LINE CRACK SUBJECT TO ANTIPLANE SHEAR

by

A. Cemal Eringen
Princeton University

Research Sponsored by the Office of Naval Research under Contract N00014-76-C-0246
Modification No. P00002

July 1978

Approved for public release; Distribution Unlimited
LINE CRACK SUBJECT TO
ANTIPLANE SHEAR

A. Cemal Eringen
Princeton University

ABSTRACT

Field equations of nonlocal elasticity are solved to determine the state of stress in a plate with a line crack subject to a constant anti-plane shear. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. By equating the maximum shear stress that occurs at the crack tip to the shear stress that is necessary to break the atomic bonds, the critical value of the applied shear is obtained for the initiation of fracture. If the concept of the surface tension is used, one is able to calculate the cohesive stress for brittle materials.

1. INTRODUCTION

In several previous papers [1] - [4] we discussed the state of stress near the tip of a sharp line crack in an elastic plate subject to uniform tension and in-plane shear. The field equations employed in the solution of these problems are those of the theory of nonlocal elasticity. The solutions obtained did not contain any stress singularity, thus resolving a fundamental problem that persisted over half a century. This enabled us to employ the maximum-stress hypothesis to deal with fracture problems in a natural way. Moreover it has been possible to predict the atomic cohesive stresses by introducing the experimental values of the surface energy.

1The present work was supported by the Office of Naval Research
The present paper deals with the problem of a line crack in an elastic plate where the crack surface is subject to a uniform anti-plane shear load. This problem, classically, is known as the Mode III displacement. We employ the field equations of nonlocal elasticity theory to formulate and solve this problem. The solution, as expected, does not contain the stress singularity at the crack tip and therefore a fracture criterion based on the maximum shear stress hypothesis can be used to obtain the critical value of the applied shear for which the line crack begins to become unstable. If the concept of the surface energy is introduced, it is possible to calculate the cohesive stress holding the atomic bonds together. Estimates of cohesive stress are also given for perfect crystalline solids.

In section 2 we present a resume of basic equations of linear nonlocal elastic solids. In section 3 the boundary-value problem is formulated, and the general solution is obtained. In section 4 we give the solution of the dual integral equations, completing the solution. Calculations for the shear stress are carried out in a computer, and the results are discussed in section 5.

2. BASIC EQUATIONS OF NONLOCAL ELASTICITY

Basic equations of linear, homogeneous, isotropic, nonlocal elastic solids, with vanishing body and inertia forces, are (cf. [5]):

\[t_{k\ell}, k = 0 \]

\[t_{k\ell} = \int \frac{[\lambda'(|x'-x|)e_{rr}(x')\delta_{k\ell} + 2\mu'(|x'-x|)e_{k\ell}(x')]d\nu(x')}{\nu} \]

\[e_{k\ell} = \frac{1}{2}(u_{k,\ell} + u_{\ell,k}) \]
where the only difference from classical elasticity is in the stress constitutive equations (2.2) in which the stress \(t_{kl}(x) \) at a point \(x \) depends on the strains \(e_{kl}(x') \), at all points of the body. For homogeneous and isotropic solids there exist only two material moduli, \(\lambda'(|x'-x|) \) and \(\mu'(|x'-x|) \) which are functions of the distance \(|x'-x| \). The integral in (2.2) is over the volume \(V \) of the body enclosed within a surface \(\partial V \).

Throughout this paper we employ cartesian coordinates \(x_k \) with the usual convention that a free index takes the values \((1, 2, 3) \), and repeated indices are summed over the range \((1, 2, 3) \). Indices following a comma represent partial differentiation, e.g.

\[
u_{k.l} = \partial u_k / \partial x_l
\]

In our previous work [6, 7] we obtained the forms of \(\lambda'(|x'-x|) \) and \(\mu'(|x-x|) \) for which the dispersion curves of plane elastic waves coincide with those known in lattice dynamics. Among several possible curves the following has been found very useful

\[
(\lambda', \mu') = (\lambda, \mu) \alpha(|x-x|),
\]

