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Maximum Likelihood Estimation of the Covariances of the Vector Moving 
Average Models in the Time and Frequency Domains 

by 

F. Ahrabi 
Stanford University 

Abstract 

The vector moving average process is a stationary stochastic process 

{~t} satisfying It = Ii=o ~i ~t-i' where the unobservable process {E: } 
~t 

consists of independently identically distributed random variables. The 

matrix parameters E(s) = ey y' , s = 0, 1, ••• , q are estimated from ~ -t-t+s 
the observations !:1• ... ' ~T· The likelihood function is derived under 

normality and to solve the maximum likelihood equations the Newton-Raphson 

and Scoring methods are used. The estimation problem is considered in the 

time and frequency domains. Asymptotic efficiency of the estimates is 

established. 

Key words: Maximum likelihood estimation, vector moving average models, 

Newton-Raphson and Scoring iterative procedures, Time and Frequency 

Domains. 



Maximum Likelihood Estimation of the Covariances of the Vector Moving 

Average Models in the Time and Frequency Domains 

1. Introduction 

by 

F. Ahrabi 
Stanford University 

There have been a number of papers dealing with the estimation of 

the vector autoregressive moving average (VARMA) models. Hannan (1969, 

1970) has considered the problem in the pure moving average case in the 

frequency domain. Nicholls (1976) has extended this to the case of 

VARMA models which include exogenous variables. Reinsel (1976) has 

considered the problem in the time domain. There have been other papers 

in this area, among them Akaike (1973), Tunnicliffe Wilson (1973), 

Kashyap (1970), Whittle (1963), and Osborn (1977). In all these papers 

the parameters of interest are the matrix coefficients of the vectors of 

observable and unobservable random variables and the common variance 

covariance matrix of the unobservable random variables. 

This paper is concerned with the estimation of vector moving average 

models, but following Anderson (197.5), Parzen (1971), and Clevenson 

(1970) we take as our parameters the autocovariance matrices of the 

observable random variables. 

There is one paper by Newton (1975) which is primarily concerned 

with the usual parameterization of the VA~~ models. However he derives 

estimates for the autocovariance matrices in the pure moving average 

case. His method is to regress the elements of the sample spectral 

Acknowledgement. I would like to thank my adviser, Professor T. W • .Anderson, 
under whose supervision and guidance this work was completed. 
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density, evaluated at a number of equidistant points, on certain trigo­

nometric functions using the method of weighted least squares. The 

estimate seems to be different from the estimates derived in this paper. 

The methods used in this paper are the Newton-Raphson and Scoring 

Methods, applied to the maximum likelihood equations in the time and 

frequency domains. The likelihood function is derived under the 

assumption of normality of the data. 

To summarize, Section 2 describes the model and the parameters to 

be estimated. Sections 3 and 4 deal with the estimation problem in the 

time and frequency domains respectively. Finally, in Section 5 we 

derive the limiting average information matrix and show that the esti­

mates proposed are consistent and have the desired limiting multivariate 

normal distribution, i.e. they are asymptotically efficient. 
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(2 .1) 

2. The Model 

We have the observations r
1

• ~z· ... , rT• where 

Y:t = ~t + ~1 ~t-1 + . , . 
pXl pXp pXl 

+A € 
~q -t-q 

Assumption 1: The € 's 
~t 

are i.i.d. with mean zero and unknown 

covariance matrix V. 

Assumption 2: The roots of the determinantal equation 

(2.2) 

lie outside the unit circle. 

Note: Assumption 2 enables us to recover the coefficients ~l' ~2 , 

... ' A 
~q 

from the autocovariance matrices uniquely. 

parameters of interest which are 

The latter are the 

For ease of differentiation of the log likelihood function we should vee-

torize these matrices where we use the notation 

Vee A = 1
1

1 -n 

where 

and the a.'s are column vectors. But we notice that E(O) is symmetric -1 

and hence should be treated separately. So we vectorize the diagonal and 

subdiagonal elements of E(O) separately. So the parameters are 
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,..._.. 

