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ABSTRACT

‘\> The problem of computing an optimal search plan for a moving target is
addressed,v_ryn the searcher can distribute his effort as finely as he wishes.

“>The majority of the report describes numerical techniques which have been
developed to compute optimal search plans for the very broad class of problems
in which the target's motion can be modeled by a discrete-time stochastic process
and the detection function is expouential,

i A very efficient algorithm is given to find optimal search plans when the

Q target's motion is modeled by a mixture of discrete time and space Markov

processes. A second algorithm is presented to solve the variation of this

_ problem that one encounters when the search effort at each time period is
| restricted to be uniform over an arbitrary rectangular region, The latter is
b intended to approximate the problem of choosing a sequence of sonobuoy fields
to maximize the probability of detecting a submarine, Examples show that one
can often find rectangular plans that are almost as effective as the optimal plan,
In addition to the above, an algorithm is presented to find optimal plans for
arbitrary discrete time target motion processes which can be modeled by Monte
Carlo simulation. All the algorithms have been programmed in FORTRAN and
run on & Prime 400 minicomputer. Examples of optimal plans calculated by
these algorithms are presented, .

0 el g et

All the algorithms are based on a very general necessary and sufficient
: condition for optimal search for a moving target which is proved in this report,
' For discrete time and an exponential detection function this condition becomes:

For a search plan for a moving target to be optimal, it is necessary
and sufficient that at each time t it assign an allocation which is
optimal for the stationary target problem which one obtains at
» time t by conditioning on failure to detect after t as well as before
! t under the plan,

Algorithms are also offered for minimizing mean time to detect, for searches
involving non-exponential detection functions, and for survivor search problems,
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ABSTRACT

The p:oblem of computing an optimal search plan for a moving target is
addressed when the searcher can distribute his effort as finely as he wishes.

The majority of the report describes numerical techniques which have been
developed to compute optimal search plans for the very broad class of prohlems

in which the target's motion can be modeled by a discrete-time stochastic process
and the detection fanction is exponential,

A very efficient algorithm is given to find optimal search plans when the
target's motion is modeled by a mixture of discrete time and space Markov
processes. A second algorithm is presented to solve the variation of this
problem that one encounters when the search effort at each time period is
restricted to be uniform over an arbitrary rectangular region, The latter is
intended to approximate the problem of choosing a sequence of sonobuoy fields
to maximize the probability of detecting a submarine, Examples show that one
can often find rectangular plans that are almost as effective as the optimal plan,
In addition to the above, an algorithm is presented to find optimal plans for
arbitrary discrete time target motion processes which can be modeled by Monte
Carlo simulation. All the algorithms have been programmed in FORTRAN and

run on a Prime 400 minicomputer, Examples of optimal plans calculated by
these algorithms are presented,

All the algorithms are based on a very general necessary and sufficient
condition for optimal search for a moving target which is proved in this report.
For discrete time and an exponential detection function this condition becomes:

For a search plan for a moving target to be optimal, it is necessary
and sufficient that at each time t it assign an allocation which is
optimal for the stationary target problem which one obtains at

time t by conditioning on failure to detect after t as well as before
t under the plan,

Algorithms are also offered for minimizing mean time to detect, for searches

involving non-exponential detection functions, and for survivor search problems,
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This is a report by Daniel H. Wagner, Assoclates to the Naval Analysis Divi-
sion of the Office of Naval Research (Code 431) on work performed under ONR
Contract No, N00014-76-C-0698. This report summarizes the remarkable pro-
gress made since the fall of 1976 in the computation of optimal search plans for
moving targets.

We would like to express our appreciation for the excellent cooperation and
support that has been given to this work by Mr. J, Randolph Simpson and CDR
Ronald James of ONR (Code 431),

In reference [a], S. S, Brown made the key observation that the necessary
and sufficient conditions for optimal search for a target moving in discrete space
and time with an exponential detection function could be stated in terms of solving
a sequence of stationary targei problems, In each of these stationary searches
the target position distributions are conditioned on non-success of future as well
as past search under the plan, This observation allowed him to produce a very
efficient algorithm for finding optimal search plans for targets whose motion
can be modeled by a mixture of discrete time and space Markov processes,
Chapter II of this report is based on reference [b), which is a revised version
of Brown's work reported in roference [a]. The work on rectangular search
plans discussed in Chapter III 18 based on work by R, P, Buemi reported in
references (¢] and [d]. This work makes use of many of the ideas of Brown
discussed in Chapter 1I,

In reference [e), L. D. Stone showed that the condition found by Brown holds
when the search space is continuous as well as discrete, This is the basic con-
dition given in Chapter 1. In addition he found a generalization of the condition
for non-exponential detection functions and continuous time, again involving
conditioning upon future as well as past search, This allowed a unified state-
ment of the necessary and sufficient conditions for a ve:'y broad class of moving
target problems for any combination of discrete or continuous space and discrete
or continuous time, This statement is given in Chapter VI,

Using this condition, Stone (reference [f]) devised an algorithm to find optimal
search plans when the detection function is exponential and the target motion can
be modeled by an arbitrary discrete-time Monte Carlo simulation, This algorithm
was implemented by C. R. Hopkins (see reference [g]) on a Prime 400, Hopkins'
program was used to produce the examples in Chapter IV,

il
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SUMMARY

This report summarizes the recent progress that has been made in finding optimal

L
EE: se. ~ch pians for moving targets.
£
f: In the recent past, our ability to compute optimal search plans for detecting
z ' moving targets was limited to special situations such as those involving target motion
F ‘ that {s conditionally deterministic with a factorable Jacobian or that is two-celled

: Markovian (see Chapters 8 and 9 of reference [h]). Although the target motion in some
¥ Naval applications can be modeled by the factorable conditionally deterministic

motion, most cannot, and Markovian motion in any small number of cells {8 not a
realistic motion model for most operational situations.

Since the fall of 1976 we have developed optimization techniques which allow one
to find optimal allocations for multiscenario Markovian motions in discrete space and

] time. These multiscenario Markovian motions are general enough to model a

wide range of target motions. In addition, we have developed an optimization program

for arbitrary discrete time target motion procaesses that can be represented by a
' Monte Carlo simulation. This latter program can be coupled with computer assisted
search programs such as COMPASS, MEDSEARCH, or TARDIST which are now being used on a
regular basis to provide search planning advice for actual submarine searches in the

‘ Mediterranean and Atlantic. The program designed for arbitrary discrete time target

[ e Ty 0 R R T R
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motions is very general; however, it pa;r the price of being slower to run than the
program designed only for multiscenario Markovian motions. Programs such as
COMSUBPAC's ASP and SASP could be modified to incorporate the basic optimization
algorithm described in the third section below.

The class of search probleme that can be solved by these programs is very broad
but there are two important restrictions. First the detection function must be
exponential, and second the searcher is assumed to have the ability to spread his
effort over large areas in a single time period. Thus, the allocations obtained from
these programs would not be appropriate for a submarine searching for a submarine
hut would be more reasonable for a VP aircraft -.ching for a submarine. Even
in the latter case, the optimal allocations of effort are probably too complicated for
operational use, although they can suggest the general nature of the plan to be followed.
In Chapter III of this report we address this problem by producing an algorithm that
finds near-optimal plans which are restricted to allocate their effort uniformly over
a single rectangle during each time period. In fact, the methods described in Chapter
I11 have been adapted by COMPATWINGSPAC for use in VP search planning.

In the remainder of this summary, we describe the basic search problem and

outline the results obtained for this problem.

Basic Problem

The target's motion is represented by a stochastic process

where Xt is a random variable which gives the target's position at time t. The distri-

bution of )4{t is simply the probability distribution of the target's location at time t.

iv
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In this report, two basic types of target motion processes are considered.
The first type, considered in Chapters Il and I1I1,is the multi~scenario Markovian
motion in discrete space and time. Tkhke second type is an arbitrary discrete time
target motion process which is represented by a large but finite number of sample
paths from a Monte Carlo s{mulation of the process. This type is considered primarily
in Chapter 1V. This second type of motion is very general in character; it need not be
Markovian and can take place in a discrete or continuous space.

For most of the report, we assume that a grid has been established on the search
space which is two~-dimensional and that search effort must be applied uniformly within
a given cell of the grid, although effort may vary from cell to cell. Let J denote the

set of cells in the grid and

pt(j)=Pr{Xte cell j} for jeJ, t=1, ..., T,

A(J) = area of jth cell for je J.

Although we impose this grid structure, the '_rget motion may take place in either

discrete or continuous space. We assume that the detection function is exponential, i.e.,

o (- 5)

is the probability of detecting the target with 2 amount of effort placed in the )th cell
given the target is in that cell. Here, W(j) is the sweep width or effectiveness
parameter for search in cell j.

A search plan {s described by a nonnegative function ¢ of space and time such

that

biia .
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¥(,t) = effort placed in cell j at time t for jedJ, t=1, ..., T.
The amount of effort available is constrained so that

m(t) = the effort availabe at time ¢.

We define ¥(m) to be the class of search plans ¥ such that

= P@§.t) = m(t) fort=1, ..., T.

jed

Let E denote expectation taken over the sample paths of the process X. For
any search plan y the probability, PT[zp], of datecting the target by time T is given by
, T
P [¥] =E|1l-exp| -2 WX)IX,t)/AX) .
T t t t
t=1

The basic search problem considered in this report is to find a plan ¥ * ¢ ¥(m) that
maximizes the probability of detecting the target by time T over ail plans in the

class ¥(m). Mathematically stated, we seek $* € ¥(m) such that

P [#*] = max{P [¥]:} € ¥(m)}.

Such a plan is called T-optimal within ¥(m).

Basic Necéssary and Sufficient Conditions

The main optimization algorithms discussed in this report are based on the
following necessary and sufficient condition for a search plan to be T-optimal within
¥ (m). The form of the condition given here applies to any discrete time target motion

process and exponential detection function. For any search plan ¥, let
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target {s in cell j l fajlure to detect at all times

8y 0t = Pr ot time t other than t using plan ¥

Note that g ‘p(j. t) is conditioned on failure to detect both before and after time t.

BASIC CONDITION: In order that ¥ *¢ ¥(m) be T-optimal, it is

necessary and sufficient that the allocation ¥ *(-,t) maximize the
probability of detecting a stationary target with distribution g v Ll t)

and effort m(t, fort=1, ..., T.

Description of the Basic Algorithm

The algorithms for finding T-optimal plans ~perate in the following manner.
Beginning at time t = 1, they find an optimal allocation of m(1) effort for the initial

target distribution. For times t=2, ..., T, they calculate the posterior target

location distribution at time t given failure to detect at all previous times and
allocate m(t) effort in & manner that would be optimal for that stationary target

problein. The plan resulting from the first pass is the myopic or incrementally

optimal plan.

Subsequent passes operate in the following manner fort =1, ..., T. The

algorithms compute g " (-, t) where ¥ represents the most recent allocation obtained.

They then reallocate the effort at time t to be optimal for the distribution g v

change ¥ to reflect that reallocation.

By performing encugh passes, one can come as close to the optimal search plan

as he wishes.
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Mult{-Scenarjo Markovian Motion
Chapter Il considers the problem of finding T-optimal plans when the target

motion is described by a mixture of discrete time and space Markov chains. Each
chain represents a possible target motion scenario. Suppose there are N scenarios.
Thenforn =1, ..., N, the user may specify a Markov chain X" =-{xf;-'t =1, ..., T}
to model the motion in that scenario. The nth rcenario is given weight @ where
Z::Ll a = 1. If p:(j) is tho probability that the target {s located in cell § at time t
under scenario n, then the overall probability of the target being located in cell j at
time t {8
N
.)t(j) =2 o p:(j).
n=1

The target motion assumptions are translated into transition functions for the
Markov chains. These functions may be time dependent. One can specify the target's
{nitial dietribution, i.e., his distrtbution at time 1, and constrain the target to have
any desired distributions at any subset of the remaining times {2,...,T}. This
feature may be used to model geographic constraints, i.e., if the target distribution
must squeeze down to funnel through a strait, one can model this by using the
constraints.

As woll as describing the algorithm used to compute the optimal allocation,
Chapter II gives examples of optimal plans calculated by the program that impleinents
the algorithm on a Prime 40C mini-computer.

One of the examples considered is a constrained Markovian fan. The target's

initial distribution is circular normal with a standard deviation of 6 miles. It I8
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centered in the middle of cell (0, 0) and truncated by a 15 mile by 16 mile square
whose center coincides with the center of the distribution. The orientation of the
square matches that of the grid. The target's motion is single scenario Markovian
with the target choosing its course uniformly from 150° to 210° and its speed between
6_ and 12 kts with a best speed of 9 kts, which is given a weight of 1. 5; the speed
distribution is truncated triangular as shown in Figure S-1. lndepéndent draws are
made from these distributions each hour. At hour 8 the target is constrained to have
a truncated normal distribution which is equal to the initial one translated 60 miles
south. If the constraint at hour 8 were removed, this type of problem would be
similar to that faced by a VP afrcraft trying to redetect a submarine on which contact
has been recently lost. Examplé 1 of Chaptar 1l presents such a case.

Table S-1 shows how the target density changes over the first four hours in the
absence of search. The target moves southward and diffuses from its original
distribution. During the last four hours the target density {8 a8 mirror image of the
first four hours. It still moves southward but converges back to a truncated normal
distribution.

Ninety units of search effort are available each hour. Table S-2 compares the

detection probabilities achieved by the myopic plan at the end of each hour to those

achieved by plans which are optimal for 2, 4, 6, and 8 hours. Observe that no optimal

o
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plan significantly outperforms the myopic plan. The myopic plan remains near optimal

for many searches although Example 3 In Chapter 1I and Example 3 in Chapter 1V
give situations in which the optimal plan is significantly better than the myopic.

Table 8-3 shows the optimal plan for 8 hours. Again only the tables for the first four

ix
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FIGURE S-1

4o TRIANGULAR DISTRIBUTION ON TARGET SPEED X
5 ' i
Note: A weight of 1.5 means that the probability density at the best speed is 1.5 >

times that at the minimum and maximum speeds which have equal probability p
densities.
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TARGET DENSITY FOR THE CONSTRAINED MARKOVIAN FAN

Note: (1) Entries represent thousandths of a target.

TABLE S-1_

(2) Cells are 3 mi x 3 mi.

-1]
-2]

-4)
-5)
-6)

-2]
-3]
-4]
-5]
-6]

-8}
-9}

DO OO |'“

o.—mwnmooi“

2
7 23
1 34
0 38
-1 34
-2 23

3 2

1 3

8 17

9 27

10 30

9 25

4 12

0 2

3 2

1

5

-
b ON e TNNO
(X}

[y

Hour 1

1

34
49
56
49
34

0

38
56
83
56
38

Hour 2

49
53
40
17

3

xi

34
49

49

' |

31
50
55
47

23
34
38
34
23

~2

17
27
30
25
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Eo.d TABLE 8-1 (continued)
Do
S E SN
B Hour 4
- 5 4 3 2 1 0 -1 -2 =8 =4 =5
- § 0 0 0 1 2 2 2 1 0 0 0
" 6 0 1 8 7 12 14 12 7 3 1 0
, -7 0 2 8 19 33 3 383 19 8 2 O
,' -8 0 3 12 30 50 60 50 30 12 3 0
9 0 38 12 31 52 61 52 381 12 3 0
<100 0 2 9 21 36 43 38 21 9 2 O
<11} o : 3 8 14 17 14 8 3 1 o
-127 0 06 1 1 2 3 2 1 1 0 O
Hours 5-8 are a mirror reflection of hours 1-4,
i TABLE 5-2
DETECTION PROBABILITIES FOR THE CONSTRAINED MARKOVIAN FAN
; " -
3 : Number Myopic Plan Which {s Optimal for
2 Of Hours Plan 2hours 4 hours 6 hours 8 hours
1 1 .357 . 346 . 324 .313 .311
4 2 . 856 . 560 . 548 . 541 . 539
i 3 .872 .679 . 673 . 672
S 4 . 760 . 762 . 768 . 757
5 . 807 . 818 . 817
8 . 852 - 882 . 862
7 . 889 . 898
, 8 .928 . 932
L
f:
xi
'-msva-&.m s o TS ST T T T TR T T
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TABLE 8-3

— -

SEARCH PLANS FOR EXAMPLE 2

e , =

Notes: (1) Entries represent thousandths of a unit of search deusity (etfort/mlz).
(2) Cells are 3 mi x 3 ml.

RS ot SRR ARG S ) Rl B LA T AR K S b iR et wqurmm
: ’ ' T

Optimal Plan for 8 Hours

LY

N Hour 1

i' 1 2 1 0 1 -2

] ) 2] 448 563 568 563 448
i ' 1] 423 361 263 361 423

o - 0] 392 268 165 268 392
i -1} 403 338 262 338 403
; - -2) 416 508 502 508 416
1]
‘ Hour 2
_ 43 2 1 0 a1 234
~ 0 0 06 O0 o0 0 0 0 0 O
-] 0 0 101 485 532 485 101 0 O
% - 2] 0 0 338 605 616 605 338 0 O
' _ -3) 0 o0 363 602 617 602 383 0 0
~4] 0 0 312 583 599 583 312 0 0
-+ -5) 0 0 0 268 323 268 0 0 O
. - -6) 0 0 0 0o 6 0 0 0 0
' ’ Hour 3
I 4 3 2z 1 0 A =23 A4
-2) 0 0 o0 0o 0 o0 0 0 0
-3) 9 o0 o 0 o0 o0 0 0 0
. ] -4] 0 0 257 449 484 449 257 0 O
s -5] 0 0 424 546 568 546 424 0 O
{ -6] 0 0 435 553 580 653 435 0 0
.’ l -77 0 0 363 G518 544 618 363 0 0
! -8) 0 O 0 223 285 223 0 0 O
; l -9] 0 0 0 o o o0 0 0 0

Y
3
]
]




A

Hour 4
5 4 3 2 1 0 1 2 3 AD
-5 0 0 0 0 0 0 0 0 o 0 O
-4y 0 O 0 0 52 121 652 0 o o O
- 0 0 0 802 430 482 430 302 0o 0 O
. -8y 0 O 74 438 508 823 508 4% 74 0 O
-9 0 O 84 441 512 534 512 441 84 O 0
! -10) 0 O 0 843 469 4982 469 343 v 0 O
-1 o O 0 0 173 240 173 0 o 0 O
-12y 0 0 0 0 0 0 0 0 0 0 0
Hours 5-8 are a mirTor reflection of hours 1-4,
Myopic Plan
Hour 1
y 2 1 o 2 2
2 0 256 381 268 0
1] 266 631 766 631 258
. 0] 381 766 881 756 381
' -1} 288 631 756 631 258
=2] 0 286 381 268 0
‘ Hours 2-3 not shown.
E Hour 4'
5 4 3 2 L1 0 1 2 3435
5 o0 0 0 0 0 0 0 o o 0 O
4 0 o0 0 0 0 26 0 o 0 0 0
-7 0 0 O 242 6506 656 6056 242 o 0 O
- 0 O 0 402 692 614 692 402 0 0 O
-9 0 0 O 401 690 607 90 401 o 0 0
! .10y 0 0 O 296 566 0628 586 285 0 0 O
1 -1 0 O 0 0 92 208 92 o 0 0 0
-<12) 0 0 O 0 0 0 0 o 0 o0 O

Hours 5-8 not shown,

xiv
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hours are displayed since the last four hours are a mirror imsage of the first four
hours. At hour 1 the optimal plan uses most of its effort to surround the target rather
than searching the highest probability cells as the .r-nyol;k‘:‘ plan d-o-es (ﬁee the.e;a.of |
Table S-3). By hour 4, however, the optimal plan concentrates its effort in the
center of the target distributton

The conéluslon that myopic plaﬁs are almbst as good as‘ optimal plans {n many |
situations has important operational implications. In general, the optimal plan for
time T + T' is not a continuation of the optimal plan for time T. Thus i{ one searches
optimally for four hours, one cannot extend this to an optimal search for eight hours.
Optimal plans are time-horizon dependent. However, the myopic plan, which simply
maximizes the increase of detection probability at each time increment, can always
be continued. In addition, the optimal plans typically pay a penalty in probability of
detection at the early hours in order to maximize that probability at time T. Witha
myopic plan no such penalty {8 incurred and often the resulting probability of detection
at the end of any amount of time i8 close to optimal. Thus when the myopic plan {8
close to optimal, as it is in many of the examples calculated for this report, the
myopic plan is a good one to use for operational purposes.

Even the myopic plans may be difficult to implement operationally because they
often call for fine distributions of effort over large areas. Chapter III considers
search plans for mult{-scenario target motion when at each time period one is
reetricted to allocating the available etfort uniformly over a rectangle. The size,
location, and orientation of the rectangle is chosen by the search planner. This

restriction {s intended to correspond to allocating sonobuoys uniformly in an area.
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An algorithm was developed to find good search rectangles, and it has been pro-
‘ ) grammed on a Prime 400 mini-computer. Chapter III presents some examples of

| i rectangle plans found by this algorithm. In particular, plans were computed for the
above example. Table 8-4 shows the rectangles obtained for hours 1 through 4.
Table 8-5 compares the probability of detection obtained from the rectangle plan to
that obtained by the myopic plan and the optimal plan for eight hours obtained above.

Observe that the probability of detection resulting from the rectangular plan is

remarkably close to both the optimal plan and the myopic plan.

& Rl 1 e 2kl

Arbitrary Discrete Time Target Motion
In Chapter IV we outline 2 method for finding T-optimal search plans for any

discrete time target motion process that can be represented by a Monte Carlo simulation.

Observe that this class of target motions is very broad. For example, the target is

b 0ot babnllai e st L,

not restricted to move among a set of cells as 18 usually the case when one deals with

Markov chain models of target motion. The motion process need not be Markovian

[T TR TOrS TP A SRR Y PR &1

or even & mixture of Markov processes. The process can be Gaussian, a constrained
diffusion, or a random movement through a network. The program developed to
perform the optimization for this class of motion processes can be coupled with the

Monte Carlo computer assisted search programs such as COMPASS cr MEDSEARCH to

Loveanth ookl el

find optimal allocations of search effort over any time interval of interest for any
target mot{on processes produced by these programs. In fact, the COMPASS programs 1

were used to generate the target motion procese for the examples {n Chapter 1V,

{ The accuracy of the optimization will be related to the accuracy with which the

abadeadbd m .

: Monte Carlo simulaiion represents the target motion process. The algorithm considers
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TABLE S-4 (continued)
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1 TABLE S-4 (continued)
o
; =
- PROBABILITY MAP AND RECTANGLE FOR HOUR 3
l -2 - . . L) - . . - -
a ] 1 1 2 1 1 ¢
l _'3 . - . ) . . . . .
1 3 712 11 10 7 3 1
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¢ 15031 44 a5 44 31] 15 4
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TABLE S-4 (continued)
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TABLE 5-5

Probability of Detection for

8-Interval
Time Rectangular Plan Myopic Plan Optimel Plan

. l DETECTION PROBABILITIES FOR THE CONSTRAINED MARKOVIAN FAN

. 1 .329 : . 357 311
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only search allocations that, during one time period, are constant within the cells of

.

a grid chosen by the user. Observe that this is only a restriction on the olass of
allocatfons which are considered and is not equivalent to assuming that the target
motion takes place in discrete space. The algorithm described in Chapter IV i8 more
general than the one in Chapter II for x-nlxtures of Markovian processes. However, ft o ‘
does in effect optimize over a sample of the target motion process whereas the ‘
algorithm in Chapter II treats the target motion exactly. In addition computing time
for the more general algorithm is longer than that for a mixture of Markov chains.
80, in the case where & mixture of discrete time and space Markov chains provides a
good representation of the target's motion, the algorithm in Chapter II will be more

accurate and faster.

b |

Three examples of optimal allocations obtained by the general discrete time

optimizer are given in Chapter IV. One of these examples involves a fleeing target o

problem similar to the one described in reference |i ], page 17. The target's initial )

distribution is circular normal with standard deviation 20 miles in any direction. The -

target is assumed to be traveling at 10 kts along a constant course which is chosen N !

from a uniform distribution on [0°, 360°]. Reference [{ ] was able to compute the target

! location distribution for this problem as a function nf time when no search effort is : h

applied. However, optimal plans for this problem were not found. Tables IV-1 and

1IV-2 show the myopic and optimal plans for seven hours of search when the searcher o

begins his search at hour 4. The optimal allocation concentrates its effort much more
i heavily in the center of distribution at hour 4 than the myopic plan. Comparing the

optimal plan to the myopic for the remaining time intervals, one sees that the optimal -.

plan generally concentrates its effort more than the myopic plan. Also it appears that
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at hour 5 the optimal plan chooses to concentrate ite search more heavily on the
eastern side of the distribution and then to make up for that by concentrating its effort
on the western side at hours 6 and 7.

