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\l Abstract
‘\

Three-dimensional optimal missile avoldance is
analysed with a linearized kinematic model. The
solution requires maximum load factor and the prob-
lem is reduced to optimal roll position control
having two phases: (1) orientation of the lift vec-
tor into the optimal evasion plane, (2) rapid 180°
roll meanuvers governed by a switch function. For
circular miseile vectograms the plane of optimal
evasion 18 perpendicular to the line of sight. Eva-
ding from roil stabilized missiles of rectangular
vectogram, further advantage can be taken maximizing
the target-missile maneuver ratio. Bounded roll-
rate reduces the miss distance but does not affect
the optimal evasive maneuver structure.

Nomenclature
a lateral acceleration.
A system matrix (14).
A single channel matrix (15).
B control matrix (18).
H variational Hamiltonian.
J pay-off function (48).
Ky constant of true proportional
navigation (9).
m miss distance (46).
N' effective prop. nav. ratio (9).
Pp roll rate (control variable).
R relative distance
51,82 switch functions (55), (68).
t time.
Ly nominal time of flight (8).
u control vector.
v velocity.
X state vector components.
Y2 components of R, perpendicular to the
% initial line of sight (12).
Y dynamic similarity parameter (92).
81,682 costate dependent coefficients (52),(53).
0 normalized time-to-go (63).
A costate vector components.
" missile~-target maneuver ratio (30).
"‘ n " " " of a
single channel (33).
1 missile time constant.
¢ roll angle.
¥y vorualized target roll rate limit.
X azimut angle.
Q2 angular velocity.
Superscripts
(’) 3-D vector.
(9] nondimensional variables.
)T transposed of a matrix.
()* optimal control functions.
) time derivative.
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Subscripts

commanded value.

final value.

index.

missile,

required value.

line of sight.

target.

initial value.
) column vector.
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1 _Introduction

The missile-aircraft pursuit-evasion problem can
be either formulated as a zero-sum differential game,
or decomposed to two reciprocal optimal control
problems whose respective objectives are to deter-
mine: (a) optimal guidance laws against maneuvering
targets. (b) optimal evasive maneuvers from guided
missiles.

Regardless of the formulation, the problem is of
an inherent .complexity. The relative pursuer-evader
kinematics are expressed by a nonlinear three-
dimensional vector equation. Both vehicles' dynamics
are expressed by sets of nonlinear differential equa-
tions. Moreover the guidance law of the pursuer is
implemented by a rather complicated transfer func-
tion. The exact solution for each of the alterna-
tive formulations requires the solution of a non-
linear two-point boundary value problem of very high
dimension. The computation of such a solution, al-
though feasible, is so time-consuming that it makes
this approach {impractical for systematic studies.

For a systematic analysis which is necessary to
create an insight into this complex problem, simpli-
fied analytic solutions are required. Important
simplification can be achieved by: (a) neglecting
guidance dynamics. (b) restricting the motion in a
plane. (c) trajectory linearization.

It turns out that the attractive assumption,
made by neglecting the dynamics of the pursuer,
ylelds seriously misleading results!s?:3, As a con-
sequence of this assumption, the direction of the
optimal evasive maneuver is constant and is deter-
mined by the initial or terminal conditions. More-
over, if the pursuer's maneuverability is sufficient,
the final miss distance is always zero?.

Most analytic studies in the past used two-
dimensional models" 10, Whenever guidance dynamics
were considered (even if by an approximation of a
first order time constant or a pure time delay) an
oscillating or "bang-bang" structure of the optimal
evasive maneuver became apparent. It was also shown
that optimal evasion can guarantee non-zero miss
distance even from a pursuer of unlimited maneuvera-
bility or from one of an optimal guidance
slrategy9. It has been indicated however!? that the
validity of 2-D analysis is limited to near "head-
on" or "tail-chase" engagements. For other initial
conditions three-dimensional analysis is required.
The same study also demonstrated that, due to the




"bang-bang" structure of the optimal evasive maneu-
vers, trajectory linearization is a good approxima-
tion for a wide range of parameters.

