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through a zero memory nonlinearity f(x). The reconstruction of the sig-

nal is considered when the nonlinearity, the noise covariance and the ;
first or second order moments of the output process f{s+N] are known.

Arbitrary signals can be reconstructed for monotonic and certain odd, not

necessarily monotonic, nonlinearities; included here are hard limiters,

quantizers and infinite interval windows. Arbitrary signals can be re-

constructed, up to a global sign, for two distinct classes of even non-

linearities; included here are 2v-th law devices and symmetric interval
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I. INTRODUCTION

Consider a signal s observed through a nonlinear system and suppose
that we want to reconstruct the signal from the output of the system. Un-
less the nonlinear system is one-to-one, an unrealistic situation, the
signal cannot be uniquely reconstructed. As a simple example, consider the

zero memory nonlinearity f(x) = )(x): The only information about s(t)

](a.w
contained in the output f[s(t)] is whether s(t) <a or s(t) > a and it is
evident that there is an uncountably infinite number of signals having the same
output. Intuitively, this situation may improve if there is an additive

noise N at the input of the nonlinear system so that the observed output

is f[s(t) + N(t)]. If the set of values of the random variable N(t) is suf-
fictently large, knowledge of certain moments of the output f[s{(t) + N(t)]

may provide more informa'ion on the signal than in the absence of noise.

This is indeed true when the marginal distributions of the noise are Caussian,
in which case the signal can “e uniquely reconstructed as shown in Theorem 1.

The idea that additive input noise helps in reconstructing the signal was

first raised by Grunbaum [1] and is investigated in this paper.

Specifically, we consider a deterministic signal s in additive stationary
Gaussian noise N, with zero mean and covariance function R, observed through
a zero memory nonlinearity f. We are concerned with the reconstruction of
the signal from the knowledge of the nonlinearity f, the noise covariance R,

and the first or second order moments of the output process f(s+N). We show

that the signal can be reconstructed in the following cases. NTIS White smua
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(1) From the knowledge of the nonlinearity f, the variance R(0) of
the noise, and the first or second moment of the output, the signal 1s re-
constructed for monotonic nonlinearities which need not be strictly mono-
tonic (Theorem 1) as well as for somc odd nonlinearities with non-negative
Hermite coefficients (Theorem 2). Included here are hard and soft limiters

and infinite interval windows.

(11) From the knowlcdge of the nonlinearity f, the noise covariance
function R whose zeros are assumed isolated, and the mean and correlatfion
functions of the output, the signal is reconstructed up to a global sign
for the following two classes of even nonlinearities: (a) bounded below
or above and monotonic on the positive real line, (b) with nonnegative
Hermite coefficients. Included here are ngn law devices and symmetric
interval windows. Similar results are, in fact, established for nonlinearities

symmetric around an arbitrary point. (Theorem 4).

Here we are assuming that the noise covariance function R is known. The
problem of reconstructing the noise covariance R from the correlation func-
tion of the vutput process f(N), i.e. the signal-free case, has been con-

sidered in [2],[3].

The stationarity assumption on the Gaussian noise is used only io make
the signal reconstructi - feasible from a practical viewpoint. Even though
it is not stated so, Th ms 1 to 3 need only the one-dimensional distribu-
tions of the noise to be "sian, while Theorem 4 requires the bivariate
distributions of the nc. . .o be Gaussian. It should be clear that results
similar to Theorems 1 *c 4 woild also be true for other nois§ processes with

sufficiently smooth, s;* .~ .ric first and second order distributions.
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The organization of the paper is as follows: The results on the recon-
struction of the signal are presented and discussed in Section III. The
derivations in Section 11l are kept to a minimum by collecting the essentfal

, elements of the proofs into propositions which are presented in Section II

P o

and could be of independent interest.




IT. CERTAIN MOMENT PROPERTIES OF FUNCTIONS
OF GAUSSIAN RANDOM VARIABLES

In this section we study, for use 1in ihe following section, certain

properties of the moment functions

ug(x) = E[f(£4x)] (1)

and

Fe(xsyip) = E[F(£+x)f(nty)] (2)

where £ and n are jointly Gaussian random variables with means zero, variances
cz. correlation coefficient p, joint density ¢(x,y;p) and marginal densities
¢(x;0); f is a (nonconstant) real-valued Borel messurable function on the

real line. As the notation indicates, we treat f ard o as fixed and we con-

sider the dependence of | on x€ (-»,») and of I on x,y€ (-»,») and p€ [-1,1].

