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INTRODUCTION

At the forefront of modern research in structural mechanics is the
problem of dealing with time-dependent, nonlinear material models. The
stimulus for this interest is due to the increased use of new materials
in structural systems, such as plastics, glues, resins, biological
tissues, fuel propellants, soils, sea-ice, and high temperature metals.

Although constitutive theories for time-dependent, nonlinear models
are still in their infancy, the ability to solve boundary value problems
embracing these theories is well in hand. In particular, the well-known
finlte element method is capable of incorporating the most elegant
constitutive models with relative ease and sufficient accuracy for
engineering applications. This is a complete turn of events from
classical mechanics, wherein constitutive theories were necessarily
simplified to afford tractable solutions of boundary value problems.

Clearly, the time has come to re-focus attention on material
modeling to develop constitutive theories that are representative of b

real material behavior and are on a par with modern analytical methods.

BACKGROUND

Time-dependent and nonlinear constitutive models can generally be
identified as belonging to one of three classifications: creep, non-
linear viscoelastic, or viscoplastic. The first two classifications are
fairly well defined in the literature [1,2] and will not be pursued

here. Suffice to say, these models have met with limited success in
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some engineering applications, but they are not able to replicate many

of the observed phenomena of real materials, such as the Bauschinger
effect, anisotroric deformation, and cyclic phenomena [3]. . |

As the name suggests, a viscoplastic model combines the featd?es of
viscous time-dependency with plasticity theory, and in its general form
is capable of faithfully representing observed material behavior, such

as a rate-dependent yield strength, Bauschinger effect, and loading and

oy B S NN T e, i B o R e

unloading phenomena. These concepts will be amplified throughout the
text.
The general theory of viscoplasticity is well summarized by Perzyna ¢

[4], wherein he concludes further theoretical development is necessary.

However, two important subsets of the general theory appear theoreti- b

cally sound and tractable., The first will be called ”clastic—viscoplastidf

9

and the second, "viscoelastic-plastic." The former is characterized by .
an clastic reglion within the yield surface and a time-dependent yileld f
Funvtion whode domaln is not restricted to the yleld surface, Zienkluwic%
[5] has developed and demonstrated this model in several finite element |
applications. ;

The "viscoelastic-plastic" model is characterized by linear visco- i
elastic theory within the yield surface and the combined influence of i

viscoelasticity and plasticity on the yield surface. The yield function
is restricted to the domain within and on the yield surface as in classi-

cal plasticity. This model is developed in detail in this report.

OBJECTIVE AND SCOPE

The objective of this study is to present an incremental constitu-
tive development for the viscoelastic-plastic model, and furthermore, to
incorporate the model into a finite element formulation. To achieve
this objective, the classical theories of plasticity and linear visco-

elasticity are individually developed in preparation for the combined
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viscoelastic~plastic development., In themselves, the individual treat-
i B ments contain many generalizations and unifications of plasticity and
| - viscoelasticity heretofore scattered throughout the literature. Conse- - -

quently, this work serves as a reference to plasticity and visco-

an

clasticity in addition to viscoplasticity.

It is well recognized that any constitutive theory is useful only

if it can be successfully incurporated into the field equations of

LU

boundary value problems. Accordingly, each of the models presented in
this work is accompanied with a general finite element formulation and
suggested solution algorithms. Since the finite element formulation is
common to all material models, it will be presented at the outset of

: this study, thereby providing some insight into the desired form of the

| : constitutive relationships.
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Chapter 1

NONLINEAR FINITE ELEMENT FORMULATION OF EQUILIBRIUM EQUATIONS

The purpose of this section is to formulate a finite element
methodology capable of handling all of the nonlinear constitutive models
presented later in the text. At first thought, this may appear as put-

"cart before the horse." However, this ordering of the presen-

ting the
tation provides the reader with an informative preview of the assumptions
common to all constitutive theories, as well as demonstrating how the
various constitutive laws arc utilized to solve houndary‘valuo problems.
Perhaps the most powertut physical law in analytical mechanics is
the principle ot virtual work. By evoking this law under isothermal
conditions, the resulting statement is completely general and valid for
hboth geometric and material nonlinearities. To wit, virtual work may be
stated as: Given a deformed body in equilibrium under a set of external
loads, and subjected to any small virtual displacement compatible with
the constraints of the deformed bodv; then, the virtual werk of the
internal forces is cqual to the virtual work of the external loads.
Furthermore, by d'Alembert's principle, inertia loads may be treated as

cquivalent external loads, thereby extending the virtual work concept to

dynamic problems. In equation form this statement is:

férr o dv = fduT t ds + féuT(f- ) p dv (1-1)
Vv v

where = stress vector with respect to®leformed body (i.e.,

1 a

Cauchy stress)
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¢ = infinitesimal strain vector with respect to deformed

body

uo= displacement vector measured from some fixed inertial
Cartesian reference system (i denotes acceleration)

t o= surface traction vector on deformed body

p = current mass density per unit volume

E = body force vector per unit mass

v = current volume of body

8§ = current surface of body

§( ) =) variational quantity
() = vector quantity

é) transpose of a vector

With regard to large deformations, Equation 1-1 poses a.féther
difficult nonlinear problem since all quantities are referenced to the
unknown dcformed configuration. The above formulation of the problem is
often called the "Eulerian description,"” or "moving coordinate approach."
Alternatively, it is possible to recast the formulation so that all quan-
tities are measured with respect to the original or initial configuration;
this is known as the "Lagrangian description.' By this description, all
derivatives and integrals are easily computed with respect to the initial
fixed coordinate system. However, the stress and strain vectors take on
new definitions consistent with their reference to the original configu-
ration. Namely, they become the second Piola-Kirchoff stress vector and
the Creen-lagrange strain vector [6], both of which are nonlinear with
respect tu the deformation gradient.

Eulerian and Lagrangian descriptions represent the end points on a
spectrum of possible formulations for large deformation analysis. Many

innovative combinations and approximations of these formulations have

e

R o

a8 S

e B e

Bifso n -




been presented in the literature [7,8,9], However, the most significant
point to be kept in mind, with regard to Both geometric and material
nonlinearity, is that the constitutive law must be defined in a manner
consistent with the formulation. For example, a Lagrangian formulation
requires that the law relate second Piola-Kirchoff stress to Gregn—{i
Lagrange strain. -

For the remainder of this development, infinitesimal strain theory
will be assumed and inertia loads will be neglected so that attention
can be focused on material nonlinearity. Nonetheless, the constitutive
models presented herein are equally valid for large deformations and
dynamic loadings, provided they are used in a consistent fashion as
noted above.

In accordance with infinitesimal strain theory, the deformed con-
figuration is assumed to differ Infinitesimally from the undeformed
configuratlon; consequently, Equation 1-1 is assumed valid for all -
quantities measured with respect to the undeformed configuration.
Accordingly, the stress and strain vectors have the classical defi-
nition.

In addition to Equation 1-1, the complete formulation of a boundary

value problem requires the specification of (1) the strain-displacement

relationship, (2) constitutive law (i.e., the stress-strain relationship),

and (3) the boundary conditions. For the present, no restrictions on
the form of the constitutive law will be assumed; however, the strain-
displacement relationship will be assumed linear in accordance with
infinitesimal strain theory, and the boundary conditions will be intro-
duced via the finite element method.

Thus, the strain-displacement relationship takes the form:

Ou (1-2)

s ro

tm
1]

T2 A
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where 0 is a linear operator on u. For example, in a Cartesian coordi-
~ ~
nate system, O has the form such that the normal strain components are
L
given by Eii = aui/axi (no sum on i), and the shear strain components

are given by Zeij Yy = aui/axj + Quj/BXi. o .

At this juncture, the fundamental finite element approximation is
introduced. The body is subdivided into a discrete set of clements
whereby the integrations in Equation 1-1 apply to each element.  Within
each element, the displacement vector is approximated by an assumed -
spatial interpolation function. Associated with the interpolation
function are a set of unknown nodal displacements located on the surface
of each element., Adjacent elements share common nodes, thereby pro-

viding nodal point compatibility between the elements. If the interpo-~.
Iatlon function 1s admissible [10], Lt can be shown that the [inite
clement approximation will provide the "exact" solution to the houndhfy}g
value problem with a sufficient number of elements. Symbolically, tite

finlte clement approximation 18 written as:

u = hQ (1-3)

1l

where h matrix of admissible interpolation functions dependent
o

only on space

vector of nodal displacements dependent only on time

1>
1]

(or load step)

Inserting Equation 1-3 into Equation 1-2, the strain-displacement

relationship within each element is given as:

(1-4)

I
=
1ED

r—

B A - e i,

T, i s g R

o e W

[




= : where B equals 0Oh, which is the strain—-to-nodal displacement matrix

o oy tw
dependent only on spatial coordinates. Returning to the statement of
virtual work, and introducing the finite element approximations imbedded

in Equations 1-3 and 1-4, Equation 1-1 can be written as (neglecting

inertia): :

507 E_/gTodv =<5ur£ fhrfpd\r+fh[tds (1-5) -
. v v T -

s

£ Here the symbol # denotes summation over the elements with the special

understanding that the contributions of each element are properly assigned

to the corresponding location of the nodal displacement vector.

o n . .
Since each variation of u is independent, Equation 1-5 represents a

8 set of simultaneous equations. In preparation for the incremental con-
stitutive relationships to be introduced next, and without loss of
! generality, Equation 1-5 can be written in incremental form by replacing

g, t, and f by As, At and Af, respectively, to give the set of simul-

LR I I PR

taneous equations:

L F——

E fBT S0 dv o= 4P (1-6)
v & = =

Ulagy LT

; where AP = E th 5f o odv o+ f’nT at ds (1-7)

D il i el U

R

TR

In a similar manner, the strain displacement relationship can be

written in incremental form as:

("N
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(1-8)

ae = B Al

Thus far in the discussion no assumptions have been made with

regard to the form of the constitutive relationship. Therefore, Equa-
tions 1-6, 1-7, and 1-8, which are completely general with regard to
material laws, provide the proper starting point fov incorporating
material models into a finite element formulation. For present pur-
poses, no special restrictions will be imposed on the form of tle con~
stitutive relationships. HRowever, for the sake of clarity and ease of

presentation, the constitutive relationship will be symbolically denoted

as:

(1-9)

o
ta
n
<o
i
™

Jele, Pn represents a stress-strain relationship that may depend on
total stress, total strain, and history of loading. Accordingly, Pn may
be construed as an operator matrix rather than a simple matrix.

The motivation for introducing the incremental quantities 49 and
AE Into Equation 1-9 is to facilitate linearization of Pn. For example,
if sufficiently small time steps (or load steps) are prescribed, it mav
be sufficiently accurate to determine Bn based on the stress-strain
state at the beginning of the load step (tangent modulus approach). On
the other hand, if larger time steps are prescribed or the material
character is highly nonlinear, it mav be necessarv to determine Qn based
on the average stress-strain state over the interval, thereby r. uiring
iteration within the time step (modified tangent or chord modulus
approach).

In either approach, the nature and the treatment of Bn are dis-
cussed individually for ecach constitutive model presented in later
sections of this report. For now, it is simply assumed tuat En exlsts

and may or mav not be dependent upon the current time step.

i
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: With the above understanding, two basic solution strategies for

i . incorporating the incremental constitutive law into the finite element
formularion are (1) the 'tangent stiffness method,'" and (2) the "initial
strain method." The names of bhoth methods are misleading; however, the
use of this -erminology is widespread in engineering literature [11,12]

and will be retained here. Broadly speaking, the tangent stiffness

e e e, e vy em w4

method implies the constitutive relationship is incorporated directly

==

into the global stiffness matrix, whereas the initial strain method
incorporates the linear portion of the constitutive relationship into
the global stiffness matrix, treating nonlinear terms as load vectors,

: Both methods are described below.