(0) 
0 

PP 

where the operator Vee vectorizes any matrix that it is applied to, 

ignoring the diagonal and upper diagonal elements of that matrix, e.g., 

and finally 

e 
-s 

2 

3 

6 ~) (~) 

Vee E(s), s=l, 2, ••• ' q • 

Now we can put all these vectors in a single [qp
2 + p(p+l)] x 1 vector 

2 

e. i.e. 

where 

Remarks. 

e' = <e'(l) e'<2)) 
~0 ~O ' ~0 

(i) We can find a matrix B such that 

(2. 3) 

- 2 
pXp 

dg( A ) = B Vee A 
pXp 
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B is obtained from the 
2 2 

p Xp identity matrix by deleting all the rows 

2 except 1st, p+2nd, 2p+3rd, ••• , p th 9 i.e. 

(2. 4) B = 

where 

e' 
-1 

e' 
-p+2 

' ~2p+3 

e' 
- 2 p 

(ii) In a similar manner we can find a p(p-1) X 2 
2 p 

such that 

,...._, 
(2.5) Vee A = C Vee A 

c is obtained from ~ 2 by deleting the following rows 
p 

1, p+l, 2p+l, ... ' (p-l)p+l 

p+2, 2p+2, ... ' (p-l)p+2 

2p+3, ... ' (p-l)p+3 

(p-l)p+p 

matrix C 

We shall find it convenient to introduce another vector 8 where 

(2.6) (vee ' ~<0 >, Vee' ~<1 >, V ' ~(q)) t.. t.. ••• , ec t.. 

... ' 
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3. Estimation in the Time Domain 

3.1. Introduction 

We are going to use maximum likelihood estimation and proceed as 

if the £ 's in Section 2 are normally distributed and we shall show 
~t 

later that the resulting estimates have the same limiting covariance 

matrix irrespective of 

Then 

where 

Let 

'(1) 
E 

E = E I (q) 

0 

0 

£ 's being normal. 
~t 

y I <~i' • • • ' ~~) • 

y - N(O,E) , 

'(q) 
E 

6 

0 0 

0 

' (1) E 

0 

0 



Now using Kronecker products and the TxT matrix 

similar to the one introduced by Anderson (1975) we can write ~ as 

(Lq ~ r<q) + L'q ~ r'(q)) • - -
The log likelihood of y is 

log ~(y) = -flog 2n -~ logj~l 

The maximum likelihood estimates are a set of the roots of the equation 

= 0 • 

So we proceed to find the first derivative of the log likelihood, and 

in doing so we use the fact that 

0 ' 

which means 

(3.1.2) 

3.2. The First Derivative of log ~(y) 

a -1 As noted above we only need to find ae ~~~ ~· It is more con-

venient to find ~ y'~-ly and then, noting that ae -

7 



(3.2.1) 1'\'-1 
-y '-' - -

where E .. is a matrix with 1 for the ijth element and O's else­-1] 

where, we get 

(3.2.2) d -1 
-~~y'L: y -(0) 
aa .. 

1."; 

d -1 
2 y'~ ~ aa~~) - --

1J 

where 
d 

-(0) 
aa .. 

1] 

indicates that we take the symmetry of 

The end result is that 

(3.2.3) G 
d 1'\'-1 --;;: y '-' y 

- ae - - -

into account. 

where G is a [qp
2 

+ p(~+l)] x (q+l)p
2 

matrix which can be written as 

~1 p 

(3.2.4) G ~2 
p(p-1) 

2 

~3 
2 

qp 

and 

~1 = (~, 0)' ~2 (2C, 0)' ~3 (0, I) 

with B and c as in Section 2. 
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So we proceed to find ~ y'L:-
1
y, using the fact 

ae -

()2:-l ()2: 
-t.::-1 _::_ 2:-1 

~ = dX -

We shall also find it convenient to express -1 y'l: y differently using - - -
the identity 

Vec(ABC) (C' <?.$) A) Vee B 

[see Mine and Marcus (1964)] which enables us to write 

-1 -1 y'l: ~ Vee(~'~ ~) (y' ~ y') Vee 2:-l 

So we only have to differentiate Vee 2:-1
, but 

Now 

So 

-1 
a Vee ~ ( -l a~ _I) --=--- = -Vee 2: - 2: = ax - ax -

I @E .. 
-T -1J 

i, j=l, ... , p ' 