The objective of this paper, wotivated by the
above mentioned results, is to analyse the problem
of optimal missile avoidance using a three-
dimensional linearized kinematic model. Analysis is
based on the following set of assumptions:

(1) Pursuer and evader are both considered as con-
stant speed mass points. (2) The pursuer is a
homing missile launched against an initially non-
maneuvering evader (target) in a collision course.
(3) Relative pursuer-evader trajectory can be
linearized around the initial line of sight.

(4) Pursuer and evader both have perfect information
on the relative state. (5) Gravity can be neglected
for both vehicles (not effecting relative trajec-
tory). (6) The pursuing missile has two identical
and independent guidance channels to execute propor-
tional navigation in two perpendicular directions in
a plane normal to the line of sight (true propor-
tional navigation'!). (7) The dynamics of each
guidance channel {s assumed to be (for sake of sim-
plicity only) of first order. The validity of the
first five assumptions and the effects of more com-
plex pursuer dynamics are discussed in detail in
Ref. 10.

Based on the above listed hypotheses the 3-D mis-
sile avoidance is formulated as a fixed duration op-
timal control problem maximizing a terminal pay-off
(the square of the miss distance). The control vari-
able is the Jateral acceleration vector of the eva-
ding airplane. This acceleration is perpendicular
to the velocity vector, its magnitude is bounded by
the limit load factor (or maximum 1ift) and its
direction is controlled by the airplane's roll-
orientation.

First a mathematical model of unbounded missile
maneuverability and infinite airplane roll-rate is
used. This linear formulation leads to a closed
form solution and provides the basic insight into
the problem. In consecutive steps saturation of
missile acceleration and realistic roll dynamics of
the evading airplane are introduced.

The solutions obtained by the linearized 3-D
model are compared both to the prediction of a 2-D
linearized analysis!® and to results of complete
non-linear (6 degrees of freedom) simulation.

11 Mathematical Modelling

Three-dimensional vector formulation

A three-dimensional pursuit-evasion is described
by the vector equations

g - Vp ~ Yy 1)
R x &

(g= = (2)

ORI

The acceleration command of the pursuing missile is
given by Assumption 6 as

¢ @ x K
(GHJC & KN X > (3)
=

while the actual acceleration is determined (see
Ass. 7) by

tly + Uy = (), @

The acceleration of the constant speed evader
(the target) is normal to its vector velocity
Vp = @y x Vp) (5)
Trajectory linearization around the initial colli-
sion course (Ass. 2 & 3) ylelds
|&] L. Vg = const (6)

and as a consequence

[Ree) |=IRo|- vge = vg(eg-t) )
determining the final time of the pursuit by

tf = lgnl (8)
r

Substituting (6) and (7) into (3) and defining

Ky L N'Vp 9)
yields
o - : .
(e~ epyz R0k 0
The system of differential equatioms (1),(4), (5)
and the linearized feedback relagion (10) determine
he 9 components of the vectors R(t), Vr(t) and
VM(t), if initial conditions and the target angular
velocity vector T(t) are given. In the problem of

optimal missile avoidance this last quantity is the
control variable.

Non-dimensional scalar equations - linear case

The initial collision plane (Ass. 2) is taken as
glage of reference for the direction of the vectors

R, Vy and VT (see Fig. 1).
Yr
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Fig. 1. 1Initial collision geometry

By choosing the X axis of the coordinate system
to coincide with the initial line of sight, only
those components of the relative motion which are
normal to this direction have to be considered. The
linearized equation of motion along this axis is al-
ready solved by (7). The state vector is reduced to
be of six components

e (x1... %08 (3,9, 5y0202,E0) (1)

"y" and "z" being the relative displacements
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perpendicular to the initial line of sight (see
Fig, 2)
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Fig. 2. 3-D pursuit-evasion geometry
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Fig. 3. Roll orientation of missile
maneuver planes.

