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Maximum Likelihood Estimation of the Covariances of the Vector Moving

Average Models in the Time and Frequency Domains
by

F. Ahrabi
Stanford University

Abstract

The vector moﬁing average process is a stationary stochastic process
{Zt} satisfying V. = Zg=0 A €._4» Where the unobservable process {Et}
consists of independently identically distributed random variables. The
matrix parameters g(s) = 8th' » $=0,1, ..., q are estimated from:
the observations Yo +oes Yp+ The likelihood function is derived under
normality and to solve the maximum likelihood equations the Newton-Raphson
and Scoring methods are used. The estimation problem is considered in the
time and frequency domains. Asymptotic efficiency of the estimates is

established.

Key words: Maximum likelihoocd estimation, vector moving average models,
Newton-Raphson and Scoring iterative procedures, Time and Frequency

Domains.



Maximum Likelihood Estimation of the Covariances of the Vector Moving

Average Models in the Time and Frequency Domains
by
F. Ahrabi

Stanford University

1. Introduction

There have been a number of papers dealing with the estimation of
the vector autoregressive moving average (VARMA} models. Hannan (1969,
1970) has considered the problem in the pure moving average case in the
frequency domain. Nicholls (1976) has extended this to the case of
VARMA models which include exogenous varizbles. Reinsel (1976) has
considered the problem in the time domain. There have been other papers
in this area, ameng them Akaike (1973), Tunnicliffe Wilson (1973),
Kashyap (1970), Whittle (1963), and Osborn (1977). 1In all these papers
the parameters of interest are the matrix coefficients of the vectors of
observable and unobservable random variables and the common variance
covariance matrix of the unobservable random variables.

This paper is concerned with the estimation of vector moving average
models, but following Anderson (1975), Parzen {(1971), and Clevenson
(1970) we take as cur parameters the autocovariance matrices of the
observable random variables.

There is one paper by Newton (1975} which is primarily concerned
with fhe usual parameterization of the VARMA models. However he derives
estimates for the autocovariance matrices in the pure moving average

case. His method is to regress the elements of the sample spectral
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density, evaluated at a number of equidistant points, on certain trigo~
nometric functions using the method of weighted least squares. The
estimate seems to be different from the estimates derived in this paper.

The methods used in this paper are the Newton-Raphson and Scoring
Methods, applied to the maximum likelihood equations in the time and
frequency domains. The likelihood function is derived under the
assumption of normality of the data.

To summarize, Section 2 describes the model and the parameters to
be estimated. Sections 3 and 4 deal with the estimation problem in the
time and frequency domains respectively. Finally, in Section 5 we
derive the limiting average information matrix and show that the esti-
mates proposed are consistent and have the desired limiting multivariate

normal distribution, i.e. they are asymptotically efficient.



2. The Model

We have the observations yl, yz, seog yT, where
. = + I 3 .
(2.1 Ve = S T A & T8y Sig

pXl  pXp pXi

Assumption 1: The € 's are i.i.d. with mean zero and unknown

~

covariance matrix V.

Assumption 2: The roots of the determinantal equation

(2.2) II + Az + A 22 + e + quq} = {

lie outside the unit circle.

Note: Assumption 2 enables us to recover the coefficients Al’ Az,
«es» A from the autocovariance matrices uniquely. The latter are the

-~

parameters of interest which are

) _ '
z = 8(tht) R

(s) _ ' _
L ~&QQHQ,&4,L,“,q.

For ease of differentiation of the log likelihood function we should vec—

torize these matrices where we use the notation

a)

1

o e o

Vec A =

where

A= (al, coos gn)

~ ~

. 0
and the ai's are column vectors. But we notice that E( )

~

is symmetric
and hence should be treated separately. So we vectorize the diagonal and

subdiagonal elements of Z(O) separately. So the parameters are



©
11

oV = azz ) - |
(©
PP

952) ot E(0)

9

P
where the operator Vec vectorizes any matrix that it is applied to,

ignoring the diagonal and upper diagonal elements of that matrix, e.g.,

1 2 9

—~

Vecl{ 4 3 5 =
0 6 7

and finally
GS = Vec E(S), s=1, 2, . q .

e o9

Now we can put all these vectors in a single [qu + (3;1)] x 1 wvector

8, i.e.
9' = (9" gi, sy gé)
where
') L'(2)
i =
% = (& "7s 8
Remarks.
(i) We can find a matrix B such that
~2
pP*p
(2.3) dg( A ) = B Vec A .