I 

L
8

(8)E .. +L
8

@E.i' i,j=l, ••• ,p. -l.J -J 

a Vee 2:-l 

aa~?) 
l.J 

-c~-1 ~ ~-1) v < ~ ) = ~ \CI L ec IT ~ E . • , 
- -l.J 

i, j=l, ••. , p 
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which yields 

(3.2.5) 

where 

(3.2.6) (0) (O) 
~0 = <ell • e21 • ... ' 

Similarly, differentiating w.r.t. we get 

3 Vee 1::-l 

3cr ~~) 
~J 

-(~~-l 00~ ~-l) V (18 ~ E + L
1

s ~ E ) t.. \:y t.. ec \:y • • __ ~ •• 
-~J - ~J ~ 

= -<rl IX' rl) (s) 
- \Y - pij i, j=l, ... ' p ' 

which yields 

(3.2.7) 

where 

-1 3 Vee l: 

38' 
-s 

E 
~s 

E ' -s 

(s) (s) 
(pll • P21 ' •·•• 

s=l, .•. ,q, 

From (3.2.5) and (3.2.7) we get 

(3.2.8) 
3 Vee 1::-l 
----- = -(l:-1 @ l::-1) E 

38' - -

where 

(3.2.9) E = (E0 , E1 , ... ,E) , 
- - -q 

which in turn yields 

10 



(3.2.10) 
ae' 

-(y, ~-1 ~ ~~-1) 
L.. 'C!·~:: ~· 

----= 

Now to complete the computation of we have to take the 

expectation of (3.2.10). We note that for any two vectors u, v (of 

the same dimension) we have 

This means 

So 

Therefore 

or 

Finally 

(3.2.11) 

Note: 

Vee (uv') 

-1 ~ -1 -1 -1 (~' ~ 01 ~I ~ ) = Vee ' ( ~ n: I ~ ) 

a log J<,(y) 

ae' 

a log J<,(y) 

-ae 

a log J<,(y) 

ae ~ GE' (~·-l~ @ 

We have from above 

a log 5/,(y) 
-1 0 = ~ E~ (2: y X 

ae. -~ - -
-1 

11 

-1 2: y - Vee 

-1 2: y - Vee 

2:-1) 

2:-1) 



Now 

where Vee A. 
~1r 

get 

where 

This means 

th 
is the r column of E. and A. is TpXTp. 

~1 ~1r 

E '.(~-ly ~ ~-ly) (I ~ ,~-1) A ~-1 
~1 :; ~ ~ '-' = ~ 2 0 r :; ~i:; y 

A' 
~i 

p 

(A~l' ..• , A' 2) 
~1 ~. 

1p 

3 log .Q,(y) 
~(~ 2 ® y'L:-1) ~i~-ly - ~~i Vee L:-1 

p 
(3.2.12) 

~ 

ae. 
~1 

So we 

We shall use this latter form for 
a log .Q,(y) 

ae. 
when finding the second 

derivative of log .Q,(y). 

3.3. The Numerical Approximations 

The equation 

a log .Q.(y) 

ae 

~1 

= 0 

is clearly nonlinear and cannot be solved explicitly. So we will use 

numerical approximations to get asymptotically efficient estimates. 

The methods we are going to use are the Newton-Raphson method and the 

12 



Scoring method. In both methods we need an initial consistent estimate (of 
h A 

order T 2
) of 8, call it ~(O)' then the Newton-Raphson method consists 

of solving the following system of linear equations for ~(l)' 

2 a log .R,(y) 
(3.3.1) ae a8' 

a log .R,(y) 

a8 A 

~~(0) 

a2 
log .R,(~) 

The Scoring method is the same as above with e a8 a8 , replacing 
2 a log .R,(~) 

()8 ()8' , i.e. we have the equations 

(3.3.2) 
a log .R.(y) 

()8 

To find ~(O) we estimate the covariance matrices by their sample ana­

logues, so 

(3.3.3) "'(s) 
~(0) 

1 T-s 

T-s I ~t~~+s t=l 
s = 0, 1, •.. , q • 

3.4. The Scoring Method 

To arrive 

(
a
2 

log .R,(~)) 
e a8 a8' 

~ -

at the linear equations for this method we need to find 

, but we know that 

• a log .R,(~)) 
a8' 

and from (3.2.11) 

(3.4.1) 
log .R,(l) • a log .R,(l)) = 

a8 ()8' - ~ 

~GE' e[(~-ll ~ ~-ll- Vee ~-l)(l'~-l ~ y'L-l- Vee' L-l)]EG' . 