The following moment inequality simplifies the conditions under which
u and T exist

EIf(gx)] < explx?/2a?] €1/20F2(5)]. (3)
Thus

E[fz(g)] <o mE|lf(i4x) -~ for all x.

This can be nbtained as follows:

Elf(eex) = [ |(usx)|o(us0)du = [7 |€(y)|e(y-xi0)dy

exp[x? /2021 [° If(y)|¢1/2(y;o)¢"2(y-2x;o)dy

-f1)

5}

. 172
exp(x’/20%] ¥ iylelyioldy - [ o(y-Zx;o)dyf

1]

exp[x?/20%] €'/21F2(e)].
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It then follows from (3) that uf(x) exists for all x provided E[fz(z)].<m,
and rf(x.y;p) exists for all x,y and p€ [-i1,1] provided E[f‘(s)]<t».

We first Jerive certain analytical pﬁoperties of Mg

Proposition 1. If E[fz(g)] < o, then for all -co<x<w, uf(x) has the power

series representation
T k
ue(x) = 7 ax (4)
where

3y *= ;SJEF' [7 f(x) He o{x)o(x;0)dx
Lo} -0 ’

and the convergence is absolute. uf(x) is infinitely differentiable and

ug")(x).has the {ntegral representation

WM (x) = 07‘; [ flymt, (y)elyioldy . (5)
Proof. The Hermite polynomials {Hk‘o(sn:=0are the orthogonalization (not
orthonormalization) of the sequence {gk}:=0 via the Gram-Schmidt procedure.
{Hk’o(x)}:=0 is a complete orthogonal set in L2(¢(x¢u)dx) and

kzo f;‘Hk,o(x) = exp(zx- %-czzz)

- 1y 2k
E[HJ,O(F’)Hk,O(E)] =klo ‘Sjk

E[H, ,(6+)] = xK (6)
where (6) is shown in [1]. Since f(x)€ L2(¢(x;c)dx), we have
f(¢) = kzo 3 Hy ole)

in quadratic mean, where




ECFCEIN, ()] = a,ECHE (6)]
or

{: flyHy o(¥)e(yso)dy = a k! ot .

Now inequality (3) implies that
fly+x) = kz; 3 B, olyHx)
in L](¢(y;o)dy) for all x and hence
M) = ECA(En0] = T a,ElH o(600)]
ot

where.tﬁe last step follows by (6). The absolute convergence of the series

(4) is seen as follows. We have

oZkk!

“> €21+ [ o € (01 ] of
S0 that ao’*k!+0 as k+= and for large k, |a,| = o™ /KT . Thus it suffices
to show that for each x

7 ek,

k=0 /KT
which follows easily from the ratio test. The power series representation (4)

implies that u(x) is infinitely differentiable, has a finite number of extrema

on each finite interval, and is not constant on any interval.
The derivation of (5) proceeds as follows. From (4) we have

T k! k-
u(")(x) . kzn 8 TerayT ¥ n

o Xk-n ®

- 14 } .
kgn Foomr L (I o (¥)ely;o)dy
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Hence {1f for each fixed X

o0 ® k-n
f H X yi0)dy < » 7
kzn [ WL )] i}m olyio)dy < (7)

then by the bounded convergence theorem,

WM ix) = Iw f(y)

o k-n ]
X H yo)dy .
kzn T koY) olysoldy

Now the term in brackets is equal to

n o 2,\k n 2
3 (x/o o ( ) 2xy-x
3 y) = 2 exp[&]
o o B e ax" 20
. 2,, 24 3" 1 2
= exp[y/20°] == exp[- — (y-x)°]
oX 20
- 21 -2n .
= mo Hn’o(.Y‘x)¢(.V‘x9°) .

Thus
M,y =) .
wx) = [ fly) - (y-x)ely-xi0)dy .
a =00

We now verify (7). The expression in (7) is equal to

o k-n
j %—;Ellfml G
-n !

k=n ¢
2 gk 22 /2,2
— —e20¢2(£)] €M 2H
< 1 U= e €V o)
1/2¢ .2 v |x ““"ﬁ‘! I T Vi Py v Uxlye)d /g
= £V/2[¢ Lo L glepg
e 3 R e e i g e

and the sum in the last oxpression above is finite by the root test. a

We now derive a series expansion of the second order moment function

rf(x.y;p) in terms of the derivatives of the first order moment function uf(x).

