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ABSTRACT

The three-piece design concept of a separate airfoil section
confined within an inner and outer end cap to produce first stage stator
vane assemblies for large industrial gas turbines from brittle ceramic
materials was reduced to practice in three design iterations. All of the
spring-loaded support structures (the insulator blocks, cushions, metal
shoes, seals, pivots and plungers) required to adapt the ceramic vanes to
the turbine configuration were developed, manufactured and tested. The
Norton Company manufactured all stator vane assembly component parts from
hot pressed silicon nitride (HS130/NC132) or hot pressed silicon carbide
(NC203).

Static rig tests were conducted under cyclic conditions, controlled
to simulate a turbine environment in peaking power to service at 2200 and
2500°F peak inlet temperature at 0.8 turbine simulation. First generation
HS130 silicon nitride vanes remained fully functional after 106 cycles of
testing from 2200 to 1200°F with the shutdown transient at 25°F/sec.
Contact stress superimposed upon transient thermal stress produced extensive
cracks in four of eight airfoils and two of sixteen end caps. The initial
attempt to test at 2500°F was terminated prematurely on the fifth cycle when
a combustor implosion and apparent ceramic exhaust duct damage precipitated
a temperature excursion to 3000°F under conditions of choked flow leading
to catastrophic rig failure and subsequent rapid quench to the compressor
discharge temperature (600°F). Cracks developed in one of four Si N, air-
foils and two of eight end caps. All elements of four SiC stator “vane
assemblies (end caps and airfoils) were virtually destroyed.

The static rig was rebuilt with a cooled combustor, water-cooled metal
exhaust duct and water-spray cooled mixer. Final design configuration
NC132 silicon nitride vane assemblies were installed with boron nitride
insulators. Testing resumed at 2500°F. After 25 cycles, contact stresses
resulting from gross misalignment of the test rig produced failure indica-
tions in four of eight airfoils and one end cap. Two incidents of transient
thermal-stress-induced failure were identified during the next thirty-five
cycles. A single trailing edge crack was observed at the conclusion of
2500°F testing after the last forty-three cycles had been run. The airfoil
in cascade position 4, which experienced the most severe conditions in a
highly temperature-profiled gas stream survived all 103 cycles. The rig
functioned perfectly in its modified form. Subsequent failure analysis and
supportive stress analysis indicated failures to be of a statistical nature
controlled by the scatter of critical mechanical properties within the vane
material. The design was considered viable.



SUMMARY

The three-piece design concept of a separate airfoil section
confined within an inner and outer end cap to produce first stage stator
vane assemblies for large industrial gas turbines from brittle ceramic
materials was reduced to practice in three design iterations. All of
the spring-loaded support structure components (the insulator blocks,
cushions, metal shoes, seals, pivots and plungers) required to adapt the
ceramic vane components to the turbine configuration were developed,
manufactured and tested.

The Norton Company produced twenty vane sets to meet the first
generation design specification (inner and outer end cap with nontapered
nontwisted airfoil) from HS130 hot pressed silicon nitride. Eight
similar assemblies were later made from Noralide NC203 silicon carbide.
Both hot pressed silicon nitride (HS130) and silicon carbide (Moralide
NC203) were used in the manufacture of sixteen vane assemblies of second
generation design (inner and outer end cap with tapered-twisted airfoils
which had tenon geometry developed fully to conform in total volume to
the end cap cavities at either end, the so-called dog-bone design).
Noralide NC132 silicon nitride was used exclusively in the fabrication
of twenty, three-piece stator vane assemblies of the third generation
or final design (inner and outer end cap with tapered-twisted airfoil).

Static rig tests were conducted under cyclic conditions, controlled
to simulate a turbine environment in peaking power service at 2200 and
2500°F peak inlet temperature with 0.8 actual turbine pressure ratio
achieved (8 atmospheres rather than 10.5). First generation HS130
silicon nitride vanes remained fully functional after 106 cycles of
testing from 2200 to 1200°F with the shutdown transient at 25°F/sec.
Contact stress superimposed upon transient thermal stress produced
extensive cracks in four of eight airfoils and two of sixteen end caps,
however. The initial attempt to test at 2500°F was terminated prematurely
on the fifth cycle when a combustor implosion and apparent ceramic
exhaust duct damage precipitated a temperature excursion to 3000°F under
conditions of choked flow leading to catastrophic rig failure and subse-
quent rapid quench to the compressor discharge temperature (600°F).
Cracks were formed in one of four Si, N, airfoils and two of eight end
caps, while all elements of four Sicss%ator vane assemblies, end caps and
airfoils alike, were virtually destroyed.



The static rig was rebuilt with an extensively cooled combustor,
water-cooled metal exhaust duct and water-spray cooled mixer. Final
design configuration NC132 silicon nitride vane assemblies were installed
with boron nitride insulators. Testing resumed at 2500°F. After 25 cycles,
contact stresses resulting from gross misalignment of the test rig produced
failure indications in four of eight airfoils and one end cap. Two incidents
of transient thermal-stress-induced failure were identified during the next
thirty-five cycles. A single trailing edge crack was observed at the
conclusion of 2500°F testing after the last forty-three cycles had been run,
The airfoil in cascade position 4, which experienced the most severe conditions
in a highly temperature-profiled gas stream survived all 103 cycles. The rig
functioned perfectly in its modified form.

Subsequent failure analysis and supportive stress analysis indicated
failures to be of a statistical nature controlled by the scatter of
critical mechanical properties within the vane material. The design was
considered viable.
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sored "Brittle Material Design, High Temperature Turbine' program, Order
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Volume IV - Materials Technology
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SECTION 1
INTRODUCTION

The "Brittle Materials Design - High Temperature Gas Turbine'
program was formulated under the auspices of the Defense Advanced
Research Projects Agency (DARPA) of the Department of Defense (DOD) to
demonstrate the use of brittle material design concepts in the successful
application of ceramics as structural components in high temperature
gas turbines. The talents of the Ford Motor Company and Westinghouse,
as prime and subcontractor, respectively, were directed toward the
development of a vehicular ceramic turbine (Ford) and a ceramic stator
vane for a large stationary gas turbine (Westinghouse). The Army
Materials and Mechanics Research Center (AMMRC) served as technical
monitor for DARPA.

The five-year performance period of the Westinghouse Stationary
Gas Turbine Project, July 1, 1971 through June 30, 1976, is summarized
in Volume I, "The Program Summary' of this report. Here in Volume II,
"High Temperature Stationary Gas Turbine - Ceramic Stator Vane Develop-
ment,'" the engineering aspects of ceramic stator vane design, analysis,
fabrication, testing, and verification are described in a comprehensive
manner. A three-piece stator vane with all supporting structure for
the inlet, first stage of a Westinghouse W251 stationary gas turbine
(Figure 1-1) eventually evolved. After the development of a fully
functional test facility, performance was evaluated under cyclic,
controlled conditions at 0.8 turbine simulation (8 atmospheres pressure
rather than 10.5 atmospheres as experienced in a turbine operating in
the peaking power mode) in an instrumented static rig. The results
of static rig testing at 2200 and 2500° were assessed in terms of
failure analysis, relying heavily upon three-dimensional stress analyses.

Figure 1-2 is reproduced from Volume I to emphasize the iterative
development of ceramic components for industrial gas turbines as identi-
fied in Figure 1-3. Component development and material technology follow
parallel but interacting paths to provide the coordination for fabrication,
static-rig testing and final demonstration in the overall project plan.
Failure analysis with design modification, further analysis and material
improvement forms the iterative loop required for successful application.

Overall program objectives, as originally proposed and finally
accomplished, are illustrated in Figure 1-4. Final rotor blade design
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and computer simulation were delayed, then terminated in 1973 to permit
full concentration of effort on the formidable tasks of ceramic vane
development and static rig construction. The 30 megawatt turbine demon-
stration was also delayed and terminated when it became obvious that the
rapidly escalating costs of an advanced turbine rig conversion and the
need for additional verification of stator vane performance in the static
rig placed this task beyond a reasonable scope of funding within the
designated period of performance (5 years).

All of the essential elements of the ceramic stator vane development
appear in Figure 1-5. The design process with appropriate analysis
proceeded logically from the preliminary stages, through Vane Designs
I and II to the final third generation, three-piece stator vane assembly
with tapered-twisted airfoil. Component fabrication had to follow a
parallel rather than a subsequent or series route in many cases,
anticipating the design because of the long lead time required to meet
the static rig test specifications as scheduled. Fabrication processes
were developed as part of component manufacture, thus complicating the
procedure. The second generation airfoil, for example, had to be committed
to procurement before analysis disproved design viability. The static
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rig test facility planned as a simple modification of an existing rig
became a dynamic development activity coincident with the design and
fabrication tasks. Indeed, the static rig requirement to test at 2500°F
became the critical element in the project plan. Only once, in the
final phases of the program when the vendor failed to deliver acceptable
third generation hardware on time, was a critical delay experienced for
a reason other than static rig availability.

Although the total effort was directed toward high service temper-
atures to increase power and efficiency,plans did not attempt to achieve
specific levels of improved performance in either the static rig tests
or an actual test turbine. The test cycle sequence, i.e., 100 cycles
of peak load service at a maximum inlet temperature of 2500°F in a
controlled shutdown mode, was selected to establish realistic boundary
conditions for the demonstration of first stage stator vanes using the
best commercial materials available. The boundary conditions thus
established also served as a design constraint in the development of
rotor blades as well as the stator vane components.






SECTION 2
PRELIMINARY DESIGN AND ANALYSIS
2.1 DESIGN

The original program proposal contained a conceptual version of a
three-piece stator vane design with provisions for an integral modifica-
tion representing a similar configuration. Both are illustrated in
Figures 2-1 and 2-2. These versions mark the threshold of the design
study. The three-piece design was selected because of its geometric
simplicity and compatibility with existing turbine design technology.
The first stage stator row was amenable to a simple supported vane
structure that utilized spring loading for stability. The conventional
use of inner and outer support rings at the inlet location of large
stationary gas turbines made this possible and precluded the use of
cantilevered vanes as dictated downstream at subsequent later stage
locations.

