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SECTION I

INTRODUCTION

In a recent study dealing with'reliabilityvbased criteria
for design, inspection and fleet management of USAF aircraftlt
an effort has been made to incorporate into the reliability
evaluation scheme the direct or indirect effect of material
selection, geometrical configuration (in terms of either fail
safe or slow crack growth model), mission spectra,.inspection
procedures, proof load test, design practice and analysis method.
This study has not only provided an adequate analytical frame-
work for the current effort toward implementation of reliability-
based criteria but also identified a number of difficulties
which should be alleviated, if not totally removed, by means
of a continued study before reliability-based criteria can be
accepted and implemented with sufficient engineering confidence.
Among the items on which the study recommended a continued
investigation is the scatter factor which has been a part of
the conventional design procedure and at the same time is
closely related to the reliability of aircraft structures as
recently demonstrated by Freudenthalz.

The general framework for the development of reliability-

based criteria for aircraft must emerge as a compromise among

the applicability of rigorous analytical procedures, the

* Numerals indicate references listed on p, 72.




availability of pertinent data and the requirements of ready
implementation of such criteria. These requirements therefore
should provide a format that makes it reasonably simple to
translate design procedures and design-decision processes
currently in use in the U. S. Air Force and in the airframe
industry into formally not too dissimilar procedures and
processes which reflect, however, the new probabilistic con-
cept of engineering reality. The scatter factor indeed has
such dual characteristics. Also, the scatter factor, being
probably the only quantity based on the full-scale test, plays
a crucial role in the certification and reliability demonstra-
tion procedures.

In the study performed here, introduced is a definition of
the scatter factor that is rational and at the same time can
directly be related to the reality of aircraft design and cer-
tification as well as of the full-scale and also coupon fatigue
tests of structural elements or components. Specifically, the
scatter factor will be defined as the ratio of the MLE (maximum
likelihood estimate) of the scale parameter of the two-parameter
Weibull distribution assumedly describing the life distribution
of structural elements or components, to the "time to first
failure" among a fleet of nominally identical elements or
components subjected also to nominally identical operating con-
ditions. Freudenthal has used in Ref. 2 the same definition of
the scatter factor, however, under much simplified conditions:

He assumes that the shape parameter of the Weibull distribution




is known., This assumption is mathematically highly expedient
since it permits the derivation of the distribution of the

scatter factor in closed form and independent of the unknown

scale parameter as demonstrated in Ref. 2. Unfortunately,
however, such an assumption is inconsistent with reality where
the Weibull shape parameter easily ranges from 2.0 to 10.0,
reflecting the fact that structural elements or components
suffer from a variety of sources of randomness in fatigue
strength; not only from the probabilistic variation of the
material property but also from the statistical variation in
workmanship associated with, for example, drilling rivet holes
in the process of airframe fabrications.

The mathematical difficulty multiplies when the Weibull
shape and scale parameters are both assumed to be unknown.
The proposed Monte Carlo simulation approach can overcome the
difficulty and produce results amenable to practical applicg—

tions.




SECTION II

CRITICAL REVIEW OF FREUDENTHAL'S SCATTER FACTOR

Recently, Freudenthal published a paper2 proposing a
statistical interpretation of the scatter factor to be used
in the reliability assessment of aircraft structures. The
essence of his paper is briefly described below.

Consider a two-parameter Weibull distribution for the
life t of a structure (or a structural component):

t o

Fo(t) =1 - exp[- (—) 1] (1)
B

where it is assumed that the shape parameter o is known while
the scale parameter B 1is unknown. The maximum likelihood

estimate (MLE) of B is given by
~ n
B = — ) &/ (2)

01’ t02, ..... ’ toh indicating a sample of size n taken

from the distribution given by Eg. 1.

with t

Let tl represent the time to first failure (minimum life)

in a fleet of m aircraft (fleet size = m). Then, the distri-

bution function of t1 is given by

tl o
Fi(t)) =1 - expl = (——) ] (3)

B1




where

8, = &/m/® (4)

Freudenthal defines the scatter factor S as
S = B/tl (5)

and shows that the distribution of § is given by

SOL n

Fo(s) = [ ————— ] (6)
S (m/n) + g%

In deriving Eq. 6, the fact has been used that 2n(g/g)% is

distributed as x2 with 2n degrees of freedom and hence the

density function of B is given by

n N

n o B an-1 A o

«( ) expl[-n(B/B) ] (7)
I'(n) B B

£,(g) =
N
It then follows that the density function of z = B/B is

n
g,(z) = a2 Lexpr-nz®] (8)