4 e eaedenme———————_
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Proposition 2. If E[f4(g)] <= , then for all -w<x,y<e and -1<p<l, we have

relx.yio) = Z 2 ,(")(x)ugn)(y)

Proof. Since E[f4(£)] <o . inequality (3) implies that E[f2(£+x)] < o for

all -w<x<o and thus
r(x,yip) = E[f(g+x)f(n+y)]

is well defined and finite for all -w<x,y<» and -1<ps<1, Now for all

-o<y,v<» and -1<p<1 we have [4]

o(u.o’¢tv.05 z "2—73 n, o(")Hn o(v)’

n=0 nlo
and, since |} |p|2"
. n=0

rinally, since f(utx)f(v+y) is in L (¢(u-o)¢(v;o)du dv), it follows that

fxyio) =[] flun)f(vy) GHLYIRL) a(uiole(violau o

2 ’111? ff fFlutx)f{vey) Ho (u) Hn.o(v)¢(u;o)¢(v;c)du dv

n=0 nlog -

< =, the convergence is also in LZ(Q(u;o)¢(v;c)du dv).

and the result follows from (5) of Proposition 1. O

We finally establish a certain lack of symmetry of the function Tgs which
plays a crucial role in the reconstruction of the signal when the function f

is symmetric.

Proposition 3. If the nonconstant function f is symmetric around some X0 and
satisfies (a) or (b):

(a) f is bounded below or above, monotonic on [xo.w) and such that
E[f (€)] <=,

(b) E[f4(5+x0)] < » and the coefficients {°2n}:-1 of f(x+xo) in fts
Hermite expansion are nonnegative,
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then

PelxatX,xntyip) # To(x0=X,Xqtyip)
170 770 f170 770 for all x,y,p # O. (8)
Felxgtxaxgtyip) # Te(xg+x.xg=yip)

It should be noted that when p=0, equality holds in (8) for all x,y.

Indeed, we have
Fe(x,y30) = ue(x)ue(y)
and for all «x,

ne(xg#x) - ne(xg=x) = [ [f(utxg#x) - Flutxg=x)1o(us0)du = 0

-0

since f(u+xo+x) - f(u+x0-x) is an odd function of u.

Proof. Putting g(x) = f(x+x0), it is clear that g has all the properties
that f has with x0=0 and that

Fglxsyie) = Elg(t+x)g(nty)]
= E[f(g+xy*x)f(ntxgty)]
= Telxgx,Xgtyip).
Thus it suffices to prove (8) in the case x0=0.

(a) Assume f satisfies condition (a). Without loss of generality, we
may replace the property that f is bounded below (or above) by the property
that f(x) 20 (or = 0) for all x. Indeed, if f is bounded below, say, i.e.
if f(x) 2 A> - for all x, putting q(x) = f(x) -A, we have q(x) =0 and

Flxs¥ie) = Tol=xuyin) = Telxayin) - Tel-xuy30)

Falxsyio) = T (xi=yip) = Te(xyio) - Telx,yio)

These equations follow from

FalXs¥ip) = Tolxi-yip) = Tp(xayip) - Telx,-yip)+AE[F(n+y)-f(n-y)]

T e

L




and the fact that [f(v+y) - f(v-y)] 1s an odd function of v which implies
that E[f(n+y)-f(n-y)] =0.

Thus, under Assumption (a), it suffices to prove the result when the
nonconstant function f is nonnegative, even and nondecreasing on [0,5).
When p = t1, then £ = tn a.s. and

P(x,y31) = F(xy-y;:1) = [TF(2usx)[f(uty)-F(u-y)Jd(u;o)du.

It is seen that the term in bracket is an odd function of u which is nonnegative
on [0,»). Since f is even, nonnegative and nondecreasing on [0,), it follows

that for all x,y # 0, the integral is nonzero.

From now on we assume that O0<p<1 (the case -1<p<0 can be treated simi-

larly). Then

F(x,yip) - T(x,-y;n) = f} flutx)[f(v+y)-f(v-y)Jé(u,vip)du dv.

