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ANA I .YS I S OF TH R EE — DIMENSiONAL OPT I MAL EVAS ION
WIT H l.INKARIZEI) K iN F. MATICS*

.1. Shina r~’, Y. Rotsztcint , and E. Bexnar l’ ~~~~~~~~~
Tecliiilo,i— Israel I nati Lute of Technology ~~f 3i~~ aha i l s , Israel
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Abstract Subscri pts •~
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Three—dimensional optimal missile avoidance is c commanded value . ~~~~~~~~~ 

analysed with a linearized kinematic mudel . The I final value .
solution requires maximum load factor and the prob— I index .
tern is reduced to optima l roll posi t ion control N missile.
having two phases: (1) or Ientat ion of (lie l i f t  vec— r requirt .d val ie .
b r  into the optimal evasioii p ieiw , ( 2) rapid 180° N line o f si ght.
ro ll meanuvers governed by a s w i t c h  function. For T target .
circular misfile vectograms the plane of optimal o initial value.
evas ion is perpendicular to the line of si ght. Eva— ( )  column vector. ________

ding from roil stabilized missiles ol rectangular
vectogram, further advantage can be taken maximizing I Introduction
the target—missile maneuver ratio . Bounded roll— — - - —-_______ —

rate reduces the miss distu,,ee but does not affect

be either formulated as a zero—sum differential game,
the optimal evasive maneuver st ru cLure ..,,,~~~ The missile—aircraft pursuit—evasion proble. can

or decouq,osed to two reciprocal optimal controlNomenclat ure
problems whose respective objectives are to deter-
mine: (a) optimal guidance laws against maneuveringa lateral acceleration.

A system matrix (14). 
targets . (b) optimal evasive maneuvers fro. guided
missiles .

A 1 sing le channel matrix (15).
B contro l matrix (IN). Regardless of the formulation, the problem is of
H varIational Haadltotiiun. an Inherent complexity. The relative pursuer-evader
J pay—off function (48). kinematics are expressed by a nonl inear three—

constant of true proportional dimensional vector equat ion. Both vehicles’ dynamics
navi gation (9). are expressed by sets of nonlinear differential equa—

rn mi ss distance (46). tions. Moreover the guidance law of the pursuer is
N’ effective prop. nov. rat to (9). implemented by a rather complicated transfer func—
P1 rol l rate (control var iable).  Lion. The exact solution for each of the alterna—
N reialive distance tive formulations requires the solution of a non—
S 1,S2 switch functions (55), (68). lIne ar two—point boundary value problem of very hi gh
t tiiiw . dimension. The computation of such a solution, al—

nominal time of fl ig ht (8). though feasible , is so time—consuming that it makes
u control vector,  this approach impract ical for systematic studies .
V v e l oc i t y .

For a systematic analysis which is necessary tos U b  vector components, 
create an insight into this complex problem, aimpli—y,z .onbpolients ol K , perpeiitlicular to the 
fled analytic solutions are required . ImportantI n i t i a l  line of sigh t (12).

dynamic similarity parameter (92) . sImp l i f icat ion can be achieved by: (a) neglecting

61,62 costaLe dependent coeffIcients (52),(53) . 
guidance dynamics. (b) restricting the metion in a
plane. (c) trajectory linearization.I) norma lized time—to—go (63) .

costate vector components. It turns out that the attractive assumption,
ii missile—target maneuver ratio (30). made by neglecting the dynamics of the ~ursuer ,

of a yiel ds seriously misleading results1.2. . As a con—
single channel (33).  sequence of this assumpt ion, the direction of the

T missi le time constant , optimal evasive maneuver is constant and is deter—
$ rol l  angle, mined by (lie Ini tial or terminal conditions . More—

i’or,,alized target roll rate limit, over, if the pursuer’s maneuverability is sufficient ,
azim,it angle. the fina l miss distance Is always zero1.

ii angular velocity.
Most analytic studies in the past used two—

dimensional iwid.ls” 1 0 . Whenever guidance dynamics
~~perscr i~~~ were considered (even If by an approximation of a

(*) 3—i) vector, first order Lime Constant or a pure time delay) an
(
~
) nondimenslonal variables , oscillating or “bang—bang” structure of the optimal
)T evasive mane.iver became apparent . It was also showntranspfll4tni of a ma t-rEx.
)* optimal control functions . th at optimal evasion can guarantee non—zero •t~ m

distance even from a pursue r of unlimited .aneuvera—(‘) time deriva tive. 
bllity 7 or from one of an optimal guidance
strategy 9 . It has beet, indicated however10 that the
validity of 2—I) analysis is limited to near “head—
on” or “tail—chase ” engagements. For other initial

