A LITERATURE REVIEW - PROBLEM DEFINITION STUDIES ON SELECTED TOXIC CHEMICALS

Contract Summary Report

Submitted by
Khizar Wasti, Ph.D.

Principal Investigators
Paul N. Craig, Ph.D.
Jon E. Villaume, Ph.D.
June 1978

Supported by
U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
FORT DETRICK, FREDERICK, MARYLAND 21701

Contract No. DAMD-17-77-C-7020

Project Officer
1st Lt. Carl D. Rowlett
and
Capt. Ronald N. Shiotsuka
Environmental Protection Research Division
U.S. Army Medical Bioengineering Research and Development Laboratory
Fort Detrick, Frederick, Maryland 21701

Approved for Public Release; Distribution Unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
A Literature Review - Problem Definition
Studies on Selected Toxic Chemicals.

Contract Summary Report

Summary

Science Information Department
The Franklin Institute Research Laboratories
The Benjamin Franklin Parkway - Phila. PA. 19103

June 16, 1978

83

Problem Definition Studies (PDS) on potentially Toxic Chemicals were prepared. This report gives an overview of the efforts involved in the preparation of the PDS and the subject areas covered in these studies.

Animal toxicology Environmental fate Industrial hygiene
Aquatic toxicity Environmental impact Pharmacokinetics
Cetyl alcohol Fog oils Phosphorus
Diesel fuel Human toxicology Physical & chemical properties
19. Key Words (continued)

Phytotoxicity
Problem Definition Studies
Resins
Safety aspects

SGF Nos. 1 & 2
Smoke
TNT
Urea-formaldehyde
Zinc chloride
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>CONTRACT SUMMARY REPORT</td>
<td>3</td>
</tr>
<tr>
<td>APPENDIX 1: Table of Contents of the Problem Definition Studies</td>
<td>5</td>
</tr>
<tr>
<td>APPENDIX 2: Executive Summaries of the Problem Definition Studies</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX 3: Sources of the literature search and the personnel contacted for preparing the Problem Definition Studies</td>
<td>40</td>
</tr>
</tbody>
</table>
Problem Definition Studies (PDS) on potentially Toxic Chemicals were prepared. This report gives an overview of the efforts involved in the preparation of the PDS and the subject areas covered in these studies.
The Franklin Institute Research Laboratories prepared Problem Definition Studies (PDS) on potentially Toxic Chemicals under the referenced contract. The following eight Problem Definition Studies were prepared:

1. Occupational Health and Safety Aspects of Diesel Fuel and White Smoke generated from it (Volume 1).
3. Occupational Health and Safety Aspects of 2,4,6- Trinitrotoluene (TNT) (Volume 3).
4. Occupational Health and Safety Aspects of the Fog Oils, SGF No. 1 and SGF No. 2 and Smoke Screens generated from them (Volume 4).
5. Occupational Health and Safety and Environmental Aspects of Zinc Chloride (Volume 5).
8. Environmental Aspects of Diesel Fuels and Fog Oils SGF No. 1 and SGF No. 2 and Smoke Screens generated from them (Volume 8).

The PDS Volume 1 - 4 cover the following subject areas:

1. Physical and Chemical Properties
2. Human toxicology including epidemiology
3. Animal toxicology
4. Pharmacokinetics
5. Industrial hygiene and safety practices and standards
6. Sampling and analysis
7. Recommendations for further research

The PDS Volume 5 - 7 contain all the above mentioned subjects and in addition cover environmental aspects of the respective chemicals including the following topics:

1. Occurrence, dispersion, and fate in the environment
2. Aquatic toxicity
3. - Phytotoxicity

4. - Effects on domestic animals and wildlife

5. - Environmental impact

The PDS Volume 8 covered the environmental aspects of diesel fuel and fog oils, SGF No. 1 and SGF No. 2. The table of contents of all the PDS are included in Appendix 1. The executive summaries of the eight PDS are included in Appendix 2.

The literature search performed for the preparation of the PDS included both manual and the computerized sources. In addition, several books, encyclopedias, and review articles were consulted. Personal contacts were made in order to obtain unpublished relevant information. The complete lists of sources of the literature search and the personnel contacted for each PDS are included in Appendix 3. Copies of each problem definition study have been distributed according to the list provided by USAMRDC. The hard copies of the references cited in the problem definition studies have been provided to the USAMBRDL, Fort Detrick.
APPENDIX 1
Diesel Fuel (Volume 1)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction and Statement of Problem</td>
<td>1</td>
</tr>
<tr>
<td>II. Technical Summary</td>
<td>2</td>
</tr>
<tr>
<td>III. Recommendations and Hazard Analysis</td>
<td>6</td>
</tr>
<tr>
<td>IV. Physical and Chemical Properties</td>
<td>8</td>
</tr>
<tr>
<td>V. Human Toxicity</td>
<td></td>
</tr>
<tr>
<td>A. Conditions and Extent of Exposure</td>
<td>16</td>
</tr>
<tr>
<td>B. Exposure to Aerosols and Vapors</td>
<td>16</td>
</tr>
<tr>
<td>C. Skin Contact</td>
<td>18</td>
</tr>
<tr>
<td>D. Ingestion and Aspiration</td>
<td>20</td>
</tr>
<tr>
<td>E. Long-term Effects and Epidemiology</td>
<td>21</td>
</tr>
<tr>
<td>VI. Animal Toxicity</td>
<td></td>
</tr>
<tr>
<td>A. Exposure to Aerosols and Vapors</td>
<td>23</td>
</tr>
<tr>
<td>B. Ingestion and Aspiration</td>
<td>28</td>
</tr>
<tr>
<td>C. Skin Contact</td>
<td>30</td>
</tr>
<tr>
<td>VII. Pharmacokinetics in Humans and Animals</td>
<td>37</td>
</tr>
<tr>
<td>VIII. Carcinogenicity, Mutagenicity, Teratogenicity</td>
<td>42</td>
</tr>
<tr>
<td>IX. Industrial Hygiene Practices and Standards</td>
<td>43</td>
</tr>
<tr>
<td>X. Sampling and Analytic Techniques</td>
<td>45</td>
</tr>
<tr>
<td>Bibliography</td>
<td>47</td>
</tr>
<tr>
<td>Appendix</td>
<td>53</td>
</tr>
</tbody>
</table>
Phosphorus Smoke Compounds (Volume 2)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures and Tables</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Technical Summary</td>
<td>2</td>
</tr>
<tr>
<td>III. Recommendations</td>
<td>10</td>
</tr>
<tr>
<td>IV. Chemistry of Phosphorus</td>
<td>12</td>
</tr>
<tr>
<td>V. Human Toxicity of Red Phosphorus</td>
<td>20</td>
</tr>
<tr>
<td>VI. Animal Toxicity of Red Phosphorus</td>
<td>20</td>
</tr>
<tr>
<td>VII. Carcinogenicity, Mutagenicity, Teratogenicity of Red Phosphorus</td>
<td>21</td>
</tr>
<tr>
<td>VIII. Pharmacokinetics of Red Phosphorus</td>
<td>21</td>
</tr>
<tr>
<td>IX. Industrial Hygiene and Safety Practices for Red Phosphorus</td>
<td>21</td>
</tr>
<tr>
<td>X. Standards for Red Phosphorus</td>
<td>22</td>
</tr>
<tr>
<td>XI. Human Toxicity of White Phosphorus</td>
<td>23</td>
</tr>
<tr>
<td>A. Acute Effects</td>
<td>28</td>
</tr>
<tr>
<td>B. Chronic Effects</td>
<td>28</td>
</tr>
<tr>
<td>C. Epidemiology</td>
<td>30</td>
</tr>
<tr>
<td>XII. Animal Toxicity of White Phosphorus</td>
<td>32</td>
</tr>
<tr>
<td>A. Acute Effects</td>
<td>44</td>
</tr>
<tr>
<td>B. Chronic Effects</td>
<td>44</td>
</tr>
<tr>
<td>XIII. Inhalation Toxicity of White Phosphorus Smoke</td>
<td>49</td>
</tr>
<tr>
<td>XIV. Carcinogenicity, Mutagenicity, and Teratogenicity of White Phosphorus</td>
<td>54</td>
</tr>
<tr>
<td>XV. Pharmacokinetics of White Phosphorus</td>
<td>55</td>
</tr>
<tr>
<td>XVI. Biochemical Changes in Liver and Blood</td>
<td>61</td>
</tr>
<tr>
<td>XVII. Industrial Hygiene and Safety Practices for White Phosphorus</td>
<td>69</td>
</tr>
<tr>
<td>XVIII. Standards for White Phosphorus</td>
<td>71</td>
</tr>
<tr>
<td>XIX. Sampling and Analysis of Phosphorus</td>
<td>72</td>
</tr>
</tbody>
</table>
XX. Butyl Rubber/Red Phosphorus Smoke Compound 76
XXI. Plasticized White Phosphorus Smoke Compound 79
(White Phosphorus/Butyl Rubber)
XXII. Epoxy White Phosphorus Smoke Compound 80
(White Phosphorus/Epoxy Resin)
Bibliography 82
Appendix 89
PART A. REVIEW OF THE LITERATURE