T'(n)

Consider, at this point, the following transformations:

N a _ 1 o
(B/B) " = o (toi/B) (9)

<
]

e~

i=1

and

w= (t,/8)° (10)

Note that (toi/B)a is exponentially distributed with unit mean




value (indeed, Eg. 7 follows from this fact) and that (tl/s)a
is also exponentially distributed but with mean value equal to
1/m. Therefore, it is easy to generate sample pairs of v and
w by Monte Carlo techniques and at the same time compute the
sample values of the ratio v/w therefrom. This ratio can be

written from Egs. 9 and 10 as

v/w = (8/t))° (11)
and hence

s = g/t, = (v/w)/® (12)

Since o has been assumed to be known, sample values of
scatter factor S can be generated by means of Eq. 12. 1Indeed,
the use of such a Monte Carlo simulation with the size of the
(simulated) sample as large as 999 has resulted in a satisfac-
tory result in producing the distribution of scatter factor S
for the case of m = 3, n =1 and a2 = 4.0 as shown in Fig. 1.

Although the agreement just observed between the simula-
tion and the theory is for a particular set of parameter wvalues,
i.e., m=3, n=1, a = 4.0, it is expected that the sample size
of the order of magnitude of 1,000 will be sufficiently large
for the type of simulations to be performed later in which no
theoretical distribution is available for comparison purposes.

*
Define now t, as the service life specified for the fleet

1
or equivalently as the specified minimum life in the fleet.

Define also the fleet reliability R as




o *
R =P{t; > t;} (13)

which indicates the probability that the time to first failure
in the fleet will be larger than or equal to the specified value.

In Ref. 2, however, Freudenthal implied that the probability
R' = P{S < B./t0) (14)
= < B/t

e
should be used for the fleet reliability, where BO now indicates
o)
a realization of random variable B. With the aid of Egs. 3 and

4, the fleet reliability can be written as
* o
R = exp[ - m(ty/8)"] (15)
while R' in Egq. 14, with the aid of Eq. 6, becomes

(Bo/tl) n

R' = [ - ] (16)
m/n + (By/t))°

Obviously R and R' are not identical. The difference can be
more clearly demonstrated by rewriting Egs. 13 and 14 respec-

tively as

R = £ (t.) £, (8)dt,dg (17)
D{éDZ 17172 1

R' = £ (t.)£.(R)dt.dp (18)
D{£D3 17172 1

where the domains of integration DlUD2 (Dl union Dz) and DlUD3



are shown in Fig. 2. The domain D1U Dy in Eg., 18 can be
obtained by adding D3 to and subtracting D2 from the correct
domain of integration DlU D2. Note that D3 represents a con-
servative addition and D, an unconservative subtraction.

To demonstrate that R' may be used as an approximation to
R, consider the expected value E[R'] of R';

[eo]

E[R'] = | R'fz(é)dé = R'g, (z)dz (19)
0 0

where R' and fZ(é) in the integrand of the second member are

to be replaced by the right hand sides of Egs. 16 and 7 respec-
tively. The integration then depends on t*, B and m. These
quantities are related, however, in the following fashion

through Eqg. 15.

-(2&n R)/m (20)

LN

* A
With the aid of Eg. 20, tl and m in Eg. 16 (with BO being re-
placed by B) are eliminated and furthermore with the aid of the

definition z = B/B, Eg. 16 becomes

(8/8)° 2%
—— 1™ =0 "
(B/B)" - (&n R)/n z- - (n R)/n

(21)

R' = [

Substituting Egs. 8 and 21 into the third member of Eq.

19, one obtains



© nz n on an~1 a
E[RY] = [ [ - ] z  “expl-nz ldz (22)
0 nz -« &n R T (n)
Similarly,
5 o nz® 2n on® on-1 o
E[(R")"] = f [— ] z expl[-nz ]dz (23)

3
0 nz® - 2n R I'(n)

The standard deviation Opt of R' can easily be obtained from
Egs. 22 and 23.