(2.4)

\[
\alpha(|x'-x|) = \alpha_0 \exp\left(-\beta/a^2(x'-x) \cdot (x'-x)\right),
\]

where \(\beta \) is a constant, \(a \) is the lattice parameter, and \(\alpha_0 \) is determined by the normalization

\[
\int_V \alpha(|x'-x|) dv(x') = 1.
\]
In the present work we employ the nonlocal elastic moduli given by (2.4)\textsubscript{2}. Carrying (2.4)\textsubscript{2} into (2.5) we obtain

\begin{equation}
\alpha_0 = \frac{1}{\pi} \left(\frac{\beta}{a} \right)^2 .
\end{equation}

Substituting (2.4)\textsubscript{1} into (2.2) we write

\begin{equation}
t_{kl} = \int_{V} \alpha(|x' - x|) \sigma_{kl}(x') \, dv(x') ,
\end{equation}

where

\begin{equation}
\sigma_{kl}(x') = \lambda \, e_{rr}(x') \delta_{kl} + 2\mu \, e_{kk}(x')
\end{equation}

\begin{equation}
= \lambda \, [u_{r', r}(x') \delta_{kl} + \mu \, (u_{k', k}(x') + u_{l', l}(x'))]
\end{equation}

is the classical Hooke's law. Substituting (2.8) into (2.1) and using Green-Gauss theorem we obtain:

\begin{equation}
\int_{V} \alpha(|x' - x|) \sigma_{kk, k}(x') \, dv(x') - \oint_{\partial V} \alpha(|x'-x|) \sigma_{kk}(x') \, ds_k(x') = 0 .
\end{equation}

The contribution to the surface integral from the parts of the surface at infinity would be dropped since the displacement field vanishes at infinity.
3. CRACK UNDER ANTI-PLANE SHEAR

We consider an elastic plate in the \((x_1, x_2, y) \) - plane weakened by a line crack of length \(2l \) along the \(x \)-axis. The plate is subjected to a constant anti-plane shear stress \(t_{yz} = t_0 \) along the surfaces of the crack, Fig. 1. For this problem we have

\[
\begin{align*}
(3.1) & \quad u_1 = u_2 = 0 \quad , \quad u_3 = w(x, y) \quad , \\
(3.2) & \quad \sigma_{xz} = \mu \frac{\partial w}{\partial x} \quad , \quad \sigma_{yz} = \mu \frac{\partial w}{\partial y} \quad , \quad \text{all other } \sigma_{kl} = 0 \quad ,
\end{align*}
\]

so that the only surviving member of the field equations (2.9) is

\[
(3.3) \quad \mu \int \alpha(|x' - x|, |y' - y|) \sqrt{2} w(x', y') \, dx' \, dy' - \int_0^l \alpha(|x' - x|, |y'|) [c_{yz}(x', 0)] \, dx' = 0
\]

where the integral with a slash is over the two-dimensional infinite space excluding the line of the crack \((|x| < l, y = 0)\). A boldface bracket indicates a jump at the crack line.

When an undeformed and unstressed body is sliced to create a free surface, it will in general be deformed and stressed on account of the long-range interatomic forces. Thus if we are to consider that the plate with a crack is undeformed and unstressed in its natural state then we must apply the boundary conditions on the unopened crack surface.

Under the applied anti-plane shear load on the unopened surfaces of the crack, the displacement field possesses the following symmetry regulations

\[
(3.4) \quad w(x, -y) = -w(x, y)
\]
Using this in (3.2) we find that

\[[\sigma_{yz}(x,0)] = 0. \quad (3.5) \]

Hence the line integral in (3.3) vanishes. By taking the Fourier transform of (3.3) with respect to \(x' \), we can show that the general solution of (3.3) is identical to that of

\[\frac{d^2w(\xi,y)}{dy^2} - \xi^2 w(\xi,y) = 0, \quad (3.6) \]

almost everywhere. Here a superposed bar indicates the Fourier transform e.g.

\[\tilde{f}(\xi,y) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} f(x,y) \exp(i\xi x) \, dx. \]

The boundary conditions are

\[w(x,0) = 0 \quad \text{for} \quad |x| > t, \quad (3.7) \]

\[t_{yz}(x,0) = T_0 \quad \text{for} \quad |x| < t, \]

\[w(x,y) = 0 \quad \text{as} \quad (x^2 + y^2)^{1/2} \to \infty. \]

The general solution of (3.6) (for \(y > 0 \)) satisfying (3.7) is

\[w(x,y) = (2\pi)^{\frac{1}{2}} \int_0^{\infty} A(\xi) e^{-\xi y} \cos(\xi x) \, d\xi, \quad (3.8) \]

where \(A(\xi) \) is to be determined from the remaining two boundary conditions.

