Sample extreme values are biased estimators of the end-points of a distribution, and hence, jackknifing is useful. However, the properties of jackknifing in such a case differ considerably from those in the regular case. These are studied here. Along with a modification of jackknifing, some applications are also considered.

Key Words & Phrases: bias; extreme values; jackknifing; mean square; order of terminal contact; studentized form; Tukey-estimator of variance.

1. INTRODUCTION

Let \(\{X_i, i \geq 1\} \) be a sequence of independent and identically distributed random variables (i.i.d.r.v.) with a distribution function (df) \(F \), defined on \((-\infty, \infty) \). It is assumed that \(F \) has a finite (unknown) lower end-point \(\theta \), that is

\[
-\infty < \theta = \sup \{x : F(x) = 0\} < \infty
\]

and that \(F(x) \) is continuous and monotonic in \(x \in (\theta, \theta + \delta) \), for some \(\delta > 0 \). A natural estimator of \(\theta \) is the sample minimum i.e.,

\[
\hat{\theta}_n = \min\{X_1, \ldots, X_n\} = X_{n,1} \quad (n \geq 1),
\]

where \(X_{n,1} \leq \ldots \leq X_{n,n} \) stand for the ordered variables corresponding to \(X_1, \ldots, X_n; n \geq 1 \). \(\hat{\theta}_n \) is a (strongly) consistent estimator of \(\theta \), but it is not an unbiased one; the nature of its bias depends on the order of terminal contact of \(F \) (at \(\theta \)). It may therefore be appealing to use the jackknife estimator corresponding to \(\hat{\theta}_n \).

Under quite general regularity conditions (viz., [1,2,4]), jackknifing meets three objectives: (a) Bias reduction. If \(\theta^* \) be the jackknife estimator then \(nE(\theta^*_n - \theta) \to 0 \) as \(n \to \infty \). (b) Asymptotic normality. If \(n^{1/2}(\hat{\theta}_n - \theta) \) is asymptotically normal, then the same limit law holds for \(n^{1/2}(\theta^*_n - \theta) \). (c) The Tukey estimator \(\nu_n^2 \) [defined by (2.5)] is a (strongly) consistent estimator of the variance of \(n^{1/2}(\theta^*_n - \theta) \).

Since the asymptotic distributions of sample extrema are non-normal and, depending on the order of terminal contact, the bias of \(\hat{\theta}_n \) is \(O(n^{-a}) \).
for some $0 < a \leq 1$, the effectiveness of jackknifing in regard to (a) and (b) remains to be examined carefully. Further, in this case, ν_n^2 does not converge (stochastically). Along with the preliminary notions, expressions for θ^* and ν_n^2 are considered in Section 2. The main results are studied in Section 3. Section 4 deals with a modification of jackknifing appropriate for the case of the bias of $O(n^{-a})$ for some $a < 1$. Some general remarks are made in the concluding section.

2. PRELIMINARY NOTIONS

We assume that for some non-negative integer m, $F(x)$ has continuous jth derivative $F^{(j)}(x) = f^{(j-1)}(x)$ for all $x \in (\theta, \theta + \delta)$, $\delta > 0$, $1 \leq j \leq m + 1$. We denote the (right hand) derivatives at θ by $F^{(j)}(\theta) = f^{(j-1)}(\theta)$, $1 \leq j \leq m + 1$ and $F^{(0)}(\theta) = 0$, $f^{(0)}(\theta) = f_{+}(\theta)$. Then, a terminal contact of order m is defined by

\[(2.1) \quad F^{(j)}(\theta) = 0, \quad 0 \leq j \leq m \quad \text{and} \quad 0 < f^{(m)}_{+}(\theta) < \infty.\]

Also, for the study of the bias, we assume that

\[(2.2) \quad \nu = \int_{\theta}^{\infty} |x|^\alpha dF(x) < \infty \quad \text{for some} \quad \alpha > 0.\]

To define θ_n^*, we let for each i: $1 \leq i \leq n$,

\[(2.3) \quad \delta_{n-1}^i = \min\{x_{i-1}, \ldots, x_{i-2}, x_{i+1}, \ldots, x_n\}, \quad \hat{\delta}_{n,1}^i = n\delta_n^* - (n-1)\delta_{n-1}^i.\]

Then, $\hat{\delta}_{n-1}^i$ is equal to $x_{n,1}$ or $x_{n,2}$ according as X_i is \neq or $= x_{n,1}$, $1 \leq i \leq n$. Also,
The Tukey estimator ν^2_n, defined by
\begin{equation}
\nu^2_n = \frac{1}{(n-1)} \sum_{i=1}^{n} (\hat{\theta}_{n,i} - \theta^*)^2 = (n-1) \sum_{i=1}^{n} (\hat{\theta}_{n-1,i} - \theta^*)^2 ,
\end{equation}

reduces in our case to

\begin{equation}
\nu^2_n = (X_{n,2} - X_{n,1})^2 (n-1)(n^2+n-1)/n \quad (\sim \{n(X_{n,2} - X_{n,1})\})^2 .
\end{equation}