13 



Now 

-1 
z - L: y 

and we need 

= e(zz' (9 zz') - Vee L:-l Vee' L:-l 

since e<~ 0 ~) 
-1 = Vee L: • 

So, suppose 

ijth block of uu' 

u - N(O, D ), 
~ nxn 

0 uu' is 

we want to find 

U .U. UU I • 
l. J 

e(uu' ® uu'). 

To find e(u.u. uu') we use the result (Anderson (1958, p. 39)). 
l. J 

which yields 

where 

e (u.u. uu') 
l. J 

From this we can get 

d .. D + d.d! + d.d! 
l.J - -1.-J -J-1. 

14 
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e(uu' 0 uu') ~® D + 

+ 

~1 

<~i· 41 o a ) 

d 
-n 

d I) 
-n 

d d' 
-n-1 

d d' 
-n-n 

Now, the last matrix was shown by Magnus and Neudecker (1977) to be equal to 

K (D 0 D) , 
-n - -

where 
E(n) 
-11 

E{n) 
-21 

(3.4.2) K 
-n 

E(n) 
-ln 

E(n) 
-2n 

and E~~)'s are nxn matrices as defined before. So 
-lJ 

e(uu' ® uu ') (~ 2 + ~n)(~ ~~)+Vee D Vee' D 
n 

Now for our problem 

u z, D 
-1 

2: , n = Tp 

which means 

(3.4.3) e(zz' 0 zz') 

Finally we get the average information matrix as 1/T times 

log R, 
ae 

a log 
38' 

R,) -- !z; 