B 1is obtained from the szp2 identity matrix by deleting all the rows

except Ilst, p+2nd, 2p+3rd, ..., pzth, i.e.

(2.4) B= | S2p43 | ,

where

I,= (el, €ys cees @ )

P ~
(ii) In a similar manner we can find a p(j;l) x p2 matrix C

~

such that

L d

(2.5) Vec A =CVec A.
P>p

C is obtained from I 2 by deleting the following rows
P

1, p+l, 2p+il, seey (P"l)P+1
p+2, 2p+2, ..., (p~1)p+2

2p+3, ..., (p-1)p+3

(p-L)ptp

We shall find it convenient to introduce another vector 6 where

1)

[« 2]
il

(2.6) V(Vec' E(O)’ Vec' Z(

~

s, ++0s Vec' Z(q))

XX ae
@gs 83, .. B



3. Estimation in the Time Domain

3.1, Introduction

We are going to use maximum likelihood estimation and proceed as

if the et's in Section 2 are normally distributed and we shall show

~

later that the resulting estimates have the same limiting covariance

matrix irrespective of et's being normal.

~

Let
T ] 1
A ZT) .
Then
Y~N(O’Z) ’
where
4
5 1) 2(0) Z(1) Z(q) 0
= 3@ - : R
0 .
0 @ RS

[ =]

1O




Now using Kronecker products and the TxT matrix

I =]

Iroy

o 0

~

similar to the one introduced by Anderson (1975) we can write ¥ as

G.1D =1 Q 5(0) + 0L ® §(1) +1'® g'(l)) + .. +
(Lq @ Z(Q) + L'q ® Z' (q)) .

The log likelihood of y is

~

log 2(2) = - %—log 2n % 10g|§l -k X'E_lz .

The maximum likelihood estimates are a set of the roots of the equation

9 log R(Z)
= 0.

~

So we proceed to find the first derivative of the log likelihood, and

in doing so we use the fact that

3 log 2(y)
€q 36 =0,
which means
9 log L(y) 5
% -1 P -1
(3-1.2) B I AR z*“(ﬁ 7' Z)

3.2. The First Derivative of log 2(y)

As noted above we only need to find g% y'Z—ly. It is more con-

venient to find i%-y'Z_ly and then, noting that
0 7 7~



oz
d -1 -1 ~ -1
(3.2.1) = y'L Ty = ~y'} Iy
30?9) < 2 22 30?9) ~ £

ij ij

3 -1
ORI E
90, .
ji
where Eij is a matrix with 1 for the ijth element and 0's else-~

where, we get

(3.2.2) T?—(ﬁ y'g—lz = 2 +O) y'Z_ly s
30,7~ do,; .7 T T 7
i 1]

where ‘i%ﬁi indicates that we take the symmetry of Z(O) into account,
aoij
The end result is that

(3.2.3)

where G is a [qp2 + BSBill]

> X (q+l)p2 matrix which can be written as

~

1 P
(3.2.4) g = 92 Bi%fll s
Gy qu
and

7 @9, =00, 60D,

with B and C as in Section 2.



So we proceed to find J% y’Z_ly, using the fact
6 7 7 ¥
rt er
= -5 = I,

We shall also find it convenient to express y'Z_ly differently using

~.

the identity
Vec(ABC) = (C' & A) Vec B ,

[see Minc and Marcus (1964)] which enables us to write

-1

~ ~ ~

'Z“ly = VeC(y'Z—ly) = (y'® y') Vee &

[}

So we only have to differentiate Vec Z_l, but

3 vec 171 O 1 ox
—_— = —Vec(Z — I ) =~ " ) Vec =

ax ~ 9X ~ ax .
Now
9%
30(0) = ET ® Eij ’ i, =1, ..., p,
1]
39X s '
BO(S)=E ®E‘lj+£‘ ®Eji’ is J=l’ cesy P o
ij
So
d Vec Z~1 -1 1
ey =-I L) Vee(l, ® E;)s 1o 351, «ony p
a,,
1]