-~

Denoting by ¢(v|u) = ¢(u,v;p)/4(u;u) the conditional density of n given E=u,

which i{s Gaussian with mean (u and variance 02(1-p2). we have

T(x,yip) - T{x,-y;p) = f”f(u+x)o(u;o) (7 F(2)[(z-y lu)-o(2+y u))dz} du

. Im f(utx)d(uio)d(usy)du , (9)

where

J(u,y) = [w f(z)[o(z-ylu) - ¢(zty|u)]dz .

Note that as a function of z, [$(z-y|u) - ¢(z+y|u)] {s antisymmetric around
2 = pu and 1s positive on (pu,~). Now since f(z) is even and nondecreasing

on [0,»), we can write (see Fig. 1)

10
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-pu pu 3pu ®
J(u,y) =  + [ + [ /
- -pd  pu 3pp

and conclude that for u>0 we have

-pu @ pU 3pu
J +f =20ad [ + [ =20
- 3ou -pu pu

so that J(u,y) 20 for u>0, and similarly J(u,y) =0 for u<0. It is also
clear that J(0,y) = 0, that J{u,y) is an odd function of u, and that J{u,y)
is not identically zero as a function of u. Finally, since f is even, non-
constant, nonnegative, and nondecreasing on [0,=}), it follows from (9) that
for all x,y # 0, we have

F(x,yip) = T(x,-y3p) # 0 .
It is ﬁhown similarly that T(x,y:p) - T{-x,y;p) # O for all x,y # 0. Thus

the proof of the proposition under Assumption (a) 1s complete.

(b) Assume now that f satisfies Assumption (b) (with xoso). Since f is

even, we have an=0 for all odd n so that
f(e) = 20 a5, Hypy (E) (10
ns ’

in quadratic mean.

We first consider the case p=1 (the case p=-1 being similar). Then

E=n a.s. and

F{x,y;1) = E[f(e+x)f(E+y)]= !” f(u+x)f(uty)d(uso)du

[m f(z)f(z-x+y)o(z-x;0)dz

ECF(E)LF{E-x+y)o(E-x;0)6" ' (£30)1) (1)

11
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Now the random variable in bracket has a finite second moment for all x,y,

since .
/ fz(z-x+y) ¢{:f;'° dz = exp[x2/02] / fz(z-x+y)¢(z-2x;o)dz

= exp[leozl ELF2(E+x+y))

2,,.2
< exp ;15:§1212§_} V204 (e)] < =
o
where the inequality follows from (3) applied to fz. Since f has the ex-

pansion (10) in quadratic mean, we then have by (11)

r(x,y;1) = ?0 LT fw H2n 0(z)f(z-x+y)¢(z-x;o)dz . (12)
n= =00 '

Similarly, we obtain for the integral in (12)

/ "2n'0(z)f(z-x+y)¢(z-x;o)dz = {: f(u)HZn,o(U+x'Y)¢("'y;°)d“4

= E(F(E)[Hyy (E4x-Y)0(E-yi0)e™ (€30)]]
- 1 2nElon (W, (E44-y)o(E-y30)6™ (E30)]

) mzo a2m£["2m.o(€+'V)H2n,o(5+x)] ‘

It then follows by (12) that

o

r(x,y;1) = n.%-o aZnaZmE[HZn,o(5+x)H2m.o(5+y)J’ , (13)
Since

ho(ew) = 3 (M) " ()

n,o\ ™% = kZo kX olE

we can evaluate the expectation in (13), using the orthogonality of the
Herm‘te polynomials, and obtain

13
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F(x,y31) = § LY P

n(nem) oy 2my 2k 2n-k 2m-k

and thus

P(x,y31) = T(x,-y31) =2 ] = ay0,,

2min(n,m)
§ 1 (2 (2 g2 20k, 21K
n,m=1

Since A, 2 0, n 1, with at least one coefficient being strictly positive
(since f 1s nonconstant), it is clear that

r(x,y;1) = I'(x,-y;1) # 0 for all x,y # 0.

Now let -1<p<1, Since f is even, we have by (4) of Proposition 1

that

(n)(,y 2k ! (2k=n ”
H (X) 2k£n Zk ( )

which is an even function of x for n even and odd for n odd. Then from

Proposition 2, we obtain

xyio) - T(x-yie) = I ar p"o?™u M () ™ (y)-ul™ (-1
n=
. ? 21 nl pZn-lOZ(Zn-l)u(ZnJ)(x)u(Zn-l)(y). (15)
ns
Again, since a2k2'0. K 21, with at least one coefficient being strictly
positive, we have by (14) that u(Zn-l)(x) ¥ 0 for x ¥ 0 for all n such that
u(2n-1)(x) is not identically zero. It is then clear from (15) that

T(x,y;p) - T(x,~yip) # 0 for all x,y,pf0 .