Research sponsored by USAFOSR Grant No . 77— 3458. conditions three—d imensional analysis is required,**AgBoc iate Prof. Dept. Aeronautical Eng, Memb . A1AA The same Study also desonatrated that , due to the
Graduate students .
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“bang—bang” structure of the optima l evasive mansu— The acceleration of the constant speed evader
vers , traj ecto ry  li,,earizaLi~ ii Is ., good approx ima— (the target) is normal to its vector velocity
tion for a wide range ot parameters.

The objective of this Paper , naitivated by the 
GT — 

~~~ 
X

above ment ioned results , is to analyse the problem Tra jectory linearization around the initial cmiii—
of optima l missile avi,Idance using a [hires— 

Hion course (Ass. 2 6 3) yieldsdimensional linearized kinematic nanici , Analysis Is
based on the following set of assunupllons : I~I L — V~ const (6)(1) Pursuer and evader are both consIdered as con—
stant speed mass points . (2) The pursue r is a and as a consequencehoming missile launched against an Initially non—
maneuvering evader (target) in a collision course . I~(t ) I” Il0I Vgt — V~(t 1—t ) (7)
(3) Relativ e pursuer—evader trajectory can be
linearized around the initi al line of sIgh t., determining the final time of the pursuit by
(4) Pursuer and evader both have pe rf ec t  information
on the re la t ive state.  (5) GravIty can be neglected 

t — I~ J. (8)for boLl, vehicles (not ef fect ing relative traj ec— vR
tory). (6) the pursuing miasile has two identical
and independent guidance channels to execute propor— Substituting (6) and (7) into (3) and defining
tlonal navigation in two perpendicular directions in
a plane normal to (lie line of sight (true propor— ~ 

N’Vg (9)
(tona l navl gaiion H). (7) The dynamics of each yields
guidance channel is assumed to be (for sake of sim-
plicity only) of first order. The validity of the 

(h) , 
~~~~~~ 

(l(t)+(tf—t)l(t)) (10)
first five assumptions and the effects of mere com-
plex pursuer dynamics are discussed in detail in
Ref. tO. The system of differential equations (l) (4), (5)

and the linearized feedback rela%ion (~0) determineBased on [lie above listed hypotheses the 3—D mis— 
~he 9 components of the vectors R(t), VT(t) andsile avoidance is formulated as a fixed duration op— 
VM( t), if initia’ conditions and the target angulartlma l control problem maximizing a terminal pay—off velocity vector 17t(t) are given. In the proble. of

(th e square of the miss distance). The control ‘.art’
able is the latera l acceleration vector of the eva— optimal missile avoidance this last quantity is the

control variable.
ding airp lane. This acceleration is perpendicular
to the ve loc i t y  vector , its magnitude is bounded by 

Non—dimensional scalar equations — linear case
the limIt load factor (or maximu m lift) and its
direction is controlled by the airp lane ’s roll— The initial collision plane (Ass, 2) is taken as
orientation,

~la~e of refetence for the direction of the vectors
First a mathematical medel of uthounded missile N, VM and VT 

(see Fig. 1).
maneuverability and infinite airplane roll—rate is
used , This linear formulation leads to a closed
form solution and provides the basic insight into
the problem. In consecutive steps saturation of
missile acceleration and realistic roll dynamics of YR

COLLISION POINTthe evading airplane are introduced. - -7The solutions obtained by the linearized 3—D -

medel are compared both to the prediction of a 2—D /

linearized analysis 1° and to results of complete - - 
/

non—linear (6 degrees of freedom) simulation. 
— — /

/

E l Mathiematical Modelling
VT

Three—dimensional vector formulation

Z R~~~~~~~~~~~~~
A three—dime ns ional pursuit—evasion is described

by the vector equations
M R(o)  I X p

(1)

(2) Fig. 1. Initial collision geometry
I~

I2
By choosing the 11 axis of the coordinate system

Th. acceleration comma nd of the pursuing missile is to coincide with the initial line of sight , only
given by Assumption 6 ~~ those components of the relative metion which are

~~ x ~
) normal to this direction have to be considered. The

(
~
‘M)c 

— • -  (3) linearized equation of mution along this axis is .1—
ready solved by (7). The state vector is reduced to
be of six components

while the actual acceleration ia determined (see
Ass. 7) by !