The integrals in Egs. 22 and 23, now independent of m,
are evaluated numerically for o = 0.5, 1.0, 2.0, ...., 10.0,
R=20.5, 0.6, ...., 0.9, 0.99, 0.999, 0.9999 and n =1, 2, ...,
10. The ratios E[R']/R for these &alues of R are then plotted
as functions of o in Figs. 3 - 12 for n=1, 2, ...., 10, res-
pectively. Also, the coefficients of variation Vo = OR./E[R']
of R' are plotted as functions of a for the same values of R
and n in Figs. 13 - 22. One observes from these results the
following general trend.

1) As ao increasés, so does the ratio E[R']/R. However,
except for a sharp increase observed between g = 0.5
and 1.0, the rate of increase is small. In fact, the
ratio is almost constant for those values of a > 2.0
which include a practical range of o between 2.0 and
5.0.

2) For the same value of R, the ratio is closer to unity

for a larger value of n.

3) The ratio is not necessarily larger for a larger value



of R, although numerical results indicate that E[R']
monotonically increases as a function of R with all
other parameters kept constant.

4) As o increases, the coefficient of variation VR' of
R' decreases. Except for a sharp decrease observed
between o = 0.5 and 2.0, however, the rate of decrease

is small. The coefficient is almost constant for

5) For the same value of R, the coefficients are smaller
when n is larger.

6) The coefficients are smaller for a larger value of R.

For example, the ratio E[R']/R is nearly equal to 0.950
for R = 0.5 and n = 1 (Fig. 3). This may give an impression
that the approximation is acceptable. However, the fact that
the corresponding coefficient of variation VR' is as large as
0.50 (Fig. 13), proves that -the impression is unsubstantiated.
As n increases to 5 and to 10 (while R = 0.5 is kept constant),
the ratio E[R']/R increases to 0.970 and to 0.982 (Figs. 7 and
12) and at the same time, the coefficient VR' decreases to 0.30
and to 0.22 respectively (Figs. 17 and 22), thus making the
approximation more reasonable. For R = 0.9, however, the appro-
ximation appears to be reasonable since then the ratios are
0.88, 0.98, 0.99 and the coefficients are 0.27, 0.07 and 0.05
respectively for n = 1, 5, and 10. Tables 1 - 3 summarize such
observations for selected values of R, ¢ and n. The last column
in Tables 1 - 3 lists the value of Freudenthal's scatter factor
corresponding to E[R'] for different values of m.

- 10 -




SECTION III
STATISTICAI. SCATTER FACTOR WITH UNKNOWN

SHAPE AND SCALE PARAMETERS

It is well known that, when the shape and scale parameters
of the two parameter Weibull distribution given in Eg. 1 are
both unknown, the MLE o of o and MLE § of B are obtained from

the following simultaneous egquations:

n v o
n= 7 (ty;/8)% (24)

~ ~

o 2\ 0 ¥, O
= iZl[(toi/B) - 1]2n(t0i/8) (25)

=]
|

where, as before, tOl’ t02’ e ey ton indicate a sample of size
n taken from the Weibull distribution. In this case, the statis=-
tical scatter factor Q is introduced in the following form as a

natural extension of S given in Eqg. 5.
Q= B/t (26)

Defining y(i), u and v0 as

y(i) = (tq,/8)° (27)

u = a/a (28)
and

vy = (B/8)° (29)

one can rewrite Egs. 24 and 25 respectively in the following forms,

- 11 -




n
vy = [ ) y*(1)/mt/ (30)

0 i=1
o u n u
op(u) = Yy (D)eny(i)/ [y (i) - 1/u -
i=1 i=1
n
Y a4n y(i)/n =0 (31)
i=1

Since y(i) is exponentially distributed with mean value equal
to unity, the joint distribution of u and v, can be obtained
through Egs. 30 and 31 by the Monte Carlo simulation technique-
All that one is required to do is to generate y(i) (i =1, 2, ..
...y, n), use them in Egs. 30 and 31, solve these two equations for

u and v and repeat the process N times. This will produce

0’
a simulated sample of u and Vo pairs of size N. Independently
of the simulation of u and Vo generate again a (simulated)
sample of w (Egq. 10) of size N.

By means of the Monte Carlo simulation technique just

described, Whittaker and Besuner3 constructed the empirical

distribution functions of u* and va defined as

u* = 1/u (32)
vh = vyt = (B/8)° (33)

These empirical distributions are simulated, based on samples
of size 1,999, and are shown in Figs. 23 and 24 respectively.
The comparison of current simulation results with those in Ref.