- @I oY sy,



which yields

3 Vec 371 4o
(3.2.5) ——= - ® I E, ,
' ~ ~ NO
96
~0
where
= (-0 (0) (0)
(3.2.6) Ey (911 s Poy s wevs Bpp ) .
Similarly, differentiating w.r.t. Uii) we get
9 Vec Z—l -1 -1 s 's
—=-(Z " ® L) Vee(L”®E,, +L°® E,.)
BO(S) ~ ~ ~ ~1] ~ ~J1
ij

ij
which yields
3 Vec Z—l 1 -1
(3.2.7) —— == " ®IH)YE, s=1,
30! ~ = ~8
~8
where
- ((8) (s) (s)
ES (pll b pzl b et sy ppp )
From (3.2.5) and (3.2.7) we get
9 Vec Z_l -1 -1
(3.2.8) ——=-C " ®IMHE,
36! - - -
where
(3.2.9) E': (E()’ AE:].’ s Eq) s

which in turn yields

10

*s



'Ly -1 -1
(3.2.10) — - ==y'T T A y'I ) E.
96’ v - s
8 log L(y)
Now to complete the computation of ——————— we have to take the
o9

expectation of (3.2.10). We note that for any two vectors u, v (of

the same dimension) we have

Vec(uv') = v C) u
This means
It @y - Vec' (X lyyrz 7l
So
e @ yrl) = vee oz lyyrrl
= Vec' Z—l .
Therefore
3 log 2(y) _ _
——— =55 It @yt mveer 1Y v
36" D - v
or
9 log L(y) _ _
—— = =5 2Ty ® 1Yy - vee 17
36 oy o ~
Finally
9 log (y) a _ _
(3.2.11) '_——56——“:’ =% GE'(§ lz ®z ly - Vec I l) .
Note: We have from above
3 log L(y) ) _
—— =5 B0 ® Ty - vee 1Y

36,
~1

11



Now

-1 -1
'y
yz éilg b
-1 -1 .
BTy ® Iy = : ;
YT Iy
ip

where Vec éir is the rth column of Ei and Air is TpXTp. So we

get

where

1ip
This means
3 log 4(y) 1. 1 1
(3.2.12) —————=1H%(, ® y'z M) ALy - LE! Vec T = .
30, “p - e ~t -
o §
0 log A(y)
We shall use this latter form for —————— when finding the second
35,
derivative of log 2(y).
3.3. The Numerical Approximations
The equation
3 log 2(y)
55 -0

~

is clearly nonlinear and cannot be solved explicitly. So we will use
numerical approximations to get asymptotically efficient estimates.

The methods we are going to use are the Newton-Raphson method and the

12



Scoring method. In both methods we need an initial consistent estimate (of
L A~
order T?) of 0, call it 6(0), then the Newton-Raphson method consists

of solving the following system of linear equations for 6(1),

2> log &(y) 3 log &(y)

(3.3.1) T 36 856 68 (9(1)—9(0)) - a0 6=0
-~ ~ 2 ~(0 ~ -~ "'(0)
52 log 2(y)

The Scoring method is the same as above with g ———56—5571- replacing

32 log Q(Z)

36 587 i.e. we have the equations

2
8~ log 2(2) . . 9 log 2(y)
B X
~ ~(0) ~ ~(0)
To find é(O) we estimate the covariance matrices by their sample ana-
logues, so
T-s
a(s) = 1 v -
(3.3.3) E(O) T—a tzl VeVesg » S = 0, 1, ..., q .

3.4. The Scoring Method

To arrive at the linear equations for this method we need to find
3 log L(y)

E 36 387 | > but we know that

3° log 2(y) 5 log &(y) 9 log L(y)
YA 50 |~ ¢ 36 : 38"

and from (3.2.11)

9 log 2(y) d log A(y)
(3.4.1) ¢ 5 seT | =

~

%QE' 3[(§_1y ® Z_ly - Vee Z_l)(y'Z_l ® y't ~ - Vec' Z_l)]EG'

13



Now

and we need
-1 1 1 ' -1
e(z C) z -Vec X )(z' Q z' - Vec' T77)

=g(zz' & zz') - Vec I ~ Vec

Vec Z_l.