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. PHYSICAL AND CHEMICAL PROPERTIES</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Abstract Registry Number.</td>
<td>2</td>
</tr>
<tr>
<td>Wiswesser Line Notation.</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Name.</td>
<td>2</td>
</tr>
<tr>
<td>Synonyms</td>
<td>2</td>
</tr>
<tr>
<td>III. HUMAN TOXICITY AND FATALITIES</td>
<td>9</td>
</tr>
<tr>
<td>1. Toxicity to Various Organs.</td>
<td>9</td>
</tr>
<tr>
<td>A. Hepatotoxicity</td>
<td>9</td>
</tr>
<tr>
<td>Detection of liver damage</td>
<td>10</td>
</tr>
<tr>
<td>B. Hemotoxicity</td>
<td>10</td>
</tr>
<tr>
<td>i. Effect on red blood cells</td>
<td>11</td>
</tr>
<tr>
<td>ii. Effect on white blood cells</td>
<td>13</td>
</tr>
<tr>
<td>a. Polymorphonuclear leukocytes</td>
<td>13</td>
</tr>
<tr>
<td>b. Lymphocytes</td>
<td>13</td>
</tr>
<tr>
<td>c. Monocytes</td>
<td>14</td>
</tr>
<tr>
<td>iii. Effect on blood platelets</td>
<td>14</td>
</tr>
<tr>
<td>iv. Effect on bone marrow</td>
<td>14</td>
</tr>
<tr>
<td>C. Cardiotoxicity</td>
<td>14</td>
</tr>
<tr>
<td>D. Vasotoxicity</td>
<td>14</td>
</tr>
<tr>
<td>E. Toxicity to Pancreas</td>
<td>15</td>
</tr>
<tr>
<td>F. Dermotoxicity.</td>
<td>15</td>
</tr>
<tr>
<td>G. Oculotoxicity.</td>
<td>15</td>
</tr>
<tr>
<td>H. Teeth and Oral Cavity Toxicity.</td>
<td>16</td>
</tr>
<tr>
<td>I. Neurotoxicity.</td>
<td>16</td>
</tr>
<tr>
<td>J. Nephrotoxicity.</td>
<td>17</td>
</tr>
<tr>
<td>K. Biochemical Changes</td>
<td>17</td>
</tr>
<tr>
<td>i. Effects on plasma proteins</td>
<td>17</td>
</tr>
<tr>
<td>ii. Effect on SGOT and SGPT.</td>
<td>18</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>2. Clinical Manifestations of TNT Toxicity</td>
<td>18</td>
</tr>
<tr>
<td>A. Signs and symptoms</td>
<td></td>
</tr>
<tr>
<td>i. Mild irritative symptoms</td>
<td>18</td>
</tr>
<tr>
<td>ii. Severe toxic symptoms</td>
<td>19</td>
</tr>
<tr>
<td>B. Findings on Physical Examination</td>
<td>20</td>
</tr>
<tr>
<td>C. Laboratory Findings</td>
<td>21</td>
</tr>
<tr>
<td>i. Urine</td>
<td>21</td>
</tr>
<tr>
<td>ii. Stool</td>
<td>21</td>
</tr>
<tr>
<td>iii. Blood</td>
<td>21</td>
</tr>
<tr>
<td>3. Treatment of TNT Toxicity</td>
<td>21</td>
</tr>
<tr>
<td>A. Treatment of Dermatitis</td>
<td>22</td>
</tr>
<tr>
<td>B. Treatment of Aplastic Anemia</td>
<td>22</td>
</tr>
<tr>
<td>C. Treatment of Jaundice</td>
<td>22</td>
</tr>
<tr>
<td>D. Treatment of Cyanosis</td>
<td>22</td>
</tr>
<tr>
<td>4. Human Fatalities</td>
<td>22</td>
</tr>
<tr>
<td>Postmortem Findings</td>
<td>24</td>
</tr>
<tr>
<td>5. Susceptibility to TNT Toxicity</td>
<td>24</td>
</tr>
<tr>
<td>6. Effect of Exposure to Subthreshold Concentrations of TNT</td>
<td>24</td>
</tr>
</tbody>
</table>

IV. TOXICOLOGIC INVESTIGATIONS IN ANIMALS | 25 |
1. Toxic Dose Levels	25
2. Species Sensitivity and Tolerance	25
3. Toxicological Differences Between TNT Isomers	25
4. Acute Toxicity	27
A. Mice	27
B. Rats	27
C. Guinea Pigs	28
D. Rabbits	28
E. Cats	29
F. Dogs	29
5. Chronic Toxicity	30
A. Monkeys	30
B. Rats	30
C. Guinea Pigs	31
D. Rabbits	32
E. Cats	34
F. Dogs	34
G. Microscopic Changes in Experimental Lesions	36
Chapter 1: Carcinogenicity, Mutagenicity and Teratogenicity of TNT

Page 38

Chapter 2: Relationship Between Dietary Factors and TNT Toxicity

Page 39

1. **Experimental Investigations in Animals**
 - A. Effect of the Nature of Food
 - i. Meat
 - ii. Milk
 - iii. Fat-, carbohydrate-, and protein-rich diet
 - B. Effect of Other Food Additives
 - i. Vitamin C
 - ii. Methionine, B-complex, liver extract and nicotinamide

2. **Observations in Humans**
 - A. Vitamin C
 - B. Alcohol

Chapter 3: Absorption, Distribution, Biotransformation, Excretion and Biodegradation of TNT

Page 43

1. **Absorption of TNT**
 - A. Absorption Through the Skin
 - B. Absorption via the Respiratory System
 - C. Absorption Along the Alimentary Canal
 - D. Solubility of TNT in Body Fluids

2. **Distribution of TNT**

3. **Biotransformation of TNT**
 - A. *In Vivo* experiments
 - i. Reduction
 - ii. Oxidation
 - B. *In Vitro* experiments

4. **Excretion of TNT**

5. **Microbial Degradation of TNT**

Chapter 4: Epidemiology

Page 53

Chapter 5: Industrial Health Hazards, Hygienic and Safety Measures and Standards for TNT

Page 59

1. **Industrial Health Hazards**

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Industrial Health Hazards (Continued)</td>
<td></td>
</tr>
<tr>
<td>A. Explosion and fire hazards</td>
<td>59</td>
</tr>
<tr>
<td>B. Disaster Hazards</td>
<td>59</td>
</tr>
<tr>
<td>C. Health Hazards</td>
<td>59</td>
</tr>
<tr>
<td>D. Toxic Hazard Rating</td>
<td>60</td>
</tr>
<tr>
<td>2. Hygienic and Safety Measures</td>
<td>60</td>
</tr>
<tr>
<td>A. Personnel Measures and Safety Regulations</td>
<td>61</td>
</tr>
<tr>
<td>i. Selection of workers</td>
<td>61</td>
</tr>
<tr>
<td>ii. Personal and workshop cleanliness</td>
<td>61</td>
</tr>
<tr>
<td>iii. Educational programs</td>
<td>61</td>
</tr>
<tr>
<td>iv. Alternation of workers</td>
<td>61</td>
</tr>
<tr>
<td>v. Handling and storage</td>
<td>62</td>
</tr>
<tr>
<td>vi. Shipping regulations</td>
<td>62</td>
</tr>
<tr>
<td>B. Chemical and Engineering Measures</td>
<td>62</td>
</tr>
<tr>
<td>i. Determination of TNT in air</td>
<td>62</td>
</tr>
<tr>
<td>ii. Temperature and humidity control</td>
<td>62</td>
</tr>
<tr>
<td>iii. Proper ventilation</td>
<td>62</td>
</tr>
<tr>
<td>iv. Disposal and waste treatment</td>
<td>62</td>
</tr>
<tr>
<td>C. Medical Measures</td>
<td>66</td>
</tr>
<tr>
<td>i. Routine check on all employees</td>
<td>66</td>
</tr>
<tr>
<td>ii. Sanitary supervision</td>
<td>66</td>
</tr>
<tr>
<td>3. Standards for TNT</td>
<td>66</td>
</tr>
<tr>
<td>X. SAMPLING AND ANALYSIS OF TNT</td>
<td>67</td>
</tr>
<tr>
<td>1. Analysis of TNT During Manufacturing</td>
<td>67</td>
</tr>
<tr>
<td>A. Paper Chromatography</td>
<td>68</td>
</tr>
<tr>
<td>B. Thin Layer Chromatography</td>
<td>68</td>
</tr>
<tr>
<td>C. Gas Chromatography</td>
<td>68</td>
</tr>
<tr>
<td>D. Potentiometric Methods</td>
<td>68</td>
</tr>
<tr>
<td>E. Colorimetric Methods</td>
<td>69</td>
</tr>
<tr>
<td>2. Analysis of TNT in Water</td>
<td>69</td>
</tr>
<tr>
<td>A. Colorimetric Methods</td>
<td>69</td>
</tr>
<tr>
<td>B. Gas Chromatography</td>
<td>69</td>
</tr>
<tr>
<td>C. Liquid Chromatography</td>
<td>69</td>
</tr>
<tr>
<td>3. Analysis of TNT in Biological Fluids</td>
<td>69</td>
</tr>
<tr>
<td>A. Urine Analysis</td>
<td>69</td>
</tr>
<tr>
<td>i. Webster test</td>
<td>70</td>
</tr>
<tr>
<td>ii. Snyder and von Oettingen method</td>
<td>70</td>
</tr>
<tr>
<td>iii. Pinto and Wilson method</td>
<td>70</td>
</tr>
<tr>
<td>B. Blood Analysis</td>
<td>70</td>
</tr>
</tbody>
</table>
Part B. Summary and Conclusions

XI. Technical Summary

1. Physical and Chemical Properties 75
2. Human Toxicity and Fatalities 76
3. Toxicologic Investigations in Animals 81
4. Carcinogenicity, Mutagenicity and Teratogenicity 83
5. Relationship Between Dietary Factors and TNT Toxicity 84
6. Absorption, Distribution, Biotransformation, Excretion and Biodegradation of TNT 84
7. Epidemiology ... 84

