MRC Technical Summary Report #1865

THE ASYMPTOTIC DISTRIBUTION OF THE ORDER OF ELEMENTS IN ALTERNATING SEMIGROUPS AND IN PARTIAL TRANSFORMATION SEMIGROUPS

Bernard Harris

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street
Madison, Wisconsin 53706

July 1978

Received July 7, 1978

Approved for public release
Distribution unlimited

Sponsored by
U.S. Army Research Office
P. O. Box 12211
Research Triangle Park
North Carolina 27709
ABSTRACT

The asymptotic distributions of the order of elements in alternating semigroups and in partial transformation semigroups are obtained and shown to coincide with that for the symmetric semigroup.

AMS(MOS) Subject Classifications: 20M20, 60C05, 60F05

Key Words: Alternating semigroup, Order of elements, Partial transformation semigroup.

Work Unit Number 4 - Probability, Statistics, and Combinatorics.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
SIGNIFICANCE AND EXPLANATION

The alternating semigroup may be regarded as the semigroup of transformations represented by matrices of "0"'s and "1"'s, each of whose rows has exactly one "1", and whose determinants are 0 or +1. Correspondingly the partial transformation semigroup is representable by matrices of "0"'s and "1"'s each of whose rows has at most one "1".

These are among the basic semigroups of transformations and have many important applications in chemistry and physics. This paper gives some basic properties of these semigroups.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.
THE ASYMPTOTIC DISTRIBUTION OF THE ORDER OF ELEMENTS
IN ALTERNATING SEMIGROUPS AND IN PARTIAL TRANSFORMATION SEMIGROUPS

Bernard Harris

1. Introduction. In the papers by P. Erdős and P. Turán [9,10,11,12], various
questions concerning statistical characteristics of the symmetric group on \(n \) letters,
\(S_n \), for large \(n \), are studied. In particular let \(P \) denote a generic element of \(S_n \) and
let \(0(P) \) be the order of \(P \). Then if \(K(n,x) \) is the number of elements of \(S_n \) satisfying
\[
\log 0(P) \leq \frac{1}{2} \log^2 n + \frac{x}{\sqrt{3}} \log^3 n ,
\]
we have
\[
\lim_{n \to \infty} \frac{K(n,x)}{n!} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} \, dt .
\]
Equivalentiy, if \(P \) is "chosen at random" from \(S_n \), define
\[Z = (\log 0(P) - \frac{1}{2} \log^2 n) / \frac{1}{\sqrt{3}} \log^{3/2} n ; \] then the distribution of \(Z \) converges to the standard
normal distribution as \(n \to \infty \). In J. Dénes, P. Erdős and P. Turán [8], this result was ex-
tended to the alternating group on \(n \) letters \(A_n \). Letting \(L(n,x) \) be the number of ele-
ments of \(A_n \) satisfying (1), they showed that
\[
\lim_{n \to \infty} \frac{L(n,x)}{n!/2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} \, dt .
\]
In [11], the analogous result to (1) and (2) for the symmetric semigroup \(T_n \)
was obtained. Specifically \(T_n \) is the set of all mappings of \(X_n = \{x_1, x_2, \ldots, x_n\} \) into \(X_n \).
With no loss of generality, we can take \(X_n = \{1,2,\ldots,n\} \). If \(\alpha, \beta \in T_n \), then the product
\(\alpha \beta \in T_n \) is defined by \((\alpha \beta) x = \alpha(\beta(x)) \) for all \(x \in X_n \). There is a one-to-one correspon-
dence between the elements of \(T_n \) and the class of labeled directed graphs on \(n \) vertices,
with each vertex having exactly one edge leaving it. Such a graph may be constructed by

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
the following procedure: if \(a(x) = x_1 \), draw the directed edge from \(x \) to \(x_1 \)
(if \(x = x_1 \); draw a loop at \(x_1 \)). For each \(a \in \Gamma_n \), we divide \(X_n \) into two classes,
cyclical and non-cyclical elements. An \(x \in X_n \) is said to be cyclical under \(a \) if there
is an \(m > 0 \) with \(a^m(x) = x \). The set of cyclical elements under \(a \) will be denoted by
\(C_a \). The restriction of \(a \) to \(C_a \) will be denoted by \(a^* \). \(a^* \) is a one-to-one mapping
of \(C_a \) onto \(C_a \) and thus permutes the elements of \(C_a \). Dénes [3,4,5,7] has called \(a^* \)
the main permutation of \(a \). Further for each \(x \in X_n \), there is a least integer
\(r = r_a(x) \geq 0 \) such that \(a^r(x) \in C_a \). We call \(r \) the \(a \)-height of \(x \), defining the height
of \(a \) by \(h(a) = \max_{x \in X_n} r_a(x) \).