T_ (xj... x6)à ~~~~~~~~~~~~~~ (11)

+ 
~M 

— (~
) (4) “y” and “z” being the relative displacements

C
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perpendicular to the initial line of sight (see 0 <Ia~ I<(aT).ea (17)
Ti8. 2)

and the roll angle • is measured relative to the
collision plane and is given byY Y~~ —~~~~

1 
(12)

— 
~h4 ~ (o , — CO5X

T COS$M • 0 , 0 • cesxf sin$N ,
1(18)

, sin$~f ~ 0 ~ 0 ~ 
CO5I~f p oJ

Use of nondtaensional var iabisa reduces thc numberVT 
(Z~~)p of indqiendent parameters and yields generalized

res ults ’2 . Introducing nondimensional time and
distance byR

(19)

RYp - (20)
maxM 

- 

leads to normalize velocity components by T(at)me.z
and accelerations by (~T).sx . As a result the
state equation (13) is tran8formed to

(21)
Fi8. 2. 3—D pursuit—evasion geometry with a nondimensionalized state vector

~~ 
d~~~ ~ d~x y, ,—~~,z,ZR Z = ZM — d~ 

•
~‘ —

~1 (22)

. (arsin$y, .coa T) (23)

I The decoupled structure of the state matrix is
ZM 

and a normalized control vector

preserved with

0 1 0~~~

~ 1(~ ) 0 0 - 1 ) (24)
N’ N’________ _______ —lYR X ~ X = X~ [a~~ ~~ J

Nonlinear effec tsFig. 3. Roll orientation of missile
maneuver planes.

The state equation (13) or (21), describing sys—
Moreover if the Y and 2 axes of the coordinate eye— tern dynamics , is linear due to the implicit assump-

tions of unlimited missile maneuverability and in-tam are oriented to be in the missile maneuver
planes (see Fi8. 3) the state equation finite target roll—rate. A mere realistic mathema—

tical medel has to consider the constraints on
— A (t)x + B u (13) these variables. The state equation including such

effects will no longer be linear.
has a decoupled matrix A(t) 

Limited missile maneuverability

A (t) — 
~~

— — — (14)
1A 1(t) 0 )
1 ~ ~~~ 

When missile maneuverability constraints are
taken into account it is necessary to redefine the
state vector and the state equation. The compo—

with meats of the lateral acceleration, y.,~ and z~, are1 o 1. ol to be replaced by their required value 
~~M
)z and

A 1(t)— 0 0 — i i (15) (Zg)~ 
in nondimensional form -

I N’ N’ — I
Ir (tf—tY ~~~t) — (ay)~~~ 

(25)

The control vector u has two components

~‘ ~~M~r— (u1 ,u2) • (5ysin+~, 
a~cos$T) (16) x6 — (26)

4T being the evading target lateral acceleration As these variables are met affected by the con—
constrained by straint , the differential equations for

3 
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dx3/dt and .~4,/dt remain unchanged. with si.ilar relation for z~. Vectogram of this
The relation between the components of the accel— 

type represents a roll stabiltead cruciform missile
with known roll orientation.

.ratton, which are subject to constraint. and their
required value can be expressed by the nonlinear
saturation function defined as Z

~ 4,[a
/b if la I~lb l (ZM)mox

(27)
~ [mi~nI~ J if I a L l b l

Consequently [tie state equation will not have [lie
linear form of (21) but has to be written as

d~x/d~ — ! (
~ , ~

) + B 
‘
~ (28) I

For such saturation two alternative formulations V (YM )mox x
exist expressed by two different vectograns:

a. Circular (isotropic) vectogram (see Fig. 4) I
showing that the constraint of maneuverability ap— I I
plies to the resultant lateral acceleration I

‘~‘M~ r +(z ) ?
______ 

M r
5M yM

2+ 2M
7= (aM)2 

sat{ } (29) Fig. 5. Vectogram of cruciform missile.max (aM)

Defining the relative maneuverability of tht
guidance channel. asZR

~ ~~~~~~~ ~~M~mex
1 

~~T~max 
- (

~T> mez

enablea to write (32) in nondimensional for.
2”’d y ~— y  ii~ sat {!3_ } (34)