For the non-zero components of the stress tensor we have
\[t_{xz} = -\frac{1}{2\pi} \mu \int_0^\infty A(\xi) \xi d\xi \int_0^\infty dy' \int_0^\infty \frac{\sin(|x'-x|,|y'-y|)}{\sqrt{\pi}} e^{-\xi y'} \sin(\xi x') dy', \]
\[t_{yz} = -\frac{1}{2\pi} \mu \int_0^\infty A(\xi) \xi d\xi \int_0^\infty dy' \int_0^\infty \frac{\sin(|x'-x|,|y'-y|)}{\sqrt{\pi}} e^{-\xi y'} \cos(\xi x') dy'. \]

Using (2.4) for \(\alpha(|x'-x|) \), we carry out integrations on \(x' \) and \(y' \). To this end we note the following integrals, [8]:

\[I_1 = \int_0^\infty \exp(-px')^2 \left\{ \sin(x'+x) \right\} \frac{dx'}{\sqrt{2\pi}} = \frac{\pi}{p} \exp(-t^2/4p) \left\{ \sin(\xi x) \right\}, \]
\[I_2 = \int_0^\infty \exp(-py'^2-\gamma y') dy' = \frac{\pi}{\sqrt{2p}} \exp(\gamma^2/4p) \left[1 - \Phi(\gamma/\sqrt{p}) \right], \]
\[\Phi(z) = 2\pi^{-\frac{1}{2}} \int_0^\infty \exp(-t^2) dt. \]

Hence

\[t_{xz} = -\frac{1}{2\pi} \mu \int_0^\infty \xi A(\xi) \left[e^{-\xi y} \text{erfc}\left(\frac{\xi - 2py}{2\sqrt{p}}\right) - e^\xi y \text{erfc}\left(\frac{\xi + 2py}{2\sqrt{p}}\right)\right] \sin(\xi x) d\xi, \]
\[t_{yz} = -\frac{1}{2\pi} \mu \int_0^\infty \xi A(\xi) \left[e^{-\xi y} \text{erfc}\left(\frac{\xi - 2py}{2\sqrt{p}}\right) + e^\xi y \text{erfc}\left(\frac{\xi + 2py}{2\sqrt{p}}\right)\right] \cos(\xi x) d\xi, \]
\[p = (\beta/a)^2, \quad \text{erfc}(z) = 1 - \Phi(z). \]

The boundary conditions (3.7)_1 and (3.7)_2 now read
\[
\int_0^\infty \frac{1}{\zeta} C(\zeta) K(\zeta) \cos(\zeta \xi) \, d\zeta = -\left(\frac{\pi}{2}\right)^{\frac{1}{2}} T_o, \quad 0 < \zeta < 1,
\]

(3.12)

\[
\int_0^\infty \frac{1}{\zeta} C(\zeta) \cos(\zeta \xi) \, d\zeta = 0, \quad \zeta > 1,
\]

where we set

\[
z = x/\xi, \quad \zeta = \xi \eta, \quad \epsilon = \alpha/2\beta \xi,
\]

(3.13)

\[
K(\epsilon \zeta) = \text{erfc}(\epsilon \zeta),
\]

\[
A(\xi) = \frac{1}{\xi} C(\zeta), \quad T_o = \tau_o \xi^2/\mu.
\]

To determine the unknown function \(A(\xi)\), we must solve the dual integral equations (3.12).