! TANGENT STIFFNESS METHOD

The tangent stiffness method is a straightforward, brute force
technique that requires no further assumptions than already presented.

Formally, Equations 1-8 and 1-9 are combined to give Ao = Dn B 43, and
~ » ~ ~

this result is inserted into the global equilibrium equations, Equation

1-6, to give:

]er‘\ﬁ = AP (1-10)

Wil 3 e et 5w it Al mw.‘mhuu‘iuuﬂuMulkWl;.mmwmwwmmwm

T
, where Ky = Z{/g D B dv (1-11)

W ot b st vl

I

In the above K., is the global stiffness matrix relating displace-

Ed

ment in. - ements to load increments. Since Dn is dependent on the
L] -

stress-strain state, KT changes accordingly. :
- -

The solutlon algorithm embodies the 10llowing steps, wherein it is

[IRYI

assumed the system is in equilibrium at time step "1" with known responses
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! : Ae, and

A . . . . : A
and U, The objective is to find the response increments Au,

Ao over the interval i to i + 1.
Calculate load increment AP (Equation 1-7).

Assemble global sriffness KT based on value of Dn at beginning
- a

of step (Equation 1-11).
Solve K. a0 = AP, for a8,
wl ~ ~ ~

Determine 47 and A¢ from Equations 1-8 and 1-9.

~

If desired, re-evaluate Dn based on average values of stress-
-

strain over the interval, and return to Step 2 to iterate

within time step.

Add incremental responses to total responses, advaace the time

sten, and return to Step 1.

In the above uligorithm the global matrix K,r must be assembled and

triangularized for each load step and any jteration within the load

step.

For large problems this method may be prohibitively costly.

INITTAL STRAIN METHOD

The initial strain mcthod gencrally provides a much more efficient

algorithm; however, two additional assumptions are required with regard

to the material behavior. First, it is assumed rhe strain increment can

be decomposed intc linear and noniinear contributicns. That is, the

: total strain increment is given by:

(1-12)

b AL ~N

MMM
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where AaL is the linear strain, and Asn represents a combined lumping of

all nonlinear strains, Secondly, it is assumed the total stress incre-

ment is persistently related to the linear strain increment by:

AE = PL AiL . (1-13)

where DL is a linear material matrix. Combining Equations 1~12 and 1-13

gives:

(he = A ) (1-14)
~ n

Recalling the general constitutive assumption, 40 = Dn Ae, and using ;
~ ~ ~ .
Equation 1-14, a relationship between total and nonlinear strain incre- - =

ments is obtained as:

PL Agn = (gn -~ EL)Ai (1-19)

To make use of the above in the initial strain formulation, Ao of

Equation 1-6 is replaced by a3 =D (3¢ - Ac ), and the nonlinear terms
< sl %

~

are brought to the right-hand side to give:

K M = AP 4+ AF (1-16)

- [l

u

where K

, EIBT D, B dv (1-17)
, Joa o<l 4




Efa D, ae dv (1-18)

Equation 1-16 is the global equilibrium equation for the initial

strain formulation. K1 is the constant elastic stiffness matrix, and
-l

AFn represents a nonlinear force vector composed of nonelastic strain

increments.
Since AFn is an unknown vector, it is treated iteratively., To this

end, it is convenient to use Equation 1-15 and the strain displacement

. . A at 1« by » 3
relationship to replace PL AEn by (BL - Bn)§ u. That is, an may be

written as:
EfBT(D - DB dv | a8 (1-19)
g o ml ol ~ l:.‘:

Thus, the basic idea is to solve Equation 1-16 for AU and then redefine

AF accordingly until convergence is achieved.
More formally, the basic steps of the initial strain algorithm are

It is assumed the system is in equilibrium at time step i.
etc., for the

given below.

The objective is to determine the response increments AGI’

next time step 1 + 1,
1. Calculate load increment APi.

2. Estimate AF = AF

~ll, ~Nn

W AP, + AF

3, Solve (back substitute): KI Ay AP, AF .
~i

Rocalcul,ate r E [/B (1) - Dn)B dv :"'Gi'

i~

Y
3

8.
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b

A
5. Compare successive estimates of AF ~or Aui. If converged, go
~ny ~
to Step 6. Otherwise, repeat iteration loop 3-4-5.
6. Advance load step, and return to Step 1.

The most significant feature of the initial strain algorithm is

that KL need only be triangularized once at the outset of the calculations,
oy

thereby allowing rapid solutions by back substitution. Furthermore,
within the iteration loop, the matrix En need not be assumed constant
but can be simultaneously modified in accordance with Ag.

The initial strain algorithm will vary slightly for different
constitutive theories (e.g., plasticity, viscoelasticity, and visco-

plasticity). Nonetheless, the basic features remain the same.

SUMMARY

The intent of this section was to provide the reader with the
framework for implementing the constitutive theories to be discussed.
Moreover, it is hoped that an appreciation for some common assumptions
inherent in nonlinear constitutive models was achieved. To wit, an
incremental constitutive equaticn of the form ig =D ai is the desired

~1
objective.
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Chapter 2

PLASTICITY THEORY

INTRODUCTION

The original intention of this section was to provide a review cf
classical plasticity theory for the purpose of establishing notation and
concepts to be used later in the presentation of viscoplasticity.
However, upon reviewing plasticityv literature, no single presentation
was found that could be termed 'classical' in the sense that it was both
complete and conceptually instructive. For example, introductory texts
[13,14] deal almost exclusively with a particular form of plasticity,
e.g., Prandtl-Reuss equations with isotropic hardening. Thus, their
treatment is incomplete. On the other end of the scale, the presenta-
tion offered by Navak and Zienkiewicz {15] is a unified, complete
plasticity theory formulation; however, it offers lit. . in the way of
conceptual insights. Furthermore, nowhere in the literature is there a
general treatment of the "universal hirdening law' which combines kine~
matic and isotropic hardening into & unified theory. This concept was
originally introduced by Hodge (1¢,, and further discussed by Goel and
Malvern {17}, but it has nct vet been treated in a unified manner.

This presentation is an attempt at a unificd plasticity theory with
universal hardening. Moreover, an original one-dimensional model is
presented that offers an insight into the nature of isotrcpic, kine-
matic, and universal hardening. Accordingly, it is hoped the develop-

ments herein will offer more than a simple review.
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The final objective of this plasticity presentation is to obtain a
censtitutive relationship compatible with the finite element formulations

previously developed. 1ln particular, the following relationship is

desired:
Ao = D Ae (2-1)
- ~eD ~
where A0 = stress increment vector
AE = strain increment vector
Dep = incremental elasti. —plastic constitutive matrix
~

To achieve this objective, a rather detailed development of plas-
ticity theory is offered which ultimately produces the desired matrix
D . Lastly, the initial strain finite element formulation for plasti-

~C P

city is presented,

PLASTICITY ASSUMPTIONS AND CONDITIONS

Common to all plasticity developments is the assumption that total
strain increment can be decomposed into elastic and plastic components,
and further, it is assumed the stress increment is persistently related

to the elastic strain increment through generalized Hook's law. That

is:

Ae = Ase + At (2-2)




Ao = D Ae (2-3)
~e ~e

elastic strain increment

~

where Ar
[

D elastic constitutive matrix (Hook's law)
L3

[

The above equations are universally assumed in all plasticity
formulations known to the author, and indeed, are identical to the
assumptions employed in the finite element initial strain formulations.
In the course of this work some insights into the motivation of these
agsumptions will be giQén.

It is important to note that the developments presented herein
assume plastic hardening. The special case of no hardening (perfect-
plasticity) is easily dealt with once the general equations have been
developed on the presumption of hardening. -
In addition to the preceding assumptions, plasticity theory fs

built upon four basic conditions. These conditions are formally def;hgd

below and will be clarified in the ensuing discussion.

l. Yield Condition. A scalar function signifying when plastic

yielding will occur. It is composed of a positive valued "loading
function” and a 'yield parameter” that is never less than the value of
the loading function. Yielding can only occur when the'loading function
is equal to the yield parameter. The states of stress satisfying this

condition form a hypersurface in stress space, terme. :he yield surface.

2. Surface Hardening. A law that "tracks" or measures the move-

ment of the yield surface during plastic vielding. Traditionall, vield
surface movement is restricted to uniform expansion (isotropic hardening)
or "rigid body" translation (kinematic hardening). The former is
denoted by an increase in the yield paramcter, whilce the latter is

denoted by a translation in stress space of the loading function. The

17
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linear combination of kinematic and isotropic hardening constitutes

"universal hardening." (Note, perfect-plasticity implies no hardening,

{.c., yield surface never changes).

3. Flow Rule. An expression relating increments of plastic strain

to Increments of stress. The magnitude of the incremental plastic

strain vector is dependent upon the magnitude of the stress increment

normal to the yield surface and a modulus known as the "hardening
coefficient." The direction of the incremental plastic strain vector

may be assumed normal to the yield surface (associative law), or normal

to some other hypersurface (nonassociative).

4, Hardening Rule. An expression or set of data points that pro-

vides the value of the "hardening coefficient” as a function of some

plastic deformation measure, such as plastic work or effective plastic

~traln.
Jescribed above because one can specify a hardening rule independent of

(Note, this i{s distinct from the concept of "surface hardening"

the form of surface hardening.)

In order to amplify and clarify these four concepts, a series of
one-dimensional conceptual models are introduced demonstrating the
nature of kinematic, {sotropic, and universal surface hardening. - For
each of the wmodels, the associated one-dimensional vield condition is
genceralized for multidimersional stress states. Also, the corresponding
rules for "tracking” the current location and size of the yield surface
are presented.  Although the universal model embraces both the kinematic
and isotropic models, it is instructive to study the kinematlc‘and
isotropic models individually to better appreciate the universal model;

The concept of the "flow rule” and the associated "hardening rule”
is presented after the generalized vield condition with universal hard-
ening. Lastly, having established the four basic concepts of plasticity,
are developed for the solution algorithms. Supple-

et
mentary discussions on loading functions and nonassociative flow ruleg

s

expressions for D D

are given in Appendix A.
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PLASTICITY CONCEPTS WITH ONE-DIMENSIONAL MODELS

Plastic deformation is often called frictional degormation because
of the similarity between plasticity and the classical Coulomb frictional
hypothesis for sliding bodies. To wit, plastic deformation (sliding
movement) only occurs when the yield stress (frictional resistance) is!?
exceeded by active loads. Moreover, during plastic deformatioﬁ,‘the
plastic work (dissipated energy) is independent of the rate of deforma-
tion (rate of sliding) and only dependent on ;he deformation path (sli-
ding path).

This analogy between frictional theory and plasticity theory can be
exploited to produce conceptual models that provide a keen insight into

the behavior of elastic-plastic materials.