3 indicates that the accuracy of the current simulation is

- 12 -




generally comparable with that of Ref, 3,

Since
o = (B/t% = (B/8)%/(£,/8)% = v /w (34)

it follows that

A

o* = % = (vy/w)" (35)

The last equation indicates that the distribution of Q* can be
constructed with the aid of u, 0 and w generated above. For the
ease of application, however, the distribution of the logarithm

Z of Q%,
Z = log,,0* = u loglo(vo/w) (36)

is constructed and plotted in Figs. 25 - 29 (respectively for
m= 1,3,5,25,and 100), where solid circles indicate the values
of the empirical distribution function of Z based on samples of
size 1,999. Solid curves are drawn through these circles by
interpolation. Similarly, Fig. 30 plots the empirical distri-
bution of Z for various values of m when n = 3.

Having thus established the empirical distribution of Z,

define the probability R" as

~ N

R" = P{Q < B/t]} = P{0® < (B/t))%) (37)

- 13 -




This probability R" is similar to Freudenthal's fleet relia-
bility R' defined by Eg. 14 and can be expressed, with the aid

of Egs. 35 - 37, as

N

R" = P{Z < loglo(é/tz)a} (38)

* N
In Egs. 37 and 38, t, is the specified minimum life, and o

1

and é represent realizations of the maximum likelihood estimates
of o and B based on a sample of size n taken from Eq. 1; tOl’
t02, ceney tOn‘ The empirical distribution of Z, such as is
established numerically and graphically, for example, in Fig.
25, can thus be used to find the probability R" given a sample
of t.

Since one can show with the aid of Eg. 20 that

~

mv

B/t = (——2—)% (39)
¢n(1l/R)
Eg. 38 can be written as
mv mv
R" = P[Z < u log; ,{———}1 = F,[u log, {———1}] (40)
2n(1/R) tn{(l/R)

where FZ[-] is the (cumulative) distribution function of Z.
In the computation that follows, empirical distributions such
as those obtained in Figs. 25 - 30 are used in place of FZ[-].
The expected values of (R")k, where k is a positive integer,

can then be evaluated as




k RN ™o
EL®RMT] = J J Fylulog;g{—-—3 1 - £,, @vy)dudvy (41
00 ¢n (1/R) 0

Obviously, the expected value of R" is obtained as E[R"] and

the variance of R" as Var[R"] = E[(R")z] - E2[R"]. In Eg. 41,
qu0(~, ) is the joint density function of u and Vi which

can be evaluated empirically by making use of Egs. 30 and 31.

In fact, the random variables u* = 1/u and V6 = VOu considered
before have joint distribution resulting from the same under-

lying dependence as for u and v, and the empirical distributions

0
shown in Figs. 23 and 24 are their respective marginal distri-
bution functions. The (two-dimensional) histograms of u and 0
are shown in Figs. 31 - 35 for the cases n = 2, 3, 5, 10 and
20, each on the basis of a simulated sample of N = 1,999 pairs
of u and Voe The empirical density can then be obtained by
dividing the frequency in the histogram by 1,999. The sum of
the frequency values in each of these histograms may not add
up to 1,999 because some the (simulated) observations fell out-
side of the domain of u and v0 considered here; u = 0 - 20 and
Vg = 0 - 4.

Making use of the empirical distribution of Z and the
empirical density of u and Vg, one can evaluate Eq. 41 for
k = 1 and 2 and hence find the mean value and the coefficient
of variation Vpn of R". The results of computation are shown
in Figs. 36 - 40 with R as abscissa for the cases n = 2, 3,

5, 10 and 20, and also in Figs. 41 - 45 with E[R"] as abscissa.

Similar to Tables 1 - 3, Tables 4 - 8 summarize these results

-15-




for selected values of R, m and n. In Tables 4 -8, however,

the values of Q* corresponding to the fleet reliability R =

E[R"] are listed in place of S.

The following observations can be made on the basis of

these results.

1)

2)

3)

The ratio E[R"]/R increases as n and R increase but
decreases as m increases. For the ranges of n, R and
m examined here, the smallest (worst) is 0.655 (n = 2,
R = 0.95 and m = 100) while the largest (best) is
0.995 (n = 20, R = 0.999 and m = 1). This indicates
that E[R"] and R are essentially of the same order of
magnitude in these ranges of n, R and m.