Other advantages are obvious and in keeping with brittle material
design criteria. For example, the introduction of interfaces minimizes
stress concentrations. By separating airfoil from shrouds, highly
stressed regions which result from thermal responses to abrupt changes
in cross section are eliminated. In the proposed design, strain is
accommodated, relative motion is encouraged and better temperature
uniformity is ensured in elements that can be manufactured using
two- and three-dimensional tracer grinding techniques.
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2.2 ANALYSIS

Having accepted a generalized vane configuration, a preliminary series
of two-dimensional analyses were performed to determine the temperature and
stress distributions in the airfoil section of a W251 (30 Megawatt) size,
first stage stator vane manufactured from a ceramic material.(1) The
transient, thermally-induced tensile stresses were computed in both the
cross-sectional plane and the out-of-plane directions of the airfoil
since ceramic materials are weakest in the tensile mode. Silicon carbide
vanes were analyzed in both hollow and solid cross section because a
CVD process had been proposed to develop a hollow silicon carbide airfoil.
Silicon nitride was analyzed in solid cross section only. The thermal
boundary conditions were established from earlier design programs as
verified by test turbine data. Typical values of the heat transfer
coefficient, h*, as a function of time during emergency shutdown are
given in Figure 2-3. Figure 2-4 establishes the distribution of heat
transfer coefficients, h, on the surface of the airfoil. The temperature
distributions in the cross-sectional plane were determined by a two-
dimensional finite difference program, using the previous temperature
solution for each time frame. Out-of-plane tensile stresses were
computed by numerical integration from the temperature distribution.

1.0 T T T T T

0.9 Leading Edge =~ ————— .
Rest of Vane —_—

0.8
0.7
0.6
» 0.5

Ll ™

0.4
0.3
0.2

0.1

0 50 100 150 200 20
Time, Secs.

Figure 2-3. Heat Transfer Coefficient Ratios as a Function of Time
for a Row 1 Vane Emergency Shutdown Condition
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Figure 2-4. Distribution of Maximum Heat Transfer Coefficients
around Row 1 Vane for an Emergency Startup and
Shutdown Condition

A two-dimensional finite element plane strain program was used to calcu-
late the stresses in the cross-sectional plane. The analytical model
(Figure 2-5) treated the airfoil as if its length were infinite, thus
eliminating end conditions from consideration.

The maximum out-of-plane tensile stresses were approximately twice
the value of the maximum in-plane stresses for both Si N4 and SiC
materials as defined in Figure 2-6. Therefore, only tﬁe out-of-plane
stresses were computed in subsequent calculations to determine the effect
of vane size. For the full-size solid vane under shutdown conditions
from 2500°F, the maximum tensile stresses were 47,000 psi and 44,000 psi
for silicon carbide and silicon nitride, respectively, while full-size,
hollow, silicon carbide vane calculations yielded tensile stresses as
high as 51,000 psi based on generally accepted values for physical
properties. This result was affected by shape factors which contributed
to a stress concentration at the inside trailing edge radius even though
local thermal gradients were reduced in the thin-wall geometry.

Since thermal gradients are sensitive to mass under transient con-
ditions, airfoil cross section was given primary consideration in the
low stress design optimization. For the W251 turbine, vane size (chord
length) remained infinitely variable within the practical limits of a

12
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Two-Dimensional Finite Element Mesh for Solid Airfoil Section

Figure 2-5.



G:2 «rOUT OF PLANE STRESS

IN PLANE
STRESSES

Figure 2-6. Thermal Stress in a Vane

fixed chord to pitch ratio where pitch is defined as vane spacing. Vane
height was held constant because it determined turbine inlet area, a
performance parameter, for an established diameter. The effect of the
chord or vane cross-sectional area on the transient tensile stress history
of full- or half-size vanes is illustrated in Figure 2-7 for peak gas
temperatures of 1950 to 2500°F.

Gas pressure caused steady-state bending stresses of the order of
1000 psi for the simply supported vane as compared to 3000 psi for the
cantilevered full-size vane. Reference to Figure 2-8 indicates that a
reduction in the size of the component produced proportionally higher
gas bending stresses in the vanes. Furthermore, more vanes were required
to complete the stator row under the fixed chord-pitch constraint. The
half-size vane offered the best stress compromise considering the number
of vanes required. An increase from 40 to 80 vanes appeared to be
practical.

Two-dimensional finite element and finite difference programs were
used to determine the temperature and stress distribution in the half-size
airfoil, using reliable engineering property data for Norton HS130 silicon
nitride (Table 2-1).(2) Results from these analyses indicated that the
maximum thermal stress at the leading edge of a half-size silicon nitride
airfoil approached 41,000 psi, 12 seconds after shutdown from 2500°F.

14
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TABLE 2-1

COMPARISON OF SizNy PROPERTY DATA

Coef of
Thermal Modulus of Expansion Specific
Temperature Conductivity Elasticity x 10-6 Heat

(°F) (Btu/hr-°F-ft) x 10*6 psi (in/in-F°) (Btu/1b-F°)
Orig.* BMI** Orig. B Orig. BMI Orig. BMI
80 13.5 18.7 41.2 44, 1.7 0.60 0.16 0.16
200 14.0 18.0 41.0 44.7 1.75 0.78 0.18 0.18
400 12.0 16.7 40.8 44.3 1.78 1.07 0.21 0.21
600 11.0 15.7 40.5 44.0 1.80 1.25 0.24 0.24
800 10.5 14.7 40.3 43.8 1.85 1.36 0.25 0.25
1000 10.0 13.7 40.1 43.3 1.87 1.46 0.26 0.26
1200 9.3 12.7 40.0 42.7 1.90 1.55 0.27 0.27
1400 8.8 12.0 39.8 42.0 1.95 1.67 0.28 0.28
1600 8.5 11.0 39.5 41.3 1.97 1.85 0.29 0.29
1800 8.2 10.5 39.3 40.0 2.00 1.93 0.30 0.30
2200 7.7 9.0 39.0 37.5 2.05 2.37 0.31 0.31
2500 7.5 .3 38.7 29.0 2.15  2.40 0.32 0.32

*Accepted values for hot pressed silicon nitride in 1971.
**Initial results of thermal property measurements at Battelle Memorial
Institute.(1,2)

This represented a 25 percent increase in calculated stress which was
attributed to the material property data base. Temperature and stress
distributions are reported in Figures 2-9 and 2-10, respectively. Com-
parable data were obtained from both the finite element and finite dif-
ference programs. (2)

Finally, simple changes in airfoil geometry were analyzed to lower
the stress peaks in the leading and trailing edges still further.’?) The
effect of blunting the leading and trailing edges of the half-size vane
was studied for both silicon carbide and silicon nitride (Figure 2-11).
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FINITE ELEMENT

Figure 2-9. Temperature Contours in Solid Half-Size Si3N4 Airfoils (°F)

Finite Difference

Figure 2-10. Stress Contours in Solid Half-Size SiSN4 Airfoils (Ksi)
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Figure 2-11. Dimensions of Blunted Leading and Trailing Edges
of Ceramic Airfoils

An increase of 47 percent in leading edge radius produced negligible
results. If the trailing edge radius and thickness were increased by

56 percent, the transient thermal stress would decrease 12 and 21 percent
in SiC and Si, N, vanes, respectively. No change in the airfoil profile
vas made, howdver, because the maximum stress occurred in the leading
edge where the effect of blunting was negligible. Furthermore, any
increase in the trailing edge thickness beyond that employed would
affect gas flow adversely because of increased turbulence. Since the
maximum out-of-plane principal tensile stress in the trailing edge almost
equaled that expected to develop in the leading edge, critical stress
rather than maximum stress would determine the location of failure
initiation if it did occur. Failures, possibly of this type, were
observed only on three occasions. The first occured in the trailing

edge of preoxidized airfoil 3 during the initial 25 cycles of static

rig testing at 2500°F. (8) Trailing edge failure origins were also
identified in preoxidized airfoil 6 (cycles 26 - 60)%8) and airfoil 8

at the conclusion of the 2500°F static rig demonstration. No corrective
action was taken and none appeared to be warranted.
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2.3 CORRELATION OF DESIGN ANALYSIS CODES

The programs used to analyze stress development in vanes were corre-
lated and compared with turbine passage experiments to establish their
validity.(z’?? A transient axisymmetric finite element computer program
was developed and used to calculate stresses in cylinders subjected to
uniform gas cooling from above 1600°F down to 600°F. This axisymmetric
program developed the complete state of stress, both in plane 1 and plane
2, as defined in Figure 2-12. The results, from this axisymmetric program
correlated well with the computational method, which used a finite differ-
ence heat transfer program and numerical integration of stresses, when
applied to a uniformly quenched cyclinder. The correlation increased the
confidence of applying the existing programs to thermal shock tests in the
turbine gas passage and to vane analyses.

Tests on silicon carbide were performed in the turbine passage. When
the fuel was shut off, the gas temperature dropped from 2000°F (for example)
to 600°F in a few seconds. Large thermal gradients were measured by
thermocouples in a second SiC cylinder located beside the test cylinder.

The stresses induced by differential thermal expansion caused cracking in
the axial direction. Both computer methods predicted that axial stresses
should be larger than circumferential stresses, and that circumferential
cracks should appear.

Figure 2-12. Thermal Quench Cylinder Coordinate System
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Experiments indicated that quenching was uniform around the cylinder
to within 10 to 15°F (Figure 2-13) and that the axisymmetric finite element
program was applicable in plane 1 (Figure 2-12). Since the pertinent
physical properties (coefficient of thermal expansion, thermal conductivity,
elastic modulus and Poisson's ratio) of the SiC were not precisely known,
and since the heat flux and loads imposed by the fixture at the ends were
not controlled well, the discrepancy between analysis and experiment was
anticipated. Figure 2-14 shows some typical results for the thermal
quench of medium-strength hot pressed SiC.

Silicon nitride cylinders with accurately measured thermal diffusivity
and coefficient of expansion were introduced into the passage to improve
the experiment. Thermocouples were placed in wells such that both axial
and radial temperature gradients could be measured. By rotating the
cylinder, the variation in temperature around the circumference could also
be monitored. These improvements provided a better check of computer
results, and additional experience on the fixturing and instrumentation
for ceramics in a turbine environment.