15 



So the linear equations for the scoring method are 

(3.4.5) 
A-1 A-1 A A 

~~~<~T2p2 + ~Tp)<Eco) ~ Eco)) ~~·c~(l)-~(o)) 

2 ~~,<~{~)~ ~ ~{~)r- vee~{~)) 

Once we get ~(l)' we could use that as ~(O) in (3.4.5) and get a 

second iterate ~( 2 ), but for large samples this is not necessary. 

3.5. The Newton-Raphson Method 

3.5.1. Preliminaries 

To write down the linear equations for this method we need the second 

derivative of the log likelihood function. To derive the latter we first 

a2 
-~-log .Q.(y), using the form (3.2.12) for 
ae ae' 

derive 
a log .Q, 

ae 
use 

(3. 5.1.1) 
2 a log .Q, 

ae ae' 

3.5.2. The Derivation of 

As in (3.2.12) we have 

a log .Q, = 
ae. 
~~ 

2 
G a log .Q, G' 

ae ae' 

2 a log .Q, 

ae ae' 

~ E~ Vee L:-l 
~~ 

i = 0, 1, •.. , q. 

We have the derivative of the second term w.r.t. 8 as 

(3.5.2.1) 

16 
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using (3.2.8). It remains to find the derivative of the first term. 

To do this we shall find the derivative w.r.t. e. 
-J 

for i ~ j and using 

symmetry will complete the derivation. So we let 

0, 1, ... , q 

and 

T1 (To'• •••• T1
) • - -q 

Now 

Now using (~ (9 ~) (~ (9 ~) = (~~®~~),we can factor out <! 2 ® ( ~-1) 
p 

to the left and also can factor out -1 L: y to the right, which results in 

1 (I 1\7\ y' ~-1) C ~-1 -~ - 2 ~ w -iO,uv ~ ~ 
p 

where 

c.o J. ,uv 

This leads to 

(h.) -J. 
...• (5) 

acr 
pp 

-~(I 2 (9 y'L:-l) (~iO,ll L:-ly, 
p 

-~<! 2 ~ y'I-
1

) ~io<! 2 Q9 ~-1r) 
p p 

17 
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where 

c.o 
~1 

Similarly 

(~i0,11' ~i0,21' ... , ~iO,pp) ' i 0, 1, ...• q • 

ae' 
-j 

-~(~ 2 (9 y'~-1 ) ~ij(~ 2 ~ ~-l~) 
p p 

where 

and 

c .. 
-1] ,uv 

c .. 
-1] (c. . 11' c. . 21' 

-1] ' -1] ' 

j .::_i, i = 0, 1, ... , q, 

u,v = 1, 2, •.• p . 

. .. ' 

Finally for j > i using symmetry we have 

<38' 
-j 

Now, for j > i define 

and define 

c .. - c~. 
~1] ~J 1 

c.. ) 
-1J,pp 

c (C .. ) , i,j 
-1] 

0, 1, ... , q' 

then from above we have 

18 



(3.5.2.2) a_! = -~~I 2 @ y'l:-1) C .. (I 2 (8} E-ly)) '"\~' -p - - - 1
] -p - - 1. 'J. = 0 1 o_ 

' ' • • • ' q 

Now notice that 

I (3} (I @ A) - I (8} A • -n -m - -mn -

So (3.5.2.2) becomes 

-= 
ae• 

Finally from (3.5.2.1) we have 

(3.5.2.3) 

+ ~ E'(l:-l@ E-1) E. -
3.5.3. The Equations 

From (3.5.2.3) using (3.5.1.1) we have 

2 a log 5I, 

ae aer 

So the equations for the Newton-Raphson method are 

[~(~p2(q+1) ® ~~~(~)) §(O)(~p2(q+1) (9 ~(~)~) - ~~,<~(~) GV ~C~)) E9'] 

A A A-1 ~-1 A-1 x (~(1)-~(0)) = ~~,(~(0)~ (9 ~(0)~- Vee ~(0)) 

19 



3.6. Summary 

In the preceding sections we have derived the linear equations for 

the estimates, using the Newton-Rapnson and Scoring methods. The two 

resulting estimates are asymptotically equivalent, but at this point it 

is not clear which one is easier to compute. To write down the equations 

we first have to invert the TpXTp block Toeplitz matrix ~(O) and once 

we have the equations, we need to find the best method (computationally 

easiest) to solve them. These problems will be considered in future 

work. 

To compare the computational problems with that of Reinsel (1976), we 

A 

see that in the latter a matrix G which is essentially of the same form 
A 

(G = I~-o A.~ Li). 
A-1 

size as ~ (O) 
has to be inverted But once G 

- ]_- -1 -