The proof of I'(x,y;P) - I'(-x,y;p) # 0 for all x,y,pf0 1s similar and
thus the proof of the proposition under Assumption (b) is complete. O

13




“&?&E‘jﬁif‘ w\w.m;"v“

I1T. THE RECONSTRUCTION OF THE SIGNAL

In this section, we consider the problem of reconstructing the real
deterministic signal s = (s(t),-co<t<e} froﬁ the knowledge of the nonlinearity
f and the first or second order moments of the output process
f(s+N) = {f[s(t)+N(t)],~o<t<o}, where the noise N = {N(t),-=<t<=} is a real
stationary Gaussian process with mean zero and known continuous covariance
function R(t) with R(0) = 02. Since f is known, so are the functions uf(x)
and rf(x.y;p) introducted in Section 1I. Also known are oneor more of the

following functions: The moments mk(t) of the output process
m(t) = ECFIs(t)N(t)]} = uls(t)], k = 1,2,
and the correlation function C(t,t) of the output process
C(t,t) = E{F{s(t)+N(t)If[s(T)+N(T)]}
= ls(t),s(n); RGy
0

We present several results on the reconstruction of the signal s for various
classes of nonlinearities f. It is important to note that the propositions of
Section II constitute the crux of the proofs of these results. By referring

to these propositions, the derivations in this section berome clear and simple.

We first consider monotonic nonlinearities for which reconstruction of the

signal s is always possible, which {s quite clear on intuitive grounds as well.

Theorem 1. The signal s(t) can be reconstructed from the k-th moment mk(t),
k =1 or 2, of the output process when the nonlinearity f is such that fk(x) is

monotonic and nonconstant and fk(x)e L2(¢(x;o)dx).

14, ——
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Proof. By (5) of Proposition 1, we have for all x

up(x) = 5 [ F ) By () elysoddy
[0} -0

= —% !“y[fk(xw) - (x-y)16(yi0)dy.

o G

If fk(y) is nonconstant and nondecreasing, say, then fk(x+y) - fk(x-y) 20
and Leb{y : fk(x+y) - fk(x-y) >0} > 0 for all x. It follows that u%k(x) >0,
- cxw, {.e, ufk(X) is strictly increasing. Similarly, fk(x) nonconstant
and nonincreasing implies that ufk(x) is strictly decreasing. Hence s(t) can

be reconstructed from m (t) = u[s(t)]. O

Aside from the integrability conditions, the nonlinearities covered by
Theorem 1 are those which are monotonic or whose absolute values are monotonic
(values of k larger than 2 do not enlarge this class). Examples of monotonic
nonlinearities satisfying the conditions of Theorem 1 are the hard-limiter,
smooth-1imiters, quantizers, v-law devices with v odd and infinite interval

windows 1( (x) or l(a’w)(x).

-,3)
It should be emphasized that the nonlinearity f is assumed to be monotonic
but not strictly monotonic and thus the result of Theorem 1 is a substantial
improvement over the no noise case. As a simple example that illustrates this
point well, consider the monotonic nonlinearity f(x) = l(‘.“)(x).d~<a4~. In
the absence of noise, all we would be able to conclude by observing the output
f{s(t)] would be whether s(t) = a or s(t) > a. In sharp contrast to this,
when there 1s additive Gaussian nofse N the first order moment of f[s(t)N(t)]

is sufficient to reconstruct the signal s.

15
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We 10w turn our attention to nonlinearities that are not monotonic.

The first result i.. this direction concerns certain odd functions.

Theorem 2. The signal s(t) can be reconstructed from the first moment m](t)
of the output procc.s when the nonconstant nonlinearity f 1s odd, satisfies
f(x)€ L2(¢(x;o)dx.and is such that the coefficients in its Hermite expansion

are nonnegative.