One-inch diameter by 2-inch high cylinders were heated to a steady-
state temperature of 2000°F in a 500 ft/sec combusion gas stream at 3
atmospheres pressure. The fuel supply to the gas passage was interrupted

causing the impingement of relatively cool compressor discharge air directly
on the cylinder. Figure 2-15 is typical of Si;N, in the test passage thermal

2000 T T T T T T
1800 - h =137 B
hr-t2-Fe
Flow
1600 [— - -
|5 .
o
£ 1400 | :
]
1200 |- -
1000 [~ ~
800 P10 | I | |
0 2 4 6 8 10 12 14
Time, secs

Figure 2-13. Boundary Conditions - Gas Temperature
and Film Coefficient
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environment for the transient or shutdown mode. The film convection coef-
ficient, h, for the shutdown was calculated from the gas properties, mass
flow and physical dimensions of the test passage and cylinder.

Tests in the passage indicated quenching was uniform around the
cylinder, i.e., within a 10°F deviation along the circumference. There-
fore, an axisymmetric analysis was employed to calculate the temperature
and stresses in the cylinder. The finite element models used to treat
nonuniform cooling along the axis of the cylinder and the finite difference
model used to treat cooling around the circumference of the cylinder are
shown at the bottom of Figure 2-16. The top view illustrates the mesh
used in the generalized plane strain program. This model was used to
verify the axisymmetric thermal stresses and to calculate nonaxisymmetric
stresses where required. Thermocouples were placed at various radial
and axial locations in the cylinder to monitor thermal response and
determine the magnitude of the radial and axial temperature gradients.
Typical cylinder response is plotted in Figure 2-17 where actual tempera-
tures as recorded by thermocouples located just below the surface are
compared with predicted results from both the finite element and finite
difference codes. Both methods predicted temperature response quite
well. The finite element method appeared to yield a slightly better
correlation.

The maximum tensile stress history generated by the thermal shock
is given in Figure 2-18. This tensile stress occurred on the surface
of the cylinder as a result of differential thermal contraction caused
by the relatively cool gas which washed over it during shutdown. The
maximum tensile stress reached a value of 12.8 ksi, well below the
rupture strength of the material. Fourteen tests were run on two cylinders,
one of which was drilled for thermocouple holes. Neither visual nor
X-ray inspection disclosed cracks in either of the Si N, cylinders. Since
the cylinder tests were conducted at the limit of the thermal shock
capacity of the test passage, the test specimen configuration was changed
to that of a simple teardrop-shaped airfoil. Initial shock tests with
the instrumented airfoil produced cracks emanating from the thermocouple
hole locations. No stress analysis was performed on the new configuration
because better data were forthcoming from static rig tests at 2200°F, using
full scale components.
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SECTION 3
STATOR VANE SYSTEM DESIGN CONCEPTS

3.1 INTRODUCTION

The ceramic stator vane design task involved the component itself
and its incorporation into an existing turbine, the W251 (Figure 3-1).
To accomplish this, close attention was paid to the characteristics of
the ceramic vane materials and to the vane support structures which had
to be developed as well. Three general systems concepts were evaluated
initially.

Design concept I (Figure 3-2) utilized a ceramic end cap-to-spring
pivot, where respective contact surfaces were spherical. The vane
housing (inner and outer ring segments) was shielded from the hot ceramic
end caps by an insulator, and the ceramic end caps served as a bridge
between the combustor transition and the first rotating row of blades
to shield the metal structure from the hot gas environment. As indicated
in View C-C, the end caps were designed on an angle similar to the metal

Combu stor Ist Stage
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). / Stator Vanes Stator Vane
\. I g r
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Figure 3-1. 30 Mw Test Turbine Flow Path
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vane design currently employed. The end cap to end cap radral sealing
arrangement is illustrated in Section B-B. The end cap seals were free-
floating diamond-shaped ceramic pins which depend on positive pressure
differential directed radially inward to force the seals against the
end caps.

Design concept II (Figure 3-3) employed a ceramic end cap-to-spring
pivot whose respective contact surfaces were also spherical. A metal
extension piece was welded to the mouth of the combustor transition.
This extension permitted the end cap section to be symmetrical, smaller
and more compatible with the half-size vane. The sealing arrangement at
the transition mouth was similar to that used in W251Bl. Here, the end
caps were rectangular (Section C-C) to allow the cylindrical slot to
serve as a positive stop for the airfoil tenon (partial airfoil section
shaped). The cross-hatched material indicated between the ceramic end
caps and metal vane housing rings, and between the ceramic end caps and
plungers was a porous weave metallic material used for uniform load
distribution and cooling air access between the metal and ceramic.

Design concept III (Figure 3-4) combined a metal shoe pivoting
arrangement with a spherical plunger-to-shoe pivot surface. The metal
shoe transmitted the compressive spring load to an insulator and ceramic
end cap, which in turn transmitted the force to the airfoil. The concept
utilized two end-cap/airfoil segments per insulator/shoe, and thus
each spring served to load two vane segments. Stability of the system
was provided by two spherical pivots mounted in the inner ring housing
as shown in Section B-B. Radial sealing between each segment was pro-
vided at the shoe location (Section B-B). Depending on established
clearances, each end cap was free to slide circumferentially in its
respective insulator track. Positive locking was provided at the
shoe/insulator surface by a lip on the shoe (Section B-B) and at the
insulator end cap surface by a slot that was alternately contained in the
insulator and end cap of the adjacent shoe/insulator/end-cap combination.

A fourth and final design iteration (Figure 3-5, Longitudinal View,
and Figure 3-6, Radial and Circumferential Views) evolved from careful
analysis of the original three.(2,3) The basic element of the design
was the three-piece ceramic stator vane assembly represented in Figure
3-7. A concave seat in the end cap was used with a convex vane tenon
of compound curvature to provide contact surfaces that were ellipsoidal.
The vane assemblies were paired for use with associated support hardware.
Two vanes and two end caps were supported at either end by a single
insulator and a single metal shoe. The outer metal shoe had a single
pivot, plunger and spring, while the inner mechanism was made up of
the metal shoe with two pivots and plunger. This arrangement gave three-
point circumferential stability to the entire structure. The spring
assembly, contained by the outer support ring, maintained the position
of the vane assembly with the clamping force provided by the spring.

A metal fiber mesh material cushioned and distributed the load between
the insulator and the metal shoe. This material was also used as a seal
between the insulator and ring housing.
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Special attention was given to the fine details in the design. For
instance, a lip on the metal shoe was provided to prevent insulator
segments from slipping in the circumferential direction. Positive locking
of the end cap pairs was accomplished by an end cap thickness change. End
cap pairs were matched with insulator segments of appropriate dimension to
keep the combined end cap insulator thickness constant.

Airfoil alignment and locking were controlled by airfoil and tenons
which fitted into close tolerance cavities in the end caps. Within the
limits of established clearance, each end cap was free to move circum-
ferentially in its respective insulator tract. Therefore, both adjustment
of the airfoils with respect to the end caps and vane assembly motion
relative to the support structure were possible.

Axial gas loads were transmitted from the airfoil to the end caps
and insulator and finally across the cushion material at the downstream
end face of the insulator. Tangential gas loads were transferred from the
pressure surface of the airfoil, through the end cap and insulator, to a
lip on the inner and outer shoes and finally at the shoe pivots.

Small, rectangular-shaped end caps were used to minimize thermal
stress generally. The use of sheet metal ring lip seals made this end
cap size reduction possible. Contoured contact surfaces were specified
to minimize contact stresses. Radial sealing was accomplished by the
free floating strip seals which separated the metal shoes.

Compressor discharge air at 650°F was used to cool the combustor

transition, static seal housing, combustor transition support, turbine
cylinder, blade ring, and vane housing ring segments.
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3.2 FIRST GENERATION STATOR VANE ASSEMBLY DESIGN

The foregoing discussion pertains to the first stage stator vane
system designed for static rig and turbine testing. The actual ceramic
vane structure is described in general terms only. Emphasis was placed
on the mechanical aspects of a ceramic component in the first generation
design iteration(2:3§ illustrated in Figure 3-8. A nontwisted parallel-
sided airfoil was specified to simplify manufacture since the parts were
designated for static rig testing only. The intent was to establish
a brittle material's ability to survive in a high temperature gas turbine
environment and to demonstrate design viability. Neither required a
tapered-twisted airfoil.

The airfoil-to-end cap juncture is critical in this three-piece
ceramic stator vane design. Steady-state contact stresses develop at
the interface as a result of:

1. A 400 1b compressive spring load, directed radially with
respect to the turbine axis

2. A 200 1b axial gas pressure load
3. A 100 1b tangential gas pressure load
4. A 60 in-1b gas pressure twisting moment

A simply supported design criterion was established to provide airfoil-
to-end cap adjustment to gas loads (bending and twist). Care was taken
to minimize stress concentration as well as steady-state and transient
thermal stresses. The circumferential interlocking feature of the end
cap pairs with alternating insulators of different thickness is shown
in Figure 3-9.

The end cap design is defined precisely in Figure 3-10. A compound
curvature locking concept (Figure 3-11) is used to prevent the airfoil
end support from ratcheting out of the end cap groove. Contact stresses
are minimized by a torroidal shaped pivot-to-seat configuration. The
pivot portions of the airfoil are described in terms of major and minor
radii in Figure 3-12. The torroidal groove, ground to conform to the
airfoil tenon geometry, is presented as an ellipse at the surface of
the end cap (Figure 3-10, radial view). Therefore, the contact stresses

resulting from the normal and tractive loads on the airfoil and end cap
develop along an ellipsoidal surface.

