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I INTRODUCTION

The theoretical work presented in this report was undertaken with
the long-range objective of developing a better basic understanding of
the initiation and propagation of detonation in condensed explosives.

The achievement of this objective is necessary in a program for the
improved characterization, control, and effective use of explosives in
military applications. Theoretical studies are an essential part of such
a program because experimental studies of detonating explosives are not
completely definitive and depend on models of shock-induced reactive flow
for their analysis and interpretation.

Studies of Zeldovich-von Neumann-Doering (Z-N-D) waves ~ were
performed to elucidate and determine the parameters that govern the ini-
tiation of detonation. The problem of a single shock trajectory for
buildup to detonation was considered, and the differential equation
governing a shock discontinuity was examined to determine different con-
ditions for this type of flow. One of these conditions was used to model
the type of flow observed in PBX 9404 during the early stages of initiation

produced by a flying plate.

Other properties of initiation produced by a constant velocity piston
were considered. The equations relating the initial flow to the initial
energy release rate in such a wave were derived, as well as conditions
for the shock to accelerate with either a positive or a negative pressure
gradient. These conditions demonstrate the dependence of the initiation
process on the energy release rate, the sound speed, and the relationship
between these quantities, A critical energy was defined for waves that
build up to detonation with a positive pressure gradient,

Work on reactive shocks was performed with the objective of determin-
ing the dependence of initiation on the energy release rate and the rear-
boundary conditions., Exact integral relationships for unsteady flow were
derived as generalized Rankine-Hugoniot equations, but the attempts to
construct explicit solutions for the buildup to steady detonation in a
polytropic material with a prescribed energy release rate were unsuccessful.
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II BASIC ASSUMPTIONS

Although the basic assumptions of our theoretical studies are well
defined in reference 4, they will be repecated here for completeness,
Reactive shocks are treated as (Z-N-D) waves with no reaction across the
shock discontinuity, and the flow induced by the shock is assumed to be
adiabatic, inviscid, and in local equilibrium. Consequently, irrevers-
ible processes are restricted to shock compression and chemical reactions
behind the shock.

let e, p, and p = 1/v denote, respectively, specific internal
energy, pressure, and density--the inverse of the specific volume, Then
the Rankine-Hugoniot jump conditions governing the shock discontinuity
propagating into stationary material at the front of the wave can be

written as:

pH(U - uH) = pPol (1)
PH - Po = poUuH (2)
ey ~ €0 = i(pH + po)(vo - VH) 3)

where U denotes shock velocity, u denotes particle velocity, and the
subscripts H and o denote quantities immediately behind and in front
of the wave. Since our consideration will be restricted to rectilinear
flow, it is convenient to write the conservation equations governing the
flow behind the shock as:

139 _ 3
v th - dr

du dp
Pox— ==~%-

ath ht
8. | .59
ath ath
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where h and r denote Lagrange and Eulerian distance coordinates and
t denotes the time., The flow and the chemistry are coupled by the
dependence of e on the reaction coordinates. For convenience in this
report, only a single exothermic reaction will be considered.

Let s, T, A, and A denote the specific entropy, temperature, the
chemical affinity? and the extent of reaction. Then Gibbs' equation can
be written as

de ds v A
e - T - p - A — (7)
ath ath | ath ath

and the combination of Eqs. (6) and (7) gives the corresponding equation
for the entropy production in shocked material as

L (®

Combination of Eq. (8) with the time derivative of the s = s(p, P, A)
equation of state leads to the equation

dp LGP op I a3 %)

where the frozen sound speed c¢ = (ap/ap)ﬁ’x, the Grilneisen parameter

I/v = (ap/ae)v,k, and the specific heat of reaction q = -(de/3A)p,V.
Equation (9) is the most convenient equation for studying the interaction
between the chemistry and the flow in the present treatment of Z-N-D waves.
It can be derived more directly by combining Eq. (6) with the time
derivative of the e = e(p, v, A) equation of state.




II1 EQUATIONS OF STATE

Tquations of State of Explosives

Equations of state of condensed explosives can be constructed from
the results of shock wave experiments that have been performed at the
Ballistic Research Laboratories7 and the Naval Ordnance Laboratory8 over
the last few years, These investigations lead to the conclusion that the
unreacted Hugoniot curve of a condensed explosive can be adequately
described by a linear relationship of the form

U = bu 10
a + - (10)

in the (U-u ) plane. The values of the constants a and b for
different explosives are given in References 7 and 8., Combination of
Eq. (10) with Eqs. (1) and (2) gives the corresponding Hugoniot in the
(p-v) plane as

aa(vo -v)
p. = (11)
[vo - b (vo - v)1°

and the variation of specific energy along the Hugoniot is determined
by Eqs. (11) and (3). Differentiation of Eq. (11) gives the slope of
the Hugoniot in the (p-v) plane as

dp 2 [vo + b(vo - v)]
R - 1
de 2 [vo = b (vo - W1° 22

and the corresponding equation for the slope of the Hugoniot in the
(p-v) plane 1is obtained from the jump conditions as

dp

a;; = fPo(a f.2 b u) (13)
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An expression for the sound speed along the Hugoniot (c/v)2 in
terms of (dp/dv)H can be obtained by combining the Hugoniot equation
with the first and second laws of thermodynamics. Thus combination of

the equations

de ds
v, T v, P @
H H
de d
Z s sdp+dvo-v) = (15)
dv dv
H H
2 " a
I'ta
A O Iy ae)
H H H

to eliminate Tds/de leads to the equation

(!2 dp rr/lg_ rp
(;)H - W Bl -1)-1]. 32 an

An assumption about I allows the (e-p-v) equation of state of
an explosive to be constructed over the volume spanned by the Hugoniot
curve, If I is assumed to be constant, or a function of v, for
example, the (e-p-v) equation of state has the form

e = %; + g(v) (18)

which can be rewritten as

e - eH = -% (p - pH) (19)

since e «Sd p are known as functions of v along the Hugoniot
curve, An additional assumption about the specific heat at constant =
volume Cv that is consistent with [B(va)/ap]v = 0 1is then required
tc construct the corresponding (p-T-v) equation of state,




Equations of State of the Explosive Mixture

The equation of state of the explosive mixture will be considered
in more detail because it may be necessary to remove the assumption of
local thermal equilibrium at a later date.

 Let the subscripts 2 and 1 denote the explosive and its products,
and let the superscript 0 denote the standard state. Then the equations
for the specific energy, specific entropy, and specific volume of the
explosive mixture can be written as

e = eg -AQ + Aep + (1 - ANez (20)
s = Asy + (1 - Ns2 (21)
v = Avy + (1 - N)va (22)

where eg denotes the heat of formation of the explosive, and Q = eg - e?
denotes the standard heat of reaction. If e; and ez are considered to
be functions of mechanical variables, then these equations of state are
written formally as e = ey(p,vi) and ez = eg(p,v2) with p; = pes =p
because the mixture is assumed to be in mechanical equilibrium. But if
pressure and temperature are chosen as independent variables, they will

be written as e; = ei1(p,T1) and ez = ea2(p,T2). The assumption of

local thermal ecuilibrium is then expressed by the condition T, = Taz.

