 psi (3.45, 6.90, 10.34 MPa)

o Airblast Loading Duration
tqy = 0.015, 0.030, 0.060 sec

e Soil Media (see figure 13)
Sand, Cemented Sand, Clay.

Even this rather restrictive set of parameters would result in
4x4x3x3x%x3 = 432 cases if all combinations were taken. Obviously
this number of cases would have resulted in an effort that was
well beyond the scope of work for this research project. To study
the effects of the above parameter ranges on the dynamic response
of the tunnel liner, a series of cases were made up using the ex-
treme values of the above nonsoil parameters:

R/t = 15 and 4

h/4 = 0.5 and 4.0

P, = 500 and 1500 psi (3.45 and 10.34 MPa)
G = 0.015 and 0.060 sec.

Parameters associated with two soil media (sand and cemented sand)
were also used to define the dynamic run matrix. All combinations
of these parameters result in 2x2x2x2x2 = 32 cases. Four addi-
tional cases were also defined which involve elastic soil media
and nonlinear structure parameters. The resulting matrix of solu-
tion cases defining each of the 36 dynamic finite element solutions
is given in table IV.
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Table IV
RUN MATRIX FOR (SAMSON) DYNAMIC SOLUTIONS
Case R/t h/R P, ty S0i12 Case R/t h/R P, ty S0i12
psi msec psi msec
1 4 0.5 500 15 A 21 4 4 500 15 B
2 4 0.5 1500 22 4 4 1500
3 4 0.5 500 60 23 4 4 500 60
4 4 0.5 1500 24 4 4 1500 1
5 4 0.5 500 15 B 25 15 4 500 15 A ]
6 4 0.5 1500 26 15 4 1500 ;
7 4 0.5 500 60 2 15 4 500 60
8 4 0.5 1500 28 15 4 1500
9 15 0.5 500 15 A 29 15 4 500 15 B
10 15 0.5 1500 30 15 4 1500
11 15 0.5 500 60 31 15 4 500 60
12 15 0.5 1500 32 15 4 1500
13 15 0.5 500 15 B 33, 15 0.5 1500 15 Elastic?
14 15 0.5 1500 34 15 0.5 1500 15 B "
15 15 0.5 500 60 35 4 0.5 500 15 Elastic
16 15 0.5 1500 36€ 4 0.5 500 15 B
17 4 4 500 15 A ,
18 4 4 1500 :
19 4 4 500 60
20 4 4 1500

850i1 A - Sand; Soil B - Cemented Sand
bElastic Soil; E = 25 ksi, v = 0.25
®Nonlinear Liner, 1 percent Steel R/C

Note: Cases 33, 34 same as 14 except as indicated.

Cases 35, 36 same as 5 except as indicated.
1 psi = 6.895 kPa
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2. DYNAMIC FINITE ELEMENT SOLUTION ANALYSIS

A modified version of the SAMSON computer code (Ref. 48) was
used to obtain solutions to the 36 cases defined in table IV.
This computer code is a finite element code for the two-dimesional
dynamic stress analysis of plane and axisymmetric media. It is
based on small strain theory and is particularly suited for han-
dling problems with nonlinear material properties and a large num-
ber of degrees of freedom. Although it was designed especially
for the investigation of SSI problems, it can be used for more gen-
eral applications.

For nonlinear problems a direct method of solution is employed
without explicit formulation of a stiffness matrix. This method
has several advantages for large-scale nonlinear transient prob-
lems. By avoiding construction of the stiffness matrix, consider-
able computer storage is saved, and the solution of much larger
problems is permitted. Moreover, it is also computationally more
efficient than other commonly used solution methods in nonlinear

analysis. For linear elastic problems, the normal stiffness matrix

method of solution can be optionally used. The following fea-
tures of the SAMSON code were used to obtain the solutions to the
36 dynamic cases.

a. Automatic Generation of Mesh Data

The SAMSON code has a mesh generation capability which allows
the user to skip node and element cards in the data deck. The
code fills in missing node cards by assuming uniform spacing be-
tween the nodes for which data are provided. Missing element
cards are generated by assuming that the missing node numbers may

be derived from the node numbers of the previous element.
b. Pressure and Force Loadings

Arbitrary time variations in pressure or forces can be speci-
fied at nodes. The forces represented by pressures at nodes are
computed assuming a linear variation in pressure between nodes
along a user-defined surface.
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¢. Materials

) Two types of material constitutive models were used in the
analysis, elastic and nonlinear. The elastic model incorporates
a linear elastic material which was used to model the concrete

{ cylindrical material for the majority of the cases.

1 The important parameters that define the elastic cylinder are:

E = 3000 ksi (20,700 MPa) ’
v, = 0.2 ’
g 3

T 150 pcf (2.403 Mg/m”), density

The nonlinear soil medium was modeled by using the s2il/rock
material model (ROCKMT3) described in reference 55. Input to
this material model includes the density, loading and unloading
bulk moduli and Poisson's ratios, and a failure surface description.
The bulk moduli are specified by using a piecewise linear variation

i b — .
n to approximate the mean normal stress (o) and the volumetric strain

(e) as shown in figure 13a. Tension stress cutoffs can also be in-
cluded in the material response. The yield or failure surface is
defined by a piecewise linear approximation of the /3; versus o
curve as indicated in figure 13b. Note that only a very simple
"single" linear variation was used to approximate the yield sur-
face for the soil models of this investigation. The variables

! i used in the ROCKMT3 material model are defined as:

g = (01-+02-+03)/3 (12a)
e L2 2 2
J2 =N Sl-+Sz-+S3 (12¢)

. where o; and e; are principal components of stress and strain
S. = 0, -0, deviatoric stresses (12d)

The slope of each piecewise linear material response characteristic
curve (Ac/Ae) is the bulk modulus (K) of the material for each
state of loading or unloading. Figure 14 gives dynamic uniaxial
test results (Ref. 56) that have been used to define simplified
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ROCKMT3 stress-strain characteristics for both of the sand mate-
rial models (A and B) used in the dynamic finite element analyses.
It has been tacitly assumed that the unloading/reloading path is
parallel to the highest or last slope of the curve, i.e., for
0y <-1.5 ksi (-10.34 MPa). The confined compression moduli (M)
for each of the three linear rates used in the approximation are
given on the uniaxial data curve. Poisson's ratio for both sand
materials (A and B) have been taken as v = 0.25. Thus an elastic
biaxiality ratio of lateral to axial stress is k = v/(1l-v) = 1/3.
The uniaxial approximation data of figure 14 were used to obtain
the figure 13a curves. For example, the (0, €¢) point at the end
of the first linear portion is obtained by application of equa-
tion (12a) and (12b) where

0y = -0.5
ol SRS 1y = Sl 5
€1 = -0.0167
€y = €5 = 0
There results
o = (1+2k)01/3 (13a)
= ~0.279
N (13b)
= -0.0167

Thus the volumetric strains at the break points on the piecewise
linear 0 versus € curve are the same as the axial strains (el) for
the uniaxial approximation. The bulk modulus (K) is computed from
the modulus of confined compression (M) from equations (13a,13b).