Moreover 1f the Y and Z axes of the coordinate sys-
tem are oriented to be in the missile maneuver
planes (see Fig. 3) the state equation

x=A(x +Bu 13)

has a decoupled matrix A(t)

A(e) 3 O

A(t) = |- =~} - - - (14)
0 Y Ay (t)

with

0 1

Aj(e)=| 0 0 -1 (15)
N L =1
T(tg~tY T(te-t) T

The control vector u has two components
ET = (u1,u2) = (apsindg, aqcoséy) (16)

ap being the evading target lateral acceleration
constrained by

"W : ————

0 <lapl<(ap) gax an

and the roll angle ¢, is measured relative to the
colligion plane and I is given by

0 - cosy, cos¢, , 0 , 0 , cosyp 8ing, , O
I To "M R law

o, singy A AT 1 T coséy , 0

Use of nondimensional variables reduces the number
of 1ndeg§ndent parameters and yields generalized

results Introducing nondimensional time and
distance by
t =t/ (19)
R
e o = (20)

leads to normalize velocity components by T(ar)pey
and accelerations by (aT)max. As a result the
state equation (13) is transformed to

aR/dt = KX +B o (1)
with a nondimensionalized state vector

v 2
ar_fn &y 9N o g L2k

x =y » ToZ s 2 (22)
o Ta¥ " a¥ ‘et 4
and a normalized control vector
_i!r-(:-rainor, ':Tcou-r) (23)

The decoupled structure of the state matrix is
preserved with

0 1 0
h® =| o 06 =1 (24)
N' u'
W N
T (Fp-d)

Nonlinear effects

The state equation (13) or (21), describing sys-
tem dynamics, is linear due to the implicit assump-
tions of unlimited missile maneuverability and in-
finite target roll-rate. A more realistic mathema-
tical model has to consider the constraints on
these variables. The state equation including such
effects will no longer be linear.

Limited missile maneuverability

When missile maneuverability constraints are
taken into account it is necessary to redefine the
state vector and the state equation., The compo-
nents of the lateral acceleration, y, and zy, are
to be replaced by their required value (¥y), and
(Zy) ¢ in nondimensional form i

v Gy
%0 Gagam 25)
v gy
. (a1) max s

As these variables are not affected by the con-
straint, the differential equations for

i
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dx3/dt and ¢xg/dt remain unchanged.

The relation between the components of the accel-

eration, which are subject to constrainte and their
required value can be expressed by the nonlinear
saturation function defined as

tf |a|<[b]

sat {2 )A- (27

slgnwd 1f  |a|>|b|

Consequently the state equation will not have the

linear form of (21) but has to be written as
dx/dt = F (x , ©) +B u (28)
For such saturation two alternative formulations

exist expressed by two different vectograms:

a. Circular (isotropic) vectogram (see Fig. 4)

showing that the constraint of maneuverability ap-
plies to the resultant lateral acceleration

I, \yM) +H(Zy
ay, 22 Y 24 3 z 2= (aH)mx sat{ " } (29)
Zgq
(idinas V2 (aw)max
Yr S
Fig. 4. Circular vectogram of miséile

acceleration.

Such vectogram represents the maneuverability of a
thrust vector controlled (T.V.C.) missile or of a
cruciform configuration with unknown roll orienta~
tion. In this model it is assumed that saturation
of both guidance channels takes place simultaneous-
ly.

By introducing the missile-target maneuver ratio
which is one of the similarity parametera of the
problenlz, as

a (ay)
R (30)
T’ max
(29) can be written using (25) and (26) in a non-
dimensional form

w 2 2 2 e 2
M +2 d d°Y e 2.
e R Bl - Y
T/ max dt dt
Rectangular (squa (see Fig. 5)

indicating that saturation may occur in each gui-
dance channel separately:

o (;H)r 32
M= Oaax % | — )

with similar relation for ;H- Vectogram of this
type represents a roll stabilized cruciform miseile
with known roll orientation.

4
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Fig. 5. Vectogram of cruciform missile.

Defining the relative maneuverability of the
guidance channels as

A (;H)nn (.il()-x
= - 33
' Gpmax  Dmax o
enables to write (32) in nondimensional form
azy
—J} = u; sat {—3—} (34)
dc

A similar expression holds for the second channel.