4. THE SOLUTION OF THE DUAL INTEGRAL EQUATIONS

Recalling the expression

\[
\cos(\zeta \xi) = \left(\frac{\pi \zeta}{2}\right)^{\frac{1}{2}} J_{-\frac{1}{2}}(\zeta \xi),
\]

where \(J_\nu(\zeta)\) is the Bessel function of order \(\nu\), we write the system (3.12) in the form

\[
\int_0^\infty C(\zeta)[1-K(\epsilon \zeta)]J_{-\frac{1}{2}}(\zeta \xi) \, d\zeta = -T_o \xi^{-\frac{1}{2}}, \quad 0 < \zeta < 1,
\]

(4.1)

\[
\int_0^\infty C(\zeta) J_{-\frac{1}{2}}(\zeta \xi) \, d\zeta = 0, \quad \zeta > 1.
\]
The kernel function $k(\epsilon \zeta)$ is given by

$$(4.2) \quad k(\epsilon \zeta) = K(\epsilon \zeta) - 1 = -\psi(\epsilon \zeta).$$

The solution of the dual integral equations (4.1) is not known. However, it is possible to reduce the problem to the solution of a Fredholm equation (cf. [9])

$$(4.3) \quad h(x) + \int_0^1 h(u)L(x,u)du = -\frac{1}{4}(\pi x)^{\frac{1}{2}} T_0,$$

for the function $h(x)$, where

$$(4.4) \quad L(x,u) = (xu)^{\frac{1}{2}} \int_0^1 tk(ct)J_0(xt)J_0(ut)dt.$$

When (4.3) is solved, then $C(\zeta)$ is calculated by

$$(4.5) \quad C(\zeta) = (2\zeta)^{\frac{1}{2}} \int_0^1 x^{\frac{1}{2}} J_0(\zeta x) h(x) dx.$$

As discussed in a previous work [4], if we note that ϵ is extremely small, $k(\epsilon \zeta)$ may be neglected as compared to unity in (4.1), (see Fig. 2). In this case the zeroth order solution of (4.3) namely $h_0(x) = -T_0(\pi x)^{\frac{1}{2}}/2$ suffices for the calculations when the crack size is larger than 100 atomic distances. In such a case we have

$$(4.6) \quad C_0(\zeta) = -(\pi/2)^{\frac{1}{2}} T_0 \zeta^{-\frac{1}{2}} J_1(\zeta),$$
and therefore

\begin{equation}
A_0(\xi) = -(\pi/2)^{1/2} T_0 J_1(\xi \xi)/\xi \xi
\end{equation}

The shear stresses are then calculated by (3.11). Interesting among these is the shear stress \(t_{yz} \) along the crack line \(y = 0 \). For this we obtain

\begin{equation}
t_{yz}(z,0)/\tau_0 = \int_0^\infty K(\epsilon \zeta) J_1(\zeta) \cos(\zeta z) d\zeta
\end{equation}

As observed before, this integral converges for all \(z \) provided \(K(\epsilon \zeta) \) is not approximated by unity for \(\epsilon \) small. For \(\epsilon = 0 \) at \(z = 1 \) we have the classical stress singularity. However, so long as \(\epsilon \neq 0 \), (4.8) gives a finite stress all along \(y = 0 \). At \(0 < z < 1 \), \(t_{yz}/\tau_0 \) is very close to unity, and for \(z > 1 \), \(t_{yz}/\tau_0 \) possesses finite values diminishing from a maximum value at \(z = 1 \) to zero at \(z = \infty \).

For \(\epsilon \gg 1/100 \) the approximate solution given by (4.7) is not very good. However, further improvements can be achieved by the iterative solution of (4.3) with the use of \(C_0(\zeta) \). Since \(\epsilon > 1/100 \) represents a crack length of less than \(10^{-6} \) cm, and at such submicroscopic sizes other serious questions arise regarding the interatomic arrangements and force laws, we do not pursue solutions valid at such small crack sizes.

5. **NUMERICAL CALCULATIONS AND DISCUSSION.**

Calculations of the shear stress \(t_{yz} \), given by (4.8) along the crack line, were carried out on a computer. The results are plotted for \(\epsilon = 1/20 \), \(1/50 \), \(1/100 \), \(1/200 \), in Figures 3 to 6. For a crack length of 20 atomic distances (\(\epsilon = 1/20 \)) the result is not very good in that the boundary
condition at \(|x|<\xi, \ y = 0 \) is satisfied only very roughly. However, for a

crack size of 100 atomic distances (Fig. 5) the shear stress boundary

condition is fulfilled in a strong approximate sense. The relative error

in this case is less than \(1\% \). Hence we conclude that the classical

\(A_o(\xi) \) given by (4.7) gives satisfactory results for crack lengths

greater than 100 atomic distances.