is computed, Reinsel has shown that the solutions to his equations are 

the same as some generalized least square estimates. 

20 
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4. Estimation in the Frequency Domain 

4.1. Introduction 

For a stationary process {z • t = 0, + 1, ,, .. } with covariances -t -

~s = e<~t~~+s), s = 0, ± 1, •.• , the spectral density matrix f is 

defined as 

(4.1.1) f(A) = _!_ 
27T 

00 r n -s s=-co 

-is A e 

The covariances can be recovered from f(•) via 

J
TI f(A) eisA dA • ~s = -TI 

The sample analogue of the spectral density, the periodogram, is defined 

as 

(4.1.2) 
1 T-l -isA 

I(A) =- I D e 
27T -(T-1) -s 

A 

where D 
-s 

is the sample analogue of D , more precisely -s 

T-s 
5 = .!. ' Y y' -s T t~l -t-t+s • 

We can also represent I(A) in terms of the discrete Fourier transforms 

(4.1.3) I(A) = w(A) w*(A) 

where 

(4.1.4) 1 T inA w(A) = -- I z e 
lzrrT n=l ~n 

For a fuller treatment see Anderson (1971). 

If the process {z , t = O, + 1, ... } -t - is Gaussian then the log like-

lihood function may be approximated by 

21 



(4.1.5) -~ log 1~1 

where 

0, 1, .•. , T-1 . 

Whittle (1953, 1961) suggested this for the case p=l and Dunsmuir and 

Hannan (1976) showed that this leads to efficient estimates for general p. 

For our problem ~. and we only have a finite 

number of nonzero covariances so 

(4.1.6) 

and 

1 
f(A.) = 2TI 

-q 

T-1 
I(A) = _!_ I D 

2TI -(T-l) ~s 

-iAs 
e 

-iA.s 
e 

So the log likelihood can be approximated by 

(4.1.7) 

where 

log ~ ~ -~ log 1~1 -~ I tr(~~l !t) , 
t 

f = f(A. ), I = I(A. ). 
~t ~ t ~t ~ t We shall use the same approximation methods 

as in the time domain and will also use 

(4.1.8) 

(4.1.9) 

a log ~ 
ae 

G a log ~ 

ae 

0 . 

22 



4.2. The Derivation of 
a log Jl, 

ae 
Using (4.1.7) and (4.1.9) we get 

(4.2.1) 

Now 

a log Jl, 

ae 
-~ L [ a~ tr(f-t

1 
It) - e __£__ tr(£-

1 
!t)] 

t ae ~ ~ ae -t -

af 
= -tr(f-1 ~ f-l ~t) • 

-t ax ~t --

Differentiating (4.1.6) yields 

So 

where 

(4.2.2) 

a£ 
~t = _!_ E 

aa(O) 27T ~uv 
uv 

a£ -iA s 
-t = _!_ [ e t 

aa(s) 27T 
uv 

E + e -uv 

iA s 
t 

E ] ' 
~vu 

u,v = 1, ... , p • 

- _!_ tr(f-l E £-1 I ) 
27T ~t -uv ~t ~t 

= - _!_ tr(f-l e e' £-1 ~t) 27T -t -u-v -t -

1 
- 27T (~t)vu' u,v = 1 ' ... , p ' 

23 



and we have used the fact that E = e e', where 
-uv -u-v 

e , e 
-u -v 

are the uth 

th and v column of the pxp identity matrix. Now we can easily see 

(4.2.3) 

Similarly 

a -1 
!t) acr(s) 

tr(f 
-t 

uv 

which yields 

-- tr f (e 1 [ -1 
2TI -t 

1 -- Vec(h') 
2TI -t 

-iA s 
t 

E + e 
-uv 

iA s 

iA s 
t 

1 [ -H s ~t] uv' 
e t h' + t 

2TI e 
-t 

E )f-1 
-vu -t !t] 

' u,v 1, ... ' p 9 

(4.2.4) tr(f-l I ) 
-t -t 

1 i\s 
- 27f Vec(e ~t + e 

-iA s 
t h') s = 

-t ' 
1, ... ' q • 

To complete the derivation of 
a log 5I, 

_ we have to take the expectation 
ae 

of (4.2.3) and (4.2.4). This yields 

e[--a-- tr(f-l I ~ = -
2
1
7f Vec(~t'-l) , ae -t -t 'j -

-0 

e- tr(f [ 
a -1 

ae -t 
= - - Vee e t f + e f 1 [ iA s _1 -i\s '-l] 

2TI -t -t 

since 

-s 

-1 
eh - f ' which follows from e<!.t) 
-t -t -

h 
-t 

-1 
f 
-t 

then using (4.2.1) we have 

24 
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(4.2.5) d log Q, 1 \' n 1 = 4n l Vee :t 
a~0 t 

(4.2.6) 
" 1 o 1 [ iA s -iA s o og ;v = 4 7T L Vee e t ~t + e t ae t R,'] ~t , s = 1, ... , q • 