There results

K

M(1+2k)/3 (13e)

S
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AFWL-TR-78-6

AXTAL STRESS

ol,ksi
-0.0310 "’71
AXIAL STRAIN
-0.5
TEST DATA
APPROXIMATION
+-1.0
3

-1.5

If M=300 ksi
1 ksi = 6.895 MPa

Figure 14. Dynamic Uniaxial Data - Dense Dry Sand
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Referring to figure 15, the relationship between the /Gz— ;
versus 0 failure surface and the angle of internal friction (#) i 5
and cohesion (c) of the material is now determined. Consider 3
a triaxial shear test state of stress (figure 15a) where the axial
pPressure is P1 and the hydrostatic lateral pressures are Py = P;
where Py = -o;. The stress state on any plane from the vertical
plane (O) is

P=0p coszg-+p3 sin29 (14a)

T = (pl-p3) cos® sin@

I

The Coulomb-Mohr law for shear failure (figure 15c¢) can be written
as

T = c+P tang (l4c)

where ¢ and ¢ are determined from the envelope of the Mohr diagram ;
] circles drawn from the triaxial shear tests. Substituting equa- f
tions (l4a) and (14b) into (lé4c) and rearranging terms yields

c-+p3(sin9 cosO-FsinZQ tang)
Py = i (15a)
sin® cosH - cos“@ tang

The critical plane (8,.) is found when p; is a minimum to cause
failure; and p; is a minimum when the denominator of equation (15a)
is a maximum. This occurs when the rate of change of the.denomina-
tor with respect to 0 is zero. Performing the indicated operation
on the denominator results in the well known solution of

_ 9 o
0oy = 345 (15b)

T L4 W RGPy W TR - g

From elementary trigonometry

cot(90-¢)

tang

-cot (90+¢)

-cot ZQCr (15¢)
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(a) TRIAXIAL SHEAR TEST (b) STRESS TRANSFORMATION

(c) MOHR DIAGRAM (d) ROCKMT3 FAILURE SURFACE !

Figure 15. Coulomb-Mohr Shear Strength Parameters !
Compared with ROCKMT3 Parameters .
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Using equation (15b) for O in equation (15a) and also employing
equation (15c¢) and multiplying the numerator and denominator of
the equation (15a) by 2tan9cr, it can be shown, by using the
trigonometric identity cot 20 = (l—tanzg)/(z tan8), that

py = 2c tan(§+45) + py tan?(B+45) (15d)
For triaxial tests, the principal stresses are the axial (01 = -pl)
and the hydrostatic lateral stress (02 = 04 = -py = =Pgls [EBEFE<
fore,
g = - % (pq +2p3) (16a)
S1 =0y-0
= § (0}-03)
S2 = 83 = 03-0
5 _ 2 -
= -3 (07793
= i
= S
] = I
Jz = (Sl-+252)
= 3 (01703
/35 = (py-p3)/V3 (16b)

Substituting equation (15d) into (l6a) and defining
t = tan (%-ras) (lé6c)
yields the following expression for the lateral pressure,

Py = -(35+2ct)/(2+t%) (16d)
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Solving for Py from equation (l6a) and then using this result and

equation (16d) in (16b) gives

VIl = /3 'l:Eé\ T+ 2/3,'/-—-t b e (17a)
- | 2+t } 1‘2+?/'

Referring to figure 15d it is observed that equation (17a) is of the
form y=mx+b where b is the intercept of the straight line with
the /Jé axis and m is the slope of the line. From equation (l7a)

e

m= /3 ,—:—Z! (17b)
2+t°

b=2/3 Lt ¢ (17¢)
2+t2

For both of the sand materials considered (figure 13b), the slope
of the failure surface is m = -0.85. Using this value in equation
(17b) and solving for t and then using equation (1l6c¢) to calculate

the conventional angle of internal friction (@) yields
¢ = 36.234°, soil waterials A and B

Since b = 0 for the sand material (A), the cohesion (c¢) is zero by
equation (17c). However b = 0.1 ksi (0.6895 MPa) for the cemented

sand material (B) and this results in a cohesion magnitude of

c = 0.0862 ksi (0.5943 MPa), soil material B
c = 0, coil material A

A soil density of y = 109.6 pcf (1.756 Mg/m3) was used for both
materials.

The nonlinear reinforced concrete cylinder used for
cases 34 and 36 was modeled by also using the ROCKMT3 material
model. A fiber reinforced concrete material with 1 percent steel
(Ref. 57) has been selected for this liner idealization. Figure 16
gives the material characteristics for this model.

d. Damping

The SAMSON Code provides an option for incorporating both linear
damping, proportional to the strain rate in an element, and nonlin-

ear damping, proportional to the square of the strain rate. Both

55

it e e i e A R IPICTR S SN LB UPE= Tor. I 2 T TL B SO T ST O

3 e 2.




AFWL-TR-78-6

S4o38WRARg ELWNI0Y (L993IS %L) 48uL] /Y JeAUL [UON

A0V44NS TANTIVA (9)

L1

T
L GE°0

BdW $68°9

sy 1

15y

SLT000°0

£

"9l Bunbry

SNOILV1dY FAILALILSNOD (®B)

0TX8Z°z=A

56



types of damping consist of a hydrostatic component and a devia-
toric component which may be applied separately or in combination.
The following damping parameters have been found to yield good
results for buried structure dynamic analyses by AFWL personnel.

(1) Linear Coefficients

b

1 0.04, hydrostatic

b2 = 0.02, deviatoric

(2) Nonlinear Coefficients

caey ez o

b, = b4 = 2.0, hydrostatic and deviatoric

3
Coefficients b1 and b2 are approximately the fractions of criti-

cal damping.
e. Finite Element Model

The finite element models of the soil media for the two depths
of burial considered (h/R = 0.5 and 4.0) are shown in figures 17
and 18. These meshes are very similar to the static analysis meshes
(figures 7 and 10) except more refinement of the gridwork has been

used in certain portions and the entire mesh is composed of tri- ;

angular and rectangular elements. The latter is required since the
SAMSON code does not have a general quadrilateral finite element
capability. The added mesh refinement was incorporated, especially

between the ground surface and the tunnel liner, so that the air-
blast induced stress wave traversing through the soil would not be 3
unduly modified by abrupt element size discontinuities. ]

The left and right boundaries of each mesh are free to move

vertically, and the lower boundary is free to move horizontally.

The lower boundary is 8ufficiently removed from the cylindrical
liner so that reflected waves from this boundary do not reach the
structure in the time of interest for the short duration airblast
loads (0.015 sec). For the long duration loads (0.060 sec) addi-
tional elements were added to the lower portion of the mesh to
extend the lower boundary by two outside tunnel liner diameters or
by 4.0 R.
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354 Nodes

Mesh 4DS (liner not shown)

608 Elements

8 Sl

v - .'.l.ll‘-‘.‘ b A ——

Finite Element Mesh of Soil

for SAMSON Dynamic Analysis (h/R = 0.5)

Figure 17.
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Mesh 5DS (liner not shown) 510 Nodes
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Figure 18. Finite Element Mesh of Soil
for SAMSON Dynamic Analysis (h/R = 4.0)
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Triangular finite elements have also been used to model each

i
1

i of the tunnel liners. The outer nodes of the liner mesh were at-

tached to the soil mesh so that no relative motion was permitted
at the soil-structure interface. In an effort to comprehensively
i model both the membrane and the bending deformations of the tunnel,

R PP S S——

the liner thickness ws subdivided by four layers of equal thick-
necc. The circumference was subdivided by rays at 7.5 deg incre-
ments, which yields 24 equal divisions for the 180 deg half-model
of the liner. This results in 4x24 = 96 cells requiring two tri-
angular elements per cell for a total of 2x96 = 192 elements to

model each tunnel liner. Figure 19 shows the resulting finite
element mesh for the most flexible liner (R/t = 15) and a portion
of the soil media mesh. Each of the 24 circumferential liner sub-

divisions has been numbered as indicated on this figure for future
reference in the numerical solutions. The finite element mesh for
the stiff tunnel liner (R/t = 4) is defined in the same way as the
flexible liner (i.e., four subdivisions through the thickness and

24 circumferential segments requiring 192 triangular elements) with
the obvious difference that the node points are further apart, |
through the thickness, to model the increased 1liner thickness.