Although the myopic plan and optimal plan are qualitatively different, the resulting
probabilities of detection as shown in Table IV-3 are strikingly close. This feature
held true for several-v-arlations on this fleeing target problem; in particular, when the
initial distribution was uniform over & 60 mile by 60 mile rectangle and when the
target's speed was allowed to be drawn from a uniform distribution over 6-14 kts.

Example 3 of Chapter IV shows a siguificant improvement in the optimal plan over
the myopic one. This example involves multiscenario target motion and regions of
varying detection capability. The detection probabilities for the optimal and myopic
pluns are shown in Table IV-9. The optimal has 19% better probability of detection

than the myopic (i.e., . 58 versus .48 for four hours of search).

Algorithms for Related Problems

The method of designing the algorithms in Chapters II and IV can be used with
some variations on a wide range of optimal search problems. In Chapter V we outline

algorithms which can be used to find optimal plans when the detection function is not

exponential, to find plans which minimize mesn time to complete a search, and to
find optimal allocations of effort when there is a constraint on total effort available

but not on the rate at which effort may be applied. We also give an algorithm for

e i e

maximizing the probability of finding a target alive when the target has a stochastic

lifetime which varies with locatlion.
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These proposed algorithms have not been programmed or tested. They should
be thought of as first approaches to solving these problems, and are included

simply to illustrate the methods which can be used to attack these problems.

General Necessary and Sufficient Conditions

Chapter VI finds necessary and sufficient oon&itic;ns for a search ﬁle.n to maximize
the probability of detecting a moving target by time T under constraints on the rate
at which search effort may be applied. These conditions apply to a broad class of
moving target problems in continuous or discrete time and in a continuous or discrete
space. Many previous results concerning necessary and sufficient conditions for
moving target problems are special cases of these results. In particular the basic
condition stated in the beginning of this summary is a special case of the results in

Chapter VI.
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NUMERICAL OPTIMIZATION CF SEARCH FOR A MOVING TARGET

CHAPTER 1

INTRODUCTION

Since the fall of 1876, remarkable progress has been made in our ability to
compute optimal search plans for moving targets. This report summarizes that
progress.

Prior to the work reported here there were few situe.ilons in which one could
find optimal searcn plans for moving targets. These situations typically involved
two~celled Markovian motion or special types of conditionally deterministic target
motion; see Chapters 8 and 9 of reference {h]. In this report we discuss teshniques
which allow us to find optimal search plans whenever the target motion i8 modeled
by a discretetime stochastic process in either continuous or discrete space and
a fixed amount of effort must be applied at each time period. It is assumed that at
each time period the rearch effort may be distributed as finely as desired over
the search space. The optimization techniques presented in this report are primarily
limited to exponential detection functions,

Obhserve that the class of allowable target motions is essentially unrestricted
except that a discrete-time motion model must be used. In addition to covering
Markovian motion, the class encompasses any of the Monte Carlo target motion

processes used by the Navy's computer-assisted search systems such as COMPASS,
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. MEDSEARCH, or TARDIST, see references [j] and (k].

The assumption that the searcher can distribute his effort as finely as he wishes

' ! is an important restriction. It effectively prevents us from using these results to

plan the search of one sul marine for another. However, the results do apply to

searches where the searcter can move much faster than the target, e.g., patrol

aircraft searching for a submarine with sonobuoys or aircraft searching visually

for a person adrift in a Jife raft.

{ The problem of optimal search for a submarine by patrol aircraft motivated

much of the work presented in this report. Using the algorithms presented here,

one can provide good advice on search allocation for a wide range of problems involving
VP aircraft searching for submarines with sonobuoys. In fact the techniques in Chapter LI
have already been adapted by COMPATWINGSPAC for use in search planning.

Our approach to solving the optimal search problem considered here is to find

a set of necessary and sufficient conditions for an optimal plan. We then design an
algorithm to find plans which satiafy these conditions and are therefore optimal.
For three variations on the basic search problem described in the first section, +2 nave
developed and implementedalgorithms for a Prime 400 minicomputer. In Chapters II,
1, and IV we {llustrate the type and complexity of problems that these algorithms
can solve. ‘

In the first section of this chapter we describe the basic class of moving target
problems that we will consider. In the second section we present the necessary
and sufficient conditions whicix form the basis of the algorithms given in Chapters II
and IV. These conditions have a very interesting and useful interpretation in terms
of optimal search for stauonarg‘/ targets which is discussed in the second section. The

third section describes the algorithm used to compute optimal search plans,
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Basic Search Problem
In this section we give a description of the basic search problem which is

considered throughout most of this report.

Target motion. The target's motion i8 represented by a stochastic process

X-= {Xt; t=1,...,T} where X, is a random variable which gives the target's

. position* at time t. The marginal distribution of Xt is simply the probability

; distribution for the target's location at time t.

7 In a typical search problem, one is given the target's initial probability

’ distribution and a stochastic description of the target's motion. These two can
be combined in the manner discussed in Chapters IT and IV to produce the stochastic
process which represents all the possible target paths over imet =1,...,T.

As an example one might have a bivariate normal distribution for the target's

‘%
1
i
3
]
a
:

location at time t = 1. Such a distribution could be obtained from a long range

USRIVt

sensor with poor localization capabilities. From geographical considerations

oae might be able to deduce that the target's course lies between bearings ¢ 1 and

b L B g b

92 and from operational considerations that the submarine is traveling with a
speed ketween vy and Vo Assume that the probability distributions on target's
course and speed are uniform over the above limits. In addition one could assume

that the target, having chosen a heading and speed from the above distribution,

P T S S S SO U S TR YV Iy VRN

persists in that course for a random time which is exponentially distributed with

specified mean 7_. At the end of thie time, the target makes a new and independent "

10

draw from the above distributions to determine its new course and speed.

P —

* We understand X, to be either a point in the plan or a cell index. It will be
clear from context which {& the case.
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Using the COMPASS or MEDSEARCH programs, this type of target motion is
represented by producing a large number of target paths (see reference {j ]) in a
Monte Carlo fashion. From these paths, the programs can generate a sequence
of distributions for the location of the target at a sequence of times t=1,...,T,

chosen by the user. The target distribution at time t is then the distribution of xt,

and the collection of target paths represents the stochastic process X = {Xt, t=1,...,T}.

Alternatively this type of target motion can be modeled by using a Markov chain approach
as described in Chapter lI. The target motion process X then becomes a Markov
chain, The target motion models considered in this report and the algorithms
discussed below are capable of handling both of these possibilities and indeed a
much wider range of target motions, In fact the algorithm in Chapter IV will find
optimal allocations for any target motion process which can be represented by a
Monte Carlo simulation,

Search grid. For most of the report, we shall assume that a grid has been
established on the search space which is two dimensional and that we must allocate
our effort uniformly within a given cell of the grid, although effort may vary from

cell to cell. Let J denote the set of cells in the grid, and let

pU) = Pr{ X, incell i}

= Pr{ target is in cell j at time t} for jed, t=1,...,T,

and

A() = area of jth cell, for jed.
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PO = Pr{ target s in cell j at time t}

SURORY PSS O WP

A(j) = area of jt‘h cell 1

J = collection of cells in the grid j

Note: The search grid need not be uniform,
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Although we impose this grid structure, the target motion may take place in either

i diascrete or continuous space.

! Class of search plans considered. A search plan is described by a nonnegative

function ¥ of time and space such that

¥(d,t) = effort placed in cell j at timetforj e T, t=1,...,T.

We assume that the amount of effort available 18 constrained so that
m(t) = total effort available at time t.
We restrict ourselves to search plans ¥ such that

Z ¥(¢.%=m@¢) fort=1,..,,T, 1-y
jed

The class of plans which satisfy (I-1) i8 called ¥(m).

Detection function. Let w indicate a sample target path drawn from the
stochastic process {xt; t=1,...,T}. We shall let Xt(w) be the target's posltibn
(l.e., cell) at time t on this sample path. Suppose that ¥ i3 a search plan, Then

the probability of dotecting the target given it follows path w i8 assumed to be

T C
l‘eXp('tfl W(Xt(w))¢(Xt(w),t)/A(Xt(w))) (1-2) . 4

where for § € J, W(j) 18 the sweep width or effectiveness parameter for search in cell §.
That {8, we are assuming that the detection function {8 exponential and that detection

of the target during one time period {8 independent of detection during any disjoint time

P SN

period. In Chapter V, first section, we treat the case where the probability of !

detection on the path w is given by b(zw), where zw is the effort density which accumulates | -
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on the target along the path w and b is a regular detection function, i.e., b has
a positive continuous and strictly decreasing derivative. When b is not exponential,
detection is not independent from time period to time period.

Let E denote expectation over the sample paths of { X, t=1,..., T} . Suppressing

the dependence of xt on w, we can write the overall probability of detection by time T

as

T
Pol¥]= EE-BXD('tfl WX) ¥ X, t)/A(Xt))] 1-3)

for any search plan ¥,

Problem statement. We seek a plan § * which satisfies the effort constraint

(I-1) and maximizes the probability of detection by time T within the class of plans

satisfying (I-1). Mathematically stated, we seek ¥ * ¢ ¥(m) such that
PLl¥*] = max{ Pol¥):ve ¥(m)} . 1-4)
Such a plan is called T-optimal within ¥(m).

Basic Necessary and Sufficient Conditions

In this section we present the basic necessary and sufficient conditions which
we shall use in constructing the algorithms discussed in this report. The form
of the conditions given here applies to discrete-time target motion processes
and exponential detection functions. A generalization of these conditions to include

continuous time motion processes and non-axponential detection functions is

stated and proved in Chapter VI,
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In order to state these conditions we let ¥ * denote a plan which i8 T-optimal

within ¥(m) and let

target is in cell j|failure to detect at all times

at time t other than t using plan ¥ * for jeJ, t=1,...,T.

EwtO:t) =Pr

Observe that the conditioning on failure in (I-4) includes search which takes place

after time t as well as before, Let Ejt denote expectation conditioned on the target

being in cell j at timet. Then there is a constant K(t) for t=1,..., T such that

L W) $%X,, 1)/ f -1,...T
gw*d!t) = T{'(—t; jt[exp(-SEt (Xt) ¥ (tht) A(Xt)) or j(J, t-l, ceede
The constant K(t) i1s simply the normalizing constant required so that

j?J g‘p*(j.t) =1 fort=1,...,T,.

BASIC CONDITION, In order that ¥*¢ ¥(m) be T-optimal it is necessary

and sufficient that the allocation ¥ *(*,t) maximize the probab.lity of

detecting a stationary target with distribution g, (" 1) and effort m(t)

for t=1,...,T.

To show that if ¢ * {8 T-optimal within ¥(m), then it must satisfy the basic

condition, we reason as follows: We may write the probability of failing to detect

the target by time T using ¥ * as

-9
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T
1-P_{u*] = E[exp(-t_g_:l W)U X, t)/A(Xt))]
N -W)¥*0, H/A0) |
_ = 2y PO By ferp(- B W) weex,, o/ax,)] e (-5

= K(t) jEJ gy 4,9 e'WGW“U.t)/AU).

One can see from (I-5) that the failure probability 1-PT[¢ *] for the search over
time [0, T] is proportional to the failure probability resulting from applying the
allocation ¥ *(*,t) specified by the optimal plan for time t to the stationary target
problem with target distribution g v oo, Thus if y*(-,t) did not minimize failure
probability (i.e., maximize detection probability) for a stationary target with this
distribution under the effort constraint m(t), one could find an allocation f such

that Ejle(j) = m(t) and

-W(@) £() /A Q) WQ) ¥*(,t)/A(Q)
_ jEg Byalite < (g Bysl.te :
Then one could define
y*(j,8) ifs #t
] 30,8 =
. £0) ifs=t,

Clearly the search plang is a member of ¥(m) and PT[\P] > P_[¥*) which contradicts

l
the optimality of ¥*. Thus ¥ *(-.t) must maximize the probability of detection for

a stationary target with distribution g v «(* . t) and effort m(t). This proves the

necessity of the basic condition. A proof of the sufficiency 18 given in Chapter VI,

m—-.——o——‘




Description of Basic Algorithm

. Most of the algorithms described in this report make use of the basic condition
I_ to find a sequence of search plans which converge to the optimal plan. They usually

proceed as follows.

First iteration. For time t = 1, find the optimal allocation of search effort m() . .;
h for the initial target location distribution P Set ¢ 1{~ , 1) equal to this allocation 1
- and compute g;, the posterior target distribution attime 2 given failure to detect -

the target at time 1. Set ¥ 1(- , 2) equal to the optimal allocation of m(1) effort for

the distribution g;. Suppose that we have found dz’l(- ,8) fors=1,...,t-1. Then we

cor ‘inue by computing gtl. the posterior target location distribution at time t given

= v b i ihegilhitdeoniii

waflure to detect the target at time 8 = 1, ...,t-1, using the allocations d'l(' ,8) for
8=1,...,t-1. Set qbl(-,t) equal to the optimal allocation of m(t) effort to the

distribution gtl. Continue until time T is reached. This constitutes the first pass.

e obremw stttk -+

The allocation ¥ 1 obtained on this pass is called the incrementally optimal or

myopic plan. That is, at each time period ¥ 1 allocates its effort ir. such a way as 7 ?
to maximize the increase in detection probability {or that time period. For most
moving target problems the my2pic plan is not T-optimal for T > 1,

Second iteration. Begin th:s iteradon by computing gi, the posterio: probability

distribution for the target's location at ime t = 1, given fatlure to detect the target 1
i attimes t =2,...,T, using wl(- ,t) for the allocation at timet =2,...T. Set wz(- ) T
, equal to the optimal allocation of m(1) effort for target distribution gi. Usually ¢2(- 1) #
.i ¥ 1(', 1), because gi differs from the initial target distribution, Py at time 1. If 5
% wz(- , 8) has been computed for s =1,...,t-1, then find wz(- ,t) as follows: compute B

=10~
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gf, the posterior target location distribution at time t given failure to detect using

the allocations ¢2(' ,8) fors =1,...,t-1, and the allocations i,bl(- ,8) fors =t+1,...,T,
and set ¢2(. ,t) equal to the optimal allocation of m(t) for the distribution gf Continue
until time T is reached. This constitutes the second iteration.

nt'h iteration. Continue as in the second iteration with ¥ in place of ¢2 and
¢n-1 in place of ¢ 1.

The above algorithm converges to the optimal plan. That ia one can find a plan
whose probability of detection is as close to optimal &8 he desires by performing a
large enough number of iterations. DMotice that each iteration produces a plan
with a higher probability of detection than the previous one.

The above algorithm amounts to solving a sequence of stationary target problems
to solve an optimal moving target problem, There are very efficient algorithms for
solving stationary target problems when the detection function is exponential. (See
Example 2.2. 8 of reference fh].) Thus we can produce efficient algorithms which
follow the procedure outlined above provided we can compute the posterior target
distributions g:, t=1,...,T,n=1,2,..., efficlently. Computation of these
distributions will depend on the target motion model, i.e., the nature of the stochastic
process { X, t=1,... ,T} . For example, the algorithm described in Chapter II
is designed for Markovian target motions. In this case there are very efficient
methods for computing the distribution g:. The algorithm described in Chapter IV
can be used with any Monte Carlo target motion. This algorithm is more flexible
than the one for Markc;vian motions but it is also slower and requires an additional
approximation, i.e., that involved in replacing the stochastic yrocess {Xt. t=1,...,T}

by some large but finite number of its sample paths.

o
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| I CHAPTER 11 2
oo MULTISCENARIO MARKOVIAN MOTION i
£ In this chapter* we consider the special case of the basic search problem in

‘ which the target moves within a finite number of cells in discrete time. The target's '
l a motion process is assumed to be multiscenario Markovian which means that the target
l is assumed to be following one out of N poasible motion scenarios and each scenario

is modeled by a discrete time and space, finite Markov chain.

In the first section we discuss the class of searches that will be considered in

1

this chapter. In the second section we present examples of optimal plans. The

third section describes the algorithm used to compute the optimal plans and proves

g

that it converges to the optimal plan. The fourth section discusses a method of

producing constrained Markovian motions.

N 3 ikl
oo f Seata. ~p

v ar

E

Target Motion Model

The target is assumed to be following one of N motion scenarios. The probability

that the target is following the nth scenario is o, where

*This chapter is based on reference [b ].




Each scenario is modeled by a Markov chain in the following manner. Let 2 Je
the set of possible target paths over timest=1, ..., T. A member w of Q

specifies the sequence of cells that the target follows from time 1 to T, and

W = (wlo ceny (&’T)o

| where w ¢ is e cell that contains the target at time t. For the uth scenario, qn(w),

the probab{lity that target follows path , is given by
n _.h n n n
q (w) r (wl) T (wl. wz) T (w29 ws) oo 1T-1(wfr-1) wT)'

where T :(i, j) is the probability that a target located in cell | at time t wiil transition
to cell j at time t + 1 and r"(j) is the probability that the target starts in cell } at
time 1 under scenario n. Thus each scenario corresponds to a Markov chain with
transition probabilities which may vary with time.

The distribution & spe'olﬁe‘s the target distribution at time 1 for scenario n.
It is also possible to specify the target's distribution at any addttional timet=1, ..., T.
This has the effect of modifying the transition probabilities 2 for the scepario. The
method of accomplishing this is discussed (n the fourth section. It results in path

probabilities of the form

1

n n n n n n

Thus, we are considering the search problem described in the first section of

Chapter I restricted to the case where the target motion process {xt; t=1,...,T} 18 a

discrete time and space, multiscenario, constrained Markovian process.




Examples

We now give three examples of optimal plans found by the algorithm described
in the third section. In all cases J is a subset of a grid of square cells with sides
three miles long which are oriented north-south and east-west. One cell is chosen
and labeled (0, 0). The cell which is i cells west and j cells north of (0, 0) is labeled (i, j).
Each search lasts for eight time intervals of one hour each. We take W(i, j) = 1 for all
cells (i, j) so that z units of search effort placed in the cell which contains the target
will yield a detection with probability l-e_z/g.

The transition function T is chosen to model truncated triangular distributions
on course and speed. When T is independent of time, the subscript t will be suppressed.
We specify the speed distribution by giving the minimum speed, maximum speed, best
speed, and a weight 8. The target chooses its speed from the fruncated triangular
distribution in Figure II-1. The density of the best speed is 8 times the density of
the minimum speed, the latter equals the density of the maximum speed. When 8 =1 this
is a uniform distribution. A similar distribution describes the target's course. Let
T ((i,J), (k,1)) be the probability that a target which starts at the center of cell (i, j)
and which chooses its course and speed from the given triangular distribution moves

to cell (k,7 ) in one hour.

Example 1: Markovian fan. The target's initial distribution is circular normal

with a standard deviation of 6 miles. It is centered in the middle of cell (0, 0) and
truncated by a 15 mile by 15 mile square whose center coincides with the center of the
distribution. The orientation of the square matches the grid. The target's motion is
single scenario Markovian with the target choosing its course uniformly from 150°

0 . . .
to 210" and its speed between 6 and 12 kts with a best speed of 9 kts, which is given a




e st R et T

FIGURE 11-1

TRIANGULAR DISTRIBUTION ON TARGET SPEED

Note: B =1.6.
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welght of 8 = 1.5. Independent draws are made from these distributions each hour.

IR AT gL o)

This tvpe of moving target problem is similar to that faced by an aircraft trying to
redetect a submarine on which contact has been recently lost.

Table II-1 shows how the target density changes with time in the sbsence of

IR LT O R R A

search. The target moves southward and diffuses from its original distribution. It
stays within a sixty degree wedge and has a central tendency because there are more
paths which lead to the center of the wedge than to the edges. 4
We assume W(j) =1 for je J. Ninety units of search effort are available each
hour. Table I1-2 gives the final detection probabilities achieved by the first ten iterations
of the optimization algorithm described below. The detection probabilities converge
- very rapidly; indeed the first approximation to the plan, the myopic plan, is quite
satiefactory. Table II-3 compares the detection probabilities achieved by the myopic
plan at the end of each hour to those achieved by the plans which are optimal for 2
- through 8 hours. During the beginning of the search, the myopic plan outperforme the
plans which are optimal for later times. In no case is the myopic plan significantly
¥ outperformed by any optimal plan.
Table 11-4 shows the myopic plan and the optimal plan for eight hours oriented
with north at the top of the page. The myopic plan starts by putting most of its effort
in the center of the target distribution. It diffuses and moves southward with the target.
The optimal plan, on the other hand, starts by using most of its effort to surround
the target. By the end of the search the optimal plan closes in on the target. At
hour eight the optimal plan puts 70 pervent more effort in the conter of the target's
]

distribution than the myopic plan does.
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TABLE II-1

TARGET DENSITY FOR THE MARKOVIAN FAN

Notes: (1) Entries represent thousandths of a target,
(2) Celis are 3 mi x 3 ml.
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TABLE 11-2
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& o

CONVERGENCE OF FINAL DETECTION

- PROBABILITIES FOR THE MARKOVIAN FAN
i - Number of Probability of Detection
bow Iterations - After 8 Hours
| i 1 . 803
: 2 . 818
3 . 818
4 . 818
, Y 5 .818
‘ 8 .818
| - 7 818
| : iy 8 .818
- 9 .818
Y 10 .818

:
!
$
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Notes:
(2)Ninety units of search effort are available each hour.
(3)Cells are 3 mi x 3 mi. @
Myopic Plan :
N Hourl
1 21 0 oa =2
21 9 235 331 256 0
11 200 631 19505 /31 256
01 31 758 831 1556 34}
=] 290 531 (56 631 296
=21 0 255 331 2556 0
Hour 2
4 3 2. 1L 0 -1 =2 -3 -4
20 0% 9 o 0o 9 o0 o o o
-1 ) 3 469 325 460 T8 0 0
=2} 0 D269 645 692 446 269 ) 0
-31 N D249 B8 893 690 279 0 0
-fH 9] D262 B39 HY3 /39 262 0 0
=3 ] 0 N ) 2486 323 246 0 0 0
-5] 0 ) 0 7} 0 Q) 0 0 5]
Hour 3
A 4 3 2 1 00D -1 2 -3 -4 =5
=21 0 0 n 0 0 0 o) N0 9] n
-3} ) ) 0 ) 2 HYHy 2 0 0 J 0
-41] ) 0 D 28 ADY 484 457 283 o) 9] 0
-5 ] i) D 39/ 534 H40 B34 307 0 0 9]
-0 ] 7y 1) 3401 539 540 HB3% 40 3 N 0]
=11} ) ") D 3h3 522 HB4b B2 353 J 0 0
=) I ] 24 239 203 239 24 0 0 0
-] ) 8] ) b] 0 0 0 0 0) ) 0
1) ) . N 8] s 9] 0 N N ) 9]
23 BEST AVAILABLE COoPY
— " ' - e
i

TABLE I1-4

WIS PAGE 1S BEST QUALITY PRACTICABLE
FROM COPY FURNLSHED 70 DDG o™

SEARCH PLANS FOR THE MARKOVIAN FAN

S e R RO e A L

(1)Entries represent thousandths of a unit of search density (effort/mi ) ;

N

R,



-13
-14
-15
-16
-17
-18
-19
-20
=21

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED IO DDC

TABLE 11-4 (continued)

Hour 4
4 3 2 1 0 -1 -2 3 =4
-5 0 0 0 o0 © 0 0 0 0
-6 ) 0 222 263 222 69 5 7
=7 0 A 311 381 395 331 311 5D 0
=8 ' 1% 356 396 307 396 365 139 9
=8 o 142 387 397 397 397 357 152 n
=10 ) g4 329 395 397 395 325 o4 0
-11 9 64 19y 223 199 64 N 0
-12 n ho! 0 ! N o) 0 N 8!
Hour 5
4.3 2 1 0 1 -2 -3 -4
-4 ) O 0o 7oy 00 9 0
-9 D 0 1ds 283 230 263 143 0 5}
-10 Yy 112 309 334 335 334 309 172 )
=11 9 220 324 335 335 33% 324 22N »
-12 Y 215 329 335 335 335 32% 215 n
-13 Y14 200 335 333 335 299 146 n
-14 Noo0d 189 210 139 94 0 9
-15 N ) 0 8] ) 0 s o] N
Hour 6
s 4 3 2 1 0 -1 2 =8 A4 =5
N ) D000 o0 Y T yTY T
" ‘) 0 NN 6 B A AR 0 P R Y 0 o] o) ]
9] DDA 228 2482 248V 262 223 104 30000
0 D20 265 285 3 2T 4 2 n
N Lo 239 2832 265 235 285 284 239 53 0
D s 230 282 245 28D 283 262 230 33 o)
] V1A 245 285 280 245 265 15V 9) o)
) ) DI0G 176 192 Vs 106 0 o) )
O ) 9! 0 N0 0 0 9 ) 0
BESTANAHABLECOPY
-24 -~