~~ 

~~~~~~~~~~~~~~~~~~~~~~~

(0M)m0* 

target maneuver ratio p depends on the orien~~tlon

dt

A similar expression holds for the second channel.

For rectangular vectogram the actual missile

of the target acceleration. It can be easily seen
that

UI ~~U ~~/ihi, (35)

Fig. 4. CIrcular vectogram of missile Limited target roll—rate
acce leration.

Realistic description of the evader’s roll dyne—
Such vectogram represents the maneuverability of a mice requires that its roll orientation $.. be con—
thrust vector controlled (T.V.C.) missile or of a sidered not as a control but an additiona.t state
cruciform configuration with unknown roll orienta— variable.
tion. In this medel it is assumed that saturation A
of both guidance channels takes place simultaneous— T (36)X7

ly. The roll dynamics can be expressed by several
By introducing the missile—target maneuver ratio alternative formulations: —

which is one of the similarity parameters of the
problem’2, as 1) The control variable is the target’s roll—

rate
A ~~M~max

U (30) X7 — l’
~ 

(‘ t~max

(29) can be writ ten using (25) and (26) in a non— subject to the constraint
dimensional form I~’TI 

< 1  (38)

YM ’ZM d2~’M d
2%’M 

(. ,2 ~2

(Sy)7 — + — sat ~~~ -±z~~-) (31) 2) Closed loop roll control based on the
max dt dt required roll orientation

b, Rectangular (souare) vectoeram (see Fig. 5) (~ 7) — k
, ((x 7) — x7 1 (39)

indicating that saturation may occur in each gui-
dance channel separa tely~ subject to aaturation

______ ~;
i, (1~

)max ) 
(32) — 

~~~ 
sat { 7 r (40)— 

~~M~max sat I max 
~
.T~maX4
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e e’~~,ei .,,. ,~~ ~ • r ’~ lo re of (s~ ) ~ sign 
~ 1 + ~) (54 .1

. - - w i t h
- 

:‘ “

~ 

‘ ‘ ~~~~ 

aM 

~ ‘.i~~10~~ 
.12eos61 

(55)

4 , ‘,Oi •O l  4~~ ’ ~~~~~~~~~~~~~~~~~~~ ~~‘ 
.~r4i rig i-n (,na ru

I O~ ~~j  ‘4 i o ~~I 1 i~ t o~~iI0i4 ’ i0II.e . (~~ ) — t~~ ’ f ’~1/d 2) (56)

i~’ui  
biA.st itutlng (56) into (55) leads to

- 

t 
‘ ooi i oj  i’m — k(’~1 2 + i21) 0 (57)

, ut i i ,~ s,iasi ie ., , i . j w , , ’ is Ii bei ng a poelt ive constant of proportionality

it.:,. i.e curd -,ahi ii I hi. i.~ .*’~1 n.y d i i’  ~~~~ 
dci ,rsl mmd by

A...mtntg .ini f.,,i.l 
~
e, total  s~y warhead e~t4 proximity — ~ ti~~) (58)

hrni. i.s4. I,, 4.l  era) on S i.e iua,i.f I as IIIC siu~oi utt
run ( tie spaete rut i,c titan d int a s ’ e  • Y’ur f.i1uat Ions (54 and (57) indicate directly that f o r

I I ta an I ted ii i ,a’e.g i i . e  I , ., lent ‘.,a- Is ‘,~u rmebed as opt iaei sled 1. avoidance maximum lateral load fec—

(46) tor lass to be always used.

i• ~~ ,. ,, 
~
,, ~~~ . 

‘ilie .r,mpn nents of the costate vector ~~, involved
in 

~~
, ~~~ and 

~~
., are determined by the adjoin t

I~h. o pt J im,t d u e t  In ., ,.,I’Jan’ .- w i t h  a Ii ruasrized n.41,si lot
~ I.a m a t i .  imolel in, li~ r i e l ’ , s . -  he t ,,rauiaied as a
II •..l ,f,igai jo l t  opt I wi ‘o,t t o )  p,ot,iea masi s i ,.lng s ~~~ ‘~ .15’ — —