The stress concentration occurs at the crack tip, and this is given by

\[
(5.1) \quad \frac{t_{yz}(\xi,0)}{t_o} = c_3/\sqrt{\varepsilon}, \quad \varepsilon = a/2\theta \ell,
\]

where \(c_3 \) converges to about

\[
(5.2) \quad c_3 \approx 0.40.
\]

The following observations are very significant:

(i) The maximum shear stress occurs at the crack tip, and it is

finite (eq. 5.1)

(ii) The shear stress at the crack tip becomes infinite as the atomic

distance \(a \to 0 \). This is the classical continuum limit of square

root singularity.

(iii) When \(t_{yz}(\xi,0) = t_c \) (= cohesive shear stress), the plate will fail.

In this case

\[
(5.3) \quad \tau_c^2 \varepsilon = C_G
\]

where

\[
(5.4) \quad C_G = (a/2\theta c_3^2)t_c^2
\]
Equation (5.3) is the expression of the Griffith fracture criterion for brittle fracture. We have arrived at this result via the maximum shear-stress hypothesis, rather than the surface energy concept used by Griffith and his followers. The significance of this result is that the fracture criteria are unified at both the macroscopic and the microscopic scales and that the natural concept of bond failure is employed.

(iv) The cohesive shear stress t_c may be estimated if one employs the Griffith's definition of the surface energy γ and writes

$$t_c^2 a = K_c \gamma$$

where

$$K_c = \frac{8\mu c^2 \beta}{w(1-\nu)}$$

Since some measurements exist on γ, by employing these values we can calculate the cohesive shear stress. For steel we have

$$\gamma = 1975 \text{ CGS} \quad , \quad \mu = 6.92 \times 10^{11} \text{ CGS}$$

$$\nu = 0.291 \quad , \quad a = 2.48 \text{ \AA}$$

$$t_c/\mu = 0.2568 \beta^{1/2}$$
Let at a n atomic distance the nonlocal effects attenuate to \(\frac{7}{8} \) of its value at \(x=0 \). Using (2.4) we find that

\[
\beta = \frac{2.146}{n},
\]

\[
t_c/\mu = 0.3764 \, n^{-1/2}.
\]

For \(n = 6 \) this gives

\[
t_c/\mu = 0.14
\]

which is in the right range and well accepted by metallurgists. For example Kelly [10] gives \(t_c/\mu = 0.11 \). There is however a question of in-plane versus antiplane shear failure which need special examination. Compared to the results obtained in our previous work on the in-plane shear [4], the cohesive stress seems 30% higher. However, this is somewhat artificial since it is necessary to know the value of \(\beta \) or \(n \) in either case more precisely. This of course requires at least one experiment.

Acknowledgement: The author is indebted to Dr. Balta for carrying out computations.
REFERENCES

LINE CRACK SUBJECT TO ANTIPLANE SHEAR

FIGURE 1
KERNEL FUNCTION $K(\xi)$

FIGURE 2
ANTIPLANE SHEAR STRESS

FIGURE 3

τ_y / τ_0

$\epsilon = 1/20$
Figure 4

Anti-Plane Shear Stress

$\frac{t_{yz}}{T_0}$ vs x/l

$\epsilon = 1/50$
\[\frac{\sigma_{y2}}{\sigma_0} \]

\[\epsilon = 1/100 \]

ANTIPALNE SHEAR STRESS

FIGURE 5
ANTIPLANE SHEAR STRESS

FIGURE 6
Title: Line Crack Subject to Antiplane Shear

Author(s): A. Cemal Eringen

Abstract:
Field equations of nonlocal elasticity are solved to determine the state of stress in a plate with a line crack subject to a constant anti-plane shear. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. By equating the maximum shear stress that occurs at the crack tip to the shear stress that is necessary to break the atomic bonds, the critical value of the applied shear is obtained for the initiation of fracture. If the concept of the surface tension is used, one is able to calculate the cohesive stress for brittle materials.
PART 1 - GOVERNMENT