~s 

* Now, from (4.1.6) it is obvious that f' = f or f = f , where 
indicates "conjugate transpose", i.e. f is Hermitian. Also I' =I, 

which leads to h' h and R,' = I. We can use this to simplify 
(4.2.6) as follows 

0 l iA S a log JV \' ( t n ) + _1 - = 4 7T l Vee e : t 4 7T ae t 
~s 

iA s 
= J:__ I Vee ( e t 

27T t 

iA s 
L Vec(e t 
t 

because the first sum is real. The reason for this is that 

--u -iA t t e = e 

• 27ft 
-l. r 

e = e 

i2rr (T-t) 
T 

This means that for any real function n(•) 

T-1 
I 

t=O 

for T odd, and 

T-1 iA 
I n(e t) n(O) 

t=O 

T-1 
--2- iA iA 

n(O) + I n(e t) + n(e t) 
t=O 

T-1 
-2- iA iA 

+ I n(e t) + n(e t) + n(-1) 
t=O 
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for T even. So is real. The same argument allows us 

to rewrite (4.2.5) as 

a log Q, 

ae 

Finally we can conclude 

(4.2.7) 

where 

J' 
~t 

a log Q, 

a~o 

(~ ~ 2, e 
p 

iAt 

1 I Vee Q, 4n ~t 
t 

1 I J Vee Q, 2n ~t ~t 
t 

~ 2' 
p 

... ' 

There is an alternative form for (4.2.7) which will be more useful 

in deriving the second derivative of log 2. It is obtained by noticing 

that we can find a matr:Lx M, such that 

Vee Q, = M Vee 2' 
~t ~t 

which then enables us to rewrite (4.2.6) as 

(4.2.8) 
a log Q, 

ae 
~s 

iA s 
1 \' (e t 

4n L 
t 

~ 2 + e 
p 

It is easily verified that in fact 

M K 
~p 

-iA s 
t M) Vee Q, 

~t 

where K was defined in (3.4.2). So the alternative form for the first 
~p 

derivative of log Q, is 

(4.2.9) a log Q, 

ae 
1 I H Vee Q, 4n ~t ~t 

t 
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where 

(4.2.10) H'-H'(A) 
-t - t 

(~ 2, e 
p 

iA 
t 

~ 2 + e 
p 

4.3. The Second Derivative of log £ 

Using (4.2.9) we have 

-iA 
t 

K , 
-P 

2 a Vee £ 
a log £ = ~ I H -t (4.3.1) 

aS aS' 4
TI t -t a6' 

Now 

which yields 

at 
-t 

af 
--= -f-1 ___::!_ f-1 
ax -t ax -t 

which in turn yields 

(4.3.2) 
a Vee £ 

-t 
ax 

£ 
-t 

I 
-t 

-1 -1 -1 = f ~t f f -t -t -t 

-1 -1 af 
f-1 __:::!. f-1 f f ~t -t -t -t ax -t 

af 
-t 

= ~t Vee h, 

say. 

where 

Now for x = a(O) 
uv we get 

a Vee £ l 
-~:-:----t - <t> 

aa(O) - 2TI -t 
uv 

e 
-uv 

... , 
qi\ -piA 

e ~ 2 + e t K ) 
p -P 

af 
f-1 __:::!. f-1 + -t ax -t 

e Vee E , u, v 1, ••. , p . -uv -uv 
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So 

(4.3.3) 
a Vee Q, 

1 ---~=t - rt.. (e e e ) ae' - 2rr !t ~11' ~21' ..• , ~pp 
-0 

Similarly 

a Vee Q, -iA s 
-acr-(~s--,-)-~-=-t = 2lrr Pt (e t e 

~uv 
+ e 

iAs 
t 

uv 

Now 

e Vee E Vee E' K 
~vu -vu ~uv ~p 

which means 

a Vee Q, 
1 -iAt iA s 

-t (e s t 
= 2rr Pt I + e 

acr(s) 2 ~ 

p uv 

Finally 

a Vee Q, -iA s 

e ) 
~vu 

Vee E 
~uv 

K ) e 
~p ~uv 

(4.3.4) -----"-t = }rr Pt (e t 
38' 

! 2 + e 
p 

i), s 
t K ) 

~p 

~s 

So 

(4.3.5) 
d Vee ~t 1 -iA 

t 
= - cp (I 

2' e I 2 + e 
ae' 2rr ~t ~ ~ 

p p 

-qiA 
t 

I + ... , e 2 -p 

28 

u,v 1, ... ' p • 

K e 
-P -uv 

1, u,v = p ' ... ' 
1, s = ... ' q . 

, s 1, ... , q. 

iA t 
K ' -P 

qiA 
t 

K ) e 
-P 



Now we get the second derivative from (4.3.1) 

(4.3.6) 

4.4. The Newton-Raphson Method 

As in the time domain we will use E(s),s as initial estimates of ~(0) 

the covariances, and so 

1 =-
2TI 

will be the initial estimate of f . 
~t 

Accordingly we form ~t(O) 
A 

~t(O)' 

~t(O) 

i 
~t(O) 

Using (4.2.7) we have 

(4.4.1) a log R. 
ae = G a log R, = ~ I GJ Vee R, - ()B 4TI t ~-t -t 