For rectangular vectogram the actual missile
target nlneuverlratio u depends on the orientation
of the target acceleration. It can be easily seen
that

W Sw <2y (35)

Limited target roll-rate

Realistic description of the evader's roll dyna-
mics requires that its roll orientation ¢, be con-
sidered not as a control but an additionlI state
variable.

A
7 = o1 (36)

The roll dynamics can be expressed by several

alternative formulations:

1) The control variable is the target's roll-
rate

x7 = Pp ($p) pax (3n
subject to the constraint

[Pp| <2 (38)

2) Closed loop roll control based on the

required roll orientation

(x;) . = kg (%)) = x;] (39)
subject to saturation

(x,)
. 7°r
%, = (bp)gay o8t {5 —1} (40)
7 T max ‘T)-x
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s 2 2
§ « (4
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Piw coumesn feature 1 gl) these lorwidations 1s
4
the liwdied (ol rate capressed by ’w)‘l. In woo-
Glmansionul Turw Vhis (oustraint s erlpressed by

9 J90] < ($y) gy, = ¥y (44)
detining §y as swther siwilarity paraseter of the
prohlew,

Considaring targe! roll urientation $y s & state
variahle wabes the gveral) dynawic systes monlluear
eyen 10 the ghsence of wissile saturation, lo this
case the stace equation has the coupled fore of

4}"/41’ e § izt . 'u",'v', (45)

with & contro)l vector o' defined according 1o one of
the alternative Yurwilal jous,

111 Forsslation of the Opt fwal

Contrul Praoblew

the abijective ot the wmisstle swidance 1s 1O wa~
iwlre the survivability of the evading alrcraft,
hssuming untformly performing warhead and prozimity
fuse leads to deterwine the payoff as the absolute
val e or the square of the wiss distance, For
Vinearized kinemwatics the Jast one 1s espressed as

wieyllig) ¥ 27 (eg) (4t)
with ty glven by (&),

e opt imsl missile avoldance with a linearized
blnemat 1o wodel can therefore be formilated as a
thaed duratbon optlmal control problem wiximizing a
termiual payolt (problem of Mayer),

Ualug nond)mensional variables the formulation
(Sor undimbted mosslle maneaverability and target
val) rate) de the followings

et Che dynamlc system described by (21) with
derer Andtbal constit lons I‘I“—U} and ulwprt;lflnd ter-
minal alate,  Flad the opt lmal control Af‘(t' ol the
Feorm (21), subject Lo the constralnt

0 < dy < (47)

which mawimlees he payol !

" - "u/ N 'I,:/ iy
N R LY (44)
Foor the Fiwed value of ;', ylven by
ty "
Fp = - VU (49)
1 1 "

1t miuslle saturatton or/and target's roll dynamic
are consldared a simllar formilation holds with (21)
replaced by (28) or (4%) and stating the appropriate
control structure with the additional constraints,

IV Formel Solutious

Liwkar ‘axe

Fur the sssumptious of uoplindted missile mane v~
verability sud 1ufivite target roll rate, stated io
the previvus section, the varistiomsl Hssiltoniso

B(i, s, %, €) =7 (K(EZ+ 838 (50)
can be writtes, sepsrsting the part independect of
the control varisbles, as

¥ (5, 4, )+ '.'T[G,uu.pézmoy) (51)
with

4. 1,,,.,7011./.1“”—;.‘ costy) (52)

by (G ysingyt’s costy) (53)

The optimal control varisbles 'i' and 0; have to
wariwize the Hawiltonisn, yleldlng

)" - % (eign 8, + 1) (54)
with

51 & 4yetney + bscoeh, (55)
and

(4p)" = g7 (81/82) (56)

Substituting (%6) ioto (55) leads to

S, = k(4,2 446,%) 20 (57)

k belng a positive constant of proportionality
determined by

K’ = (6]2 4‘\'472)’] (58)
Fquations (54) and (57) indicate directly that for

optimal missile avoidance maximum lateral load fac-
tor has to be alwvays used.