0

since @€(z C) z)

So, suppose u ~ N(O, D), we want to find ¢&(uu' C) uu'). The
ij~ block of uwu' & uu' is

u,u, uu' .

]_J~~

To find 8(uiuj uu') we use the result (Anderson (1958, p. 39)).

e(uiu,uu) =d..d _+d,d, +4d,d, .,
ijrs ij rs ir js is jr

which yields

" - ' 1
g(uzuy uu’) =d; o D+ d;di +dydi,

where

D = (dl, oo, d )

From this we can get

14



~N
1 1 1 A
didy  dydy 4,41
+
? L )
glén gZén tet éngn

Now, the last matrix was shown by Magnus and Neudecker (1977) to be equal to

En(g C> 9) >

where
(n) (n) (n)
B B e En
(3.4.2) En = .
(n) (n) (n)
Eln E2n e Enn
and Ei?)'s are n*Xn matrices as defined before. So

~

v 1 = |
euy’ @ uu) = @, +K)(@ QD) +Vee D Vee' D .

Now for our problem

which means

(3.4.3) e(zz2' ® zz') = (1 , . + KTp)(z"’l ® ™ + vee 17t vee' 571,

T2p2 ~

Finally we get the average information matrix as 1/T times

d log & 3 log R\ _ . -1 -1
8( 36 30" ) =% GE (Eszz tR)ET® I EG!

15



So the linear equations for the scoring method are

(3.4.5) GE' (I 225 2 Gloy ® Egy B8t B yy-6 o)

a-1
=2 GE 5 i Vec T
G0yt @ gy - Vee g
Once we get é(l)’ we could use that as @(0) in (3.4.5) and get a

second iterate but for large samples this is not necessary.

9(2)°

3.5. The Newton-Raphson Method

3.5.1. Preliminaries

To write down the linear equations for this method we need the second

derivative of the log likelihood function. To derive the latter we first
2

derive ——é———-log Q(y), using the form (3.2.12) for E—égg—&- and then
86 36' a0
use ~
52 log & . 3° log &
(3.5.1.1) "Wg%,_= G——‘V—O%—G'
-~ X R T I T A
52 log &
3.5.2. The Derivation of ~—:—9%—— .
36 99’
As in (3.2.12) we have
9—125—&-= L(1 9 ® y'Z—l) A.Z_ly - % E! Vec L 1 .
38, ~p e e E ~ ~

We have the derivative of the second term w.r.t. 0 as

(3.5.2.1) 5ECT@IDE,

16



using (3.2.8). It remains to find the derivative of the first term.

To do this we shall find the derivative w.r.t. éj for i > j and using

symmetry will complete the derivation. So we iet

_ -1 -1
Ty F Il(e) = %(Ipz ® Z'E ) éig y, 1=0,1, ..., q
and
™ =(t), ve., T') .
~ (~0 ~q
Now
oT,
oy = S, @y i @E rtasly
e} “p ~ ~ ~
uv
-1 -1 1
S, ®yE) AT @E NIy .

Now using (A () B) (g C) D) = (ég () BD), we can factor out (E 2 C) z'g—l)
P

to the left and also can factor out Z_ly to the right, which results in

where

_ : -1 -1
CiO,uv - [EPZ ® (ET ® guv)§ 1 éi + éig (ET ® Euv) :

This leads to

oT, oT, T, oT,
~i _ ~1 ~i ~1
Xy (0)° (0)> *°* (0)
890 3011 8021 Bopp
= .1 o1 -1 -1
Z(EPZ ® y'ED (Ci040 2y s Ci0,0p 2 7

-1 -1
"I 0y 61, @ 1Ty,
P P

17



where

Ci0 = Cio,11> Si0,21> v Cio,pp) ¢ LT 0 Ls viend

Similarly

9Ty 1 -1

—— =50,y c. 0,01y,

98! “p - -

2]
where
S5 7 Gy Gag,200 000 oy

and

~

3 3 R -1 1,3
[EPZ @ (I'.‘ ® Euv E Evu)§ ] éi + é]_.zv: ({'f ® E‘uv

Oa la coesy gy

[A?