As previously noted, an inside radius of the tunnel liner of :
f 6.56 ft (2 m) was maintained for all of the SAMSON numerical solu- {
tions. This was implemented by providing basic mesh node point
data so that the radius to the soil-structure interface was 1.0 and
then applying an appropriate scale factor to the coordinates, with-
in the SAMSON code, so that the inside radius of the liner was
6.56 ft (2 m). |

f. SAMSON Modifications

The output element stresses in the computer code are related to
the vertical (z) horizontal (x) coordinate system. The SSI stresses |
and the tunnel liner internal force resultants are the desired solu- i
tion results. To facilitate this, program modifications were made
such that the element stresses are referred to the radial (r) and
circumferential (0) coordinates for the elements of interest, i.e.,
the 192 tunnel liner elements and the 48 triangular soil elements in
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TUNNEL LINER ELEMENTS: — . et
24 x 4 x 2 =192 S {EmEas

SSI STRESS ELEMENTS: "{‘l/__ o
26 x 1x2=48

Figure 19. Tunnel Liner Mesh for SAMSON
Dynamic Analysis (R/t = 15)
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the 24 cells immediately adjacent to the structure. The SSI

stresses (or,trg)and also the circumferential stress (09) were ob-
tained at each of the 24 reference points (figure 19) by computing
the average stress in the two triangular soil elements at each

reference point.

The tunnel liner force resultants (M,T,V) at the 24 reference
points were computed by first converting the liner element stresses
to the r,0 system and then obtaining the stress in each of the
four cells, through the liner thickness, as the average stress of
the two triangular elements in the cell. Referring to figure 19
denote the hoop stress, 99’ for each of the four cells at a given
reference point, I, as 01,05,94,9, where the subscripts 1 through 4
correspond to the inner through outer cells, respectively. Then
the thrust and moment at the reference point can be computed as

T

-(01-+02-+03-+04) t/4 (18a)

M = (30, +0, - 04 - 30,) t2/32 (18b)

In a similar manner, the liner shear is
vV = -(Tl-+12-+r3-+14) t/4 (18¢c)

where T is the average shear stress (Tre) in the ith cell.

Nondimensional liner force resultants and also nondimensional
SSI stresses were computed at each of the 24 reference points at
uniform time increments (Atout) during the SAMSON solution. These
results were written on a magnetic tape for each of the 36 cases
for use as input to the postprocessor codes. For the more flexi-
ble liner (R/t = 15) cases the results were stored on tape at

At = 0.1 msec and for the liner with R/t = &4, At = 0.075 msec.
out out

3. RESULTS OF DYNAMIC (SAMSON) SOLUTIONS

A postprocessing code was written to facilitate the processing
and reporting of the SAMSON numerical solution results. Both tab-
ular printout and plotted time history curves were obtained for
all 36 cases. All of the results are nondimensional, and any
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future reference to the liner internal forces and SSI stresses

refers to the nondimensional values unless otherwise stated.

Nondimensional Liner Force Resultants
Thrust, T/pOR2—> T
Moment, M/pOR -> M
Shear, V/poR-—> \Y

Nondimensional SSI Stresses
Radial, or/po->STR-R
Circumferential, og/Py —>»STR-T
Shear, Trglpo-4>TAU-RT

The majority of the tabulated and plotted results for the 36

cases defined in table IV are presented in volume II of this report.

The results are grouped for each case, and the tables are presented
first followed by the GOULD plotted curves. Each table and graph

in volume II contains information to identify the data and the case
number.

The results for case 5 are presented at this point to illus-
trate the kind of information that has been obtained for all cases.

a. Peak Response Results

The minimum and maximum values of the nondimensional liner in-
ternal force resultants and the SSI nondimensional stresses that
occurred at each of the 24 reference points during the complete
solution history are presented in table V. Reference points 1, 12,
and 24 are denoted as the crown, springline and invert points;
however, they actually refer to the center of the segment that is
closest to the 8 = 0, 90, and 180 deg points.

Figures 20a through 20f give curves of the maximum and minimum
results of table V. 1In these figures, the abscissa title Liner-Pt.
is the same as the 24 reference points (see figure 19) around the

tunnel liner.
b. Modal History Results

As previously discussed, the structural system and the loading
environment for the cases considered in this project are symmet-

ric about a vertical plane through the longitudinal axis of the
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Table V

MINIMUM AND MAXIMUM NONDIMENSIONAL LINER
FORCE RESULTANTS (T,M,V) AND SSI STRESSES (or,oe,Trg) CASE 5

MINGVALULS
T

CR =e040013

2 =,026475

3 ’10‘6911

L} =s038220

5 = V4p0O31

[ *,044756

7 ~e0611458

8 =, 060277

9 *.056165

10 *. 049060

i1 =, 0460806

SPR 12 = 0443009

13 041099

14 = 049014

15 *,0%0987

16 =,060280

17 =,027408

14 *,015071

19 *,018515

20 0,000000

21 *,082415

22 =.153452

23 =, 216547

INY 21 =,2493184
MAX o VALULS

7

CR 1 604221

4 0625507

3 «689050

] « 737775

S 2809890

6 0880002

7 ¢918283

8 0939720

9 .925080

10 0888232

11 +829997

SPR 12 + 756888

13 0672918

11 0601492

S +5855064
16 0538580
17 514104

18 443471
19 °346488
2v «262098
21 240801
22 2351063
23 1230308
INV 2! 2300069

M

-|°‘a3050
0134288
=,0114872
ey, 0104900
.00090,79
.,019“173
-, 0350598
Q.OUGQEUB
=, 0615459
e, 0712508
e, 0785453
=, 08440685
~,08870114
’0095939‘
09340658
-,0839811
-,0047784
*, 0487692
@, 0070030
=-,0051808
«,0085901
~,0124597
0197450
«, 0237559

™

« 0598546
05063811
0533775
20451508
004861714
00277277
0131877
0072914
e0092012
00113297
014134y
0157613
00109800
s 0L6VT7006
«0138029
00095912
009748
« 0170358
00242057
003440694
¢ 0548387
«0802028
e 0909140
10506470

v

=, 065124
-, 138412
»,251459
=,2870630
=, 319110
=4.3%4010
-s3383538
*,333302
-,319199
..2901”7
=,268560
-.232850
=s152208
-,038785
e, 0846440
=,0067939
e,072204
e, 056030
*,0548068
=,103205
o, 0910643
=1 19027
., 084208
e 04605

v

056298
053802
00650637
2051813
1068426
0624060
2067314
s 061531
V63031
2097134
0154302
0195038
02281440
0255018
02067119
0296232
+ 327757
ed402193
e 139213
0423137
0389176
« 288090
«2035941
V78171
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STRe=R

=], 774550
=1,064084a7
], 448%20
«{,315900
=1,042376
~,980272
-, 6064439
5406171
-,534161
~477970
=, 407752
=,539892
- 390217
e, 439549
=, 472596
-, uBBHLY
-, 489176
=, 4610635
«,503693
e,450255
e,515492
~,504544
«, 631070
e, 053144

STRe=R

U933V
V83039
0,000000
e 056673
VU746
LT TY:
V58662
0,000000
0,000000
V28240
0,000000
085960
dV65613
WU5UTH6
JU51871
«0308%9
0,000000
JU0S3R7V
0,000000
WUU6U90
2126557
037808
V23198
0,000000