Proof. By (4) of Proposition 1, we have for all -e<x<w,
T -1
ue(x) = 5 nax"!

f n=1 n

Since f is odd, a,_ = 0, and thus

2n

2m

u%(x) = mZO (2m+1)a2m+]x > 0

for all x#0, since at least one of the nonnegative coefficients {°2m+1} is
positive. It follows that uf(x) is strictly increasing and thus s(t) can be

reconstructed from m‘(t) = uf[s(t)]. O

It should be fointed out that one may easily construct examples of non-
monotonfc nonlinearities f satisfying the conditions of Theorem 2. For ex-

ample, f(x) = x3-ozx = 202H1 O(x)

+ H3 o(x) is clearly nonmonotonic and
satisfies the conditions of Theorem 2. In fact uf(x) = x(xz+202) is strictly

monotonic.

From now on we concentrate on nonlinearities f symmetric around an arbi-

trary point Xg*

Theorem 3. If f is nonconstant, symmetric around some Xg» and satisfies either

(a) or (b):

16
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(a) f is monotonic on [xo.m) and f(x)é€ L2(¢(x;o)dx),

(b) f(x+xo)€ L2(¢(x;o)dx) and the coefficients {°2n}:=1 in its
Hermite expansion are nonnegative,

then |s(t)—x0| can be reconstructed from the first moment m](t) of the output
process,

Proof. We first note that the symmetry of f around Xg implies that of uf(x):

Helxg-x) = fw fxg-x+y)¢(y;o)dy Iw f(xg*x-y)#(y;o)dy

w

= [ f(xo*x+z)¢(z;o)dz

-0

uf(x)+x).
(a) By (5) of Proposition 1 we have for all «x

up(x) = 25 [ yLF(xay) - £(x-y)Jolyso)dy .
o 0

Suppose f is nondecreasing on [xo,m). Then for every X>Xqs We have
f(x+y)-f(x-y) =20 for all y >0 and Leb{y: f{x+y)-f(x-y)>0}>0,

It follows that u%(x):»O for x “Xg and thus uf(x) is strictly increasing on
(xo,w). Similarly, if f is nonincreasing on [xo,w). uf(x) is strictly decreas-
ing on [xo.w). Thus uf(x) is synmetric around Xg and strictly monotonic on

(xq:).
(b) By (4) of Proposition 1 applied to g(x) = f(x+xo). we have for all x,

ug(X) = nzo anxn

and

E 3 - n (I: - n
ug(x) ug(x Xg) "zo a, (x-xy)".
Since g(x) is even, 8pns1 = 0, and thus

Uf(x) = ngo azn(x'xojzn
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is symmetric around Xo and 1s strictly increasing on (xo.m).since aanO.nzl.

with at least one coefficient positive.

Since in both cases (a) and (b}, uf(x)'is symmetric around Xo and strictly

monotonic on (xo.w). |s(t)-x3| can be reconstructed from m,(t) = uf[s(t)]. O

We remark that if the signal s in additive noise N can be observed through

two nonlinearities f and ¥, satisfying the conditions of Theorem 3 with distinct

centers Xo and io, then s(t) can be reconstructed from the two moment functions
m](t) and ﬁ](t). since

2
I

Is(t) - xgl% - Is(t) - %ol = (Xg - x)) [2s(t)-xp-%,].

It is clear that for the nonlinearities f satisfying the conditions of
Theorem 5. the first order moment function m](t) of the output process deter-
mines ls(t)-xol and we arc left with the problem of determining the sign of
s(t)--x0 for each t. This is now accomplished by using the correlation function

C(t,t) of the output process.

Theorem 4. Assume f is nonconstant, symmetric around some Xy and satisfies

either (a) or (b):

(a) f is bounded below or above, monotonic on [xo.w) and such that
f2(x) € Ly(o(x;0)dx),
(b) fz(x+x0)€ L2(¢(x;a)dx) and the coefficients (aZn}:-l of f(x+xo) in

its Hermite expansion are nonnegative.

Assume the correlation funclion R of the noise N has at most a finite number
of zeros on each finite interval. Then from the mean function n] and the cor-

relation function C of the output process, a set of two signals s and 2x°-s

18
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can be reconstructed (there i{s no way to determine which, among these two,
fs the actual signal). When f is even, i.e. x0=0. then the signal s is re-

constructed up to a global sign.

