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LINE CRACK SUBJECT TO
ANTIPLANE SHEAR!

A. Cemal Eringen
Princeton University

{
ABSTRACT ggf'

Field equations of nonlocal elasticity are solved to determine
the state of stress in a plate with a line crack subject to a
constant antiplane shear. Contrary to the clazsical elasticity
solution, it is found that no stress singularity is present at
the crack tip. By equating the maximum shear stress that occurs
at the crack tip to the shear stress that is necessary to break
the atomic bonds,the critical value of the applied shear is
obtained for the initiation of fracture. If the concept of

the surface tension is used,one is able to calculate the
cohesive stress for brittle materials.

AN

AN

1. INTRODUCTION

In several previous papers [1] - [4] we discussed the state of

stress near the tip of a sharp line crack in an elastic plate subject to

uniform tension and in-plane shear. The field equations employed in the

solution of these problems are those of the theory of nonlocal elasticity.
The solutions obtained did not contain any stress singularity, thus

resolving a fundamental problem that persisted over half a century. This
enabled us to employ the maximum-stress hypothesis to deal with fracture

problems in a natural way. Moreover it has been possible to predict

the atomic cohesive stresses by introducing the experimental values

of the surface energy.
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The present paper deals with the problem of a line crack in an elastic
plate where the crack surface is subject to a uniform anti-plane shear

! load. This problem, classically, is known as the Mode III displacement.

We employ the field equations of nonlocal elasticity theory to formulate
and solve this problem. The solution, as expected, does not contain the
ﬁ stress singularity at the crack tip and therefore a fracture criterion

based on the maximum shear stress hypothesis can be used tc obtain the

e s ke SRR A R b B o P AL THe T Dt

critical value of the applied shear for which the line crack begins to
; become unstable. If the concept of the surface energy is introduced, it

is possible to calculate the cohesive stress holding the atomic bonds

together. Estimates of cohesive stress arealso given for perfect

crystalline solids.

) In section 2 we present a resume of basic equations of linear non-

local elastic solids. In section 3 the boundary-value problem is form-

ulated, and the general solution is obtained. 1In section 4 we give the

-
y pies e

solution of the dual integral equations, completing the solution. Cal- i
culatfons for the shear stress are carried out in a computer, and the

i results are discussed in section 5. :

R TS T T L T VTR T Y

v : 2, BASIC EQUATIONC OF NONLOCAL ELASTICITY

Basic equations of linear, homogeneous, isotropic, nonlocal elastic

solids, with vanishing body and inertla forces, are (cf. [5]):

| T |
;

1 | @) =] Dty (6118200 (=2 (601w |
. ?

y ' = 1
%. (2.3) €y i(uk’2+u2’k> :




T AR AT T YT T

TR

T P I N RO O Y

where the only difference from classical elasticity 1s in the stress
constitutive equations (2.2) in which the stress tk£<§> at a point f
depends on the strains ekl(f')’ at all points of the body. For homo-
geneous and isotropic solids there exist only two material moduli,
A'(Ix'-§|) and “'(If"fl) which are functions of the distance If"fl‘
The integral in (2.2) is over the volume V of the body enclosed within
a surface 3.

Throughout this paper we employ cartesian coordinates Xy with the
usual convention that a free index takes the values (1, 2, 3), and repeated
indices are summed over the range (1, 2, 3).V Indices following a comma

represent partial differentiation, e.g.
U,e = AW/

In our previous work [6, 7] we obtained the forms of A'(Ix'-x|)
and u'(|x-x|) for which the dispersion curves of plane elastic waves
coincide with those known 1in lattice dynamics, Among several possible

curves the following has been found very usetul

(A'pu') = ()\.U)G(I)_C')fb Py

(2.4)

al|x'-x[) = aoexpi- (B/a)z(x'—X)°(X'-x)] s

where B 18 a constant, a is the lattice parameter, and a, is determined

by the normalization

(2.5) j a(|§'—§|)dv(§') =1 .
v
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?f ‘ In the preseut work we employ the nonlocal elastic moduli given
i ' by (2.4)2. Carryin- (2.4)2 into {2.5) we obtain

1 -1 2

: (2.6) @, =3 (8/a) .

2

:

; Substituting (2.4)1 into (2.2) we write

' - " ' '

. (2.7) tyg j al|x'=x[) o, (x') dvix") ,

b v

f where

i“l.