XII. Concluding Remarks and Recommendations 85

BIBLIOGRAPHY .. 91

APPENDIX .. 106
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF TABLES AND FIGURES</td>
<td>9</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>II. PHYSICAL AND CHEMICAL PROPERTIES</td>
<td></td>
</tr>
<tr>
<td>A. Specifications for Fog Oils</td>
<td>11</td>
</tr>
<tr>
<td>B. Production of Fog Oils</td>
<td>11</td>
</tr>
<tr>
<td>C. Composition of Fog Oils</td>
<td>13</td>
</tr>
<tr>
<td>1. SGF No. 1</td>
<td>14</td>
</tr>
<tr>
<td>2. SGF No. 2</td>
<td>14</td>
</tr>
<tr>
<td>D. SGF No. 1 and SGF No. 2 Models</td>
<td>15</td>
</tr>
<tr>
<td>1. SGF No. 1 Models</td>
<td>15</td>
</tr>
<tr>
<td>a. kerosene</td>
<td>15</td>
</tr>
<tr>
<td>b. fuel oils</td>
<td>19</td>
</tr>
<tr>
<td>c. diesel fuels</td>
<td>19</td>
</tr>
<tr>
<td>2. SGF No. 2 Models</td>
<td>19</td>
</tr>
<tr>
<td>a. automotive lubricating oils</td>
<td>20</td>
</tr>
<tr>
<td>b. industrial lubricating oils</td>
<td>21</td>
</tr>
<tr>
<td>c. medicinal mineral oil</td>
<td>22</td>
</tr>
<tr>
<td>E. Generation of Smoke</td>
<td>22</td>
</tr>
<tr>
<td>III. HUMAN TOXICITY</td>
<td></td>
</tr>
<tr>
<td>A. Exposure of the U.S. Armed Forces to Fog Oil Smoke</td>
<td>25</td>
</tr>
<tr>
<td>B. SGF No. 1 Models</td>
<td>26</td>
</tr>
<tr>
<td>1. Acute toxicity of mists</td>
<td>26</td>
</tr>
<tr>
<td>2. Acute cutaneous toxicity</td>
<td>27</td>
</tr>
<tr>
<td>3. Acute gastrointestinal and pulmonary toxicity</td>
<td>28</td>
</tr>
<tr>
<td>4. Chronic cutaneous toxicity</td>
<td>29</td>
</tr>
<tr>
<td>5. Other chronic effects</td>
<td>30</td>
</tr>
<tr>
<td>C. SGF No. 2 Models</td>
<td>30</td>
</tr>
<tr>
<td>1. Acute toxicity of lubricating oil mist</td>
<td>30</td>
</tr>
<tr>
<td>2. Chronic toxicity of lubricating oil and oil mist</td>
<td>30</td>
</tr>
<tr>
<td>a. carcinogenicity</td>
<td>33</td>
</tr>
<tr>
<td>b. pulmonary toxicity and lung cancer</td>
<td>33</td>
</tr>
<tr>
<td>c. cutaneous toxicity and skin cancer</td>
<td>37</td>
</tr>
<tr>
<td>d. gastrointestinal toxicity and cancer</td>
<td>42</td>
</tr>
<tr>
<td>e. general mortality</td>
<td>42</td>
</tr>
<tr>
<td>f. other effects</td>
<td>43</td>
</tr>
<tr>
<td>3. Toxicity of medicinal mineral oil and related formulations</td>
<td>43</td>
</tr>
<tr>
<td>a. cutaneous toxicity</td>
<td>43</td>
</tr>
<tr>
<td>b. gastrointestinal toxicity</td>
<td>45</td>
</tr>
<tr>
<td>c. pulmonary toxicity and lung cancer</td>
<td>46</td>
</tr>
<tr>
<td>d. carcinogenicity</td>
<td>49</td>
</tr>
<tr>
<td>IV. ANIMAL TOXICITY</td>
<td></td>
</tr>
<tr>
<td>A. SGF No. 1</td>
<td>51</td>
</tr>
<tr>
<td>1. mice</td>
<td>51</td>
</tr>
</tbody>
</table>
2. rabbits .. 51
3. rats .. 53
4. monkeys .. 53
B. SGF No. 1 Models
1. Toxicity of mists and vapors
 a. rats .. 54
 b. rabbits ... 57
 c. mice .. 58
 d. monkeys .. 58
 e. dogs ... 58
 f. cats ... 59
 g. guinea pigs .. 59
2. Ingestion and aspiration toxicity
 a. rats .. 59
 b. rabbits ... 60
 c. farm animals 61
3. Cutaneous toxicity
 a. sensitization in guinea pigs 61
 b. primary irritation in rabbits 61
 c. percutaneous toxicity and carcinogenicity
 (1). rats ... 61
 (2). guinea pigs 62
 (3). mice ... 63
d. dermal implant in rats 63
C. SGF No. 2 Models
1. Acute and subacute toxicity
 a. oil mist toxicity
 (1). mice ... 64
 (2). rats ... 66
 b. aspiration toxicity in rats 66
 c. ingestion toxicity
 (1). mice ... 66
 (2). rats ... 67
 (3). monkeys .. 67
2. Chronic toxicity
 a. oil mist toxicity
 (1). mice ... 68
 (2). rats ... 69
 (3). guinea pigs 71
 (4). hamsters 71
 (5). rabbits ... 72
 (6). dogs .. 72
 (7). monkeys .. 73
 b. ingestion toxicity
 (1). mice ... 74
 (2). monkeys .. 75
c. cutaneous toxicity
 (1). calves ... 75
 (2). guinea pigs 76
3. Carcinogenicity
 a. lung cancer .. 77
 (1). mice ... 78
 (2). guinea pigs 78
 b. skin cancer in mice 79
V. PHARMACOKINETICS IN HUMANS AND ANIMALS... 83
A. SGF No. 1 Models... 83
1. Absorption... 83
2. Distribution... 85
3. Excretion... 86
B. SGF No. 2 Models... 88
1. Absorption... 88
2. Distribution... 89
3. Metabolism... 91
4. Excretion... 92

VI. OCCUPATIONAL HEALTH AND SAFETY PRACTICES AND STANDARDS... 93
A. SGF No. 1... 93
1. Standards... 93
2. Protective Measures... 93
3. Medical Surveillance... 94
4. Control Measures... 94
B. SGF No. 2... 94
1. Standards... 95
2. Protective Measures
 a. oil refining... 95
 b. avoidance of exposure... 96
3. Medical Surveillance... 97

VII. METHODS OF SAMPLING AND ANALYSIS... 98
A. SGF No. 1... 98
1. Atmospheric sampling... 98
2. Analysis of air samples... 98
3. Biologic media... 99
B. SGF No. 2... 99
1. Atmospheric sampling
 a. electrostatic precipitator tubes... 99
 b. filter media... 99
 c. inertial separators... 100
 d. gas washing bottles... 100
 e. evacuated gas pipettes... 100
 f. chromatographic grade paper... 100
2. Analysis of air samples
 a. gravimetry... 101
 b. ultraviolet absorption... 101
 c. infrared absorption... 101
 d. colorimetry... 101
 e. emulsion method... 101
 f. calculation of oil mist concentration... 102
3. Sampling methods for determination of droplet size
 a. sampling for optical microscope... 102
 b. photometry... 102
 c. inertial separators... 103
 d. the Millikan oil drop apparatus... 103
4. Biologic media
 a. histochemical stains... 103
VIII. TECHNICAL SUMMARY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Physical and Chemical Properties of SGF No. 1 and SGF No. 2</td>
<td>107</td>
</tr>
<tr>
<td>B. Generation of Smoke from Fog Oils</td>
<td>109</td>
</tr>
<tr>
<td>C. Human Toxicity</td>
<td>109</td>
</tr>
<tr>
<td>1. SGF No. 1 and Model Fuels</td>
<td>110</td>
</tr>
<tr>
<td>2. SGF No. 2 and Lubricating Oils</td>
<td>111</td>
</tr>
<tr>
<td>3. Medicinal Mineral Oils</td>
<td>114</td>
</tr>
<tr>
<td>D. Animal Toxicity</td>
<td>115</td>
</tr>
<tr>
<td>1. SGF No. 1</td>
<td>115</td>
</tr>
<tr>
<td>2. SGF No. 1 Models</td>
<td>116</td>
</tr>
<tr>
<td>3. SGF No. 2 Models</td>
<td>119</td>
</tr>
<tr>
<td>E. Pharmacokinetics</td>
<td>124</td>
</tr>
</tbody>
</table>

IX. RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIBLIOGRAPHY</td>
<td>143</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>153</td>
</tr>
</tbody>
</table>
Zinc Chloride (Volume 5)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Foreward</td>
<td>4</td>
</tr>
<tr>
<td>List of Tables</td>
<td>9</td>
</tr>
<tr>
<td>List of Figures</td>
<td>11</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>12</td>
</tr>
<tr>
<td>II. Physical and Chemical Properties</td>
<td>13</td>
</tr>
<tr>
<td>III. Generation of Zinc Chloride Smoke</td>
<td>18</td>
</tr>
<tr>
<td>IV. Human Toxicity</td>
<td>19</td>
</tr>
<tr>
<td>A. Acute Effects</td>
<td>19</td>
</tr>
<tr>
<td>1. Inhalation</td>
<td>19</td>
</tr>
<tr>
<td>2. Cutaneous Toxicity</td>
<td>23</td>
</tr>
<tr>
<td>3. Eye and Nose Toxicity</td>
<td>23</td>
</tr>
<tr>
<td>4. Oral Toxicity</td>
<td>23</td>
</tr>
<tr>
<td>B. Chronic Effects</td>
<td>24</td>
</tr>
<tr>
<td>1. Cutaneous Toxicity</td>
<td>24</td>
</tr>
<tr>
<td>2. Oral Toxicity</td>
<td>24</td>
</tr>
<tr>
<td>V. Occupational Health and Safety Practices and Standards</td>
<td>27</td>
</tr>
<tr>
<td>A. Federal Exposure Limit</td>
<td>27</td>
</tr>
<tr>
<td>B. Protective Measures</td>
<td>27</td>
</tr>
<tr>
<td>C. Exposure Limits of Zinc Chloride Smoke</td>
<td>28</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>VI. Toxicity to Experimental Animals</td>
<td>29</td>
</tr>
<tr>
<td>A. Acute Effects</td>
<td></td>
</tr>
<tr>
<td>1. Inhalation</td>
<td>29</td>
</tr>
<tr>
<td>2. Percutaneous Application</td>
<td>29</td>
</tr>
<tr>
<td>3. Ocular Application</td>
<td>30</td>
</tr>
<tr>
<td>4. Oral Administration</td>
<td>30</td>
</tr>
<tr>
<td>5. Intraperitoneal Injection</td>
<td>30</td>
</tr>
<tr>
<td>6. Subcutaneous Injection</td>
<td>31</td>
</tr>
<tr>
<td>B. Chronic Effects</td>
<td>31</td>
</tr>
<tr>
<td>1. Oral Administration</td>
<td>31</td>
</tr>
<tr>
<td>2. Intraperitoneal Injection</td>
<td>32</td>
</tr>
<tr>
<td>C. Chemical Interactions</td>
<td>33</td>
</tr>
<tr>
<td>VII. Effects on Domestic Animals and Wildlife</td>
<td>36</td>
</tr>
<tr>
<td>A. Oral Toxicity</td>
<td>36</td>
</tr>
<tr>
<td>B. Yolk Injection</td>
<td>37</td>
</tr>
<tr>
<td>VIII. Mutagenicity, Carcinogenicity, and Teratogenicity</td>
<td>38</td>
</tr>
<tr>
<td>A. Mutagenicity</td>
<td>38</td>
</tr>
<tr>
<td>B. Carcinogenicity</td>
<td>38</td>
</tr>
<tr>
<td>1. Oral Administration</td>
<td>38</td>
</tr>
<tr>
<td>2. Intratesticular Injections</td>
<td>39</td>
</tr>
<tr>
<td>C. Teratogenicity</td>
<td>43</td>
</tr>
<tr>
<td>IX. Effects on Aquatic Organisms</td>
<td>44</td>
</tr>
<tr>
<td>A. Freshwater Toxicity</td>
<td>44</td>
</tr>
<tr>
<td>1. Diatoms</td>
<td>44</td>
</tr>
<tr>
<td>2. Crustacea</td>
<td>44</td>
</tr>
<tr>
<td>3. Mollusca</td>
<td>44</td>
</tr>
<tr>
<td>4. Fish</td>
<td>44</td>
</tr>
<tr>
<td>b. Marine Toxicity</td>
<td>47</td>
</tr>
<tr>
<td>1. Mollusca</td>
<td>47</td>
</tr>
<tr>
<td>2. Echinodermata</td>
<td>47</td>
</tr>
</tbody>
</table>
C. Chemical Interactions