Component dimensions and tolerances are critical. For example, if
the major radius of the pivot were made equal to one-half the total
airfoil height (i.e., Ra = 2.55 inches, Figure 3-11), rotation about
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point '"a'" is possible and the airfoil may ratchet into misalignment or
out of the blade path. These possibilities are precluded by making the
major radius = 1.50 inches, with the center at point "b." The
amount of locking under these conditions is determined by the radial
interference at angular position ©. As the airfoil tends to rotate
about point "a" and slide at point"c'" (assuming the end cap is fixed

to resist rotation), the radial interference which develops offers
increasing resistance to rotation.
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3.3 FIRST GENERATION STATOR VANE ANALYSIS

Considerable effort was expended in the analysis of stresses at the
critical interfaces which are inherent in the first generation stator
vane assembly design.(3,4) The vane assembly and support structure are
subjected to two principal loads acting against each other. The compres-
sive spring load must be great enough to neutralize the three components
of the gas load if the airfoils are to remain stable in a high velocity
gas stream. Since the stator vane function is to turn the gas stream
and since the individual elements of the vane assembly are joined at
curved interfaces, the three components of the gas load are defined as:

1. The pressure force against the vane action 28° from the axial
direction

2. The radial compressive force directed ultimately against the
spring-1loaded shoe

3. The twisting moment about the radial axis of the vane

The stress calculations were performed using conventional two-
dimensional finite element and finite difference computer codes which were
expanded to handle specific geometries and conditions.

Si,N, and SiC exhibit very little or no plastic response prior to
fracturg at temperatures below 2300°F. Therefore, the maximum tensile
stress at all points of contact must be defined explicitly so that a
reasonable safety factor can be applied to avoid the generation and
catastrophic propagation of localized cracks.

The four load types are defined with respect to the sandwiched vane
in Figure 3-13. The radially compressive spring load is a design para-
meter that remains essentially constant over the cycle of operation.

The components of the gas load rise to peak values during operation after
short transients. Each of the interfaces associated with the design
represents an interdependent system with respect to both radial and
friction-reacted tangential loads. This condition complicated the
optimum choice of geometry, surface finish and applied spring load.

Curved surfaces are in area contact at the airfoil-end cap interface.

The contact stress field was analyzed by superimposing the two stress
fields derived from normal and tangential loads. Standard elasticity
theory was used to calculate normal loads. Stresses due to tangential
loads were determined by the extension of a cylindrical analogy method
for simple cylindrical contacts to the actual situation. The normal

load pressure surface was sectioned in the plane of the tangential load
so that incremental parts of the semiellipse could be modeled by an
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appropriate hemicylinder as described in Figure 3-14. For this particular
situation, L was chosen such that B = b and Q = q . Thus, the stresses
along the minor axis LM, due to tangential load on?y, were identical to
those along line NP. Generalized computer codes indicating location

and maximum stress components due to combined loading were prepared for
use in a parametric study to optimize the design. The analysis indicated:

Compressive stress, O , = 11,700 psi
cmax

Tensile stress, c&max’ = 6,100 psi without friction

Shear stress, = 4,500 psi

q
Smax’
at the airfoil-end cap interface. The state of stress due to contact is
superimposed upon the maximum transient and steady-state thermal stresses
acting on the airfoil tenon and end cap, however.

Another very important aspect of curved interfaces is their kinetic
behavior as a function of load and friction.(#) When the gas load is
applied at turbine startup, the center of the contact rotates through
some angle . Figure 3-15 shows a simple one-dimensional force
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equilibrium diagram for a situation which corresponds to a turbine at
rest and just after start. R identifies the radial compressive loads
while G represents the vane gas load where the subscripts T and N refer
to the tangential and normal components, respectively, defined with
respect to the interface. The net normal load on the interface is

GN *+ Ry, while the net tangential load is ul (Gy + Ry). Maximum tensile
stress is a function of the startup coefficient of friction for the vane
end cap interface as shown in Figure 3-16.

Another subroutine was generated to define the elastic contact sur-
face at the end cap groove-airfoil tenon interface more fully. The . !
radial spring force is applied to prevent the tenon from moving out of
the end cap groove. Any displacement of the contact center that is large
enough to reduce.the actual contact area, i.e., where the nominal contact
surface is moved to extend beyond the pieces in contact or any drastic
rearrangement of the pressure surface to compensate for such movement,
results in a much higher stress field or region of contact singularity.

The results of this stress analysis(4) appear in Figures 3-17, 3-18
and 3-19, where the position of the contact area with respect to the
airfoil perimeter and the maximum tensile stresses during startup and
shutdown are indicated. Even at very low coefficients of friction

S=315b
Tol. = .004 in

S=315Ib
Tol. = .002 in

Maximum tensile stress — ksi

Maximum Tensile Contacts Stress vs.
Start-Up Friction with Radial Load
and Tolerance as Parameters: Vane-

Endcap S|3N‘
2
I | l 1
.25 .50 15 L0

Start-up co-efficient of friction

Figure 3-16. The Effect of Friction on Maximum Contact
Stress at the Airfoil-End Cap Interface
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(Figure 3-17), the worse possible shift or rearrangement at the interface
will not bring the actual load-bearing contact area dangerously close to
the edge of the airfoil section for any of the four conditions cited.

AR represents the difference in radii between the airfoil tenon and the
end cap groove or the relative fit of the airfoil with respect to the
end cap. The region of safety extends from 0.035 inch. If the contact
area moves within 0.035 in of the airfoil edge, edge loading will per-
sist in a region of contact singularity. Figures 3-18 and 3-19 show the
effects of radial difference (AR) and the coefficient of friction, inde-
pendently, on the maximum contact tensile stress developed at the inter-
face for the startup and shutdown conditions, respectively. The stress
increases directly with radial difference at constant load because the
contact area decreases. For the actual case, where part tolerances
establish AR = 0.004 inch and the measured value of friction is u = 0.25,
the maximum tensile stresses are 8240 psi for startup and 5180 psi for
shutdown.

Load transmission at the end cap-insulator interface resembles
planar contact because of the large radii. That is, there is little
curvature to allow the trade-off of normal and tangential load. Since
the vane gas load is reacted almost solely by friction, the spring load
is established as a function of friction at the end cap-insulator
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interface. The magnitude of stresses generated during thermal transient
periods is of concern at the end cap-insulator interface because two
dissimilar materials are in contact here without being cushioned by a
metal weave. Because of the difference in values of thermal expansion
coefficients, a considerable tractive shear force can develop at this
surface. The cylindrical analogy was used to estimate an upper bound
for this shear and also to define the maximum value of tensile stress.
The bound is proportional to the friction coefficient and the maximum
Hertzian pressure developed at the interface. The nearly planar nature
of the interface makes the Hertzian stress quite small. Therefore, the
upper bound is also small.

A combined kinematic and contact stress analysis at the interacting
interfaces of four end caps with two insulators was made. The major
interface in this system (the contact between the top surface of an
outer end cap with the bottom surface of an outer insulator, for example)
was considered. The design depends upon friction along a curved surface
for positional stability. Since simple contact had to be preserved, the
minor radius of curvature was selected within the constraints of friction
coefficient. From Figure 3-20 it is clear that a 3.0 inch radius makes
the design practically independent of frictional effects, while a 10 inch
radius requires a coefficient of friction >0.35 to avoid contact singu-
larity and edge loading. Furthermore, the combined effect of curvature
and friction may not be great enough in the case of a large minor radii
to prevent movement of the stator vane assembly downstream toward the
first stage rotor.

The state of stress at the interface is determined by the minor
axial radius (Rp), the end cap/insulator radial difference (AR) and
the coefficients of friction (u) between the end cap and insulator mate-
rials. The effects of these parameters on the maximum contact tensile
stress are plotted independently in Figures 3-21 and 3-22 for turbine
startup and shutdown, respectively. Even though the stress varies
inversely with the minor axial radius of curvature, stress maxima will
only approach 500 psi in the insulator under the least favorable condi-
tions of friction and radial difference (p = 0.15 and AR = 0.008 inch).
Contact stresses in the end cap remain lower still.

The first generation stator vane assembly was designed with a large
minor radius of curvature at the end cap/insulator interface. When
the coefficient of friction between silicon nitride and the insulator
material was found to be ~0.10 rather than >0.35, the radius of curvature
was reduced on some pieces of test hardware. Several other modifications
were also made as a result of this analysis. Analogous to the practice
of crowning steel rollers (blending large radii to taper the ends),
0.250 inch edge radii were introduced to alleviate the contact singu-
larities discussed.
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A reduction in the minor axial radius (R) eliminated the need for
an exact analysis of the contact stress field in the vicinity of a
second-order discontinuity (as at the boundary between the end cap and
the insulator edge radius). Several qualitative comments may be made,
however. Since the Hertzian stress on the fillet side (insulator) must
be greater than the main radius side (end cap), the stress field from
the friction-reacted tractive loads are expected to be skewed con-
siderably. For the specific case of the simple rolling cylinders, the
in-plane stress field, normally associated with traction at the surface,
is symmetric with respect to the line of contact. Compressive and ten-
sile stresses develop fore and aft, respectively, in this situation.
Whenever the stress field becomes asymmetric as a result of traction
applied toward the high pressure side for example, the tensile component
increases modestly while the compressive component rises dramatically.
The compressive stress at the downstream edge of the 0.250 inch fillets
on the insulators may approach 30 ksi in the event of partial edge
loading.

Two-inch spherical radius ceramic buttons were inserted within the

downstream lip seals to act as final stops to preclude any possibility
of sliding (Figure 3-5).
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Contact stresses are generated as the thick end caps slide circum-
ferentially to interlock with the thick insulators. The edge locking
interference in this case is 0.200 inch, with the circumferencial compo-
nent of the gas load being transmitted across the flat edge. The load
at these interlocks is inversely proportional to the amount of circum-
ferential traction reacted by friction at the major end cap/insulatoror
interface. For the lowest coefficient of friction, u = 0.10, the normal
load at the interlocking interface reaches a maximum. Figure 3-23
illustrates the effect of edge radius on the development of contact
tensile stresses under these least favorable conditions where the inter-
lock is so skewed that it causes full edge loading.

The metal pivots represent the terminal resistance to the entire
circumferential component of the vane gas load. Under the worst condi-
tion of tolerance and loading, the maximum shear stress due to pivot
contact is 18,700 psi. Two other locations of contact occur, 1) between
the insulator and the shoe and 2) between the insulator and the housing
ring. Since these areas are cushioned by metal weave material, stresses
equal P/A and are considered negligible.