STRe1

-.606920
«,550174
.0532“77
=,420579
=ed427643
3801061
..3710“8
*,3410634
=,271294
= ,256816
.0678”92
®,26773%
=, 105323
® 242540
"22“586
-.303507
=, luBor?
=,2580453
209061
..183309
=, 170401
=,208227
®,259533
. y255843

STReT

s 057991
« 05016V
03460
200699514
0356241
e 027919
WU33140
0024771
0350786
V,000000
Ve00000Y
0000000
01306306
0,000000
20395990
s 065279
2053388
026589
00590688
1005999
«100455
e1650643
171096
0 1954150

TAUeRT

097641
e, 093637
»,1188064
., 211325%
*,110643
*,133454
®, 025708
=y,(099141
®,086%94
e, 118560
®,173515
- 254U87
e, 258710
‘.310320
*,28754%2
=,3006009
=,3u8321
=.31481¢2
3028951
=,344719
o 21TV
»e1730006
177940
®,039030

TAaU=R]

096014
e 28UT90
384207
0 2/5098
e 349070
0 279408
«343141
188969
e 323413
« 185413
0061694
«0OBTHY
«00VV00
«O0V0000V
000000
0158177
LY R4
0217629
03906760
103762
088967
U5 798¢0
+000VLY
041969
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tunnel. Therefore, the radial and circumferential motions of the
structure are symmetric and antisymmetric, respectively, with re-
spect to the plane of symmetry. The liner thrust and moment and
the SSI radial and circumferential stresses are symmetric, and

the liner shear and SSI shear stresses are antisymmetric. There-
fore, each response variable of interest can be represented by an
appropriate Fourier sine or cosine series. Referring to figure 21

these responses can be represented as follows.

(1) Symmetric Response (S)

S (t) =
8(c,0) = 25— + an(c) cos n@ (19a)

n=1

where Sn Sn(t) are the time dependent modal amplitude histories.
Variables that can be represented in this manner are the liner

thrust and moment and the soil media radial and circumferential

stresses at the SSI interface. The modal amplitudes (Sn) are eval-

uated by multiplying equation (19a) by cosn® and integrating from

6 = 0 2o m, and results in

v v
fS(t,Q) CoshReNdoE snf carnaldEl ko
(o]
‘35,
Therefore
v
s_ = 2[ s(t,08) cos no do (19b)
o)

At any time step t in the solution, the variable S(t,0) is

known at the 24 discrete reference points around the tunnuel liner.
Denoting these magnitudes at the 24 reference points (Qi) as
S(t,Qi) the right-hand side of equation (19b) can be numerically
integrated, and the modal amplitude is

24
AB E:S(t,gi) cos nQi, n>0 (19¢)
i=1

S =

2
n 7
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The zero mode amplitude is given by

2
s, =2 AGZS(t,Gi) (19d)

o
o]

(2) Antisymmetric Response (A)

A(t,0) = ZAn(t) SHIETE (20a)
n=1

where An = An(t) are the time dependent modal amplitude histories.

Variables that can be represented in this manner are the liner
shear force and the soil media shear stresses at the SSI inter-
faces. The modal amplitudes (A ) are evaluated by multiplying
equation (20a) by sinn® and integrating from 6 = 0 to 7, and
results in

m
A= %[ A(t,0) sin n6 do6 (20b)

n
(o]

Following the numerical integration solution process used in the
symmetric response analysis, the modal amplitude is obtained from

24
20 ZA(t,Gi) sin n0;, n>0 (20c)
751

A =
n

2
m

The above techniques, equations (19c) and (20c), were used
to convert the dynamic results obtained from the SAMSON code to
modal amplitude histories.

(3) Symmetric Modal Histories

Modal histories were computed for modes O through 6 for the
following symmetric response variables. The modal history curves
for each mode are given in the indicated figures.

Nondimensional Liner Thrust, figure 22 (sn<,Tn/poR)
Nondimensional Liner Moment, figure 23 (Sn<‘Mn/PoR2)

Nondimensional SSI Radial Stress, figure 24 (Sn‘born/po)
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(4) Antisymmetric Modal Histories

Since the zero mode does not exist for the antisymmetric modes,
the modal histories were computed for modes 1 through 6 for the

following variables.
Nondimensional Liner Shear, figure 25 (An<&_Vn/poR)
/p,)

Modal amplitude histories for the circumferential soil stresses

Nondimensional SSI Shear Stress, figure 26 (An‘r'TrOn

were not determined since these stresses do not act as loads on
the liner structure and are only of academic interest.

Table VI gives the minimum and maximum values of the modal
amplitude that occur during the time history for each mode. Since
these peaks do not occur at the same time for all modes, the maxi-
mum and minimum values of response at a particular point (6;) can-
not be obtained by simply summing the angular modification of the
peak values, i.e., IS  cos nQi or IA, sin nOi. Even if the peaks
do occur at the same time, the maximum value of Oi is in general
not obtained from the sum of the maximum modal amplitudes since
the sin nQi or cos nQi will change the effect from maximum at the
crown (6 = 0) to minimum (or negative) at Oi depending on the
sign of the appropriate trigonometric function. For example, if
all peak amplitudes (minimum and maximum) occurred at the same
time for a symmetric variable, the maximum value of the variable
at say 0 = 90 deg would be obtained (for the modes 0 through 6) as

6 5
Max. S(0=90) = ) Max. S_+ ) Min.S_
=0 y2% HEAN3S

c. Crown, Springline, Invert Results

Time history plots of the liner nondimensional moment and
thrust and the nondimensional SSI radial stress computed during
the dynamic SAMSON analysis are presented for three reference
points on the liner. The reference points and figures containing

the history plots are:

EFowg - Ref. Pt. 1, 04 3.75 deg, Ligure 27
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Figure 27a. Nondimensional Crown Thrust History, Case 5
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Springline - Ref. Pt. 12, 912 = 86.25 deg, figure 28

Invert - Ref. Pt. 24, 92 = 176.25 deg, figure 29

4
Hereafter, any allusion to the crown, springline, and invert points
will actually correspond to the above identified reference points
unless otherwise indicated.

The final bit of processing that was performed on the SAMSON
results was directed at indicating which modes contribute the most
(or are the most important) when trying to approximate the ele-
mentary SAMSON history results by an appropriate combination of the
modal histories. Table VII gives the results of this investiga-
tion, and a discussion of the parameters given therein follows.
Processing was performed on the nondimensional liner moment and
thrust, and the SSI radial stress at three reference points, i.e.,
crown, springline and invert.

The results presented in table VII are described by discus-
sing the Crown Thrust results. First consider the last row of the
crown thrust results which is labeled MAX. The last column in
this row is labeled INPUT VARIABLE with a magnitude of 0.60422.
This is the maximum value of the reference point 1 nondimensional
liner thrust that was obtained during the SAMSON solution and is
the same value given in table V, also see figure 27a. If only the
mode 0 nondimensional thrust history is used (see figure 22a) that
was obtained by the process described in the derivation of equation
(19d), the result is a single mode (mode 0) approximation to the
crown thrust. The maximum nondimensional thrust for this single
mode approximation, which for this case is simply the mode 0 max
given in table VI, is 0.54571. The ratio of the modal history
approximation maximum to the SAMSON history maximum is 0.54571/
0.60422 = 0.903163 which is the value given in the Mode 0 column
of table VII. The remaining columns for the MAX row are similarly
determined except the approximation to the thrust is determined
by including the modes 0-n as indicated by the column headings.
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For example, if modes O through 5 are used to determine the approx-
imation to the crown thrust (denoted by TO 5) the maximum crown
thrust derived from these modes would be obtained from

5
Max TO,S = Max {Z Tn(ti)cosnel}’ i=1,L

n=0

where Tn(ti) is the discrete value of the mode n nondimensional
thrust at the ith time step and there are a total of L time steps.
This maximum divided by the SAMSON max (0.60422) would give the
value given in the Mode 0-5 column, which is 0.98075. 1If the SAMSON
peak value, given in the INPUT VARIABLE column, is zero (0) then the
peak value obtained from the modal history approximation is not nor-
malized since this would result in division by zero. For this sit-
uation, the normalized peak value of the modal history approxima-
tion is used in the table. The invert SSI radial maximum stress is
an example of this situation.

