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I.  INTRODUCTION. There are several techniques available for 
quenching metals. The object is to develop some desired micro- 
structure in the material. In the Watervliet Arsenal's rotary 
forge facility, forged cylindrical tubes are heated to an austen- 
itizing temperature of approximately 1550oF and then quenched to form 
the desired martensitic structure in the material. Both external and 
internal diameter quenches are utilized. The outside diameter is 
spray quenched with four water jets in a diametral plane spraying 
water onto the tube while the tube is rotating. There are several of 
these planes located along the axis. The bore or inside diameter is 
quenched by flushing through a nozzle located at one end of the tube. 

While the facility was still in the development stage, several 
tubes (a higher incidence than normal) developed cracks and some of 
these were interpreted as quench cracks. While the problem was 
judged to be metallurgical in nature and has been settled, an inter- 
est was indicated in understanding the transient temperatures and 
stresses involved in the quenching problem and this led to the 
present study. 

First, the transient temperature distribution of an axially 
symmetric hollow cylinder is found. Differences along the axis are 
assumed to be minor and ignored. The thermal properties are treated 
as functions of temperature rendering the equation for heat conduction 
as nonlinear. The finite difference method is used to solve the 
temperature problem. The Crank-Nicolson equation which is implicitly 
stable is used. 

In the present study, the stresses due to the temperature distri- 
bution and the martensite transformation were computed, assuming the 
problem was elastic and linear. From the computed stresses, it was 
obvious that some plastic deformation must occur and that an elastic- 
plastic analysis was required. This work will be performed in a 
future study. 

The stresses due to the transformation are assumed to be strictly 
due to a change in volume. As the steel transforms from the austen- 
itic structure to a martensitic structure, a volume increase of 3%- 
4% occurs in the transformed material. This volume increase gives 
rise to transformation stresses. 



The thermal problem and stress problem are treated as being 
uncoupled. The heat generated from the transformation is small and 
will have negligible effect on the temperature distribution during 
the described quenching procedure. The transformation begins when 
the temperature in the material reaches Ms, the martensite start 
temperature, and is completed when the material is past the M^, or 
martensite finish temperature. Another technique used in quenching 
is to quench the material to Ms and slowly allow the transformation 
to take place. In this case, the heat generated during the trans- 
formation, might be significant and the coupled problem might need 
to be considered. 

II. PROBLEM STATEMENT. The partial differential equation for 
temperatures in a hollow cylinder is 

1 3 ,,..-, 3u.   , , ,, .. 9u fl") 
7 8F(k(u)r ^ = C^PW St 

where r represents the distance along a radius, u the temperature, 
and t the time. The thermal conductivity, specific heat and density 
are represented by k, c and p respectively. These properties are 
assumed to be functions of the temperature. Axial symmetry is 
assumed and any effects along the axis are ignored. 

The initial condition is given by 

u(r,o) = U0 (2) 

where U0 would represent the high austenitizing temperature. The 
boundary conditions for the problem described would be of the con- 
vection type. However, to allow some flexibility in the program, 
they were written in the following form 

3u  . 
37 " hlu = -«!   at r = a 

^r - h2u = -g2   at r = b 

(3) 

where r = a specifies the inside radius and r = b the outside radius 
of the cylinder. The values h^ and g^ can be varied at either sur- 
face so that various boundary conditions can be specified.  For 
example, if gj = 0 at r = a, then ^ is the Nusselt number and the 



convection boundary condition is indicated at r = a. If h? an^ ^2 
are very large but the ratio g2/^2 ~ ub t^611 the temperature U^ is 
specified at r = b. 

Since the thermal properties of the material must be considered 
as functions of temperature, the partial differential equation (1) 
is nonlinear and numerical techniques are needed to solve the problem. 
An implicit scheme based on the Crank-Nicolson equation was used in 
writing the finite difference scheme for the temperatures. 