Then for any \(a \in \Gamma_n \), the order of \(\, 0(a) \), is defined as the number of distinct elements
of \(\Gamma_n \) in the set \(\{a, a^2, \ldots\} \). It is easily seen that if \(a \) is a permutation, this
definition reduces to the usual definition. Dénes [3,4,5] has shown that this is equivalent to
\[
0(a) = 0(a^*) + \max(0, h(a) - 1)
\]
and also equivalent to defining \(0(a) \) as the least \(m \) such that for \(0 < q \leq m \), \(a^q = a^{q+1} \).

Then, in Harris [13], it was shown that for \(M(n, x) \), the number of elements of \(\Gamma_n \)
satisfying
\[
\log 0(a) \leq \frac{1}{8} \log^2 n + \frac{x}{\sqrt{24}} \log^{3/2} n
\]
we have
\[
\lim_{n \to \infty} \frac{M(n,x)}{n^x} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt
\]

In the present paper, the result is extended to the alternating semigroup \(K_n \) and
to the partial transformation semigroup \(P_n \). The alternating semigroup on \(n \) letters
is defined by
\[
K_n = \Gamma_n \cup S_n \cup A_n
\]
The partial transformation semigroup is the semigroup of all transformations whose domain
and range are subsets of \(X_n \). The significance of the alternating semigroup and
various results concerning it may be found in J. M. Howie [15], J. Dénes [6], K. H. Kim

-2-
and J. Dénes [17], Chapter IV, N. Ito [16] and O. Ore [18]. Some results for the partial transformation semigroup may be found in J. Baillieu [1] and C. D. Bass and K. H. Kim [2].

In section 2 the asymptotic distribution of the order of elements in alternating semigroups is obtained and in section 3 the corresponding result for the partial transformation semigroup is given.
2. The asymptotic distribution of $O(a), a \in K_n$. We now show that the asymptotic
distribution of the order of elements in the alternating semigroup is identical with that for
the symmetric semigroup.

Clearly

$$|T_n| = n^n, \quad |K_n| = n^n - n!/2.$$

Let $K_n(B) = \{a \in K_n : O(a) \in B\}$ and let $T_n(B) = \{a \in T_n : O(a) \in B\}$, where B is
any set of positive integers. Then, clearly

$$|T_n(B)| - n!/2 < |K_n(B)| \leq |T_n(B)|.$$

It is convenient to proceed using language and notation equivalent to assuming that the
elements of K_n are equally likely and selected at random. Then $a \in K_n$ is a random
variable taking values in K_n. Using such notation, we have

$$P(a \in K_n(B)) = |K_n(B)|/(n^n - n!/2).$$

Hence, from (8), we have

$$P(a \in K_n(B)) \leq |T_n(B)|/(n^n - n!/2) = \frac{|T_n(B)|}{n^n - n!/2} = \frac{n}{n^n - n!/2};$$

thus,

$$P(a \in K_n(B)) \leq P(a \in T_n(B))(1 - \delta(n))^{-1},$$

where $\delta(n) \to 0$ as $n \to \infty$. Also, from (8) and (9),

$$P(a \in K_n(B)) \geq \frac{|T_n(B)| - n!/2}{n^n - n!/2} = \frac{|T_n(B)| - n!/2}{n^n};$$

yields

$$P(a \in T_n(B)) \geq P(a \in K_n(B)) - \delta(n) .$$

Thus combining (10) and (11), we get

$$\lim_{n \to \infty} P(a \in K_n(B)) = P(a \in T_n(B))$$

-4-
and hence if $N(n, x)$ is the number of elements of X_n with

$$\log \theta(n) \leq \frac{1}{8} \log^2 n + \frac{x}{\sqrt{24}} \log^{3/2} n,$$

then

$$\lim_{n \to n^2-n/2} \frac{N(n, x)}{n^2-n} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$ (12)