In an exactly parallel manner, the values given in the row
labeled MIN are computed except these results are obtained by deal-
ing with the minimum values of the SAMSON and modal histories.

The first row, labeled SRSS, gives the results from performing
square root of sum of squares (SRSS) processing on the data. The
last column gives the SRSS of the nondimensional crown thrust. The
other columns are determined by computing the SRSS of the differ-
ence between the modal history approximation (for the number of modes
indicated in the column heading) and the SAMSON response history.
The desired result here is a ratio of 0.0, which indicates that
there is no difference between the approximate modal history curve
and the SAMSON time history curve.

Obviously the desired result of the MODAL HISTORY/INPUT VALUE
ratios is 1.0 for the MIN and MAX rows and 0.0 for the SRSS row.
A crown thrust history based on modes 0 through 3 gives a reasonably
good approximation to the most important peak values of the response
and an acceptable SRSS ratio. Additional modes do not significantly
change the peak values or the SRSS ratio.
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Some of the ratios show some seemingly disparaging results such

as the crown SSI radial stress MA! row. The inclusion of modes 0
through 6 for the approximation to this variable does not yield the
desired result of approximately 1.0. However, an examination of
figure 27c reveals the fact that the maximum radial stress (tension)

is so small that even an error of an order of magnitude is not
significant.

4. ANALYSIS OF CYLINDRICAL SHELL TO SSI LOADING

This analysis follows closely that presented in reference 9.
It presents the response analysis of an elastic cylindrical shell
to a transverse shock wave. For this research investigation the
shock wave can be represented by the SSI radial and shear stresses
such as those computed in the dynamic SAMSON solutions. The effect
of viscous damping of the cylinder has been added for this analysis.
The dynamic modal response analysis is employed for the solution,
and both extensional and inextensional effects are considered. The
extensional effects are frequently neglected for analyses of this
type; however, they are important during the early time engulfment
process.

The basic objective of this analysis was to see if the SSI modal
loads computed from the dynamic SAMSON solutions, when applied to a
cylinder in vacuo, would produce the same modal internal force re-
sultants (moment and thrust) that were computed from the SAMSON
results. The theoretical aspects of the modal analysis are summar-
ized in the following.

a. Displacements (see figure 12)

W(9,8) = Golt) +). [qn(t) + an(c)} cos nd (21)
n=11
—~ [q,(t) = usl
v(@,t) = ). |-B" _ 4 g (t)|sin no (22)
n=1 L J

where the bar notation () denotes the extensional effects and the
comparable unbarred variable the inextensional effects. Thus. q, and
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ﬁh are the time varying inextensional and extensional modal ampli-

tudes, respectively. Define N1==n2-l , C =t2/(12§2) then
d =§l-ﬁ £+ “2+12— 2Nic+N/I c? 5 (23a)
n~ Tn 7 72|l Tn 2 . g
n n
dn = -l/dn (23b)

Note that dj =0 and d; =1.
b. Exact Circular Frequencies

2— a--\/a
n

2000 el (24)
2

32 = a+\d-b nz0 (25)

=
|

where
a=0.5em&H)+05fNi
b= e fnZN%
e = E_/(oR?)

f = eC

p = y/g, mass density

c. Approximate Frequencies

i @ < 31 and Aﬁz >>1 or 12 (Ti/t:)2 >> 1

= 2P 2
2 ECI Nln f(l-nz) n2

w = =

H pt-R'(n2+l) n2+1
E A
-2 c 2 2
£ oy = -+
Wy 5ER (n“+1) e(n“+1)

d. Radial and Tangential Shear Loads

©o

or(Q,t) = E:orn(t) cos nb (26)
n=0
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e.

where

Note that I/Hh

To get the
and tangential

[0}

Trg(O,t) = E: Trgn(t) sin n®
n=1

Equations of Motion

1
) L2 “en(®) " Tron (S
s R m_ e
1
2 orn(t)' = Trn (E)
= < _— = e n
q, + 2 ;n Wy 9dn + wo q = n>0
n
m_ = ot(l+ 1)
n 2 57
n
=N 5 5
m = p (i o d?)
() - 92
at
Ly = Fraction of critical damping
= 0 for n=0.

Equations of Motion for Radial Loads

I + 20 by dp + g Gy 7 - Opn(D)/my, n21

ﬁﬁ ¥ 20 b Eﬁ i Gﬁ Eﬁ i Orn(t)/ﬁn, n>0
LCquations of Motion for Shear Loads

ﬁg + 2z Wy ﬁg + mi qg = Trgn(t)/dn/mn, FS

Qs+ 20 G G+ ql =g (/T /F, n>l
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(27)

(28)

(29)

(30a)

(30b)

solution for the separate effects of the radial (R)

(T) shear loads the following equations are presented.

(31la)

(31b)

(31le)

(314d)




Note that for equation (31d) the n=0 mode does not exist since

Blgn ™ 0 and 1/35 = 0 for the zero mode. The complete solution is

obviously
= ® + ¢t >1  Inextensional soluti
q, 9, G n> nextensional solution
{
_ & n=0
qn = B Extensional solution
ER + ar n>1
n n =

f£f. Cylinder Force Resultants

-K
M= — (w+w'")
RZ

T=2 (w-v')-¥
R R
where
= 1 _F +3
K= EcI = Ect /12
D = AEc = Ect
(=90

The radial and tangential displacements, equations (21) and (22),

can also be written as

w(0,t) = wo(t) +an(t) cos noB

where el
wo(t) = q (t)
w (£) = q (t) +q (t)
v(o,t) =Zvn(t) sin n@
where =1
q_(t)

(32a)

(32b)

(32¢)

(33a)

(33b)

(33¢c)

(33d)

(34a)

(34b)

(34¢)

(35a)

(35b)




Thus,

= wo+ Z (1-n2) w, €os n®
n=1

W, + Z (wn-nvn) cos nb (37)
n=1

From equations (33a) and (36)

M ='§£2 {wo+ Z (1-n2)wn cos nG} (38a)
n=1
s P e Sl 2 A e )| e (38b)
ey 1',\—'2' o 2 4R,
n=1
or o ©
M= ﬁo+ Z ﬁncos nd + Z M cos né (38c)
n=1 n=1
where
Mn = Moments from extensional effects
B, =-Xana® g, a0 (384)
R
Mn = Moments from inextensional effects

K 2
M =~ gz-(l-n Jag, =2l (38e)

Note that both components of the moment are zero for mode 1 since
1-n2=0. From equations (37) and (33b) obtain

r ©
T = g W+ Z (wn-nvn) cos nQJ- M/R
R = n=1
pl= . %" _  nq, =
= i {qo+ 2_ (qn+qn -HI‘T+ndn qn) cosng}- M/R
n=1
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or

T = TO+ q'fn cos n@ + ZTn cos n8 - M/R (39¢)
n=1 n=1

The last term (M/R) is usually neglected; however, it is retained

in this analysis.

In equation (39c)

Th = Thrusts from extensional effects
_ D - K 7 =
= i qn(1+ndn) + Es (1-n%) q_
- P - K 2. = '
. q (1-n/d) + = (1-n%) q_ n>0  (39d)

Note that l-nlah =1 and 2 for n=0 and 1.