III.  FINITE DIFFERENCE EQUATIONS.  The Crank-Nicolson repres- 
entation of Eq. (1) is 

 1  r a+iAr v rt;  r ■> 
(a+(i-%)Ar)Ar l      2        i+^.n+Vr^i+^.n+l + Ui+Js,nJ 

a+Ci-l)Ar . , . ui,n+l " "i^ 
2 Ki-J5,n-iJs0rtui-%fn+l + ui-%,n}) = zx,^x,n+h At 

(4) 

where i is the ith node 
n is the time step 
At is the time increment 
Ar is the space increment 

and 

6      , "i^n - "i^n 
r i+%,n      Ar 

U-ixl  r^U  + Ui ^^U 
k       k(^l,n^  -i.n^^ (5) 

The finite difference equation (4) is written about the point r^, 
tjj+jj.  If the temperature and its spacial derivatives can be written 
without requiring their values at n+%, then the equations become 
linear [1]. This is accomplished by arithmetic averaging the finite 
difference analogues at the points r^, tn and r^, tn+i, and the 
resulting analogue is the average of the forward and backward ana- 
logues. To solve these equations for the temperatures, it is required 

1.  von Rosenberg, D. U., Methods for the Numerical Solution of 
Differential Equations, American Elsevier Publishing Co., Inc., 
New York, 1969. 



to know the properties at the n+h  time step. This will be shown 
later. 

In writing the boundary conditions as Equations (3), it is 
necessary to locate the nodes as shown in Figure 1. There are no 
nodes located on the boundary about which finite difference equations 
are written. The boundary conditions are used to eliminate the Oth 
and R+lst nodes from the equations. The temperatures on the boundary 
are found from extrapolation or through the use of the boundary 
conditions after the spatial temperature distribution is found at 
that time step. 

The values of the thermophysical properties at the h  time step 
can be found through various projection methods [1]. The one chosen 
is the centered Taylor series projection. A set of equations similar 
to Equation (4) are written between the n and n+h  time step. Thus 
the values of the properties would thus be required at the n+h  time 
level. The technique allows the computation to take place using 
properties evaluated at the known nth time level. Under those 
conditions, the equations are linear, the properties known and the 
temperatures at the n+h  time step can be found. Knowing this, new 
property values can be found and the equations solved for the temper- 
atures at the n+1 time step. 

An alternate technique which still arrives at the equivalent 
of Equation (4) was used for the centered Taylor series projection. 
Equation (1) is rewritten in following form. 

, ,. . 32u . 8k (u) ,9u,.2  k(u) 9u   ,,.,,. 9u        ,,., 
9r    9u   9r    r  9r 9t 

Using the Crank-Nicolson finite difference analogue about the ith 
node and n+h  time step. Equation (6) becomes, after some rearranging, 

 1       rw .»,.., , r
Ui+l.n+^ " ui-l,n+%.,  Ar., . 

7(Z-jT tk(ui,n+^  + k,fui,n+%n 2A? ^ TH"i+i,n+l 
+ ui+l,n) 

+ 
1        rw             -.      vt f            ,r

ui+l,n+% " ui-l,n+hi  Ar-, , . „ -. 
^T [k(ui,W  ■   k,C"i,„+}sH- -^ ' ] Y](«i-l,n+l 

+ ui-l.n5 

(7) 

2(Ar)2    i.n+V    v l,n+H"- 2Ar 

von Rosenberg, D. U., Methods for the Numerical Solution of 
Differential Equations, American Elsevier Publishing Co., Inc. 
New York, 1969. 



^T kCui,n^nuifn+.1 +uijn) * 
(A 

+ 
k^ui>n^)  ^1,11+1 

+ Ui-H.n - "1-1,1^1 - "1-1,11 

2(a+(i-J2)Ar) 2Ar 

However, the coefficients of the first 2 terms can be viewed as 
truncated Taylor series for kCuj^ n+^) 

kfu    , 1  = kfu 1  + £lk«fu wUi+l,n+% " ui-l,n^. KtuiiJs,n-^J     k(-ui,n+}'2J 
+ T     Cui,n^),: ^ 3 (8) 