Similarly from (4.3.6) we get 

(4.4.2) a2 log R, = __ 1 __ I GH ¢ H* G' . ae ae' 
8 2 --t -t -t -

- - 7f t 

So the linear equations for the Newton-Raphson method are 

29 

and 



4.5. The Scoring Method 

2 I ~~t Vee ~t(O) 
t 

As mentioned earlier, to get the linear equations for this method 
2 

we replace aael~~, 1 
by its expectation in the Newton-Raphson method. 

The latter is 

Cl log 1 
( 2 ~ e. a~ a~' 

Now 

which leads to 

which in turn leads to 

So 

e(a2 log 1) = - _1_ I GH (f '-1 X f-l)H't~G' ' ae ae' 8 2 --t -t -t -t-
- - TI t 

ignoring the terms of order 

method are 

-1 
T . Finally the linear equations for this 
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4.5. Remarks 

As in the time domain, there are computational problems to be con-

sidered in setting up and solving the equations derived in the preceding 

sections. In this case the main problem in setting up the equations is 

the inversion of pxp matrices ~ (O)' t = 1, .•• , T-1. And again we 
t 

have to find the best way to solve the resulting equations. It seems 

that the computation of the estimates in the time domain is easier than 

that in the frequency domain. 

Comparing with Nicholls (1976) and Anderson (1978) which deal with 

the estimation of the coefficients A., i = 1, ••• , q, we see that the 
-~ 

main problem of inversion of ~ (O) 's is also present in these papers. 
t 
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5. Asymptotic Properties 

The four estimates proposed in this paper are asymptotically equi-

valent and we shall show that they are efficient, i.e. 

where c9(8) is the limiting average informtion matrix and "-+" indicates 

convergence in distribution. 

(5.1) 

To find c9(8), by definition we have 

c9(8) lim - _!_ e (32 log 5/,) 
T 38 38' T-+oo 

1
. 1 
~m-

T-+oo T 

where the argument A is omitted from H and f. 

(5.2) 

The four estimates are obtained from equations like 

1 3 log 5/, 
T 38 

where is a consistent estimate of c9( 8) • We can rewrite (5.2) 

as 

where e is the true parameter. Now 

1 3 log 5/, 1 3 log 5/,1 
2 

(5.4) + __!___ 3 log 5/, I A 

- =- (~-~(0)) 
IT 3e IT 38 A IT 3~ 3~' ~=~+ ~ ~=~ (0) 
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where ~~-~+! 2 ~~-~(O)I" Now (5.3) can be rewritten using (5.4) 

Now noticing that 

2 .!. a log Q, 
T ae ae' - -

and /'f(~(O)-~) is bounded in probability, we see that (5.5) is (asymp­

totically) equivalent to 

(5. 6) 

Theorem. Under (2.1) and Assumptions 1 and 2 of Section 2, 

where ~(l) is any one of the four estimates derived in this paper. 

Proof. Using (5.6), it suffices to show 

Let 

S, 
1 a log Q, -+ N(O, •) 
;r ae 

,.._., 
Vee V 

... ' 
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where A.'s and V were defined in Section 2. Now 
-1 

which means 

a log 9., 

a~. 
]_ 

a8' a log 9., - a log 9., 
a~ = ~ a8 

a8' 
It follows from Assumption 2 of Section 2 that ~ is nonsingular, 

which means 

(5.7) 1 a log 9., 

IT a8 (a~'\-l _!__ a log 9.. 

ar; rr a§ . 

But it has been shown by Nicholls (1976) and Reinsel (1976) that 

which is the same as 

So (5.7) gives us 

(5.8) 

1 a log 9.. ~ N(O,•) rr a~ 

1 a 1 9.. s:. og -+ N(O, •) rr a8 

The limiting covariance matrix in (5.8) is obviously ~(8), so 

£ 
l'f (~(l)-8) -+ N(O, ~-l(8)) . Q.E.D. 
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