Note that Eq. (10) simplifies to the equation given in reference 4,

e = e2 - M + — (23)

when the explosive and its products are assumed to have the polytropic
equation of state with the same value of the polytropic index K,

Combination of Eq. (6), expressing the First Law of Thermodynamics,
with the time derivative of Eq. (20) leads to the equation

3 3 B
Agi—‘ -0 == e‘ = [Q+ (e2 - e)] 3, - P35y (24)

where the Lagrange subscripts have been omitted for notational simplicity.
The e;(p,vy) and ea2(p,vz) equations of state can then be used to
transform the left-hand side of Eq. (24) into the expression

a—’:[x(-g-%l)v L Q- ) ] [A(g:: 2, x)(an)g—:-“-] (25)
1
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Setting A =0, and Ov/3dt = dvy/dt + (vz - v1)OA/Ot in Eq. (24), with
the left-hand side written as shown in (25), gives the following equation
for conditions at the shock front

3 )
<3§£ + ea) + p]g- [Q + (e2 - ) - 3 (vz = Vl)]%‘ (26)

It follows from Eq. (26) that the values of e; and v; are in general
required to calculate conditions at the shock front even though the
reaction is just starting. For the mixture governed by Eq. (23), how-
ever, only Q appears on the right-hand side of Eq. (26) because

e; =pvi/(K - 1), ez =pva/(K-1), and ez - e = (dea/dva)(va - vy).

When T; = T2, Vi and vz can be considered as functions of v,
p, and A because the T = T(p,v,A) equation of state of the mixture
can be formally substituted into the vi(T,p) and va(T,p) equations
of state of its constituents. In this case,

dvi _ (owvy dv,y dp dvy oA

3t ( ) * (ap ) (3 (ax )p L3t (27)
l ’

dva _ (Ova) Ov ova ég dva oA

3t (av AXT *‘(ap )v \ 3t (ax AT (28)

and Eq. (24) can be written as

< ) 2—‘:-+[(— +p} = - %;—)pv%% (29)
with
B ) @)@ T-e- o[ - @G ) w
v, vy p v, A
ov
@) @ canEE) @
(-g{-) - -[Q+(ez-e1)- = g;‘) -u-x)(a") :;") ]
p,Vv ] : ? SV, ¥ PaVs

T
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pifferentiation of Eq. (22) gives the relationship for the volume deriva-
tives in Eq. (32) as '

dvy 7 ) WP 3
X(ak)pv+(1-l).akpv (vi - v3) (33)

and Eq. (32) reduces to the equation (Belbk)p v = Q for the mixture

’

satisfying Eq. (23).
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IV A SINGLE SHOCK TRAJECTORY
IOR BUILDUP TO DETONATION

The use of a single shock trajectory to describe the initiation
of detonation in a condensed explosive was postulated by Lindstrom,
Lindstrom's postulate is considered here because the existence of such
a single shock trajectory leads to interesting conclusions about the
initiation process. Our consideration is based on the following differ-
ential equation4 governing the pressure along the shock path

[1 + p°”(%§)ﬂ];2'§ = - [p(c2 - (U - u)’)l;%%; + [Ibq]H %%; (34)

where (du/dp)_ denotes the slope of the nonreactive Hugoniot curve in
the (u-p) plane. It is convenient to rewrite Eq. (34) for a strong
shock in material governed by Eq. (23). In this case, the mechanical
jump conditions can be written as

U = 35
5 uH (35)
(£ + 1)
o e——— 6
pH -1 o (36)
(K + 1) 2 .
S 7
Py 5 PouH (37)
and Eq. (34) simplifies to the equation
d K
kel 3w By 38)
dt 3 P r, ~ (K- 1) 3t

where subscript D denotes the state at the front of the steady-state
Chapman~Jouguet (CJ) wave, I = (K - 1), and q and p, are related
by the expression (K - l)qu = (K + l)pD/'l(K - 1).
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Equation (38) cannot in general be integrated because the reactive
flow is subsonic with respect to the shock, and the particle velocity
gradient at the front of the wave depends on the flow between the shock
and the rear boundary. There will be a unique shock trajectory in either
of two cases, In the first, the particle velocity gradient at the shock
front depends on a shock parameter, In the second, the piston motion,
initiating the wave with initial particle velocity u, < uD , 18 1tself
generated during the bulldur phase of the wave initiated with a lower
initial particle velocity ui' < u, . The first case will be discussed
before the second,

When the particle velocity gradient at the front of the wave depends
on a shock parameter, Eq. (38) becomes an ordinary differential equation,
It can then be integrated formally to give the following type of equation
for the dependence of shock pressure on time,

o

DH =P P(t/Q) (39)
where p denotes the minimum initial pressure for the onset of detona-
tion, P?O) =1, and & 1is a characteristic reaction time. The intro-
duction of a critical pressure for the onset of detonation is reasonable
because many explosives are found to be nonreactive below about 40 kbar.
For waves that build up to detonation, the function P(t/Q) also satis-
fies the condition P(t/0) * p /p as t/0¢— ©, The relationship for
shock pressure in a wave with an fnitial shock pressure p1 > pc can be
written as

P, = P1P[(t - T)/a] (40)
with
P1 = pcP(T/OD (41)

A simple solution to Eq, (38) is constructed to exemplify this type of .
behavior. The reaction rate along the shock path is assumed to satisty
the conditions

(p, - P) .
2% H c
= s when p. >p
atn (PD = pc)db H c

b s (42)
a | -

= : i ; oz ; K ;

3t 0 _— . ¢ ey 'h°ni$pﬂ‘_ Pe

11
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It is convenient to introduce the dimensionless variables P = pK/PD
and Pc = pc/pD, and rewrite the differential equation as

I (R VY /At AW - P -3-3) (43)
at 3 1 -P /2(K - 1)aD or
c H

It 1s now necessary to prescribe (du/dr)_ as a function of the
shocked state to obtain a single shock trajectory. The gradient should
also be prescribed so that it attains the correct value in the CJ wave.
For simplicity, the particle velocity gradient was assumed to be

(P-P)
ou - 1 c (44)
K - =
arH 2( 1)05 (1 Pc)

so that (du/dr)_ ~ (du/dr)_ as P — 1, and the shock propagates at
constant velocity when either P, = Pc or P =1, The combination of
Eqs. (43) and (44) gives the dif}erenfial equation

@ Pc) dp (K + 1)
oot S O S S (45)
(P -P )1 - P) dt 6(K - 1)05
c e

which can be integrated to give

(P-P)1 -P) = (P. =P )1 -P)exp [(X+ 1)t/6(K - 1)05] (46)
c i i c

Equation (46) with K = 3 was used to plot the graph of time to detona-
tion versus initial pressure P Z shown in Figure 1. The dimensionless
time to detonation t*/Oh was defined as the time taken for P to
attain a value of 0,95,

Consider now the case when a piston initiating the flow at p_ > p
and a particle with the same initial pressure in the wave initiateﬁ at
p follow the same path. Such a situation will occur, for example,
wﬁen the acceleration of a particle depends only on its initial pressure
or particle velocity. It will also occur when the acceleration is zero
and the particle paths are straight lines.. An exact solution for this
type of flow is presented in this report because it was observed by
Kennedylo in the early stages of initiation of detonation in PBX 9404,
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In these experiments, flying plates thrown at different velocities behave
as constant velocity pistons and produce the same shock trajectory when
the energy release rate is small, To satisfy the momentum equation,
Eq. (5), the pressure must be a function only of the time t , and the
particle velocity must be a function only of the Lagrange distance h.
It is convenient to introduce the Lagrange time coordinate T by the
equation for the shock path h(T) = [ Udt, so that T is the time a
particle enters the wave and t = T glong the shock path. The shock
pressure p and the shock particle velocity u_ can then be used to
define the %ime dependence of the pressure and particle velocity fields
as p=p (t) and u = uH(T), and the Lagrange continuity equation,
written as

dr "
——— - 1‘ - L3
o5 ) P, IUCT) = u (1] (a7
can be used to obtain the corresponding density field.