For a terminal contact of order $m(\geq 0)$, we define

\begin{equation}
b_{n,m} = \{nf(m)(\theta)/(m+1)!\}^{1/(m+1)} , \quad a_m = 1/(m+1) .
\end{equation}

Then, the limiting distribution of $b_{n,m}(\hat{\theta}_n - \theta)$ is known to be

\begin{equation}
\Lambda_m(x) = \begin{cases} 0 , & x \leq 0 , \\
1 - \exp(-x^{m+1}) , & x > 0 .
\end{cases}
\end{equation}

Also, by Theorem 3.1 of Sen (1961), as $n \to \infty$,

\begin{equation}
b_{n,m} E(X_{n,r} - \theta) = \frac{r+a_m}{r+o(1)} , \quad \text{for every (fixed) } r(\geq 1) .
\end{equation}

3. BASIC PROPERTIES OF JACKKNIFING

It follows from (2.4) that

\begin{equation}
n(\theta_n^* - \theta) = n(X_{n,1} - \theta) - (n-1)(X_{n,2} - X_{n,1})
= (2n-1)(X_{n,1} - \theta) - (n-1)(X_{n,2} - \theta) .
\end{equation}
Hence, from (2.9) and (3.1), we obtain that for a terminal contact of order \(m \),

\[
(3.2) \quad b_{n,m} E(\theta_n^* - \theta) = (1-a_m) \left[\frac{1+a_m}{1+a_m} + o(1) \right]
= (1-a_m) \{ b_{n,m} E(\theta_n^* - \theta) \} + o(1) .
\]

For \(m = 0 \) i.e., \(a_m = 1 \), the right hand side (rhs) of (3.2) converges to 0, as \(n \to \infty \), while for \(m \geq 1 \) (i.e., \(a_m \leq \frac{1}{2} \)), jackknifing leads to effectively 100(1-a_m)% reduction in bias. Thus, the basic role of jackknifing is partially impaired for a terminal contact of order \(m(\geq 1) \).

Theorem 1. For a terminal contact of order \(m(\geq 0) \),

\[
A^*_n(x) = \lim_{n \to \infty} n^{\frac{1}{2}} \exp \left\{ \int_0^x \exp \left\{ \frac{a_m}{m+1} \right\} dy \right\}, \quad -\infty < x \leq 0 ,
\]

\[
= \begin{cases}
1 - \exp \left(-x^{m+1} \right) + \int_x^\infty \exp \left\{ \frac{a_m}{m+1} \right\} dy, & x > 0,
\end{cases}
\]

where \(a_m \) and \(b_{n,m} \) are defined by (2.7).

Proof. Let \(Z_n = b_{n,m}(\theta_n^* - \theta) \) and let

\[
(3.4) \quad Y_n^{(1)} = nF(X_n,1) \quad \text{and} \quad Y_n^{(2)} = n[F(X_n,2) - F(X_n,1)] .
\]

Then, by (2.1), (2.2), (2.7), (3.1) and (3.4) and proceeding as in the proof of Theorem 3.1 of Sen (1961), we obtain that

\[
(3.5) \quad E[Z_n - 2Y_n^{(1)} + (Y_n^{(1)} + Y_n^{(2)})^{a_m}]^2 \to 0 \quad \text{as} \quad n \to \infty .
\]
and hence, by the Chebychev inequality, we have

\[(3.6) \quad \Lambda^*_m(x) = \lim_{n \to \infty} \Pr\left\{2Y_{n(1)}^m - (Y_{n(1)} + Y_{n(2)})^m \leq x \right\}, \quad \forall -\infty < x < \infty.\]

We may recall that \(Y_{n(1)}\) and \(Y_{n(2)}\) are asymptotically independently distributed according to a common simple exponential law and they are non-negative rv's. For \(x \leq 0\), \(\left[2Y_{n(1)}^m - (Y_{n(1)} + Y_{n(2)})^m \leq x \right] \iff \left[Y_{n(2)} \geq \left(2Y_{n(1)}^m - x\right)^{m+1} - Y_{n(1)}^m\right]\) and the first equation in (3.3) follows directly by finding the conditional probability given \(Y_{n(1)}\) and then integrating it out over \(Y_{n(1)}\). For \(x > 0\), if \(Y_{n(1)} \leq x^{m+1}\), then \(2Y_{n(1)}^m - (Y_{n(1)} + Y_{n(2)})^m \leq Y_{n(1)}^m\), while for \(Y_{n(1)} > x^{m+1}\), as before we need \(Y_{n(2)} \geq \left(2Y_{n(1)}^m - x\right)^{m+1} - Y_{n(1)}^m\), and hence, the last equation in (3.3) follows on parallel lines. Q.E.D.