X. Effects on Microorganisms

XI. Effects on Plants

XII. Pharmacokinetics
 A. Humans
 1. Absorption, Distribution, and Retention
 2. Excretion
 B. Experimental Animals
 1. Absorption, Distribution, and Retention
 2. Excretion
 C. Livestock
 1. Absorption, Distribution, and Retention
 2. Excretion

XIII. Uptake and Distribution in Aquatic Organisms

XIV. Bioaccumulation
 A. Plants
 B. Aquatic Organisms
 C. Wildlife and Domestic Animals
 D. Humans

XV. Occurrence, Dispersion and Fate in the Environment
 A. Occurrence in the Environment
 B. Dispersion and Environmental Fate

XVI. Sampling and Analysis

XVII. Environmental Impact
 A. Effects on Humans
 B. Effect on Domestic Water Supply
XVII. Environmental Impact (Continued)

C. Industrial Water Supplies 91
D. Effects on Plants 91
E. Effects on Aquatic Organisms 91
F. Effects on Domestic Animals and Wildlife 92

XVIII. Technical Summary 94

XIX. Hazard Analysis and Recommendations 103

Bibliography 106
Appendix 114
Urea-formaldehyde Resins (Volume 6)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>I. Introduction and Statement of Problem</td>
<td>7</td>
</tr>
<tr>
<td>II. Physical and Chemical Properties</td>
<td>8</td>
</tr>
<tr>
<td>III. Human Toxicity</td>
<td>13</td>
</tr>
<tr>
<td>IV. Effects on Experimental Animals</td>
<td>17</td>
</tr>
<tr>
<td>V. Carcinogenicity, Mutagenicity, Teratogenicity</td>
<td>20</td>
</tr>
<tr>
<td>VI. Effects on Domestic Animals and Wildlife</td>
<td>20</td>
</tr>
<tr>
<td>VII. Effects on Aquatic Organisms</td>
<td>20</td>
</tr>
<tr>
<td>VIII. Effects on Microorganisms</td>
<td>21</td>
</tr>
<tr>
<td>IX. Effects on Soil Organisms</td>
<td>24</td>
</tr>
<tr>
<td>X. Effects on Plants</td>
<td>25</td>
</tr>
<tr>
<td>XI. Pharmacokinetics</td>
<td>26</td>
</tr>
<tr>
<td>XII. Occurrence, Dispersion and Fate in the Environment</td>
<td>27</td>
</tr>
<tr>
<td>XIII. Industrial Hygiene Standards and Practices</td>
<td>34</td>
</tr>
<tr>
<td>XIV. Sampling and Analysis</td>
<td>36</td>
</tr>
<tr>
<td>Technical Summary</td>
<td>40</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td>48</td>
</tr>
<tr>
<td>Recommendations for Further Studies</td>
<td>49</td>
</tr>
<tr>
<td>Bibliography</td>
<td>51</td>
</tr>
<tr>
<td>Appendix</td>
<td>58</td>
</tr>
</tbody>
</table>
Cetyl Alcohol (Volume 7)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Foreword</td>
<td>4</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>7</td>
</tr>
<tr>
<td>I. Introduction and Statement of Problem</td>
<td>8</td>
</tr>
<tr>
<td>II. Physical and Chemical Properties</td>
<td>9</td>
</tr>
<tr>
<td>III. Use of Cetyl Alcohol</td>
<td>13</td>
</tr>
<tr>
<td>IV. Toxicity in Humans</td>
<td>14</td>
</tr>
<tr>
<td>V. Industrial Hygiene</td>
<td>15</td>
</tr>
<tr>
<td>VI. Effects on Experimental Animals</td>
<td>16</td>
</tr>
<tr>
<td>A. Acute Effects</td>
<td>16</td>
</tr>
<tr>
<td>B. Chronic Effects</td>
<td>17</td>
</tr>
<tr>
<td>VII. Effects on Wildlife and Domestic Animals</td>
<td>20</td>
</tr>
<tr>
<td>VIII. Carcinogenicity, Mutagenicity, and Teratogenicity</td>
<td>21</td>
</tr>
<tr>
<td>IX. Effects on Aquatic Organisms</td>
<td>22</td>
</tr>
<tr>
<td>X. Effects on Microorganisms</td>
<td>23</td>
</tr>
<tr>
<td>XI. Effects on Plants</td>
<td>24</td>
</tr>
<tr>
<td>XII. Pharmacokinetics</td>
<td>28</td>
</tr>
<tr>
<td>A. Absorption and Distribution</td>
<td>28</td>
</tr>
<tr>
<td>B. Metabolism</td>
<td>28</td>
</tr>
<tr>
<td>C. Excretion</td>
<td>30</td>
</tr>
<tr>
<td>XIII. Fate of Cetyl Alcohol in Aquatic Organisms</td>
<td>31</td>
</tr>
<tr>
<td>XIV. Occurrence, Dispersion, Fate in the Environment, and Biodegradation</td>
<td>32</td>
</tr>
<tr>
<td>XV. Sampling and Analysis</td>
<td>39</td>
</tr>
</tbody>
</table>
XVI. Environmental Impact 42
XVII. Technical Summary 45
XVIII. Recommendations for Further Research 52
Bibliography
Appendix
Diesel Fuel and Fog Oils (Volume 8)

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>6</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>II. Effects on Living Organisms</td>
<td>9</td>
</tr>
<tr>
<td>A. Waterfowl and Other Birds</td>
<td>9</td>
</tr>
<tr>
<td>1. Field Studies</td>
<td>10</td>
</tr>
<tr>
<td>2. Experimental Studies</td>
<td>11</td>
</tr>
<tr>
<td>a. Acute Toxicity</td>
<td>11</td>
</tr>
<tr>
<td>b. Effect on Eggs</td>
<td>12</td>
</tr>
<tr>
<td>c. Systemic Effects</td>
<td>12</td>
</tr>
<tr>
<td>B. Insects</td>
<td>14</td>
</tr>
<tr>
<td>1. Mosquitoes</td>
<td>14</td>
</tr>
<tr>
<td>2. Eggs</td>
<td>14</td>
</tr>
<tr>
<td>3. Larvae</td>
<td>15</td>
</tr>
<tr>
<td>C. Fish</td>
<td>16</td>
</tr>
<tr>
<td>1. Field Studies</td>
<td>16</td>
</tr>
<tr>
<td>2. Experimental Studies</td>
<td>17</td>
</tr>
<tr>
<td>a. Freshwater Fish</td>
<td>17</td>
</tr>
<tr>
<td>b. Estuarine and Marine Fish</td>
<td>17</td>
</tr>
<tr>
<td>D. Worms</td>
<td>24</td>
</tr>
<tr>
<td>1. Soil Nematodes</td>
<td>24</td>
</tr>
<tr>
<td>2. Marine Annelids</td>
<td>24</td>
</tr>
<tr>
<td>E. Molluscs</td>
<td>27</td>
</tr>
<tr>
<td>1. Scallops</td>
<td>28</td>
</tr>
<tr>
<td>2. Clams</td>
<td>28</td>
</tr>
<tr>
<td>3. Oysters and Mussels</td>
<td>30</td>
</tr>
<tr>
<td>4. Snails</td>
<td>31</td>
</tr>
<tr>
<td>F. Marine Crustaceans</td>
<td>33</td>
</tr>
<tr>
<td>1. Shrimp and Mysids</td>
<td>33</td>
</tr>
<tr>
<td>2. Amphipods</td>
<td>38</td>
</tr>
<tr>
<td>3. Copepods</td>
<td>39</td>
</tr>
<tr>
<td>G. Echinoderms</td>
<td>40</td>
</tr>
<tr>
<td>H. Coral</td>
<td>41</td>
</tr>
<tr>
<td>I. Phytoplankton and Algae</td>
<td>42</td>
</tr>
<tr>
<td>J. Bacteria</td>
<td>44</td>
</tr>
<tr>
<td>K. Plants</td>
<td>46</td>
</tr>
<tr>
<td>1. Fruit Trees</td>
<td>46</td>
</tr>
<tr>
<td>2. Foliage</td>
<td>49</td>
</tr>
<tr>
<td>3. Vegetables</td>
<td>51</td>
</tr>
<tr>
<td>4. Aquatic Plants</td>
<td>52</td>
</tr>
</tbody>
</table>

Note: The page numbers are placeholders and may not correspond to the actual page numbers in the document.
III. Environmental Fate
A. Occurrence and Dispersion
1. Smoke Screen Production and Dispersion in Air
2. Oil Behavior in Water
3. Evaporation
4. Dispersion and Persistence in Soils and Sediments
B. Transformation
1. Photolysis by Ultraviolet Light
2. Biotransformation in Soil and Water
 a. Soil Biotransformation
 b. Water Biotransformation
C. Bioconcentration and Bioaccumulation
1. Bioconcentration by Aquatic Organisms
2. Bioaccumulation by Terrestrial Animals
3. Bioconcentration by Plants

IV. Sampling and Analysis
A. Extraction Methods
B. Analysis
1. Gas Chromatography
2. Spectroscopic Methods
 a. Fluorescence Spectroscopy
 b. Ultraviolet absorption spectrophotometry
 c. Infrared spectrophotometry
 d. Laser-Raman spectroscopy
3. Remote Sensing
4. Other Methods

V. Technical Summary

VI. Environmental Impact Assessment

VII. Recommendations
Bibliography
Appendix

PAGE
Diesel Fuel (Volume 1)

EXECUTIVE SUMMARY

This report is a literature review (75 references) which covers physical and chemical properties, analytical methods, experimental animal studies and occupational health and safety of diesel fuel and the white smoke generated from it.

Diesel fuel is a refined, distilled petroleum product made from crude oil. The chemical composition of diesel fuel varies from batch to batch, but the fuel is required to have certain other properties which have been specified by the U.S. Armed Forces. Certain additives may be added to improve engine performance. The smoke which is produced from diesel fuel consists of tiny oil droplets suspended in air in a concentration great enough to produce a dense white cloud.

Inhalation of diesel oil smoke may cause lung damage, although further studies are needed. Irritation of the skin occurs in some individuals who handle diesel fuel in industry. The skin irritation consists of dryness, redness and pimples, sometimes severe enough to leave scars. Whether it is due to an allergy or to carelessness and uncleanliness is uncertain. Swallowing diesel fuel may severely damage the stomach lining. If diesel fuel is taken into the lungs, severe irritation, coughing, and inability to breathe may result. The lung condition may clear up or death may occur, especially in accidents when children drink and choke on diesel fuel. The possible harmful effects to humans during long-term exposure to diesel fuel white smoke have not been studied.