The coefficient of variation VR" decreases as n and R
increase while it increases as m increases.

On the basis of the observations (1) and (2) above,
one can determine for what combinations of n, R and

m the fleet reliability R" based on the scatter factor
(computed from Eq. 37) can be used as an approximation
in place of the (true) fleet reliability R. For
example, if one considers a coefficient of variation

v less than or equal to 0.20 as acceptable, the

R"
fleet size m must be less than or equal to 5 at the
reliability level of 0.99 for R" to be acceptable if
n = 2 (see Fig. 36) whereas R" may be used in place

of R even with the fleet size as large as m = 100 at

the same level of fleet reliability of .99 if n = 20

(see Fig. 40).
_16_..



Figs. 41 - 45 are particularly useful in practical

N
%0
respectively on a sample of size n can be used in Eq.

) " hd
applications. Realizations and Bo of o and B

38 to obtain a realization of RB of R". Actually, this

is done by reading the value of R" from Figs. 25 - 30.
Diagrams showing VR" as a function of E[R"] in Figs.

41 - 45 then indicate whether RS just obtained can be

used for E[R"] depending on the fleet size m and the

sample size n: If Vgn corresponding to E[R"] = Rg is

small (say, less than 0.20) for m and n under consider-

0

approximation. Using this value of E[R"] in the diagrams

ation, E[R"] may indeed be considered equal to R} in

showing E[R"]/R as a function of E[R"] in Figs. 41 - 45,
we can estimate the corresponding value of R. As this
process of .evaluating R suggests, Figs. 41 - 45 impli-
citly indicate for what combinations of m, n and the

specified value of VR" the probability RB can be used

as an approximation to R. If the value of VR" corres-

ponding to Ra (replacing E[R"] in Figs. 41 - 45) exceeds

the specified value of V for a particular set of m and

R"

n, then one or any combination of the following should

be implemented to make RS a better approximation to R:

(a) The fleet size m to be considered should be reduced.

This requires a reevaluation of RS. (b) The sample size

n should be increased. This requires testing of an addi-
tional number of structural components and a reevaluation

of RB

t; should be reduced. This requires a reevaluation of RO'

based on that, and (c) the specified minimum life

- 17 -




SECTION IV

CONCLUSION

The concept of the statistical scatter factor has been
applied to the case where the parent distribution of the fatigue
life of aircraft or their components is a two-parameter Weibull
with both shape and scale parameters being unknown. Procedures
have been established to evaluate the scatter factor in its
extended form wusing the maximum likelihood estimates of the
parameters. The fleet reliability can then be estimated on the
basis of the scatter factor of extended form thus evaluated.

The effect of the sample size to be used in the fatigue test,
of the fleet size and of the reliability level on the accuracy

of such estimation has also been discussed.

- 18 -
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Fig. 1. Distribution function of scatter factor.
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Table 1
Values of E[R'], EIR']/R, Vx' and gcatter Factors for

n=1

S

R o {E[R'] {EIR']/F Vg m=1 m=5 m=25
2 {0.475 | 0.950 [0.488 [0.951 |2.13 | 4.76
0.5 3 10.475 | 0.950 {0.488 [0.967 |1.65| 2.83
4 10.475 [0.950 ]0.488 )0.975 |1.46 ] 2.18
5 10.475 {0.950 0.488 [0.980 |1.35} 1.87
2 [0.792 10.880 [0.253 {1.95 4.36 ] 9.76
0.9 3 [0.792 {0.880 |0.253 |1.56 2.67 | 4.57
’ 4 [0.792 [ 0.880 10.253 |1.40 2.09 | 3.12
5 |0.792 [ 0.880 (0.253 (1.31 1.80 ] 2.49

2 [0.959 [ 0.969 |0.0931({4.84 %0.8 24.2
0.99 | 3 ]0.959 10.969 ]0.0930]2.86 4.89 | 8.37
4 10.959 |0.969 |0.0930(2.20 3.29 ] 4.92
5 |0.959 [{0.969 |0.0930/1.88 2.59 | 3.58
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Table 2