A steady-state thermal stress analysis of the end cap was performed
utilizing a plane-wise symmetric finite element plate program. The
mesh and loading are shown in Figure 3-24. Although the end cap actually

R — T T T T T
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Figure 3-23. Circumferential Edge Loading Analysis of Hertzian
Contact Stresses (Tensile) at Thick-Thin End Cap/
Insulator Interlocks
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25

Figure 3-24. Finite Element Geometry - End Cap With
Torroidal Groove

had radial sides and a groove with a fourth-order surface perimeter, it
was modeled as a rectangular block with an ellipsoidal groove. This
model was chosen to approximate both the inner and outer end caps with
cavity geometry variable as a function of groove depth. Thermal loading
was programmed to reflect temperature drops ranging from 200 to 300°F
across the end cap radially. Temperature distribution reflected end cap
geometry and was skewed with respect to the sides to present the worst
case. The end cap was simply supported at three corners and free at the
fourth. It was restrained from thermal bending by a uniform pressure

of 8000 psi, the compressive spring load distributed evenly over the
contact area.

Six cases were analyzed. The first three were run to determine
the effect of end cap groove depth. The maximum principal stress dropped
significantly as the limit of the simple rectangular block was approached,
as shown in Figure 3-25, where the maximum tensile stress at the center
of the groove is plotted versus the thickness of the end cap at that
point. Since a symmetric model was used, the finite element results
were corrected to account for asymmetry as it actually existed. The
correction factor was simply the ratio of stress concentration factors
in bending for flat plates which were grooved. The effect is actually
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Figure 3-25. Maximum Plate Stress in Outer End Cap Under Thermal
Steady State Showing Groove Depth Effect and
Adjustment for Asymmetry

more pronounced since the analysis used the same temperature gradient
regardless of thickness. From the standpoint of steady-state thermally
derived plate stress, a reduction of groove depth from 1/2 to 3/8 inch
is desirable. Although an increase in spring load with a corresponding
increase in contact stress would be required, the net effect seems
beneficial.

The fourth case modeled the stress state in adjacent end caps under
a single insulator with temperature loading which represented the mirror
image of that previously shown. In case five, the effect of reducing
the spring load as a constraint to thermal loading was studied. The
results of these runs showed end cap position and spring load to be
insignificant as design parameters. Stress reductions of only several
hundred psi were realized.

The sixth case compared the stress at the groove bottom to the
stress at the thin portion of the end caps defined by the groove perim-
eter and the end cap edge. Without the groove the maximum tensile
stress occurred at the outer periphery of the end cap. The addition of
a groove decreased this stress as a function of groove depth, but the
maximum stress now occurred at the groove bottom. Since the tensile

49



stress maximum was four times the peripheral stress for useful groove
depths, peripheral stresses did not influence the choice of groove depth
greatly.

In the area of transient thermal stress analysis, the required cool-
ing flows, inherent leakages, and their effect on the convection coeffi-
cients were determined. The design process was iterative because a set
of plausible inputs was formulated to produce a temperature-time profile.
Where the cooling flow inputs were adjusted to produce a new temperature
field which was less severe, the flow adjustments were considered bene-
ficial. The temperature fields of interest were substituted into the
finite element plate program to evaluate transient, thermal in-plane
stresses. Appropriate superposition of contact and steady-state thermal
stresses indicated values of 21,200 psi for the 1.0 inch thick end cap
and 16,700 psi for the 1.2 inch thick end cap. Maximum tensile stress
occurred near the bottom center of the groove. Stress levels of this
magnitude are acceptable for silicon nitride or silicon carbide.

An accurate analysis of heat transfer and the associated stress
field within the layered ceramic shroud (end cap, insulator, metal shoe)
for both the steady-state and shutdown transient modes was completed
for a turbine operating at a gas temperature of 2500°F(4) . Gas tempera-
tures were programmed to drop to compressor discharge levels (650°F) in
2.5 seconds followed by an exponential decay to ambient temperature.

The heat transfer coefficients were ramped and decayed similarly. Exter-
nal body temperatures were adjusted for heat capacity and also allowed
to equilibrate to the surroundings, normally.

For the purposes of the two-dimensional finite element technique
employed, temperature gradients across the interfaces were not considered.
This approach was taken to present a conservative (high stress bias)
view. The interfacial gradients, radially, are high and there are
methods of calculating them for use with 2-D steady-state heat transfer
analysis. To employ them would serve only to lower the radial tempera-
ture gradients in the various component members of the system, thereby
reducing the resultant stress levels without affecting the stress dis-
tributions appreciably. Convection, conduction and radiation boundary
conditions were applied as required, however.

Thermal loading for the calculation of steady-state and transient
thermal stress was obtained from a three-dimensional map of temperature
versus time. The map itself was constructed from two-dimensional thermal
contour sections, representing five radial slices through the shroud
stack from leading to trailing edge. The R-Z plane sections: AA, BB,
CC, DD, and EE, shown in Figure 3-26, model the end cap with a represen-
tative groove, the insulator and the metal shoe. Seventeen heat transfer
coefficients, seven gas temperatures and six external body temperatures
versus time functions were specified. These functions were derived from
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Figure 3-26. Two-Dimensional Finite Element Mesh for Heat Transfer
in the End Cap Sections AA, BB-CC-DD and EE

theoretical considerations or from appropriately scaled turbine condi-
tions. The thermal property data, i.e., emissivity, specific heat and
conductivity, were used as functions of temperature.

Thermal contour maps for a typical end cap under steady-state,
5 seconds after shutdown and 60 seconds after shutdown, are shown in
Figures 3-27 through 3-32. Sections AA and CC are used to illustrate
the influence of the groove on the temperature gradient with respect to
time. For the steady-state condition (Figures 3-27 and 3-28), the most
severe gradients occur downstream of the groove. This is due, in part,
to the turbulent decay of film cooling as it flows over the leading edge
to wash across the hot face of the end cap. The cooling air flow on the
cool surface is also greater at the trailing edge because a significant
pressure drop occurs across the stage. The relatively small thermal
gradient appearing between the groove and the insulator results from
the boundary condition assumption that the rate of heat flow through the
shroud is dominated by convection through the end cap rather than con-
duction across the interface.

Figures 3-29 and 3-30 describe the stack 5 seconds after quench.
Tensile stresses have developed in the lower surfaces as a hot spot
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emerges in a central location. Thermal relaxation occurs after 60 sec-
onds (Figures 3-31 and 3-32) as shown by the general cooling and the
slow rise of the hot spot to the end cap/insulator interface.

Because the heat transfer program was, in reality, a two-dimensional
axisymmetric representation operating in the R-Z plane, the five sections
yield a five-row grid of temperature versus time in the 6-Z plane (normal
to the radial axis) in any of the element layers. Unfortunately, this
five-row grid does not correspond geometrically to the end cap element
mesh, which was chosen to model the groove. Clearly, some rearrangement
of temperature values was required to make the two finite element pro-
grams compatible. To accomplish this, a two-dimensional Lagrangian
interpolating routine was employed to find the exact value of a function
of two variables continuously within the region of interest when the
function surface was specified by a rectangular grid and was of an order
less than or equal to five. This capability was particularly useful for
the determination of temperature at points on the hot surface of the end
cap in the vicinity of the airfoil and groove where a rather abrupt
change occurred from the pressure to suction sides.

Final stress calculations were made from the complete complement of
thermal maps. The results of thermal loading in steady state are plotted

rincinal dTcnactn Tinac +ha O_7 nlana a+ +ha T AnAaint af +ha and
a.D IJJ.J.JI\.’J.IJGJ. J.DUDLJ.C.)D 414 111CO J.ll Lvilv VT 4o Hla]lc IJL bl].c HIJ.UIJUJ.I.IU UJ. Lilv TCiliu

cap in Figure 3-33. Since the groove region was predominantly in com-
pression, the superposition of the contact stress field did not present
a severe problem. Significant tensile stresses occurred in the down-
stream half of the end cap and in the areas between the edge and the
major groove diameter. Fortunately, the magnitude of stress due to
contact and thermal loads for steady-state were well below the reported
strength of silicon nitride and silicon carbide at the operating
temperature.

Final design drawings were prepared for the first generation stator
vane assembly. Norton manufactured twenty vane assembly sets from HS130
silicon nitride billets. The first five airfoils of these twenty were not
completed with respect to the tenon geometry. They served as demonstration
pieces. Eight stator vane assemblies were fabricated from NC203 silicon
carbide.
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3.4 INSULATOR ANALYSIS - PRELIMINARY DESIGN REQUIREMENTS

A series heat transfer analysis using a one-dimensional model (Fig-
ure 3-34) was performed to define the insulator requirements for the
vane assembly system. An insulator was necessary to reduce heat trans-
fer by conduction radially outward from the gas stream through the end
cap to the metal support and loading structure. The thermal conductivity
of either silicon nitride or silicon carbide end caps was too high to
prevent excessive heating of the metal substructure indirectly by the
gas stream. Permitting air-cooled metal components to be in direct con-
tact with the end caps would impose severe gradients, resulting in steady-
state and transient thermal stresses beyond the allowable strength of
the end cap materials.

The results of the insulator analysis are presented in parametric
form as a function of insulator thickness, t., in Figures 3-35 and 3-36.
A gas inlet temperature (T]) of 2500°F was selected. The cooling air
temperature (Tg) in the region of the shoe was 800°F. These established
an overall gradient (T; - Tg) of 1700°F through the system. Since the
convective heat transfer coefficient (hy) at the gas end cap surface
varied from 100 Btu/ft2-hr-°F at the leading edge of the airfoil to 400
Btu/ft2-hr-°F at the trailing edge and the convective heat transfer coef-
ficient (he) at the shoe location can be controlled by special nozzling
to yield values from 25 to >100 Btu/ft2-hr-°F, a conservative approach
was taken by selecting ha = 400 Btu/ft2-hr-°F and hg = 100 Btu/ft2-hr-°F,
with values for thermal conductivity from Figure 3-37 as follows:

End Cap (SizNg), K,(min) = 85 Btu inch/hr-ft2-°F

18 Btu inch/hr-ft2-°F

]

Insulator, K.(max)

Shoe, Kq(max) = 200 Btu inch/hr-ft2-°F
The heat flux, Q = 25,500 Btu/ftzhr, remained constant through all
components.