In studies on experimental animals, diesel fuel white smoke produced reduced ability to fight infection in rats, as well as loss of coordination, tiredness, and dry flaking skin. Rats fed diesel fuel developed abnormal blood, liver damage, and some died. When rat skin was painted with diesel fuel, pimples, hair loss and peeling of skin occurred. Some diesel fuel batches caused skin cancer after painting the fuel repeatedly on mouse skin. No studies are reported for effects of diesel fuel on reproduction in animals.

When taken into the body, some of the aromatic compounds of diesel fuel are metabolized in the liver. Arene oxides, formed as intermediates in the metabolism, may be cancer producing or cause mutations. Diesel fuel may be excreted from the body in the urine, or exhaled from the lungs.

Persons who may be exposed to diesel fuel white smoke should be protected from breathing the smoke and getting it in eyes, on skin and hair. Medical examinations should be provided to check for lung problems, skin problems or other disturbances in persons exposed to the smoke.
This literature review (100 references) discusses the occupational health and safety of phosphorus smoke compounds which are used by the U.S. Armed Forces to produce smoke screens. These five compounds are white phosphorus, red phosphorus, butyl rubber/red phosphorus, butyl rubber/white phosphorus, and epoxy white phosphorus.

To make butyl rubber/red phosphorus, red phosphorus is combined with styrene-butadiene rubber (butyl rubber). White phosphorus also combines with styrene-butadiene rubber to make butyl rubber/white phosphorus, which is also called plasticized white phosphorus. Epoxy white phosphorus is made from white phosphorus and Bisphenol A-epichlorohydrin, an epoxy resin.

There are no acceptable reports on the dangers of red phosphorus to the health of humans or animals.

White phosphorus causes severe skin burns upon contact with the skin. Breathing white phosphorus vapors can damage the lungs and liver. If white phosphorus is eaten (children may eat it accidently in roach poison) it may cause garlic taste, vomiting and damage to the stomach and the rest of the digestive tract. Death may occur in 12 hours. If the person lives, after a few days the patient may sicken and begin vomiting again, and this means that there may be damage to the kidneys, liver and digestive tract.

When white phosphorus fumes are inhaled repeatedly, in industry, damage to the jawbone, teeth, and other bones is reported. Also there may be blood disorders and abnormal urine.

In animals, eating of white phosphorus causes liver damage and death. Placing it on skin of rabbits caused deaths to many of them in 3 days. It did not produce eye irritation or skin allergy in rabbits. Liver, kidney and blood changes occurred. Long-term animal studies with white phosphorus have caused retarded growth and damage to bones, liver, kidneys and brain. The ability of white phosphorus to produce cancer in animals, mutations in bacteria, or to harm unborn offspring is not known.

When smoke screens are made from burning phosphorus smoke compounds, humans who breathe the smoke may begin coughing, and develop sore throats, runny noses and may have trouble breathing after 15 minutes of breathing the smoke. They recover in a few days if they stop breathing smoke. In animal experiments, breathing the same smoke caused lung congestion, and liver and kidney damage.

Mice which breathed burning styrene-butadiene rubber died of asphyxiation from carbon monoxide. There are no experiments reported to test the hazards of breathing butyl rubber/phosphorus smoke screens, or the epoxy white phosphorus smoke screen. Also, there is no information on the ability of the butyl rubber/phosphorus or epoxy white phosphorus smoke to produce cancer, mutations or to harm unborn offspring.
In industries where persons work around white phosphorus, protection from burns to the eyes and skin is important. Gas masks are necessary to avoid breathing large amounts of white phosphorus fumes. White phosphorus is also a fire hazard because it will burn if it is exposed to room air. The fire can be extinguished with sand or water. Persons working with white phosphorus should be examined routinely for damage to the teeth and jawbone, and have blood and urine tests done.
TNT (Volume 3)

EXECUTIVE SUMMARY

This literature review (224 references) discusses various topics related to occupational health and safety of TNT, an explosive used in bombs, shells and grenades. It is a yellow powder and crystals at room temperature, and can be stored at room temperature for 20 years without decomposing.

Manufacture of TNT creates harmful fumes of TNT and other gases. Breathing the fumes can cause sore throat, sneezing or choking, and lung damage may occur, with recovery after several days. Workers who are exposed to TNT by breathing fumes or getting TNT on the skin may experience harmful effects including liver malfunction, decreased ability of the bone marrow to make blood cells, and death. TNT may also damage the heart, blood vessels, kidneys, pancreas, and possibly cause cataracts. Skin rash and redness may develop on the hands and forearms, collar area and ankles. Nausea and vomiting and stomach pains also are reported. The color of urine of persons with TNT poisoning is darker than normal, and may be red, but not bloody. Removal of the worker from all TNT fumes is important in treatment of TNT poisoning. Deaths are usually due to liver or blood disease. OSHA requires that workers in TNT plants are not exposed to more than 1.5 mg/m³ of TNT in air, but disease still appears in some workers. The U.S. Army has lowered its acceptable TNT level to half of this amount, 0.5 mg/m³ of TNT, in order to provide greater protection to exposed workers.

In animals, cats are more sensitive to TNT toxicity than rabbits, rats and monkeys. Liver disease and blood disease appear in animals exposed to TNT fumes. Dogs fed TNT showed no disease other than vomiting. Dogs which inhaled TNT fumes lost weight, and had vomiting and diarrhea and some blood problems but no liver disease. TNT cancer has not been reported in laboratory animals or humans exposed to TNT. But TNT did cause mutations in bacteria and chromosomal abnormalities in bone marrow cells of rats. The effect of TNT on reproduction is not known.

TNT can be absorbed into the body through skin, but much less enters the body by breathing fumes than through the skin. When fumes enter the mouth there is a bitter taste. The liver breaks down TNT which enters the body, and these breakdown products of TNT are found in urine but not in feces.

Bacteria also can degrade TNT in waste water. Sunlight causes TNT to decompose in water, and gives the water a pink or red color. Organisms living in water can be harmed by TNT waste which is disposed in the water.

Persons working in TNT plants should not be exposed to TNT in air in concentrations above the OSHA limit. They should get medical examinations routinely and tests for blood and liver function, in order to detect signs of TNT disease early enough to cure the worker. Clean work clothes and showers after work may help avoid TNT skin contamination, and safety glasses, face shields and other protection are important.

The effects of TNT on reproduction and on unborn offspring, cancer from TNT, and eye cataract from TNT, are some topics which need to be studied.
EXECUTIVE SUMMARY

This literature review (144 references) discusses the problems related to fog oil exposure of humans and other mammals including rats, mice, guinea pigs, dogs, cats, hamsters, livestock and rhesus monkeys. There are two fog oils: SGF No. 1 and SGF No. 2. SGF No. 1 fog oil is a fuel oil distilled from crude petroleum, very similar to home heating oil, diesel fuel and some kerosenes. SGF No. 2 fog oil is a lubricating oil originating from crude petroleum, very similar to S.A.E. 10 motor oil and some industrially used lubricants and cutting oils. Its yellow color indicates that it is less refined than white mineral oil, a once commonly used laxative. Both fog oils can be used in smoke pots and mechanical smoke generators which produce dense white smoke screens. The smoke is actually made up of microdroplets of fog oil.

Army personnel who worked under fog oil smoke screens in World War II may be examined to learn whether or not there are long-term health hazards from fog oil smoke. In industry, workers exposed to lubricating oil mists frequently have skin conditions such as acne. Skin cancer also has been reported in these workers, as well as other cancers in the lung and throat. On the other hand, workers exposed on the job to heating or fuel oil mists usually complain only of skin irritations.

The inhalation of oil mists of SGF No. 1 fog oil caused lung tumors in mice and stomach tumors in monkeys. The oil accumulated in the lungs, but did not usually cause pneumonia. When exposed to oils similar to SGF No. 1, animals have developed pneumonias, adverse effects on the blood and bone marrow, skin and eye irritation and hair loss, and death at high doses.

Laboratory animals exposed to lubricating oils like SGF No. 2 have developed skin and lung tumors. Breathing of oil mists caused oil to accumulate in the lungs. In addition, pneumonia, adverse effects on the liver, spleen, kidneys, colon, skin and heart have sometimes resulted.

Although information on the ways in which the body absorbs, metabolizes, stores and excretes the fog oils is incomplete, it is established that mutagenic substances are formed in the enzymatic breakdown of some aromatic petroleum hydrocarbons found in SGF No. 2 type oils.

Recommendations for the further study of adverse effects of fog oils in occupationally exposed humans and in laboratory animals include evaluations of carcinogenicity and other long-term effects. There is a need to measure the air concentrations of fog oil smoke produced from smoke generators or smoke pots during present-day military smoke screening operations. It is also recommended that individuals who are exposed to the fog oil smoke screens have protection against breathing the smoke and against wearing oily clothing next to the skin or scalp.

Methods of collection of fog oil smoke in the air and measuring the air concentration of fog oil are presented. In animal experiments, it is useful to measure the accumulation of oil in the lungs and other parts of the body.
after fog oil exposures. Appropriate methods to make this oil more visible and to measure its accumulation in various organs are included.

The environmental impact of using fog oil smoke screens is presented as a separate document included in this series of reports.
Zinc Chloride (Volume 5)

EXECUTIVE SUMMARY

Zinc chloride is a white, odorless compound which readily dissolves in water. It has been used by the military as a smoke screen to protect personnel, in metal and textile industries, and for fire-fighting exercises among others.

Zinc chloride smoke is a potential health hazard, especially when generated in an enclosed space with inadequate ventilation. Persons breathing in high concentrations suffer severe pulmonary irritation. The lungs can become filled with fluid and the lung tissue may be destroyed. Extended exposure to high concentrations can be fatal. Skin contact with aqueous zinc chloride solutions causes severe burns especially if contact occurs around a pre-existing wound. Oral intake of zinc chloride paste by a child was reported to produce corrosive gastritis and liver necrosis, and proved fatal. Eye and nose contamination with zinc chloride by 2 workers caused burns on the eyes, permanently impaired vision, and permanent loss of the sense of smell.

Laboratory dogs exposed to high concentrations of zinc chloride smoke developed fluid in their lungs. Application of a solution of zinc chloride to the shaved skin of guinea pigs slowed growth but did not cause deaths. However, an injection of a zinc chloride solution into the abdomens of guinea pigs caused the deaths of 8 out of 10 animals in one week; 6 died within 24 hours. Prolonged oral intake of a solution of zinc chloride in addition to a diet deficient in pantothenic acid, caused vitamin deficiency symptoms and retarded growth in rats. In another study, prolonged oral intake of zinc chloride did not affect reproduction and normal young were born. Rats given intraperitoneal injections of zinc chloride for several weeks developed kidney and nerve cell injuries and abnormalities.