Values of E[R'], E[R']/R, VR' and Scatter Factors for

n=>5
S
R o |E[R'] [E[R']I/R} Vg =1 =5 [m=25
2 (0.485 {0.970 0.296 1.13] 2.53 |{ 5.67
0.5 3 [(0.485 [0.970 0.296 1.09] 1.86 | 3.18
4 ]0.485 |0.970 0.296 1.06] 1.59 | 2.38
5 10.485 (0.970 0.296 1.05] 1.45 {2.00
2 10.881 [0.979 0.0661 (2.79] 6.23 113.9
0.9 3 j0.881 |0.979 0.0661 (1.98 3.39 |5.79
4 10.881 |0.979 0.0661 |1.67 ] 2.50 | 3.73
5 10.881 [0.979 0.0661 (1.511 2.08 |2.87
2 10.988 (0.998 0.00721 (8.93 ]20.0 44.7
0.99 |3 [0.988 (0.998 0.00717(4.31 ) 7.36 [12.60
4 10.988 ]0.998 0.007171(2.99 | 4.47 | 6.68
5 10.988 0.998 0.007171432.40 | 3.31 | 4.57

-65~




Table 3

Values of E[R'], E[R']/R, Vi and Scatter Factors for

n =10
S

R o |E[R'] [E[R']/R| Vg m=1 m=5 m=25
2 {0.491 {0.982 0.216 1.16 | 2.60 |5.82

0.5 3 10.491 10.982 0.216 1.11 11.89 {3.24
: 4 [0.491 |0.982 0.216 1.08 {1.61 {2.41
5 10.491 | 0.982 0.216 1.06 }]1.47 | 2.02

2 /0.891 {0.990 0.0396 2.93}16.56 4.7

0.9 3 10.891 |0.990 0.0396 2.05 | 3.50 [5.99
) 4 10.891 |0.990 0.0396 1.7112.56 | 3.83
5 10.891 ] 0.990 0.0396 1.54 12,12 |2.93

2 10.989 | 0.999 0.00413 | 9.47 [21.2 ¥47.3

0.99 |3 [0.989 | 0.999 0.00406 4.47 1 7.65 [13.1
4 10.989 §10.999 0.00407 3.08) 4.60 ) 6.88
510.989 | 0.999 0.00418 2.46 | 3.39 | 4.68
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Values

of E[R"], EIR"]/R, Vgn and Q* for n

Table 4

2.

R m E[R"] E[R"]/R Viaw Q*
1 0.789 0.876 0.184 5.46 % 10
3 0.720 0.799 0.262 6.08 x 10°
0.9 5 0.690 0.767 0.300 1.90 x 10°
25 0.624 0.693 0.392 7.72 % 10
100 0.594 0.660 0.435 2.07 % 10°
1 0.835 0.879 0.144 2.07 % 10°
3 0.760 0.800 0.223 1.83 x 10
0.95 5 0.730 0.768 0.260 5.73 % 10
25 0.657 0.691 0.353 2.54 x 10"
100 0.622 0.655 0.399 8.96 x 10°
1 0.888 0.897 0.103 4.20 x 10°
3 0.821 0.829 0.169 3.35 x 10
0.99 5 0.791 0.799 0.201 8.49 % 10
25 0.716 0.723 0.286 2.98 x 100
100 0.675 0.681 0.335 72.81 % 10
1 0.925 0.926 0.075 2.00 x 10°
3 0.869 0.870 0.125 1.71 x 10°
0.999 5 0.843 0.844 0.152 4.55 x 10°
25 0.772 0.773 0.228 1.16 x 10°8
100 0.729 0.730 0.275 2.98 x 10°
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Table 5

Values of E[R"], E[R"]/R, VR' and Q* for n = 3.

R m E[R"] E[R"]/R Vg Q*
1 0.817 0.908 0.162 |1.68 x 10
3 0.756 0.840 0.230 [7.71 % 10
0.9 5 0.728 0.809 0.265 |1.62 x 102
25 0.661 0.735 0.354 |1.50 x 103
100 0.626 0.696 0.402 |1.09 x 10"
1 0.868 0.914 0.120 3.88 x 10
3 0.808 0.850 0.185 |1.79 x 10°%
0.95 5 0.780 0.820 0.218 |3.35 x 102
25 0.707 0.744 0.305 |3.55 x 10°
100 0.666 0.702 0.357 [2.29 x 10"
1 0.928 0.937 0.074 2.53 x 10°
3 0.880 0.888 0.121 |1.02 x 108
0.99 5 0.854 0.863 0.149 |1.97 x 108
25 0.785 0.793 0.222 2.31 x 10"
100 0.738 0.746 0.277 1.68 x 10°
1 0.964 0.965 0.047 |4.96 x 10°¢
3 0.930 0.931 0.077 1.59 x 10"
0.999 5 0.911 0.912 0.097 2.78 x 10"
25 0.854 0.855 0.156 2.29 x 10°
100 0.809 0.810 0.202 2.31 x 10°