Tn = Thrusts from inextensional effects
P K 2 |
=2 q,(1-n/d ) + ij (I-m") q n>2 (39e)

Also note that dn=n for n=1 thrust Ti==0 and this has been used to
define the applicable range of n for equation (39%e).

The nondimensional equations of internal liner forces for the i
separate effects of radial and tangential SSI loads can be written

as follows.

g. Nondimensional Moment Modal Amplitudes

= Nondimensional modal amplitude for SSI 9.
P,R load only

:

i i D s

K 2 O, n=1 Since 1—n2=0 for n=1 (40b) by
= - —(1-n%) |
R°R < [ R =R j
l_ 5 ) nel (40c)
\ v O po
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M
—2 = Nondimensional modal amplitude for SSI T,g
poR load only
0, n<2 since T,gn=0 for n=0
K 2 2
= - Ezif(l-n ) and 1-n“=0 for n=1 (404)
T =T
o R (40e)
P, P
h. Nondimensional Thrust Modal Amplitudes
f D K 2 _ﬁ
—+ —=m(1-n) | = n=0 (41a)
[RR R™R J o]
R —R
T { \ q
_Eﬁ = llil_ll S n=1 (41b)
Po RR| Hh Py
[ \ E \ a
D ! n' K el D n! K 2 n
Ship- e (I-n%)| -2 +] 2 h -2}, @=nyem
\’LRR‘ 3 R°R Jpo [RR( 4 TR }po
n>2 (4lc)
(0 n=0 (414d)
T / =t
T . q
%4 _BL fire i/ n n=1 (4le)
p0 RR | d po
n
== ! i
D n i K 2,1% D! n) K 2,{ 9n
it || ey +“—2'_ A-n") | =+ |=\t-~ + = (1-n%)| —
[RR‘ d | RF o |5g! 4y RORZ Po
\ n>2 (41f)

i. Application of Method

The above analysis has been applied to two of the SAMSON solu-

tions, cases 5 and 13. A computer code was written which used the

SSI radial and shear stress modal loads that were computed from the

SAMSON solution (see section III for derivation of these modal

histories). These modal loads were used in the equations of

motion, equations (3la), (31lb), (31lc) and (31d), which were solved
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numerically by a Runge-Kutta technique for the extensional and in- ‘

extensional modal displacement histories for all modes up to n=7.
These results were then used to compute the nondimensional modal
thrust and moment variations, equations (40) and (41). Finally,
the liner forces computed by this process, which are referred to

as the analytical liner forces, are compared to those computed from
SAMSON results. These latter liner forces are referred to as the
SAMSON liner forces. The analytical modal thrusts compared fairly
well with the SAMSON modal thrust for both cases 5 and 13. The
modal moments did not compare very well for some of the modes,
especially mode 2.

The details of the method employed to make the comparisons and
to measure the influence of the separate effects of the radial and
shear SSI stresses are now discussed. Tables VIII and IX give
the vibrational characteristics of modes 0 through 6 for the two
cylinders for cases 5 and 13 (R/t=4 and 15). The outer radius and
the liner thickness used for these cases are

Case 5 Case 13
R/t 4 15
R, inch (m) 104.99 (2.667) 84.37 (2.143)
t, inch (m) 26.25 (0.667) 5.63 (0.143)

These values are consistent with the 2.0 m inside tunnel radius
that has been used in this project. 1In the tables for the n=1
mode, a very small value for the inextensional frequency

(0.1 x 10_8) has been used instead of 0.0.

The column headings for tables VIII and IX denote the follow-

ing:
Heading Parameter

OMEGA-SQ. ‘*’r21

OMEGA- BAR-5Q w2

FREQ. fn=mn/2n, frequency (Hz)
FREQ. -BAR fﬁ

T Tn=l/fn, period (sec)
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In an effort to efficiently assess the effect of each SSI
modal load component on the response of the cylinder, maximum and
minimum analytical values of the moment and thrust at the crown,
springline and invert were computed and compared with the corre-
sponding peak values obtained from the SAMSON time history re-
sults. These comparisons are given in tables X through XIII
and are similar to those in table VII. The modal forces (thrusts
and moments) used for table VII were computed directly from the
SAMSON tunnel liner force histories whereas tables X through XIII
were computed from the response of the cylinder in vacuo to the SSI
(SAMSON) modal loads for tables IX through XII. Furthermore, the
time of occurrences of the peak moment and thrust for both the
analytical and the SAMSON results are given in tables X through
XIII to compare this important aspect of the problem.

The comparisons given in these tables are described by discus-
sing the "Crown Thrust'" results. First consider the two rows
labeled MAX-2 and T-MAX-2. The last column, Exact Response, gives
the maximum value of the nondimensional crown thrust (0.60422) and
the time of occurrence (0.0081 sec) from the SAMSON solution for

reference point 1. Knowing the analytical modal thrust amplitude
R
n’
shear SSI loads, the crown (91==3.75 deg) thrust history is calcu-

histories (T TE) for the separate effects of the radial and

lated for a mode by mode addition of these modal amplitude histories.

The maximum value of the crown thrust was computed for each addi-
tion of a mode to the analytical history, and then this maxirum
thrust is normalized by dividing by the SAMSON maximum value.
These are the normalized values that are presented in the MAX-1
and MAX-2 rows for the columns labeled MODE=0 through 6. As indi-
cated in the table, the -2 row includes the response from both the
radial and the shear SSI modal loads for modes 0 through N where N
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denotes the column label mode number. The -i row does not include
the SSI shear load effects for the current mode N. For example,
using modes 0 through 5 to obtain the results given in the MODE 5
column, the MAX-1 result is obtained from

4
Max Té,S = Max >;5[T§(ti)'+Tg(ti)] cosn 91
n=0

+ Tg(ti) cos5 91}, i=1,L

where the () notation indicates the nondimensional magnitude, n
is the mode number, i is the discrete time step, and there are

L time steps. This maximum divided by the SAMSON maximum
(0.60422) would give the result 0.987907. The T-MAX-1 and -2

rows give the time that the respective analytical maximums occur.

In a similar manner, the first four rows (labeled MIN-1,
MIN-2, T-MIN-1, and T-MIN-2) are obtained except the minimum values
of the modal histories are computed and compared with the SAMSON
solution minimum nondimensional crown thrust (-0.040613) and time
of occurrence (0.015225 sec).

j. Discussion of Results

It was anticipated that the cylinder moment and thrust modal
results obtained from this anaysis would be close to those obtained
from the SAMSON results; however, an examination will show that
the comparison is fair for the thrusts and relatively poor for the
moments for case 5. The moment comparison is especially bad for
case 13. Just as with the table VII results, the desired ratio
of the peak maximum and mimimum analytical response to the corre-
sponding SAMSON peak is 1.0. In general, the minimum thrust ratios
are not very close to 1.0; however, since these ratios are the ten-
sion thrust which are relatively small except at the invert for
case 5, large errors are not significant. That is, a large error
in a small magnitude number still gives a small magnitude number.
It also appears that large errors exist for the time of occurrence
of some of the analytically determined peaks compared with the SAM-
SON times; however, these actually represent only minor errors.
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i For example, the case 5 maximum invert thrust for the SAMSON solu- ;
tion occurs at t=0.0096 sec, whereas the maximum occurs at approx-
imately 0.026 sec when modes 0 through 2 (or more) are included in
the analytical determination of the invert thrust. However, an exam-
ination of figure 29a shows that a second large compression thrust
3 occurs at approximately 0.025 sec which is almost equal to that at

t=0.0096 sec, and this explains this seemingly large discrepancy. j

Even though the comparisons of the analytical results with i

the SAMSON solution are not as good as anticipated, it appears
that the SSI modal loads 0 through 2 are the primary contributors
to the cylinder thrust, and mode 2 is the significant loading caus- ‘

ing cylinder moments. As previously indicated, the desired result

was to have the analytically determined modal thrust and moment 1
histories essentially the same as the SAMSON results. A cocmpari- 1
son of these modal histories for case 5 for the thrust modes 0, 1

1, and 2 and the moment modes 2 and 3 is given in figures 30 and

31. The thrust modes compared fairly well; however, relatively
large differences exist for the moment modes even though the gen-
eral time variations of the curves are similar, i.e., the analyti-

cal moment magnitudes are approximately 50 percent higher than the
SAMSON magnitudes.