Kinematic Model

Figure la represents a one~dimensional elastic-plastic model with
kinematic hardening. The sliding block obeys the Coulomb friction
hypothesis in that the frictional resistance, of, is a passive resis-~
tance, i.e., equal but opposite to the unbalance of active loads acting
on the block. 1In accordance with the frictional hypothesis, the maximum
frictional resistance obtainable is the block weight, W, times the
coetficient of friction, uv. Without loss of generality, let W = o, and
b =1 so that maximum frictional resistance is given by the consﬁaﬁt Oy

The equilibrium cquation of the block is (o - ﬂp) - Gf = 0, where
t.\ “ ﬂy.

The active load, o, shall be called the "applied stress’” avd is
transmitted to the block by the linear elastic spring, Ee’ rep! witing
the eclastic portion of the model. Clearly, the applied stress 1s related
to the elastic strain, ie‘ by o = Ee se. The other active load, Op’
shall be termed the "plastic tracking stress'" and is related to the

plastic strain, < _, by the relation ¢_ = E_ ¢ . The spring modulus, E ,
‘ P P P P P
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Figure 1. Hardening models.




may be assumed constant or considered a function of plastic work or
plastic strain. Lastly, it is observed that the model implies that the
total strain equals the elastic plus plastic strain; i.e., € = €q + sp.
With these ground rules, it is instructive to study the model for
one cycle of loading over the nominal range -2.00y < g < l.SGy. Begin-
ning with a virgin material specimen, a tensile load is applied. Within
the load range 0 < g < Oy’ the model responds elastically as denoted by
the segment OA in the stress-strain diagram in Figure 2. Upon further
load increase (o > oy), the maximum frictional resistance is exceeded
(of = oy), and the block moves an amount sp such that equilibrium is
maintained; i.e., Op =g - Gy. This response implies plastic deforma-
tion is occurring and is denoted by the segment AB in Figure 2. The

shape of segment AB is dictated by the definition of Ep. For example,

if Ep is assumed zero (or nearly zero), the model would depict an elastic-

perfectly p}ascic material, and AB:would be a horizontal line. If Ep is
assumed a positive constant, AB becomes the upper portion of a bilinear
stress-~strain curve with a slbpe equal.to EpEe/(Ep + Ee)' Lastly, if E
is assumed to be variable, say a function of plastic work, then a variety
of shapes 1is possible as suggested in Figure 2.

After having subjected the model to the maximum load, o = the

Op>
load is decreased, which produces the intriguing result that unloading

is linear elastic; i.e., no block movement, only elastic spring movement.
If this characteristic of the model is not cbvious to the reader. recall
that of is a passive resistance, and reverse movement of the block

cannot occur until the frictional resistance is fully reversed to its
maximum value, Oy' Clearly, elastic unloading of this model will always
have a stress range of 20V as typified by the segment BC in Figure 2.
Upon further unloading, the block moves, which causes plastic straining
in the reverse direction; this is denoted by the segment CD. As before,
the shape of CD is dependent on the definition of E_. Lastly, the load
cvele is completed by reversing the load to zero, which produces the

elastic response DE shown in Figure 2.
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Obviously this stress-strain path of the model closely resembles
actual experimental data of many ductile materials loaded into the
plastic range. Consequently, it 1s reasonable to describe the concepts
of plasticity using the model as a visual aid.

A "yield condition" is described by the scalar function, F, which
predicts whether or not the current stress state in the plastic range,
that is, on the yield surface. With a little ingenuity, such a function
can be found for the one-dimensional model by recalling plastic deforma-
tion (block movement) can only occur when the absolute value of the net

active loads has mobilized the maximum frictional resistance, i.e.,

F(o,op) = V(o - op)2 - Oy (2-4)

Clearly, F can never be greater than zero, since this would violate the
equilibtrium of the model. However, F can, and does, equal zero when the
active loads have mobilized full frictional resistance, and vielding is
occurring or about to occur. Lastly, if T is less than zero, the active
loads produce a frictional resistance less than magimum, implying the
stress state is in the elastic range. In short, ¥ provides the means of
determining whether or not the current state of stress is in the plastic
domain (on the vield surface) or in the elastic domain (within the vield
sur face).

With the above insights in mind, it is possible to generalize the
one-dimansional yvield condition to a mult...mensional stress state yield

condition (kinematic) as follows:

F(o,a) = f(3-0a) - k (2-3)
~"~p ~  <p
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loading function

where f(o - cp)

=
"

vield parameter (constant)

As before, F is the yield condition with the following properties:

F>0 Impossible. A violation of equilibrium,

i.e., inadmissible stress state. (2-6a)
F=20 Implies current stress state 1s on vield

surface, i.e., in plastic domain. (All

states of stress o satisfying F = 0 form

the current yield surface.) (2-6b)
F <0 Implies current stress state 1s within
vield surface, i.e., in elastic domain. (2-6¢)

The loading function f(o =~ op) is the single most important concept

in plasticity theory. 1t is a positive~valued scalar function that

measures the magnitude of a "select portion" of its argument g - gp that
is responsible for plastic yielding. 1In the one-dimensional example

(Equation 2-4) the loading function 1s given by 'J(o - op)z, which implies

the entire argument is responsible for plastic yielding. However, 1in a

il 11t

il

general multidimensional stress state, the vector argument of the load-
ing function allows a great deal of freedom in choosing the form of the
loading function. For example, some materials, such as ductile metals,

exhibit plastic responses due to shearing stresses, but show no plastic

A

response when subjected to hydrostatic stresses. Thus, it would be

appropriate to define a loading f{unction that increases with shear

DB B
b w12

!
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stress but not with hydrostatic stress, such as the second invariant of
deviatoric stress J2' Other materials, such as soils, demonstrate ;
plastic responses due to various combinations of the stress invariants.

The literature is full of a wide variety of proposed loading func-
tions for different materials., Several common loading functions are
presented in Appendix A. For now, it is only important to appreciate
that the loading function acts like a filter in the sense it only
increases or decreases its value for some predefined 'select portion" of
the stress vector considered to be responsible for piastic yielding.

All other components of stress are filtered out and do not influence the
value of the loading function.

To better appreciate the significance of the loading function,
consider Figure 3. Assume F = 0, which implies the current state of
stress is on the yield surface. Also suppose an arbitrary stress
increment, Ag, is applied to the current stress state. Will this cause
plastic deformation? To answer this, it is merely necessary to know il
the stress increment has any components in the direction of the outward
normal of the loading function, i.e., in the dircction that the yield
surface moves. The dot product of the stress increment with the loading
function gradient (which is in direction of outward normal) provides a

simple test with three possible results:

ED . 32 >0 Plastic loading; i.c., at least some

portion of Ag is colinear with outward

surface normal. Surface moves out, (2-7a)
EGT . 32 =0 Neutral loading, no plastic deformation

occurs; i.e., &2 1s in the tangent plane

-~

of the loading surface. Surface does not

move. (2-7b)
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912

26

yield surtace normal at g

i

Wbl MMMIJLMWMM ;

il e, il

b

A\

~ -
f& 3

"



f T. Ao < 0 Elastic unloading occurs; i.e., at least
some portion of 40 is colinear with the
jinward surface normal. Surface does not

move. (2=7¢)

where £0 = aflag is the loading function gradient, and is in the direc-
tion of the outward normal.

Clearly, the importance of the loading function cannot be over-
stressed since it dictates what stress increments promote plastic vield-
ing.

The yield parameter, ko, in Equation 2-5 is a material dependent
constant and may be geometrically interpreted as the ''radius” of the
vield surface. The value of ko may be determined from any type of
standard laboratory test by evaluating the loading function at the
stress state producing initial vielding, i.e., ko = f(gv), where ¢ 1s
the stress vector producing initial vielding. ‘ )

In general, 'surface hardening' is a simple concept, as it merely

"center'" of the vield

pertains to keeping track of the "radius' and
surface (not to be confused with hardening rule for H' discussed late.).
For the kinematic model under discussion, the radius of the yield sur-
face remains cons:cant, i.e., ﬁv for a one-dimensional model, and ko for
the general model. However, the "center" translatcs every time plastic
deformation occurs. The amount of translation can be deauced by con-
sidering the total derivative of the vield condition.

To see this, first consider the one--dimensional model. Initially,
< = oP = 0, and the radius is 1. with the center at the origin. \s soon
as the load ¢ reaches the yieid'strnss, the vield condition is -~ isfied,
i.e.y, F= 0 and the total derivative, dF = 0, must alisc be satisiied.

That is, from Equation 2-a:

o= 0 0= 2o - 46 (2-5)
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In the above Ac and Aop are actually differentials d¢ and dop; however,
throughout this writing the incremental symbol "A'" will be used to
emphasize numerical approximations. Equation 2-8 simply states that any
increment Ac of the applied stress is immediately followed by an equal
increment Aop of the plastic tracking stress. This implies the "center"
of the elastic range shifts an amount Acp, while the ''radius" of che
elastic range remains a constant o,- Noting Gp is the sum of its
increments, GP = chp. a geometric'incerpretation of the plastic track-
ing stress can be offered. WNamely, Jp is the current center of the
elastic range as it translates up or down the stress axis. This concept
is demonscrated in Figure 4, wherein the center and radius of the elastic
range are shown at various load points corresponding to Figure 2.

This geometric interpretation of the plastic tracking stress also
applies to multiaxial stress states in that the yield surface translates
rigidly (constant radius ko) in stress space with its '"center" located
by Cp as suggested in Figure 5.

To prove this for the general kinematic case, 1t 1is necessary to
assume the direction of Agp during vielding. In the one-dimensional
case, this was not necessary since only one direction was possible.
Prager (18] made the assumption that A0 is in the direction of the
outward normal of the loading function, i.e., in the direction of its
gradient.

In light of Equation 2-7b, Prager's assumpticn has great intuitive
appeal since it implies Agp is in the direction cf the select portion of

the applied stress that causes plastic vielding. Therefore, it is

assumed:
\Sp - (l ij (2_9)
vhere f = 2f/30, Joading function gradient with respect to ©
~ ~ ~

C = scalar constant to be determined

i
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The value of C is obtained by taking the total derivative of the

yield condition (Equation 2-5) which must be zero during yielding, i.e.,

dF = 0 = f .o + £ T .40 (2-10)
~ ~ ~0 ~p
P
where f5 = af/asp, loading function gradient vector with respect to op
Because the argument of the loading function has the special form,
o - op, it is trivial to show that f = —f for any function f. There-

fore, Equation 2-9 can be combined w1th 2- 18 to give:

Returning to Equation 2-9, the desired relationship is obtained:

b9, = AT 80)A (2-11)
A T
no-= Eo/ fa fo (2-12)

where E is the unit outward normal of the loading function.

Equation 2-11 provides the rule for determining the increment of
plastic tracking stress for every applied stress increment Ac. The
total sum of the plastic tracking stress increments, i.e., Sp = Lﬁﬂp
provides the coordinates for tracking the 'center" of the yield surface

as was suggested in Figure 5.
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This completes the general development for the kinematic vield
condition and surface tracking rules. Next, isotropic hardening is

examined.
Isotropic Model

Figure lb is a one-dimensional representation of an elastic-plastic
model with isotropic hardening. All of the ground rules previously
described for the kiuematic model still hold. The cnly difference is
that the spring Ep has been moved to act vertically on the block as
shown. Furthermore, it is imagined some servo-mechanism compresses this
$pring an amount iep} evervtime the block moves a distance Ep in either
direction, The accumulation of ail plastic strain mc¢vements is denoted
by € *; i.e., c * = L|le_|.