4 W T T R

L O LTRSS CE

~25-

CTICABLE
7 15 BEST QUALITY 72
TABLE II-4 (continued)
Hour 7
5 4 3 2 1 0 -1 -2 -3 -4 -3
=13 N 9] 0 0 o) )] N 0 0 0 0
=14 5 o D100 162 177 162 100 0 0 0
=15 A 5 160 223 239 241 239 223 160 O 0
=16 ) 91 220 241 242 242 242 24} 220 91 O
-1; N 119 229 242 242 242 242 242 229 119 0
“18. 5 o7 201 242 242 242 242 242 221 91 O
-19. N 173 233 242 242 242 233 113 00
20 5 o 0107 1%2 171 152 107 092 0 0
21 n 0o o A/ nH o 0 0 0 0 0
Hour 8

5 4 3 2 1 0 -1 -2 -3 -4 -b

16 0 T T T Z ThTThH o a0
17 09 0 63 1402 173 135 173 149 63 0 D
218 N 6h 1u2 211 215 215 215 201 182 65 0
19 O 132 205 215 215 215 215 215 205 132 0
20 O 149 209 215 215 215 215 215 209 145 0
21 N 127 208 215 21% 215 215 215 208 121 0
22 O 46 175 212 215 21% 215 212 175 45 0
=23 9 N [TID 149 1a9 149 110 / D! N
24 5 o o o9 0o o2 0o 0o 0 0 o0

BEST AVAILABLE Copy



THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TO DDC  ____ -
TABLE II-4 (continued)
Optimal Plan for 8 Hours
Hour 1
21 0 o1z
D) oded 9 B30 534 424
VI A2 307 235 320 422 .
DY 148 290 1748 250 416
1] 427 352 237 3,2 42/
=21 411.52) 525 B2) 411
Hour 2
3 2 1 » -1 =2 -3
] ) 0 ] D 0 0 ]
-11 340 A8 A9A 431 240 B
-2 370 533 H41-533 340 9]
- 3] Y353 B2/ o 320 353 )
-4} Po3d0 S5 326 514 333 n
-] 073 329 3B 3200 74 )]
-] 8! ) I ') I N )
Hour 3
4 3 2 1 0 Al =2 =3 =i
-2 ) () ) 0 ) o) 8] ) )
-4 ) ) DA 1B 109 ) ) 4|
-4 " 7] )_A).j SH3 90y 343 260 R )
=) ViS00 A1 429 411 347 153 0
-'I’,] Vobeds 3i22 130 AAY A30 3372 1l 9
=71 DT 3hE AT 420 41 351 117 7
-} N ollo 26/ 292 61 149 ] B
-] ) ) ) B 0 0 D] Q) 3
iR e o T o TS T )

BEST AVAILABLE COPY
-26~-



| amns

B

e

e
- oA Y 1 g AP BT e

e

-

e

"SI Y Tt T
ing

.

iy

Hour 4
4 8 2 1 0 - =2 -3
] Y 2 0 0 n 9y n "
=61 0 D158 295 203 255 |54 D
S7) Y 167 300 323 334 3235 300 16/
Tl ) 233 315 343 355 343 315 233
=217 220 310 336 343 335 3i0 229
el ) 10l 254 303 314 308 284 1 42
=11} N 2 134 209 220 209 134 N
TiZ] ) ) 0 0 0 J 0 0
Hour §
5 4 3 2 1 ) < <2 =3 =4
sl )y 290 2 ) J 0 0 9
) 0 ) dd 174 2480 243 238 194 49 N
iG] 0 ) 204 271 297 3035 297 271 204 O
P10 51 244 293 327 340 32/ 293 244 5]
izl 04/ 238 200 32 331 321 29) 233 47
=13] N Y la? 28% 2u8 205 244 269 139 0
- ) ) ) D136 194 20/ 191 135 0 D
-5} 9 o] n 0 N ) ) N N o)
Hour 6
A 4 3 2 1 ) o 22 =3 =4
)] 0 ) A () ) ) ) J ) 9]
=11) n ) ~ 2 /% U105 0] 0 n
=-1g) 0 Y 116a 204 230 234 23) 204 116 0
=13) D 0 Vs I D4 D43 2[4 253 214 H4
- 1) Y oL 239 2/ 206 335 2705 271 239 113
Clo) ) v 29 A2 d5A 200 236 262 229 96
s} ) Y /S 235 254 2A1 2%4 235 78 9
1/} N R LD I R T O3 A IV AN S AR N K3 N N
=ts) 0 D) ] 0 0 ) ) ) 0 )

e
aoooooooﬁlu.

o
oS aoooaol'u

—
Nt




THIS PAGE IS BEST QUALITY PRACTICAZLE .
FROM OOPY FURNISEED TODD0 _ - -
- JABLE 11-4 (cont{fnued)
, P
Sy &
t
|
o Hour 7 I
: § _4_ 3 2 1 A T S TR G,
I “-tA] % ) n N g ) N YA T i
i “ ] D0 h3 o 13 115 53 0 0) ) L
; “lus] N T2 30 259 271 2454 200 122 8! 1
SUE) A 208 2683 330 344 33) 283 4 K% )
! =y Yoo 03D 305 35 35 A3 305 23 D )
.; Sobl ) a3 294 08 40y 345 32) 274 004 A3 ) )
AR B P 196 337 24 234 194 |1 S B
ERT Y ) ) 4 51 54 AHY 4 DI )
Rl B LS B Yoo % 2 A g
_o i
i .
E Hour 8
2 4 08 2 1 4 oal -2 <3 oo
=i51 0 s} ) ‘ 00 0 o) 0 0 0
Stes oo 0 N B3 1% 153 11y 33 Y A A
- : i, 3 A LRI DI VORI B Y. 10 T- I ) g 0
oo =12 00h Da3 4D 346 230 243 23 5 5!
i T2l 0L ) 305 33 d9u 453 305 230 a5 9
o =20 Y 03 b 275 320 3364 320 2/6 204 N3 N
o S22 ) D L 0Y9A 28T 240 237 196 1) 2000
‘ =5] ) D) ") S At R 4 " B, 9]
{ R SRS A S A O B0 B o T S T O T S WS Se SR
!
.
. ’
‘ ~28-
1 { §
o




g RN P I

Example 2: Constrained Markoviau fan. In this example we consider a target

“ ruvd

motion which is identlcdl to the one in Example 1 except that the target is constrained

T

to have a truncated normal distribution at time 8 which is equal to the initial distribution

translated 60 miles due south.

The transition function T for this constrained process {a computed by the method

T T

v discussed in the fourth section.
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* Table 11-56 shows how the target density changes over the first four hours in

s

the absence of search. The target moves southward and diffuses from its original

' l - distribution. During the last four hours the target density is a mirror image of the
first four hours. It still moves south but converges back to & truncated normal
distribution with a 6 mile standard deviation.

Ninety units of search effort are available each hour. The detection probabilities
for successive i{terations of the algorithm are . 926, .932, . 932, .932, and . 932

which repeats. These probabilities converge rapidly and again the first approximation

. ]
o GBS Lot il . e et s el . 4 bk M bl s

to the plan, the myopic plan, is quite satisfactory. Table II-6 compares the detection
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probabilities achieved by the myopic plan at the end of each hour to those achievea

P W IR T R TV NLE VP

by the plans which are optimal for 2, 4, 6, and 8 hours. Again, no optimal plan

significantly outperforms the myopic plan. With the exception of Example 3 below,

bl . Ak M

these conclusions have been confirmed by other examples including some with much

smaller overail detection probabilities.

Table II-7 shows the optimal plan for eight hours. Agsain, only the tables for

Dl o ol \ LR T Py L vy,
POV

q ) the first four hours are displayed since the last four hours are a mirror image of }

o them. At hour 1, the optimal plan uses most of its effort to surround the target rather

‘ , 5 ' than searching the highest probability cells as the myopic plan, which {s shown at the

{
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TABLE 11-6 3
TARGET DENSITY FOR THE CONSTRAINED MARKOVIAN FAN J
Notes: (1) Entries represent thousandths of a target. 3
(2) Cells are 3 mi by 3 mi. ;
Hour 1 A
1 | 2 1 o a1 =2 i
2] 23 34 388 34 23 3
| 1] 84 49 66 49 34 x
| 0) 38 56 63 66 38 i
, -1] 3¢ 49 56 49 34
(‘ -2) 23 3¢ 38 34 23
Hour 2 ;i
4 3 2 1 0 1 2 =3 A ‘
00 o 1 3 7 7 7 8 1 0 §
-1} 0 6 i7 31 36 31 17 6 0
2] 1 9 27 650 68 60 27 9 1 ;
~3)] 1 10 30 55 64 66 30 10 1 3
-4) 1 9 26 47 54 47 26 9 1
~5] O 4 12 23 26 23 12 4 0 ;
6] 0 0 2 3 3 3 2 0 o i
Hour 3
4 3 2z L+ @0 1 2 =3 o
2] o0 o0 1 1 1 1 1 o0 O
- -3} 0 2 5 9 1 9 65 2 0
-4) 2 7 18 31 37 31 18 1 2
=5] 2 11 280 49 59 49 20 11 2
-6) 3 12 31 53 63 63 31 12 3
=71 2 9 24 40 48 40 24 9 2
-8) 1 4 10 17 21 17 10 4 1
-9] O 1 2 3 3 3 2 1 0
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TABLE 11-5 (continued)

Hour 4
5§ ¢4 38 2 1 0 -1 =2 3 4 =6
-5) 0 o 0 1 2 2 2 1 0 0 0
-8] 0 1 3 7 12 14 12 7 3 1 0
=-7] 0 2 8 19 33 39 33 19 8 2 0
-8) 0 3 12 30 50 60 60 30 12 3 0
-9] 0 3 12 31 62 81 652 31 12 3 0
=10} 0 2 9 21 36 43 38 21 9 2 0
=11] 0 1 3 8 14 17 14 8 3 1 0
-12]) 0 0 1 1 2 3 2 1 1 0 0
Hours 5~8 are a mirror reflection of hours 1-4.
TABLE 11-6
DETECTION PROBABILITIES FOR
THE CONSTRAINED MARKOVIAN FAN
Number Myopic Plan which i8 optimal for
of hours plan 2hours 4 hours 6 hours 8 hours
1 . 357 . 346 . 324 . 313 . 311
2 . 965 . 560 . 549 . 641 . 540
3 . 872 .879 . 873 . 672
4 . 750 . 762 . 168 . 767
5 . 807 . 818 . 817
6 . 862 . 862 . 862
7 . 889 . 898
8 . 926 . 931
=31~
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SEARCH PLANS FOR THE CONSTRAINED MARKOVIAN FAN

TABLE 11-7

Notes: (1) Entries represent thousandths of a unit of search density (eﬂort/mlz)

(2) Cells are 3 mi by 3 mi.
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Optimal Plan for 8 Hours
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Hours 5-8 are a mirror reflection of hours 1-4.
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Hours 2-3 not shown.

Hour 4
1 0
0 0
0 26
506 556
592 614
590 €07
566 626
92 205
0 0

Hours 5-8 not shown.

~2

242
402
401
295

0
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end of Table II-7, does. By hour 4, however, the optimal plan concentrates its

g effort in the center of the target distribution.

Example 3: Multiple scenario motion. Next we consider a multiscenario example.

Figure 11-2 illustrates the two possible scenarios for target motion with (1, j) indicating

the midpoint of cell (i, ). In scenario 1 the target starts uniformly distributed over

the square in Figure 1I-2 which {8 northwest of the obstruction. It proceeds southward

to distribute its density at hour 4 uniformly over the square southwest of the obstruction.
Within the limits imposed by these constraints, the target chooses courses and speeds
from the triangular distribution given in row I of the table at the bottom of Figure 11-2.
After hour 4 the range of courses and speeds widens as given in row Il. In scenario 2
the target again starts in the northwest rectangle but now it goes around the obstruction
to the north and east. Uniform distributions over the squares shown in Figure 2 are
imposed on the target location distribution at hours 1, 4, and 7. The course and speed

distributions that hold between hours 1-3, 4-8, and 7-8 are given by rows III, IV, and

V.

- : Search effort becomes available gradually during the eight hours of the search.
: No search is available for the first two hours. Nine units of search effort are
available during each of hours 3 and 4 and 36 units of search effort are avallable
during each of hours 5 through 8. The final detection probabilities obtajned by
successive iterations of the algorithm are . 465, . 519, .519, .519, and . 519 which
repe:ts. After a jump between the first and second iteration, the convergence is
l characteristically rapid.

Table 1I-8 compares the detection probabilites for the myopic plan with the
optimal plans for 4 through 8 hours. For 8 hours the optimal plan improves the

detection probabilities from .466 to . 519. The qualitative difference in the plans

-34-
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; FIGURE [I-2_
i
E i GEOGRAPHY FOR MULTISCENARIO MOTION
¢ Note: Staging areas are nine miles square.
: £ ——
i i I Cells are three miles square.
; i /\
: |
| !
. m
{
N 24 miles
- I Obstruction
i .
- #"900 ‘9001
B -<X - --{ Hour 4 Hour 7|~ -~~~ (-8, -5)
4 =z ,'-
- 1 A
- Cell
S
Y ze Y
1 Scenario 1 Scenario 2
Course Speed (knots)
I min. max. best weight min. max. best weight
1 I 180° 200° 180° 2 3 9 ] 2
I I 110° 260° 180° 1 6 12 9 1.5
, m 70°  110° 890° 2 3 9 6 2
IV  160° 200° 180° 2 3 9 6 2
1 v 150°  210° 180° 2 3 9 6 2




TABLE 11-8

i DETECTION PROBABILITIES FOR THE

‘ MULTISCENARIO MOTION

i

!

! Number Myopic Plan which is optimal for

-; of hours  plan 4hours S5hours 6 hours 7 hours 8 hours
3 . 063 . 062 . 068 . 041 . 042 . 042
4 .112 .112 . 097 . 078 .078 .078

: 5 . 256 . 269 . 262 . 262 . 252

! 8 . 361 .382 . 880 .376

: 7 . 425 .519
8 . 465
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which causes this increase is shown in Table 1I-9. Because the second scenario has
higher weight, the myopic plan searches it almost exclusively during the early hours.
During the later hours, the first scenario diffuses so widely that the second scenario

is still searched almost exclusively. The myopic plan i{s handicapped because it does

not look ahead to see that first scenario targets get away qu!ckiy and search this scenario
while it i{s still possible. The optimal plan does this. It searches the first scenario
until it starts to diffuse, then shifts to the second scenario. This strategy is optimal

for the long term but, as Table I1-8 shows, involves a penalty during hours 3 and 4.

Further examples of optimal search plans computed by these techniques can

be found in reference (a].

Description of Algorithm

Recall from the discussion in the third section of Chapter I that the basic step
in the optimization algorithm is a reallocation of search effort at a single time interval.
Exaniple 2. 2. 8 of reference {h) gives an algorithm for finding an optimal allocation of
search effort for a stationary target in a discrete search space when the detection
functiou is exponential. Using the necessary conditions in Corollary 2. 1.6 of
reference [h] one can show that the optimal allocation is unique.

Suppose that we have a search plan y. Let g (-,t) be the posterior target

')
location distribution at time t given failure to detect at all timnes other than t using

the plan . Let f* be the optimal allocatlon of m(t) effort for the stationary target

problem with distribution g w(- +t). Define Z;¥ to be the search plan that s obtained

from § by replacing the allocation at time t with the allocation £*. That is, for je J,

¥(j,8) fors ¥t
£*() for s = t.

= ¥(,8) =




ABLL 11-9

-——

SEARCH PLANS FOR MULTISCENARIO MOTION

Notes: (1) Entries represent thousandths of a unit of search density (effort/mi2),
(2) © indicates the position of the obstruction,
(3) Cells are 3 mi x 3 mi.

PE e

N Myopic Plan Optimal plan for 8 hours
1 Hour 1 -- No Search Available -
Hour 2 -- No Sfearch Available '
Hour 3 15
0 0 0 0 28 251 0 0 0 0 0 o
0 0 0 0 248 217 0 0 0 0 0 O
o 0 0 0 0 0 0 0 0 0 0 o
0 0 0 O 0 0 0 6 0 0 0 O
: 0 0 0 o 0 0| 204 281 0 0_0 O
00 0 090 o211 304 0o 0“0 o :
g
; Hour 4
g 0o 0 0 0 0 0 48 0 0 0 o0 0 0 0 0 O
0 0 0 0 0 o0 202 231 0 o 0 0 0 0 0 O
: 0 0 0 0 0 o0 223 245 0o o 06 0 0 0 0 O
i 0 00 0 0 0 0 O 0 0 0 0 0 0 0 O
4 0 0 0 0 0 O 0 0 0 o0 0 0 0 0 0 O
0 0 0 0,0 0 0 0 0 o0 0 00 0 0 0 _
: 0 0 0 0 u 0 0 0 0 o 0 070 0 0 O .
; 9 9 9 0 0 O 0 0 {1564 92 286 0 0 0 0 O
i 9 9 9 0 0 O 0 0 |157 94 237 0 0 0 0 O
o
!
i .
| |
{ ! ] _
~38- 4
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TABLE 11-9 (continued)

Lo ERERS TR
R T TRy SR LRy

A TR T R

Myopic Plan Optimal plan for 8 hours
Hour 5
T o o 0 0 0o o ©0 241 o0}l 0 o o o 0 O o0 324
: - 0 0 0 0O O O 484 718 675 0 0 0 0 0 0 287 645
Pl 0 0 0 0 0 0 321 714 730 0 0 0 0 0 O 185 654 -
i 0 0 0 0 0,0 0 140 0 0 0 0 0 ooo 0 217 0 °
. 0 0 0 0 0 O 0 0 0 0 0 0 0 00 0 0 0
0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 O 0 0 0 0 0 0 0o 0 o 0 6 0 3
0 0 0 0 0 O 0 0 0 0 0 0 0 0 O 0 0 o'g
0 0 0 0 0 O (] 0 0 |24 150 111 151 24 O 0 0 0 ;
0 0 0 0 O O 0 ] 0 0 (] 4 0 0 O 0 ] 0 g
Hour 6 i
0 o 0 201 94 0 0 0 279 130 ]
00 526 548 627 00 395 631 561 ;
00 471 556 682 00 345 657 596 1
0 0 0 161 133 0 0 0 279 107 ;
_}3
E
Hour 7 i
. 3
090 261 82 214 |09 0 353 0 248 ;
0 0 537 316 556 0 0 611 79 538
0 0 525 312 594 0 0 614 110 603 ;
0 0 224 114 264 0 0 35 90 398
- -3
Hour 8
3
o 0 0o o 00 o o0 o0 ..j
0 0 0 0 0 0 o 0 0 0 f
- 0 0 203 428 204 0 0 152 427 153 j
0 0 376 609 376 0 0 420 711 421 }
0 0 376 609 377 0 0 3982 674 392
' 0 0 59 328 58 0 o0 0 259 0

!
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The algorithm proceeds as follows:

(1) Let ¥ 0 b an initial guess for the search plan.
(2) Lut € be a small number.

(3) Let? =0.

(4) Perform step (5) fort=1to T.

(6) Set ¥

Tt~ =¥ Tist-r

6 U lp’l‘w(lﬂ)Tl - PT[zplT]l < ¢, stop: the answer is 4:(“1),1..

(7) Otherwise increase ! by 1, and return to step (4).

While the inftial guess ¥ 0 may be any scarch plan, we generally use ¥ o(j, ty=0
forje J, t=1, ..., T. In this case form ng zpl, wz, cees sz corresponds to
allocating search effort at succeesive time intervale in order to obtain the greatest
increase in PT at the current time interval -- not to maximize PT in the long term.

Thus, ¥, is the myopic or incrementally optimal plan.

T
Implementation of the aigorithm. The only difficult step in the algorithm is the

computation of Et' Let ¥ = ¢ Then this step consists of computing the

IT+#-1
distribution g ¢(- ,t) and f{inding an optimal allocation of m(t) effort for this distribution
when the detection function {8 exponential., Example 2. 2. 8 of reference [h) gives an
algorithm for finding such an allocat{on, so we consider only the computation of
M pt .
g 4,( )
Since the algorithm for finding an optimal allocation for g w(- , t) produces the

same allocation for any '"distribution' Kg ¢(- ,t), where K {8 a positive constant, we

shall be concerned only with calculating g " in an unnormalized form.
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Pr
v For je J, define
. L RO, 1, 9) = o 0),
: 5
HE aund for 1<t<T, let
, . R(.t. ¥) = T Rk, t-1, 9) exp(-Wh)¥ &, t-1)/AK))T,_, K, 3P, 0) .
| i keJ
! -
' - Similarly for je J, let
'4 ) 5, T, ¥) =1
)
j + and for 1 <t < T,
e 8G,t, ¥y = Z -rt(j,k)Ptﬂ(k) exp(-Wk) ¥ (k, t+1)/AK)S(K, t+1, ¥).
ke d

If Py is the initial distribution and pt(j) =1 for t>1 and je J, then R and § have
natural probabi lity interpretations. In fact, R(j, t, ¥) i8 the probability that the

target reaches cell j at time t and is not detected by the effort at times s =1, ..., t-1

o . 1 . . '
ot et ki N 1ttt B o 1 e B o

while S(j, t, ¥) i{s the probability that if the target starts in cell j at time t it will

not be detected by the effort at times s =t+1, ..., T. As a result, R{,t, ¥)8(, t, ¥)

[ PRV -,

is the probability that the target is located in cell j at time t and is not detected by

ool

the effort at atl times other than t. It follows that

Swd.t) = R@,¢t, ¥)8(,t, ¥)/K(t) for Je J, 1<t<T

TR NIRRT VIV ST ST W Lo TR

where

K(t) = X RU,t'lP)S(J»tHP) lf_tiT.
je d

A Unadlbandthama o e idiasts s+ ..

In the fourth section it is shown that up to a constant factor the probabilistic interpretati
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of Rand 8 remains true for the weights p constructed for the constrained Markovian
motion. Thus, g w(- , t) may be computed by the above formula for constrained Markov
motion. As we noted before, the algorithm in Example 2. 2. 8 of reference (h) is
{nsensitive to multiplication of the target distribution by a constant, so the factor

K(t) is not computed.

Observe that it is not necessary to recompute the entire R and 8 functions at
each step in optimization. Suppose one has reached time T in the algorithm and is
about to begin at time 1 again, i.e., one has returned to step (4) in the algorithm
description. The allocation just computed is ¥ IT for some ;. At this point one
computes S(-, t, wlT) recursively fort=1, ..., T-1, calculates ng'r(. , 1) from (I1-4)

and reallocates effort to obtain wl Having done this one computes R(*, 2,

T+1° Yiper)

from (I1-2) and then glﬁ from (II-4) using the fact that 8(-, 2, wl'l‘+1) = B(-, 2, wlT’
IT+1

because the reallocation of effort at time 1 does not affect the computation of

B8(,2, ¢ ). The distribution g is compu‘ed in a similar fast'onfort=2, ..., T.
iT+1 wl'l‘+t

Thus for one cycle through the time periodst =1, ..., T, one need compute R and 8

only once.

If there 18 more than one scenario, then one proceeds as above to compute
n th N n
g, (.t) for then scenario and takes g_(*,t) = Z a g, (-,t).
v Y o=y BV

The computer program which implements this algorithm is described in

references (1] and fn).

Convergence of the algorithm. We now show that this algorithm halts, that
the resulting plan w# is in ¥(m) and that as € approaches zero, w# approaches
optimality. The definition of Et shows that w# € ¥(m) and that 0 < PT[w 0]

< PT[wI] £ ... 52 1. Thue lim [wl] exista and llml

MPT

42~
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It follows that the algorithm halts. As ¢ +0, the answer I8 farther into the sequence

¥q» ¥gr <++» 80 We need only show that lim,  P.[¢ ] =max{PT[¢] 1P e ¥(m)}.

-4}
In fact, we shall show that for gome subsequence {lk}k-l’ y*=lim ¥ L exists

and is T-optimal within ¥(m).