• u,isiual p~~y i s f J  (p,.al,Jeep r u i  Mayer)
w ith t ime terai nal conditions

th.I rug ,w.ta.tI~,ei,e i,i.t~ i vet tables hi. S’ ,vmj lat inn
(t o ,  .inI i.J..4 ~leeI In icussoaverel,I l i l y  and tsrget ( t  ) — — 

~~~~~~~~~~ 
(60)

., ii rate ) Is II,, t o ll t im I sty,: 
— —

reeiul (1 ng in
I ,.,, S I.. .l’~ ,,.un, i ‘ a qn S ‘urn ‘Inn’ -, 1 ba4 b.j ( I I ,  cii!,

i t  I lilt at  I l l  ioS.e (~~~,~~I )  atari iif.e,~~’;l ( I n n  s ni- I (
~~) — — 21(t f ) — 2~ f

ml s,.,I at ,., ,  - I t i  S Iu. .,p S I isa ! , runt , ru I  d’ (I I si t fun  
~ • ~~~~ 

) — — 2~’( t 
~)~ ‘ — 2~

’f (61)
I . .  a, I I I) ..iI~ Jo. V 0 ’~ I I . ,,.., i.e V I a InS ,~

- 
,1 (t 1) — (1 1 — 2,3,5,6

II -I,, - I (4/)

(59) y le .ldti for a linear sy mi t ea as (~~ )
.uI, I .  I. imua Sm i  ,ruis S I,,. ~ua ’J ’u I  I

- - - .- . - - 
d~ /d~ — — ~T (~ ) ~~, (62)

.1 - i ’ l l  
~

) S ~~~~~ 
(41 ! )

- , l nt ro .ii,. ’ i ng ti me normalized time—to—go
I , . i  VI . . -  S I .5 I ‘ass of I f • jI  VUlS Is ’, A 

~~ 
— 

‘
~ (63)

i - — ~~ leads to transform (60) and (62) to
U dA/do— k~(e) 

~ 
(64)

I I mele slIe eel t u t u  h u m  u r / s t nd target ‘it ,.,I I dy namic  w Il l s the initial condition.
arc m,nsldsrsd s a ta l le r imi rmal at liii, l,.,i its wIt h (21)
rep 1 em ail by ( Th) o, (45) aimm i 51St I rag tii~ appropriate A . 

~~~~~~~ 
(65)

tosS riti N IV ,W I sire w h im t ime sil,h I I lon~l s-ous t rd flta • a — — âJ a I  o—o —

S
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The system of equations (64) can be reduced to two nonlinearity and the optimal control functions are
identical acalar differential equations of the form given in this case also by (52) and (53). Nereover,

as saturation takes place in both guidance channels

et~.~4L + + N’ — 0 
i—3,6 

simultaneously, the time dependent parts of A 2 and
(66) A 5 remain identical (although they are different

from the costate variables of the linear case) . As
which were solved in a closed form in Ref. 10. a consequence both (71) and (74) hold, yielding the
This solution coi~~ined with (65) yields same type of iibang_bangim maneuver perpendicular to

the initial collision plane as for unlimited missile
A 1(e) — A i e ° (1 — maneuverability. The switch function governing this

maneuver is however different from the one ob tained

— (67) in closed faze for the linear problem.

When missile saturation takes place in the tar—
A i+2(0) 1i 0

2e”O “ 
— Pi+2 (e) 1 

i—l ,4 
minal phase of the pursuit (it was shown13 that it

0 always occurs in this phase), the state equation of
the system, and as a consequence the adjoint equa—

P1(0) are functions of e depending on N’ only. tion, both change. As both components of missile
For integer va lues of N’ these functions are poli— acceleration are constants in the saturated phase.
nomiats of the order (Nt _2) (see Table A—l in the submatrix k1(’~) in (24) is i~ difed. For t”%’5
Ref. 10). its second line will contain only zeroes, The ad— :1

As a consequence of (67) and (61) the time joint equations are given in this case as a function
of normalized tins—to—go 0, as follows;dependent part of A 2 and A 5 are identical:

~‘ “ ‘I- dA ifdo — N’/02 Aj+2 (75)A 2(t) — — 2y~S~ (t~ —t) (68)
“ dA i÷i/de—A i + ll’/e Aj+2 (76)A 5(~ ) — — 2~fS2(tf—t)

SubstitutIng (68) into (52) and (53) yields dA j+2/do— — Aj+2 (77)
5,, ..,, i—l,4

‘sr’ 2cosXT0[yfcos+M — zfsln4sMlS2(tf—t) (69) with the initial conditions (61).
,
~ “- From (77) and (61) it is obvious that for O<8~— 2(yfsin4I~+ ZfCOS$MIS2(tf—t) (70) 

A 3 and A6 are both zero. This fact confirma that in
the saturated phase the required accelerations haveThe expressions in the brackets are the compo— no influence on the solution. Consequently 1- 

- nents of the miss distance vector: the first in the
plane of the initial collision and the second in
the dIrection perpendicular to this plane. 