P p p

The significant consequence of this new model is that the load cp
has been transformed from the status of an active load into a passive
frictional resistance and is hereby renamed as op*. Accordingly, the
maximum frictional resistance is no longer constant, but rather is given
by o¢ =9, + 0 *, where 0 * = E ¢ %, Equilibrium of the model is

max h p p P P
given by o - cf = 0, where of < of .

max

With the above in mind, it is instructive to trace the performance
of the new model through a loading cycle as was previously done for the
kinematic model. Beginning with a virgin specimen and referring back to
Figure 2, the initial elastic loading follows the same path 0OA as the
kinematic model. Furthermore, the identical curve AB is traced with a
loading above Oy' This is because ep* = Cp’ which implies op* = op,
and, hence, both models have identical equilibrium equations. At poirt

B unloading begins. The blcock cannot move backward until the applied
stress 5 completely reverses the current maximum frictional resistance
= oB). Therefore, elastic unloading continues to point C', where

(0 fmax

¢ = 0. With additional negative loading the curve C'D' is traced.

Note C'D' has the same shape as CD; however, it is rigidly shifted along

the elastic unloading path an amount C'C = Z(GB -

s -

" *
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1t is evident that the kinematic and isotropic models will produce
cxtraordinarily different results after a few loading cycles even though
E and Ee are the same for both models. However, the models will give
identical results as long as the load is monotonically increasing.

The yield condition for the one-dimensional isotropic model can be

written as:
2
F(o,ov*) = o - Ov* (2-13)

\

where oy* =3 + op*, the yield stress parameter.
Generalizing the isotropic yield condition to multidimensional

stress states gives:

oot b s i3 e b

F(o,k*) = £f(5) - k* (2-14)
3
where f(a) = loading function =
k* = vyield parameter (increases with plastic defcrmation)

sonl il i AT,

N

.
i Jo

As before, the vield condition, F, denotes whether the current
state of stress is in the elastic or plastic domain, and has the proper-
ties given by Equations 2-6a, 2-6b. and 2-6c¢.

The concept of the loading function is the same as described for
the kinematic model, and it has the properties given by Equations 2-7a,
2-7b, and 2-7c. The only difference is that the argument is composed of

the stress vector o rather than the stress vector difference ¢ - ‘p;

~

el et s i o WLt

consequently, the '"center" of the yield surface remains fixed at the

origin of stress space.
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The '"radius" of the yield surface is measured by the yield param-
eter k* which increases with plastic deformation. A pictorial represen-~
tation of isotropic surface hardening for the one-dimensional load cycle
is shown in Figure 6, whereas Figure 7 illustrates isotropic hardening
in a multidimensional stress state.

To determine the amount the yield surface expands for every applied
stress increment causing plastic deformation, the total derivative of

Equation 2-14 is set to zero to give:

dF = 0 = f '« no - &kk (2-15)

Equation 2-15 provides the surface hardening rule for updating the

"radius" of the vield surface after cvery increment of applied stress.

Specifically, k*
(radius) and Ak*

ko + Iok*, where k_is the initial vield parameter
(&

f"T * Ao,
Universal Model

The kinematic and isotropic responses, as displaved in Figure 2,
represent two extreme predictions for re-entryv into the plastic domain,
Most ductile materials exhibit a re-entry point "C" somewhere between
the points C and C'. Clearly, it would be desirable to chuose a surface
hardening model that allows some flexibility in selecting the “radius"
and "center" of the vield surface.

The "universal surface hardening'" concept provides this tlexibility
by taking a linear combination of the kinematic and isotropic ma'els,
Figure lc illustrates this concept with a one-dimensional model, wherein
B8 is a welighting parameter (0 < 2 < 1) applied to the vertical load,
o_*, and the remaining weight 1-3 is applied to the horizontal load, op.

P
1f 8 = 0, the universal model redv~es to the isotropic form; if B8 =1,
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the kinematic form is attained. Any other value of £ combines the
characteristics of both models so that both radius and center of the
yield surface change during plastic deformation. For example, the
universal model will re-enter the plastic range at point C" in Figure 2
i~ % is chosen as the ratio: £ = CC"/CC'.

The ground rules for this one-dimensional model are the same as
stated for the kinematic and isotropic models; therefore, during initial
monotonic loading, the stress-strain curve oi this model follows the
same path QOAB in Figure 2 for any value of 5. However, after elastic
unloading and re-entry into the plastic domain at point C" the stress-
strain path for all future load cycles is a unique function of Rg.
(Note, for added generality, R could be specified as a function of the
number of load cycles, B = R(n), thereby allowing the model to shift
from isciropic to kinematic or vice-versa during load cycling.)

Equilibrium of the universal model can easily be deduced as:

(0 - R cp) - 5 = 0

Q

o + (1 - R)o *
v P
max

where

[ A

Of

max

The corresponding one-dimensional yield condition is uiven by:

F(z,3 ,3 %) = (r=3)° = 3% (2-14)
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Generalizing the universal yield condition to multidimensional

stress states gives:

F(o,sp,i*) = f(g - ap) - k* (2-17)

where EP B gp, "weighted" plastic tracking stress

Pl
*
I\

ko + (1 - 3)k*, weighted vield parameter

As always, F is the yield condition with the properties denoted in
Equations 2-6a, 2-6b, and 2-6c, and f is the specified loading function
whose gradient can be used for the plastic yielding test denoted by
Equations 2~7a, 2-7b, and 2-7c.

The vector § and the scalar k* specify the origin and the radius,
respectively, of the universal vield surface. Figure 8 demonstrates the
concept of universal hardening for the cne-dimensional load cycling,
while Figure 9 portrays an example evolution of the yield surface in
multidimensional stress space.

To determine the amount of radius expansion Ak* and center shift

A

A% for any applied stress increment causing plastic deformation (F = 0),

t;z total derivative of Equaticn 2-17 could be set to zero to permit
solving for dép and dk* in terms of EOT and d::. However, it is far
simpler to directly use the definitiofs of Ep and k* {rom Equation 2-17
to determine the derivatives; i.e., Ak* = (1 - B)Ak* and Aip =B Agp.

Wwith the aid of Equations 2-11, 2-12, and 2-15, the increments of the

radius and center of the universal vield surface are:




W e e s

%
g-.
s

ol

v

Lt

K

"
Al

b i
i

i)

six = (- @ o (2-18)

Thus, the universal surfa.:e hardening rule may be written as:

ke o= k4 :E: ak* (2-20)
g = A (2-21)
P ~P

where k* 1is the current "radius' of the vield surface, and Bp is the
current vector from the origin of stress space to the '"center'" of the

yield surface.
Flow Rule

The purpose of a flow rule is to define increments of plastic

strain accompanying an increment of applied stress during plastic

Mo
Wi

AG = S(E . Ag)g (2-19)

yielding (F = 0). For any and all of the one~-dimensional models this is

a straight-forward application of the ground rules, and it 1s ecasy to

deduce the flow rule to be:

hey = Ei: A0 (2-22)
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where Ep' is the tangent value of the uniaxial curve relating total
plastic strain to total stress as illustrated in Figure 10.

When the flow rule is generalized to multidimensional stress-strain
states, the development 1s not quite as simple. The complication is due
to the fact that now the plastic strain increment is a vector; there-
fore, it must be defined with respect to direction as well as to magni-
tude. (Note, in the one-dimensional idealization, direction and mag-
nitude were ome.) :

Thus, for the general case, the plastic stirain increment vector may

be described by

(2-23)

Y
~pP

"
a.
13>

where @ is some directional vector (in stress or strain space) of unit
magnitude, and d} is a scalar denoting the magnitude of the plastic
strain increment. To determine d} and % require assumptions similar to
the assumptions made for the plastic tracking stress vector.

The first assumption is based on the observation that the magnitude
of the plastic strain increment should be proportional to the magnitude
of the applied stress increment which is colinear with the outward

normal (3) of the loading function; {.e.,

CHET (2-24)

|~

dv =

x

A
The inner product, nr Ao, 1s the scalar measure of stress that pushes
the vield surface outward, and H' 1is a hardening coefficient (modulus)
determined from experimental tests. H' will be discussed further in the

hardening rule,
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With regard to the direction % of the plastic strain increment, two
assumptions are avallable., By far the most common is the so-called

"associative flow rule assumption."” Here, the idea is that plastic
straining occurs in the same direction as the outward normal of the
loading function. Although this may be aesthetically pleasing, it is
still only an assumption. Other plastic potential functions (loading
functions) could just as well be used to predict the direction »{ the

i 2 astic strain, In such cases, the procedure is termed 'nonassociative

flcw rule assumption.”

In short, the direction a has two possibilities:

associative flow law (2-25a)

13>
L}
=1

13>
A S
13

nonassociative flow law (2-25b)

More on nonassociative flow rules is given in Appendix B.
Inserting Equation 2-24 into Equation 2-23 and with the understand-

ing of Equation 2-25, the general flow rule is:

Ao)® (2-26)

Hardening Rule

The hardening coefficient, H', is the only quantity that remains to
be defined. The value of H' must be determined from experimental results
consistent with Equation 2-26. That is, H' is dependent on A and ﬁ as

well as ¢ and ¢, As an example, suppose it is decided to determine H'

41
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by means of a simple tension test. Let the curve in Figure 10 represent
axial stress versus plastic strain (i.e., elastic strains have been

subtracted from total strains). Since all components of stress are zero
except 0, the inner product in Equation 2-26 is simply Aolnl. Also,

Equation 2-26 is valid for every component of plastic strain, in parti-

. s . c - LI . N .
cular, it is valid for Aspl. Therefore, H mlnl(ucl/ugpl), or using

Equation 2-22 the hardening coefficient determined from a tensile (or

compression) test is:

H' = m, n, E' (2-27)

For the special case where a Von Mises loading function --d an associative
flow rule is assumed, n=m = 2/\[2? and H' = 2/3 Ep'.

Furthermore, it is emphasized that the determination of H' is not
restricted to tensile tests. Any type of experimental data can be used
to determine H' providing Equation 2-26 is used consistently.

In the event H' is constant throughout the loading path, no addi-
tional assumptions are necessary, and the flow rule is well defined for
all stress states. However, in general, H' varies throughout the load
path as implied in Figure 10. This gives rise to the need of a "harden-
ing rule," wherein H' is assumed to be a function of some plastic response.
The first inclination is to consider H' a function of the magnitude of
plastic strain, i.e., H' = npo, where epo is plastic strain magnitude
glven by ¢ ° = ipT . Lp' Although this assumption is adequate for a
monotonic radial loading, for general loadings it produces results
unrepresentative of actual material behavior., For example, consider the

response of the one-dimensional kinematic model shown in Figure 2. If

QO

E' = Ep'(ﬁpo), then, during the reverse loading phase, the value of ¢

P
reduces. This results in an {increased value of EP', and the shape of

segment CD is concave up rather than concave down as desired.
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To avoid this anomaly, the hardening rule must be based on some

Vit g
‘ e
ol s

nondecreasing measure of plastic response. Two such measures are

pedly G

commonly employed: plastic work and '"total" plastic strain. The former

is known as the "work hardening rule'" and simply asserts that H' is a

o e

function of the plastic work per unit volume, wp:

e o A

"= R 2-2 :
H H'( p) (2-28)

!
il w,mw‘.AMu‘m\ﬁ‘i\m‘ruWWJMUMMM“ “"‘

[ T T N

i ﬁ
' where W = ch £
_ P ~ ~p

] The second method is known as ''strain hardening,'

wherein it is :
assumed that H' is a function of the 'total path" of the plastic strain '

magnitude, ep*:

! H' = H'(c %) (2-29)

where g * = ZA&O
P p

o

Note: cp* is not the same measure as ap , Since ap* increases with
(o] .

every increment 4e ; however, ep is the measure of current plastic

strain magnitude regardless of the path.