Since J and T are finite and m(t), t=1, ..., T is bounded, we may consider

Re iy e e Py il s Ll LA

¥ r l=1, 2, ... to be 8 sequence of points in a bounded set of a finite dimensional

- Euclidean space. Thus, there is a subsequence {! k}:=1 such that {y . k=1, 2, ...}
k

converges to a point ¥*. Clearly y* ¢ ¥(m). The oontinuity of P,r implies that

AL
H

llml __GPTWI] = llmk_@PTwzk] = P,r[w“] so that we need only show that
P{4*) = max{ p'r““ : § € ¥(m)}, f.e., $* is T-optimal within ¥(m).
8ince llml o P,r[cpl] exists and PT and 'zt are continuous fort=1, ..., T, it

follows that

Pplé?] = Umy o Prl¥y 1= limye o ® i 1)

- lim o Pyl (4 ) = Pl 40

- Since P,[¥*) = P [E #*], it follows that both ¥ *(-, 1) and 7, 4*(-, 1) are optimal ;
| allocatiuns for the stationary target problem with distribution g(-, 1) and exponential
detection f.mction. By the uniqueness of such solutivne = lw* = y*, By a similar
argument E’z:"l yr = ‘52 y*= Y* and, in fact, Zt y*=y*fort=1, ..., T.
Thus, for eacht =1, ..., T, ¢*(-,t) maximizee the probability of detection for a

stationary target with distribution g v .{++t) and exponential detection function under

A M i a mt emitw s

~ the effort constraint m(t). So ¢ * satisfies the basic necessary and sufficient condition
I -43-
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given (n the second section of Chapter I and is therefore T-optimal.
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Constrained Markovian Motion

In this section we discuss a method which allows the user to specify constraining
distributions for the target's location at times b by cenn t € {1,...,T}. Normally,
the search planner specifies an initial distribution and a transition matrix to identify
a Markov process which represents the target's motion. The initisl distribution may
be obtained from a long range detection with poor localization and the transition
matrix may be developed from general knowladge of the target's behavior. However,
the search planner may have information which leads him to believe that the target
will have known distributions rtlfor i=1, ...,nwherel < t
section we discuss a method for modifying a given transition function T to obtain a

<..o<t <T. In this

Markov chain { Xit=0, ..., T} such that X, the target's position at time t has
i

distribution rt fori=1, ..., n.
i

To begin, we consider the situation in which the target's distribution is specified
attime t=1andt =T. (For this discussion we will assume that there is only one
motion scenario and drop the scenario index from r, T, and q.) We consider target

path probabilities q(w) which are computed by

Uw) = P )T W W )T 5 (W5 W) e Tr1@qorep) P Wy (11-5)
where
PU). P'0) 20  for je J.

In most cases, p and p' will not be probability distributions. If p is a probabtlity

distribution, then equation (I-5) may be interpreted as taking a Markovian motion

-44-
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with prior distribution p and transition matrix T and combining this according to
Dempster's rule (see references [n} and [o]) with an independent estimate of the
target position at time T which is represented by the probability distribution which is
proportional to p'. The information in p' will, in general, change our estimate of
where the target was at time zero. It will also change our estimate of how the target
made its transitions. If, for example, p' is a more concentrated distribution than
the distribution of a target which diffuses from p according to T, then the target's
transitions for times near T will have to have a bias toward the mean of p' to recon-
centrate the target's density.

In order to compute the prior distribution and transition probsabilities which
result from this constrained model, we introduce the functions G and H where

G: {1,...,T} x J x J-{0, 1] is defined recursively by

G(1,),j) = 1,G(1,4,)) =0 {f1#]

Gt L)) = T G-tk 7, _ (kJ) for2<t<T
ke J

and H: {1, ..., T} x J x J—{0, 1) is defined recursively by

H(T,§,)) =1, H(T,L,J) = 0 1f1#]j

Ht L) = Z 7 (k) Hi+l,k,)) for1<t<T-1.
keJ

. Ajnm._:a- ad s e Rt o B

For a Markov chain governed by the transition function T, Gft,1, j) is the probability

Ama ar ke ladem

that the chain is in state j at time t given it was in state | at time 1. Similarly,Ht, 1, j)

{s the probability that the chain is in state j at time T given it was in state 1 at time t.

i
|
|
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|
1




IR

(N

Let

(I-1v,

ri) = T p(d) H(1,1,)) p'0) for e d.
je 3

one can see that r(i) is the

e e -w'--mp_r,-.f jade 1h 4} nwmt.‘: @mgpn: "-"‘”5",51, ""’M-qﬂ

‘ From the definition of H and the path probabilities q,

sum of the probabilities of all paths which start at i, 8o r({) is the probability tLat

o ]

E‘ . 2

: ‘ the target starts in cell . Likewise, the probabllity that the target ends in cell j k
Lo

- is given by i

i

r'g) = Z p @) HAL LI PO (I1-11y

ted b

3

i The imposition of the weights p and p' on the sample path probabilities causes K|

: 1

e - 4

z the transition probabilities of the Markov cbain to be modified. Let T indicate the g

- “F

modified transition function and {X ;t=0, ..., T} the stochastic process with path . 4

probabilitiea given by g in (11-5). Then %

| i

- - ~ - B

T, = Pr{:i(t =fand X, = 3} /Px{ X, = i}, (U-l2l§

Svmwrmicd

where

fl

. .—.qip%wu i g
TN ..4.:-4;._.’.._-’-;..“4..

R V % - z
S Pr{X =tandX_, = 3} = {ww= and w4 =)} aw)

A
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| |

Pr{x,=1} = £ I pf)GtkD HE 1, k) o' (K"
ked k'ed
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Thus

;t(i’j) =T 2 H(m"'k')"'(k')] [E H(t, 1,k") p'at"].
k'e J e J

From equations (11-10) and (II-13) one can calculate that

T=-1
Pr{w} = rw,) tfil T, )
T-1 .
Ploy) t21 Tp @) Plog)

q(w).

Thus the transition function T along with the initial distribution r produces the path
probabilities q defined in (1I-5).

The search planner's estimate of the target's local motion charscteristics {s
normally in terms of . When the searcher’s estimate of the target's prior distri-
bution comes from a contact with an associated uncertainty, which is based on the
characteristice of the detector and the detectability of the target, but not on the
subsequent motion of the target, then this is an estimate of p. On the other hand,
when the searcher's estimate of the target's prior distribution comes from historical
information which accounts for the target's subsequent motion, then this is an
estimate of r. Thus the searcher may reasonably start with either r or p. Likewise,
he may start with either r' or p'.

Tne program desacribed in reference [a] handles four forms of input; p, v, p';
P, T, r5r, T, p'iandr, v, r'. Computationally, the form p, T, p' is easiest to

work with 8o we convert the other {nputs to this form. When ¢, 7, and r' are entered,

we use equations (11-8) and (II-9) to compute H and then solve equation (1I-11) for p'.

a;‘y
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The solution is just
p'0) =r'g)/ = p(k) HQ,k,J)
ked

for all je J. The denominator of this expression can vanish only when it is physically
impossible for a target which starts in a cell -k with p (k) > 0 and makes only transitions
which ¢ gives nonzero probability to get to cell j at time T. If r'(j) also vanishes, we
can set p'(J) = 0. On the other hand, if r'(j) # 0, then the inputs describe an imposstble
situation and no solution is possible. Likewise when r, T, and p' are entered, we
compute H and then solve equation (1I-10) for p. Again there is no solution only in
a physically impossible situation. |

The final input possibility; r, T, and r'; presents greater difficulties. We
compute H as above and then eolve the quadratic equations (I1-10) and (1I-11) for
p and p'. This is accomplished by the following tterative algorithm:

(1) Let € be a small positive number.

(2) For all j € J set po(j) = r().

(3) For all j e J set pb(j) =r'().

(4) Setl=0.

(6§) For all je J set pl+10) =r(@)/ lkezJ H(1, }, k) p; ®)] .

(6) For all j € J set p;ﬂ(j) =r'(g)/ [ka pl+1(k) H(1,k, j))

@ 1o, 0 -p,0| <candip;, & -pil| < ¢ forally, keJ, then

gtop: The answer {8 p = pl+1 andp'= p;ﬂ.

(8) Otherwise, setl =[+1,

(9) Go back to step (5).

-48-
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As above, a zero should be supplied for the result of an indicated division
of zero by gero in steps (8)~(6). While no convergence resuits are available for
this algorithm, it has proven effective in examples such as those given in the
second section.

More generally, we may have information about the target's distribution at -
a sequence of time intervals 1 < t1 < t2 <.,.. < tn < T. For this case we consider a
more general definition of q as follows:

T-1
qw) = Pl(wl) till [Tt(“’t""tﬂ) Pt+1(wt+1)l for we Q. |

Fort#tl, ceey tl’ wetakept(j)=1forjeJ. Fortn. n=1, ..., 1, Py is a non-
n

negative function on J which is related to our information about the target's distri~
bution at the times tn, n=1, ..., I. That is the user may specify Pty for tn =1, couy
or he may specify r, the target's distribution at time tn and solve for pt as above
forn=1, ..., L ’ :

Once we have solved for or obtained the pt fort=1, ..., T, we can calculate

q(w) as though {t were obtained from a Markov chain with initial distribution Py and

transition function 7' defined by

T;(l.j) = ‘rt(i,j) Pt+10) fort=1, ..., T-1and {, jed,

even though p | may not be a probability distribution and ' may be a defective
transition function. This causes no problem because the probabilities computed 1n
this fashion are all proportional to the correct probabilities. 'n particular the target

location distribution at any t is proportional to the one obtained from this Markov
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chain. The algorithm will give the sare allocations of effort for any two distributions

which differ by a constant factor.

Our final observation concerning the motion model is that it can be used to oreate

multiple scenarios. Each state can, for example, consist of a cell and a scenario

s e

index. The target whose state conaists of cell j and scenario n moves by applying

Gt R iaet RN | RS R T S

a transition matrix assooiated with scenario n to j to obtain its new cell. It always

keeps the same scenario. The initial scenario weights are incorporated in the amount

of target mass which the prior distribution on the states places in states with each

R——

scenario index.
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CHAPTER 111

RECTANGULAR SEARCH PLANS

In this chapter we discuss rectangular search plans, which model sonobuoy
fields, to search for a target moving in discrete space and in discrete time with
a fixed time limit, T, The computer algorithm, which generates the rectangular
search plans, is described and the effectiveness of these rectangular plans is
measured by comparison (via computed examples) with T-optimal plans. In the
last section of this chapter we summarize outstanding problems associated with

rectangular barrier search, All of the examples in this chapter are taken from

references [c] and [d].
The Search Problem

The search space, search time, and target motion assumptions are as in Chapter
11 with the exception that at each time interval the searcher must spread his limited
amount of effort uniformly over a rectangular region, The probability of detscting

the target during the t!h time interval if rectangle R is searched is given by
(1- exp(-m(t)/AR))] * P(R)

where

m(t) = total effort available at time t

AR)= area of the rectangle R
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and

p(R) = probability that the target is located in R.

The number of time intervals, T, is specified at the outset and the searcher attempts to
choose a rectangle to search at each time interval to maximize the probability that

he will detect the target within the specified time limit. We refer to an allocation

of effort which accomplishes this objective as an optimal rectangular plan to
distinguish it from the T-optimal plans found in Chapter II. When the number of

time intervals is one, we refer to the prcblem of choosing an optimal rectangle as

a rectangular stationary target problem,

Rectangular Barrier Algorithm

In this section we describe the computer algorithm which computes the rectangular
search plans given in the examplesinthe nextsection. Although we do not claim that
our rectangular plans are optimal rectangular plans, experimental comparison with
T-optimal plans shows that our plans cannot be far from rectangular optimality since
in fact these plans are not far from T-optimality,

The motivation for the approximations made by our algorithms may be found in
reference {p], where the problem of allocating a fixed amount of effort uniformly
over a rectangle to find a stationary target, whose location distribution is bivariate
normal, is considered, Suppose the bivariate normal distribution has standard
deviations ¢ and 0, along the major and minor axes, respectively. Reference [p)
then considers only rectangles centered at the mean of the distribution, oriented
along the major axis of the distribution, and whose length and width are proportional

to 04 and 0,5, respectively. The resulting one variable problem can be solved by
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standard calculus, Comparison of the detection probabilities of the search plan
thus produced to the totally optimal detection probability shows that the approxima-
tions involved are extremely good (see reference [q]).

With the above motivation in mind, we can now state our rectangular barrier
algorithm, Our algorithm follows the description of the basic algorithm as given in |
the third section of Chapter I, except that it attempts to solve a rectangular stationary
target problem at each time step instead of an ordinary stationary target problem,
This being the case, we need only describe the workings of our algorithm at a fixed
time step on the rectangular stationary target problem which results from motion as
well as failure to detect at all other time periods.

The rectangular stationary target problem is a problem in maximizing a function
of five variables given by the length, width, orientation, and center of the rectangle,
In general, this function need not be convex, so a straightforward a‘.ttempt to find
the maximum by computer algorithms would be difficult. Instead, we try to take
advantage of the intuition exhibited in reference [p] to make some good choices for

some of the variables, thereby reducing the number of variables in the optimization,

Thus, at each time in the search we proceed as follows, Check whether the distri-

bution is unimodal or not. If it is unimodal we consider a single class of rectangles,

I RS AR L D e

while if the distribution is multimodal we consider three classes of rectangles.

G e

In the vaimodal case we restrict ourselves to the class of rectangles that are centered ;f

£43
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at the mean of the distribution and oriented along the major axis of the distribution.

The major axis of the distribution is obtained by computing the covariance matrix of

the distribution and finding the angle of rotation that diagonz!izes the matrix. This

correspond:: tv the rotation of coordinates which transforms a normal distributicn

BEST AVAILABLE COPY
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with that covariance matrix into the product of two independent oné-dimensional
normal distributions along the rotated axes. The axis having the distribution with
the largest variance {s the major axis, We then optimize over the two remaining
variables--length and width,

In the multimodal case, we consider the above class of rectangles and two
additional classes, To determine the additional classes we compute the two best
modes of the distribution, We then mimic . was done in the unimodal case for
the distribution near each of these modes, To do this we assign cells to be in the
"local distribution' of one of these modes as follows, Proceed radially from the
mode until the probabilities begin to increase. Cut off the '"local distribution' at
this point, The resulting grid of cells {s what we call the '"local distribution’ of
that mode. We now renormalize these '""local distributions'' and compute the m2an
and covariance matrix of these two ''local distributions. ' This leads to two further
classes of rectangles, and proceeding in the manner described above, we find the

best rectangle in each of these classes, We now have three "best'' rectangles, one

based on earh of the two hest modes and one centered at the mean of the distribution,

Finally, we take the best rectangle from among these three best rectangles,

Examples

in this section we discuss three examples of rectangular search plans,

Example 1; Markovian fan, 'n our first exsmple, the target motion is identical

to that in Example 1 of Chapter 11,
Table 1 below show:, the target density, updated by wcarch effort, and our

rectangles for 8 houra, T'hi target 1noves southward and diffuses from its
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Lo TABLE 111-1
o PROBABILITY MAPS AND RECTANGULAR SEARCH PLAN FOR_
b o+ EXAMPLE 1 MARKOVIAN FAN
Notes: (1) Entries represent thousandths of a target.
(2) The rectangle for Hour 1 is the square
t 4 which surrounds the entire distribution.
I (8) Cells are 3 mi by 3 mi.
PROBABILITY MAP AND RECTANGLE FOR HOUR 1
N Hour 1
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TABLE III-1 (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 6
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TABLE 1]1-i (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 6
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TABLE IIl~-' (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 8
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original distribution, The searcher has 90 units of search effort available each hour

which he applies uniformly over the rectangles shown.

As can be seen from Table I1I-1, the rectangles chosen for all 8 time periods
are intuitively very reasonable., Table III-2 below gives the detection probabilities
for each time interval for our rectangular plan and optimal plan for eight hours,
As Table I11-2 shows, the rectangular plan has detection probability only . 017
less than the detection probability of the totally optimal plan,

Example [I: Constrained Markovian fan, We now modify the previous example

by assuming that historical information indicates the target's distribution at time

8 as well as at time 1, In particular, we assume that at hour 8 the target's prior
distribution {s identical to the initial distribution but translated 60 miles south, The
motion in this example 18 identical to that in Example 2 of Chapter II. Note that the
distribution which appears in Table 111-3 below {s not circular normal at time 8
because search effort has been applied during hours 1 through 7 inside the 1 licated
rectangles.

For each of hnurs 1 through 8,Table II-3 shows the target distribution conditioned

on faflure to detect prior to that time along with the search rectangle for that hour,
The target initially diffuses, but by hour 8 it must start to reconcentrate its density
to attempt to meet the constraint at hour 8,

Because of the constraint at hour 8, the posterio: distributions are more
concentrated so that guessing the rectangles by inspeotion might appear to be easy.
However, choosing by inspection can lead to mistakes, For instance, one might
guess that at hour 2, the 5 x 8 rruiang'e with vertices (2,-1), (2,~6), (~2,-6), and

(~2,-1) 1» a better rectangle ths: whe one chosen by the algorithm, However, one
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Optimal Plan
or 8 Hours

. 311
. 516
. 624

692
. 739
.713
.798
. 818

Plan

TABLE_I11-2

. 329
.481
599
670
. 718
. 754
. 781
802

Probability of Detection for

DETECTION PROBABILITIES FOR EXAMPLE 1
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TABLE I11-3

PROBABILITY MAPS AND RECTANGULAR SEARCH PLAN
. FOR EXAMPLE 2: CONSTRAINED MARKOVIAN FAN

Notes: (1) Entries represent thousandths of a target.

(2) The rectangle for hour 1 is the square which surrounds the
entire distribution.

(3) Cells are 3 mi by 3 mi

PROBABILITY MAP AND RECTANGLE FOR HOUR 1

REE IR I b -l e A i A R

l

N 2 - — 3
23 34 38 384 23 | -1
E 1 N T 1
2 34 49 56 49 34
0 3
- 38 56 63 68 88 l ,i
b { -1 . . . . ! : 4
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TABLE_1l1-5 (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 2

1 9 27 |60 658 50|27 9 1

1 10 30 |65 64 55130 10 1

"4 L] . . . . L] *
1 9 25 |47 54 47126 9 1

"5 3

0 4 12 123 26 2312 4 O

TIME 2 PROBABILITY OF DETECTION = .639 (Cumulative)
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TABLE 111-3 (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 3

-2 . . . . . . .
0 0 1 1 2 1 1 3
-3 - - . . [ ]
1 3 7T 10 11 10 7 3
-4 . ) . . . . .
2 9 -.w—ao—ao—a&—wj 9
-5 . » . o L] -
4 15131 44 45 44 31 | 15
-6 . - . . - . r—:
4 16 | 33 47 48 47 33 |18 @& ;
-7 . . . - Y . . ,’
3 12|26 88 40 38 26 |12 3 . i
-8 . . F
1 65 12 19 21 19 12 6 1 ]
-9 . . . . . . . . 'E
0 1 2 4 4 4 2 1 0 i
-10 » . . . . . . . . 3
4 3 2 1 0 1 2 -3 -4 <8 f
]
TIME 3 PROBABILITY OF DETECTION =.6860 (Cumulative)
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i R
R
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N Do PROBABILITY MAP AND RECTANGLE FOR HOUR 4
y T ,
. - -5 . ( . ot . . . . . . . :
i 0o o 1 ' 3 3 3 2 1 0 0 ~
-6 [ 2 * . o * L] . L] ‘
¢ 1 5 10 15 17 15 10 65 1 0 b
-7 . [ ] L] 3
- 1 4 11 J23 3z 38 32 23 |11 4 1 §
- -8 [ [ ] . . L] 1] ] » - ':
1 5 15 |20 338 42 38 20 |16 5 1 !
-9 » . . 3 'y [] » ] . B
1 5 156 |20 37 41 37 29 {16 & 1 ]
-10 . . . . . . . . * :
1 4 11 )23 32 3 32 23 |11 4 1 [
N -11 ' . . . . ’i
B 0 2 5 12 18 21 18 12 6 2 0 '
-12 . . . . . . . . ] .
- 0 0 1 2 4 8 4 2 1 o0 o
-13 4
5 4 3 2 1 0 «1 =2 =3 -4 -8 -8 ;
: !

TIME 4 PROBABILITY OF DETECTION = .744 (Cumulative)
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TABLE 111-3 (continued)

b
1
1
PROBABILITY MAP AND RECTANGLE FOR 'iOUR § i
1
]
:
3
-§ . ° . . . . . . ]
¢ a 1 3 ) 5 5 3 1 2 @
-9 . gy - . . -
e 2 6 13)1s 22 15013 6 2 o ;
-le . - . b . . . - i
1 4 12 23] 31 35 31§ 23 12 4 1
~11 . . . b . . . .
1 o 16 28] 35 38 135] 28 16 6 ]
—12 . . . b . . . .
1 6 15 27 34 137 34] 27 1S 6 1
-13 . . . b . . . . b
1 4 11 22031 35 3122 11 4 1 ?
-14 . . . . L L3 . L] [
0 1 5 11 1s 21 18] 11 5 ] 0
-15 . L] . . - ) L] . .
7 4 1 2 3 4 3 2 1 4 ?
-16
5 4 3 G =1 =2 =3 -4 -5 «6

TIME 5 PROBABILITY OF DETECTION = . 800
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TABLE 111-3 (continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR §

-11

-12

-13

-14

-15

-17

-1b

-1y

TIME 6 PROBABILITY OF DETECTION =« . 846

ol

. . . . . .

e 8 2 @

] 2 d.r]éf
1 4 143 27

1 5 171 31

1 5 16] 39

. . 3 .

33 32

37 35

36 34

32 30

33 27} 14 4 1
37 31} 17 5 1
. . b . . .
36 30) 16 5 1

T

36 23 12 3 0

W
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PROBABILITY MAP AND RECTANGLE FOR HOUR 7

-14

-15

-16

-17

-ls

-1y

-l

=21

: 1 4 6 6 6 4 1 @
] et BEERE
2 142y 36 30 36 2014 2
2 10]30 36 37 36 0f 16 2
2 1slzs 36 36 36 28f 15 2
Vo) 2y a2 e a2 s
: 3 9 12 13 12 7 3 @

3 6 -1 -2 -3 -4 =5

TIME 7 PROBABILITY OF DETECTION =.884 (Cumulative)
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TABLE_l11-3_(continued)

PROBABILITY MAP AND RECTANGLE FOR HOUR 8

TIME 8 PROBABILITY OF DETECTION =,922 (Cumulative)
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can check that the probablility of detecilon using this rectangle is . 52194, which is
not as good as the rectangle chosen by the computer,

Table 111-4 compares the detection probabilities for the optimal and rectangular
plans for each of the eight hours. As can be seen, the rectangular plan never is
significantly behind either the myopic or optimal plans. The rectangular plan has a
final detection probability only . 010 less than the optimal plan for eight hours.

Example 3: Radial flee, In our last example the target starts from the same

prior distribution used in the two previous exa.nples, Its speed is chosen uniformly
from the interval (6,12). To choose its course, it first chooses one of eight hase
headings: 22,50, 67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292,5°, or 337, 5°,
Having chosen one of these hase headings it keeps it for the entire five time units

of the search, Once a base heading is chosen the target's course at each time
interval is chosen uniformly from whichever of the following intervals contains

the base heading: [0°, 45"}, [45°, 90°), [90°,135°), [135°,180°), [180°,2259),
(225°,270%), [270°, 3157, or (315°%, 360°]. This example approximates the
classical radial flee target motion discussed in reference (i}.

As can be seen in Table I1I-5 the target diffuses very rapidly and for hours 3, 4,
and 5 the target's distrfbution i8 clearly multimodal, The rectangles chosen during
these times are clearly those from the class of rectangles corresponding to one
of the two best modes, Table ITI-6 compares the rectangular plan and the optimal

plan for each of the 5 time intervals.