Administrative & Liaison Activities

Chief of Naval Research
Department of the Navy
Arlington, Virginia 22217
Attn: Code 474 (2)
471
222

Director
ONR Branch Office
495 Summer Street
Boston, Massachusetts 02210

Director
ONR Branch Office
219 S. Dearborn Street
Chicago, Illinois 60604

U.S. Naval Research Laboratory
Attn: Code 2627
Washington, D.C. 20390

Director
ONR - New York Area Office
715 Broadway - 5th Floor
New York, N.Y. 10003

Director
ONR Branch Office
1030 E. Green Street
Pasadena, California 91101

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314 (12)

Army

Commanding Officer
U.S. Army Research Office Durham
Attn: Mr. J. J. Murray
CRD-AA-IP
Box CM, Duke Station
Durham, North Carolina 27706 2

Commanding Officer
AMXMR-ATL
Attn: Mr. R. Shea
U.S. Army Materials Res. Agency
Watertown, Massachusetts 02172

Watervliet Arsenal
MAGGS Research Center
Watervliet, New York 12189
Attn: Director of Research

Technical Library

Redstone Scientific Info. Center
Chief, Document Section
U.S. Army Missile Command
Redstone Arsenal, Alabama 35809

Army R&D Center
Fort Belvoir, Virginia 22060

Navy

Commanding Officer and Director
Naval Ship Research & Development Center
Bethesda, Maryland 20034
Attn: Code 042 (Tech. Lib. Br.)
17 (Struc. Mech. Lab.)
172
172
176
177
1800 (Appl. Math. Lab.)
5412S (Dr. M.D. Sette)
19 (Dr. M.H. Sevick)
1901 (Dr. M. Strassberg)
1945
196 (Dr. D Fett)
1982

Naval Weapons Laboratory
Dahlgren, Virginia 22448

Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 8400
8410
8430
8440
6300
6390
6380
Naval Ship Engineering Center
Prince George's Plaza
Hyattsville, Maryland 20782
Attn: NAVSEC 6100 Ship Sys Engr & Des Dep
6102C Computer-Aided Ship Des
6105G
6110 Ship Concept Design
6120 Hull Div.
61200 Hull Div.
6128 Surface Ship Struct.
6129 Submarine Struct.

Air Force

Commander WADD
Wright-Patterson Air Force Base
Dayton, Ohio 45433
Attn: Code WHMDD
AFFDL (FDDS)
Structures Division
AFLC (MCEEA)

Chief, Applied Mechanics Group
U.S. Air Force Inst. of Tech.
Wright-Patterson Air Force Base
Dayton, Ohio 45433

Chief, Civil Engineering Branch
WLRC, Research Division
Air Force Weapons Laboratory
Kirtland AFB, New Mexico 87117

Air Force Office of Scientific Research
1400 Wilson Blvd.
Arlington, Virginia 22209
Attn: Mechanics Div.

NASA

Structures Research Division
National Aeronautics & Space Admin.
Langley Research Center
Langley Station
Hampton, Virginia 23365

National Aeronautic & Space Admin.
Associate Administrator for Advanced
Research & Technology
Washington, D.C. 02546

Scientific & Tech. Info. Facility:
NASA Representative (S-AK/DL)
P.O. Box 5700
Bethesda, Maryland 20014

Other Government Activities

Commandant
Chief, Testing & Development Div.
U.S. Coast Guard
1300 E. Street, N.W.
Washington, D.C. 20226

Technical Director
Marine Corps Dev. & Educ. Command
Quantico, Virginia 22134

Director
National Bureau of Standards
Washington, D.C. 20234
Attn: Mr. B. L. Wilson, EM 219

Dr. M. Gaus
National Science Foundation
Engineering Division
Washington, D.C. 20550

Science & Tech. Division
Library of Congress
Washington, D.C. 20540

Director
Defense Nuclear Agency
Washington, D.C. 20305
Attn: SPSS

Commander Field Command
Defense Nuclear Agency
Sandia Base
Albuquerque, New Mexico 87115

Director Defense Research & Engrg
Technical Library
Room 3C-128
The Pentagon
Washington, D.C. 20301

Chief, Airframe & Equipment Branch
FS-120
Office of Flight Standards
Federal Aviation Agency
Washington, D.C. 20553