Proof. (a) f clearly satisfies the conditions of Theorem 3(a) and thus the
function a(t) = ls(t)-xol, -w<t<o, can be reconstructed from the mean function
m . For any t such that a(t) = 0, we have s(t) = Xg- Consider now two dis-
tinct points t and v such that a(t) # 0 ¢ a(t) and R(t-t) # 0. We then have
s(t) = xoza(t). s(t) = xota(r) and

C(t,1) = T ls(t),s(1)s072R(t-T)].
Therefore, C(t,T) is equal to at least one of the four numbers
rf{xoza(t),xoza(t);o'zR(t-r)], which are related as follows (for brevity,
we drop the dependence of le oN R):

Pf[x0+a(t)ox0+a(1)] # Pf[x0+a(t)oxo'a(T)]

rf[XO-G(t),X0+G(T)] # rf[xo'a(t)cxo’a(T)]
by Proposition 3, and

rf[x0+a(t),x0+a(t)] = Ff[xo-a(t),xo-a(t)]

rf[x0+a(t).x0-a(r)] = Ff[xo-a(t).xo+a(r)]
since for all x,y, rf(xo-x,xo-y) = Ff(x0+x.x0+y). a straightforward consequence
of the symmetry of f around x;. It follows that if we choose s(t) = xo+a(t).
then exactly one of the two values

rf[xo+s(t),x0+a(1)], Pf[x0+a(t).x0-a(r)]

will equal C(t,1), and if we choose s(t) = xo-a(t) then again exactly one
of the two values

rf[xo"(t):xo*‘(T)]o Ff[xo'a(t)oxo'a(r)]

will equal C(t,1). Thus for each choice of s(t), the value of s(t) is uniquely

determined by the correlation C(t,t).

19
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The reconstruction procedure is now clear: If a(t) = 0, then s(t) = Xg* 1

Otherwise, fix an arbitrary point Y with a(to)fo and let t be such that

- e

a(t)y0 and R(t-to)fo. Then for each possible choice of s(to).’s(to) = x0+a(to)
or s(to) = xo-a(to), s{t) is uniquely determined by comparing C(to.t) with

the two numbers rf[s(to).xo'a(t).o'za(to~t)]. Thus, we determine two signals
s) and s, which are related by s](t)+sz(t) = 2x0 for all t and which give rise
to the known mean and correlation functions m and C. It is also clear from
the above that the actual signal s giving rise to the known mean and correla-
tion functions m, and C must be identically equal on (-»,») to either Sy or s,. {
Thus, the reconstructed set of two signals {s].szl is the same as the set

{s.Zxo-s}. In particular, when the nonlinearity f is even, i.e. x;=0, then

the actual signal s is reconstructed up to a global sign.
(b) Follows in a similar manner by using Theorem 3(b) and Proposition 3{b). 0

Some simple examples of nonlinearities f satisfying the conditions of
Theorem 4(a) are
2n , 2 an., 24-1 2 b
[(x-x) 071, [lx-x) 40T, exp[-a”|x-xg|"1s1 (4 py(x)s

2

where -o<a<b<e and n=1,2,... . When f(x) = x°, the result of Theorem 4 was ob-

tained by Griinbaum[1], who was the first to consider this problem.

The two classes of nonlinearities considered in (a) and (b) of Theorem 4

are distinct, as the following examples show. For simplicity, assume xo-o and o=1.

(1) £0x) = (-2)(x2-4) = Hy ((x) + 5

satisfies the conditions of Theorem 4(b) but not those of Theorem 4(a), since

f is clearly nommonotonic on [0,~).
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(1) f(x) = x5-18x% + 114x% - 75

= He.1(x) - 3y 1(x) + 51 H, 4(x).

Then f'(x) = 6x[(x-6)2+2] >0 for x >0 sd that f is monotcnic on [0,»)
and satisfies the conditions of Theorem 4(a). Cn the other hand, the co-
efficient of H4,](x) is negative and thus f does not satisfy the conditions
of Theorem 4(b).

The results of Theorem 4 provide a substantial improvement over the no
noise case. As a simple example that illustrates this point, consider an
even nonlinearity which is strictly increasing on [0,2): In the absence of
noise, the output f(s(t)] determines |s(t)| and we are left with determining
the sign of s(t) for each t. Thus the number of distinct signals with the
given absolute value is in general uncountably infinite. If s is known to
be a continuous function, we then have N distinc; signals; the value of
N can be read off the graph of the function |s(t)| and may be finite or in-
finite (N is the number of points t such that s(t) = 0 and s(t) # 0 in some
left neighborhood of t). In sharp contrast, in the presence of Gaussian
noise N satisfying the condition of Theorem 4, the mean and correlation func-
tions of the output process f[stN] determine s up to a global sign. This
substantial improvement over the no noise case is due to the fact that the
Gaussian noise takes all real values and thus, the output mean and correlation
functions contain more information about s than just f(s). Even more {1lumin-
ating is the case where the nonlinearity f is a symmetric interval window
f(x) = ][-a,a](“)‘ In the absence of noise, we can only determine whether
Is(t)] =a or [s(t)| > a for each t; in the presence of the ncise N, the sig-

nal s is determined up to a global sign.