The components of the costate vector ) involved
in 8;, 4; and &, are determined by the adjoint
equation

d)/ 4¥ = - 3H/ 5% (59)
with the terminal conditions

A(tp) = - 'a-'f/a'_i_;@f (60)
resulting in

), (tp) = - 2¥(eh - 29¢

() = = 28(ep)k - 22, (61)

(€ = 0 1 =2,3,5,6

(59) ylelds for a linear system as (21)

ar/dt = - k' () A (62)
Introducing the normalized time-to-go

o Bt - ¥ (63)
leads to transform (60) and (62) to

d)/do= KT (g) ) (64)
with the initial conditions

Ao = a¥ ¥ gy (65)




The system of equations (64) can be reduced to two
identical scalar differential equations of the form

a3y | d2 v dAy
e[aajl + 5371) 8 == 0 1=3,6 (66)
which were solved in a closed form in Ref. 10.
This solution combined with (65) yields

-6

Aj(8) = Ay e (1 - Py(8)]

Ai41(8)=rg 0e=® [1 - Py (0)] (67)

A1+2(°)"io°2°-e - Pgaa(®)] 4, 4

P;(6) are functions of 6 depending on N' only.
For integer values of N' these functions are poli-
nomials of the order (N'-2) (see Table A-1 in
Ref. 10).

As a consequence of (67) and (61) the time
dependent part of A, and Ag are identical:

N
Xz(’(‘:‘) i 2;f52(lgf—t)

(68)
As(®) = - 225, (Ep-1)
Substituting (68) into (52) and (53) yields
8= 2C08XT°[;fCOBOH‘ ;'fsinoulsz (%f"fg) (69)
8= - 2[ygsingyt ZgcosylSs(Eg-t) (70)

The expressions in the brackets are the compo-
nents of the miss distance vector: the first in the
plane of the initial collision and the second in
the direction perpendicular to this plame.

As by (54) and (57)

(ap* = 1 (71)

maximizing the Hamiltonian is equivalent to maxi-
mizing S;. Inspection of eq (57),(69) and (70)
makes it obvious that for any given miss distance,
maximization is achieved only by

BpP* =0 (72)
and as a consequence
tg(op)™ = 0 (73)

This clearly indicates that the direction of the
optimal evasive maneuver has to be perpendicular to
plane of initial collision. The optimal roll orien-
tation, either $3=0 or d).’l".-ﬂ

{4 e
cos () *(¥) = - sign[S,(tg-0)) (74)
is determined by the sign of the switch function
S, which is identical to the one obtained in 2-D

analysism.

Case of circular missile vectogram

1f missile maneuver constraints are taken in
consideration the linear state equation (21) is re-
placed with one of a nonlinear form of (28). Never-
theless, this nonlinearity does not alter the struc-
ture of the optimal solution. As the controls
appear separately in (28), the Hamiltonian preserves
its separated form of (51). The control dependent
part is not affected by the saturation type

nonlinearity and the optimal control functions are
given in this case also by (52) and (53). Moreover,
as saturation takes place in both guidance channels
simultaneously, the time dependent parts of A and
As remain identical (although they are different
from the costate variables of the linear case). As
a consequence both (71) and (74) hold, yielding the
same type of "bang-bang" maneuver perpendicular to
the initial collision plane as for unlimited missile
maneuverability., The switch function governing this
maneuver is however different from the one obtained
in closed form for the linear problem.

When missile saturation takes place in the ter-
minal phase of the pursuit (it was shown!3 that it
always occurs in this phase), the state equation of
the system, and as a consequence the adjoint equa-
tion, both change. As both components of missile
acceleration are constants in the saturated phase,
the submatrix X;(¥) in (24) is modifed. For ¥>¥
its second line will contain only zeroes. The ad-
joint equations are given in this case as a function
of normalized time-to-go 6, as follows:

drg/de = N'/62 A4 (75)

dXi.q.l/de-Xi + N'/8 Aq42 (76)

dkiﬂ/de- - M+ a7
i=1,4

with the initial conditions (61).