Rewriting Eq.   (73 

-H+J^n+V [k(ui+k.n+k)](ui+i  n+l   + ui+l   J   + 

2(Ar)' 

+ I(A7)T [^Ui-h,n*h'>Uui-l,Ti*l + ui-l,n^ 

- J^pr [k^ui+%,n+^  + kCui-^,n+^Hui)n+1 + ui>n)  + 
(9) 

+ 
k(ui+h,n+h)   ,ui+l,n+l + ui+l,n)  _ kC"i-^tn+%)     ^i-l.n+1 + "i-l,^ 
4(a+(i-J5)Ar) 2Ar 4(a+(i-^)Ar) 2Ar 

[cCui+%,n+^ 
+ ^"i-Js.n+^HPCui^^^) ♦ PCui^n+jj)] 

At 



where 

Equation (9) is now rewritten for evaluation of temperatures at the 
Ji+h  time interval using for the coefficients their known values at 
time step n 

ICA^)7 [1 + 4(a+(i-35)Ar)
] ^i+h.nl ^i+l.n+h  + ui+l,n) 

+ Jj^T 

[1 " 4(a4U)Ar)3 k(ui-^n)(ui-l.n^ + -i-l.n) " y^p 

tPCui+%,n)  - PCu^^)] ^'^ Ui>n - 0 (11) 

This yields the temperature distribution at n+h using coefficients 
evaluated from the temperature distribution at time n. The temper- 
atures from Eq. (11) are then used to evaluate the coefficients for 
use in Eq. (4). 

The finite difference equations were tridiagonal and were solved 
using the Thomas algorithm [1]. Briefly, the form of this algorithm 
is 

a.u- , + b-u- + cu. , = d.    l<i<R ii-l   11   ii+l   i    i-—J-—'K 

aj - 0, cR = 0 

where the terms on the left hand side are at the n+1 time step and on 
the right hand side at n time step. For all i, the quantities 

aici-l        d.: - a.:Yi i 
% = bi " -^ •  n -  1  Bi

lTl-1 C13) 

1. von Rosenberg, D. U, Methods for the Numerical Solution of 
Differential Equations, American Elsevier Publishing Co., Inc., 
New York, 1969. 



as computed and then back substitution is used to find the temper- 
atures from 

UR ■ YR 

Ui - Yi - 
Ciui+1 (14) 

Computation times are rapid. 

IV. THERMAL AND TRANSFORMATION STRESSES. The quenching process 
gives rise to thermal stresses due to the large thermal gradients 
that exist. Areas near the boundary are cooler than interior points. 
The boundary would like to contract but is partially prevented from 
doing so because of the interior, hence tensile stresses are set up 
near the boundaries while the interior is in compression. The 
thermal stresses in an axially symmetric hollow cylinder subject to 
a non-uniform temperature distribution are given by [2]. 

Or = ^ i^K /  Pu(P)dP -   /  Pu(P)dp] r      bz-a^   a a 

a   = ^7 [ihsL I pu(p)dp - / pu(p)dp - rVr)] 

(15) 

pu(p)dp - r2u(r)] 
r*    bz-az   a a 

ses 
tresses 

-2    "-.2   „2 

where ar the radial stresses 
OQ the tangential stre 
E Young' s Modulus 
a thermal expansion coefficient 
u(p)...radial temperature distribution 

The stresses due to the transformation are found using similar 
equations since these stresses are due mainly to a volume increase 
in the transformed material. The difference between the two calcu- 
lations is that the transformation does not occur across the thick- 
ness simultaneously but progresses across based on the temperature 
in the cross sections. No transformation stresses exist when the 
temperatures are all above that temperature (M-) when the trans- 
formation begins or below that temperature (Mfj for which the 
transformation ends. Between these two temperatures, a linear 
change in volume is assumed. The change in volume, about 4% if 
the transformation is complete, is assumed to be isotropic so that 

2. Boley, B. A. and Weiner, J. H., Theory of Thermal Stresses, 
John Wiley and Sons, Inc., 1960. 



it translates to one-third of the volume change for a linear change 
during the transformation. Stresses are computed in a manner 
similar to thermal stresses. 