Under steady-state conditions, the hot face of the end cap reached
2435°F in a 2500°F gas stream. A 300°F thermal gradient was sustained
across the l-inch thick silicon nitride end cap to produce a temperature
of 2135°F at the end cap/insulator interface. The temperature at the
surface of the shoe in contact with 800°F cooling air was 1055°F,*but a
small gradient across the shoe (35°F for 0.25 inch thickness) raised the
temperature at the shoe-insulator interface to 1090°F. Therefore, a
maximum thermal gradient of 1045°F was established across the insulator.
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and Shoe Materials
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A cursory review of low conductivity materials indicated that
reaction sintered silicon nitride or high density stabilized zirconia
would meet the insulator requirements. Other porous refractories were
considered too friable for gas turbine applications. LAS (lithium
aluminum silicate) did not appear to be a viable candidate, considering
temperatures at the end cap/insulator interface, even though its low
coefficient of thermal expansion would ensure a state of low thermal
stress in the insulator under steady-state and transient conditions.
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3.5 THE KINEMATIC MODEL

With the system design established and the first generation stator
vane design finalized, Westinghouse decided to build a full-scale kine-
matic model(3) to demonstrate design viability before proceeding to the
preliminary design of hardware for the 2200°F static rig tests. The
model is shown in Figure 3-38. All components are represented including
1/8th segments of the inner and outer support rings which complete the

Figure 3-38. Kinematic Model of the Three-Piece Ceramic Vane
Design with Support Structure
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ten-vane sector configuration of a gas turbine supplied with hot gas
from one of eight combustors normally located in a circumferential array.
The stator vane airfoil elements were molded from plastic. End caps and
insulator components were machined from aluminum and anodized to simu-
late appropriate color. Shoes, pivots, springs and ring segments were
made from mild steel. Specifications and established tolerances were
maintained throughout all aspects of fabrication and assembly. Lighter
springs were employed to reduce spring loading greatly from the speci-
fied 600 1b bundling force. This was done to avoid deformation and
damage to the plastic airfoils. Function remaihed unaffected by the
change, however.

The model demonstrates the unique feature of the three-piece design,
a freedom of motion at the critical transition location (end cap/airfoil
interface) to compensate for differential thermal expansion of the inmer
and outer support rings without imposing residual stresses on the air-
foils. An adjustment screw and scale were provided to permit controlled
axial movement of the inner support. The assembly can be moved 0.50 inch
or five times the maximum displacement expected in turbine operation
without disturbing the integrity of the design. By eliminating the
transition from airfoil to shroud, thermal stresses were reduced signi-
ficantly because temperatures and thermal gradients in both the end caps
and airfoils were separated within individual elements of simple, rela-
tively uniform cross section. End caps and airfoils were made, essen-
tially, mutually exclusive with respect to thermal stress and thermal
strain by virtue of the interface except for the effect of conductive
heat transfer across the interface. Thermal strain was accommodated
within the individual element with little or no residual effect on the
element adjacent to it radially or circumferentially.

The ten-vane segment configuration used in the kinematic model
represented the first generation SizNg airfoil and end cap assembly
scheduled for initial static rig testing. It is obvious from the large
gaps which appear at the trailing edges of the nontapered, nontwisted
airfoil sections that aerodynamic performance was not of primary con-
cern in this first generation design. Emphasis was placed exclusively
on the mechanical aspects of the stator vane design concept in an effort
to establish a brittle material's capacity for survival in a high tem-
perature gas turbine environment. Tolerances were carefully selected
to avoid making contact between the airfoil tenon area and the edge of
the end cap groove. Generous radii were provided throughout to elimi-
nate possible areas of stress concentration.

The model subsequently served as a convenient assembly checkout
device for actual static rig test component hardware.(7) 1t was assem-
bled using end caps and insulators with major radii of 3 inches rather
than 8 inches, for example. Airfoils and end caps of second and third
generation design were inserted to assess the effect of end cap groove
depth and airfoil tenon geometry changes on the freedom of relative
motion and accommodation at the interface.
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3.6 SECOND GENERATION VANE ASSEMBLY DESIGN

The second generation ceramic stator vane assembly design(4’5)
(Figure 3-39) represented an early attempt to correct aerodynamic defi-
ciencies inherent in the first generation design. A tapered-twisted
airfoil section was specified to provide uniform gas flow in a full
scale rotating turbine. The tenons at both ends of the airfoil were
developed more fully in the fashion of a dog bone to eliminate unfilled
portions of the end to cap cavities. In effect, the minor tenon radius
was extended beyond the airfoil surface boundary to fit and fill the
entire end cap cavity. The major airfoil tenon radius was increased
to one-half the appropriate chord width at either end to provide for
the uniform blending of the tenon into the trailing edge. Without the
requirement for trailing edge relief, the prominent slot between end
cap and airfoil was eliminated. These changes in the airfoil tenon
geometry accounted for a subtle but significant difference in the posi-
tion of the airfoil loading axis.

Mechanical improvements were also initiated as a result of stress
analysis and friction measurements. The depth of the groove in the end
cap, for example, was reduced approximately 12 percent or 1/8 inch to
n3/8 inch to decrease the maximum principal stress at the bottom of

Figure 3-39. The Second Generation Ceramic Stator Vane
Assembly Design
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the groove from 11,700 to 8700 psi. The major radius of curvature at
the end cap/insulator interface was reduced from 8 inches to 3 inches
to ensure stability irrespective of the friction coefficient of silicon
nitride or silicon carbide with the insulator material. Since both
axial and torsional components of the gas load act upon this interface,
positive location must be maintained for proper stator vane alignment.

The airfoil/end cap interface was designed to prevent edge loading,
a probable cause of catastrophic failure in either an airfoil or end
cap. 6) Edge loading can occur whenever displacements of contact center
are large enough to reduce the actual contact area. For example, if the
nominal contact surface moves beyond the extent of pieces in contact in
an effort to achieve kinematic equilibrium under load, a much higher
stress field or region of contact singularity will be created. To
preclude any such singularity, the center of contact under conditions
of zero load must be located within the airfoil cross section to provide
adequate vane area for full area contact after displacement. The con-
tact conditions most likely to cause the edge loading effect for any
interface geometry are the two extremes in the coefficient of sliding
friction, i.e., pgy = 0.45 and pgy = 0.05. If the friction coefficient
is high, the condition which occurs when the interface is hot, the cen-
ter of contact tends to remain at the zero load position with the con-
tact area on the concave side of the airfoil. When the friction
coefficient is low, a larger increment of the gas load is reacted by
normal forces across the interface and large shifts in the center of
contact occur. In this case, the contact area moves toward the convex
side of the airfoil.

Elliptical contact areas are projected against the vane cross sec-
tion of an inner interface position in Figure 3-40 where AR = 0.002 inch,
the minimum design difference in the vane and end cap torroidal radii
is represented. Here, the center of contact at zero load is located
in the wider section of the airfoil near the leading edge where there
is enough vane area to prevent edge loading of the vane on either the
concave or convex side. At higher values of AR, the contact area becomes
smaller. This establishes greater distance between the contact area
and the airfoil perimeter. The hot contact tensile stresses increase
directly as a function of the radial difference of contact area. The
effect of sliding friction coefficient and radial difference of contact
area on the maximum tensile stress due to contact is shown in Fig-
ures 3-41 and 3-42, where maximum and minimum stress for the conditions
specified appear at points A and B, respectively. The maximum value of
contact tensile stress under startup conditions is 16,500 psi for
Py = 0.25 and AR = 0.008. At shutdown, the maximum anticipated value
of contact tensile stress is 17,000 psi where AR = 0.008 and ugy, = 0.05.
The design was predicated on the highest allowable contact stress to
preclude any possibility of edge loading in the vane assembly. Because
of manufacturing considerations and a request from the vendor, the
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Figure 3-40. Vane Cross Section Showing Elliptical Contact Surface
Projections for the Worst Contact Conditions at the
Inner Airfoil/End Cap Interface
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Figure 3-41. Startup Tensile Contact Stress at Airfoil/End Cap
Interface Showing Effects of Parameter Variation
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GEOMETRY, MATERIAL, AND LOADS AS
DESCRIBED ON PREVIOUS GRAPH
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Figure 3-42. Shutdown Tensile Contact Stress at Airfoil/End Cap
Interface Showing Effects of Parameter Variation

resulting radial difference between the mating surfaces at the airfoil
tenon/end cap cavity interface was specified finally as 0.002 inch,
minimum, and 0.012 inch, maximum. Edge radii of 0.060 inch were pro-
vided overall to reflect the results of the radii effects study appearing
in Figure 3-43.

The second generation airfoil design was subjected to a preliminary
transient thermal analysis(®) to test whether acceptable stress levels
had been achieved by the mechanical-aerodynamic optimization design
process. Boundary conditions for parabolic surface temperature decay
from a constant 2500°F to 350°F in 80 seconds were established using a
half-airfoil model in which symmetry about any line perpendicular to the
radial direction was assumed. The airfoil cross section at its end cap
cavity entrance location is illustrated in Figure 3-44. The finite
element model with typical values of maximum principal stress resulting
from thermal deformations at the nodal points appears in Figure 3-45.
The greatest maximum principal stress (166,000 psi) occurred 8 seconds
after shutdown in the region where the geometric approximation of the
finite element model was the poorest, i.e., the transition region between
the airfoil and tenon at the leading edge.