I A

UH-
"
I

u,v =1, 2, ... p .

Finally for j > i wusing symmetry we have

oy 1 -1
—== %1, ®y' Il (I,®Iy .
ae' ~p ~ J ~p ~ ~

~]

Now, for j > i define

and define

then from above we have

18



(3.5.2.2) =411, @y h €;;T , ® 1" 'y)
p

il

- -
Tilly @ (fpz @ y'Z )] Cllga® (Ipz ®z 1g)]

Now notice that

I X (I ® 4 = I ®a.

~Mm

So (3.5.2.2) becomes

oT -1
—- = 51, ®yt™h ca 2 ® Iy
3! p (qt+l) “p7(g+1)
Finally from (3.5.2.1) we have
3% 1og % -1
(3.5.2.3) == 1, ® y's” ) C(I ® @y
98 96" “p”(q+l) S ST CT M
+32CtT @Y g
3.5.3. The Equations
From (3.5.2.3) using (3.5.1.1) we have
52 1log & -1 -1
k== %61, ®y'r ca, ® Iy ¢
36 30! T 7p (q+l) - © "pT(q+l) T

+3 ce'(x7L ® r 1y me
So the equations for the Newton-Raphson method are

[e(1, ® 380y Coy T, ® £gyy) - cE' gy ® £ gy) EG'I

( q+l)

= ves-l -1
< Q) = e Gy ® £y - vee )

19



3.6. Summary

In the preceding sections we have derived the linear equations for
the estimates, using the Newton-Rapnson and Scoring methods. The two
resulting estimates are asymptotically equivalent, but.at this point it
is not clear which one is easier to compute. To write down the equations
we first have to invert the TpXTp Dblock Toeplitz matrix 2(0) and once
we have the equations, we need to find the best method (computationally
easiest) to solve them. These problems will be considered in future
work.

To compare the computational problems with that of Reinsel (1976), we
see that in the latter a matrix § which is essentially of the same form and
A=1

has to be inverted (G = zg= Ai C) Li), But once G

~

size as %
~(0)
is computed, Reinsel has shown that the solutions to his equations are

the same as some generalized least square estimates.

20



4. Estimation in the Freguency Domain

4.1. Introduction

For a stationary process {zt, t =0, +1, ...} with covariances

8(ztﬁt+ R =0, +1, ..., the spectral density matrix f is

~

defined as

15 is)
’ =18
= EF Z Bs e .

g==C0

(4.1.1) £(2)
The covariances can be recovered from f(*) wvia

i3 }\
D, = j £ e 3N an .
-Tr

The sample analogue of the spectral density, the periodogram, is defined

as
T-1

1 A =~igA
(4.1.2) IAN) == Y D e
~ 2 ~(T-1) ~8

9

where ﬁs is the sample analogue of DS, more precisely

I\

-1 Tes
~s T Z I t+s ‘

We can also represent I(\) in terms of the discrete Fourier transforms

(4.1.3) IO =w) wx)) ,
where
T .
(4.1.4) QO I S
~ VZiT n=1 ~

For a fuller treatment see Anderson (1971).

If the process {zt, t=0,+1, ...} is Gaussian then the log like-

lihood function may be approximated by

21



(4.1.5) %5 log [T| % ] erl£7700) 1O,
t

where

Whittle (1953, 1961) suggested this for the case p=1 and Dunsmuir and

Hannan (1976) showed that this leads to efficient estimates for general p.