Ai(0
~
0a) — (A1)0 — conat (78)

As by (54) and (57) Aj~ 2(0<01!) — (A 1). 0 (79)

(~ ,r)* 1 (71) It is easy to aee that , due to the nonotonity of
maximizing the Hamilton.tan is equivalent to maxi— 

12 and A 5, no switch can occur when the missile is
sm~,urated. It is also important to note that, asmixing S1. Inspec tion of eq (57),(69) and (70) F(x,~) In (28) has no discontinuity when saturationmakes it obvious that for any given miss distance. ocEjirs, the costate variables remain continuous atmaxImization is achieved only by 

— 14
8’

(61)* — 0 (72) The time of saturation is one of the unknowns
and has to be determined with the complete solutionand as a ‘onsequence 
of the coatate variables, by colving a two—point

0 boundary value problem. Fortunately, due to the
“bang—bang” type solution a simple and efficient
search technique developed in Ref. 10 can be used asThis c l ear l y  indicates that the direction of the an alternative. The results obtained are identical

optimal evasive maneuver has to be perpendicular to 
with those of a previous 2—D analysis10 . They show

plane of Initial collision. The optimal roll orien— that the optimal switch function and the resultingtation, either $- 0  or miss distance both depend on the missile—target ma—
~. i. neuver ratio p. The dependence of the normalizedcus($1)

5(~) — — s ign[S 2 ( t f —t ) I  (74) miss distanc e can be exp ressed approximately as
Is determined by the sign of the swi tch func tion 

~*(Ns t1.U) ~ ~~ (N’ , tf , —) + b(N’, ~f ) I li 2
S., whIch is identical to the one obtained in 2—0
analysis ’° . (80)

Case of circ ular missile vectogram Case of rectangular missile vectogrs.

If missile maneuver constraints are taken in In this case , representing a roll stabilized
consideration the linear state equation (21) is re— cruciform missile with known roll orientation, sa—
placed with one of a nonlinear form of (28) . Never— turation occurs in each guidance channel separately.
theless, this nonlinearity doeø not alter the struc— The optimal control functions are determined, as for
ture of the optimal solution. As the controls the previous case, by (52) and (53). As (57) is not
appear separately in (28), the Hamiltonian preserves influenced by the saturation, (71) remains valid.
its separated form of (51). The control dependent However, the time dependent parts of A l and 15 are
part is not affected by the saturation type no nore identical and the optimal target roll6
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orientation given by ( 56) The variational Hamiltonian of th . problem is

— 
cosX.f0

IA 5ain
~K~

A 2cos+M) 
HI _A Tf — H0(~ , A , t)4.eT S j (~~~,A 2,A 5)4Py~~ A 7 (87)

(81)
2 2~~~~M+ 5 + M  wi th S 3 written explicitly in (55) .C

cannot be determined by simple inspection. ‘u.SThe first optimal control variable 
~ 

is give n
It is, however, intuitively obvious, in view of as previously, by (71). The second control compo—

(80), that for maximum miss distance the effective nent maximizing the Hamiltonian has to be (if A~~fl)
missile—target maneuver ratio has to be minimum. (p)* — sig 17 (88)This problem has a straightforward geometric solu-
tion shown in Fig. 6. it yields, for 0<+N<uI/4, The rime derivative of the new costate variable hewhich is the re levant one for cruciform misailes,

— cosxT N (82) dA 7/d~
’ — — au’,a~7 — — 1T as 1,a~, (89)

yielding (as a function of the normalized time—to—go)This is a suboptimal solution, which maximizes the
projection of target acceleration on the mare sue— d17/ d0 — ~~[61(A 2,A 5)cos~l—62(A 2,A 5)sin~.,J (90)
ceptible guidance channel , but it can be easily with the initial condition (7t~ ) 0implemented. ibreover it takes a definite advantage 0
of the known missile roll orientation by providing A singular control is possible it A 7—d17/d0—0 ,
always requiring by (90)

fle f f  /1’ I’~ (83)
4. 61

(12,15)tg ~C
7 — tg4s1 — 

s52(A2,15) 
(91)/I\ * 

Assuming that (91) holds, the singular value of
P can be obtained from the second derivative.