The thrust and moment modal comparisons for case 13 are shown
in figures 32 and 33. Just as with case 5, the thrust modes com-

pare fairly well; but the important mode 2 moment comparison is

very poor, and this is the major error which creates the large mo-
ment ratios in table XIII.

A separate a 'ysis of the poor comparison of the analytical
moments with the SAMSON results was undertaken to try and resolve
this problem. This study was not completed, due to fiscal re-
straints on this research project; however, the following observa-
tions are made. For several reasons it is suggested that the
SAMSON determined cylinder thrusts and moments are more reliable

(or accurate) than the SSI stresses. Two of these reasons are:

i o ol bt

(1) The tunnel liner is modeled in considerable detail
(four element layers through the thickness) com-

pared to the soil mesh immediately adjacent to the F
cylinder. '
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(2) The stresses in the soil elements immediately adja-
cent to the cylinder are not truly the SSI stresses
because the soil mass dynamic effects were not elimi-
nated. That is, the discrete mass at the SSI nodes
contain contributions from both the soil and the
cylinder elements that are attached to the nodes. For
the flexible liner (case 13) the soil elements are
the major contributor to the mass at the SSI node
points. The stresses in the soil elements immediately
surrounding the structure are properly used to find
the loads applied to the SSI interface nodes. How-
ever, it is clear that the dynamic force effects of
the soil mass, e.g., inertial loads, must be removed
to obtain the true SSI stresses. Appendix C gives
a further discussion of this concept.

Accepting the premise that the SAMSON thrusts and moments
are essentially correct, it is possible to solve for the SSI modal
stresses from the internal liner force resultant nodal histories.
This is done by first solving for the modal deformation histories
(q, and aﬁ) using equations (40) and (41). Then, by application
of numerical differentiation, the time derivatives of a, and ﬁh
can be obtained and equations (31la) through (31lc) will yield the

modal histories of the SSI stresses.

The above inverse method was used for cases 5 and 13; and
even though the results are preliminary, they imply that the
mode 2 radial and shear stresses should be higher, i.e., more
positive. A major effect occurs on the case 13 moments when the
higher mode 2 radial stresses computed from the inverse process
are used. These revised radial stresses reduce the Mg amplitudes
(make them more negative) which, when coupled with the mode 2
moments Mg from the SSI shear stresses, yield essentially the
same total mode 2 moment variation that was obtained from the
SAMSON results. This is illustrated in figure 33 by showing the
magnitudes of Mg, Mg at t=0.015 sec as computed from the inverse
process (denoted by "inverse method"). Also shown on this figure
are the Mg. Mg magnitudes at t=0.015 sec which were computed from
the SAMSON mode 2 SSI radial and shear stresses (denoted by ORIG-
INAL METHOD). The combination of these two moments yields a point
on the "analytical' curve. Figure 34 shows the time history of
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the Mg and Mg curves as computed from the SAMSON mode 2 SSI radial
and shear stresses. Combining these two curves results in the
dotted curve which is the same as the curve denoted "analytical"
in figure 33. Figure 35 shows the nondimensional mode 2 moment
variation that was computed from the SSI shear and radial stresses
that were derived by using the inverse method. That is, the Mg
and Mg curves in figure 35 are based on the SSI mode 2 stress
histories calculated from the SAMSON mode 2 moment and thrust his-
tories as discussed above. These mode 2 SSI stress histories are
shown in figure 36 and for comparison, the SAMSON SSI stresses are
also given. As previously indicated, the SSI stresses determined
from the inverse method are more positive than the SAMSON mode 2
stresses as indicated in figure 36. Referring to figure 35, com-
bining the Mg and Mg (inverse method) moment variations yields
essentially the original mode 2 SAMSON moment variation which is
the desired result. In a similar manner, the mode 2 thrust vari-
ation computed from the inverse method SSI stresses (figure 36)

is the same as the SAMSON mode 2 thrust. Similar results were ob-
tained for the other modes when the inverse method was used. This
indicates that the computer coding associated with the original
analytical method is correct since this same coding was used to
compute modal moments and thrusts from modal SSI shear and radial
stresses after replacing the SAMSON SSI modal stresses with those
determined from the inverse method.

In summary, it is concluded that for the results available
from this investigation, the SSI stresses should be computed by
the inverse method. That is, the modal SSI stress variation should
be calculated from the SAMSON modal thrust and moment histories.
However, further research studies should be undertaken to verify
this conclusion.
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I SECTION IV
) CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSTIONS

The overall objective of the research investigations described

in this report was to develop a simplified method for computing
loads on buried structures. The results discussed in Section III 1
indicated that the soil structure interaction (SSI) loads, as de- ;
termined from the dynamic loading finite element analyses, may not
be a sufficiently reliable data base upon which to base a new or

more comprehensive simplified loading technique. Even though re-

liable SSI loads are not available some meaningful conclusions can
be drawn from the results of the study. The conclusions associated
with the dynamic loading results are based on the assumption that
the detailed results, such as modal time history variations, may

be subject to question; but the overall effects on the SSI loads
and the tunnel liner internal forces, from varying the independent
parameters should be fairly reliable. For example, if the peak
thrust goes down with an increase in structure flexibility, the
trend is essentially correct even though the precise reduction may

be subject to question.

The major conclusion drawn from the project is that the concept
of using a few of the SSI modal loads to arrive at a simplified
method of loading appears to have a great deal of merit. In fact,
it appears that it is generally sufficient to use only modes 0 ]
through 2 to obtain a sufficiently detailed definition of the load- u
ing to satisfactorily compute the internal tunnel liner forces.

In some cases, it may be necessary to include mode 3 to accurately

obtain the bending moments around the tunnel liner. |

Some of the conclusions that can be drawn from the static and
dynamic investigations undertaken during this project are presented.
In this discussion, the terms '"'flexible'" and '"'stiff'' refer to the

tunnel liner with radius to thickness ratios of 15 and 4, respec-

tively. Also, '"'shallow" and ''deep'" refer to depths of overburden
above the tunnel crown of 0.25 and 2.0 tunnel diameters, respectively.
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(1) For static ground surface loads, the SSI radial and shear
stress loads acting on a buried cylinder are not very sensitive
to the depth of burial.

(2) For dynamic airblast ground surface loads, the SSI loads
on a buried cylinder are significantly reduced as the depth of
burial increases. This is due primarily to the attenuation with }
depth of the peak free field stress for the nonlinear soil material

models (sand and cemented sand) considered in this study. This at-

it

tenuation with depth is due to the hardening stress-strain law

employed. Also, a short duration airblast load (td==0.015 sec)

results in considerably more peak stress attenuation than the

long duration loading (td==0.06 sec) considered in this study.

f (3) An increased failure strength of the soil (i.e., cemented

sand versus cohesionless sand) does not essentially modify the SSI

loads on a buried cylinder for dynamic airblast loads.