For our problem y = 2z, D = Z(S), I' = X, and we only have a finite

~8 ~ ~

number of nonzero covariances so

(4.1.6) £ = = § p(8) mihs
~q
and
-1 .
Y =-§; ] B e ths
s -(T-1) ~

So the log likelihood can be approximated by

4.1.7) log 2 =~ =% log IE[ L5 z tr(f;l Et) 5
t

where ft S f(kt), It = I(Xt). We shall use the same approximation methods

~

as in the time domain and will also use

o0 log & . 3 log &
(4.1.8) o8 . g oen
~ a6
(4.1.9) (3(§—l%5—3) 0.
08

~

22



4.2, The Derivation of §~lg5—&
99

Using (4.1.7) and (4.1.9) we get

(4.2.1) 2logl_ L) e L e 1)
t ae ~t ~t ot

36 36
Now
1 of '
d -1 ~ -1 %% -1
25 er(f," L) = —trf T 5o L I
Differentiating (4.1.6) yields
_Egs_ I
= b
ac(0) 2T ~uv
uv
of -iA s il s
=t o ;L-[e t E +e ' g 1, uv=1, ...
(s) A ~uv ~vu
uv
So
oL -1
(0) tr(f Zt) = o tr(f E v Et Et)
uv
S S R |
Y tr(ft Susv Et Zt)
- _ 1 4, -1 -1
om Sv B I £ ey
- _ 1 -
= - 27 (-}Jt)vu u,v = 13 LI
where
(4.2.2) ho=ft1 g1,

23



t
and we have used the fact that E = e e', where e , e are the u h
~uv ~U~V ~u’ v

and vth column of the pXp identity matrix. Now we can easily see

) -1 - _ 1 '
(4.2.3) 5 tr(gt Et) > Vec(ét) .
~0
Similarly
: -il s iA s
9 -1 _ 1 -1 t t -1
ao(s) tr(it £t) T T 2w tr[%t (e Euv te Evu)ft EJ
uv

1 —ikts ikts
=—~[e hy +e Et]uv' > WY=L P
which yields
1 1th -iA s

(4.2.4) —é—-tr(f_ I) = - <= Vec(e h +e © h!') y s=1, ..., q.
35 ~ ~t 27 ~t ~t
~8

. . 3 log 2
To complete the derivation of ———:g~— we have to take the expectation

26
of (4.2.3) and (4.2.4). This yields
— '—
e 2 tr (f 1 I % - - L Vec (£ l) s
= ~ ~t 2T ~t
36
~0
il s -iA_ s
) -1 _ 1 e -1 t -1}
6[35 tr(ft zt% = - o Vec[e Et + e Et } s
~8

~

since 8ht ~ f;l, which follows from e(It) = ft + O(T—l). Now let

then using (4.2.1) we have

24



(4.2.5) 9log 2 _ L yy. v

iy s -iA s
(4.2.6) é—l‘zﬁ—’L::iZVeC[e t g +e © JL'], s=1, ..., q .

- *
Now, from (4.1.6) it is obvious that f£' = § or = f , where *

2 Hh

indicates "conjugate transpose", i.e. f is Hermitian. Also I' =

~ ~

=
-

which leads to h' = h and &' = 2. We can use this to simplify

(4.2.6) as follows

i s il s
é—l%&—& =L ) Vec(e b 3 ) + L ) Vec(e b g )
35 4 c ~t 4 ¢ ~t
~8
1 iAts
= E%-g Vec (e &t) .

because the first sum is real. The reason for this is that

. . . 2Tt . (T-t)
1Xt —1At -1 12w-——T—— iAT—t
e = @ = e = e = a .

This means that for any real function n(e)

-1 -
T-1 iAt 2 iAt ikt
I ne 5 =n@ + T nee ) +ne ),
t=0 t=0
for T odd, and
I-1 -
T-1 ixt 2 ixt iAt
I ne H=n)+ ¥ nee b+ ne ) + n(-1) ,
t=0 t=0
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ix

for T even. So ZT é n(e t) is real. The same argument allows us
to rewrite (4.2.5) as
é—lgg—& =-£; Z Vec %t .
00 t ~

Finally we can conclude

(4.2.7) Qlog X Ly yeep
= 2 ~t ~t
38, £
where
it qi)xt
Iy
Je= Gl ge Iy, .nye Iy .
p p p