Outstanding Problems

In this section we summarize outstanding problems assoclated with the

rectangular barrier problem,
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| L TABLE I111-4

Probabtlity of Detection for

8-Interval

Time Rectangular Plan Optimal Plan
1 . 329 .311
2 . 539 . 540
' 3 . 660 .672
7 4 . 744 . 157
' I 5 . 800 . 816
6 . 846 . 862
7 . 884 . 898

8 . 922 . 932
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TABLE I1I-5 !
RECTANGULAR PLAN FOR RADIAL FLEE
i
1
PROBABILITY MAP AND RECTANGLE FOR HOUR 1
i
Note: Entries represent thousandths of a target.
, i
g :
! 23 34 33 34 23 ;
l L ] L ] . .
34 4y 56 49 34 i
0 - - * L ] i
| 38 56 63 56 38 4
- -1 . - - .
3 34 49 S6 49 34
; -2 'Y ° - L]
ﬁ 231 34 38 34 23
8 -3 !
2 1 © -1 -2 -3

PROBABILITY OF DETECTION =. 329 :

B
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! PROBABILITY MAP AND RECTANGLE FOR HOUR 2

6 . . . . . . . . . . . .
2 2 2 B | 1 1 1 1 0 2 e o
’ 0. ﬁ. l. 2. 3' 4. 5. 4‘ 3' 2' l. ﬂ. o
) ﬁ' 1‘ 2‘ 5. 8'10.11'1G. 8. S. 2' 1’ @
’ @. 2' S' 8.11-13'14'13‘11' 8' 5. 2. A
1 3 8 11 14 15 15 15 14 11 8. 3. 1
: l. 4.105 13.15'14'14'14.15.13-10. 4' 1
’ l. 5.11 14.15.14.13.14.15-14-11. 5‘ 1
™ 1’ 4.10 13'15'14'14‘14'15'13F10' 4. 1
. 1. 3‘ 8 11.14'15.15.15‘14.11. 8. 3' 1
- 0. 2' 5 8§ 11 13 14 13 11 8 5' 2‘ 2
B G. l. 2. S' 8.10.11‘10. 8. S. 2. 1' 9
” E. 0. l‘ 2. 3. 4' 5' 4. '4. 2. 1. B’ ]
- ﬁ. ﬂ' ﬁ. 0’ l. l. l. 1. 1' 9' 0. 0. 0
6 5 4 3 2 1 ¢ -1 -2 -1 -4 -5 -6 =7
PROBABILITY OF DETECTION =, 411 (Cumulative)
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TABLE I11-3 (continued)_

PROBABILITY MAP AND RECTANGLE FOR HOUR 3

=
-
N
.
I
n
m.P.
(0
o
-
L]
o
-

~N
w
-
)
)
o
*
)
L)
)
o
' o
"
w
~
et
«® S L)

355b6544+~5665531‘¢'
234666666'6664321‘¢.
1135677.7 7'7653110.93.
01235555555'3 2'1n¢'0.
p0 1 12233'322'110¢¢'¢'
¢u¢01111‘111.50090'0

6 5 4 3 3 1 ¢ -1 -2 -3 -4 -5 -6 ~7 -8 -9-10

PROBABILITY OF DETECTION =.434  (Cumulative)
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(Cumulative)

PROBABILITY OF DETECTION = . 454
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I11-6 (continued)
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There are two main problems which need further work. The first is to
! incorporate a more realistic detection function, which is better suited to the
sonobuoy problem. The second 18 to produce algorithms which will allow the
user to pick rectangles, which are to stay in place for more thar one time period.
As a step toward solving the second problem, we consider the problem of
finding optimal plans which are restricted to have a fixed allocation for v hours
before choosing another allocation for the next T hours.
As in Chapter II we let Q be the set of possible paths of a target moving in
( discrete space. We assume that the searcher has v T time periods to search and
{ let J be the set of all possible cells through which the paths pass. Because of the
restriction mentioned above, a search plan 18 a function ¢ : J x { 1,... ,T} - [0, ™)

such that
¢, t) = effort placed in cell j at times T (t-1)+1,...,T¢t.
If a search plan ¢ also satisfies
jz:J ¢G,t)=mqt} fort=1,...,T, (I1-1)

then we say ¢ « ¥(m). Note that we have m(t) amount of effort available for each
of the times T (t-1)+1,...,7t. The only restriction is that we must allocate the
effort in the same way for each of these timec periods.

Given a search plan ¢ we assume that the detection function is exponential

so that the probability o. detection using ¢ is given by

! T 7-1
' P.li)l=1- £ q)expl{= T W(wss_g) $(wqeit)/ A
m we 0 t=1 i=0 Ti- Tt

rt-1! (7

where q(x) is the nrobability of the path ..
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The problem is to maximize P, (¥} subject to (lI~1).
Ar
Now let J = {’3=(jl....,j1») |jileor t=1,...,7 and j15j2..._<j.r}. For
any fe 5\7. we let

A
gt(f) = lweq | w passes through the cells in | in any order
during times + (t-1)+1, ..., .

For sny search plan p, fe 5\7 and t define
-1

v, L= sz;t 4,3 ePEE (2 W ) 80 8/ AW g)

Then for each t, 1<t<T, we may write

T-1

A
= -2 ,
P oqlvl= 1=\ Z e v0 . t4) exl-\ 25 WOp ¥ 0. t/40p} .

1
J

For a search plan ¢, we let wt be given by

¢t(1) =¢(,t for jed.
For a search plan ¥ and 1<t<T we deflne
QA = 1= nZar v (ot ¥) expl= Z." W1 §
t[ 'f]_ jA(f'r vy ) 1& 01') 01)}

where {:.J-[0,¢),

We can now characterize an optimal search plan ¥ *¢ ¥(m).

THEOREM: ¥* ¢ ¥(m) maximizes p'rT over ¥¢ ¥(m) if and only if for each t,

1<t<T,

Ql¥*, ¥,%1 = max{Qy*.f}: I, f() =mv)}. a1-2)




Proof, Since both p-rT and Q,[¥*, - ] are concave functions and the effort
constraints are linear, the Kuhn-Tucker conditions are necessary and sufficient
for ¥ * to maximize p-rT over ¥¢ ¥(m) as well for tﬁ: to satisfy (1I11-2), In fact,
the Kuhn-Tucker conditions are the same for both problems, and thus we obtain
the equivalence stated above. This proves the theorem,

Because of the above theorem, it is clear that an aigorithm for computing an
optimal plan restricted to fixing effort every v times units can be obtajned by

following a procedure similar to that given in Chapter Il when T = 1. The only

difference 18 that maximizing Q¢ [¥*, -] is not a standard stationary target problem
as in the case T = 1, As noted above, Q¢(¥*, -] 18 a concave function and the
constraint in (II1-2) {s 21 linear constraint: thus, we can apply a nonlinear

programming approach to solving this problem.
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i
’ TABLE I1lI-8_
COMPARISON OF RECTANGULAR PLAN
. WITH THE OPTIMAL PLAN FOR RADIAL FLEE
!
Probability of Detection for
S-Interval
Time Rectangular Plan Optimal Plan
1 . 329 . 357
2 . 411 . 436
3 . 437 . 465
I 4 .454 . 487
5 .468 . 505
|
]
S
:l
!
!
i
}
i
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ARBITRARY DISCRETE-TIME TARGET MOTION

In this chapter we consider optimal search for a target with arbitrary motion
in discrete time, We discuss and give examples of a method for finding T-optimal

l search plans under the following conditions:

{ (1) The target motion is modeled by a discrete time stochastic process
that can be sfmulated on a computer, This process may take place
in continuous or discrete space,

! (2) At each time t, m(t) effort 18 to be applied to searching for the target.
(3) The detection function is exponential but may vary over space,

(4) A grid is specified and allocations are required to be uniform
within the cells of the grid,

g

1 Observe that the class of allowable target motions {s very broad. For example, the

target 18 not restricted to move among a set of cells as {s usually the caso when

one deals with Markov chain models of target motion (as, for exaaple, in Chapter II),

The motion process need not be Markovian or even a mixture of Markovian processes,

The process can be Gaussian, a constrained diffusion,or a random movement through

a network, In fact, the optimizer described here could be coupled with the COMPASS,
MEDSEARCH, or TARDIST programe (o find optimal allocations of search effort over any '
1 interval of {nterest for any target motion processes produced by thess programs.

; The algorithm proceeds by obtaining a Monte Carlo sample of target paths and

then optimizing over that sample., Thus the accuracy of the optimization will be
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relatad to the accuracy with which the sample represents the target motion process,
In addition the algorithm considers only search allocations which, during any one
time period, are constant within the cells of a grid chosen by the user. However,

s restriction 18 not equivalent to assuming that the target motion takes place in
discrete space. The algorithm is based on the necessary and sufficient conditions
ttated in Chapter 1,

While the algorithm described applies to a more general class of motion
processes than the one described in Chapter II, it does, in effect, optimize over a
finite sample of tha target motion process, whereas the algorithm in Chapter II
treats the target motion exactly. Thus in the case where a mixture of a small namber
of discrete time and space Markov processes provides a good representation of the
target motion, the algorithm in Chapter 11 will be more accurate and faster,

In the first section we give examples of optimal plans computed by the algorithm
which 18 described in the second section., In the third section we prove the algorithm

converges to an optimal plan,

Examples

In this section we present three examples of optimal plans found using the
algorithm described in the second section,

Example 1: Radial flee from s normal distribution. For this example we as-~

sume that the target has been detected by a sensor with poor localization 8o that
its initial distribution {8 oircular normal with standard deviation 20 miles in any
direction, The target ie ko wn to be moving at 10 knots on a constant but unknown

course, We assume that the course ia chosen from a uniform distr{bution on o to 3600.
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This target motion is an example of the classic fleeing target motion given in

reference {i ], page 17. Thatreference gives the probability distribution P, for the

target's location at time t given no search. In Chapter 7 of reference (i)

reasonable search plans are suggested for this problem but in the years since that

reference was prepared, no one has been able to find optimal plans for this problem,
We assume that the searcher, an aircraft, does not arrive on scene until

hour 4, The dete~’ ‘on function {8 given by

1- e-Wz/AO)'

where z 18 the number of sonobuoy hours placed in the cell j and W=270 (mi)z/ sono-
buoy-hour. This detectior function approximates the probability of detection that
one obtains from search by sonobuoys and {s based on fitting an exponential function
to a simulation of submarine detections by sonobuoy fields as discussed in
reference (r]. The constant W=270 (mi)z/ 3onobuoy -hour, corresponds to good
sonar conditions, We assume that 16 sonobuoys are available and that the search
continues for 4 hours, Because of the time required to place the sonobuoys in the
watar, we assume that on the average only 16 x. 75 sonobuoys are available for each
hour of search, Since the constant W =270 (mi)z/ sonobuoy-hour is the same over all
space, we shall simply absorb this into the effort available at each hour and assume
that there are 3240 units of effort available each hour,

Table IV-1 shows the myopic search plan for this problem for hours 4 through 7,
The target distributions shown for each hour are the distributions at that time given

failure of the previous search effort to detect the target, Observe that at time 4

the myopic allocation concentrates its effort most heavily in the center cells of the
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TABRLE 1V-1

RADIAL FLEE FROM A NORMAL DISTRIBUTION

Myopic Plan -- Hour 4

TARGET DISTRIBUTION

NOTE1 ENTRIES HAVE BEEN MULTIPLIEC BY 10%

0 0 0 2
) 2 23 32
5 43 113 209
21 129 281 452
39 200 405 524

"o

z

\
oo

6 1 |
35 21 5
196 122 39
408 313 117
531 447 205

w N
[NV e N e

ah 210 395 505
23 128 315 458
3 39 109 216
0 7 24 40
0, 0 2 2

[
o
w
%
DO ONNE N

231 425 182
425 271 128
200 113 46
43 30 8

9

3 3 0

oo—oﬂwmooo

1°w o°

—
o4-
M lsooo

MYOPIC ALLOCATION

52 241
o 199 304

201 98
307 238

g8 290
98 248

307 218
218 38

0

PROBABILITY OF DETECTION 8Y THE END OF TIME 4 = 0.274
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Myopic Plan -~ Hour S

TARGET DISTR IBUT ION
NOTE® ENTRIES HAVE SEEN MULTIPLIED s8Y 10%

YT Yoy e YT ¥ 2 TR e o TR YV
-3
>
o)
-
m
<
[}
H
o)
[}
-4
[ nd
Pt
-]
~
a
~

O 0 O 4 6 10| 8 7 1 0 O O
., o, 10 0 2 9 52 74|77 484 12 2 0 o0
3 "N To0o 0 19 81 142 205{194 16C 74 22 .4 O
4 0O 5 55 155 215 134[132 205 156 54 5 O
i ©_l 1 14 8O 190 182 125{128 186 191 15 9 O
S O 1T BT 193 188 132|127 182 212 65 12 1
E 0 6 60 164 199 185|186 205 153 45 0 |
g o 0 1 15 77 161 216198 155 75 27 1 O
4§ 1'STo o o 18 55 15192 40 19 1 0O O
: 0_0 0,2 6 9l 7 10 1,0 0 0
:I low 0 ILE

MYOPIC ALLOCATION

0O 16 164|142 64 0
52 182 1211115 164 54
o° 133 117 0 0 124 136
141 B4 0 O 1i7 176

74 152 123|125 164 46

0 68 1841149 51 0

00

PROBABILITY OF DETECTION BY THE END OF TIME 5 = N.106

!
|
|
!
;
{
!
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Myopic Plan -- Hour 6

4 TARGET DISTRIBUTION
NOTE® ENTRIES HAVE BEEN MULTIPLIED By 10%

o o o 0o o 2|l 4 2 o o o o
0O O 1+ 8 17 21l20 17 6 2 0 o0
0. LO 1 9 38 79 11800 87 36 71 4 0
1" N 0 8 45 96 139 102|114 105 104 50 7 O
2 15 89 124 95 91| 89 106 117 80 13 2
00 2 30 111 110 86 61160 92 101 106 22 |
553 116 110 85 581 54 03 119 101 26 3
| 20 94 132 93 84|96 97 1171 10 16 |
: Ps 40 3 35 96132 112418 124 110 41 7 |
1 0O N 14 43 73 1030102 71 44 14 0 O
0O O O 7 23 30|33 20 6 2 O O
0 0 0, 0 2 2|l v 1+ 04 0 O O
f | —1
i 1°w 0° 1°E

MYOPIC ALLOCATION

©°n L 0 0 01235 0 0 0O

T o 41 189 64110 77 72 0
i1 143 38 20| 13 83122 0O
o 90 94 0 o]l 0 25 62 81
0776 128 0 0| O 30 129 62
31 170 28 o) 41 46 121 O

°s 4 0 41174104124 142 95 0O
0, 0 0 69/65 0 0, O
) 1
J 1°w 0 1°E

PROYABILITY OF DETECTION BY THE END OF TIME 6 = 0,436
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1°N

1°s

Myopic Plan -- Hour 7

TARGET DISTRIBUTION

NOTE! ENIRIES HAVE BEEN MULTIPLISD BY 10°
O 0 10 30 40 90|50 /0 0 10 O O 0O
0O 0 0 250 282 4904|416 415 190 30 10 O 0
1 0 s0 236 590 830 826|784 846 628 280 70 0 o0
© 20 159 746 803 707 /552|681 7.8 825 678 210 10 0
60 422 402 185 644 558|517 649 654 805 369 50 O
90 507 135 104 520 181211 531 7178 716 429 80 O
700 510 B30 592 501 1671179 538 887 792 545 90 10
40 381 129 199 597 526(543 616 706 733 339 30 O
1 10 235 733 769 862 792|693 729 845 610 190 10 0O
0 10 206 657 763 d53[811 836 560 370 60 O O
0 0 60 120 491 401|556 374 200 30 © O 0
0 0 0,10 70 /0190 60 10, 0 0 0,0
L T T
1°w o 1°E Pad 3
MYOP1C ALLOCAT ION
°x4 0 0onTnsfos s s o
74 104 53 77138 59 114 16
103 95 15 0] 0 18 22 105
oO 68 51 () 0 0 £L7 (*]] 90
T\7 44 0 Ol 0 0 4 98
65102 0 ol o 0 52 67
s | 67 86 26 08|45 65124 o
0,23 86 1410108120 0, 0
1°w o° 1°E
PROSABILITY OF DETECTION BY THE END OF TIME 7 =

-8~
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target distrfbution, but at imes 5 through 7 effort {8 concentrated in an annulus
centered at the mean of the target distribution. Except for variations caused by
sampling error in the underlying target distribution, the effort distribution is seen
to be fairly symmetric, Table 1V-2 shows the optimal plan for this example. For
hours 4-7 the cells in which the optimal plan places a larger amount of effort than
the myopic plan are indicated by shading, Notice that the optimal plan places sub-
stantially more (e.g., 51 percent more) effort in the center four cells at hour 4 than
the myopic plan, At times 5-7 the optimal plan appears to be more concentrated
than the myopic plan, In addition one can see that at time 5, the optimal plan chooses
to allocate effort heavily to the eastern side of the distribution and then balances this
by heav aliocations on the western side at times 6 and 7.

Although the optimal plan is qualitatively quite different from the myopic plan,
one can see from Table IV-3 that there is very little difference in the detection

probablilities from these two plans.

Example 2: Radial flee from a uniform distribution, In this example the

search assumptions are exactly as in Example 1 except that the target's initial
distribution 18 uniform over a square 80 miles on a side, Table TV-4 shows the
myopic plan and Table IV-5 shows the optimal plan for this example.

Since the initial distribution is uniform rather than normal, one might have
expected that both the optimal and myopic plans would stop searching in the center
of the distribution earlier than in Example 1. However, by comparing the myopic
and optimal allocations at time 5 for this example to those in the previous example,
one can see that both plans and in particular the optimal plan continue to search

the center of the distribution longer when the initial Jistribution {8 uniform than

-90-
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TABLE 1V-2

——— —— — ———— —

RADIAL FLEE FROM A NORMAL DISTRIBUTION

Optimal Plan -- Hour 4

Note: Shading indicates the ceils in which the optimal plan places ¢
more effort than the myopic plan, :

TARGET DISTRIBUTION
NOTE® ENTRIES HAVE BEEN MULTIPLIED BY 10*

i BN A L e e o

. i

0o o o0 o0 2| 6 ] | 0 O
©°y+0 ! 2 23 32| 35 21 5 0 O
0O S5 43 113 209|196 122 39 7 O
2 21 129 281 452|408 313 117 25 2
o° 4 39 200 406 524[531 447 205 34 2 ;
2 40 210 395 5091531 425 182 29 5
2 23 128 315 4581425 271 128 19 O
1 L0 3 39109 216j200 113 46 9 |
0O n 7 24 40| 43 30 8 o0 O
LO 0, 0 2 2 3 3 0 lro 0 .

1°w 0o° 1°E

OPTIMAL ALLOCATION 3

0 206178 10 i
0° 1152 /44’91 218
178 1 66
0 153[151 0
(o]

PROBABILITY OF DETECTION BY THE END OF TIME 4 = 0.265
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TABLE 1V-2 (Continued)

Optimal Plan -- Hour 5

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan,

TARGET DISTRIBUTION

(T"T'I'.‘

— e -

P

NOTEt ENTRIES HAVE BEEN MULTIPLIED BY 10°

0 0 0 4 6 10l 8 7 I 0 0 0
onl0 0o 2 9 52 74| 17 44 12 2 0 O
To 0 19 83 150 2131'99 163 75 22 4 0
N 5 %5 163 237 116|174 214 160 54 S5 O
o_ 14 80 199 180 90| 94 173 195 75 9 O
0 T8 ) n 56 1 ]
0 6 60 177 243 1964192 225 159 45 O I
1% 10 1 15 81 183 2351213 162 16 27 I 0
0O 0o 0 18 55 75 92 40 19 1 0 O
o 0o 0, 2 6 9l 1 10 1, 0O 92 O
T o
1°w o° 1°E
OPTIMAL ALLOCATION
0 0 15}108 1 0
1 9 B4/ 25 )3
o | 20MssT o o¥268/4
o030 Of184]167
28Yis51/A8 I,Bﬂ/LZQégﬂZH
0 38 53] 25 33 0
0
PROSABILITY OF DETECTION 8Y THE END OF TIME 5 =
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Optimal Plan -- Hour 6

Note: Shading indicates the cells in which the optimal plan allocates
more effort than the myopic plan,

TARGET DISTRIBUTION

NOTEt ENTRIES HAVE 3EEN MULTIPLIED BY 10?

— -

0o 0 o0 O 0o 2] « 2 o o0 o o©
o o 1 8 17 2120 17 6 2 o0 O
Oyl o v 9 38 8313if105 8O 35 7 4 O
0O 8 46 105 157 115119 93 98 49 7 O
2 15 64 146 BT 65| 65 83 107 IS5 13 2
©—j2_30 128 135 67 4al 43 63 94 103 22 |
2 23 137 164 63 42| 30 68 123 102 26 3
I 20 102 169 94 62| 70 86 118 68 16 1
o} 0 3 36 113174 1531157 138 12 41 T )
L 0 0 14 44 76 124|121 74 44 14 0 O
0O o o 7 23 30|33 20 66 2 0 O
0o o 0, 0 2 21 v v o, 0 o o0
B ]
1°w o° 1°E
OPTIMAL ALLOCATION
Ox 1l ¢ o_own7las 0 o0 0O
0 349477/, A 19 58 0
0130 0 O] 0 14 90 0
© 1_/25%159 o ol o o s3 1%
26/1991_ 0 0] 0 ONa8/7&¥)
/4172 ;3)73231 off 0
©s L 0 bsa 6o a0) 34 o] o
0, 0 0 20153 0 0,0
1°w o° 1°E
PRO3ABILITY OF DETECTION BY THE END OF TIME 6 = 0.488
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TABLE 1V-2 (Continued)

' - - —— — S — —— ——— o S

Optimal Plan -~ Hour 7
. Note: Shading indicates the cells in which the optimal plan allocates
more effort than the myopic plan,

TARGET DISTRIBUTION
NOTE: ENTRIES HAVE BEEN MULTIPLIED BY 10

o o 1t 3 4 9l » 7 0 1 o0 0 o0

0 0 0 25 28 50|42z 42 19 3 1 0 o0

oyl 0 6 24 61 93102l 89 83 59 28 7 0 0
‘ 2 16 19 93 75 64|58 69 79 66 21 1 O .
| 6 43 95 ©5 54 41] 38 52 61 77 371 5 0 |
; 0 9 49 88 60 39 15| 17 39 64 76 43 8 0O 1
{ O 50 109 &1 36 14 13 40 58 B0 54 9 | 3
4 37 86 8o 47 38| 41 51 10 73 34 3 o0 a
sl ! 23 16 86 67 69|62 76 88 60 19 1 O It

0O | 20 67 87 125[110 96 58 37 & O O
N O 6 12 50 42|57 38 20 3 O O O .
0 0N 0,1 7 71 9 6 1,0 0 _0_0 1
+ ¥ ;

1°w 0° 1°E
13
OPTIMAL ALLOCATION -
]
0.l 0 0old57138b6d oo 0 0 }
1°N '787771)/14_01/45_7_{“‘0‘ 0 26 81 6

524400 ol ¢ o o 7 1
o1k24[ 0 0 0] 0 0 0 66 ,
0" Tt206] _0 0 0] 0 0 0 36 1
[A1L/T36) 0 0| 0 0 32 46 3
s d P45 261 0 66 120 O :
0, 1T [LiB723832 0 587 0, O 9
. T .
1°w o° 1°E i

PROSABILITY OF DETECTION BY THE END OF TIME




JUE N ———
e e T SV
— L [ |

I TABLE IV-3

PROBABILITY OF DETECTION FOR OPTIMAL AND MYOPIC PLANS
FOR RADIAL FLEE FROM A NORMAL DISTRIBUTION

cadlin, Laow

PROBABILITY OF DETECTION

HOUR OPTIMAL MYOPIC
] 0.000 0.000
2 0.000 0.000
3 0. 000 ), 000
4 0.265 0.274°
5 0.395 0.408
6 0.488 0.486
7 0.551 0.543
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TABLE 1V-4

D musiddas el ot

RADIAL FLEE FROM A UNIFORM DISTRIBUTION

ceemerd s

Myopic Plan -- Hour 4
TARGET 0ISTRIBUTION
¥
NOTEs ENTRIES HAVE BEEN MULTIPLIED By 10° g
—d
©xk 0 8 25 53143 41 5 0 ;
16 93 157 226248 163 80 15
a4 141 195 322|328 231 173 30
©_| 55 214 365 522{520 338 227 66
48 208 343 5111513 344 188 &1
51 155 213 331395 245 149 44 ]
©°sd 13 72 173 2451225 153 92 15 |
roJ'nz 42 50| 59 54 12 0O J
1°w 0° 1°E :

MYORIC ALLGCATION

0 0 23] 61 0
0 O 1651172 32
00 ~ 9 215 3581357 144 2

0 190 350[351 191
0 0 176124/ 56
N 0 _56] 22 0

QOO QO

PROBABILITY OF DETECTION BY THE END OF [IME 4 = 0.243
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b l TABLE 1V-4 (Continued)

Myopic Plan -- Hour §

TARGET NISTRIBUTION
NOTEs ENTRIES HAVE BEEN MULTIPLIED 8BY 10%

L 10 44 73 124|154 104 30 6
52 83 152 183|165 141 116 42
85 137 147 161|152 162 160 93
00 ~ 11d 166 154 148|146 160 168 |12

116 186 156 1561152 157 165 129

l 106 144 149 157|151 164 144 85
42 99 161 189(150 156 109 54

2,44 03 1241132 94 28, 5
1°w 0° 1°E

1°N-1

{ 1%

MYOPIC ALLOCATION

-

-

i °nt 0 0 ile 0 o0
.. 0 83 156[115 54 0
42 70 107 | 84 103 103
00 —Ll9 87 131 66 105
164 94 95|84 96 115 1
50 14 97|81 113 63
%8 0106 171|101 95 0O

Q0 3256 0 0.0

0 1°

OJ0KO00

PROGAUILITY OF DETECTION BY THE END OF TIME 9 = 0. 388




TABLE 1v-4 (Continued)

Myopic Plan -- Hour @

4 Sl A A

TARGET DISTRIBUT ION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10?