1Y - ' '

t ‘ (2.8) Oe (:f ) =2 e . (:f ) Spp 20 0, (:f )

b

|

h = u (x') &, +yufu (x') +u (x"]
i r,r . kg k, L . Lok

E' is the classical Hooke's law. Substituting (2.8) into (2.1) and using
g‘ Green-Gauss theorem we obtain:

1

2.9) J a[x'=x]) o,y (x7) dv (D) -é o ([x'x]) oy, (x"aay (x') = 0.
b v Al

g

E.

b

% * The contribution to the surface integral from the parts of the

%k surface at infinity would be dropped since the displacemznt field

%: vanishes at infinity.
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3. CRACK UNDER ANTEPLANE SHEAR

We consider an elastic plate in the (xl-x, xz-y) - plane weakened
by a line crack of length 22 along the x-axis. The plate is subjected
to a constant anti-plane shear stress tyz-To along the surfaces of the

crack, Fig. 1. For this problem we have

(3.1) usu,=0 umw(x,y)
(3.2) Oz 1‘ax s cyz 3y , all other Oks o ,

so that the only surviving member of the field equations (2.9) is

L
(3.3) uf a(|x'-x|,Iy'-yl)V'zw(x',y')dx'dy'~ I a(lx'-xl,Iyl)'gryz(x',O)ldx'-O ,
2

where the integral with a slash is over the two~dimensional infinite
space excluding the line of the crack (| x| <2, y=0). A boldface bracket
indicates a junip at the crack line.

When an undeformed and unstressed body is sliced to create a free
surface, it will in general be deformed and stressed on account of the
long~range interatomic forces. Thus if we are to consider that the

plate with a crack is undeformed and unstressed in its natural state

then we must apply the boundary conditions on the unopened crack surfaca.

Under the applied anti-plane shear load on the unopened surfaces
of the crack,the displacement field possesses the following symmetry

regulations

3.4)  w(x,-y) = -w(x,y, .
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Using this in (3.2) we find that

(3.5) £°yz(x’0)! =0 .

Hence the line integral in (3.3) vanishes. By taking the Fourier

3 transform of (3.3) with respect to x', we can show that the general ;
‘ solution of (3.3) is identical to that of 3

2-

i 3.6) LGN ey -0, !
: dy 1

E‘

é almost everywhere. Here a superposed bar indicates the Fourier %

i )

" transform e.g. )

, EE,y) - (21;)'* rf(x,y) exp (1Ex) dx .

i ' rw

!

& The boundary conditions are

é w(x,0) = 0 for [x|]>2

% (3.7) tyz(x.O) - T, for |x| <2 !

w(x,y) = 0 as (x*4y2) 20

) The general solution of (3.6) (for y20) satigfying (3,7)3 is

§

! ‘ L

L ]

f ‘ (3.8) v(x,y) = (2/11)*]- A(§) %Y cos (Ex) d¢ , !

£ o .

i 3

1 where A(E) 1s to be determined from the remaining two boundary conditions. i
k |

E For the 'non-zero components of the stress tensor we have E
!,\ ':

i 3
, 4
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t, -2/m? u rA(e) £dg rdy' r[ a(|x'=x|,iy'-y])
(o] [+] :_.

~a(]x'=x|,|y"+y])] e %' gin (ex') dx',

(N il Mo

(3.9

= -(2/ﬂ)* I A(E) edg [°3y I.[ al|x'-x|,y" -y
y 0

L
—

+a(|x'-x|,|y'+y])] e-Ey' cos (&Ex') dx'.

Using (2.4)2for ofx'-x|), we carry out integrations on x' and y'. To

kil o sl s s s

this end we note the following integrals, [8):

]
2 s8ink (x'+x) ' e ¥ 2 sin(&x)
Il - rexP(‘Px ) 3 cos (x‘ﬂ) dx ('"/P) exp(-g /I’P) {COS(&X) } 4

(3.10) I, = fuexp(-py'z-vy')dy' - *(W/P)* exp(vzlap)[1-°(Y/2/;) ,
i -3 z 2 !
®(z) £ 2n J exp(~t~), dt . 1
° 1
Hence

-} , s [e=8Y (§-2zx> £y (;_21
t,, = -(27) EA(E) [e erfc - e’ erf sin(&x)dE
xz H o / 2/ c 2

(3.11) ty, = -(2ﬂ) IQEA(E) [e -8y erfc(i-zzz) + e erfc (5——21 cos (£x)dE

2/p p
= (8/a)? , erfc(z) = 1- 6(2) . ;
. 1
The boundery conditions (3.7)1 and (3.7)2 now read
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fwc*c(c) K(eg) cos(zg) df = -(n/2§ T, , O<z<1 ,
0
(3.12)
Jﬂc'ic(c) cos(zg) d¢ = 0 , z>1 ,
0
where we set
z=x /2, T =ER, € = af23% ,

(3.13) K(eZ) = erfc (eg)

¥ c), T = Tolzlu

AR) = ¢ o

To determine the unknown function A(f), we must solve the dual integral

equations (3.12).