66



T T T T T T T

17 - Material Praperties, Applied Prime Loads ]

16| ©) Circumferential Geometry: As Before |
- Least Favorable Friction Case, u=.10

Key:
@ Silicon Nitride Endcap

() vithium Aluminum Silicate Insulator

Tensile Stress, ksi —
© - ~nNoWw AN o ~ 0o >
T

| | | | | | |
L0300 040 .050 060 .070 .080 .09
Edge Radius—(In.)
Chosen Radius

My

o

Figure 3-43. Circumferential Edge Loading Analysis of Hertzian
Contact Stresses (Tensile) at Thick-Thin End
Cap/Insulator Interlocks

Figure 3-44. Second Generation Airfoil Cross Section at
the End Cap Surface
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Figure 3-45. Finite Element Model of Airfoil Section With
Representative Stress Values (ksi)

When a standard check incorporated into WISEC (Westinghouse Three-
Dimensional Isoparametric Finite Element Code) confirmed the possibility
of inaccuracy in the vicinity of this critical leading edge location,
the analysis was rerun using a modified finite element model. These
results are shown in Figure 3-46. Maximum principal stresses are indi-
cated at the nodal points; temperatures appear in parentheses.

Although the preliminary stress analysis did not support design
viability, the vagueness of results and questions concerning the qualify-
ing assumptions suggested further three-dimensional stress analysis
before a final decision to discard the design. The analysis was
repeated using the asymmetric condition of the tapered-twisted airfoil
interacting with an end cap. Only the outer end cap location was con-
sidered, however, because principal stress maxima occurred there. At
the inner end cap location, the overall stress distribution is propor-
tionate but lower. Interference to cause high contact stresses along
the mating surfaces of the end cap/airfoil interface was also considered
for a steady-state case at 2500°F peak temperature. Other qualifying
assumptions were similar to those stated previously. Silicon nitride
was assumed to be homogeneous, isotropic and elastic at all tempera-
tures and loading rates. The contact forces (between airfoil and
tenon end caps)
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Figure 3-46. Modified Finite Element Model Showing Principal
Stresses (in ksi) and Selected Temperatures
(in °F)

and the gas load were considered to be negligible. Transient thermal
analyses were performed for two conditions of shutdown, i.e., flameout
(v350°F/sec) and controlled at 25°F/sec.

The initial and boundary conditions for the end cap thermal analysis
are shown superimposed upon the actual end cap geometry in Figure 3-47.
Heat transfer data for the airfoil and outer end cap are presented in
Figure 3-48. The three-dimensional element models for the second gener-
ation airfoil and an end cap appear in Figures 3-49 and 3-50, respectively.

Temperature and stress contours for the airfoil at Sections 7a
(midplane), 3, and 6a (Figure 3-50) are illustrated in Figures 3-51,
3-52 and 3-53, respectively. Under flameout conditions from 2500°F,
the maximum principal stress at midplane reached 72,300 psi after 10 sec-
onds. A stress concentration and high stress gradient occurred in the
vicinity of the upper and lower tenons. This result was attributed to
the arbitraty use of a lower heat transfer coefficient at the airfoil
tenon contact surface. The maximum principal stress in the airfoil
occurred on the pressure side near the trailing edge. If the value of
h was not reduced at the contact surface, but rather considered to be
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Figure 3-47.
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Figure 3-49. Three-Dimensional Element Model of the Second
Generation Airfoil Under Equilibrium
Conditions

Figure 3-50. Three-Dimensional Element Model of the End Cap
Under Equilibrium Conditions

71



NO. TEMP

oF  (og)
1 900 482
2 1050 565
3 1200 649
4 1350 132
5 1500 816
6 1650 899
7 1800 982
. SR e 8 1950 1066
T T TN
/07 Lg o %2035(1113) >0E N, N
/ { s\v,, ,[*4 A )4 AN

&5\“ - I O

X 72.3(498).7
ST/
8
7
i
NO. STRESS
ksi  {MPa)
1 0 0
2 10 69
3 20 138
4 30 207
5 40 276
6 50 345
17 60 414
8 70 483

Figure 3-51. Temperature and Stress Distributions for Second
Generation Design Airfoil 10 Seconds After
Flameout from 2500°F Steady-State Gas Tempera-
ture (Section 7a) (h: High-Low)
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Figure 3-52. Temperature and Stress Distributions for Airfoil
Section 3 Ten Seconds After Flameout from 2500°F
Steady-State Gas Temperature (h: High-Low)
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Figure 3-53. Temperature and Stress Distribution for Airfoil
Section 6a Ten Seconds After Flameout from
2500°F Steady-State Gas Temperature [(a) h:
High-Low, (b) h: High-Low, (c) h: High-High)]

an exposed part of the entire airfoil surface, the maximum principal
stress would be reduced approximately 5 percent from 127,300 psi to
120,000 psi (Figure 3-53). Changes in the heat transfer coefficient at
the contact surface had the erffect of changing both the location of the
maximum stress and the stress distribution.

At the controlled cooldown rate of 25°F/sec, a maximum principal
stress of 71,800 psi was reached after 50 seconds. The resultant stress
distribution is shown in Figure 3-54. A change in the shutdown transient
not only reduced the principal stress maximum but also altered its posi-
tion significantly.

Flameout produced a maximum principal stress of 123,000 psi at the
inner surface of the outer end cap on the suction side near the leading
edge of the airfoil after 14 seconds. The three-dimensional aspects of
the temperature and stress distributions in the end cap can be obtained
from Figures 3-55, 3-56 and 3-57. Figure 3-58 shows the state of stress
resulting from cocoldown at 25°F/sec. The maximum principal stress of
92,900 psi now occurs within the end cap cavity.
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Figure 3-54.

Stress Distribution in Airfoil Section fa at 50
Seconds After Shutdown from 2500°F Steady-State
Gas Temperature at 25°F/Sec
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Temperature and Stress Distributions for End Cap
Section 7e at 14 Seconds After Flameout from
2500°F Steady-State Gas Temperature (h: High-
Low)
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Figure 3-56.
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Figure 3-58. Stress Distribution during Cooling at 25°F/Sec
from 2500°F Steady-State Gas Temperature in
End Cap Section 7e After 58 Seconds

The airfoil-end cap interface was designed for partial area contact
with the noncontact portions of the mating surfaces in close proximity.
Maximum clearances were specified at room temperature such that the
contact stresses due to the axial spring and gas loads remained low.
However, differential thermal deformation of the mating geometries under
operating conditions could reduce the contact area below that required
to maintain acceptable contact stress levels. Alternately, interference
could result in contact point changes to create edge loading and large
bending and/or torsional stresses. Displacement components v in the
y-direction are illustrated on the contact surface at four points, A, B,
C and D, in Figure 3-59. Steady-state and transient displacements are
defined as the distance a point moves from its original position at
room temperature to its position at a given steady-state temperature or
position at any transient temperature with respect to time. The transient
chosen occurred after 50 seconds under controlled shutdown conditions at
25°F/sec cooling rate.

The u and w displacements, in the x and y directions, respectively,
were similar for the airfoil and end cap in both the steady-state and
transient cases calculated. These did not crcate contact problems under
the controlled shutdown condition imposed. The displacements, v, in the
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Figure 3-59. Deformations of the Airfoil/End Cap Contact Surfaces
at Steady State and During Shutdown Transient

y-direction were also small and of similar magntiude in the airfoil and
end cap at steady state. However, transient displacement, v, in the
airfoil, at Sections 1 and 5 became significantly large, while corre-
sponding Sections 1', 3' and 5' within the end cap remained small,
creating a potential contact edge loading condition with attendant high
bending and torsional stresses. At the mid-chord location (Section 3 -
airfoil) changes were not appreciable, Section 5, near the leading edge
of the airfoil, was displaced toward the pressure side and Section 1,
near the trailing edge, was distorted toward the suction side. Recurring
displacements in cyclic operations may cause fretting at the interfacial
surfaces, further complicating the performance problem.

In spite of aerodynamic and mechanical advantages apparent in the
second generation/ceramic stator vane assembly, design viability was not
demonstrated. Rigorous three-dimensional stress analysis indicated that
the principal tensile stresses, generated under even the moderate con-
ditions of controlled shutdown at 25°F/sec, exceeded the engineering
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strength of hot pressed silicon nitride and hot pressed silicon carbide.
Unfortunately, this analysis lagged the lead time required for vane
assembly procurement. Design drawings were prepared previously to insure
the availability of hardware for test. Norton manufactured eight first-
stage stator vane assemblies (inner and outer end cap plus airfoil per
assembly) from HS130 silicon nitride and eight assemblies from NC132
silicon carbide. However, while this design was dropped eventually, the
manufacture of parts did provide an additional opportunity for fabrication
development.
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3.7 THIRD GENERATION VANE ASSEMBLY DESIGN

The third generation stator vane assembly design evolved to meet
the general requirements of the Advanced Test Turbine. (6) 1In reality, it
represented a refinement of the first generation design concept
modified to provide a tapered-twisted airfoil for proper flow orientation
to the first-stage rotor. A toroidal tenon geometry was superimposed
upon the actual airfoil cross section with trailing edge relief retained
as shown in Figure 3-60 (a photograph comparing design generations I,
IT and III). No attempt was made to fill the end cap cavities completely
along the airfoil tenon mating surface.

The end cap configuration reflected improvements suggested by the
stress analysis of the first and second generation components. Kinematic
behavior was also considered. The major radius of the toroidal surface
of curvature at the end cap insulator interface was specified as
3.000 * 0.005 inches to resist displacement in the downstream direction
regardless of friction coefficient. The groove depth was adjusted to
0.375 + 0.003 inch, a dimension considered sufficient to prevent dis-
lodgement of the airfoil under hot gas loads. End cap cavities at inner
and outer end cap locations were sized and oriented independently to
compensate for taper and twist in the airfoil section.

3rRD (GENERATION

1sT GENERATION 2ND GENERATION

1. Parallel-Sided Airfoil
Tapered-Twisted Airfoil with Full Cavity-Filling Tenons
3. Tapered-Twisted Airfoil

[\

Figure 3-60. Stator Vane Design Iterations
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Particular care was taken in the selection of tolerances at the
airfoil/end cap interfaces to insure adequate area contact confinement
at the bottom of the end cap cavity without restriction of kinematic
motion there beyond desired limites. Radius dimensions, R - 0.000 +
N NN7 2 ihhca A d D L N NNN N NNY 2 Ao~ rrnma AactahhlI Al £Aaan madTAw
V.UuUS 1IICleS alld K T U, UUU - U.VUUL 11ILlIcsS, WOIC CSldl1il135lICU 1LVl ja jul
and minor radii of end cap cavity and airfoil tenon, respectively.