Chief, Research and Development
Maritime Administration
Washington, D.C. 20235

Deputy Chief, Office of Ship Constr.
Maritime Administration
Washington, D.C. 20235
Attn: Mr. U.L. Russo
PART 2 - CONTRACTORS AND OTHER TECHNICAL COLLABORATORS

Universities

Dr. J. Tinsley Oden
University of Texas at Austin
Austin, Texas 78712

Prof. Julius Miklowitz
California Institute of Technology
Div. of Engineering & Applied Sciences
Pasadena, California 91109

Dr. Harold Liebowitz, Dean
School of Engr. & Applied Science
George Washington University
725-23rd St., N.W.
Washington, D.C. 20006

Prof. Eli Sternberg
California Institute of Technology
Div. of Engr. & Applied Sciences
Pasadena, California 91109

Prof. Paul M. Naghd
University of California
Div. of Applied Mechanics
Etcheverry Hall
Berkeley, California 94720

Professor P. S. Symonds
Brown University
Division of Engineering
Providence, R.I. 02912

Prof. A. J. Durelli
The Catholic University of America
Civil/Mechanical Engineering
Washington, D.C. 20017

Prof. R. D. Testa
Columbia University
Dept. of Civil Engineering
S.W. Mudd Bldg.
New York, N.Y. 10027

Prof. H. H. Bleich
Columbia University
Dept. of Civil Engineering
Amsterdam & 120th St.
New York, N.Y. 10027

Prof. F. L. DiMaggio
Columbia University
Dept. of Civil Engineering
616 Mudd Building
New York, N.Y. 10027

Prof. A. M. Freudenthal
George Washington University
School of Engineering & Applied Science
Washington, D.C. 20006

D. C. Evans
University of Utah
Computer Science Division
Salt Lake City, Wash 84112

Prof. Norman Jones
Massachusetts Inst. of Technology
Dept. of Naval Architecture & Marine Engrng
Cambridge, Massachusetts 02139

Professor Albert I. King
Biomechanics Research Center
Wayne State University
Detroit, Michigan 48202

Dr. V. R. Hodgson
Wayne State University
School of Medicine
Detroit, Michigan 48202

Dean B. A. Boley
Northwestern University
Technological Institute
2145 Sheridan Road
Evanston, Illinois 60201
Library Services Department
Report Section Bldg. 14-14
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60440

Dr. M. C. Junger
Cambridge Acoustical Associates
129 Mount Auburn St.
Cambridge, Massachusetts 02138

Dr. L.H. Chen
General Dynamics Corporation
Electric Boat Division
Groton, Connecticut 06340

Dr. J.E. Greenspon
J.G. Engineering Research Associates
3831 Menlo Drive
Baltimore, Maryland 21215

Dr. S. Batdorf
The Aerospace Corp.
P.O. Box 92957
Los Angeles, California 90009

Dr. K.C. Park
Lockheed Palo Alto Research Laboratory
Dept. 5233, Bldg. 205
3251 Hanover Street
Palo Alto, CA 94304

Library
Newport News Shipbuilding &
Dry Dock Company
Newport News, Virginia 23607

Dr. W.F. Bozich
McDonnell Douglas Corporation
5301 Bolsa Ave.
Huntington Beach, CA 92647

Dr. H.N. Abramson
Southwest Research Institute
Technical Vice President
Mechanical Sciences
P.O. Drawer 28510
San Antonio, Texas 78284

Dr. R.C. DeHart
Southwest Research Institute
Dept. of Structural Research
P.O. Drawer 28510
San Antonio, Texas 78284

Dr. M.L. Baron
Weidlinger Associates,
Consulting Engineers
110 East 59th Street
New York, N.Y. 10022

Dr. W.A. von Riesemann
Sandia Laboratories
Sandia Base
Albuquerque, New Mexico 87115

Dr. T.L. Geers
Lockheed Missiles & Space Co.
Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. J. L. Tocher
Boeing Computer Services, Inc.
P.O. Box 24346
Seattle, Washington 98124

Mr. William Caywood
Code BBE, Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20034

Mr. P.C. Durup
Lockheed-California Company
Aeromechanics Dept., 74-43
Burbank, California 91503