O 1 7 19 41|53 35 8 0 0
©Onl O 38 68 94126112108 65 22 |

11 59 100 99 95[i01 103 103 72 12
j 38 95 98 95 82|88 94 111 96 29

0% 54 i1/ lOé 92 671 73 81 88!13_% gB
C]

40 107 101 90 80| 87 93 105 86 33
©°sl 12 62 100 108 102| 95 101 109 89 I8
[ 0 27 64 93 128|118 85 86 24 2
00,10 33 41) 44 44 /. 1 O

¥ I
1°w o° 1°g

MYOPIC ALLOCATION

Ot O 0 45 161113100 0 0
D 70 66 49| 713 83 8i 0
51 3| 49 0|17 45 112 84
) | 9 34 0] 0 0O 1817
i 0 107 61 0 0] 0 0 4o |}'4L
t, 9 71 29 N 13 38 o 8
i 1L 0103 90 78|81 75 104 22 3
; 04, 0 42 1680135 4 24 0 ‘1

| 1°w 0° 1°E
f
|
!

PROSABILITY OF DETECTION BY THE END OF TIME 6 = 0.435
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Myopic Plan -~ Hour 7

TARGET DISTR IBUT ION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10°

0 70 299 482 143|959 679 343 S0 O
0wl 150 522 700 864 635|719 749 729 540 100
V'NT 325 613 744 721 709|632 643 646 754 312
704 787 656 127 576|533 197 762 615 640
© ] 813 618 672 5i6 214241 556 720 728 17|
516 ,
747 819 706 767 502|526 749 765 783 649
1051 344 760 697 749 596|615 774 670 697 435
QD 466 695 761 1411612 775 751 591 108

Q 7Q$4l0 55/ 7691339 151 380' 90 0

1°w 0o° 1°E

MYOPIC ALLOCATION

" 0N 0 0 66|18 30 O O O
On 4 O 0 42126 3163 69 88 0 0
y : N O 66 54 47 1 8 10 11 0
44 88 16 57 0| O 94 75 0 6
0° 102 0 25 0 0] 0 0 53 &/ 80
0 45 2 0 0 O 0 Bl.108
68 105 45 T8 ol o 6o 717 87 11
% 1 9 75 40 69 o 0 82 24 40 O
| " 0 39 15 65| 0o 83 M 0 0
i Q QI Q 0O 80]114 70 0%0 Q
! 1°w 0° 1°E

PROSABILITY OF DETECTION BY THE END OF TIME 7 = 0,492
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TADLE IV-5

RADIAL FLEE FROM A UNIFORM DISTRIBUTION

Optimal Plan -- Hour 4
Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan,

TARGET DISTRIBUTION

NOTEt ENTRIES HAVE BEEN MULTIPLIED 8Y 10°

eyl 0 8 25 53173 41 5 0
16 93 157 226|248 163 80 15

44 141 195 322328 231 1/3 30

o° 565 218 365 5221520 338 227 66
48 208 343 S111|513 344 188 61

51 165 213 3311395 245 149 44

19s 4 13 72 173 245122% 153 92 15
0,12 42 50|59 54 12,0

1°w 0° 1°E

OPTIMAL ALLOCATION

(=]
o
QONTO

PROBABILITY OF DETECTION BY THE END OF TIME 4 =

o ol a4 o
o FTIT 0
G108
\ 303 40,7
o”iw’ 7
oo
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l TABLE_IV-5 (Continued)
]
, Optimal Plan -- Hour 5
; , Note: Shading indicates the cells in which the optimal plan places
. more effort than the myopic plan.
TARGET DISTRIBUTION
NOTEs ENTRIES MAVE BEEN MULTIPLIED By 10°
o. | 10 44 714 129]164 106 30 6
| I'N T 52 83153 190[178 148 117 42
85 137 144 154|146 168 166 93
i 00 119 166 144 1311129 155 174 125
T18 185 148 (390135 152 186 129
106 143 148 154|147 174 150 85
on 1 42 99 165 2061167 163 110 54
1°s 2,44 94 134)i36 94 23, 5
1°w 0 1°E
OPTIMAL ALLOCATION
00
. 0°
i
!
|
; PROBAGILITY OF DETECTION BY THE END OF TI4E S = 0.351
{
i
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Optimal Plan -- Hour 6

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan,

TARGET NISTRISUTION
NOTEs ENTRIES HAVE BEEN MULTIPLIED Y 107

0 i 7 19 41 65 35 3 0 0
o 0O 38 66 99 144144 122 66 22 I
I'N Ti1 58 100 101 983106 120 109 73 12
383 94 92 B0 66| 71 84 120 100 29
o° 34 121 99 74 52| 51 65 B89 143 38

38 114 97 60 57| 57 66 98 129 52
40 114 110 82 66) 71 82 113 89 33

o, 112 63 116 123 1111101 1i0 115 89 18 ‘
1S T O 27 65 104 153|136 89 66 24 2 !
0 0,10 33 41 ] 46 44 [, 1 0
1°w 0° 1°E

OPTIMAL ALLOCATION

0, n 0 4auB80Jiosf12] 9 o

UN T o s 21 Les @88/ 5018] 0

337 6 O] 0 2 /

0° 38/94l 0 0] 0 0 174

M4, 59 0o ol 0 0 40 101

o 43 57 07/0 0 o‘/95/ 0
L oo br /X 1] 68 lia

ST o, olsseadis] o 00

1°w d° 1°E

PROSABILITY OF DETECTION 8Y THE END OF TIME 6 = 0. 435
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Optimal Plan -- Hour 7

Note: Shading indicates the cells in which the optimal plan places
more effort than the myopic plan,

TARGET DISTRIBUTION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10

O 71 30 51 /8|19 71 34 5 0
{15 52 74104 73|83 86 74 53 10
I'NT 33 61 75 72 62|55 62 64 14 31
72 31 63 65 45| 43 68 73 62 61
81 63 59 42 17]19 44 63 81 719
=TT 7588 43 17| 18 4 B3 38 89
/19 98 12 66 39150 65 76 871 66
%5 135 83 78 77 52|54 U9 68 67 4]
9O 47 75 90 8711 81 76 571 10

0 7.41 55 80|89 77 28 . 9 O

OPTIMAL ALLOCATION

0 0 0 0 11239/ /3 0 0 0
1°N+.0 0 49 gi,gééﬁzz 51 0 O
0 0 B4 36 0 0 0 0 47 0
: 0o o] o 16 40 0
0 0 0 0 171 7

0 0 0 0 /7

0] 0o 61
’ 17 1 0
57 4] 0
| 63 04' 0 0
1°w ® 1°E

PROBABILITY OF DETECTION BY THE END OF TIME 7 = 0. 496

|
l
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when it is normal. Table IV-6 shows tlat again there is surprisingly little dif-
ference between the deiection probabilities for the myopic aad optimal plans,

Example 3: Two-scenario target motion. In this exampie the target's initial

distribution at the beginning of hour 1 18 circular normal with standard deviation
10 miles in any direction. There are two possible scenarios for the target's motion;
both are equally likely. For scenario 1 the target is assumed to be traveling at a
speed uniformly distributed betwee:n 15 and 20 knots., The target's course is
uniformly distributed between 150%nd 210°, The target maintains a constant course
and speed chosen from these distributions until hour 5 when it makes an independent
draw from a distribution on speed which is uniform from 10-20 knots and an in-
dependent choice of course from a distribution which {s uniform from 120-240°,
The target continues at this course and speed for the remainder of the problem.
In scenario 2 the target is assumed to be traveling at 15 knots and to make a
draw from a truncated triangular distribution (see Figure II-1) with mean course
75%, maximum course 105°, best course 90°, and welight factor 2, The target main-
tains this course and speed unt{l time 5 when it makes an incependent draw from the
same distribution, It retains this course and speed for the remainder of the problem.
As in the first two examples, we have 4 hours of VP search available beginning
at hour 4 and we wish to maximize the probability of detection by the end of hour 7,
The detection assumptions are similar to those which are discussed {n Example 1,
However, the sonar conditions vary from good (W =200) to very poor (W =25) in the
manner shown in Figure [V-1, As before we assume that there are 12 sonobuoy

hours available per hour for each time period,
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PRC3ABILITY OF DETECTION FOR THE OPTIMAL AND MYOPIC PLANS
FOR RADIAL FLEE FROM A UNIFORM DISTRIBUTION

b el 2

L ey o
=3
>
e
e
im
1<

i A

1 PROBABILITY OF DETECTION !
R 4

HOUR OPTIMAL MYOPIC e

| 0.000 0,000 1

2 0.000 0.000 3

ae 3 0.000 0.000 ]

4 0.242 0.243 ]

5 0. 351 0.358 ;

. 6 0.435 0.435 y
7 0.496 0,492 i

ﬁ

4

| !
‘ 1

FIGURE IV-1

SONAR REGIONS FOR EXAMPLE 3
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Tables IV-7 and IV-8 show the myopic and optimal plans for this example.
At hours 4 and 5 the myopic plan concentrates its effort on scenario 2, the east-
ward moving one, This is because most of its probability mass is located in areas
of relatively good sonar conditions, Even though by hours 6 and 7 the first or
south moving scenario has distinctly the higher probability given failure to detect
during hours 4 and 5, the myopic plan contim':s to allocate most of the effort to
scenario 2 because scenario 1 has now moved into the very poor sopar region. By
contrast the optimal plan concentrates heavily on scenario 1 during hours 4 and 5 be-
fore that scepario moves into the region of poor sonar conditions., Then during hours 6
and 7 the optimal plan searches scenario 2 which has moved into a better sonar region,

Table IV-9 shows the detection probabilities for the optimal and myopic plan,
Observe that at hour 4 the myopic plan has a substantially higher detection probability
than the optimal plan but that by hour 7 the optimal plan has detection probability , 58
versus , 48 for the myopic, an increase of 19 perczent over the myonic plan,

Smoothing. In the above examples a Moate Carlo simulstion of 10, 400 sample
paths was used to represent the target motion process. Even with this rather large
number of replications, ihe target location distributions still have considerable
statistical variation. This indicates that a smoothing technique such as the one

examined in reference [s ) might be helpful. It is plannad to investigate this

possibility in future work.

-106~




oy ,'1

p LJEA‘A‘N

TABILE 1v-17

TWO SCENARIO EXAMPLE

————
L

Myopic Plan -- Hour 4

TARGET DISTRIBUTION
NOTE: ENTRIES HAVE BEEN MULTIPLIED BY 10°

[T Y

6 14

0 0 ]
/6 137 14
3

0
0 0 16
0 | 172 141 1

16 28| 28 23 13 |
! 48 110(110 46 3 0
i 137131 12 0o O i
| 0_0] 0o 0 0,0 :

N

IOS <+

CON—=ClO0O

MYOPIC ALLOCATION
NOTEt ENTRIES HAVE BEEN MULTIPLIED BY 102

0_156 393
0 137 405
0 ) 0 !
56 0 0

=)
[}
w O Olo

00

PROBABILITY OF DETECTION dY THE END OF TIME 4 = 0.235
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TABLE 1V-7 (Continued)

Myopic Plan -- Hour 5

TARGET DOISTRIBUTION
NOTEt ENTRIES HAVE BEEN MULTIPLIED BY 10°

o o 0o o o] 3 98114 3

o© O O O O O 43 644 443 a8
0 0 0 0 0| 36 651 436 47

cC o6& 24 42 26| 31 110 109 3

') O 48 353 570 576(337 45 0 O
-ST 1 37 371 836 831|380 40 O O
O 3,39 111 108 40 4 0, O

1°w o° 1°E

MYOPIC ALLOCATION
NOTE$ ENTRIES HAVE BEEN MULTIPLIED BY 102

° 0 0 |0 338 233
0 T 0 |0 3347 230
n olo o o
24 32 lo o o

0L

PROSBAUVILITY OF DETECTION B8Y THE END OF TIME 5 = 0.374

|
i
1
1
|
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TABLE IV-7 (Continued)

‘ - Myopic Plan -- Hour 6

TARGET DISTRIBUT ION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10%

.i
' 3
: "0 0 0]l 0 0o o 1 o o 3
0 0 0 of o o0 22 nes 72 H
! 0o 00 o of o | _74 306 119 13 ;
O 0 0 0 0 0 72 300 125 16 3
' o 2 f 41 4 3 17128 67 0O 4
14 ! 53105 134)138 97 33 3 op o |
10 165 424 653|684 435 133 11 0 o 1

> 50 279 4501472 261 57 7 o o
0, 5 27 48]/ 33 22 1, 0o o0 o ;
| )} E:
9
1°w 0° 1°E ;

MYOPIC ALLOCATION

st et s sl Y4

NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10°

El

- ol o o o 8 o b

o° 0f 0 0 0282 92 {

o IR B ) | i

ol o 0o o o o :

%4 ol 0 o o o o ;

141216 _ 0 0, 0 O 4

0° 1°E i

T

{ 1

PROBABILITY OF DETECTION BY THE END OF TIME 6 =

0.447 ’
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TABLE IV-7 (Continued)

Myopic Plan -- Hour 7

gt

TARGET DISTRIBUTION
4
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10

o o o o ofl o o o 1 4 0 O
o o0 o 0 o0l 0 o I 28 91 36 O
o° 0 0 o0 O o]l 0 0 1 97 90 63 2 ]
U U (o) o) (0] Q 0O 1T 83 93
o 0 t 1 ol o o 1 44119 33 | ;
o. 1O 6 20 21 25/ 26 30 20 5 1 1 0 J
1"S T 1 45 143 207 248{227 212 148 43 0 0 O -
6 43 219 386 491481 394 210 39 | 0 O
og L0 6 52186227231 158 45 8 0 0 O ‘
2 0O 0, 3 15 1818 10 0, 0 0 0,0 -
L T ¥ )
1°w o° 1°E 2°F 3
MYOPIC ALLOCATION -
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10° )
r
ol o o o o015 o0 B
o0 Of O 0 0 1258 |12 _ 42 -
50 0 o5 119 42 ;
of o 0 o o 0o o
0 o/ o 0 o o 0o o .
18+ 50 06 0 o 0 0 o0 g'
| 2011256 0 o0, 6 0 o0 i
T
0° 1°E

PROBABILITY OF DETECTION 8Y THE END OF TIME 7 = 0,486
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TABLE_IV-8

TWO SCENARIO EXAMPLE

Optimal Plan -- Hour 4

TARGET DISTRIBUTION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 103

o o o|l 0 &6 |; )
0 _0_ 0] t 76137 14
(o J .Y -

0 0 0 11 v 72141 13
1 16 28| 28 23 13 |
s L 2 a8 0|10 48 3 o0
0O 11 37131 12 0 O
o 0 o]l o o o0, 0

L

0° 1°E

OPTIMAL ALLOCATION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 102

1os 590{ 610

00

PROBABILITY OF DETECTION BY THLE END OF TIME 4 = 0. 116
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TABLE_IV-8 (Continued)

Optimal Plan -- Hour §

TARGET DISTRIBUTION
NOTEs ENTHIES HAVE BEEN MULTIPLIED gy 10°

5
i

= {

" o 0 o ol o0 10 13 0

, o° 0 0 0 o0 O} 6113101 5
0 0 O D 0
o 1 2 4 3|3 12 12 0

% L 0 5 31 43 43130 4 0 O &)

0O 4 32 57 55|34 4 0 O
0 0, 4 It 11] 4 0 0,0

1°w o° 1°E

i e S
0 +
1

OPT IMAL ALLOCATION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10°

PROBABILITY OF DETECTION BY THE END OF TIME 5 = 0.260
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Optimal Plan -- Hour 6

TARGET DISTRIBUTION
NOTE# ENTRIES HAVE BEEN MULTIPLIED BY 10°

O o o oflo o o o o o

O 0 o o|lo o 2 15 8 o

o° 0_0 0 0[O0 0 17124 33 i
0- 0 0 0] 0 0 17118 30 35—

O 0 0 o0flo o 2 15 8 0

940 5 8 10li0 8 4 0 o0 o

) 15 27 37038 30 12 1 0 o

O 5 23 33|36 23 5 1 o0 o

“040 3 5013 2 0 0 o o

1°w ho 1°E

OPTIMAL ALLOCATION
NOTEs ENTRIES HAVE BEEN MULTIPLIED BY 10°

22 0
0 345 241
33

1'E

PROBABILITY OF DETECTION BY THE END OF TIME 6 = 0.5086
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Optimal Plan -- Hour 7

TARGET DISTRIBUTION

NOTEs ENTRIES HAVE BEEN MULTIPLIEL 3Y 10
o 0 0o o of o o o 1 4 0 o0
0 0 0 0 0 0 0 | 41 154 38 0
o o 0 o of o o 1218237 63 2
5 H A Ol 0 0 T 189 214 60 0
o o 1 1 ol o o 1 59153 36 |
ook 0 6 19 18 2124 26 19 5 "1 1 0
I 42 106 122 163}147 125 108 40 0 0 O
6 39 167 276 338|341 287 165 37 1| O O
ocl 0 76 49154 171f182 137 42 8 0 0 0
O 0, 3 15 18/ 18 10 6, 0 0 0,0

{ | I
1°w o° 1°E 2%F
OPTIMAL ALLOCATION

NOTEs ENTRIES HAVE SEEN MULTIPLIED BY 10°

0186 O

o 255 272 8

T I5T O
1°E
PROBASILITY OF DETECTION 3Y THE END OF TIME 7 =  0.577
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PROBABILITY OF DETECTION FOR OPTIMAL AND MYOPIC PLANS

TABLE IV-9

HOUR

~oUVasaluNn -

FOR TWO SCENARIO EXAMPLE

PROBABILITY OF DETECTION

S i <37 o)

OPTIMAL MYOPIC

0,000 0.000

0.000 0.000

0.N00 0.000

0.116 0.235

0.256 0.374

0.508 0.447

0.577 0.4856
]
1
j
1
3
1
A
3
1
i
1
i
{
g
i
i
H
i

-115-

ot e+ s e e v o A ey o T .
sy ST R e~ - ey g

— - I - CHE S AT et Sekb MOV ¢




ST EEYLT LT WA TEETTALS WY TT '““'ﬂw‘ﬁj

Description of the Algorithm

1
1 v mpsayenr £

We suppose that we are given N sample paths drawn from the process
- th n._n n ;
| ¢ {xt; t=1, ..., T}. Then sample path is assumed to have the form (RyoXgs oo Xph W3
where x: is the position of the target at time & in the ntb sample path and v is the
sample probability that the nth sample path represents the target's actual path (usually

w = 1/N).
n

' . Conceptually the first act of the optimizer is to convert the sample paths into

sequences of cell numbers. Thus, the nth sample path becomes i
!
n ,n n
‘ 01’ 12' sy jT)' wnl

where j:: = c(x:) i{s the index of the cell into which x: falls.

AR

As in the third section of Chapter iI we define the function Et which acts on a

search plan ¢ by replacing the allocation at time t, ¥(-,t), with f*, an optimal allocation 3

of m(t) effort for g ‘p(- ,t), the posterior target distribution at time t given failure to detect

at all times other than t using . That is

$(,8) fors#t,

P T Ty

Et v(g,8) =
f*) for s = t.

First pass. Set ¢-0(j,t) =0 forjed, t=1, ..., T. We beginwitht=1. For
each cell j we accumulate all the probabilities, W of paths such that jtl1 = j to compute

pl(j), the probability that the target is in cell j at time 1 for j=1, ..., J. That is

I Y S

pl(j) = z W {(v-
{ng] =1}

Using a standard algorithm (e.g., the algorithm in Example 2. 2. 8 of reference (h),

we calculate the allocation of effort f* which maximizes the probability of detection,

T PP ..

b -116-
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j3:1pld)[l-exn(-wo) t*0)/A¢ )] : (IV-2)

for a stationary target with probability pl(j',- of being in cell j for j=1, ..., J,

subject to

J
1?1 £*@) = m(t). (IV=3)

Let 4»1: z, ¢0 and compute

- _ _ n n - -
LA A exp( wd,) ¢101. 1)/A09 forn=1, ..., N. (IV-4)

The value ;vn is the probability that the target is following the nt‘h sample path and is
not detected by the search effort at time 1,
For t=2, we compute Ew ,02), the probablity that the target s in cell § at time 2

and not detected by the search applied at ime 1 by

g, 0.2) = r w forj=1, ..., d. (IV-5)
Y1 {n43=1} .

Let gy 1(. , 2) be the probablility distribution that one obtains by normalizing E ¢1(- s 2)
8o that it sums to 1, As above we find an optimal allocation of m(2) effort for the
stationary target problem with distribution §¢ 1(' ,2), and let ¢2=22 "'1‘ The weights
;rn are then multiplied by exp(-W(jg) wz(jg, 2)/A(3)) to obtain the revised values
of wyforn=1, ..., N.

This process is continued for t=3, ..., T. At the end of this first pass we have
calculated the myopic plan, wT, i.e,, the plan which at each time period allocates {ts
effort to maximize the probability of detection during that time period given failv~

to detect the target in pi1evious time periods,
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Second pass. Let w be the valus of L obtained by the end of the first pass
described above, i.e., wll1 {8 the probability that the target is following the n®®

sample path and 18 not detected by the etfort allocated in the first pass, For .

we calculate
A _.1 n n n -
wo=w, exp(W(jl) wT(jl, 1)/A01)) forn=1, ..., N,

and accumulate W, into cell 5‘1‘, to calculate g;_0, 1), the probability that the target

is in cell § at time 1 given faflure to detect at all times in the future. Generally

pt#gsz(' ’ 1)0
We then find an optimal allocation of m(1) effort for the distribution g‘pT(- , 1),

set Y0 =2 wT.and compute new values for ;’n by

W, - 6, oo (W} v, 103 1/a0}).

of 1mf

For t=2 we calculate
AT n n n
0= Yy O (W(jz) &102.W)/A02)) '

and repeat the above process for time 2. This continues for t=3, ..., T and the

second pass is completed, Additional pasees proceed in a similar fashion,

Observe that at the end of the !B pass

1~ PT[¢IT' = nzl wno (Tv-8)

and that 1- PT(t.b lT] is monotonically decreasing in . We shall show in the
third section that as ! — @, there 18 a convergent subsequence of plans { ¥ ! T} T—l such
|

that y*(j,t) zumi_.m wliT(j,t) exists for j=1, ..., Jandt=1, ..., T and such that




T ] m

LS R N

e

¢*is T-optimal, Furthermore,

lm Prpld,.] = Pri¥e. av-17)

l-h@

Thus one can come as close to the optimal plan as he wishes by makirg enough

passes, For computational purposes, one usually chooses an ¢ > 0 and stops when

Ppl¥ ppl = Ppl¥ gyl < €

The computer program which implements this algorithm is described in reference (g).

Proof of Convergence

In this section we take the point of view that a search plan ¥ is a density defined
onYx{1, ..., T} where Y is the plane. Then ¥(m) becomes the class of plans ¥

such that
Jy¥o.tydy =m@e) fort=1, ..., T.