The choice of one hardening rule over the other is largely 1+ matter
of computational convenience. By either rule, H' is generally not known
as a continuous function, but rather as discrete points of the plastic
work or total plastic strain as suggested in Figure 11. It is a2 trivial
matter to store the discrete points in the computer and interpolate to

find the current value of #'

= 1
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Figure 11l.

Plastic Work, Wp

or Total Plastic Strain, ep‘

Hardening coefficient versus plastic
work or total plastic strain.
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: INCREMENTAL PLASTICITY RELATTONS
; f The four basic concepts of plasticity have been presented, The
| remaining job 1s to pull the pieces together to find the matrix quantity
o : =
| : D, denoted in Equation 2-1. =
‘ Beginning with the combination of Equations 2-2 and 2-3, &g is
I. given as: B %
| ' Ao QE(AE Agp) (2-30) . §
( 3
i
\ Taking the dot product of Equation 2-30 with respect to the unit gra- ;i
!! : dient of the loading function @T, and replacing AEP by Equation 2-26, é
the scalar quantity (ST Ag) can be determined as: i ;:
. CLA
o AT (i De 08 :
1+ @ b, M)/m
E
Using Equation 2-31 in Equation 2-26, the plastic strain increment ;
= is related to the total strain increment by: E
- be = C_ D Ac (2-32)
< ~p ~p we T~ F
A AT %
where C = _L'JA}% ~ ;
P H' + (n° D m) bOE
® 1=

,
RN T
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Lastly, inserting Equation 2-32 into Equation 2-30, the desired stress-

strain relationship is achieved:

AG = ('l_)e - BP)AE (2-33)

where D =
P

Equation 2-33- is the ke¢y incremental stress-strain relationship for use
in elastic-plastic boeundary value problems. The plasticity matrix, Ep’
is dependent on the variables H' and a (and % for nonassociative law).
Traditionally, these quantities are updated at the beginning of each

load step and are assumed to be constant over the load increment. These
concepts will be discussed later when the plasticity relationships are

incorporated into a finite element formulation. For now, the plasticity

constitutive theory is reviewed.

SIMMARY OF CONSTITUTIVE THEQRY OF PLASTICITY

For easy reference, the pertinent plasticity relationships for

universal hardening are listed below.

The universal yield condition 1is:

F(c,3 ,k*) = f(o0 =35 ) = k* 2-34
(g 3 ) (3 gp) ( )

F 1s the yield function, such that ¥ = 0 implies yielding. < is the

total stress vector, Bp is the plastic tracking stress locating the
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of the yield surface, and k* is a scalar stress measure defining

"center"
"radius" of the yield surface. The function f is the prescribed loading

function.

The surface hardening law is given by:

ke = (1~ B g (2-35)
83, = B(h + a0)n (2-36)
E : where f) = ?F (2-37)
N f-J
o f
~C ~3

Equations 2-35 and 2-36 give the rule for keeping track of the vield

o it Rl

surface, 1.e., k* = ko + Zik* and ép = ZAép. - is the universal harden-
ing parameter (0 < & < 1), where g = 0 implies isotropic hardening,

8 = 1 implies kinematic hardening, and other values of R imply a linear
combination of kinematic and isotropic hardening. In Equation 2-37 in

is the gradient of the loading function and is, Ly definition, in the

direction of the outward normal of the yield surface. Accordingly, A in

Equation 2~38 is the unit outward normal.

The hardening rule is:

. )
b il b s

H' = H'(¢ *) (2-39)
P
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€ %* = A *x (2"‘00)
P :E: “p
T
Ae * =_[Ae s+ Ace (2-41)
P ~p ~p

Here H' is known as the hardening coefficient to be used in the
flow rule. 1t is assumed H' is a function of the accumulated plastic
strain norm, sp*. The function H'(Lp*} is prescribed material data.

The flow rule is given by:

be, = -%- ! 50)R (2-42)

The direction vector, m, is the direction ¢f plastic strzining.
1t ﬁ = ﬁ, Equation 2-42 is termed an "associative'" flow rule, If ﬁ is
defined from some other potential function, Equation 2-42 is termed
"nonassociative." In either case, the flow rule can be used to deter-

mine the incremental plastic constitutive law:

As = (D - D )Ae (2-423
. ~-g ~P ~
D, A At L
D = _..:'__“"T'_"_ - (2-44)
~P H' + (A D, M)

Equations 2-34 through 2-44 summarize the incremental laws of plasticity.
In the next section these laws will be {ncorporated into a finite element

formulation.




PLASTICITY FINITE ELEMENT FORMULATION

From the previous finite element development, the general equilib-

rium equation (Equation 1-6) was given as:
T
E fB Ao dv = AP (2-45)
v

In the above, g, is the strain-to-nodal displacement matrix, AB is the
external load increment, and the symbol # implies the ordered summation

of the element volume integrations.
Inserting the constitutive law, Equation 2-43, into the equilibrium

equations, and using Ae = B AQ, Equation 2-45 can be written as:
(K - K)AY = AP (2-46)
~ ~p ~ ~

K= Efs DB dv (2-47)

=
I

. LS_:J fB D, B dv (2-48)

In the above, Ke is the global elastic stiffness matrix which remains
T

constant throughout the loading schedule. K_is the global plastic

~P
stiffness (reduction) matrix which is dependent on stress state. Note,
K = 0 whenever the stress state is within the vield surface. As dis-

plaved in Equation 2-46, the equilibrium equations are in the proper
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form for a direct solution by the tangent stiffness method. This method
requires the combined stiffness matrix Ee - Ep to be triangularized at
least once for each load step in which plastic deformation occurs.
Although this method may be inefficient, many researchers prefer this to
the uncertainties of iteratlive techniques.

Alternatively, to obtain the proper form for the initial strain

method, Equation 2-46 is written as:

K Au = AP + AF (2-49)
~e ~ ~ ~p
T A
b - AF = J/QB D B dv Au 2-50
where F, E J %t u (7 )

In Equation 2-49, Ke needs only to be triangularized once. All non-
E
i inearities are introduced through the unknown force vector AFp, and an
-~

iterative method is employed.

Both solution procedures are outlined in the following pages.

Tangent Stiffness Method

It is assumed the following quantities are known at load step '"n'':

Fa) . .
u, o, and € , along with the current plastic measures D , k *, e *,
~N ‘...n ~ - =D 13} pn
and ¢, .

~Py

from load step n to n + 1; i.e., AQ, Lo, bLe, etc., and to update :he

The objective is to find the increments of the above quantities

plastic measures.
1. Determine load increment AP.

2. Assemble Ee - Kp from Equations 2-47 and 2-48, where Kp is

based on D at the beginning of the step.

£

-

50

T T

o S, o i e e

AR M R T T AT HT WU ks e 6 iy pf e S < i

SEEN




= 4

S - A :

o 5. Solve (K - K )al = 4P, for su.

Lo K e s o~ ~ po

= N

[ 4, Compute stress and strain increments for each element (ov each .

g ' integration point); 1.e., ,

£ | 'f

g. i a. be = B .3,\} : 7
~ ~ ~ =

Z =

b, . A = (D - D )ac E

B b 82 (R = B0t

N 5. Monitor each element (or integration point) to determine if the f;

% curvent stress state is in the plastic region or e¢lastic region: '

3

i -

5o a. Comput = f(o -c - k *

S ampute F (~n+l pn) n

-
o

If F < 0, stress state is elastic. Set DP = 0 and go to

! Step 8.
c. 1If F >0, stress state is plastic, Go to Step 6.

6. Update yield surface measures:

TSNS TN ) DFRTAINERS | e

4 ) ~ - - - AT A
T a. ¢© = g + Ao, where Av = &(n Agd)n
3 ., Pn+1 pn ~p P ;:
3 b =
. b. k .. * = f(o - d )
2
g n+1 ~n+1 ~
1 Pn+l
g 7. Update plastic flow law: G
T ,
a. n = fj/ f 7 . fj, where f is evaluated at stress state
n+ 1,
A A , A
b. ™ = % for associative flow rule; otherwise compute m from
g nonassociative function. 3
¢c. H' = H'(r,j *), where ¢ o= o ko4 A Ky
Yn+l P+l pn P

,7 dg * 0= ‘f Se T o Ar , and A< = D -1 D A
p ~p ~P ~p ~€ ~p ~ -
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d. b = o AT D/ + AT D W)
wp € ~ ~ ~e ~ e ~
3. Print out desired results, and return to Step 1 for mext load

increment.

The preceding algorithm is a relatively straightforward procedure;
however, it 1s not computationally efficient. Worse still, the transi-
tion errcr may require additional matrix triangularizations within the
load step. It is assumed the matrix Ep remains constant (chord value)
during a given load step. This assumption is reasonable providing the
element is in the plastic region at the beginning and end of the load
step, or it is in the elastic region at the beginning and end of the
load step. However, when an element shifts from the elastic zone to
the plastic zone or vice versa (the transition region), it must be
treated with special care. 1In these cases, Bp actually abruptly changes
from zero to some finite value as the element transcends from an elastic

state to a plastic state, or conversely, from a finite value to zero for

the reverse transition.
To account for these transitions 1in the above algorithm, two basic

approaches are available. First, and simplest, is to divide the load
into sufficiently small increments so that the transition error can be
ignored. By this method, the algorithm lags the transitiocn responses by
one load step.

The alternative approach is to modify EP is some way to account for
tran:ition and resolve the problem. In the case of the transition from
plastic tc elastic zoie, Bp should be set to zero because all unloading
is elastl¢. However, when the transition i{s from the elastic to the
plastic zone, the first part of the load step is in the elastic zone as
the stress path moves from some point within the yield surface to the
vield surface. The second part of the load step is In the plastic zone
as the stress path moves with the vield surface. To reflect the abrupt
change of Pp during the loud step, it is convenlent to take a weighted

average bhased on the proportion of the load increment in the plastic

zone as measured bv the ratio:




3

7 £(a,,, =3 ) - K,*

) ] ~ ~i+l ~Ty i
‘ '; r = — = (2‘51)
Epar - %) - £ - 5,

.

Thus, in the algorithm, each element is checked to see if it underwent a

e e e, e = -

transition phase. 1If so, the load step is repeated, wherein Pp for each
transition element is re-estimated as follows. For an unload transi-
tion, set Dp = 0. For lcading, the transition ratio, r, is computed

from Equation 2-51, and the stress state at the vield surface is

~ -

E ~ni

then reduced by the factor r. The reduced value of Dp is uyed for
E

+ (1 - r)io. VNext, Dp is calculated at the stress state g and
~ t ] ~
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calcuiating the plastic stiffness Kp’ and the algorithm proceeds as

[N

before.

The computational inefficiencies of the tangent stirfness method :
are clearly evident, since the combined stiffness matrix must be assem-

bled and triangularized, not only for each load step, but also again .

|
(B

within a load step when element transitions occur. The advantages of

the initial strain method are demonstrated in the next section.

Initial Strain Method

Equation 2-49 represents the governing equations for the initial
strain method. It may be observed that it differs from tangent stiff-
ness formulation only in that the plastic contributions have been moved

| ' to the right-hand side, i.e., oF

= K_ 4u, leaving K as a constant
~1) ~p ~ ~e

global stiffness matrix that requires only one triangularization. To
achieve the same accuracy as the tangent stiffness method, it is neces-
sarv to iterate within cach load step Many of the calculations are the
same for both methods, and only the differences are emphasized here.