(4) For static ground surface loads, the buried cylinder crown

and invert thrusts are approximately the same, and the springline

thrust is two or three times larger than the crown and invert
thrust. For a shallow depth of burial, the invert thrust is slight-
ly higher (maximum of 24 percent for the stiff tunnel) than the
crown thrust. As the depth of burial increases, the crown thrusts
increase until they are essentially equal to the invert thrusts.
This occurs at approximately one diameter of overburden for the
flexible tunnel and two diameters for the stiff tunnel.

(5) For dynamic airblast loads, the crown thrust is 30 to 120

; percent higher than the invert peak thrust for the stiff tunnel;

| however, for the flexible tunnel, the crown thrust is more nearly
equal to the peak invert thrust. For the shallow buried stiff tun-
nel, the springline peak thrust is slightly higher (10 to 30 percent)

than the crown thrust; otherwise, the springline thrust ranges be-

tween 50 and 150 percent higher than the crown thrust. The peak
thrusts throughout the tunnel liner are considerably reduced with
depth as the duration of loading is reduced for both the stiff and
the flexible tunnels.

é 151




T — T

—pr— T

(6) For static ground surface loads, the crown moment is some-
what larger (47 percent higher) than the peak invert moment for
the most flexible shallow buried tunnel; however, the crown moment
is nearly the same (7 percent lower) for the stiffest shallow

buried tunnel liner. As the depth of burial increases, the crown
and invert moments approach equal magnitudes. This result occurs
at a depth of burial of one tunnel diameter. The invert and spring-
line moments are essentially of equal and opposite magnitudes for

all depths of burial and tunnel liner flexibilities considered.

(7) For dynamic airblast loads, the largest bending moments

occurred at the invert for all cases considered. This rather sur-

prising result corresponds to the limited experimental results avail-
able at this time (Ref. 58,59,60). The largest nondimensional mo-
ments for the dynamic load cases were always smaller than the static
solution case for the corresponding R/t ratio; however, the invert
peak moments approached the static results for the shallow buried
stiff tunnel liner cases. For the shallow buried stiff tunnel,

the peak dynamic invert moment is 60 to 100 percent higher than

the crown moment. For all other depth of burial and tunnel stiff-
ness combinations considered in this study, the peak invert moment
was 20 to 50 percent higher than the crown peak value except for

the deep buried, flexible liner subjected to the high overpressure
long duration loading. For this case the invert peak bending mo-
ment was 80 percent higher than the crown value. In most cases,

the invert peak bending moments were only 5 to 20 percent higher
than the springline magnitudes (but of opposite sign). In some of
the stiff tunnel cases, the magnitude was 40 to 50 percent higher.
For the shallow buried stiff tunnel cases subjected to short dura-
tion airblast loading, moment reversal occurred throughout the liner.
The maximum reversal (38 percent) occurred for the crown bending
moment when the large overpressure short duration loading was used.
That is, the largest negative moment (causing tension in the outer
fibers of the tunnel liner) was 38 percent of the largest positive
moment at the crown. The smallest reversal (16 percent) for the
stiff shallow buried cases, occurred for this airblast load case also.
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(8) For dynamic airblast loading, an increase in the peak
overpressure has a relatively small e¢ffect on the peak nondimen-
sional moments and thrusts in the tunnel liner. The largest effect

on thrusts is an increase in the invert compressive nondimen-

sional thrusts of approximately 100 percent when the peak over- |
pressure is tripled for the shallow-buried stiff tunnel with the ,f
short duration loading. All other changes in the peak nondimen- .
sional thrust with an increase in overpressure are relatively small

except for the deep-buried stiff cylinder subjected to the long

duration loading where the nondimensional crown and invert thrusts

increase by approximately 50 percent. The largest effect on bend-

ing moments is a reduction in the peak nondimensional moment by
approximately 40 percent when the peak overpressure is tripled for

the shallow buried flexible tunnel liner.

(9) A fourfold increase in the duration of the airblast dy-
namic loading (from 15 to 60 msec) has the effect of increasing the
peak thrusts and moments by from 10 to 90 percent for the shallow
buried tunnels. For the deep buried tunnels, the increased dura-
tion of loading causes large increases in both the thrusts and the
moments which generally range from 150 to 350 percent.

(10) Increasing the structural flexibility causes a reduction
in the crown and invert nondimensional thrusts for the shallow
buried dynamic load cases; however, an opposite effect is observed
for comparable static load cases. The nondimensional bending
moments are drastically reduced for both the static and dynamic
load cases as the tunnel liner flexibility is increased.

2. RECOMMENDATIONS

This research project produced a great number of numerical
results (36 cases) from dynamic finite element solutions which mod-
eled buried cylinders subjected to ground shock effects of airblast
loading. The SSI loads on the cylinder were derived from the
stresses in the soil elements immediately adjacent to the cylinder.
These SSI loads were then used in a modal analysis to compute the
response of a cylinder in vacuo. and the internal forces (moments)
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and thrust) computed from the modal analysis were compared with
those determined from the finite element solution. In general,

the thrust compared fairly well, but the moments compared poorly
for some cases. This implies that either the SSI stresses or the
cylinder forces determined from the finite element solution are in
error. At this point, it is believed that the SSI stresses are

in error and the cylinder forces are essentially correct. If

this is true, then the finite element determined cylinder forces
can be used to calculate the SSI stresses, and the overall objective
of determining a simplified method for defining loads on buried
structures can be completed by using the results from the 36 cases.

Briefly stated, the simplified loading method involves the
determination of the important modes of the SSI loads and an analy-
sis of how these modal histories change with the important param-
eters such as (1) structural stiffness, (2) depth of burial,

(3) soil type, and (4) airblast waveform peak overpressure and
duration of loading. It appears that modes 0 through 2 provide
the most significant loads on the structure; however, before any
simplified loading method can be determined from these SSI modes,
it is essential to have confidence in the SSI modal histories.
Several factors have been identified which make the finite element
determined SSI loads suspect such as (1) the damping stresses are
not included in the finite element stresses, (2) the soil mass of
the elements adjacent to the structure is included with the SSI
nodes and (3) a more refined mesh may be required to accurately de-
termine the SSI loads from a finite element dynamic analysis. In
summary, it is recommended that this research study be continued
and completed since the technique of defining a simplied loading
procedure by using a few modal loads appears to have great merit.

Specific recommendations are:

(1) Reliable SSI radial and shear stress modal loadings should
be determined from the results available from this project. Con-
sequently, when these modal load histories are applied to the cylin-
drical tunnel liner structure in vacuo, the internal forces com-
puted from a dynamic model will compare favorably with those ob-
tained from the finite element (SAMSON) solution.
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(2) Once the SSI modal loadings are unquestionably known to b
be without error, the simplified method of determining dynamic ]
loads on buried structures should be formalized. This effort will )
require the determination of the number of SSI modal loads required
and the time history details (amplitude and duration characteristics)
of each mode as a function of the structural characteristics, soil
media, depth of burial, and airblast waveform. The time details of

each mode can be simply characterized by triangular, piecewise
linear or simple sinusoidal or parabolic waveforms without introduc-
ing significant errors to the calculation of internal tunnel liner
forces.

For example, figures 37a and 37b show the mode O and 1 nondi-
mensional SSI radial stress variations for cases 5 and 13. These
cases are identical except case 5 employs a stiff tunnel lining
(R/t=5) and case 13 a flexible lining (R/t=15). The other important
parameters are: peak overpressure, p0=500 psi (3.45 MPa); airblast
duration, td=0.015 sec; depth of buria<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>