The polytropic equation Eq. (23) will again be used for convenience.
In this case the shock is governed by the equations

dp |
H  9p dp
= + U (48)
R}
dt atﬂ hH
du
H  du on
dt ot T Ll oh (£9)
H
with
dp du du
_H _ (dp\_H _ . _ Su) —D
at (dundt = (t-DLEw, 7 (50)
op du . »
3 T T T DAYy o en

and Qn = Q Bllatn. When the particle paths are straight Iiﬂes and

(3p/dh) = (au{at),r = 0 , combination of Eqs. (48)-(51) gives ‘the rela{
tionship between the particle velocity gradient and the energy release
rate at the shock front as 3 :

(2€ ~ 1) g du gt
FRgE 4

(5
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and the corresponding shock trajectory is determined by the equation

du
H (K - 1)
Yiar = oD %a (83)
Integrating Eq. (53) gives the particle velocity field as
u(T) = ui[l + K, I(‘T)]i (54)
and the pressure field follows from the jump conditions as
p(t) = 91[1 + Ky I(t)] (55)
T=t ,
vhere Ki = 2(K - 1)/(2¢ -1, w] 1(T=1t) = [ §(s)ds’, and the
subscript 1 denotes the initial condition at 0 t=T=0,
Differentiating Eq. (54) gives the Lagrange particle velocity gradient
as
! d (1T
! T S e (56)
; 3T T 2 u(T)
§ integrating Eq. (56) gives the deformation gradient as
;g (K = UM + K1 (Mt = T
? X .} = A (57)
i oT u(”7)
and the Eulerian particle velocity gradient follows from Eqs. (56) and
(57) as
L3 T »
| 2u ) ﬂleH( ) 58)
\ - Q T -
§ ot (K = Du () + K1Q (M) (t - T
Equation (57) and the Lagrange continuity equation give the equation for

the specific volume as

. m')n('r)(t -7

v = vn 1l + x - 1)5;(7)'

. : (59)

It follows from Eq. (53), (54), (58), and (58) that the energy release
rate at the shock front éﬂ determines the flow. The case wheén the

o




particle velocity gradient is a function of time is of particular inter-
est and will be considered in more detail. Equation (58) gives the
condition for this type of flow as

- DUEM - KQ M+ 0 = 0 - (60)

where O 1s a characteristic time defined by the initial reaction rate,
and the corresponding equations for the particle velocity gradient and
the shock particle velocity follow from Eqs. (58), (60), and (53) as

du 1
b . 61
or t+Q (L)
and
d u
' -1 w (23
daT 2 (T+o
g
Integration of Eq. (62) gives the particle velocity field as
K-
FT + o] 3
= = |— (63)
u o
i
the pressure field as
. P K=-1
L [ . (64)
Py o

and the density field follows from Eq. (59) as
T B !
EET ?
t +

The energy equation

blt

H

|

dp du S | & A .
;0= -+ (K- })pé i (66)
obtained by setting c° = Kp/p and Iy = (K - 1)Q in Eq. (9), givel .
the volumetric ener;y release ratgﬁg- i 5 :
_ p =T e
4 = 3K /1) 3 (P
R ="GF-Da "1) o

16
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Since the shock pressure and particle velocity increase with time,
Eqs. (63), (65) and (87) cannot be used to describe the whole of the ini-
tiation process resulting in a steady detonation wave. Other equations
must therefore be patched to them to describe the approach to the steady
state., It is reasonable to assume that reaction in the early stages of
initiation occurs in hot spots arising from inhomogeneities., Then the
energy release rate in hot spots produced at the shock front determines
the flow, and the associated energy release rate behind the accelerating
shock will enhance reaction in the bulk of the shocked material. 1If,
moreover, there is a critical temperature for the onset of thermal
explosion, the temperature distribution in the wave will determine where
shocked material explodes and produces a second shock, which initiates
bulk reaction and dominates the flow in the later stages of the initiation
process,

Consider, for examble, the simple case when (3T/3A) = (Bp/al)
(Be/ak) = (ae/BA) o ¢+ and the time rate of change of gé;perature along
a particie path and tﬁe Lagrange temperature gradient are governed by the
equations,

c (-1
a ST Dy . (92) ad " (68)
ot v 3t dv dt
p,A
and
oT oT ov
5= (&) = (69)
p,A

Combining Eqs. (68) and (69), subject to the condition (av/at)
-(av/aw)n along the shock path, gives the equation governing the shock
temperature as

dr c(k-1)d
H _ a ) &Py (70)
dt v dt

since Jp/ot = dp,/dt. Since ov/3t > 0 it follows from Eqs. (68) and
(70) that the temperature increases faster along a particle path than
along the shock path., The mechanism of initiation will resemble that
observed in nitromethane!l when the initial pressure is about 80 kbar,
because the critical te-perature will be attained and thermal explosion
will occur behind the first shock. The position where the second shock
is formed, however, depends on the temperature distribution and can be
determined when the explicit form ot the p = p(v,T) equation of state
is known.
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V INITIATION BY A CONSTANT VELOCITY PISTON

Initiation by a constant velocity piston was considered because
flying plates are used in experimental initiation studies and hecause
constant particle velocity is chosen as the rear boundary in many numeri-
cal stiudies. The problem is tc understand and quantitatively account for
the observed shock trajectories in condenced explosives., Of particular
interest is the case when the initial shock pressure is low and the shock
propagates at essentially its initial velocity before accelerating very
rapidly to attain the detonation velocity. Since the wave can develop
initially with either a positive or a negative pressure gradient but
must have a positive gradient in the final buildup to detonation, our
approach was to determine a condition for the initial shape of the wave
and then look for a criticality condition for the cnset of detonation.