For \(m = 0\) (i.e., \(a_m = 1\)), \(\Lambda_m^0\) in (2.8) is the simple exponential while \(\Lambda_m^0\) in (3.3) is the double exponential df. For \(m \geq 0\), \(\Lambda_m^0\) and \(\Lambda_m^*\) are not the same df.

Theorem 2. For a terminal contact of order \(m(\geq 0)\),

\[(3.7) \quad \lim_{n \to \infty} \left\{E\left[\frac{b_n^2}{n,m}(\hat{\theta}_n - \theta)^2\right]\right\} = \left\{1 - \frac{2a_m(1-a_m)}{1+a_m}\right\}\lim_{n \to \infty} \left\{E\left[\frac{b_n^2}{n,m}(\hat{\theta}_n - \theta)^2\right]\right\} = \left(2a_m^2(1 - 2a_m(1-a_m)/(1+a_m))\right).\]

Proof. Since \(\hat{\theta}_n = \chi_{n,1}^\prime\) by an appeal to Theorem 3.1 of Sen (1961), we get that

\[(3.8) \quad b_n^2 E(\hat{\theta}_n - \theta)^2 + \frac{1+2a_m}{1+2a_m} = 2a_m(1-a_m) > 0.\]

Hence, to prove (3.7), by (3.5), it suffices to show that as \(n \to \infty\),
Towards this, we may note that

\[E \left(\frac{2a_m}{n(1)} - Y_n(1) + Y_n(2) \right)^2 + 2a_m \left[\frac{2a_m}{1 - 2a_m (1-a_m)/(1+a_m)} \right] . \]

For \(m = 0 \) (i.e., \(a_m = 1 \)), the second factor on the rhs of (3.7) is equal to 1, so that both \(\hat{\theta}_n \) and \(\theta_n^* \) have the same asymptotic variance, though their df's are not the same. For \(m \geq 1 \) (i.e., \(a_m \leq 1/2 \)), \(2a_m (1-a_m)/(1+a_m) > 0 \) and is bounded from above by 1/3. Thus, from (3.2) and (3.7) we have that jackknifing reduces both the asymptotic bias and the asymptotic mean square to a fractional extent. This characteristic is different from the regular case where there is a complete reduction of asymptotic bias but no reduction of the asymptotic mean square.

From (2.6), (2.7) and (3.4), it follows that for a terminal contact of order \(m(\geq 0) \),

\[(3.10) \quad \left| n^{-1} b_{n,m} v_n - \left\{ (Y_n(1) + Y_n(2))^a_m - Y_n(1) \right\} \right| \overset{p}{\to} 0, \quad \text{as} \quad n \to \infty . \]

Since \((Y_n(1) + Y_n(2))^a_m - Y_n(1) + \left\{ (Y_1 + Y_2)^a_m - Y_1 \right\} \), where \(Y_1 \) and \(Y_2 \) are i.i.d.r.v. having the simple exponential df on \([0, \infty)\), \(n^{-1} b_{n,m} v_n \) either converges to a positive constant (when \(m = 0 \)) or goes to 0 (when \(m \geq 1 \)), it follows that either (for \(m = 0 \)) \(v_n \) has a non-degenerate asymptotic df.
or (for \(m \geq 1 \)) it goes to \(+\infty\), in probability as \(n \to \infty \). This characteristic is also different from the regular case where \(v_n \stackrel{P}{\to} \) a constant, as \(n \to \infty \). Nevertheless, for the studentized form, we have for a terminal contact of order \(m(\geq 0) \),

\[
T_n = n(\theta^*_n - \theta) / v_n = \frac{b_{n,m}(X_{n,1} - \theta)}{b_{n,m}(X_{n,2} - X_{n,1})} - (n-1)/n
\]

\[(3.11) \quad + \, o_p(1) \frac{a_m}{Y_1} \left\{ (Y_1 + Y_2) \frac{a_m}{Y_1} - Y_m \right\} - 1 , \]

so that noting that \(Y^* = Y_2 / Y_1 \) has the Fisher's variance-ratio distribution with degrees of freedom \((2,2)\), we have from (3.11) that

\[
(3.12) \quad \left[1 + (1 + T_n)^{-1} \right]^{m+1} - 1 \, \frac{a_m}{Y_1} Y^* = Y_2 / Y_1 .
\]

For \(m = 0 \), we have a simplified form

\[
(3.13) \quad T_n + 1 \, \frac{a_m}{Y_1} Y_2 = Y^* .
\]

Both (3.12) and (3.13) have important statistical applications.