-
, 

T~ia value turns out to be zero. Comparing (91) and

predicted by ~56) under the assumption of an infi—
(Yu )mas 

- 

(O~) 

mite roll—rate,does not change by the introduction
of the roll rate constraint.

mas COSX ;

~~~~~~~~~~~~~~~ /Z
M) m Qs 

(56) indicates tha t the required roll orientation,

~
t / Such steady state 

~~~~~ 
A 7~~ , tg $.

~
.— 6 aj 6~ ) is

/ however very unlikely. The mutual relations (85),
-
/ (88) and (89), shown in the block diagram of Fig. 7,

- 
- 

- : 

- ~~~;mox
’
’ eff ective torget predict limi t—cycle type oscillatio ns around the

vectogram equilibrium value of (91). These oscillations may
damp out if higher order roll dynamica are intro—

-. 
duced in the madel • Roll oscillation of small sep11—

/ tude have no apprecia ble ef f e c t  on the solution.
N. The major effect is the reduction in the optimal

miss distance as the value of the normalized maximum
Fig. 6 . Minimization of the effective missile— roll—rste

~~T decreases. This chenomeron was already
target maneuver ratio, predicted by the 2—D anslye1a~~~.

Case o f limited target roll—rate

The “bang—bang” solution obtained in the previous-
ly discussed cases assumes an infinite roll—rate of (

~~r)o
the evading aircraft . Whenever the real limitation
on ihe target roll—rate is taken in account the roll
orientation +T becomes an additional state variable i A. i
of the problem as indicated by (36) . As a conse— —

the opti~~~ control problem is formulated as follows: 

~T 
(
~ T)mox 

~~ 1 T

quenc e time system equation becomes nonlinear even in
thin absence o f missile saturation. For such case

Gi ven the dynamic system with the state vector
4. “5 “5

= co ! ( x t . .. x 7J”col tx , 
~T ’ (84)

The state equation has the form of (45). its first
six components are identical to (82) and the last
equation is 5,, 4, 4,

dx 1/d t.  •.,. P~ (85) Fig. 7. Roll rate as control variable.
The system is cont ro l led by

la r, P~~ (86) V Concluding Remarks
U
— ‘us,

The in i t ia l  conditions are given and the termi nal In this paper the problem of the 3—1) Optimal mis—
state is not speci fied. sile avoidance is analysed in nondimensional form

4.5 “5 for realistic missile and aircraft medals usingFind the optimal control ~ ( t )  subject to the linearized kinematics • The solution , deri ved byconst raints (47) and (38) that maxi mizes the termi-
nal p a y of f  (48) for the fi xed ~~~~ given by (49). 

rigorous mathematical treatment, is presented in
simpl, geo tric terme, providing a clear insight

7
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Into th is inherently comp lex problem. parameter ” introduced for nonlinear kinematics in a
recen t repo rt 12 and defined asFirst , it is cl own th at ti,e opt ima l evasion does

not take place iii ti me irmht hal ,‘~~il isioii plane . Thus
the effort In 3—1) analysis Is Just if ied . Neverthe— ,‘5 (a r)max (92)
less, tie optima l evasive ma neuver imu confined to a TT — 

tVr
p lane wh ich , for circ ular nm is sil e vectrogram , is
perpendicular to the initial plane of collision. 

I f  this parameter is sufficiently smell use of
li nearized k inema t ics can be attempted for the

Kvadi img from a roll stabil ized cruc i form missile, analysis. b) a pos teriori , it has to be verifiedreprest’mmted by a rect,’ngular vectogr.mm, further ad— that time solution of the linearized kinematic medelvamm tage can be taken by cimoosii,g a nianeuver plane 
does not predict excessively long maneuvers in one

w im h eii minimizes time m lcshit .—t arget maneuve r ratio , 
direction. If it does happen, trajectory lineari—

lime solmmLl (,II oh the opt i m,u l eom,t rtml problem, zat ton is not appropriate for the specific problem.
uaximizh,mg time atlas d itmtaim ~-e , is a “bang—bang” type
nwneuve r ci tim the continuous use oh maximum load Re ferencesfac to r  of the evading ah rph amu e. It can be th e re fore
reduced to an optimal r o i l—Pos i t i on  control problem 
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plane lateral acceleration vector i nto time plane of 

tial gaines and optimal pursuit—evasion strategies”
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