It is convenient first to derive the initial conditions in a wave ini-
tiated by a piston with an arbitrary motion. The combination of Eqgs.
(48)-(50) with Eq. (9) evaluated at the shock front gives the following
equation for the derivatives of the particle velocity along the shock
path:

@) 512 [ v 2]E - T o

It follows from the momentum equation, Eq. (5), that Eq. (71) is also an
equation relating the pressure and particle velocity gradients at the
shock front. The initial particle velocity gradient in a wave ipitiated
by a constant velocity piston is obtained by setting du/dt_ =0 in

Eq. (71) as .

du Iﬁn

a_ua = vU(ap/du)  + Vo(c/v)T]

(72)

where § = q 3\/3t_. When (3u/dh), is known, the initial time rate
of change of pressure in the wave and the initial time rate ot chap;a
of shock particle velocity can be evaluated with the equations

dp : - '
R (73)
H H H
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and
du
H du
dt E ann (74

obtained by combining Eqs. (48)-(50) with the boundary condition
du/dt = dp/dh = 0, The corresponding value of the volume gradient can
be evaluated with the equation,

ov dv ve) du
L -\ S (0 L . {75)
)

hH dun U Bhn

obtained by combining the continuity equation.with the identity

du .
dv H ov ov
— —— m — —— . 7
du_dt dt Ry (76)

oh
H

It follows from Eqs. (72)~(75) that the initial values of the first
derivatives of the flow in a reactive wave initiated by a constant
velocity piston are determined by the initial shock strength, the equa-
tion of state of the explosive, and the initial value of the energy
release rate, Alternstively, a knowledge of the initial value of one
of the derivatives is safficient to determine the initial value of the
energy release rate when a, b, and I" are known., Measurement of one
of these quantities in a series of experiments using flying plates
thrown at different velocities is therefore sufficient to determine the
dependence of the initial energy release rate on pressure,

We will now derive the equations that determine the shape of the
wave during the early stages of the initiation process. For notational
convenience, the subscript H will now be omitted from the derivatives,
but it should be remembered that the equations specify the initial con-
ditions in the wave. Since the piston moves with constant velocity, it
follows from the momentum equation that the pressure gradient at the
piston is zero. Consequently, the initial rates of change of pressure

along the piston and along the shock path are equal as shown by Eq. (73),

and it is necessary to find the second derivative (a‘p/au ) to deter-
mine whether the wave develops with a positive or a negative pressure
gradient. During the early stages of the flow, the wave will develop
with a positive gradient and the pressure will be higher at the shock

than at the piston when the initial value of a’p/an' > 0; when 3°p/3n”® < 0,

the wave will develop with a negative gradient and the pressure will be
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higher at the piston than at the shock; when Bap/aha = 0, there will

be no gradient.

The equation for (aap/an’) is derived from Eqs. (4), (5), (9),
and Eqs, (48-50). Combination of the equations obtained by differen-
tiating Eqs. (4), (5), and (9) to eliminate the second derivatives of
shock pressure and particle velocity leads to the equation
' sz Bap dp /.2 ®°u du dU d°p H
U—z (U+2v ——) +-—(U — T (—-—)

an° ° 3t° Tau \" ¥ T o ae/ T au?\at

when account is taken of the equations

d*n _ aap .
et -~ - Vo on= (78)
2%u ?°p

% % 3wn - O (79)

imposed by the rear boundary cordition. Partial differentation of

a7

Eq. (9) written in terms of du/dh, with respect to t and h, yields
expressions for 3°p/3t® and *usan®, Substitution of these expressions

into Eq, (77) then gives the required expression for Bap/ah

The equation obtained for Bap/at2 is

Ok ORE RS TRE LI

and the equation obtained for 3<u/dh® 1is

("iahan ()r[( %"éi‘%’g:%ﬂ (81)

The combination of Eqs. (70), (80), and (8l1) to eliminate 3%p/3t® ana

3%°u/3n® give the equation for 3°n/3h° as
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BSE = o5ty " abs)wG) eV w

2 2
*%[(‘:2) %:"g% %) %% (82)

Trd U .
+_[_2 WY, .
v Ldu \vee oh

where

B = [Ua + 2Uvodp/du + (voc/v)<]

Equation (82) specifies the dependence of the initial shape of the
pressure profile produced by a constant velocity piston on the energy
release rate and the e = e(p, v, A) equation of state, and can be

used to determine whether the wave develops with a negative or a positive
pressure gradient when these quantities are known,

Consider the case when the explosive is described by Eq. (18), the
products obey a polytropic equation of state, and Eq. (20) gives the
e = e(p, v, A) equation of state as

e = e2-M+ m fvl + (1 - M [Kzpvs + g(v3a)] (83)

with K3 = (l'rl - (K - 1)-1). Note that Eq, (83) reduces to Eq. (23)
when the explosive is assumed to have a polytropic equation of state
since then Kz = g{(vz) = 0, Equation (82) can be used to derive expres-
sions for the derivatives d(c/v)>/dt and 3(c/v)*/3h that are needed
to determine the sign of a’p/an’. The simplest case with the explosive
and its products in thermal equilibrium (T; = T2 = T) was considered
80 that the identity

2 P+ (3e/av)p

¢ - (Be/ap)v’lk ot

could be used., It isg clear that the second derivatives (a°e/ap°)xgo,
d%e/3pdv), ., (d%e/dv®), ., (3%e/3N3p), , and (3°%e/2N3V)

=0 A=0 A=0 A=0
must be calculated in order to calculate th« derivatives of
(¢/v)*® from Eq. (84). Differentiation of Eq. (82) leads to the
following equations for these derivatives

GBI
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Equations (88) and (89) define the influence of the reaction on the
sound speed when the explosive and its products satisfy Eq. (83). Fur-
thermore, it follows that Eq. (83) is in general insufficient to calcu-
late aap/ah2 when the energy release rate is known. Values of
aaplah2 based on additional equation of state assumptions were calcu-
lated and will be discussed later. But most attention was given to the
simple case when the explosive is polytropic and the sound speed is not
influenced by the -reaction because all the second derivatives of the
energy in Eqs. (85)-(89) vanish except 3%e/3pdv = 1/(X - 1).

Evaluation of the terms in Eqs. (81) and (82) using Eq. (23) gives
the following equations

aa’u_zuc-naé - 2(k - 1) .
Y T (K + 1) oh * 1L(2K - 1K+ 1) (%Z)} ] (90)
3°p 4(K2 - 1)Q /3X 30\ a’x
B&? = Ku % - D (a - Duy 3o5p - HFE) oD

with B = (7€ - 5)(X + 1)°u®/4(K - 1), for the initial values of the
second derivatives of particle velocity and pressure with respect to
Lagrange distance. When the reaction rate in polytropic explosive is
known as a function of state variables, Eq. (91) can be used to
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determine whether the wave produced by a constant velocity piston
develops initially with a positive or a negative pressure gradient,

The validity of Eq. (91) was first tested by checking that Bap/ah2 =0

when the energy release rate is defined by Eq. (67) and the flow develops
as a step shock in pressure, The expression for Bap/ah2 as calculated

with

A _ @ty -"—-)n (92)
dt (€ - 1) Qu P,

showed indeed that 3°p/3h> = 0 when n = (K - 2)/(K - 1), and also
led to the conclusion that 33p/dh® <0 when n > (K - 2)/(KX - 1) and
that 3°p/3nh® > 0 when n < (K - 2)/(K - 1).