As before, it Is assumed all quantities are known at time step n,

and the objective 15 to determine the quaniities at time step n + 1.




A

A
1. Determine load increment AP; let uoo= U

T
E, Evf@. D, B 4w, dy,

2. Estimate AF

3. Solve K Au AP + AF . If AQ_ =~ au , 80 to Step &4; other-
e ~p ~n ~n=-1

wise, go to Step 2.
4 through 8. Same as tangent stiffness method.

The heart of the initial strain method is embedded in the iteration
loop within the lcad step, i.e., steps 2 and 3. As illustrated in the
above algorithm, AEP is reconstructed on each iteration based on the new
estimate for Ag . BHowever, there is no reason Ep cannot also be changed
simultanecusly on each iteration to reflect abrupt changes in transition
zones or even subtle changes in Ep over the time interval. Herein lies
the advantages of the initial strain method. To wit, after the initial
triangularization of Ee' each solution merely requires modifying the
right-hand side and performing a back substitution. Moreover, each
estimate of Agp can simultaneously consider variations in EP as well as
AQ in obtaining a convergent solution.

This concludes the development and implementation of plasticity
theory. In Appendix A some common loading functions are presented

together with some fine points on flow laws and hardening rules.
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Chapter 3

LINEAR VISCOELASTICITY

oy e

In this section a general three-dimensional isotropic viscoelastic =
constitutive formulation will be developed that is compatible with the -
finite element formulation previously presented. To this end, a brief 7
review of viscoelastic constitutive theory will be given, beginning with -2
. simple one-dimensional concepts followed by a generalization of multi-

l dimensional stress~strain states. For a comprehensive introduction into
: viscoelastic theory, the reader is referred to Flugge [19] and Christensen =

(20].
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BAS1C CONCEPTS

Viscoelastic materials are often called "memory" materials, that -

is, the stress in the material is determined not only by the current

state of deformation, but also by all past deformation states. More- o
over, the "memory" exhibits a fading phenomenon in that past deformation 3

states influence the current stress state to a lesser degree than do g

TR ST TP T

more recent deformation states. As a consequence of this memory phenom- E

o

i enon, viscoelastic materials dissipate energy during defiormation; thus,

the external work put into the system cannot be completely recovered. 5

L e




ONE-DIMENSIONAL MODELS

The above characteristics of linear viscoelasticity can be exhibited
by one-dimensional mechanical models composed of an assemblage of springs
and dashpots, where the springs denote a linear relationship between
stress and deformation while dashpots denote a linear relationship '
between stress and rate of deformation. Mechanical models provide an
insight into the nature of viscoelastic behavior and also provide a

basis for defining a differential equation relating stress and strain.
Differential Equations

Consider the one-dimensional model shown below, which is known as

the standard linear solid.

E,
—V VWA
E,
0, € €— O— e\ N0 —>~ 0, €
1L
pils
M
€y ot € o
- € >

0 = total stress, ¢ = total strain, fo = elastic strain, €, = viscous
strain, El’EZ = spring constants, and v = dashpot constant. Using
simple concepts of equilibrium, it is easy fo deduce 5 = El ‘o in the
elastic spring and ¢ = u év + E2 £, ir the parallel assembly, where (‘)
denotes a time derivative. As implied bv the model, the total strain is
given by ¢ = €a + g Combining these three reiationships, a differen-

tial cquation relating total stress to tctal strain is obtained as:
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To use the mechanical model as a visual aid, it is noted that the
dashpot cannot move instantaneously. Thus, at the first instance of
deformation (from t = 0 to t = 0+) only the spring E
l.>ree, 0(0) = E

1 can deform;
) €(0). Furthermore, if the load is maintained for an
extended period of time, the dashpot will finally come to rest, shifting

all the load to spring E2 in series with El' Hence, at t = o=,

These concepts are often useful in interpreting viscoelastic responses.
Equation 3-1 represents a one-dimensional viscoelastic relationship

for a particular model., If the strain were prescribed over some time

interval 0 < 1 < t, where t is the current time, then it would be possi-

ble to solve for the stress response. For example, suppose the strain

is input by a Heavyside step function, such that e(t) = €, h(t), where

€5 is a constant strain magnitude and h(t) is the unit Heavyside function

(i.e., h(t) = 0 for t < 0, and h(t) =1 for t > 0), then the solution of

Equation 3-1 is:

exp[~t(E, + E,)/u]} ¢ (3-2)
1 2 o
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where the initial condition 5(0) = El €y was used to determine the

constant of integration.
In a manner similar to the above example, more complicated one-
dimensional models can be constructed by adding springs and dashpots in

series and/or parallel that will always result in a linear differential

equation of the form:

Po % T PO * pp 0 + .o = g € + q € + gy + ... (3-3)

where Por Py» Pos cees Gy dyy 9y, ... are constants composed of the

parameters of the springs and dashpots.

Equation 3-3 may be considered as a general limear viscoelastic
constitutive relationship for a one-dimensional problem. However, it is
not a particularly useful form for solving boundary value problems

because both stress and strain are expressed in terms of their deriva-

tives.
Integral Equations

A more useful form can be obtained by expressing Equation 3-3 in an

integral form in the following manner., First, assume the strain is

prescribed by a Heavyside step function; i.e., ¢(t) = £y h(t), where N

is some constant strain amplitude and h(t) = 0 for t < 0 or h(t) =1 for

t > 0. With this prescription for strain, the right~hand side of Fqua-

tion 3-3 reduces to the constant a, €, for all t > 0. Therefore,

Equation 3-3 represents an ordinaryv linear differential equation in

terms of stress for which a solution is alwavs possible. Symbolicaliy,

this solution can be expressed as:

() = Y(t) . (3-4)
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Here Y(t) is termed the relaxation function and is an intrinsic charac-

teristic of the material model because it describes the nature of the

i

stress response due to a prescribed strain equal to unity, Implicit in

the definition of a relaxation function is Y(t) = 0 when t < Q0; i.e.,

there is no stress response prior to application of strain. As an

£
L
:

example, the relaxation function fcr the standard linear solid is

i enclosed in braces in Equation 3-2. :
f Next, to extend the solution of Equation 3-4 to apply to an arbi-
E ' trary strain input, linearity and superposition are exploited as follows.
L
P Consider an arbitrary strain input c(t), shown in Figure 12, along with
£ a step-wise approximation to this curve given by :
s/ =
év - =
o
€ =
E ! :
P e(t) = ¢ h{t) + 5 g h(t -k at)
E . k=1
=2 :

b where Aek is an increment of strain applied at the time 1 = k At.

Because of linearity the solution given by Equation 3-4 applies to
each strain increment corresponding to the time it makes its contribu-
tion; i.e., Aok = Y(t - k At)lﬁk. Thus, the solution for stress is
given by the superposition of solutions as:

bt il bl i U

Y(t - k 4t) e (3-%)

™=

o(t) ~ Y(b) £, *

=
L}
—

where t = n At. 1In the limit, as n ~ =, 4t -~ 0, and t is current time.

The stress is given exactly by the integral form!
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t
o(t) = Y(r) g, + f Y(¢ - 1) 2e(n) dv (3-6a) _
(o} N

For simplicity it is convenient to adopt the shorthand notation of

e

convolution aigebra, wherein Equation 3-6a is written equivalently as:

a(t) = Y* de (3-6b)

where * is called a convolution operator.

Equation 3-6a or 3-6b is known as a heredity integral and is

i

Lt b B e i b= T O e

physically and mathematically equivalent to the differential form given

by Equation 3-3. However, the heredity integral provides an expression
for stress without stress derivatives, thereby facilitating displacement
formulations for boundary value problems, Moreover, many investigators
assert that the heredity integral is the proper definition for the
linear viscoelastic constitutive law, and, thus, there is no need to
concoct mechanical models or their associated differential equations.

When this viewpoint is adopted, the relaxation function Y(t) need not be

considered related to any particular mechanical model, but rather may be
considered as some monotonically decreasing function that predicts the

stress response (relaxation) which occurs from an imposed unit of strain.

st ki B 1 R

In the remainder of the study, the relaxation function will be

b

assumed to be given by an exponential series, i.e.,

: N
Y(t) = E_ + ;;a E, exp (-t/3,)) (3-7)
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where Em, E], EZ’ ... are relavation moduli, and kl' )2, A3, ... are
relaxation times. Specification of these non-negative material con-
stants is all that is required to completely define the relaxation
function which in turn can be used in the heredity integral to form a
one-dimeisional viscoelastic constitutive law.

It can be shown that the exponential series form of th~ relaxation
function will always correspond to some mechanical model; thus, it is
left to the discretion of the reader as to whether or not he will accept
the relaxation function at face value, as given in Equation 3-7, or
interpret the relaxation function in terms of a mechanical model.

To summarize the discussion thus far, Equatrion 3-6a or 3-6b repre-
sents a general one-dimensional viscoelastic constitutive relationship,
wherein Y(t) is a relaxation function characterized by an exponential
series, Equation 3-7. The parameters of the exponential series may be
determined directly from experimental data or interpreted from mechanical
models., In the next section, multidimensional stress-strain models will

be discussed.

MULTIDIMENSTONAL MODELS
General Viscoelastic Constitutive Law

Extending the constitutive relaxation from one dimension to multi-
dimensional stress states follows reasoning directly analogous o the
generalized Hook's law for elastic materials. Namely, each component of
stress is courled in some fashion to various components of the strain

vector through a constitutive matrix, i.e.,:

a = D* de (3-8)
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where the convolution symbol, *, denotes the integral relationships
given by Equation 3-6b. In general, the matrix D may contain 21 inde-
pendent relaxation functions for describing anisotropic materials;
however, for isotropic materials, only two independent relaxation iunc-
tions are required.

In this writing, only the isotropic form will be pursued. It is
convenient in solving boundary value problems to choose the isotropic
relaxation functions as the response due to bulk and shear deformaticns.
That is, the bulk relaxation function, K(t), is defined as the hydrostatic
stress response due to a prescribed unit of volume change by a Heavyside
step function. Similarly, the shear relaxation function, G(t), is
defined as the shear stress response due to a prescribed unit of shear
strain by a Heavyside step function.

Thus, for isotropic viscoelastic materials, Equation 3-8 has the
following expanded form, where K and G represent the independent relaxa-

tion functions:

I rx+(m;/3) K-(26/3) K=(2G6/3) 0 0 0 €14
Cyo K~(26/3) R+(46/3) K=(2G6/3) 0 0 O €09
a4 i K-(2G/3) K-(2G6/3) K+(46/3) 0 0 O . €44 o)
95 0 0 0 26 0 O €1,
%14 0 0 0 0 26 0 13
Syq i 0 0 0 0 o0 ZGJ €93

Equation 3-9 is the general viscoelastic constitutive law for
isotropic materials and has a strong rescmblance to the analogous elastic
constitutive law. However, it must be kept in mind that K and G are
functions of time, and the cenvolution uperator, *, denctes an integral

relationship. For example,

t 'ir(f)
Y* de = Y(t) (o) + “/ﬁ Y(t - 1) ——m—— d7

o]
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By integration of parts, it can be demonstrated that the con-
volution operator 1s communicative, i.e., Y* di = E* dY. Also, the
convolution operator is linear in the sense that if Y = YK + YG’ then
EX dg = €% C K + e* ch' Therefore, Equation 3-9 may be uncoupled in

shear and bulk and written as:

o = D,{e* dK) + D.(e* dG) (3-10)
wK'~ G ~

~

This may be written in expanded form as:
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(3-11)
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In the above, DK and DG are constant dimensionless matrices for
~ ~
bulk and shear, respectively, whereas De is the familiar constant elas-

tic constitutive matrix representing the instantaneous response of the

viscoelastic model.
Viscoelastic Law With Exponential Series

As previously discussed, the relaxation functions can be repre-
sented by an exponential series with no serious degradation of generality.