There is an alternative form for (4.2.7) which will be more useful
in deriving the second derivative of 1log %£. It is obtained by noticing

that we can find a matrix M, such that
Vec %t = ¥ Vec %é ,
which then enables us to rewrite (4.2.6) as

il s -iA s
(4.2.8) 9 log % _ i%-f e " 1.+e © M vVec 2. -
90 t “p ” ¥

It is easily verified that in fact

M=K ,
~  ~P

where K was defined in (3.4.2). So the alternative form for the first

~

derivative of log % is

J log &
36

~

(4.2.9) = 2L~Z Et Vec %t s
t
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where

ikt -iAt qi)\t -piX
r = 1 =
(4.2.10) gt = g (Xt) (E 9s © E 9 + e Ep’ cee, € E 2 + e
P p p
4.3. The Second Derivative of log &
Using (4.2.9) we have
2 3 Vec %
(4.3.1) S doal_Lyy -t
96 20°' t 00"’
Now
_ -1 -1 -1
Tk Lk ~t

which yields

B%t _ _f—l aft f—l I f—l _ f—l I f—l agt f—l + f~l aft f—l

0x ~t  0x ~t ~t ~t ~t ~t ~t 3x ~t ~t 9x ~t °
which in turn yields

3 Vec 2 ' of
~E -1 -1 -1 ' -1 ~t
(4.3.2) o L T @ ED - T @) - () B £ )] Vee 5
of
_ ~t
= ?t Vec T °

(0)

say. Now for x = © we get
y av g

3 Vec %t 1 o e
b
ao(O) 2m it ~uv
uv
where
e =VecE , uwv=1, ..., p.

~ ~
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So

9 Vec Qt 1
(3.3 = g & e Sa10 e Sp)
~0
=L =L
=21 % Ipz o O -
Similarly
o Vec 2t 1 —ikts ikts
—SEIES—-= EE'?t (e Suv te gvu) » WY =1, ..oy P
uv
Now
e =VecE =VecE' =K VecE =K e ’
<vu ~vu ~uv  ~p ~uvV  ~p ~uv
which means
d Vec lt 1 —i)\tS il s ,
W=ﬁ?t (e £p2+e ISp) %uV’ u,v=1, ..., p,
uv s=1, ..., q .
Finally
3 Vec 2 -iA s iX s
(4.3.4) _”_735:%‘% ¢ " I,+e " K),s=1,...,0q.
00! h “p ~P
~8
So
3 Vec 2 -iX ix
~t 1 t t
(4.3.5) —_— = (I, e I ,+e K
~ x ~2 ~2 N’
39, 2m it . P
—qikt qii
cee, @ I,+e K_)
~ ~p
p
1
2T ft ~t
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Now we get the second derivative from (4.3.1)

3% log 1 _ Ta
36 98" 8ﬂ2 t ”t ~t ”t

(4.3.6)

4.4. The Newton-Raphson Method

As in the time domain we will use Z( )'s as initial estimates of

~(0)

the covariances, and so

s~ _ 1 3 TS L
feco) = 27 _E e §(0)
s=-q

will be the initial estimate of ft. Accordingly we form zt(O) and

~

?t(O)’

~ A= a=1 A—l
[)
20y T ~t(0) I ft(O) ft(O) ?

~=1 -l )
~t(0) ~t ~t(O)

H'
~
(=3 o
~
®
hy

~ oAt A=l
?t(O) B (ft(O) ® ft(O))

At-1 -1
£ 0y It ~t(0) ® £ (o)

Using (4.2.7) we have

dlog & 3 log 8 1
(4.4.1) 50 - ¢ 5% T 4w g GJ, Vee £, .

Similarly from (4.3.6) we get

2
3" log & '
(4.4.2) 50 307 - 2 Z CH, ¢, Et G

So the linear equations for the Newton-Raphson method are
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(4.4.3) (- 2 GH. ¢

CH, ¢y B H G ) (9

- 2 Z GI_ Vec )

81y~8¢0) e (0)

4.5. The Scoring Method

As mentioned earlier, to get the linear equations for this method

2
we replace éﬁﬁl%%T&' by its expectation in the Newton-Raphson method.