Expressions for a‘p/an° were also derived using the following
reaction rate laws:

%% = A;e'“/T(l -2 (93)

%% = Aze PP - ))® (94)

2N
3t .

AP s s

AQ - 0" - pc)“‘ (95)

Equation (93) is the well-known Arrhenius expression for a unimolecular
reaction, and Eqs. (94) and (95) were used by Harper and Bernier to
simulate the initiation behavior of condensed explosives. The form of
Eq. (91) for the Arrhenius rate law will not be given here because the
initiation process does not depend on the shape of the pressure profile,
That this is so follows from the equations governing the temperature T, ;
Since the volume is constant along the shock path, the rates of change

of temperature and pressure at the shock front are related by the equation

|
§
|

3
1

dT. dp
%y _HB _ _H
(aT dt dt (96)
V,A

The rates of change of tinﬁoraturo and pressure along .a particle path,
however, are related by the ecuation
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wvhere C and C denote the specific heats at constant volume and

preSsureY’ Initiallg’%herefore when dp_/dt = Op/dt, 2JT/dt > dTy/dt and
0T/dh < 0, the temperature will increass faster along the piston path
than along the shock path. As a consequence, the reaction rate will be
highest at the piston for both a positive and a negative pressure gra-
dient. The criticality condition for initiation is then that the piston -
motion be maintained for a time longer than the characteristic reaction :
time
T /T
-1 i
Ay 'rfcv \e a
t = 2 98
c TGP (98)

when Ta/T1 >>1 and T1 denotes the initial shock temperature.

The situation is different for a pressure-dependent energy release
rate because then the mechanism of initiation depends on the initial
shape of the preséure pulse, Consider first the case when the initial
value of a‘p/ah’ < 0, The pressure and reaction rate will increase
faster along the piston path than along the shock path, and the wave
will build up initially from behind, But when 3°p/dh® > 0, the
pressure and reaction rate will increase faster along the shock path
than along a particle path, and the wave will build up at the front.,
Since 3p/3h > 0 in the steady wave, however, the initiation of deto-
nation will exhibit both types of flow when the initial value of 3-p/3h® <0,
Buildup to detonation in high density PETN exhibiting dp/dh < 0 and
9p/dh > 0 was recently observed by Wackerle and Johnson.14 as the
initial pressure is increased, the mechanism of initiation will change
from one involving a negative and positive pressure gradient to one
involving only a positive pressure gradient, To be more specific, con-
sider the cases when the energy release rate is governed by Egs. (94)
and (95), and Eq. (91) becomes

ek

N -B—hg) = u’i(zn - 1) 'a_t')i [( K= ;:)Tx: 2K = 1) (99) 2

and
K=-1) 2 -]
3%p piqz( oA (K + 1) m Q (2K - 1)°n
B\an?/ = W@k - D 'a'f?)i [2( " pc/pi)u: * Rk o p J° G400
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Equation (99) shows that 3°p/3h° < 0 when p /p. >> 1, When JMN3t
is small, the energy release rate is highest a% tte piston, and the
criticality condition for initiation is that the piston motion be main-
tained for a time longer than the characteristic reaction time

pav e a1
-1 11
t L
. = Ap ——f——pa P (101)

Equation (100) shows that Bap/bh2 > 0 when the initial pressure is

less than p, defined by the condition 1 - p /p, = (K + 1)/Km, When
this condition is satisfied, the wave will buifd up to detonation with

a positive pressure gradient as shown by the results of Bernier's numeri-
cal calculations.,13 This type of buildup should also be observed in the

former case when pa/p1 ~ 1.

Calculations of the initial values of Bap/ah2 at various shock
velocities and pressures were performed using pressure-dependent energy
release rates; a general equation of state in which the unreacted
explosive has a Hugoniot curve of the form U = a + bu, and the detona-
tion product gases have a polytropic equation of state; and the detonation
properties of PBX 9404-03, case Composition B-3, and cast TNT. For all
three explosives the initial values of 3°p/3n® are negative at low
initial shock velocities and then become positive at higher shock veloci-
ties. The change in sign of Bap/Bh2 occurs at a shock velocity sig-
nificantly below the detonation velocity for PBX 9404-03, and at a shock
velocity significantly higher than the detonation velocity for cast TNT,

The shock velocity at which the initial value of Bap/bha_becones posi-
tive thus increases as the sensitivity of the solid explosive to shock

initiation decreases. Since baplah2 remains negative for fnitiglv
shock velocities exceeding the steady state detonation velocity 1h )
cast TNT, the calculations predict the formation of a reactive pressure
pulse at the piston face; this pulse eventually overtakes the initial
shock front and causes detonation. This type of initiation has been
observed in homogeneous liquid explosives and in high density PETN and
XTX-8003. The buildup to detonation in PBX 9404-03 and Composition B-3
is typical of heterogeneous solid explosives in which the initial shock
front is strengthened and accelerated without the appearance of a
velocity overshoot. TR e 55 Mk A

Smooth buildup to detonation with (Bap/ahz) > 0, resulting from
the impact of a flying plate, will now be discussed. For convenience,
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the flow is assumed to satisfy the condition sz/ah2 >0 so that
aau/anat < 0, and the pressure on the piston is assumed to attain a
maximum during the course of the reaction, The relationship between the
particle velocity gradient and the energy release rate when the pressure
on the piston is a maximum is obtained by setting dp/dt = 0 in the
energy equation, rewritten as

dr dp _ ccdw T -2
Mt - TV Ve 3 (102)

The particle velocity gradient on the piston is also assumed to be
positive during the course of the reaction. The curves of constant
pressure were sketched to gain a better understanding of this type of
flow, and a critical energy was defined for the initiation of detonation,

Since sz/aha > 0 at the piston, the pressure increases faster
along the shock path than along the piston path, and the flow develops
with a positive pressure gradient. The curves of constant presgure in
the (t-h) plane for such a flow are shown schematically in Figure 2
where OCS represents the shock path, ODP represents the piston path,
and DC represents the locus of pressure peaks,

Particles that enter the wave before t attain their maximum
pressure along DC, but particles that enter %he wave after t attain
their maximum pressure at the shock front. Qualitative teatuges of the
curves of constant pressure follow directly from the identity

% ] \
3t = "% (103

where C = (dh/3t) denotes the slope of a curve of constant pressure,
We are iRterested ifl the case when dp/oh 2 0, When dp/ch > 0, the
sign of C_ 1is determined by the time rate of change of pressure along
a particleppath, and C. <0 where 0Jp/ot > 0, but C > 0 where
3p/dt < 0. When 3p/3h = 0, however, (3t/3h) = 0 where (3p/3t) # 0,
and P

a4

c (104)

25/
p‘_.( 3°p/at

~ 9%p/oh
at a singulaf_p01nt where Op/ot = 0. We are nbw in<a.§§sit16n t6 con-

sider the curves of constant pressure emanating from the piston. Since
3p/dh = 0 at the piston, the curves of constant pressure intersect the
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piston path at right angles except at the singular point D where
op/dt = 0. The curves emanating from the piston before td have nega-
tive slopes and intersect the shock path because the pressure is higher
at the shock than at the piston. But the curves emanating from the
piston after tq have positive slopes and do not intersect the shock
path because the pressure is decreasing along a particle path while it
is increasing along the shock path. " When aap/at2 <0 at D, D is a
double point, and the slopes of the curves passing through it are
determined by Eq. (104),

