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Summary • 

Nonnegative Definiteness of the Estimated Dispersion 

Matrix in a Multivariate Linear Model 

by 

Friedrich Pukelsheim 
Universitat Freiburg im Breisgau 

and Stanford University 

and 

George P. H. Styan 
McGill University 

Estimation is considered in a model where both the mean vector 

and the dispersion matrix have linear decompositions. It is shown that 

after an invaria~ce reduction with respect to mean translation, MINQUE 

provides a nonnegative definite estimate of the dispersion matrix, when 

the decomposing matrices span a ~uadratic subspace of symmetric matrices. 

With normality, MINQUE is seen to e~ual the restricted maximum likelihood 

estimate and to be of lli~iformly miniml~ variance. 

KEY WORDS: MINQUE. Noniterative solution of likelihood e~uations. 
Quadratic subspaces. REML. Special Jordan algebra. UMVU. 
Uni~ueness of maximum likelihood estimate. 
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l. Introduction. Consider independent and identically distributed ============ 
n . h ..,p random IR -vectors Y , a= l, .•. ,N, Wlt common mean vector"" 

1
b x 

=a n= n=n 

and common dispersion matrix ~k 
1

t V , where interest concentrates on 
K= K=K 

estimating the vector~:= (t
1

, ••. , tk)' of dispersion coefficients. 

Various procedures have been discussed in the literature. Among those 

are: (i} minimum norm unbiased quadratic invariant estimation 

(MINQUE, C.R. Rao [8, p. 302]), and, under normality, (ii) uniform 

minimum variance unbiased invariant estimation (UMVU, Seely [ 9 ]) , and 

(iii) restricted (by invariance) maxim~~ likelihood estimation (REML, 

Corbeil & Searle [ 2]}. In this paper invariance is to be understood 

with respect to the group of all mean translations 

{y +y + Lb X 
- - TI =TI 

(b
1

, .•. , bp) ' E !Rp } , a maximal invariant statistic 

being ~~ where M projects orthogonally onto the orthogonal complement of 

the space spanned by ~l' •.. , ~p; hence reduction by invariance yields 

the residual vectors ~~a with mean £ and dispersion matrix 1:tK~K~ • 

Our main result may be roughly summarized as follows: If estimates 

according to each of the three procedures above exist, then they coincide, 

and the common estimate ~ yields a nonnegative definite estimate 1:tK~K~ 

of the dispersion matrix in the invariance reduced model. This holds 

true for any finite sample size N :?: v : = rank ~~ in contrast to asympto·tic 

results on consistency as N + oo , cf., Anderson [ l] . 

In Section 2, the invariance reduced model is discussed in a normal 

set·ting, and Section 3 is concerned with the linear model situation. 
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The vital assumption is the condition of Seely [ 9] that 

~1~, ... , ~k~ span a k-dimensional quadratic subspace B of symmetric 

n x n matrices. The subspace B is quadratic if and only if A
2 

E B 

whenever~ E B , i.e., B is closed under the multiplication 

A o B : = ~(AB+BA) • Jensen [ 4] points out that the latter property makes 2 == == 

B into a k-dimensional special Jordan algebra, and we shall adopt this 

more informative terminology. For a discussion with no initial invariance 

reduction, see Gnat, Klonecki & Zmyslony [ 3]. 

The Normal Model. We will use the isomorphism vee that maps a ================ 
matrix into a vector by ordering its entries lexicographically, see 

Pukelsheim [ 7]. 

THEOREM l. Consider independent and identically normally distri-

buted random Rv-vectors ga with common mean ~ and common dispersion 

matrix Lt W , whe.re N >- v 
K=K 

Assume that the k decomposing matrices 

~K span a k-dimensional special Jordan algebra B . Define G c ~k to 

be the region of those values ~ of the dispersion parameter such that 

Lt W is positive definite, and assume G ~ ~ • Then: K=K 

(a) The maximum likelihood estimator for t E G is almost surely 

equal to the uniform minimum variance unbiased estimator 

I -1 
t : = (~ ~) ~' • vecg, where D : = [ vec~1 
s ;= :Zz z • /N 

=a =a 

(b) The estimated dispersion matrix W 

vec~k] , and 

A 

:= ~t W is nonnegative 
K=K 

definite; in fact, if the sample dis persian rna tr ix S is positive definite, 

so is W . 
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Proof. (a) Since G is open and connected it is a region, and 