There have been no reported cases of carcinogenicity due to zinc chloride exposure in humans. Except for the ability to induce tumors by intratesticular injections in fowl, no evidence exists that zinc chloride is carcinogenic in animals by oral or intraperitoneal routes of administration.

No evidence exists in the literature that zinc chloride is mutagenic. Zinc chloride has produced teratogenic effects when injected into the yolk sacs of chicken eggs.

Zinc chloride is toxic to freshwater and marine organisms. The toxic concentrations of zinc chloride to fishes vary with species and water conditions. However, concentrations as low as 0.17 mg/l of zinc chloride in water have been found to be lethal. In the embryos of clams, sand dollars, and sea urchins, zinc chloride induced mortalities and abnormal development.

Exposure to zinc chloride and gamma radiation, alone or in combination, decreased the survival of a strain of bacteria. Immersion of corn and tomato leaves and cauliflower, lettuce, and carrot cultures into zinc chloride solutions caused leaf injury and inhibited growth. Zinc is required for normal plant growth but excess concentrations can accumulate and have toxic effects.
Zinc is absorbed through the skin and gastrointestinal tract as evidenced by experiments with radioactive zinc chloride in man and animals. Absorbed zinc is distributed in the tissues with the highest concentrations being found in the liver. The primary route of excretion of zinc was through the feces. In experiments with aquatic organisms, radioactive zinc65 was distributed in the tissues of clams, mussels, and sea urchins.

Zinc can accumulate in plants, aquatic organisms, domestic animals and wildlife which are consumed by humans. These represent a possible route for the accumulation of zinc in the food chain. Zinc occurs naturally in rocks, water, plants, animals and man. It is dispersed in the environment by zinc chloride smoke screens and by various industries. Several factors, such as soil condition and climate determine the subsequent movement of zinc and its fate in the environment.

Zinc chloride is produced as a smoke from HC (hexachloroethane) smoke pots. HC smoke mix is a solid mixture of grained aluminum, zinc oxide, and hexachloroethane in percentages of 6.68, 46.66, and 46.66, respectively. The environmental impact of this zinc chloride cloud and resultant fallout are subsequently reviewed.
EXECUTIVE SUMMARY

The literature review (88 references) discusses the occupational health and safety of urea-formaldehyde resins.

Urea-formaldehyde resins are thermosetting plastics used extensively in adhesive, molding, laminating, coating, insulation, textile and paper treatment. These resins are a mixture of condensation products of urea and formaldehyde. The composition and structure of these products depend on: a) conditions of the reaction, b) degree of polymerization, and c) molar ratio of the two components. The foam form of the resin is prepared by the interaction of urea and formaldehyde in the presence of a catalyst and a surfactant.

Low molecular weight products exist either as a water-soluble viscous liquid or a white powdery solid. These are converted by heat or acid into high polymeric forms which are water-insoluble amorphous solids. These two groups of resins will be discussed separately.

The high polymeric forms of the resins are colorless, transparent, odorless and tasteless solids, insoluble in cold water, cold dilute acids or alkalis. They are not affected by common organic solvents, oil or grease, but are decomposed in boiling water or in hot strong acids or alkalis. No studies on their effects on birds, aquatic organisms or wildlife are found in the literature. When the resins are ingested by animals, they are excreted in the feces without being metabolized. Since they are very stable under ambient conditions, accumulation in the environment is expected.

The low molecular weight condensation products, on the other hand, have quite different properties and effects. They are soluble in water and alcohol and decompose easily with the release of formaldehyde, which is the main cause of toxic effects.

Formaldehyde is highly irritating to eyes, skin, and mucous membrane. It is generated (1) during manufacture of the resins because it is one of the components, (2) during processing of the resins when heat is applied, such as molding, laminating, etc., (3) from resin products which contain incompletely reacted formaldehyde, and (4) from finished products which are not completely polymerized and decompose slowly to release formaldehyde.

Toxicity studies on urea-formaldehyde resins have focused upon the effects of formaldehyde which is generated as discussed above. Eye irritation was reported among factory workers and store employees where resin-treated fabrics were sold. Dermatoses developed among persons who came into direct contact with the resins, such as workers engaged in processing the resins and individuals wearing clothing made from resin-treated fabrics, which contain insufficiently polymerized resin.
Cetyl Alcohol (Volume 7)

EXECUTIVE SUMMARY

Cetyl alcohol, a white, crystalline, waxlike solid with a rose odor, is insoluble in water but soluble in several organic solvents. It is used in a wide variety of industrial and consumer products such as cosmetics and pharmaceuticals, as an evaporation suppressant on water reservoirs and soils, and as an antitranspirant on plants.

Contact with cetyl alcohol-treated tent canvas and subsequent application of skin creams containing an unspecified concentration of cetyl alcohol caused oozing dermatitis and swelling of the skin in a 28-year-old woman. No other human toxicity studies were located.

Inhalation of 2220 mg/m³ synthetic cetyl alcohol for 6 hours resulted in the death of all exposed rats. Oral administration of 1% cetyl alcohol in charcoal to rats produced a cathartic effect. Ingestion of 2 g/day cetyl butyrate or 12 g/day of a diet containing 20% cetyl oleate, esters of cetyl alcohol, induced hyperemia and edema of the intestinal tract, and seborrhea in rats while administration of 2 g/day cetyl oleate plus tributyrin (glyceryl tributyrate) induced only hyperemia and edema of the intestinal tract. Oral administration of 0.25 mg/day cetyl alcohol for 4 months in mice maintained on a vitamin E deficient diet postponed the onset of the effects of the vitamin deficiency. Cutaneous application of an unspecified dose of cetyl alcohol on the exposed skin of guinea pigs caused slight irritation.

Inhalation of 2220 mg/m³ synthetic cetyl alcohol for 6 hours resulted in the death of all exposed rats. Oral administration of 1% cetyl alcohol in charcoal to rats produced a cathartic effect. Ingestion of 2 g/day cetyl butyrate or 12 g/day of a diet containing 20% cetyl oleate, esters of cetyl alcohol, induced hyperemia and edema of the intestinal tract, and seborrhea in rats while administration of 2 g/day cetyl oleate plus tributyrin (glyceryl tributyrate) induced only hyperemia and edema of the intestinal tract. Oral administration of 0.25 mg/day cetyl alcohol for 4 months in mice maintained on a vitamin E deficient diet postponed the onset of the effects of the vitamin deficiency. Cutaneous application of an unspecified dose of cetyl alcohol on the exposed skin of guinea pigs caused slight irritation.

Cutaneous application of cetyl alcohol to the skin of mice pretreated with dimethyl benzanthracene (DMBA) caused local irritation. One papilloma was observed in one animal treated with cetyl alcohol and DMBA. The development of adenomas, papillomas, and carcinomas was reported following bladder implantation of an unspecified dose of cetyl alcohol in mice. However, the tumor-promoting ability of cetyl alcohol is inconclusive since similar results were observed in controls following bladder implantation of cholesterol pellets.

Cetyl alcohol is absorbed through the intestinal mucosa of mammals. The alcohol is partly metabolized to palmitic acid and subsequently incorporated into glycerides, phospholipids, and cholesterol esters. Following oral administration of [1-¹⁴C]cetyl alcohol, the absorbed activity was primarily recovered in the lymph lipids. Cetyl alcohol is excreted in the urine as conjugated glucuronic acids, unchanged in the feces, or as expired carbon dioxide. Fish incorporate dietary cetyl alcohol as the alcohol and palmitic acid into roe wax esters. The alcohol undergoes oxidation to the corresponding fatty acid and is then reduced again for incorporation into roe wax esters.

Rapid but transitory increases of several freshwater bacterial populations were caused by the application of 17,115 or 70,000 kg of cetyl alcohol to reservoirs as an evaporation suppressant. The bacteria, however, degraded the cetyl alcohol monolayer and, therefore, the density of the populations could not be maintained.

Algal populations of reservoirs increased following application (17,115 or 70,000 kg) of cetyl alcohol and the growth of sedges along the shoreline was also enhanced. Soil and foliar application of cetyl alcohol as an antitranspirant depressed growth and photosynthesis in plants, caused leaf deformities, and, in some cases, caused the ultimate death of treated tissue.
Cetyl alcohol monolayers on reservoirs or other bodies of water may prevent the emergence of some insects and could have an adverse effect on their populations. No mortalities were reported for minnows exposed to 1, 10, 100, or 500 mg/l of cetyl alcohol for 5 days. However, dissolved oxygen depletion and a rise in temperature due to evaporation reduction may result in stress to sensitive fish species (species not specified).

Cetyl alcohol occurs naturally as the cetyl ester of palmitic acid in sperm oil from the head and vertebrae of the sperm whale and is a major component of fish roe wax esters. The alcohol is dispersed into the environment by the industries which utilize or manufacture it and by the use of evaporation suppressants and antitranspirants. Cetyl alcohol can be transported through soil by several means. In the environment, cetyl alcohol is degraded by microorganisms (Pseudomonas, Coryneform Alcaligenes, etc.) found in soil and water. It is oxidized to carbon dioxide. Another degradation have not been identified.
Diesel Fuel and Fog Oils (Volume 8)

EXECUTIVE SUMMARY

In this report, studies are reviewed on topics related to the environmental damage caused by diesel fuel and fog oils. The oils are used in U.S. Army smoke screening operations. Both of these petroleum oils, in sufficient quantity, are toxic to ducks, freshwater and marine fish, clams, shrimps and other shellfish, algae, soil and water microorganisms, soil and marine worms, and insects. They cause harmful effects in trees and plants, such as yellowing of leaves, dwarfing, and interference with photosynthesis and fruit production. Other effects in animals include contamination of feathers of ducks, egg abnormalities in quail, equilibrium disturbances in fish, cancer in soft shell clams and interference with food finding behavior in snails and oceanic bacteria.

Oil smoke consists of tiny droplets of fog oil, which are carried as far as 10 km by air currents before falling back to earth. As the smoke droplets settle, an oil film forms over soil, bodies of water and plants. Oil seeps into soil, where it remains to be slowly biotransformed by bacteria. Rainfall runoff may carry some oil into drinking water supplies and other waters. Oil forms a film when it falls on water, and some of the oil may dissolve in the water, be photolyzed by sunlight, metabolized by microorganisms in the water and bioconcentrated by organisms living in the water. In this way the oil can bioaccumulate through secondary consumption, reaching humans eating fish taken from the contaminated water. The amounts of fog oil or diesel fuel which contaminate the ground, plants and waters in smoke screening areas need to be measured in order to present a more definitive evaluation of the environmental impact of U.S. Army smoke screening operations. It may be possible to expect fog oil to persist in soil, harm vegetation and pollute bodies of water sufficiently enough to introduce the oils into the food chain and possibly harm aquatic organisms feeding or living in smoke screening areas.
Diesel Fuel (Volume 1)

INFORMATION SOURCES EXAMINED

Computer Searchable Data Bases

1. National Technical Information Services - covering 1964 to present (searched on 4/4/77)
2. TOXLINE/TOXBACK (searched on 3/29/77)
3. Chemical Condensates - covering 1972 to present (searched on 4/1/77)
4. BIOSIS Previews - covering 1972 to present (searched on 4/8/77)
5. ISI SCISEARCH - covering 1974 to present (searched on 4/8/77)
6. CANCERLINE (searched on 5/5/77)
7. NIOSH Technical Information Center file - (received on May 15, 77)
8. American Petroleum Institute file - (received on May 15, 77)
9. Defense Documentation Center - (received on May 15, 77)

Hardbound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).