From (77) and (61) it is obvious that for 6<64
A3 and Ag are both zero. This fact confirms that in
the saturated phase the required accelerations have
no influence on the solution. Consequently

xi(eies) = (Ai)o = const (78)
A+)(6<6g) = (M)o' 6 (79)

It 1s easy to see that, due to the monotonity of
Az and A5, no switch can occur when the missile is
saturated. It is also important to note that, as
E(x,g in (28) has no discontinuity when saturation
occurs, the costate variables remain continuous at
0 = 04

The time of saturation is one of the unknowns
and has to be determined with the complete solution
of the costate variables, by solving a two-point
boundary value problem. Fortunately, due to the
"bang-bang" type solution a simple and efficient
search technique developed in Ref. 10 can be used as
an alternative. The results obtained are identical
with those of a previous 2-D analysis“’. They show
that the optimal switch function and the resulting
miss distance both depend on the missile-target ma-
neuver ratio y. The dependence of the normalized
miss distance can be expressed approximately as

a*(N', Te,u) & mt(N, Ef, =) + b(N', €p) /u?
(80)

Case of rectangular missile vectogram

In this case, representing a roll stabilized
cruciform missile with known roll orientation, sa-
turation occurs in each guidance channel separately.
The optimal control functions are determined, as for
the previous case, by (52) and (53). As (57) is not
influenced by the saturation, (71) remains valid.
However, the time dependent parts of A; and Ag are
no more identical and the optimal target roll




orientation given by (56)

s cosXyp [As8indy~Ascosdy])
eg(dp) = = — 0 M

2 AosinpytAscosdy
cannot be determined by simple inspection.

(81)

It is, however, intuitively obvious, in view of
(80), that for maximum miss distance the effective
missile-target maneuver ratic has to be minimum.
This problem has a straight forward geometric solu-
tion shown in Fig. 6. It yields, for 0<®y<n/4,
which is the relevant one for cruciform missiles,

tg(@;)' = cosxy, tgéy (82)

This is a suboptimal solution, which maximizes the
projection of target acceleration on the more sus-
ceptible guidance channel, but it can be easily
implemented. Moreover it takes a definite advantage
of the known missile roll orientation by providing
always

Veff < 2, (83)
\ZR
P
{ (a7) (Zm) max

(yu )MOI

Yr ¢
7 ettective target
t{a) max vectogram
‘\/
Fig. 6. Minimization of the effective missile-

target maneuver ratio.

Case of limited target roll-rate

The "bang-bang" solution obtained in the previous-
ly discussed cases assumes an infinite roll-rate of
the evading aircraft. Whenever the real limitation
on the target roll-rate is taken in account the roll
orientation ¢4 becomes an additional state variable
of the problem as indicated by (36). As a conse-
quence the system equation becomes nonlinear even in
the absence of missile saturation. For such case
the optimal control problem is formulated as follows:

Given the dynamic system with the state vector
(84)

The state equation has the form of (45). 1Its first
six components are identical to (22) and the last
equation is

e ‘v v ~
x = collxl...x-,]=col [in ‘7’]

\» v
dx7/dt = $p Pp (85)
The system is controlled by
b “~v
u = lagp, Ppl (86)

The initial conditions ;'C', are given and the terminai
state is not specified.

Find the optimal control g’(g) subject to the
constraints (47) and (38) that maximizes the termi-
nal payoff (48) for the fixed ¥y given by (49).

The variational Hamiltonian of the problem is

M= = Ho(X, A, D4y 810X 02,A8)4P¥py  (87)

with S written explicitly in (55).

The first optimal control variable ."; is given
as previously, by (71). The second control compo-
nent maximizing the Hamiltonian has to be (if Ajyf0))

*
The time derivative of the new costate variable is

dA7/dt = - 3H'/3%, = - ap 95)/3%y (89)
yielding (as a function of the normalized time-to-go)
dA7/d8 = 3’-1-(51(*2-As)cosl""r%(*z-*s)lin;,l (90)

with the initial condition (11)0-0.

A singular control is possible if Ay=dA7/d6=0,
requiring by (90)

n a0 A)
£ x7 e ae §2(X2,25)

« Assuming that (91) holds, the singular value of
P,. can be obtained from the second derivative.