Remarks. This problem was suggested by Dr. J. Dénes and appears in a list of research problems in combinatorics that he has circulated, where it is identified as problem 44. There he conjectured that the asymptotic distribution for the alternating semigroup would be the same as that for the alternating group. There is however an interesting parallel of a different kind. If P belongs either to the alternating group or symmetric group on n letters,

$$\sqrt{3} \log^{-3/2} (\log \theta(P) - \frac{1}{2} \log^2 n)$$

has the standard normal distribution. Further if a belongs either to the symmetric semigroup or alternating semigroup on n letters, then

$$\sqrt{24} \log^{-3/2} n (\log \theta(a) - \frac{1}{8} \log^2 n)$$

has the standard normal distribution.
3. The asymptotic distribution of the order of elements in partial transformation semigroups. In order to represent \(E \in P_n \) as a labeled directed graph as described in section one, we replace \(X_n \) by \(X_n^* = \{0,1,\ldots,n\} \) and represent \(E \in P_n \) by the mapping \(a \) of \(X_n^* \) into \(X_n^* \) such that if \(x \) is in the domain of \(E \), \(a(x) = \delta(x) \) and if \(x \) is not in the domain of \(E \), \(a(x) = 0 \). Note that this implies \(a(0) = 0 \). It is obvious that there is a one-to-one correspondence between the elements of \(P_n \) and the mappings obtained in this manner. Furthermore, this correspondence preserves the order of the mapping. Thus we can regard \(P_n \) as a particular subset of \(T_{n+1} \). The above argument also makes it obvious that

\[
|P_n| = (n+1)^n
\]

We will proceed by regarding the mappings \(a \) defined above as the elements of \(P_n \) and assume that they are selected at random with equal probabilities.

In the directed graph representation of \(a \), since \(a(0) = 0 \), 0 is the vertex of a loop. Thus \(O(a^*) = O(\delta) \), where \(\delta \) is the permutation determined by restricting \(a \) to \(C \setminus \{0\} = C^*_a \). Thus

\[
O(a) = O(\delta) + \max(O,h(a)-1).
\]

If \(C \setminus \{0\} = \varnothing \), we set \(O(\delta) = 1 \).

For \(a \in T_n \), \(L(a) = |C_a| \) is a random variable taking values in \(\{1,2,\ldots,n\} \).

In B. Harris [13], it was shown that

\[
P(L(a) = k) = p(k,n) = \frac{(n-1)!k}{(n-k)!n^k}, \quad k = 1,2,\ldots,n.
\]

For \(a \in P_n \), let \(L_1(a) = |C^*_a| \). \(L_1(a) \) is a random variable with values in \(\{0,1,\ldots,n\} \) and

\[
P(L_1(a) = k) = r(k,n) = \frac{n!(k+1)}{(n-k)!n^{k+1}}, \quad k = 0,1,\ldots,n.
\]

We present (16) without proof at this time. This result is contained in a paper under preparation and can easily be established by extending Corollary 2 to Theorem 1 in B. Harris and L. Schoenfeld [14] to the partial transformation semigroup.

Comparing (15) and (16), we see that

\[
p(k+1,n+1) = r(k,n), \quad k = 0,1,\ldots,n.
\]

This observation permits us to apply the methods of B. Harris [13] with no essential changes. It is readily observed that the hypotheses of all lemmas are satisfied. In particular, if \(C^*_a = \{x_{i1},x_{i2},\ldots,x_{ij}\} \), where the \(x_{ij} \)'s are any \(i \) distinct elements
of X_n. Then

$$P(n,x) = \mathcal{C}_n = \{x_{r1}, x_{r2}, \ldots, x_{r_k}\} = 1/n!$$

where \mathcal{C}_n is any specified permutation of the elements of \mathcal{C}_n. This symmetry condition is essential to the use of the results in (13) and is the technical reason for using \mathcal{C}_n instead of \mathcal{C}_n.

Thus, from (17), we immediately obtain the following:

Theorem. If $P(n,x)$ is the number of elements of P_n with $\log 0(a) \leq \frac{1}{8} \log^2 n + \frac{x}{\sqrt{24} \log^{3/2} n}$, then

$$\lim_{n \to \infty} \frac{P(n,x)}{(n+1)^n} = \frac{1}{e} \int_{-\infty}^{\infty} e^{-t^2/2} dt.$$

Concluding Remarks. I deem it a singular honor to participate in this volume commemorating the death of Professor Paul Turán, who was a dear friend and who inspired much of my scientific efforts. His death is a great loss to mathematics and to each of us personally.

References

International Conference on Combinatorial Structures and their Applications, 55-57.
Edited by Richard Guy et al., Gordon and Beach, N.Y., 1970.

[9] P. Erdős and P. Turán, On some problems of a statistical group theory. I.,

[10] P. Erdős and P. Turán, On some problems of a statistical group theory, II,

[13] B. Harris, The asymptotic distribution of the order of elements in symmetric

subsets of the symmetric semigroup, in "Graph Theory and its Applications,"

Book Manuscript.

The asymptotic distributions of the order of elements in alternating semigroups and in partial transformation semigroups are obtained and shown to coincide with that for the symmetric semigroup.