The finalized design was not subjected to stress analysis, per se,
as a final test of design viability. Time and funding limitations made
this impossible considering the decision to eliminate the advanced turbine
demonstration and return to the original contract expiration date,
June 30, 1976. Certain aspects of previous analyses appear pertinent
however. Contact stress calculations at the airfoil tenon/end cap cavity
interfaces of the first generation design and the transient thermal stress
distributions at airfoil mid-chord for the first generation design apply
sufficiently well. The contact displacement analysis for the second
generation design was considered valid for first and third generation
hardware with provision that differential effects be less pronounced
because mating surfaces reduce in direct proportion to the amount of end
cap cavity filled by tenon volume. Thermal stresses in the airfoil at the
inner and outer tenon locations are proportionally smaller and larger,
respectively, in a tapered airfoil section, than for the parallel-sided
case cited previously. Contact stresses at the end cap interfaces at these
same inner and outer locations are proportionately larger and smaller,

respectivel because the major radii decrease (or increase) to establish

ectively, because the maj radii decrease ( increase

a smaller (or larger) contact area.

When the advanced turbine test was cancelled, an order to Norton for
100 silicon nitride (NC132) stator vane assemblies of third generation
design was ammended and terminated prior to completion to conserve contract
funds. Twenty-eight airfoil sections and 44 end caps were actually
manufactured. These were used in the static rig test demonstration.
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SECTION 4
STATIC RIG TESTING
4.1 STATIC RIG PREFARATION

Modification of an existing facility was initially proposed to meet
the contract requirements for the static testing of ceramic stator vane
assemblies at peak temperatures of 2200°F and 2500°F in a high velocity
gas stream. A new cascade-type rig was eventually designed and built ac
part of the Stationary Turbine Project at Westinghouse Power Generation
Systems Division (formally Gas Turbine Systems Division) in an attempt
to test and evaluate full-size ceramic parts in a realistic turbine
configuration using a commercial stationary gas turbine fuel nozzle and
combustor basket.(3-7) Every effort was made to duplicate actual turbine
conditions. Precise control and highly instrumented computerized data
acquisition were provided. A 0.8 or 80 percent pressure simulation was
the best obtainable because compressors available in the laboratory were
capable of delivering air at pressures of 3 to 8 atmospheres only.

The initial version of the static rig, as constructed for 2200°F
testing, is presented in schematic plan view in Figure 4-1.(4) Ceramic
vane assemblies were tested in their true radial configuration and
actually performed a gas turning function. Scale-up problems were
eliminated by employing W251 combustor hardware and fuel nozzle
assemblies. Internal flow baffles were used to direct inlet air flow
and simulate the shell geometry that surrounds the combustion system in
a gas turbine. A sight port was provided for the observation of hardware
under test.

The cooled-wall combustor produced a temperature-profiled gas
stream which passed from the transition piece, through the vane segments
in the mitered section, into a complex exhaust duct which channeled the
gas to the mixer. The mixer section served to smooth the temperature
profile of the gas stream by turbulence so that hot gas of a more
uniform temperature was monitored by control instrumentation. A high
temperature composite refractory material was employed to insulate the
mixer for applications up to 3000°F. The operating pressure level of
the rig was controlled by the back pressure valve located downstream of
the measurement section.

Key elements of the static rig are illustrated for ready reference.
The rig itself is shown in Figure 4-2 as it appeared in the Combustion
Laboratory ready for use. The mitered section with barrier plate and
internal baffles, the mitered section internal with test fixture
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attached to the barrier plate, and the hot gas duct for 2200°F service
are shown in Figures 4-3, 4-4 and 4-5, respectively. The actual flow
path components,i.e., the instrumented combustor, the transition piece
attached to the ceramic test assembly, and a metal exhaust duct with
instrumentation rakes fit inside the five basic components of the
refractory-lined outer shell structure.

Extensive instrumentation was provided. Gas passage temperature
profiles were measured by fast response aspirating thermocouple rake
systems located upstream (42 thermocouples) and downstream (49 thermo-
couples) of the ceramic stator vanes. All of the metal support hardware
was monitored with thermocouples that were strategically located at
shoes, air baffles, inner and outer housing rings, side vanes and spring
housings. These thermocouples were used to evaluate heat transfer
analyses, cocling air schemes and design/analysis characteristics.
Specially designed load cells were installed to measure the radial load
on each pair of vane assemblies during spring installation, loadup and
during various phases of rig operation.

Unfortunately, attempts to maintain strain gauges on silicon nitride
vanes under transient thermal conditions proved unsuccessful. However,
an instrumented (with thermocouples and strain gauges) metal airfoil/end
cap assembly was designed and fabricated to obtain meaningful heat trans-
fer and stress data up to 1400°F. (The heat transfer and stress tests

Figure 4-3. Mitered Section of Static Rig Showing Barrier
Plate for the Installation of the Test
Assembly
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Figure 4-4. Mitered Section of the Static Rig with Test
Assembly Installed

Figure 4-5. Hot Gas Duct for 2200°F Stati
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to correlate two- and three-dimensional design/analysis techniques were
scheduled but never run because vane test delays preempted them and the
contract finally expired.)

Existing laboratory facilities accurately recorded air and fuel
flows, pressures and temperatures. A Westinghouse Veritrak temperature
controller reproducibly followed a prescribed mode of operation by
sensing and responding to the uniform operating temperature of the gas,
downstream of the mixer section, through a system of feedback loops and
variable function generators.

The raw data, whether in the transient or steady-state mode, were
collected by a rapid data acquisition system. Various data sequencing
tapes controlled data retrieval during transient operation at acquisition
rates of seven pieces of information per second. Computer programs con-
verted the values directly into engineering units during the 2200°F test
phase.

A rugged platinum-platinum/rhodium aspirating thermocouple, monitoring
the peak gas temperature in the transition piece, functioned to exclude
extreme temperature excursions. If the gas temperature in the rig exceeded
2450°F, fuel flow interrupted, automatically terminating the test to
protect rig components and ceramic test parts from possible damage.

The test section contained eight ceramic stator vane assemblies
(Norton HS130 silicon nitride) positioned between two air-cooled metal
side vanes (X-45 alloy) which enclosed the gas passage on each side.

The ceramic vane assemblies (an airfoil seated in toroidal cavities
between an inner and an outer end cap) were supported in pairs between
lithium aluminum silicate insulators (Owen Illinois CERVET C-140), woven
metal cushion material, and Haynes 188 metal shoes (Figure 4-6). Two
metal pivots supported each inner shoe while a single spring-loaded
plunger and pivot were used at each outer shoe location. The entire
assembly was fastened between inner and outer metal (Type 405 stainless)
housing ring segments. Suitable cooling, seals and air baffles were
provided to keep the metal support system within specified temperature
limits. Figure 4-7 shows the fully instrumented vane assembly test
section as it appeared before being bolted in place against the barrier
plate.
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Figure 4-6. Ceramic Stator Vane Assembly for Static Rig Test-
ing at 2200°F

Figure 4-7. Instrumented Test Assembly for the 2200°F Static Rig
Testing of Silicon Nitride Stator Vanes
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4.2 DEFINITION OF THE STATIC RIG TEST CYCLE

Since stationary gas turbine generators are traditionally used to
meet peak power requirements, the static rig environment for the test
and evaluation of ceramic stator vanes was selected to represent a
cyclic mode of operation where transient thermal conditions are considered
most critical to component life and reliability. Much thought was given
initially to the use of emergency shutdown or flameout as the determinant
factor in the test because it occurs relatively often in commercial ser-
vice whenever fuel is interrupted for any reason such as insufficient
supply or abnormal operating condition, as the result of, for example,
over-speed or over-temperature. Approximately 100 cycles were accepted
arbitrarily as representative of start-stop sequences in actual use at
normal overhaul or servicing intervals.

Under emergency shutdown or flameout conditions, however, the
turbine inlet temperature was expected to drop from 2500°F peak to 1100°F
within 2 seconds for the gas temperature profile shown in Figure 4-8.

The 2500°F curve was extrapolated from actual data collected from a
Westinghouse W251, 30 megawatt stationary gas turbine, operating at
1990°F average turbine inlet temperature (the system reserve condition),
using a W251 AA combustor identical to the one specified for static rig
tests at 2200°F. An analysis of the 2500°F peak temperature revealed
principal stress levels in Si3N4 vanes reaching 70,000 psi and 58,000 psi
at 1675°F and 1750°F for a turbine and the static rig, respectively
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Figure 4-8. Relation of Peak Ceramic Vane Temperature to Temperature
Profile and Average Turbine Inlet Temperature
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(Figure 4-9). Results for the 2200°F peak condition appear in Figure 4-10
where the difference between the turbine and rig is attributed to pressure
ratio (10.5:1 for the turbine vs 8.0 max.:1 for the rig) and the resultant
heat transfer coefficients developed, respectively.

The calculated stress values were considered too high for acceptable
cycle life based upon preliminary tensile test data for silicon nitride.
At 1900°F, 20,000 psi stress appeared to be a reasonable limit based
upon cursory low cycle fatigue results at 20,000 psi stress level, with

increases to 30,000 and 50,000 psi permissible at 1500°F and 900°F,
respectively.

Alternate shutdown ramps were investigated to find a cycle descrip-
tion which would meet the proposed conditions for a controlled emergency
shutdown without subjecting ceramic components to an unfavorable stress
history. Reductions in linearly programmed quenching rate from 770°F/sec
to 315°F/sec, 100°F/sec, or 25°F/sec had an advantageous effect on maxi-
mum principal stress in the ceramic airfoil. At 315°F/sec the tensile
stress maximum reached 68,000 psi at a calculated airfoil temperature of
1480°F, 8 seconds after shutdown, whereas at 100°F/sec, the maximum stress
ascended to 40,000 psi at 1850°F after 12 seconds (Figure 4-11).

Figure 4-12 illustrates the extreme effect for 25°F/sec. Here, the
maximum stress (17,000 psi) is developed at 2000°F after 25 seconds.
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Figure 4-9. Shutdown from 2500°F to 950°F (Gas Temperature)
in 2.0 Seconds
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