!




It should be noted that the condition on the zeros of the noise covariance
R imposed in Theorem 4 could be weakened in certain cases. For example,
it is clear that the reconstruction procedure of Theorem 4 remains valid
with no conditions on R in case the function |s(t)-x0|. which 1s reconstructed
from the output moment function Mo satisfies

|s(t)-x5| >0 a.e. for act<b
and

|s(t)-x0| =0 for t4§ (a,b)
for some -»<a<bs®, Next suppose that for some -w<acbem,

|s(t)-x0| =0 for asts<b

and
|s(t)-x0| >0 a.e. for t ¢ [a,b].

Then for the reconstruction procedure of Theorem 4 to be feasible, we need that
R(t) # O for some t>b-a, which is much weaker than the condition imposed in
Theorem 4. The main point here is that the reconstructed function Is(t)-xol
enables us to check whether or not a given noise covariance R allows the re-

construction procedure of Theorem 4 to apply.

For arbitrary covariances R, we can always reconstruct a set of at least
two signals containing the actual signal. As an example, consider the case
where R(t) = O for all |t| 2T, e.g. triangular covariance. Denote by N .he
number of those open intervals of zeros of |s(t)ux0| whose length 1s 2 2T,
Then a set of 2“” signals can be reconstructed by applyimy, the procedure des-
cribed in the proof of Theorem 4 to each of the (N+1) intervals over which
ls(t)-xol >0 a.e. This set contains the actual signal s and any two signals
S108, In the set satisfy sl(t) a sz(t) or s](t) + sz(t) = Zxo for each “ixed t.

22
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In case higher order moments of the output process f[s(t)+N(t)] are
available, results similar to those of Theorem 4 can be obtained for addi-
tional classes of nonlinearities f. In particular, if fz(x). rather than
f(x), satisfies the conditions of Theorem 4, the conclusion of Theorem 4
remains valid provided we use the second moment function

m(t) = ECF2s(t) + N(t)])
and the fourth order correlation function

C(tat) = ECZLs(t) + N(t)IF20s(x)eM(x) D)

of the output process. This extension covers certain, possibly discontinuous,
asymmetric nonlinearities f such that f2 is symmetric around some Xgs 8S
well as certain odd nonlinearities not covered by Theorems | and 2. For ex-
ample, the nonlinearity (with o=1 for simplicity)

F(x) = -Tx = By (%) = 4 Hy ()
is not monotonic nor has nonnegative Hermite coefficients and hence the recon-
struction of the signal s is not feasible by Theorems 1 and 2. On the other
hand,

£2(x) = (x3-7x)% = H_ 1(x) + Hy 1(x) + 10 H, 4(x) + 22

6,1 4,1 2,1

and thus fz(x) satisfies the conditions of Theorem 4(b). Hence the signal s
can be reconstructed, up to a global sign, from the moment and correlation

functions m, and C2 of the output process.

Finally, when the first or second order distributions (rather than moments)
of the output process are known, we have the following result, where B(f) de-
notes the o-field of Borel sets generated by f.

23
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Theorem 5 (1) The signal s can be reconstructed from the first order

distribution of the output if B(f) contains an interval of the form (-»,a)

or (a,»), where -»<acw, or two finite intervals (a,b) and (c,d) with a+byc+d.

(11) 1f B(f) contains a finite interval (a,b), and if the noise correla-
tion function R has at most a finite number of zeros on each finite interval,
then a set ot two signals s and a+b-s can be reconstructed from the first and
second order distributions of the output: and when a=-b, the signal s can

be reconstructed up to a global sign.

(1) follows from Theorem 1 and the remark following Theorem 3, and (1)

follows from Theorem 4.
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Fig. 1

The graph of [¢(z-y|u)-¢(z+y|u)] and typical f(z).
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