};
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FIGURE 2 SCHEMATlC DIAGRAM OF THE LINES OF CONSTANT PRESSURE FOR
i THE INlTI 'TION OF DETONATIDN UNITS (aplah) > 0
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Consider now the locus of peaks DC where Jp/dt =0 and Dp/Dt > O,
Since

Dp _ Op Dh
Dt  ©oh Dt ‘105)

along DC, the slope of DC must be positive except at the double point,
where it must be zero. Moreover since Op/dh > 0, it follows that .C =0
along. CD for t > td and consequently the curves of constant press
intersecting CD are tangent to the particle paths as shown in Figure 2,

The curves of constant pressure emanating from the shock path after
tc will now be considered. It is evident that these curves cannot inter-
sect the shock path again because the pressure increases along the shock
path as the wave develops into a detonation. Particular attention should
be given to the curve with the Chapman-Jouguet (CJ) pressure shown
schematically as JJ' in Figure 2, JJ' must become parallel to the
shock front and coincide with the CJ characteristic and the line of
complete reaction as the reaction zone approaches a steady state, It
consequently separates the steady flow from the unsteady flow, and all
curves of constant pressure emanating from the unsteady shock above J
must become parallel to the shock front. :

A critical energy Ec for the shock initiation of an}explbsi@e
can be defined as o -

‘o
Ec = }Iopudt (106)

where p and u are the pressure and particle velocity along the piston,
the half is included to account for the conversion of work into kipetic
and internal energy, and the critical time, &, denotes the time of
formation of the forward-facing characteristic that eventually heccmes
the CJ characteristic in the steady detonation wave. Note that the
critical energy is defined as a ch#qgei;ﬁ'tﬁe internal energy rather
than as the change in total energy specified by Walker and Wasley.l®
Since former work on initiation suggests that this critical charac~
teristic lies in a centered reactive rarefaction fan, @& can in -
principle be determined by finding the position on the piston path where
the second derivative of the characteristic becomes zero, Let s
denote the slope of a forward~facing characteristic, so that

VvoC

C
A = m-)- = 3 (107)




The condition determining & can then be written as

ds+ _ dc/v Bc/v) _

at - Y\t Y, &

o

(108)

Attempts were made to calculate p, u, and @& along the piston
to determine E¢, for a polytropic medium with a simple reaction rate
law but, since approximations must be made unless a complete solution
‘to the reactive flow problem is knowm, a simpler approach to the critical
energy problem was undertaken,

;: The alternative approach was to apply Eq. (106) to the steady state
wave and assume that the amount of energy required to initiate a steady !
detonation with no delay tine17 is sufficient to initiate the explosive ?
subjected to other initial conditions. Another way to look at this
assumption is to say that, if there is & critical energy for initiation,
its value will be determined by the properties of the steady state wave.
Since the centered rarefaction fan in a steady wave emanates from the
CJ point, the critical time & in the steady wave is taken as the reac-
tion time. Evaluating Eq. (106) for a steady state detonation wave leads
to the following equation for the critical energy

2
_ PoDZ <[1 - po/P]>
Ec = 2 <Po/P> (109)

where D denotes the detonation velocity, Z denotes the reaction zone
length, and the density terms in brackets denote values averaged over

the reaction zone, Equation (109) for the critical energy takes into
account the initial state and the equation of state of the unreacted
explosive, the equation of state of the reactive mixture, and the kinetics
and thermochemistry of the exothermic reaction supporting detonation.
However, it gives values larger than those determined experimentally by
Walker and Wasley. This disparity suggests that calculations of critical
energy with the steady state wave must account for the fact that the
completion of reaction on the rear boundary is not a necessary condition
for initiation of detonation,




VI THE REACTIVE SHOCK PROBLEM

Work was continued on the reactive shock problem with a prescribed .
energy release rate., Solutions for buildup to detonation were souglt to '
provide a means of demonstrating the dependence of initiation on the
energy release rate and on the rear-boundary conditions, and a means of
calculating the critical energy for initiation defined in Section V,

The new methods tried for. constructing solutions for reactive shocks
were unsuccessful however,

It is convenient to write the flow equations in terms of the
Lagrange time T introduced earlier in this report as

a )
-g—”; = %33‘;- (110)
) \
g—‘t’ = _%’-F"T- (111)
d dav I a :
2 -B)mrvan 12) {

Our problem for a prescribed energy release rate is to find the volume
field v(t,T), the particle velocity field u = u(t,T), and the pres-
sure field p(t,T), that satisfy the differential equations (110)-(112)
along particle paths and satisfy the Rankine-ﬂugoniot Jump conditions
along the shock path where t = T, Previous attempts to solve this
problen,4 with the explosive described by Eq. (23), and the enérgy
equation written as

3 3p du (K - 1)? | 3
T - CPEIT 3 P (M9 (113) :

made use of the fact that the v(t,T), u(t,T), and p(t,T) {fields can
be obtained from either the particle velocity gradient or the pressure
gradient by integrating Eq. (38), Eq. (110), and Eq. (111) when the energy
release rate at the shock front is prescribed. Coansider, for oxinple,
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the case when the form of du/dT is assumed. Integration of Eq. (38)

gives the shock pressure, the shock particle velocity follows from

Eq. (37), and the shock path can then be obtained by integrating Eq. (35).

Integration of Eq. (10) along a particle path from the shock front gives

the volume field, and integration of du/9T and Eq. (111) along an

isochrone from the shock path gives the corresponding particle velocity

and pressure fields. Since the energy equation was not used, however,

a solution for a reactive shock is obtained only if the assumed form of

du/d7 is compatible with the energy release rate and the calculated
. flow satisfies Eq. (113)., A similar argument applies also to the case
when the form of 0p/dT 1is assumed, The problem can therefore be
regarded as that of finding the particle velocity gradient that is com-
patible with the prescribed energy release rate, This approach is prac-
tically intractable, however, because the flow is related to the reaction
through the energy equation, and there is no apparent way that this
equation can be used to determine the particle velocity gradient.

S

Since buildup to detonation is of particular interest, most atten- |
tion was given to the final attainment of steady state flow. In one
approach, the equations of motion were transformed so that their integrals
consist of steady state terms and unsteady state terms that vanish as :
the steady state is attained. The independent variables were changed é
from (7,t) to (7, =T - t) so that the partial derivatives '
transform as follows

- + ' (114)

0 )
P -+ . SE- ' (115)
T T

and Eqs, (110) and (111) become

ov ou du

) U-SE + vo SE = = Vo 3;; (116{.
) and
' ' P TR L Tl
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Formal integration of Eqs. (116) and (117) with respect to £ gives the
equations expressing the conservation of mass and momentum for unsteady

flow as :
Uv = vo(U - u) - Vojf (%u‘-r') dé ' (118)
. §
op . ’
P - po = Polu - Jf (a'r dé (119)

3

The corresponding equation for the energy is most conveniently derived
by integrating the first law of thermodynamics written as

Qe 3w _ % .
kT T ¥

The combination of Eqs. (120), (117), and (118) leads to the equation

(120)

de 3dpv du du op du Jg ou
L + EE— + (u - U)sE = u s;z -V S;E = SE Jo (3;)£d€ az1)

which can readily be integrated to give the ejuation expressing the
congervation of mass, momentum, and energy as

e -eo + PV - povo + 3(u - W* - W = Jf[u(—g%)e- v(—g-%)E }15 - uﬁ(—g%)idﬁ (122)

Equations (118), (119), and (122) can be regarded as perturbed ‘Rankine-
Hugoniot equations because thry reduced to these equations as the flow
attains a steady state and thes derivatives (du/dT), =0 and (3p/3T)
becomes zero, Attempts to ure these equations in a perturbation"analy-
sis to construct solutions “or the final approach to the steady state
were unsuccessful, .