Other References Examined

3. API Toxicological Reviews, American Petroleum Institute, New York, N. Y.

23. National Cancer Institute, Survey of Compounds which have been tested for Carcinogenic Activity, DHEW Publication No. (NIH) 73-453, Rockville, Md., 1973 (all volumes through 1972-73 volume).

Organizations Contacted

1. American Petroleum Institute, Washington, D. C.

5. U.S. Army Fuels & Lubricants Research Laboratory, Southwest Research Institute, San Antonio, Texas.

6. Naval Environmental Hygiene Center, Cincinnati, Ohio.

7. U.S. Navy Medical R&D Command, National Naval Medical Center, Bethesda, Md.

8. Advisory Center for Toxicology, National Academy of Sciences, Washington, D.C.

9. FMC Corporation, Ordnance Engineering Division, San Jose, Calif.

10. Teledyne Continental Motors, General Products Division, Muskegon, Michigan.
Persons Contacted

1. Baker, Lt. Charles,
 Bureau of Medicine & Surgery
 Dept. of the Navy
 Washington, D. C. 20372
 (202)-254-4384

2. Baumel, Dr.
 NIOSH
 Rockville, Maryland
 (301)-443-5290

3. Carpenter, Dr. C. P.
 Carnegie-Mellon Institute of Research
 Carnegie-Mellon University
 Pittsburgh, Pa. 15213
 (412)-327-1020

4. Crawl, Mr. James
 U.S. Naval Environmental Hygiene Center
 Cincinnati, Ohio

5. Doptis, Lt. Commander Leigh
 Naval Medical R&D Command
 National Naval Medical Center
 Bethesda, Maryland 20014
 (301)-295-1131 or (301)-295-1028

 U.S. Environmental Hygiene Agency
 Aberdeen Proving Ground, Maryland 21010
 (301)-671-2304

7. Holdsworth, Dr. Charles, Toxicologist
 Health Affairs
 American Petroleum Institute
 Washington, D. C.
 (202)-457-7182

8. Johnston, Mr. Allan
 U.S. Army Fuels & Lubricants Research Labs.
 Southwest Research Institute
 San Antonio, Texas
 (512)-684-5111

9. Le Pera, Mr.
 Fuels & Lubricants
 Petroleum & Materiel Department
 U.S. Army Mobility Equipment R&D Center
 Ft. Belvoir, VA
 (703)-664-3113
10. Martinez, Miss Clara
American Petroleum Institute
275 Madison Avenue, 9th Floor
New York, N. Y. 10016
(212)-685-1349

11. Miller, Mr. Lester
Chemical Systems Laboratory
Research Division; Toxicology Branch
Aberdeen Proving Ground, Md. 21010
(301)-671-3557

12. Orrel, Mr. John
PNC Corporation
Ordnance Engineering Division
1105 Coleman Ave.
San Jose, Calif. 95108
(408)-289-0111

13. Owens, Mr. Ed
Chemical Systems Laboratory
Research Division; Toxicology Branch
Environmental Toxicology Section
Aberdeen Proving Ground, Md. 21010
(301)-671-2129

14. Richardson, Lt.
Ft. Sheridan, Illinois
(312)-926-2258

15. Stokinger, Dr. Herbert
Chief Toxicologist
NIOSH
Cincinnati, Ohio 45202
(513)-684-8392

16. Taft, Mr. Richard
NIOSH
DTS, COSHI, IRAS, C-19
4676 Columbia Parkway
Cincinnati, Ohio 45226

17. Wilson, Mr. Richard
Teledyne Continental Motors,
General Products Division
76 Getty Street,
Muskegon, Michigan 49442
(616)-734-2867

18. Winstead, Dr. Jack
Advisory Center for Toxicology
National Academy of Sciences
Washington, D. C.
(202)-393-8100

45
INFORMATION SOURCES EXAMINED

Computer Searchable Data Bases

2. Toxline/Toxback (searched on 3/29/77)
3. Chemical Condensates - covering 1972 to present (searched on 4/1/77)
4. BIOSIS Previews - covering 1972 to present (searched on 4/8/77)
5. ISI SCISEARCH - covering 1974 to present (searched on 4/8/77)
6. CANCERLINE (searched on 5/5/77)
7. NIOSH Technical Information Center file - (received on 5/15/77)
8. Defence Documentation Center - (received on 5/15/77)

Hard Bound Secondary References

2. Index Medicus - V. 1 (1927) - V. 18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).

Other References Examined

Organizations Contacted

3. Naval Environmental Hygiene Center, Cincinnati, Ohio.

4. U.S. Navy Medical R&D Command, National Naval Medical Center, Bethesda, Md.

5. Monsanto Chemical Co., New York, N. Y.

Persons Contacted

2. Baumer, Dr. NIOSH Rockville, Maryland (301)-443-5290

3. Crawl, Mr. James U.S. Naval Environmental Hygiene Center Cincinnati, Ohio

4. Doptis, Lt. Commander Leigh Naval Medical R&D Command National Naval Medical Center Bethesda, Maryland 20014 (301)-295-1131 or (301)-295-1028
5. Hathaway, Lt. Col. James
 U.S. Army Environmental Hygiene Agency
 Aberdeen Proving Ground, Maryland
 (301)-671-2304

6. Miller, Mr. Lester
 Chemical Systems Lab.
 Research Division, Toxicology Branch
 Aberdeen Proving Ground, Md. 21010
 (301)-671-3557

7. Owens, Mr. Ed
 Chemical Systems Lab.
 Research Division, Toxicology Branch,
 Environmental Toxicology Section,
 Aberdeen Proving Ground, Md. 21010
 (301)-671-2129

8. Taft, Mr. Richard
 NIOSH
 DTS, COSHI, IRAS, C-19
 4676 Columbia Parkway
 Cincinnati, Ohio 45226
TNT (Volume 3)
INFORMATION SOURCES EXAMINED

Computer Searchable Data Bases

2. Toxline/Toxback (searched on 3/29/77)
3. Chemical Condensates - covering 1972 to present (searched on 4/1/77)
4. BIOSIS Previews - covering 1972 to present (searched on 4/8/77)
5. ISI SCISEARCH - covering 1974 to present (searched on 4/8/77)
6. CANCERLINE (searched on 5/5/77)
7. NIOSH Technical Information Center file - (received on 5/15/77)
8. Defence Documentation Center - (received on 5/15/77)

Hard Bound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).
5. Biological Abstracts - (covering Vol. 1 (1927) through Vol. 61 (1976)).

Other References Examined

Organizations Contacted

2. U. S. Army Environmental Hygiene Agency, Edgewood Arsenal, Md.
3. Naval Environmental Hygiene Center, Cincinnati, Ohio.
4. U.S. Navy Medical R&D Command, National Naval Medical Center, Bethesda, Md.

Persons Contacted

1. Crawl, Mr. James
 U.S. Naval Environmental Hygiene Center
 Cincinnati, Ohio

2. Doptis, Lt. Commander Leigh
 Naval Medical R&D Command
 National Naval Medical Center
 Bethesda, Maryland 20014
 (301) 295-1131 or (301) 395-1028

3. Hathaway, Lt. Col. James
 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301) 671-2304

4. Miller, Mr. Lester
 Chemical Systems Lab.
 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301) 671-3557

5. Owens, Mr. Ed
 Chemical Systems Lab.
 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301) 671-2129
6. Taft, Mr. Richard
NIOSH
DTS, COSHI, IRAS, C-19
4676 Columbia Parkway
Cincinnati, Ohio 45226
INFORMATION SOURCES EXAMINED

Computer Searchable Data Bases

1. National Technical Information Services - covering 1964 to present (searched on 4/4/77)
2. TOXLINE/TOXBACK (searched on 3/29/77)
3. Chemical Condensates - covering 1972 to present (searched on 4/1/77)
4. BIOSIS Previews - covering 1972 to present (searched on 4/8/77)
5. ISI SCISEARCH - covering 1974 to present (searched on 4/8/77)
6. CANCERLINE (searched on 5/5/77)
7. NIOSH Technical Information Center file - (received on May 15, 77)
8. American Petroleum Institute file - (received on May 15, 77)
9. Defense Documentation Center - (received on May 15, 77)

Hardbound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicoology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).

Other References Examined

3. API Toxicological Reviews, American Petroleum Institute, New York, N. Y.

23. National Cancer Institute, Survey of Compounds which have been tested for Carcinogenic Activity, DHEW Publication No. (NIH) 73-453, Rockville, Md., 1973 (all volumes through 1972-73 volume).