Table 6

Values of E[R"], E[R"]/R. Vgr and Q* for n = 5
R m E[R"] E[R"]/R Vg Q*

1 0.844 0.937 0.126 1.31 x 10

3 0.801 0.890 0.183 4.51 x 10

0.9 5 0.777 0.863 0.217 7.45 x 10
25 0.710 0.789 0.313 4.61 x 10°?

100 0.669 0.743 0.370 2.76 x 10°%

1 0.895 0.942 0.092 2.62 x 10

3 0.857 0.902 0.136 8.59 x 10

0.95 5 0.835 0.879 0.165 1.44 x 102
25 0.766 0.806 0.256 8.74 x 10°?

100 0.721 0.759 0.316 4.86 x 10°

1 0.955 0.964 0.046 1.33 x 102

3 0.927 0.937 0.077 3.62 x 102

0.99 5 0.912 0.922 0.095 7.10 x 102
25 0.856 0.865 0.160 4.25 x 10°

100 0.808 0.816 0.220 1.96 x 10"

1 0.983 0.984 0.020 1.30 x 108

3 0.970 0.971 0.036 3.92 x 108

0.999 5 0.960 0.961 0.048 8.02 x 108
25 0.924 0.925 0.088 3.63 x 10*
100 0.887 0.888 0.130 1.66 x 10°
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Table 7

Values of E[R"], E[R"]/R, VR" and Q* for n = 10.

R m E[R"] E[R"]/R VRu Q*
1 0.867 0.963 0.096 9.52
3 0.836 0.928 0.142 2.77 x 10
0.9 5 0.819 0.910 0.166 4.73 x 10
25 0.762 0.847 0.258 2.34 x 102
100 0.718 0.798 0.334 9.05 x 102
1 0.920 0.968 0.067 1.68 x 10
3 0.892 0.939 0.106 5.26 x 10
0.95 5 0.877 0.923 0.125 8.83 x 10
25 0.823 0.867 0.196 4.35 x 102
100 0.778 0.819 0.264 1.70 x 10°
1 0.973 0.983 0.026 9.78 x 10
3 0.958 0.968 0.045 2.25 x 102
0.99 5 0.949 0.959 0.057 2.96 x 107
25 0.914 0.923 0.102 1.58 x 10°
100 0.875 0.884 0.154 6.67 x 103
1 0.993 0.994 0.008 4.98 x 10%
3 0.988 0.989 0.014 1.34 x 103
0.999 5 0.985 0.986 0.018 2.19 x 10°
25 0.968 0.969 0.040 8.39 x 10°
100 0.948 0.949 0.065 3.86 x 10"
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Table 8
Values of E[R"], EI[R"]/R, Vgr and Q* for n = 20.
R m E[R"] E[R"]1/R Vin Q*
1 0.875 0.972 0.069 9.17
3 0.856 0.951 0.108 2.58 x 10
0.9 5 0.842 0.935 0.134 4.05 % 10
25 0.786 0.873 0.233 1.92 x 107?
100 0.739 0.822 0.324 7.28 x 1072
1 0.921 0.970 0.051 1.87 x 10
3 0.906 0.954 0.075 5.19 x 10
0.95 5 0.897 0.945 0.090 7.30 x 10
25 0.856 0.901 0.155 3.20 x 102
100 0.810 0.853 0.230 1.12 x 10°3
1 0.974 0.984 0.025 6.71 x 10
3 0.967 0.976 0.035 1.77 x 10?2
0.99 5 0.961 0.971 0.042 2.84 x 1072
25 0.940 0.949 0.070 1.08 x 10°
100 0.912 0.921 0.107 3.58 x 103
1 0.994 0.995 0.007 6.62 x 107
3 0.991 0.992 0.011 2.27 x 108
0.999 5 0.989 0.990 0.013 2.39 x 10°
25 0.981 0.982 0.022 7.27 x 106°
100 0.971 0.972 0.035 2.81 x 10*
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