4. A MODIFICATION OF \(\theta^*_n \)

We have observed in (3.2) that for \(m \geq 1 \), \(b_{n,m} E(\theta^*_n - \theta) \) does not converge to 0 as \(n \to \infty \). Let \(C_n \) be the sigma-field generated by \(X_{n,1}, \ldots, X_{n,n} \) and by \(X_{n+j}, j \geq 1 \) (so that \(C_n \) is non-increasing in \(n \)). Then, in the regular case, [cf. (2.11) of Sen (1977)], we have

\[
(4.1) \quad \theta^*_n - \hat{\theta}_n = (n-1) E((\hat{\theta}_n - \hat{\theta}_{n-1}) | C_n) .
\]
In our case, for \(m \geq 1 \), \(\frac{b_{n,m}}{c_{n,m}} E(\hat{\theta}_n - \hat{\theta}_{n-1}) = -a_m \frac{1 + a_m}{1 + a_m} + o(1) \), where as
\(\frac{b_{n,m}}{c_{n,m}} E(\hat{\theta}_n - \theta) = \frac{1 + a_m}{1 + a_m} + o(1) \), and thereby, we get the resulting bias in (3.2). To eliminate the, we may consider the modified estimator

\[
(4.2) \quad \hat{\theta}_{n,m} = \frac{1}{a_m} E\{(\hat{\theta}_n - \hat{\theta}_{n-1})|c_n\}
\]

\[
= X_{n,1} - (m+1)n^{-1}(n-1)(X_{n,2} - X_{n,1})
\]

In that case, we have

\[
(4.3) \quad \frac{b_{n,m}}{c_{n,m}} E(\hat{\theta}_{n,m} - \theta) \to 0 \text{ as } n \to \infty.
\]

Also, following the same line as in the proof of Theorem 1, we obtain that

\[
A_{m}^{**}(x) = \lim_{n \to \infty} \{b_{n,m}(\hat{\theta}_{n,m} - \theta) \leq x\}
\]

\[
= \begin{cases}
\int_{0}^{\infty} \exp\left\{ - \frac{a_m^m}{a_m^m} \right\} dy, & -\infty < x \leq 0 \\
1 - \exp\{-x^{-m+1}\} + \int_{x^{-m+1}}^{\infty} \exp\left\{ - \frac{a_m^m}{a_m^m} \right\} dy, & 0 < x < \infty
\end{cases}
\]

Also, following the line of proof of Theorem 2, we have

\[
\lim_{n \to \infty} E\left\{b_{n,m}(\hat{\theta}_{n,m} - \theta)^2\right\} = \left(2a_m \frac{2a_m}{2a_m} \right) \left(1 - \frac{2a_m}{1 + a_m} (m+1)a_m - 1\right) = 2a_m \frac{2a_m}{2a_m}
\]

\[
\left(4.5\right) \quad \lim_{n \to \infty} E\left\{b_{n,m}(\hat{\theta}_n - \theta)^2\right\} \geq \lim_{n \to \infty} E\left\{b_{n,m}(\hat{\theta}_n - \theta)^2\right\}.
\]

Thus, whereas \(\hat{\theta}_{n,m}^{**} \) eliminates bias to the desired extent, it fails to reduce the mean square. In this sense, it is similar to the case of \(\theta_{n}^{*} \) in the regular case. [Though \(A_{m}^{**} \) and \(A_{m}^{*} \) are not the same.]
Finally, for the studentized case, in (3.11)-(3.13), the only changes we need to make is to replace T_n by $T_n + m$; the rest remains the same.

5. SOME REMARKS

We have so far considered the case of the lower end-point. The case of the upper end-point (if finite) follows on parallel lines. Secondly, in practical applications, when the form of F is not specified but the order of terminal contact is assumed to be known [viz., $m = 0$ when F is U-shaped or inverted J-shaped, etc.], the studentized form in (3.11)-(3.13) may most conveniently be used to provide a jackknife test for a null hypothesis $H_0: \theta = \theta_0$ (specified) or a confidence interval for the unknown θ. For a symmetric df with both end-points finite, jackknifing of the extreme mid-range (for estimating or testing for the location of the df) can be made — the jackknife estimator corresponding to the smallest and the largest order statistic are also asymptotically independent.

REFERENCES

Sample extreme values are biased estimators of the end-points of a distribution, and hence, jackknifing is useful. However, the properties of jackknifing in such a case differ considerably from those in the regular case. These are studied here. Along with modification of jackknifing, some applications are also considered.