k 
its boundary oG consists of those ~ E ~ such that ktK~K is nonnegative 

definite and s·ingular. The sample dispersion matrix S is almost surely 

positive definite. If ~ tends to oG, or II~ II tends to co , the likelihood 

function L tends to zero [ l, p. 5] . Since Lis positive in G there 

exists a maximum in G, and no maximum lies on the boundary a G. Hence the 

maximum likelihood estimate is a solution of the likelihood equations 

(l) -1 
D'F vecS 

where the matrix of fourth moments 

( 2) F 

If~ in (l) is put equal to ~(~0 ) for some given ~O E G , then (l) is a 

set of weighted normal equations, cf. [ 7, p. 628] , and hence yields a 

minimum variance unbiased estimator for the vector parameter ~ • Since 

the matrices W span a special Jordan algebra, there exists an 
=K 

almost surely unique uniform minimum variance unbiased invariant estimator 

which does not depend on the choice of ~O E G Thus 

( 3) 
h 

t 
-1 

(~'~) ~'vee~ 

since G t 0 implies the existence of a nonsingular matrix ~ E B , and so 

-l 
~ E B and ~\-' 

equal to I 2 
==V 

-1 
B o B E B ; the matrix~ in (l) may, therefore, be set 

I @I 
=v =v 
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(b) As a linear operator on the space of symmetric matrices, t 

is surjective and hence open, and so if for some positive definite 

matrix ~0 the value ~(~0 ) 5l G , the same is true for an open 

neighbourhood of ~O , i.e., for a set of positive Lebesgue measure. 

A 

This contradicts part (a) that !: maps into G almost surely. For a 

singular sample dispersion matrix ~, consider the limit S + s~v as s 

tends to zero. Q.E.D. 

Part (a) may also be obtained from a reparametrization by 

8 = ~(~) , where the bijection ~ from G onto G solves 

~e (t)w 
K = =K 

-1 
(~t vJ ) , as introduced by Seely [ 9, p. 715]. In this 

K=K 

case one obtains an exponential family in the vector parameter 8 and 

standard theory applies, cf. Anderson [ l] • A theorem proved by 

Makelainen, Schmidt & Styan [ 6] may be used to obtain uniqueness of 

the solution to the likelihood equations (l) . 

3. The Multivariate Linear Model. We now return to the linear, but 
============================= 

not necessarily normal, model discussed in Section l. 

THEOREM 2. Consider independent and identically distributed 

random ~n-vectors Y , a =l, ... ,N, with common mean vector ~b x and 
=a TI=TI 

common dispersion matrix ~t V , where N ~ v = rank M . Assume that 
K=K 

the k matrices MV M span a k-dimensional special Jordan algebra B that 
==K= 

contains M Then the MINQUE 

(4) 
A 

t 
-1 

(D' D ) D' .vecS 
=~=~ =~ = 
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for ~ yields a nonnegative definite estimate 2-:tK~K~ of the invariance 

reduced dispersion matrix, this estimate being of rank v if 

S := 2-:MY (MY ) '/N is of rank V • ==a ""=a 

A 

Proof. It is easily checked that t is the MINQUE in the enlarged 

model [ ¥:i~ : . . . : :¥;~~] ' 

by reference to Theorem l. Choose an nxv full rank v factor Q of M 

i.e. , ~ = 8~' and Q 
1 
Q 

statistic [ 5, p. 707] 

I ; then Q 1 Y is another maximal invariant =v 

For the sole reason the proof, add a normality 

assumption. Then Theorem 1 is applicable to z := Q'Y , and yields =a = =a. 
A 

the same t as in (4); and the results on 2-:t Q'Y Q imply the assertions 
K= -K= 

on 2-:t MV M . 
K==K= Q.E.D. 

If a normality assump·tion is added to Theorem 2, then using 

Theorem l, we obtain the following: 

COROLLARY. If the common distribution of :¥;
1

, ... '~N is normal, 

then tis the UMVU and REML estimate of~ , as well as the MINQUE. 

Examples may be found in Corbeil and Searle [ 2]. In each one of 

their four cases a special Jordan algebra is present: equality of MINQUE 

(i.e., ANOVA estimators) and REML is implied by the Corollary and need 

not be checked explicitly, nor need the likelihood equations be solved 

iteratively. 

~- ~~~~~~1~~~~~~~~~- This paper was presented at the Instytut Mate-

matyczny PAN, Wroc!aw, by the first author, who would like to thank the 

Polish Academy of Sciences for their kind invitation. The authors would 
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