The latter is

2
9  log 2
8( 55 ag' ) = - 5 L GH_e(9) mG .

t ~~T ~t~
Now
E(IC) ~ ft )
which leads to
_ -1 -1 -1
e(h) =e(f, I, £, ~f,

which in turn leads to

'-1 -1
e ~ —(£, 7 ® £

So
52 1og & 1 1
= e — L}
8( 36 867 ) B g o, (£, x £V

ignoring the terms of order T—l. Finally the linear equations for this

method are

[Z G H (£ )H G'1(6 =2 Z GJ_ Vec &

t(0> ® ft<o> S0 £(0)
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4.5, Remarks

As in the time domain, there are computational problems to be con-
sidered in setting up and solving the equations derived in the preceding
sections. In this case the main problem in setting up the equations is
the inversion of pXp matrices ft(o), t=1, ..., T-1. And again we
have to find the best way to solve the resulting equations. It seems
that the computation of the estimates in the time domain is easier than
that in the frequency domain.

Comparing with Nicholls (1976) and Anderson (1978) which deal with
the estimation of the coefficients Ai’ i=1, ..., q, we see that the

~

main problem of inversion of f (O)'S is also present in these papers.
t
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5. Asymptotic Properties

The four estimates proposed in this paper are asymptotically equi-
valent and we shall show that they are efficient, i.e.

£

T (8,0 > (0, 97O ,

~(1)
g

where J&(6) is the limiting average informtion matrix and '"»'" indicates

convergence in distribution.

To find J3(8), by definition we have

2
. 1 [0 log &
(5.1) J(8) = lim - 5 6( 36 96" )

T->o0

' - k3
1im %- ~l§ )} GH (f, 1 ® ftl)HtG' ,
T->c0 8- ¢ T 7 ~ g

2m N 1 %
L[ e @ iy o
16m” ‘0

where the argument X 1is omitted from H and f.
The four estimates are obtained from equations like
A d log %
) (D o 108 %

A -1
81y %0 =T 0

~

(5.2) 38 ,

(0)

9=8 0y

where §(§(O)) is a consistent estimate of J(0). We can rewrite (5.2)

as
PN ~ oA A 1 3 log &
(5.3) 3 ) /T (§1y=8 =3B 5)) /T B)-0 + O o
VT ~ 10=8
~ ~(0)
where 0 1is the true parameter. Now
(5.4) 1 3 1log & _ 1 9 log % + ;L_Sz logvﬂ (6-6 y
N 98 0=8gy /T 02 Jomgt ~ (@
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*+

where |6—6 filﬁ—é(o)l. Now (5.3) can be rewritten using (5.4)

A __3 log &
(5.5) ( (0)) % (9(1) 0) = [J(e(o)) + 'r—“”g_ae 367 |e=9+}
1 9 log &
/‘(e(o) 8) + ——8—39 .
Now noticing that
£
1 3" log 2
T ~30 36" + 7 =3O

and v*ke(o) 8) is boﬁnded in probability, we see that (5.5) is (asymp-

totically) equivalent to

(5.6) /T (B,,,-0) = o7leoy L 2log L

Theorem. Under (2.1) and Assumptions 1 and 2 of Section 2,

£

/T (8 -0) -+ n(o, c9 (9)) ,

~(1)

where 6(1) is any one of the four estimates derived in this paper.

Proof. Using (5.6), it suffices to show

£

_l.é_%ﬁg_&.+ N(O,*) .
/’f v ~
Let
Vec(él, enes éq)
E=1dgV s
Vec v
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where A.'s and V were defined in Section 2. Now

~

00

0 log & _ z 0o log £, °7J
%y F %% 9%
which meéns
1
d log & _ 39 d log &
o0& ag a8
20’
It follows from Assumption 2 of Section 2 that —%? is nonsingular,
which means
'—
1 9 log % 39 1 1 Jlog &
(5.7 = e |3 ot
VT ~ 2 /T

But it has been shown by Nicholls (1976) and Reinsel (1976) that

~ £
/T (E-8) > N(O0,*) ,

which is the same as

£
1 3 log &% N(O, *)
T 9g b
So (5.7) gives us
(5.8) A ELJEEE__ - N(O )
% :

The limiting covariance matrix in (5.8) is obviously J(8), so

£
VT (B (l)—e) ~ N(O, J (e)) . Q.E.D.
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