Organizations Contacted

1. American Petroleum Institute, Washington, D. C.

5. U.S. Army Fuels & Lubricants Research Laboratory, Southwest Research Institute, San Antonio, Texas.

6. Naval Environmental Hygiene Center, Cincinnati, Ohio.

7. U.S. Navy Medical R&D Command, National Naval Medical Center, Bethesda, Md.

8. Advisory Center for Toxicology, National Academy of Sciences, Washington, D.C.

9. FMC Corporation, Ordnance Engineering Division, San Jose, Calif.

10. Teledyne Continental Motors, General Products Division, Muskegon, Michigan.

Persons Contacted

1. Baker, Lt. Charles,
 Bureau of Medicine & Surgery
 Dept. of the Navy
 Washington, D. C. 20372
 (202)-254-4384

2. Baumel, Dr.
 NIOSH
 Rockville, Maryland
 (301)-443-5290

3. Carpenter, Dr. C. P.
 Carnegie-Mellon Institute of Research
 Carnegie-Mellon University
 Pittsburgh, Pa. 15213
 (412)-327-1020

4. Crawl, Mr. James
 U.S. Naval Environmental Hygiene Center
 Cincinnati, Ohio

5. Doptis, Lt. Commander Leigh
 Naval Medical R&D Command
 National Naval Medical Center
 Bethesda, Maryland 20014
 (301)-295-1131 or (301)-295-1028

 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301)-671-2304

7. Holdsworth, Dr. Charles, Toxicologist
 Health Affairs
 American Petroleum Institute
 Washington, D. C.
 (202)-457-7182

8. Johnston, Mr. Allan
 U.S. Army Fuels & Lubricants Research Labs,
 Southwest Research Institute
 San Antonio, Texas
 (512)-684-5111

9. Le Pera, Mr.
 Fuels & Lubricants
 Petroleum & Materiel Department
 U.S. Army Mobility Equipment R&D Center
 Ft. Belvoir, VA
 (703)-664-3113
10. Martinez, Miss Clara
 American Petroleum Institute
 275 Madison Avenue, 9th Floor
 New York, N. Y. 10016
 (212)-685-1349

11. Miller, Mr. Lester
 Chemical Systems Lab.
 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301)-671-3557

12. Orrel, Mr. John
 FMC Corporation
 Ordnance Engineering Division
 1105 Coleman Ave.
 San Jose, Calif. 95108
 (408)-289-0111

13. Owens, Mr. Ed
 Chemical Systems Lab.
 U.S. Army Environmental Hygiene Agency
 Edgewood Arsenal, Maryland
 (301)-671-2129

14. Richardson, Lt.
 Ft. Sheridan, Illinois
 (312)-926-2258

15. Stokinger, Dr. Herbert
 Chief Toxicologist
 NIOSH
 Cincinnati, Ohio 45202
 (513)-684-8392

16. Taft, Mr. Richard
 NIOSH
 DTS, COSHI, IRAS, C-19
 4676 Columbia Parkway
 Cincinnati, Ohio 45226

17. Wilson, Mr. Richard
 Teledyne Continental Motors,
 General Products Division
 76 Getty Street,
 Muskegon, Michigan 49442
 (616) - 734-2867

18. Winstead, Dr. Jack
 Advisory Center for Toxicology
 National Academy of Sciences
 Washington, D. C.
 (202)-393-8100
19. Mr. Hall
 American Petroleum Institute
 Washington, D.C.
 (202)-457-7000

20. Mr. Faber
 U.S. Army Defense Fuel Supply Agency
 Washington, D.C.
 (202)-545-6700 or (202)-284-7500

21. Mr. Bob James
 U.S. Army Contracting Officer
 U.S. Army Defense Fuel Supply Agency
 Washington, D.C.
 (202)-274-7461

22. Mr. Ivin Biscan
 U.S. Government Representative
 Shell Oil Company
 Houston, Texas
 (713)-241-4201
Zinc Chloride (Volume 5)

Information Sources Examined

Computer Searchable Data Bases

1 - National Technical Information Services (searched on Oct. 5, 1977)
2 - Toxline/Toxback (searched on September 20, 1977)
3 - Chemical Condensates (searched on September 27, 1977)
4 - ISI SCISEARCH (searched on Oct. 5, 1977)
5 - Cancerline (searched on October 4, 1977)
6 - NIOSH Technical Information Center file (received on Oct. 11, 1977)
7 - Defense Documentation Center (received on September 25, 1977)
8 - Enviroline (received on Oct. 11, 1977)
9 - Water Resources Scientific Information Center (WRSIC) (received on October 6, 1977)
10 - Office of Hazardous Materials/Technical Assistance Data System (OHM/TADS) (received on October 6, 1977)
11 - Pollution Abstracts (received on Oct. 11, 1977)
12 - AGRICOLA (received on Oct. 17, 1977).
Hard Bound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).
5. Biological Abstracts - [covering Vol. 1 (1927) through Vol. 64, #6 (1977)].

Other References Examined

Organizations Contacted

1. National Institute for Occupational Safety and Health
 Division of Criteria Documentation and Standards Development
 Rockville, Maryland 20852

2. General Electric Company
 Schenectady, New York

3. Mallinckrodt, Inc.
 Mallinckrodt and Second Streets
 St. Louis, Missouri 63147

4. National Institute of Environmental Health Sciences
 P. O. Box 12233
 Research Triangle Park
 North Carolina 27709

5. U.S. Army Ordnance & Chemical Center & School
 Chemical Directorate
 Aberdeen Proving Ground, Maryland 21005

Persons Contacted

1. Mr. Vernon E. Rose
 National Institute for Occupational Safety and Health
 Division of Criteria Documentation and Standards Development
 Rockville, Maryland 20852
 (301)-443-3680

2. Dr. J. J. Ferry
 Area Manager
 Industrial and Environmental Hygiene
 General Electric Company
 Schenectady, New York
 (518)-385-2604

3. Mr. Roger Hopkins
 Mallinckrodt, Inc.
 Mallinckrodt and Second Streets
 St. Louis, Missouri 63147
 (314)-895-5441

4. Dr. Warren T. Piver
 National Institute of Environmental Health Sciences
 P. O. Box 12233
 Research Triangle Park
 North Carolina 27709
 (919)-341-3471

65
5. Lt. Col. (Retired) James B. Mason
 U. S. Army Ordnance & Chemical Center & School
 Chemical Directorate
 ATTN: ATSL-CLC
 Aberdeen Proving Ground, Maryland 21005
 (301)-671-2844 or (301)-671-3556

6. Mr. William Russel
 Commanding Officer
 ATTN: STEAP-PE-E
 Aberdeen Proving Ground, Maryland 21005
 (301)-278-5622

7. Mr. Richard Taft
 National Institute for Occupational Safety and Health
 DTS, COSHI, IRS, C-19
 4676 Columbia Parkway
 Cincinnati, Ohio 45226
 (513)-684-8328
Urea-formaldehyde (Volume 6)

Information Sources Examined

Computer Searchable Data Bases

1 - National Technical Information Services (searched on Oct. 5, 1977)
2 - Toxline/Toxback (searched on September 20, 1977)
3 - Chemical Condensates (searched on September 27, 1977)
4 - ISI SCISEARCH (searched on Oct. 5, 1977)
5 - Cancerline (searched on October 4, 1977)
6 - NIOSH Technical Information Center file (received on Oct. 11, 1977)
7 - Defense Documentation Center (received on September 25, 1977)
8 - Enviroline (received on Oct. 11, 1977)
9 - Water Resources Scientific Information Center (WRSIC) (received on October 6, 1977)
10 - Office of Hazardous Materials/Technical Assistance Data System (OHM/TADS) (received on October 6, 1977)
11 - Pollution Abstracts (received on Oct. 11, 1977)
12 - AGRICOLA (received on Oct. 17, 1977).
Hard Bound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).
5. Biological Abstracts - [covering Vol. 1 (1927) through Vol. 64, #6 (1977)].

Other References Examined

Cetyl Alcohol (Volume 7)

Information Sources Examined

Computer Searchable Data Bases

1 - National Technical Information Services (searched on Oct. 5, 1977)
2 - Toxline/Toxback (searched on September 20, 1977)
3 - Chemical Condensates (searched on September 27, 1977)
4 - ISI SCISEARCH (searched on Oct. 5, 1977)
5 - Cancerline (searched on October 4, 1977)
6 - NIOSH Technical Information Center file (received on Oct. 11, 1977)
7 - Defense Documentation Center (received on September 25, 1977)
8 - Enviroline (received on Oct. 11, 1977)
9 - Water Resources Scientific Information Center (WRSIC) (received on October 6, 1977)
10 - Office of Hazardous Materials/Technical Assistance Data System (OHM/TADS) (received on October 6, 1977)
11 - Pollution Abstracts (received on Oct. 11, 1977)
12 - AGRICOLA (received on Oct. 17, 1977).
Hard Bound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpts Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).
5. Biological Abstracts - (covering Vol. 1 (1927) through Vol. 64, #6 (1977)).

Other References Examined

Diesel Fuel and Fog Oils (Volume 8)

Information Sources Examined

Computer Searchable Data Bases

1 - National Technical Information Services (searched on Oct. 5, 1977)
2 - Toxline/Toxback (searched on September 20, 1977)
3 - Chemical Condensates (searched on September 27, 1977)
4 - ISI SCISEARCH (searched on Oct. 5, 1977)
5 - Cancerline (searched on October 4, 1977)
6 - NIOSH Technical Information Center file (received on Oct. 11, 1977)
7 - Defense Documentation Center (received on September 25, 1977)
8 - Envirole (received on Oct. 11, 1977)
9 - Water Resources Scientific Information Center (WRSIC) (received on October 6, 1977)
10 - Office of Hazardous Materials/Technical Assistance Data System (OHM/TADS) (received on October 6, 1977)
11 - Pollution Abstracts (received on Oct. 11, 1977)
12 - AGRICOLA (received on Oct. 17, 1977).
13 - Petroleum Abstracts (received on May 15, 1977)
Hard Bound Secondary References

2. Index Medicus - V.1 (1927) - V.18 (No. 4), 1977.
3. Excerpta Medica - sections entitled Toxicology and Pharmacology, Occupational Health and Industrial Medicine, Cancer, Environmental Health and Pollution Control (covering Vol. 1 through last volume available in 1976) were examined.
4. Engineering Index - (covering 1940 through 1977, issue #3).
5. Biological Abstracts - [covering Vol. 1 (1927) through Vol. 64, #6 (1977)].

Other References Examined

Organizations Contacted

1. National Institute for Occupational Safety and Health
 Division of Criteria Documentation and Standards Development
 Rockville, Maryland 20852

2. U. S. Army Ordnance and Chemical Center and School
 Chemical Directorate
 Aberdeen Proving Ground, Maryland 21005

Persons Contacted

1. Mr. Vernon E. Rose
 National Institute for Occupational Safety and Health
 Division of Criteria Documentation and Standards Development
 Rockville, Maryland 20852
 (301)-443-3680

2. Lt. Col. (Retired) James B. Mason
 U. S. Army Ordnance and Chemical Center and School
 Chemical Directorate
 ATTN: ATSL-CLC
 Aberdeen Proving Ground, Maryland 21005
 (301)-671-2844 or (301)-671-3556

3. Mr William Russel
 Commanding Officer
 ATTN: STEAP-PE-E
 Aberdeen Proving Ground, Maryland 21005
 (301)-278-5622

4. Mr. Richard Taft
 National Institute for Occupational Safety and Health
 DTS, COSHI, C-19
 4676 Columbia Parkway
 Cincinnati, Ohio 45226
 (513)-684-8328
DISTRIBUTION LIST

25 Copies
Commander
US Army Medical Bioengineering
Research and Development Laboratory
ATTN: SGRD-UBG
Fort Detrick, Frederick, MD 21701

4 Copies
HQDA (SGRD-AJ)
Fort Detrick
Frederick, MD 21701

12 Copies
Defense Documentation Center (DDC)
ATTN: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

1 Copy
Dean
School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, Maryland 20014

1 Copy
Superintendent
Academy of Health Sciences, US Army
ATTN: AHS-COM
Fort Sam Houston, Texas 78234