Accordingly, the bulk and shear relaxation functions are taken as:

N
K
K(b) = K_ + 2, K. exp(~t/B) (3-12)
i 1
. i=1
NG
G(t) = C_ + 2 G exp(-t/y,) (3-13)
i
i=1
where K_, Kl' KZ’ ce KNK and G_, Gl’ CZ’ .. GNG are relaxation moduli

for bulk and shear, respectivelv, and 61, 62, e BNK and SORTT
YNC are relaxation times for bulk and shear, respectively. Determina-
tion of these parameters is discussed in Appendix B of this report and
elsewhere [21]). For now it is assumed these parameters are known, and
the relaxation functions ‘e completely defined.

Inserting the relaxation functions, i.e., Equations 3-12 and 3-13,
into the general constitutive law, Fquation 3-11, the following rela-

tionship may be written:
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N, N,
O R B P T A D
i=1 i=1
t 1
where k = i/ﬂ e(7) = exp[-(t - 1)/8,])dx (3-15)
~1 ~ <) i
[e] i
t 1
g, = -f (1) — exp[-(t - 1)/v, ]dx (3-16)
21 2 ~ Yi i

The vector sets, Ei and g, are of ten called "hidden ccordinates"
or "internal variables'" (22,23] for bulk and shear, respectively., The
mot fvation for introducing these internal variables will become evident
in subsequent derivations. Tt will be shown that incremental recursion

relationships for ki and g, can be used to great advantage in circum-

venting the neced for storing the complete history of deformation [21,24].

Incremental Viscoelastic lLaw

In anticipation of using an incremental solution procedure,

the constitutive law can be cast in incremental form by defining the

current time Increment as At = ¢t - t_and A, Aq, Ak, and ANg, as
n+l n ~ ~ ~i 2
Vo= c(tn+l) - :(tn), etc. With these definitions, Equation 3-14 can be

directly written in incremental form as:

AV = A + Y A : [ 17
N oA Dy p» Ky oky + D 12:‘ G, o8 (3--17)
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To obtain corresponding incremental relationships for the

internal variables given by Equations 3~15 and 3-16, the time inte-

oo i,

grals are subdivided into n + 1 time intervals, not necessarily of

- lfi(tr\) !

itk wlla] ap

constant size, Then, using the definition “lii = Ei(tn+l)

and Ap, = .g;i(tn+1) - E‘.i(tn)’ the following recursive relationship

~1

T

can be found:

PR

f[n+l 1
Mf.i = —t E(T.)—B; exp[—(tn+1 - 1)/bi]d1 + r, Ei(tn) (3-18)
n
where r, = 1 - exp(—At/ﬁi) %
=
and %
4
3
ftn+l 1 7
.3.:;'1 = -t E(T)—‘,'_; exp[-(tn+l - '.)/‘yi]d'l +qy §1(tn) (3~19) a:
n =
3
where di = 1 - exp(—-L\t/-,-i) 4

308 ]}

It is significant to note that .\kl and Mg, can be determined by just
integrating over the current time step, Lty tot i1 rather thuan the
entire time history. The time history effect is given by the recursive

terms ri Ei(tn) and 9y g’.i(tn)'

67




i1

A

P
|
]

As yet, no numerical approximations have been made. However, in
order to evaluate the integral in Equations 3-18 and 3-19, it will be
assumed the strain vector varies linearly over the time step. That is,

in the time interval t < 1 < t + At, let:

Tt
s® = ogled T
Then Equation 3-18 can be evaluated as:
Ak, o= -y e - Tlelt) -k (e))] (3-20)

where ¥, = 1 - exp(-At/Bi)
Pi
T boar T

In an identical fashion, an incremental recursion relationship for

Agi can be deduced as:

ag, = - qg ¢ - QuleCe)) - g, (t)] (3-21)

where G = 1 - exp(-&t/yi)

{
y

i

q = -z 9
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é i ' Inserting Equations 3-20 and 3-21 into Equation 3-17 and separating the = =
ijl N current strain increment from history terms, the following incremental E E
| constitutive law is achieved: 4
.| = *:7
| < e
‘ b6 = (D_-D)Ae - G (3-22) " E
i ~€ =V ~ ~\ A
where gv = oy PK + a. EG 3
I %K ;
o = K, r
K i=1 i1 =
; : k-
.! V E(; .7-
) a = G, q :
- G i=1 i 71 .
’ : o, = stress-history influence vector , 3
!
Note that D, is composed of the constant, dimensionless matriccs DK and "
DC’ and the scalar multiples Sy and a. that are only dependent on time-
step size At and not the time t. Therefore, Dv only changes 1ts value A
when the size of the time step is changed. A
The term SV will be called the viscoelastic stress-history influence ;
vector and is given by: 3
! 2
.' ; B ]
, gtad = B 12::1 Ky ralele) - kel
i
+ a _ _ , E
k- PG 2: Gi qi[E(tn) Ei(tn)] (3-23) -
3 i=1
' L .
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The stress~history influence vector accounts for the influence of

all past deformation states on the current stress increment given in
Equation 3-~22. 1t should be observed that Ev is not dependent on the

current time interval t tot ; therefore, EV is a known quantity at
A~

n+l’
the beginning of each time step and can be treated as an initial stress.

In computational practice it is convenient to compute 5v at the end

of a time step in preparation for the next step. Summarized below are

the necessary relationships to update Ev afrer the time step tn to t

n+1:

ook, = - xybe - Tolele) - k()]
2. gy = - e - ulele) - g (t))]
3ok lepep) = kgle) + oy 7
Ao gi(tne) = ogy(t) + bgy ‘
5. ele L) = el ) + b¢ 4

N
6. gty = Xy Z:_l Ky Fylele ) - ky(egyy)) 3

NG
+ PG Eéi Gi qi[i(tn+1) - %i(tn+1)]

In summary, Equation 3-22 is the general viscoelastic constitutive
relatjonship to be incorporated into the boundary value problem, and the ;3
above relationships provide the algorithm for updating gv. In the next ;
sections the constitutive relationship 1s introduced into a finite

element formulation and a step-by-step procedure 1is outlined for the

solution.




VISCOELASTIC FINITE ELEMENT FORMULATION

For convenience, the general equilibrium equations previously

derived in the finite element development are repeated here;
T
E fB Ao dv = AP (3-24)
v

where it will be recalled that E is the strain-to-nodal point displace-
ment matrix, AP is the externmal load increment, and the symbol ®
denotes the ordered summation of each finite element volume integration
into its correct location of the global stiffness matrix. Replacing A
by the viscoelastic constitutive law, Equation 3-22, and using the
strain-to-node displacement relationship, he = E Ag, Equation 3-24 may

be written as:
(K - K)s = ap + F (3-25)
e v T~

where

= T v -
- B e (3-26)

i T ' -
K, > JE D, B d (3-27)
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]
’ : Equation 3-25 represents the familiar set of linear algebraic
elastic,

equations common to step-by-step methods. Ee is the constant,

& : global stiffness matrix, and Ev is the global viscous stiffness matrix
which is independent of time, t, and is only dependent on the current
size of the time step, At. Ev represents the viscoelastic force history
vector which is independent of the current time interval, t, to tn+l’
and, therefore, is known at the beginning of each time step.

The solution procedure for Equation 3-25 can be handled in a

™ e

straightforward manner. However, caution must be followed with regard

i to the calculation of EV. Note the volume integral in Equation 3-~28

requires that the spatial distribution of §v be known within each ele-
ment. Unfortunately, it is not known in a continuous fashion. There-

fore, in order to perform the volume integration, several approaches are

Dt ddiion 0 i

f possible. First, it may be assumed that §v is constant within the
element. Thus, év is determined at the element center. Second, Ev may
be computed at the numerical integration points (Gauss points), thereby
facilitating a direct numerical integration. Although this second

o approach is accurate, it may require excessive auxiliary storage because

- the calculation of gv requires the storage of all the internal variables

51 and g for each integration point (see Equation 3-23).

A third and last approach is the most consistent, Basically, the :

idea is to develop an updating procedure for Ev based on a recursion )

scheme. To this end, Equations 3-23 and 3-28 are combined to express ?v

in the following muaner:

~
<«

(3-29)
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R : where
E .
' he = K T, fBT D le(t ) = k (¢ )lav (3-30)
ti:' H had 1 v ~ ~ ~ 1
!
! ) f T :
Dci = 69y y B Dole(t s - gy (r )ldv (3-31)

e L L LTI It St PR —
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Tn the above equations, hy and hGi represent viscoelastic force history
~Kg ~

g vectors for bulk and shear within each element.

2 } As expressed in Equations 3-29, 3-30, and 3-31, the calculation of
E : bKi and bci and then Ev does not provide any advantage over the calcula-
; ' tion for Fv as given previously in Equation 3-28. However, if Equatioms
2 : ~

3 - 3-30 and 3-31 are written in ‘'ncremental form (that is, Lhg = hg (tn) -
3 ~7i ~"i

- = - ; i , i

S bKi(tn_l) and AEGi EGi(tn) bci(tn_l), if d¢ is replaced by B iU, and

if Aki and &gi are replaced by thelr recursion relationships given by

-

Ll

Equations 3-20 and 3-21, then the following recursive relationships are

' ' found for éhKi and Ahci.

= r 4 r -32 E
AEKi K1 ri(l + ri)§K o+ ri hKi (3-32) 1
: - . A —
AbGi = Gi qi(l + qi)§G by + 9y hci (3-33)
where S = vlﬂ T D, B dv, dimensionless bulk stiffness
~K v ~ K o 7
SG = ./rBT DG B dv, dimensionless shear stiffness
~ - ~ ~ =
v




At the end of each time step, Equations 3-32 and 3-33 provide a
simple and consistent method of determining the force history increments
V&EKi and ABGi for each element by making use of the known displacement
increment 5y and the accumulated force history vectors, DKi and hCi‘

It should be observed that the volume integrations are consistently
defined by the dimensionless element stiffness matrices, §K
Furthermore, §K and §G are independent of time and time step; therefore,

and §G’

they need only be computed once for each element and stored.