The search plans that we consider in this chapter are a subclass @(m) of y(m) in
which the effort density is constant over the grid cells. Thus we can identify a
plan ¥ obtained in the above algorithm with a member $ € Q(m) as follows: Let

c(y) be the cell containing the pointy. Then

M—'ﬂ- ‘ory€Y.t=1, ...’T'

boy - ACH)

In order to show that the above algorithm converges to a plan ¢* ¢ Q;(m) (under

the above identification) such that

P,l,{w*] = max{ PT[$] D e $<m)} )
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we first find necessary and sufficient conditione for ¥* ¢ Q:(ln) to be T-optimal
within $(m), 1.e., for ¥* to satisfy the above equality. For this proof we shall
begin by taking the point of view that there {s a regular detection function b (i, e,,
b has a positive contlnuous and strictly decreasing derivative b') such that

b(Z‘;l ¥ X,(w), ) 18 the probability of detecting the target given it follows the
path w, Similarly

¥
Lo i, LS50 e KT b o AT LAty wmu,,.—._-ﬂ

T
PVl = E[b( = mtl(w).t))] ,

Let F be the set of real-valued Borel functions defined on Yx{1, ..., T}

PRI SV HE )

el

ekl K Lar

such that

fY |f0v,t)|dy< o fort=1, ..., T,

ORI UPE ST

Il = 2 css sup [100] <.

f=lfe p .1+t 18 constant over each cell in the
. gridforﬂmet’t=11 ...’T !

-
[T VUL R S

A
F+={fef‘:f(y,t)30 foryeY, t=1, ..., T}.

JRVCphaee)

In Chapter VI we show that P,’r[vf.h], the Gateaux differential of PT at ¥ In the
direction h, 18 given by

T
P,'I,W,h] = 1;21 fY Eyt[b'(sgl ¢(Xs.s)).| pt(y) hey,t)dy for ¥ ¢ F*, he K(¥). (IV-8)

J

RUPY SRS RPN e B DUy S

Let p () be the region in Y which comprises the jth cell, and let

!
i
i
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T
ﬁT(¢IjOt) = fpo) Eyt[b (s;z-l w(xs'b)>] ptw)dy forj € Jr t= 19 cooy T- (IV-9)

Henceforth we shall consider all f ¢ £ to be functions of j and t for § ¢ J,
t=1, ..., T.
A+ A At
For ¥ ¢ F , let K(¥) be the cone of directions h such that ¥ + 6h¢ F for all

sufficiently small nonnegative values of §. For ¥ ¢ l’-\’*' and h ¢ Q(#'). (IV-8) becomes

T A
P i$,h)= T T D .0 hd, t). -10
pl¥b = 2 = Dy 0 hd. Y (TV-10)

je
We now state the analogs of Theorems 1 and 2 of Chapter VI for the class of plans

+
Q(m). Let éDT be the nonnegative orthant in Euclidean T space.

THEOREM 1, Suppose b is concave and has a bounded nonnegative derivative b'.

Then y* is T-gptimal within $(m) 1f and only if there extsts (A(L), ..., A(T)) ¢ &y

such that

Drwr b =ay  exg,b >0,
(Iv-11
<Aty Af¥*g,t)=0, forjed, t=1, ..., T.
Proof. The proofs of sufficiency and necessity are completely parallel to the ones
given for the proof of Theorem 1 of Chapter VI provided one uses ﬁT(w*, {, t) in place
of DT(l.b *,y,t) and (IV-10) for the computatior of P!r.

Let Ey denote expectation conditioned on the target being in p (J) at time t, and

define
pt0)=fpmpt(y)dy forjed, t=1, ..., T.
Then for the case of an exponential detection function, one can show that
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6-r(«li.j.t) = Ejt[exp(- sft W(Xg) ¥ X s))] p,0) wge VW) ¥0,t)

for any search plan ¥ ¢ Q(m). jed,andt=1, ..., T. As above we think of the
sweep width function W and the allocation functions ¥ ¢ ﬁ as being functions of (j, t)
forjed, t=1, ..., T. So that if we write W(xs) or tP‘(Xs,a) we understand

this to mean the value of W or ¥*(,s) for the cell in which X  falls.

THEOREM 2. Suppose the detection function is exponential and W is bounded.

Then y* is T-optimal within Q(m), if and only if there exists (A (1), ..., A(T)) ¢ g;

such that for j=1, ..., J, t=1, ..., T,

Ejt[exp(' o7 V%o w~(xs.“’)] p, 0 wore " OV sy s yeg 5 0,
(V-12)

< AL I ¥*(,t) = 0,

Proof. The proof follows that given for Theorem 2 of Chapter VI using the
necessary conditions in Corollury 2, 1,6 of reference [h ].
A
Forl=1,..., let Ql’l‘ be the member of (m) identified with ¢ZT {n the manner

discussed at the beginning of this section,

A
THEOREM 3. The sequence { , oo, thas a convergent subsequence

A
1T’ ¢2T
and the limit ﬁv* of this convergent subsequeace {8 T-optimal within Q(m) for the

Monte Carlo sample of target paths. In addition,

Mm_ P ) = P, (IV-13)
Proof, Since each /zl\) IT satisfies

£ a0 $,p0.0 =mty fore=1, .., T,

-122-




oL TRt T L LRy

R R = Ca I m

it follows that $,Tc.t)5m(t)/Aa) fort=1, ..., T, jeJ. Hence for each ) and t
thereis a  sequence {lk} k=1, 2, ... such that Um, #)lk.r(j.t) exists.
Because the number of grid cells is countable, one can choose a Cantor diagonal

sequence to obtain a subsequence { ! 1} (= such that im; _, $ liTO’ t)

1’ 2’ LRI
exists for all j and t, Let

A
$*0,t) = Jim ¢,1To.t).

Since each @ T € Q(m), 3‘ € Q(m). By the Lebesgue dominated convergence

theorem and the fact that P'rw(lu)'r] > PT[QIT], forl=1, ..., equation (IV-13)
I must hold,

We now show that @* is T-optimal within Q(m). For the n'b sample path define

-

T
wh =Wy exp(— 2, Wop P*ay, s)).

Then wr 18 the probability that the target follows the nth sample pal. and 18 not de-

s
e et

tected using the plan Iu\)*. Define

A I L L
- ol 0 4—? ”"" -
-4

g.00= = wrexpWQ) $70,t) fort=1, ..., T, §=1, ..., T.
n:y, =1}

-
&

Observe that

AT T RTITTE S,
‘—-4

E@tdot) = E’t[e’m(- si w(xs) $*(xsos)>] Pt(l).

provided we understand { X;, t=1, ..., T} to be the Monte Carlo sample of target
paths, Another way to view 39 +0,t) 18 a8 a Monte Carijo estimate of the expcciation

of the right-hand side of the above equation where { Xp t=1, ..., T} 18 the under-

TR THRST RO TR ST TR T
Y N B [

— e el o

lying mntion process from which our sample paths are drawn, We shall take the

: l =123~ ;
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former point of view for this proof,

Let K¢t)= 2:21 %,0, t) and %‘(- ot) = 53,(- , t)/K(t). We claim that ¥* satisfies

conditions (IV-12) of ‘Theorem 2, {,e,, there 18 a vector (A (1), ..., A(T)) of non-

negative numbers such that

_£ i ‘;._lu.». e 05 0

z

i

€40, 6 WO) exp(-wg) ety = Ay 1 Dog, >0, 3
(v-14) ]

<ty HP*gH=0,9=1, ..., 3, t=1, ..., T,

We prove this claim by supposing that for some t, condition (IV-14) does not hold,
That is 3)*(' , t) fails to satisfy the necessary conditions of Corollary 2. 1. 6 of reference Ji
[h) for $*(- , t) to maximize probability of detection for cost m(t) for the ;
i

stationary target problem with target probability distribution g‘;‘, (,t) and i
]

exponential detection function with sweep width W(j) for the jth cell, Thus one can C
i

find an allocation f* such that i

J !
z *(4) = , :
A0 #0) = me)

PR

and

e e Sl -

J
5 800 [l-exp(-wm f*d))] > ,3 801t [1-exp(-wm @'a.t))].

This implies that

Jd

- J .
1°PT(?"| = j=21 g@:oot) exp('wa) ‘/"01 t) > jz";l gaq:Ovt) exp(-W(j) ﬂ'(’))- (W'w)

PRPT TSP T FTIY rep seyr ST SR T

Let = indicate the operation which maps a plan ¥ into the plan Z(¥) which results

from performing one pass of the algorithm. Then the nondecreasing nature of the
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detection probability resulting from each of the stages forming a single pass com-

bined with (IV-15) implies
P E@ > P4, (1v-18)
Clearly 2 i8 a continuovs operator ir the supremum norm so that
ltm =(¢, ) =239,
However, since PT is continuous and (IV-13) holds,
A A
PT[Z('P )) = 111_20 PT[ZN' ’iT)]
- 1“_3; me(li«bl)’l‘]
A
= T”"]v

which contradicts (IV-15), Thus we have shown that @* satisfies conditions (IV-12) and

by Theorem 2, 3' is T-optimal within Q(m) for the Monte Carlo sample of target paths,
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ALGORITHMS FOR OTHER SEARCH PROBLEMS

In this chapter we outline algorithms which can be used to solve a number of
search problems related to the main one considered in this report. These algorithms
are based on necessary and sufficient conditions for optimality which are related to
the ones obtained in Chapter IV.

In the first section we outline an algorithm which ean be used to calculate plans
that maximize probabhility of detecting the target by time T when the detection function
{s not exponential. A method of calculating plans which minimize mean time to
complete a search for a moving target is presented in the second section. The third
section outiines an algorithm for finding optimal survivor search plans. The final
section gives a method for maximizing probability of detection when there is no constraint
on the rate at which effort may be applied but only on the total effort available for time
1 toT.

None of the algorithms in this chapter have been programmed or tested. Thus,
the algorithms should be viewed as approaches to solving the problems and not

necessarily as answers.

Optimal Plans for Non-Exponential Detection Functions

In this sep’.on, we constder the basic search problem stated in the first section

of Chapter I when the exponential detection function is replaced by a more general
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regular detection function b. A regular detection functionb: [0,2)—{0, 1] has a positive,
coutinuous,and strictly decreasing derivative b'. As in the third section of Chapter IV,

we consider ¥ to be a search density on the plane so that the probability of detection

PT in (I-3) of the problem statement in Chapter I becomes

T
P(¥] = E [b<t§1 w(xt.t)>:|. (V-1)

As in Chapter IV we shall restrict ourselves to allocations which are constant
over each cell of our search grid. That is, we consider only plans in the class \/lt\ (m)
defined in Chapter IV. Recall that this restriction is not equivalent to assuming that
the target is moving in discrete space. The target motion process X = { X, t=1, ..., T}
may take place in the discrete space composed of the grid cells or it may take place

in the underlying space, the plane, over which the grid has been imposed. In either

case
pt(j):Pr{thsincellj} forjeJ, t=1, ..., T.

As in Chapter IV, let E it denote expectation conditioned on the target being in
cel! j at time T. The necessary and sufficient conditions of Theorem 1 of Chapter VI

A
for a plan Y * ¢ ¥(m) to be T-optimal within 'f(m) become

T
Ejt [b' ( Z ¥(X, B)) ]Pt(J) =Ag) ify*Q,) >0

s=1

<A®) HY*gt) <0, jed, t=1,..., T,

for some vector (A (1), ..., A(T)) of nonnegative numbers.
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Description of the algorithm. As iu Chapter IV we assume that the target

motion process { X.t=1, ..., T} is approximated by a large but finite number of

sample paths drawn from this process in a Monte Carlo fashion. That {8, we suppose

that we are given N sample paths drawn from the process { Xp t=1, .oy T}. The

nth sample path is assumed to have the form

(x.x ..-.xT)th

where xt; is the position of the target at time s in the oth sample path and v s the
sample probability that the ntb sample path represents the target's actual path
(usually w = 1/N).

Conceptually the first act of the optimizer is to convert the sample paths into

sequences of cell numbers. Thus the n"h sample path becomes

R

’ jT)» w n’

where jz is the index of the cell into which xz falls.

Let

z, < total effort density that accumulates on path n
T

=z yg",t) forn=1,..., N.
t=1

T

n:j,=)}

Then
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The algorithm prozeeds as follows:

| 1. Lete > 0. ’
* 2. Let wo be an Initial allocation and compute L forn=1, ..., N. g
3. Setl=0. 1 j

4. Sett=1. f
' 5. Find the allocation f: J—{0,®]) and nonnegative number A (t) such that ~§
| I, ;10) Ad) = m(t) for j ¢ J and ‘ §
Z gl = 1) Wb (2 ¥y, 00+ 1)) = A i£10) >0 - "

<A@ f£g) = 0. A %

6. Set ‘ 3

b

Vypul ® = Vv e forest for jed. ., a

£() fors=t 5 :g

7. Sett= t+l. ;Jé

8. Ift <T, go to step 5. %;

9. Ift>T, set=1+1and computed = | P (¥ ] - Pl 1) | %

10. Ifd < € stop; zpl,r is the answer. ;i %

11. Ifd > €, sett =1 and go to step 6. l.:

The difficult part of this algorithm involves finding f and A (t) in step 8. Onme : 1"

way to proceed is to choose a value for X (t) and then solve for {(j) for j ¢ J in (V-5). :? ‘i

Since b' 13 monotone decreasing, this is a straightforward numerical problem. One E

then computes zje J_t'(j). If this sum is larger than m(t), then one should increase the %

‘ value of A (t). Correspondingly if the sum is leas than m(t), A (t) should be lowered. : %
|
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Since the sum {8 & monotone function of A (t), a straightforward numerical search

procedure can be used to find the value of A (t) such that ).“.je JI(j) = m(t).

The disadvantage of the above algorithm {s that it requires a much larger

number of calculations than the algorithm in Chapter IV for an exponential detection

function.

Minimizing Mean Time o Complete a Search
In this section we outline an algorithm for computing plans which minimize

mean time to complete a search when the target moves according to a discrete
time and space finite Markov chain and the detection function is exponential as in
Chapter IL

The search has a cutoff time T so that the search will proceed until the target
s detected or time T {s reached. Thus, if the target {8 not found by the end of time

T, the search will stop. We say the search is completed if either the target is found

or the search has becn stopped after time T. The object is to minimize the mean time

to complete the search.

Letpu Tlxp] be the mean time to complete the search using plan y. For the remainder

of this chapter, we consider ¥ to be an allocation of effort as described in Chapter I. Define

PO[W] =0 and let Pt[tp] be the probability of detection by time t using plan ¥. Then

T
upl¥) = £ (1-P¥])
T =0 ¢
T t
=1+Z E l:exp (- z W(x,)w(xs,s)/A(x‘))].
t=1 8=1

Our problem is to find ¢ * ¢ ¥(m) such that

woply*) = mln{uTW] : e Y(m)}.

fine Madt ke b e s et L aﬁd]

o e R e R T it 2 i N A X 5) &

otk

Crek s Al telwida

:
j
3

i
?

1
K|
]
1
K
1
1
!
i
i

j
|
|
|




" ‘-‘-vwmw‘m\t!;m""wrrm

e TR S A S
v

';'.:_]'..L.:'.‘}g&—u Q-.‘;..'ﬂk.q..._g..o.-.._..._._r_ i

 p————— e e -ttt

Following the argument in Chapter VI, one may calculate that the Gateaux differential

of T at ¢ in the direction h is

T T t
uw{¥,h]=-Z T E [z exp( - T WX V(X 8)/AX,) )] P,OIW(Ih(, u)/AQ).

u=1 je d Ju t=u 8=]
Thus a necessary and sufficient condition for ¥* ¢ ¥(m) to satisfy (V-6) is that
there exist nonnegative numbers A (t) for t =1, ..., T such that

T t
- N wo)
tz,;quu [exp( 8EIW(}l{s,w"'(Ks. 8)/A(XB))] Pu(.i) a0)

Afw) if p*@,u) > 0, (V=-1)
A(u) {f ¥*(d,u)= 0.

A

Forje J, t=1, ..., T, and search plans ¥, define

t
Aju(t, ) = Elu [exp (- ::IW(xs)w(xs. s)/A(Xs)):' p,0) foruct

s¥u

Equation (V-7) may be written as

T
Z 8,00 —wAﬁo;—exp “WAP*0.w/AQ) =A@  for ¢*(.u) > 0,
t=u

1A

A@u) for y*(,u) =0,

Define R and T as in the third section of Chapter II. Recall that

Ry, t, ¥) = Probability the target reaches cell j at time t and i8 not
detected by the effort at times s =1, ..., t-1 under plan ¢,
and that 7 is the transition function for the process. Assume that oy gives the
initial distribution of the process at time 1 and that pt(j) =1forallt >1andje J.
Define

V{,t, 8, %) = Probability that given the target starts in cell j at time t it will not
be detected by the effort at times u=t +1, ..., 8, under plan ¥.
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‘ l It foilows that for any plan ¢, je J,u=1, ..., T, and t >u, that
1 b, (4 ¥) = RY,u, ¥) V3, ut, ¥).
! P ju

We now describe the algorithm:
(1) (a) Setl =0, ¢00,t) =0forje J, t=1, ..., T,
(b) Choose ¢ > 0 and compute R¢(-, -, zbo).

(2) Setu=T.

i 2 el AL ¢ sk A 4 C 0o a8 i s it 0 A il ..-mJ

(3) Compute

s P i B

Au(t. 4:1) = R(j,u, wl) V(j.u,t,wl) forje J, t=u, ..., T.

)
]
(4) Fiod £: {1, ..., J}=[0,®] such that £ {(j) = m(u) and }
jed ;
z
T _ ;
£a, & ¥) xAon)z o WOMO/AG) = A fort() > 0, i
= < A@) for f() = 0. ‘
.- (5) Set i
b
;
wl(j, s) fors¥u, 1
¥, ,0,8) = 3
i1 £0) for s =u. i;
| |
6) Ifu=1, set! =1[+1 and go to step (9). ,
i
) (7) Compute ;
‘ i
|
2 l Volu-lot’ ‘pI"’l) = kaTu_l(j,k) exp(-W(k) wl+l(‘(,u)/A(})) V(k,u,t, 4’1)
‘. i for jed, t=u, ..., T. 1
i
N | 1
‘ b -133-
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(8) Set u = u‘l. l= l+1 and 80 to atep (3).
T
J=1+Z ZROLY) o WO¥,0.1/A0)

(9) Compute R(, ", ¢l) and “Tw
t=1 jed

)

(10) Compute d = 'ulel] - “Twl-’l‘ll .
(11) It d > ¢, go to step (2).
(12) 1fd < ¢, stop; zpl is the answer.
Note that step (4) is equivalent to finding the optimal allocation of m(t) effort

for a density function d given by

T
dg) = = Aju(t, wl) for j € J.
t=u

The algorithm in Example 2. 2. 8 of reference (h] will find such an f*.

Optimal Allocation for the Survivor Search Problem

In this section we consider a dizcrete time version of the survivor search

problem addressed in reference [t ]. The target is stationary with disiribution function

p where
pd) = Pr{target in cell j}  for je J.

The target has a stochastic lifetime whose distribution may depend on the target's

location. In particular, we assume that

#(0st) = Pr{target dies at the end of time t | target is in cell j}
forje J, t=0,1, ... .
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Note that }:je J ¢ (J, 0) is the probability that the target dies before the search begins.
We shall assume that the target's lifetime is bounded by some time T so that
T
T el,t) =1 for j e J.
t=0
Let § be a search plan. Then, the probability ST[w] of finding the target alive
with plan ¢ is
T t
_ w
5091 = = p0) T @0 [l-exp (- P I wo.u))].
jed t=0
Note, we follow the convention that E g=1 = 0. The survivor search problem i8

to find ¢ * ¢ ¥(m) such that
B¥Y) = max{sTw]:zp € ¥Y(m)}.

Following the argument in reference [t ] one can show that 2 necessary and
sufficient condition for ¥* ¢ ¥{m) to be an optimal survivor search plan is that there

exist nonnegative numbers A (t) for t =1, ..., T such that

ll)‘(j.'l)>
1

™M e

Ay if y*{,u) > 0,
A(g) {f p*(J,u) = 0.

T
pd) T «(0.t) mexp (— Yo

res AQ) A0

IA

For any search plan y define

t
U(j,t,zp)=exp<--m-2xp(j,u)) forjed, t=1, ..., T.

AQ)

u=1
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Now, we can write (V-10) as

T
PAWY) 5 4.t UGt ¥%

AQ) ol A) tfy*g,8) > 0,

A(8) if ¥*(.8) = 0.

1A

For any plan ¥, define

t
0 - LR
U 0.t ) = exp ( AQy Vo

u¥s

Ug.t, ¥) exp (lz-g))— w(J.s)) for jed, s <t < T.

Then conditions (V-11) can be written as

T -
M[z @, t) Us(j,t,w"‘)] exp (-—W-Q)— ¢"(j,s)) = A(8) {fy*d,8) > O,

AQ) AQ)

e <A@ £$*(,8) =0.

The following gives a description of an algorithm for calculating optimal survivor
search plans:

(1) Choose € > 0 and set ! = 0.

(2) Bet wo(j,t) =0forje J, t=1, ..., T.

(3) Set U(,t, wo) =lforje J, t=1, ..., T.

(4) Set s =T,

8) Compute

y w
UB(J,t.dfl) = U(j.t.wl) exp (-;8-{- ¢Z(J,e)) forjc I, t=s, ..., T.
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(6) Solve for f : J~{0,@) such that zje Jj(j) = m(t) and

Lo N i et b

& el 2itaclib e

t

b T .

l 4 XZV) ) [ T o, t) UG t, 4,1)] exp <- %8;—“1)) = A(s) £ £() > O,
t=s < A(s) tf £() = 0.

B o o it

; _ (7) Set
¥,0,6) fort#s
¥, .0, = ’ for j e J. 3
141
£0) fort=s
i (8) If 8 =1, go to step (11), otherwise got to step (9).

i (9) Compute

- W
Ug,t, wl+1) = Usﬁ.t, wl; exp (- -—A%)L-wlﬂ(j.a)) for jed, t=s8, ..., T.

o

(10) Set s = 8-1, I =I+1, and go to step (5). ?
% (11) Set ! =I+1 and compute d = | 8.0¥,) - S (¥ z-'r” . ;
1
k|
t (12) If d > € go to step (4). ;
‘ i
3 (13) If d < ¢ stop; ¢l is the answer. i
H 1
T = 5T 1
. Observe that Eje J v() [ Zt=5 w(@,.t) Ug. t, d!):l = Et=s zjeJ pd) od,t)ud, t, ¥)
is the probability that the target dies in the interval [s, T] before being detected by J
plan ¢. Step (6) of the algorithm finds the allocation of effort for time s which minimizes
this probability given that the allocation at all times other than s i8 already specified. i
|
1' Obsgerve that for any plan ¢ 3
's

i T !
4 1-8.(4 = Z = p0)@dst) UGt ¥). V-1
.5 £=0 Je J :
§ }

. R
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The optimization procedure first reallocutes effort at time T to minimize the t = T
term in tne above sum. Then it reallocates the effort at T-1 to minimize the sum
of thet = T-1 and T terms. For time 8 it reallocates the effort for that time to
minimize the sum of the t = s8tot = T terms {n (V-12). Thus, ST[zplﬂ] 2 ST[wl] for

1=0,1, ... .

H
H
i
f
AS
|
:
'
:
;
.

Notice that finding the 3olution f in step (6) 18 equivalent to finding the allocation
of m(s) effort which maximizes the probability of detecting a stationary target with
defective location distribution & given by

T -
6@) = pl) = ¢0,t) UG, L, L‘)l) for je J,
t=s
and exponential detection function. This allocation may be performed by the algorithm
given in Example 2. 2. 8 of reference (h].

One can show that the above algorithm converges by using an argument similar

to the one given in the third section of Chapter III.

Allocating the Total Effort Available

For the other search problems considered in this report we have assumed that
search effort becomes avallable at the rate m(t) fort=1, ..., T. By contrast, in
this section we assume that there is a total amount M of effort which can be applied at
any rate the planner wishes. With the exception of having the constraint on total effort
rather than on the rate at which effort can be applied, we return to the basic search
problem described in Chapter 1.

This type of problem occurs when there {s only one aircraft flight available to
search for a submarine in some interval t=1, ..., T of time and the search planner

wishes to select the best time to cearch. Solving this problem is equivalent to solving T

—_— ——— e - - . N bbbt -y Sk e SR e My . A oD Wi, —




stationary target problems. One simply computes the target's distribution at time t
given that no search has been applied and finds the optimal allocation of M units of
effort to that distribution for t =1, ..., T. The planner then chooses the time t*
which yields the highest probability of detection and follows the optimal allocation for
that time. |

A more interesting problem arises when one is not required b allocate all of
his effort during a single time period. In this case- one can show that a necessary
and sufficient condition for a plan ¥*, such that Eje J E;I;l P*(G,t) =M, to maximize

the probability of detection by time T within the class of plans which allocate M units

of effort is the existence of a A > 0 such that for jed, t=1, ..., T

W) WG (W) i gk 1
EthxP( R0 2, V%) PO B o\ Rgy 0) - Ao, (8
A if *G,t) = 0. g

IA

For a search plan ¢ let

. - W@ . _
g¢'0’t) Ejt [exp( A(J) sZ;,‘tzlJ(X s))] pt(_]) fort=1, ..., T, and j € J.