T‘Els value turns out to be zero. Comparing (91) and
(56) 1indicates that the required roll orientation,
predicted by {56) under the assumption of an infi-
nite roll-rate,does not change by the introduction
of the roll rate constraint.

Such steady state (Py=0, A7=0, tg ¢p= §1/47) is
however very unlikely. The mutual relations (85),
(88) and (89), shown in the block diagram of Fig. 7,
predict limit-cycle type oscillations around the
equilibrium value of (91). These oscillations may
damp out if higher order roll dynamics are intro-
duced in the model. Roll oscillation of small ampli-
tude have no appreciable effect on the solution.

The major effect is the reduction in the optimal
miss distance as the value of the normalized maximum
roll-rate 3’1. decreases. This gheno-enon wvas already
predicted by the 2-D analysis!?,

(91)

(61)o

l7 ' — .T

(®r)max

ok
S

Roll rate as control variable.

Fig. 7.

V_Concluding Remarks

In this paper the problem of the 3-D optimal mis-
sile avoidance is analysed in nondimensional form
for realistic missile and aircraft models using
linearized kinematics. The solution, derived by
rigorous mathematical treatment, is presented in
simple geometric terms, providing a clear insight




into this inherently complex problem.

First, it is shown that the optimal evasion does
not take place in the inftial collision plane. Thus
| the effort in 3-D analysis is justified. Neverthe-
| ¢ less, the optimal evasive maneuver is confined to a
i‘ plane which, for circular missile vectrogram, is
perpendicular to the initial plane of collision.
Evading from a roll stabilized cruciform missile,

s represented by a rectangular vectogram, further ad-
vantage can be taken by choosing a maneuver plane
which minimizes the missile-target maneuver ratio.

The solution of the optimal control problem,
maximizing the miss distance, is a "bang-bang" type
mancuver with the continuous use of maximum load
i factor of the evading airplane. 1t can be therefore
reduced to an optimal roll-position control problem
of two consecutive phases: (1) Orienting the air-
plane lateral acceleration vector into the plane of
optimal evasion. (2) Changing the direction of this
acceleration, which has to be maximal, by rapid roll
maneuvers of 180° in accordance with an optimal
switch function.

MQ
3-D Linearized
15[ 2-D non-linear  ~~ _
\\
1 N:LO \\
10/ v,=013 L
. ff=125 <
=0.4
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Fig. 8. Comparison of 3-D and 2-D tactics.

In Fig. 8 the optimal miss distances, obtained by
a 2-D analysis with exact (nonlinear) kinematics
and the present 3-D study based on a linearized mo-
del, are compared. The comparison was carried out
by a 6 degrees of freedom simulation which used the
optimal control functions derived by the respective
studies. The comparison shows that, for the set of
nondimensional parameters chosen, the 3-D tactics
have a definite advantage if the initial target
azimuth angle Xpy 45°.

The existence of an optimal maneuver plane en-
ables to use some resulls of the 2-D mmlynls“’ and
as a consequence avoids the solution of two-point
boundary value problems, which seems a priori neces-
sary if missile saturation and limited airplane roll-
rate are considered. By the way, it can be noted
that the optimal miss distances predicted by the
three-dimensional lincarized kinematic model compare
very well with results of complete (nonlinear)

6 degrees. Such a good agreement is not unexpected.

It has been shown previously!?, that the "bang-
bang" nature of the optimal maneuver seems to justi-
fy the assumption of linearized kinematics. However
it is proposed to distinguish between two phases
when defending the choice of a linearized kinematic
model: a) a priori justification can be based on
examination of the value of the "dynamic similarity

parameter" introduced for nonlinear kinematics in a
recent report!? and defined as

"~ (3T)mx
Ty o =g (92)

If this parameter is sufficiently small use of
linearized kinematics can be attempted for the
analysis., b) a posteriori, it has to be verified
that the solution of the linearized kinematic model
does not predict excessively long maneuvers in one
direction. If it does happen, trajectory lineari-
zation is not appropriate for the specific problem.
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