In the second approach to the reactive shock problem, the energy
equation was integrated rather than used as a cdupgtibility condition
as in the previous treatment.? Although the pressure and volume fields
generated from the energy equation are compatible with a prescribed
energy release rate, there is no guaranfoa that they are associated
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with a unique particle velocity field because the continuity and momentum
equations were not used in their construction., The continuity and
momentum equations were therefore combined to obtain a condition that

.the pressure and volume must satisfy in order to be a solution to a

reactive shock problem., This compatibility condition was derived as

duﬂ a 2
___‘Eg 2 O°v 20 P
YWaror  Paaer T T Wac (123)

by eliminating '3%u/3t3T from the equations obtained by differentiating
Eq. (110) partially with respect to t and differentiating Eq. (111)
partially with respect to T,

A simple case was considered first. An expression relating the
volume and reaction was chosen as

v (3r/91)
i (Br/BT)H GQ) (124)

so that the energy equation couuld be integrated without difficulty, and
the reaction was assumed to have no activation energy. The reaction
rate was written formally as

3 1
3% = gRA =M (125)

with R(1) =1 and R(0) = 0, so that JA/3t = - 3A/3T and the
reaction rate at the shock front is constant. Integration of the
energy equation gives the equation for the pressure field as

€ + l)pD

. P - DH(T) = 4?E-:-ITE?X§[F(X) - F(0)] / (126)

where p_  denotes the spike pressure in a CJ wave and F is defined
by the equation dF/dA = G ~'., Integration of the differential equation
along the shock path gives the equation for the shock pressure as

(K +1) ‘ ¢
| ?h(t) ._ (v, - Pb) exp(- 3 g(O)t/OO + Pb (127)

33




where P pD/z(K - 1)g(0), g(0) = 0du/dr)_ = (d &n G/d)).., and Py
denotes Qhe initial shock pressure t = 0, Examination of conditions
for buildup to a steady state gives G as

3

(K=-1)6 = K=-(1=-2) (128)
and the equations for g(0) and F are obtained from Eq. (128) as

2( - 1) g(0) = 1 . (129)

F(A) - F(0) = -E%E-—%% (G (L + (1 - A)i 2] | (130)

Equations'(lzs) and (127) then give the equations for the pressure field
as
i PH(T) - pD
) + m
G

Py
P = 3= + Q-2 (131)

._ (K+1)t
P = ( B D)exp 6(K - 1) * Py (132)

The fact that Eqa. (124), (131), and (132) do not satisfy Eq. (123)
leads to the conclusion that Eq. (124) cannot be satisfied in a time-
dependent wave that builds up to a steady state. In other words,

Eq. (124) is too restrictive and must be generalized to obtain a more
realistic treatment of unsteady flow,

Other attempts to constryct solutions for the final stages of
initiation were based on the assumption that the fall in pressure along
a particle path is proportional to the fall in pressure along a particle
path in the steady state wave, The equation expressing this condition
is obtained from the equation for the pressure in a CJ wave
p = pD/2(1 + (1 - 2A%*) as

(133)

2l
|
g
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with E an arbitrary function of T, A unimolecular reaction with no
activation energy was considered to simplify the integration of the
energy equation, In this case, Eq. (133) reduces to the equation

(SRR b
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P =t
dp D 20
3% -~ 4aE(T) e (134)
T=t
since 1 - X = e( )/ai Integration of Eq. (134) gives the equation

for the pressure field, which is written for convenience as

T=-t

p o——
Pp = ;2 B+E eza (135)

with B another arbitrary function of 7. Integration of the energy
equation gives the corresponding volume field as

T=t
v = —2___(kg - e2® |- : (136)

(X + 1)E

Evaluating Eq. (136) at the shock front, however, where v =v_ =
((K = 1)/(K + 1)]Jvo and t = T gives the following relationsgip
between E and B,

KB = (£ -1)E° +E . (137)

The equations for the pressure and volume can therefore be written
in terms of the arbitrary function E as

P =t
_ "p}x - 1)E? 1 2
ph= = = +Elg +e (138)
and
T-t
vo- 1 20
————— K o 1 - 1 — . 139
v %Y ( ) + E e (139)

The equation for the shock pressure follows from (138) as

P

p, = 2—’; ((K - 1)E® + (£ + 1)3) (140)

and the differential equation for shock pressure leads to the following




equation for E

dE (1 - E) (141)

T eafl+ [ - 1/ + 1IE)

I AL (45NN P PR e

The question now arises whether Eqs. (138) and (139) satisfy the com-
patibility condition. The equations obtained by differentiating Eqs.

| (138) and (139), together with Eq. (141), show that Eq. (123) is not )
7 satisfied., Here again the assumption made about the flow was not

realistic enough and we were unable to find a solution for the final

buildup to detonation,

R
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VII RESULTS AND RECOMMENDATIONS

The results of the theoretical study of reactive shock waves )
presented in this report lead to a better understanding of the initiation
of detonation in condensed explosives.

Various aspects of shock initiation were considered. The differ-
ential equation governing a shock discontinuity was used to determine
different conditions for a single shock trajectory for buildup to
detonation. One of these conditions for single shock buildup produced
by a flying plate was used to construct a solution for the type of flow
observed by Kennedylo during the early stages of initiation in PBX 9404,

Other properties of initiation induced by a constant velocity piston
or a flying plate were considered. The equations relating the initial
flow to the initial energy release rate in such a wave were derived.
These equations provide a means of determining the variation of energy
release rate with pressure at the front of the wave when the Hugoniot
curve of the explosive is known. Conditions were also determined for the
shock produced by a constant velocity piston to accelerate with either

a positive or a negative pressure gradient. These conditions are important

because they demonstrate how the mechanism of initiation depends on the
energy release rate, the sound speed, and the relationship.between these
quantities., A critical energy for initiation was defined for the case
when the wave builds up with a positive pressure gradient. Work on the
reactive shock problem was continued, and integral relationships for
unsteady flow were derived as generalized Rankine-Hugoniot equations
without making approximations. Attempts to construct explicit solu-
tions for the initiation of steady state waves so that critical energies
could be calculated were however unsuccessful.

Steady state detonation was considered, and a perturbation analysis
for a simple reaction was carried out to determine a sufficlent condition
for its stability.