.2  02    b r 

0-£[^Hfpdp-'xpdpl 

-Zj-oZ 

a 

b.. r. 
(16] 

"o-^I^/^^W^paP-x^, 

where 

I. ^ = 0 if u(r)  > M. 

"•        T=(f,*M^(H=-UW) Ms^Wi"f (17) 

in.    x^T1*       MfiuW 

and (—) is the linear expansion during a transformation. 

The Ms temperature was taken to be 350
oF and the Mf temperature 150oF 

for the computations. Figure 2 shows some temperature distributions 
which can arise. In the upper figure, no transformation has taken 
place, hence the transformation stresses are zero. In the lower 
figure, the transformation is occurring from both the inside and 
outside radius.  In sections indicated by I, corresponding to Equa- 
tions (17), the transformation has not begun, in sections II, the 
transformation is progressing and in sections III, the transformation 
is complete. 

As stated above, for the present study the thermal and trans- 
formation stresses were assumed to be elastic. In the following, 
the results indicate that stresses are too large for this assumption 
to be valid. References [3] and [4] treat similar problems using 
elastic-plastic analysis. 

Weiner, J. H., and Huddleston, J. V., Transient and Residual 
Stresses in Heat-Treated Cylinders, Journal of Applied Mechanics, 
March 1959. 

Landau, H. G., and Zwicky, E. E. Jr., Transient and Residual 
Thermal Stresses in an Elastic-Plastic Cylinder, Journal of 
Applied Mechanics, September 1960. 



V. RESULTS AND DISCUSSION. Figures 3 through 7 show some 
resulting temperature distributions under various conditions. 

Figure 3 shows the temperature distribution across the wall 
thickness for various times. The boundary conditions are convective 
and h2 represents a value near that suggested by the manufacturer 
of the quenching facility for the coefficient on the outside diameter. 
On the inside diameter, the value of h^ was said to be lower than 
that of 1*2. The radius is in inches and the temperatures are in 0F. 
The ambient temperature was assumed zero. Figure 4 shows the effect 
of variations in the convection coefficient on the inside diameter. 
The results are shown for only one time step. Since the temperature 
at that time does not change much under the different boundary condi- 
tions, small differences in the convection parameter on the inside 
diameter will have little effect on the transformation. 

Figure 5 shows the effect when the thermal conductivity is 
allowed to vary with temperature. For the same time step, three 
curves are shown. The conductivity is allowed to be an increasing, 
decreasing or constant function of temperature. Finding real data 
to use in the program is difficult. Figure 6 shows the temperature 
distribution for a bilinear thermal conductivity curve based on one 
for 4130 steel. These properties are usually determined experimentally 
under equilibrium conditions. Since the structure of the material 
is changing under rapid cooling and since equilibrium does not exist, 
the properties which should be used are those determined under the 
same conditions as the quench. This can be described best by looking 
at the specific heat. Again for 4130 steel, a spike increase in the 
value of the specific heat occurs between 1200oF and 1500oF. This 
occurs during heating and is due to the austenitizing of the material. 
Figure 7 shows the temperature distribution throughout the tube wall, 
allowing the specific heat to be a function of the temperature but 
ignoring the spike mentioned above. Under the quench conditions, the 
spike would occur during the martensite transformation and be of 
different shape. 

Figures 8 and 9 show a sample of the radial and circumferential 
or hoop stress, respectively, for a specific time. They are taken 
from one of the previously cited cases. The insert shows qualita- 
tively the temperature distribution at the time indicating that the 
transformation has begun at both the inside and outside radius. Each 
figure shows the thermal, transformation and sum of the stresses. 
Large compressive hoop stresses indicate the strong possibility of 
plastic deformation. Since the transformation occurs at the lower 

temperatures, the thermal gradients are smaller and the thermal 
stresses lower than their values earlier in the quenching cycle. 
The thermal stresses, however, can be a significant part of the 
total stresses, especially early in the transformation, and should 
not be neglected in an elastic-plastic analysis. 
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