4. THE SOLUTION OF THE DUAL INTEGRAL EQUATIONS

Recalling the espresszion

cos (z7) = (wzc/Z)* J_* (z2) ,

vhere Jv(z) is the Bessel function of order v, we write the system

(3.12) in the form

I~CC(C)[1+k(ec)]J_*(zc)dt - -Toz'§ » O<z<l
0

(4.1)

I“C(C) J_*(zz) dg =0 y 221 .
o

-ty

e
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The kernel function k(ez) is given by
(4.2) k(eg) = K(eg) -1 = -4(eg)

The sclution of the dual integral equations (4.1) is not known. However,
it 1s possible to reduce the problem to the solution of a Fredholm

equation (cf. [9])

1

4.3) h(x) + [ h(u)L(x,u)du = -&(wx)*To ’
)

for the function h(x), where
(4.4) L(x,u) = (xu)*[ttk(et)Jo(xt)Jo(ut)dt .
o

When (4.3) is solved, then C(;) 1s calculated by
@5 e = <zc>*f 3 () nex) ax

o
As discussed in & previous work (4], if we note thet ¢ 18 extremely small,
k(eg) may be neglected as compared to unity in (4.1), (see Fig. 2). 1In
this case the zeroth order soluticn of (4.3) namely ho(x) - -To(wx)*/z

suffices for the calculations when the crack size is larger than 100 atomic

distances. In such a case we have

.6 ¢ @ = -/t 7ty

L | ol o il i -
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and therefore
3
(4.7) Ao(ﬁ) = ~(n/2) ToJl(El)/ER

The shear stresses are then calculated by (3.11). Interesting among
these 1is the shear stress tyz along the crack line y = 0. For this

we obtain
(4.8) tyz(z,o)/ro - Ex(ec) J1 (8) cos(zg) dg

As observed before, this integral converges for all z provided K(eg)

is not approximated by unity for ¢ small. For ¢ = 0 at z = 1 we have
the classical stress singularity. However, so long as ¢ ¥ 0, (4.8)
gives a finite stress all along y = 0. At O<z<l, tvz/To is very close
to unity, and for z>1, tyz/'ro possesses finite values diminishing from a
maximum value at z=1 to zero at z=w,

For €>>1/100 the approximate solution given by (4.7) is not very
good. However, further improvements can be achieved by the iterative
solution of (4.3) with the use of C_({). Since e>1/100 represents a
crack length of less than 10_6cm, and at such submicroscopic sizes other
serious quections arise regarding the interatomic arrangements and force
laws, we do not pursue solutions valid at such small crack sizes.

5. NUMERICAL CALCULATIONS AND DISCUSSION.

Calculations of the shear stress tyz, given by (4.8) along the crack
line, were carried out on a computer. The results are plotted for e = 1/20,
1750, 17100, 1/200, in Figures 3 to 6. For a crack length of 20 atomic

distances (e = 1/20) the result is not very good in that the boundary

e o Gttt
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condition at ]x|<2, y = 0 ig satisfied only very roughly. However, for a

. crack size of 100 atomic distances (Fig. 5) the shear stress boundary

condition is fulfilled in a strong approximate sense. The relative error
? in this case is less than 1&0/0. Hence we conclude that the classical
3 AO(E) given by (4.7) gives satisfactory results for crack lengihs
4

greater than 100 atomic distances.

s ARSI el iR o SR risainORn

The stress concentration occurs at the crack tip, and this is given by !

SRS

‘

(5.1) tyz(l,O)/to = c3//E s e = a/28L

where ¢4 converges to about

(5.2) c32 O.ho .

AL -t S AT

The following observations are very significant:
(1) The maximum shear stress occurs at the crack tip, and it is
- finite {eq. 5.1)

4 (i1i) The shear stress at the crack tip becomes infinite as the atomic

distance a+ 0. This is the classical continuum limit of square

rcot singularity.

(1ii) When tyz(z,o) -t ( = cohesive shear stress), the plate will fail.

In this case

2
(5.3) T, g = CG

where

T R T A e T NSk R e T TR

(5.4) c, = (a/28c§‘)tc2
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Equation (5.3) 1is the expression of the Griffith Fracture criterion

for brittle fracture. We have arrived at this result via the maximum

shear-stress hypothesis, rather than the siirface energy concept used

’ by Griffith ard his followers. The sigrnificance of this result is that
the fracture criteria are unified at both the macroscopic and the
microscopic scales and that the natural concept of bond failure is

;_ employed.
; (iv) The cohesive shear stress t:c may be estimated if one employs
i‘ the Griffith's definition of the surface energy y and writes

%( (5.5) t ' a KCY s 3
b

1 1
E where

13

E ) )

F (5.6) K, = 8uc38/n(l—v)

Since some measvcements exist on y, by employing these values we

cnoiied

can calculate the cohesive shear stress. For steel we have

. {
¢ Y = 1975 ¢GS  , u = 6.92 x 10° cas ’
F‘ J
3 v = 0.291 , a=2.48a° ;
A

- (5-7) tc/u = 0.2568 81/2

E
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Let at a n atomic distance the nonlocal effects attenuate to .% of its

value at x=0. Using (2.4) we find that

(5.8) B = 2.146/n ,

? (5.9) tc/u = 0,376k n~l/2
For n = 6 this gives

(5.10) tc/u = 0.1k

R RS

which is in the right range and well accepted by metallurgists. For

example Kelly [10] gives tc/u = 0.11. There is however & question of

SR SRR

in-plane versus antiplane shear failure which need special examination.
Compared to the results obtained in our previous work on the in-plane
shear (4], the cohesive stress seems 30% higher. However, this is somewhat

artificial since it 1is necessary to know the value of B or n in either

e oadria e e e T

case more precisely. This of course requires at least one experiment.

PP TPy
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