Additional studies that would extend the work presented in this
report are recommended to improve our p;'esent understanding of the
initiation of detonation in condensed explosives. A general criticality
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Appendix

STABILITY OF THE STEADY DETONATION

An objective of the research reported here has been to separate
initial conditions leading to steady detonation from those producing
extinction or some sort of irregular burning. For initial conditions
close to the steady state, the problem is one of finding the stability
boundary where perturbations in parameter values on one side of the
boundary lead to steady detonation while those on the other side do not. |

A first attempt at locating the stability boundary is made below
by exgmining whether a small initial irregularity will grow. The
irregularity at a point in the unburnt material is swept over by the
shock. The perturbation wave in the reacting flow behind the shock is
headed by a sound wave or characteristic., It is found that the effect
of the initial disturbance dies away along the characteristic if K,
the polytropic index, is.small enough; the critical K depends 1
on n, the order cf the reaction, If K 1is larger than this value,
the initial disturbance does increase with time, at least part way along
the characteristic, so that an instability can arise. The results is
sketched for a particular case in Figure A-1l,

Steady State

The gas dynamic equations f°r~°h5‘4i'°°'1°ﬂﬂlr;!éiibitié};y.@§§1§§
flow read 5 MRS e e




STABLE REGION

MA-1322-23

FIGURE A-1 STABLE REGION IN PARAMETER PLANE




index, and Q the heat released. The Eulerian coordinates are distance
x and time t with the superior dot denoting the material time
derivative.

Solutions of the equations representing steady states are those
where P, p, u, and A are functions of (t - x/D) only, where
D. is a congtant speed., If the steady state is headed by a strong shock
moving at speed D into gquiescent gas of depsityf Po, the jump conditions
give just behind the shock - "

u o= /(K4 D)
P = Po (K+ 1)/(X-1)
P = BDu *
R,
The corresponding steady state is
P = PoD/(D - u)
p = PoDu
A = ufDp- (K+1) w/2)/(k - 1)Q

The Chapman-Jouguet condition, that D = u .+ c  where the reaction is
complete (A =1), is satisfied if

p° = 2(%% - 1)qQ
Here ¢ 1is the sound speed given by
. :

¢ = Ku(D - u)

The above steady state equations relate the dependent variables to
one another, Their relation to the coordinate locations is found from
the reaction equation. : h

£ ‘5"“‘.\x '-\n@ R S
This equation can.bolixpgkdoq to read

3K + 1)(® - WD - (K + Dulu’/p® = R
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where the prime denotes differentiation with respect to (t - x/D).
Integration gives

u
t-x/D = [ 3(K+ 1) - uwD- (K+ 1uldu/D’R

The particular Iorn_tor R used below is
i -l .
R = P -0
where & and n are constants. This form approximates the rate
expression for a reaction of order n with simple pressure dependence,
Since

1-X = [D- (K+ ul®/p®

one sees that this reacfion is complete in a Iinite time only if n <1,

Perturbation Equations

For a small perturbation of the steady state,

P = P+ é;, u = ; + é;, etc.,
where the bar indicates the steady state function given above, the tilde
denotes a quantity of ordinary magnitude, and ¢ is a small constant.
Substitution in the gas dynamic equations gives, to the first order in
€,
P+ ;P + ua + P; + Bu = 0
t x x x x
P(ut + uux) + P(ut + uux + uux) + px = 0
4

g ¥ UPy * P, ¢ K(Pu 4 pu) = (K - 1) QPR + PR)

R M
t x x

wihere the tildes have been omitted from thénporturbation.quantitiaa for
simplicity.




Along particle paths, linear combinations of the equations in
characteristic form read:

At + ﬁlx + uxk = R
c? (Pt + ;Px) + P+ pr - c*® (uEx + Pax) + ;xu + Kpﬁx
= (K -1)Q (PR + PR)
along particle paths, and
p,+ (uzc)p % cPlu, + (u£c)u)
£ c(p[u, + Eﬁx] + Buu) + pu+ kpu
= (K - 1)Q (PR + PR)
along forward (+) and backward (~) sound waves.
The perturbation at the shock is found in the same way:

2D/(K + 1)

e?
"

0

o
u

2pDu

o
"

>
]
o

Irregularity at a Point

A small irregularity is supposed present at a point in the unburat
material. When the shock reaches this point it will oxperience a_
velocity perturbation eD. Corresponding perturbations u, P, p, and
X arise according to the shock equations given above, The expressions
are made precise by setting D=1 and putting the magnitude of the
perturbation into €, The only requirement is that € 1s small enough
that it is roanonablc t0~no¢10ct €. with renpoct to 1.

The first ottqct_ot the 1rr.gu1ar1ty is a discontinuity propagated
_nlong the backward:rﬂnninc lonn& ﬁavo. Siﬁéo pirticle paths cross this
faound wuvo, thc oq
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A +U\ +ul = R
t x x
holds across the wave in spite of the jump in the value of u aﬁd per-

-haps of R. One sees that the equation remains satisfied by an abrupt
change in the cross-derivative of A,

At + ukk
if needed, and not by any change in A itself, The perturbation A
therefore retains just behind the sound wave the value zero that it had
in the steady flow ahead of the wave., On the wave
. A = 0

The other equation valid along particle paths may be written
_ =2 Tin - 52 4 -2 =2 _ =@ .3 = = Kom
(p-c¢ P)t +u(p -c¢ P)x + P(ct + ucx ) -c (qu + pux) + pxn + pux

= (K - DQ(PR + PR)
By.the same argument as above, one finds that
p-c°p = 0
Qn the souna wave,
Fron the forward running sound wave in the same way,
P+ Bsu = 0
The above relations valid along the backward running sound wave
permit the elimination of p, P, and A from the equation for the
wave, One obtains
u + G- Du_+ @745 = 0
where
M = K'WD + c[(X - z)n + 201 - K%)a) + [Kn“n/uc + 1)u 1@

stnce u : haa tho -ame aicn q' R

which 1- pquitivn. t@g




if M Es negative and decays if M 1is positive. Since M varies
with u, decay and therefore stability are assured only if M is
positive for the whole range of values of u. This stability ecriterion
is examined for a particular rate expression below.

Stability of a Particular Reaction

For the reaction

R = @ - »Ye

one finds

RR = (n-1)P/P) - /A - X)

Since along the backward running sound wave propagated from the initial
disturbance

'X = 0
and
P = (p/o)u
one finds
R/ = (n - 1)R/c

Use of the expressions for these steady state quantities in terms of u
gives finally

M = K3WD + c[(K + n = 3)D + (K + 1Du(3 - n =~ 20)]

An investigation of the equation of M for u on its range D/CK + 1) <
u s 2D/(K + 1) 1is now required.

If one sets M = 0, one finds that there are gengrally three roots
for u. One of these roots is at the C-J value, u =D/(K + 1), for
any values of K and n. There is a second root at u = D/(K + 1) 1if

n = 3+ K(K - 3)
There is a root at the shock, u = 2D/(K + 1), if

§

n o= 34+ K{=2 2 [(X+ 1)/(% =1))
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