The following is a proposed algorithm for solving the above problem:

(1) Make an initial guess ¢ 0 for the search plan and choose € 1’ € 2 > 0.

2) Choose?\o>0andsetl=0andk=0.

(3) Fort=1, ..., T do steps (4) - (6).

(4) Compute g v (-, t) and solve the following equation for £(j):

W) W3 - :
g¢ G,t) AG) exp( A0 f(J)) =2, for j e J.

BEST AVAILABLE COPY
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(6) Let f (J) = max{0, ()} for j ¢ J and set

wlo, s) for s#t

¢l"’10. s) = .
f o for s=t.
(6) Setl=1+1.
() 1f1> 0, and max { le (j,t)-wz_,r(j,t)l } < €, g0 to step (9).
jed, t=1, ..., T
(8) Otherwise go to step (3).
T
(9) Caleulate C{y,) = Z Z ¥,0,0).
jed t=1

(10) If |C[¢l] -M| < e¢,, stop; ¢l is the answer.

2

(11) Otherwise set k = k+1 and choose Ak to be larger than Ak-l if

C[dzl] > M and to be smaller than Ak-l if sz’ < M.

In steps (3) - (8) the algorithm 18 recursively calculating an allocation § which

satisfies (V-13) for A = A K Once this {s done, at least approximately, the algorithm

checks the total effort C[¢] associated with this allocation. If the total effort is too

large (small), then Ak+1’ the next guess for A, is made larger (smaller) than Ak.

Because C[¥]) 18 a monotone decreasing function of A, this will cause the C[¥] resulting
from Ak+1 to be smaller (larger) than that obtained from Ak. Thus steps (9) - (11)
should really be thought of as performing a binary search to obtain a value of A such

that C[¥]) = M.
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GENERAL NECESSARY AND SUFFICIENT CONDITIONS
FOR MOVING TARGET PROBLEMS

In this chapter* we find necessary and sufficient conditions for a search plan

nd Ve bl dqum-.nh}l.m - ¥ YT

to maximize the probability of detecting a moving target by time T under constraints
on the rate at which search effort may be applied. These conditions apply to a very
wide variety of moving target problems in continuous or discrete time and continous
or discrete space. Many previous results concerning necessary and sufficient conditions

for moving target problems appear as special cases of the results obtained here. In

w il e sttt o i o bt A Ml e o

particular our results include the necessary conditions obtained by Hellman, reference [u],

for diffusion processes and by Saretsalo, reference [v], for continuous time and space

o e S et ¥ ks

Markov processes, and they extend those results by showing that the conditions are also

sufficient. The results of Stone, reference [w}, and Perstheimo, reference [xj, for

o o s e e

continuous time generalized conditionally determiniatic motion are apecial cases of the
results in this paper as well as those of Brown, reference (b}, for discrete time and
space target motion.

The results proved in this chapter are not restricted to problems in which targets

move according to a Markov process or a mixture of Markov processes. The results {

_.
—

apply to any process for which the expectation defining the function D,r in (VI-4) mgkes

{

{ l sense. In the case where the detection function {8 exponential, calculation of DT {8 ‘
i

; l equivalent to being able to calculate, for each time t and point y in the search space, 3

:

]

l * Thie chapter is based on reference [e]. i
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the probability (density) that the target nasses through point y at time t and is rot
detected by the search effort over time (0, T).

In the case of a discrete time target motion process and an exponential detaction
function, the necessary and sufficient conditions have the simple intuitive interpretation
given {n the basic condition of Chapter 1. This condition forms the basis for the
algorithms in Chapters II and IV.

In the first section of this chapter we state the generalized version of the optimal
search problem of Chapter I that we are considering here. The statement of the
problem and the theorems are given in terms of a discrete time and continuous space
target motion model. Modifications required to apply the results to discrete space or
continuous time are noted after the results are stated. A discrete time model {8 used
because it is most amenable to numerical calculation and because discrete time allows
us to present proofs that are considerably simpler than those required for continuous
time. A continuous space is chosen for the basic presentation because it {llustrates that l
the results are not simply applications of the Kuhn-Tucker theorem. In addition, the ]

discrete-space results are usually transparent once the continuous-space results have

» been obtained. . ]
' In Theorem 1 of the second section we prove that conditions (IV~6), stated below, ]
are necessary and sufficient for the aptimality of a Jearch plan in discrete time and "
_ continuoue space when the detection function is concave. In the case of continuous ]
g time, we observe that the necessary conditions (VI-6) are true but their proof is not a ]

t

simple extension of the one given in Theorem 1. Instead the reader 18 referred to the
proof of Theorem §. 2 of reference [w] which may easily be applied to proving this result. J

However, the proof in reference (w] 18 very tecbunical involving a demonstration of the

=

[]
—
-8
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]
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existence of a measurable selection from a function space. This difficulty {8 not
present in discrete time. In Theorem 1' of the second section we present a unified
statement of the necessary and sufficient conditions which applies to a target motion
process with any combination of discrete or continuous space and time.

The third section considers the special case of a discrete time target motion
process and an exponential detection function. For this case we give a simple proof of
the necessity result which relies only on the necessary conditions for an optimal search
plan for a stationary target. In this case, the necessary and sufficient conditions have
the simple intuitive interpretation given in the basic condition of Chapter I; namely,
at each time t, the optimal plan allocates its effort for that time period so as to
maximize the probability of detecting a stationary target with location distribution equal
to the posterior target location distribution given failure to detect at all times other
than t, i.e., at all times before and after time t. For discrete time and space target
motion, Washburn, reference [y), has shown that the basic condition i8 necessary but
not sufficient when the searcher obtains {ndependent glimpses at the target at each time
period, but the detection functioa during a single time period is not exponential.

In order to avold confusion, the reader should note that we have adopted a
different detection model from that used by Washburn. In the discussion In the first
section below, the reader will see that we have assumed a constant detection function b
over all time periods and that this function relates the total effort which falls on the
target during the search to the probability of detecting the target. Only when b {s an
exponential detectivu fuuction does one have independent glimpses at the target at each
time period. Thus, the model assumed by Washburn coincides with the one used in this

report only when the detection function {8 exponential,

-143-~
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Problem Statement J
Let*{ Xit=0,1,..., T} be a discrete time stochastic process where X, i 3

takes values in Euclidean n-space, Y, and T I8 a positive integer. The random

variable Xt represents the target's position at time t. We assume that (Xo. Xl. P XT)

has a joint density function p defined on YT*I. Let P, be the density of the marginal ! 3

distribution of xt fort=0,1, ..., T.
Let ¥(-,t) be the ailocation of search density at timet fort=0, 1, ..., T.
That is, ¥ (y.t) is the effort density applied to point y at time t under plan 3. We !

assume that ¢ {8 a member of the space F of real-valued Borel functions f defined

onYx{0, 1, ..., T} such that

IYlf(y.t)]dy<° fort=0,1, ..., T,

T
[lill 2 = ess sup | £y, 4] <=.
t=0

Then F is a linear space with norm Hf“ forfe F. Let F = {te F : £ > 0}, and let

m(t) > 0 be the amount of effort which is available at time tfor t =0, 1, ..., T. Define
¥Y(m) = {yeF": [ y¥. iy =m(t) fort =0, 1, 2, ..., T}. (VI-1) ;

Let X(w,- ) denote a sample path of the process X. If the target follows this

path and we allocate search effort according tn the plan ¥, then

T
bl £ ¥(Xw,s),s)
8=0

is the probability of detecting the target by time T. The function b is called a detection

function. It relates the accumulated search density along the target's path to probability

*

In distinction to previous chapters, we take the {nitial time to be 0. This {8 to
facilitate a combined statement of continuous and discrete time results in Theorem 1°'.
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of detection. Letting E indicate expectation over sample paths, we have that the

overali probability of detection by time T is

T
PT[d’] E E[b( z w(X(w.em)) ]
8=

In the sequel we shall usualiy not indicate the dependence of X on w.

The optimal search problem under consfderation ie to find ¥ *¢ ¥m) such that

P[4*] = max{P_[¥]e¥(m)}. (VI

A plan $*¢ ¥ (m) that satisfies (VI-2) 18 called T-optimal within ¥(m).

Necessary and Sufficient Conditions

In this section we find necessary and sufficient conditions for a plan ¢ * to be
T-optimal within ¥(m) when the detection function b {8 concave. The conditions involve
the Gateaux differential of PT which we will now define and calculate under the

assumption that for some finite k > 0, the derivative b’ of b satisfies 0 <b'(z) < «
for z > 0.
Gateaux differential of PT. Let ¥, he F. If
= 1
1 ) - —— - ;
PL[¥,h] elin:) - (PT[w+e h) - P_[¥] )

at ¥ in the direction b.

exista, then P,'r[zp, h] is the Gateaux differential of PT

For e F+, let C(¥) be the cone of directions h such that y + 6h ¢ F+ for all

sufficiently small nonnegative values of 8. Now for yYe F' and he C (¥),

1 T T
- b{ = w(Xs.9)+€h(Xs.8) -b{ Z w<xs.s) ’
8=0 8=0

P"I‘W’h] = lim E
€-0

. . - = 2 -2 rkn AR g MK g b | )
B T e - 0 -
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Since the integrad i8 bounded by K ” h“ » We may invoke the dominated convergence

theorem to obtain

(T )T
P y,h) =E{b| T $X.8) ) Z bX.t)
T g=0 ° /¢=0 °

T ('r
=E{Z b| = ¥X_.8)bX.t].
t=0 \s=0 ° ) %

Let P, denote the marginal density for Xt, and let E __ denote expectation conditioned

yt
on X, =y. Then for ¥ F' and he C(3),

T T
P.'rw'.hl = ? IY Eyt [b'< % 'P(XB- B))] h(y, t) Pt(Y)d)’-
t=0 8=0
Note that we have expressed P,'r[w, +] as a Hnear functional on C(¥). Define
T +
D, (¥, y,t) = Eyt <82=:0 wxs.s)) pyforye ¥ ,ye¥, t=0,1,..., T.
Then
T

P:r[¢'.h] = tfo jYDT(w.y.t) h(y,t)dy for he C(¥).

Necessary and sufficient conditions. We now state and prove necessary and
sufficient conditions for T-optimality. Let g’l‘ﬂ be Euclidean T+1-space and ¢§ +T+1

be the nonnegative orthant in €T+ e

THEOREM 1. Suppose that b is concave and that it has a bounded nonnegative

|
|

derivative, b'. Then y* is T-optimal with{n ¥(m) {f and unly if there exist

+
A©), ..., A(T)H € ¢3’T+1 such that

-146-~

(VI-3)

(V1-5)




D,l‘(;"‘*.,v.t) =N il P*y. .t >0,

< Aty if¥¥y,t)=0 fora.e.yeY¥Y, t=0,1, ..., T.

Proof of sufficiency. The proof of sufficiency follows that of Theorem 8.4.1 in

reference [h]. The essence of this argument is due to D. H. Wagner.

T+
Observe that the concavity of b implies that PT is a concave functional on F .
We now proceed to use an argument by contradiction. Suppose that ¥ *e ¥(m) satisfies

(VI-6) and that there is a Y€ ¥({m) such that PT[zJJ] > PT[zl)*].

Since PT is concave we have for 0 < 6 <1,

PLe* + 0@-90] - P[9*] = P [(1-0)¢* + 69] - P [¥*]

2 (1=0)P[#%] + 6P [¥] - P, [¥*]
= 0(P[¥] - P{¥*).
It follows that
PLI*, §=9*] 2 P [4] = P[¥*] > o.

However, by equations (VI-5) and (VI-6) we have

T
Pliv, d=-¢*) = 2= f vR (Y Y, H-9*(y, t)]dy
t=0
T
tbof{y by, t)>0»D (*y, Oy, )¢ *(y, t)]dy
” (VI-8‘=
’ L‘Uf{y DAy )= O}D (* Y Oy, t) - *(y. t))dy

Sk A s

"
Y _fYK(t)[il'(y,t) "y, ldy =0,
Lo

v ‘
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where the last equality follows from the fact that

fY Yy, tydy = fY Y*(y,t)dy =m() fort=0, ..., T.

However (VI-8) contradicts (VI-7) and sufficiency is proved.

RN s o YETADY oo TOPHOT sy NP ,ﬂﬂ

Proof of necessity. Suppose y* {8 optimal within ¥(m). Since b is increasing,

we observe that ¥ * {8 also optimal within the larger class obtained by replacing the
equality constraint by an inequality constraint in the definition of ¥ (m) in (VI-1).

Since 'fY f(y,t)dy < @ for fe F andt = 0, ..., T, we may define

T
+ (]
' Ly f] = PT[f] - tEO Y () [IY fy, t)dy - m(t)] forfe ¥, ve 1

¥ Raivers PEVPWNY ool oot BEUURNE ooy oo st SNRI oo o SUY

By Theorem 1 on page 217 of reference [z], there exists A¢ & such that

+
T+1
L, (¥*) =max, _+L,[¥].

e TESTR

For fc F' and he C(f), the Gateaux differential L! (f,h] of L, at{ in the direction of
h exists and is a linear functional of h. In particular by (VI-~5)
T T
Lylbhl = = [ Dy t) hey,tydy - = A [ hey, tidy (V1-9)
t=0 t=0
Following page 227 of reference [z}, we observe that since LA[zp *] = max e F*LAIM’ [
we have for any ¥¢ F*, [
{
lim 1 {L, [v=+e (v-¥*)] - L, (¥*]} < 0. [
€ A A -
€ ~0 :
1

Thus

-

LI (4% ¥-4*] <0 for ye F (V1-1

P

5




setting § = Y *, we obtain
0= L;\[‘l‘*, —3U*) = -4 L;\[dﬂ‘, P*],
while setting ¢ = 2y * yields
L;\[‘P*, $*] <0.

Equations (VI-9), (VI-11), and (VI-12) imply
T
Z [ D (%Y, t) - A (] @, tdy = 0,
t=0
while equations (VI-10) and (VI~13) imply
T +
T [ D%y, t) -A®] ¥, t)dy < 0 forall yeL .
t=0
Equation (VI-14) implies that DT(zp Y, t) <A(t) fora.e. yeY, t=0, 1, ..., T, and
(VI-13) implies DT(z,b *y,t) =A(t) for a.e. yeYandt=0, 1, ..., T such that
¢*(y,t) > 0. The necessity of the conditions in (VI-6) follows, and the theorem is proved.

In the following paragraphs we discuss extensions and specializations of Theorem 1.

Discretc space - discrete time. Theorem 1 and the proof given above also hold

when the search space Y is discrete provided one interprets pt(y) in (VI-4) as the

probability that Xt =y.

Continuous time (sufficiency). The obvious 2nalog of the sufficiency part of

Theorem 1 holds foc continuous time provided the target motion process {X

p 0t <T}

has Borel measurable sample paths, the conditional expectation Fiyt[b'(frg ) (XS, s)ds] is

woell defined, and we take

e |

+
1),!/ CvL b I‘:w; K v ’j d)(XS,s)ds):I pt(y) for ¥c¢ F , ye Y, te[0, T].
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The proof of this assertion parallels the sufticiency proof in Theorem 1. The Borel

measurability of the sample paths is needed to guarantee that the integral | gw(xs. s)ds

ie well defined.

Continuous time-continuous space (necessity). The corresponding necessity

result for continuous time is mnre difficult to prove; its proof is not an obvious
extension of the one given for Theorem 1. However, by paralleling the proof of
Theorem 5.2 {n reference {w one may show that tb- ‘onditions in (VI-6) are necessary
with D,r defined as in (VI-15). In fact, thut proof shows that for continuous space the
necessary result holds when the concavity assumption on b is dropped. The proof in
reference (w) also allows one to add a constraint of the form 0 < ¥ (v, t) < B for some
positive rumber B with a correspoading change in the conditions in (VI-8).

Obesearve that when b(z) = { - e-z. we have, for continuous time,

o T
DT(u-.y.t) = Eyt [exp( J 0 ¢(Xs, s)ds>] P,O)-

I {xs; s >0} {s a Markov process, then one can show that

DT(v.y. t) = ]xr(x. 0,y,t, ¥) Ry, t, T, ¥) po(x)dx.

where under plan ¢, rix, 0,yt, y) is the probability density that at time t the target is
located at v and 18 undetected given it was at x at time 0, and R(y,t, T, ¢) is the

probability that if the target ie at point y at time t it will be undetected in the interval (t, T).
Because of *he Markov nature of the process, r(x,0,y,t, ¥) R(y,t, T, ¢) 18 the probsbility
density thit a target starting at x &t time 0 will pass through the point y at time t and

rcrain undetected throughout (U, T|. The integral on the right of /VI-17) averages over

the distribution of the target's pcition at time 0 to obtain the probability density that

.
L.

(VI-18)

(V1-17)
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the target passes through point y at time t and remains undetected throughout {0, T]. Now

exp (-f 'gw X(w, 8), s)d8>

is the probability of failing to detect the target by time T given it follows path w. Thus,
the right-hand side of (VI-16) is simply the probability density of the target passing
through point y at time t and failing to be detected by time T. From this observation
and the above discussion, equation (VI-17) follows.

Thus, Saretsalo’'s Theorem 5.1 (reference [v]) and the theorem of Hellman
(reference [u]) are special cases of the necessity result obtained in this chapter. In
fact, the specialization to Markov processes given here i8 stronger than the result in
reference [v] in the sense that no assumptions concerning the continuity of the transition
function are required. In addition, we have proved sufficiency.

It also follows that the necessary and sufficient conditione obtained by Stone In
reference fw) and Persiheimo in reference {x] are a special case of the conditions found

in this chapter. In particuiar, one can show, in the notation of Stone (reference [w]) that

-1
P("th(v), w)

Py = f - ¥ (dw)
¢ e J(n::t(y)o Wy t)
and
] T -
| Eyt[b ([0w(x’.s)da)]
| pn "), w)
1 wt¥”' T -1
s b [y ¥ [n (y)l.o)dl> y (dw),

‘, pt(y) 0 ‘(ﬂwtﬁ"-w't) ( 0 wsd wt
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so that DT(w,y, t) = Eyt[b'(f OT w(xs. 8)ds)] pt(y) coincides with the definition of DT
in Stone (reference [wj), and the conditions in that reference and in Persiheimo
(reference [x]) are a special case of conditions (VI-6) provided one makes the obvious
changes for the bound B on effort density which is allowed as & constraint by Stone
reference jw].

Continuous time-discrete space (necessity). The necessity part of Theorem 1
also holds for a continuous time and discrete space motion process. Again the proof

is not a simple extension of the one given for Theorem 1, but one can parallel the proof

of Theorem 5.2 in reference {w) to obtain the result. However, in the case of discrete space, ! .

the assumption of concavity for b is required in order to guarantee the necessity of
conditions (VI-6). The concavity is needed on page 464 of reference [u]) where one
invokes a Lagrange multiplier result to guarantee the existence of A (t) to satisfy (5. 9)
at the bottom of that page. In the case of a discrete search space one must invoke a
result such as Corollary B. 1.2 of reference (h] which requires the concavity of the

detection function b.

Unified statement of results. Most of the above results can be consolidated into

a single theorem statement provided we make the appropriate identifications for DT'
Py and [0, T). S8pecifically, DT is given by (Vi-4) when time is discrete and by (VI-15)
when time 1s continuous; P, is the probability density function for xt when Y is Euclidean
n space, and p,(y) * Pr{ X, = y} when Y (s a discrete space. For continuous time

F, F’, ¥(m), and PT are defined as in the first section but with integrals replacing

summation. In discrete time we understand (0, T) = {0, 1, ..., T} while in continuous

time [0, T| has the usual meaning.
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THEOREM 1'. Suppose b is concave and that it has a bounded nonnegative

devivative b'. Assume that the sample paths of {Xt; 0 <t <T} are Borel measurable

and that D’l‘ is well defined for (y,t) such that pt(y) > 0. Then ¥*is T-optimal within

¥ (m) if and only if there exists A:[0, T]—[0,) such that

D ¥y, t) = At) if §*(y,t) > 0,

< A(t) if P*y,t)=0fora.e. (y,t) e Y x[0,T].
In the case where the search space is éan, the necessity of conditions (VI-18)
rexnains true when the concavity assumption on b is dropped. In discrete time, the

sample paths' will always be Borel measurable, and D, will be well defined for (y,t)

T
such that pt(y) > 0.

The Special Case of an Exponential Detection Function

When the detection function is exponential, we may prove the necessity of the
conditions in (VI-6) ir an elementary manner which requires the use of only the
necessary conditions for an optimali stationary target search. The usé of the expoﬁen—
tial detection function also allows us to consider the possibility that the detection
capabhility of the search sensor varies over the search space. Specifically we shall
assume that for each point ye¢ Y, there is a number W(y) which characterizes the
detection performance of the sensor in the neighborhood of y in the sense that if the
target is located at y and z effort density is placed there, then 1 - exp(-W(y)z) is the

probability of detecting the target. Classically W(y) is called the sweep width of the

.'
.’

sensor when operating in the neighborhood of y (where 1/z has dimensions of distance).
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For this case
T +
P[w]=l-E|:exp<-z‘, WX ) y(X ,8) for ye F ,
T =0 8 8
and DT’ the kernel of the linear functional P:r[ ¥,+], becomes
T \
D (¥,y,t) = Eyt exp <- %F WX v X, s)) P, 0) WQ)

for yeF, yeY, t=0,1, ..., T.

THEOREM 2. Suppose the detection function i® exponential and W {8 bounded.

Then ¥ * i{s T-optimal within ¥(m), if and only if there exists A (0), ..., A(T)) ¢ f;ﬂ

such that fort=0, .., Tand fora.e. ye Y,

- *
Ey, [exp(- £ W) wxs.s)>] b ) Wee VIO Ly ttyegy > 0

8¥t

Ia

A tf Y*@y,t) = 0.

Proof. Since P,r as defined in (VI-19) {8 & conoave functional, the sufficiency

proof for Theorem 1 applies here also.

To prove the necessity part of the theorem, let
8,0 - 1'3yt [exp (- :;t WX vX,, s)) ]pt(y) for yeY, t=0, 1, ..., T,
and
K¢) = fYEt(y)dy fort=o0,1, ..., T.

Suppose that for some t, equation (VI-20) fails to hold ~= a set of positive measure
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in Y. Dividing ;t by K(t) to obtain a probability density B, we observe that y*(-,t)
fails to satisfy the necessary conditions of Corollary 2.1.7 of reference (k] for
Y *(-, t) to maximize probability of detection for cost m(t) for a stationary target with

probability deusity g Thus ¥*(-,t) is not optimal for coet m(t) for this stationary

target problem.
For nonnegative Borel measurable functions f defined on Y, let Q{f] be the

probability of detecting a stationary target with location distribution g and effort

allocation f, {.e.,
QI = [y 8O (1-e"V OOy

Since y*(-,t) 18 not optimal for cost m(t), we may find an f* > 0 such that | Yf"(y)dy =m(t)

and Q[f*) > Q[¥*(-,t)]. Observe that

1= PLv*] = [ | §,0) exp(-WE)¥ * v, Iy
= 1-K@® QUY*. 1)

> 1 - K(t) Q[f*).

Thus, by taking

Y*(y,s) fors¥t
y(.,8) = {
*(y) for s =t,

we have e ¥(m) and P,r[w ) > P,r[w'] which contradiots the assumption that ¢* is

T-optimal within ¥(m). Thus equation (VI-20) must hold and Theorem 2 is proved.
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From the definition of gt(y) and K), one can see that gt = gt/K(t) is simply i
the probability density for the target's location at time t given that it was undetected i

by the search applied at all times other than t. Let y(t) = A (t)/K(t) for t =0, 1, ..., T. '-

Then conditions (VI-20) become

g Wwe VY~ w atesg > o,

<yt Yy, =0,

which are precisely the necessary and sufficient conditions for J*(-,t) to be an
optimal allocation of effort for a stationary target with probability density 8t' Thus
the optimal moving target plan can be characterized {n terms of optimal atationary
target plans. That i{s at eachtime t=0, 1, ..., T, the optimal plan ¢ * allocates

the effort avatlable at time t so that & *(-,t) maximizes the probability of detecting

.+ statfonary target with probab{lity density 8,
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