The foregoing viscoelastic finite element formulation is summarized
in the following step~bv-step solution procedure. Equation 3-25 is the
governing equilibrium eguation to bhe solved at each time étep. To
present the solution strategy, it is assumed that all quantities have
been calculated at time t o, i.e., Q(tn), bKi(tn)’ and Dci(tn). The

. . . N .
objective is to find the increments du, AhKi, and AhGi from time tn to
] - ~ ~

Catl”
1. Form new load increment AP.
2. Assemble force history vector, fv‘ from Equation 3-29.
3. Assenrble total stiffness matrix, Ee ~ Ev’ from Equations 3-26
and 3-27 (only required if time-step size changes).
. A . = A
4. Solve (K - ¥ )Au = 4P + F for Au.
1= ~V ~ ~ ~V ~
S. Evaluate AhG and AhK from Equations 3-32 and 3-33,
-~ . ~ .
i
o)
- ) 1 HE .
3 6. LUpdate all quantities :(tn+1), EGi(tn+l)’ DKi(tn+l)
| 7. Priat results, and return to Step 1. (Note stresses may
' be -alculated frem LEquations 3-22 and 3-23.)
To start the abuve algorithm, it is assumed the body is undeformed
4 prior to lcading »o that initially a(o) = hy (o) = hCi(O) = 0. For the
H ~ ~‘1 -~ ~ _
initial instantancous elastic solution over the time interval t = 0 to
+ . - . . = |
0, we have it = 0, wihlch 1mpliies K = 0, hk = JhC = 0, and Fo= 0.
: Y 1 ~vi a~\
[ ]
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Therefore, the first solution at t = 0+ is obtained by solving the
elastic system, Ee Ag = AP, where AP is the instantaneous load applied
at t = 0, With this starting procedure, the above algorithm can be used
for each succeeding step.

As previously mentioned, the viscoelastic stiffness matrix, Ev’
only changes its value when the size of the time step, 2t, changes. TIf
the time step is kept constant, computation time (steps 3 and 4) may be
considerably reduced by reusing the total triangularized stiffness
matrix to modify each new right-hand-side vector, AP + fv, and perform-

ing a simple back substitution to determine AU.
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Chapter 4

VISCOPLASTICITY £

GENERAL -

The general theory of viscoplasticity is discussed in Appendix C.
In this section, a particular viscoplastic model called 'viscoelastic-
plastic" is developed in detail. The model is a member of a family of 4
combo-viscoplastic models introduced in Appendix C. s
The viscoelastic-plastic model 1is characterized by a linear =

viscoelastic model within the yield surface and the combired visco-

elastic and plastic response on the yield surface. Figure 13 portrays :?
a one-dimensional representation of the viscoelastic-plastic model. As ' A
suggested by the one-dimensional model, plastic deformation is not .
retarded by viscous components; consequently, plastic deformation may
occur instantaneously as in classical plasticity. Accoruingly, the
vyield function is restricted to the same rules of classical plasticity. 3
The viscoelastic~plastic model is developed in detail in the next section E
for a general multidimensional stress-strain state wherein previously

derived relationships for plasticity and viscoelasticity are employed.

VISCOELASTIC-PLASTIC CONSTITUTIVE DEVELOPMENT

In this section, a general constitutive relationship is developed

for the class of "viscoelastic-plastic' materials described above. The E:

fundamental assumption for viscoelastic-plastic materials is that the
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Figure 13. Viscoelastic-~plastic model (kinematic).
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total stress is persistently related to the viscoelastic portion of the

total strain regardless of the amount of plastic straining, i.e.,
o = D* de (4-1)
~ P ~Ve

where D¥* deve denotes the convolution constitutive relationship pre-
g -~

viously developed in Equations 3-8 through 3-11.

In accordance with the above assumption, it is further assumed that .

the total strain can be decomposed into viscoelastic and plastic compo-

nents, i.e.,

where is the viscoelastic strain vector, and ep is the plastic

£
strain vector. Note the assumptions embodied in Equations 4-1 and 4-2
are directly analogous to the assumptions made in the elastic-plastic

formulation, wherein it is assumed 0 =D ¢ and e = ¢+ ¢ .
~ =€ ~e -~ ~e ~p
As always, the objective of this constitutive development is to
determine a relationship between the current stress increment, Ac, and
the strain increment, Ae. To this end, the development begins with the
incremental equivalent of Equation 4-1 given by Equation 3-22 and is

repeated here for convenience:

Aty D Av - 0 (4=-3)
~ Ve ~Ve ~V
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where

D = D, -~ (4=4)
nVe ~e wuV
and
NK
It = T I -
gv BK Egi Ki ri‘sve(tn) Ei(tn)]
NG
- _ e
+ BG ég% Gi qi[sve(tn) §i(tn)] (4 5)

In Equation 4-3, the incremental quantities imply the increments from

nt+l” The stress-history influence vector, Bv, is evaluated

at time tn and, therefore, can be considered as a known initial stress.

time t_ to t
n

All of the quantities on the right-hand side of Equaticns 4-4 and 4-5
were previously defined and discussed in the viscoelastic formulation.
The significant point to be borne in mind is that all references to
strains in Equations 4-3 and 4-5 are with respect to the viscoelastic
strain and not the total strain.

To achieve the desired constitutive form, Asve may be replaced by

Ae - Ae  in accordance with Equation 4-3; thus, Equation 4-3 becomes:

ho = Bve(Ai - Aip) - G (4-6)

~\7
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Except for the term §v’ Equacion 4~6 1s similar to Equation 2-30 in the

elastic-plastic development. Therefore, at this point, the development

0op o

parallels the plastic formulation, and it is assumed the plastic flow

law (Equation 2-26) remains valid, i.e.,

be, = -Lif‘ﬁ—@ (6=7)

where ﬁ is the outward normal of the yield surface, @ is the dilrection
of plastic straining (@ = ﬁ implies associative law; @ # ﬁ implies
nonassociative law), and H' is the hardening coefficient. Furthermore,
it is assumed all the previously established rules for plastic deforma-~
tion still hold. That is, yielding can only occur for states of stress
on the yield surface with some component of the stress increment colinear
‘ with ﬁ, and the methodology of tracking the universal yield surface
. remains unaltered,

Inserting the flow rule, Equation 4-7, into Equation 4-6 and taking
the inner product with respec. to the outward normal, ﬁT, the scalar

quantity AT Ao 1s determined as:

ﬁT(Dve AE - §v)

n4g - —— (4-8)
'

1+ (§ p, @/H")

Inserting Equation 4-8 back into Equation 4-7, the plastic strain incre-

ment i8 related to the total strain increment by:

Aep - C (D Ae - § ) (4~9)
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where

Lastly, returning to Equation 4-6 and replacing Ae by Equation 4-9, the

desired viscoelastic-plastic constitutive relationship is achieved:

b = Que ~ Dyl = 5y (4-10)
where
T
D = D C D (4-11)
=VD ~Ve xpV mve
5 = -p ) 13 (4=12)
~Vp mVe ~Vp msVe -~V

In the above, Dvp is a viscoplastic material matrix, and va is the
ay -~

viscoplastic stress~history influence vector and is related to §

~

through Equation 4-12. Note & reduces to G whenever D = 0.
~Vp ~V -V L
In utilizing Equation 4-10, ¢ is treated as a known initial

-~V

stress during each time interval. At the end of each time step va is

updated in preparation tor the next step. Summarized below are the
necessary relationships to update va after Ar and Ac have been deter-

mined in the time interval t  to t :
n n+l

N vﬂw.'«w-.‘«{
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1. te,, = D fog+ 3 (c)]

~Ve v
2. A"f-i = - ri AEve - ri[f'-ve(tn) - Ei(tn)]
3. g, = -~aqg b - qple {v) - g ()]
4, Ei(tn+l) = _l_c (tn) + Ak
5. §i(tn+l) = §l(tn) + bg,
6. Eve(tn+l) - ~V (tn) t AEve
7o Syt 5 X = UILTUSALNIR I A
r\‘G
+ EG Gi qilfve(tn+1) ﬂi([n+l)]
i=1
8. 5. (t.) = (b _-D D 13 (e .
oZvp n+l wve  wvp'mve  ~vo n+l

In summary, Equation 4-10 is the general viscoelastic-plastic
incremental constitutive rel: tionship useable in any boundary value
i--vrmulation. The above sequence of steps provide the algorithm for
updating évp at the end of each time step. Lastly, it can be observed
thot Equation 4-10 reduces to the linear viscoelastic model (Equation
4=3) whenever va = 9 (i.e., Ep = 9). Alternatively, if viscous compo-
nents arce zero (i.e., Do =D, and Ev = 0), then Equation 4-10 reduces
to the elastic-plastic model.

In the next section, Equation 4~-0 is incorporated into a tinite

element formulation, and a step-by-step solution procedure is pr-:onted,
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FINITE ELEMENT VISCOELASTIC-PLASTIC FORMULATION

Beginning with the general finite element equilibrium

equations
(from Equation 1-6):

where B is the strain-to-nodal point displacement matrix (i1.e.,

As B Au), AP is the external load increment, and % implies the ordered

summation of the elements.

Replacing Ac by the viscoelastic-plastic constitutive law, Equation
4-10, and using dc =

B A%, Equation 4-13 may be written as:




In the above, Eve is the global viscoelastic stiffness matrix and
could be written as Eve = Ev + Ee as was done in the viscoelastic formu-
lation. Recall that Eve remains constant if the time step is constant,
Evp is the global plastic stiffness (reduction) matrix and 1s similarly
defined in the plastic formulation. The vector Evp will be called the
viscoelastic-plastic force history vector and represents the interaction
of viscous and plastic response. 1If Pvp = 0, g;p rféuces to the pre-
viously defined viscoelastic force history vector, Ev'

The governing equations, as shown in Equation 4-14, are in the
proper form for a direct solution by standard elimina ion methods.
Alternatively, the plastic portion, Evp Ag, could be taken to the right~
hand side and treated as an unknown force. These gsolution strategies
will be detailed later; for now the attention is focused on computing
the force history vector, Evp'

The calculation of Evp presents the same problem as did Ev in the
viscoelastic development; namely, Equation 4-17 requires the volume
integration of §vp; however, the spatial distribution of §vp is not
known in a continuous fashion., There are two basic options available to
overcome this difficulty. One method is to calculate évp at a suffi-
clent number of points to afford a proper representation in a numerical
integration scheme, For example, in Gaussian quadrature, the calcula-
tion of §v at the Gauss points would be appropriate. The disadvantage
of this method is that each point at which gvp is calculated requires
the storage of all the internal variables Ei and Ei'

The alternative method 15 to use element force history vectors
(e.g., DKi and Eci) as was done in the viscoelastic formulation. How-
ever, in this case, the development is not as clean due to the interaction
of viscous and plastic responses, As a result, a portion of Evp is
dependent on plastic strain which, in turn, must be evaluated at points
within the element and numerically integrated. Consequently, as long as
it is necessary to calculate plastic strains at the integration points,

it is only a little more work to obtain va at Gauss polnts and obrain

fvp by the first method.
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SOLUTION ALCORITHM

The solution procedures developed in the elastic-plastic and
viscoelastic sections contain most of the concepts for solving the

viscoelastic-plastic problem. Here, only the highlights of the initial

strain method will be discussed.

From Equation 4-14, the proper form for the initial strain method

is given as:

Ad = AP 4+ SE + F (4-18)

K
-Ve ~Vp

where

= T 5\ -
AEP = Z(\/E Pvpgdv> ug (4~19)

Recall that Kv remains constant as long as the size of the time step

remains constant; thus, Kve only needs to be triangularized when the
L ]

time step size changes. To establish the algorithm, it is assumed all

quantities are known at time tn, and the objective is to determine the

quantities at time tn+l'

1. Form new load increment Ag, and estimate Aﬁi = Aan-l

2. Calculate AF_ = E(fBT D B dv) A
~p g o= “VP ~1

E fBT o dv, where o__ 1is given by Equa-
v ~ ~Vp ~Vp

it

3. Compute F

tion 4~-12
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1 ; .
; 4. Solve K AU = AP + LF + F for AQ, :é
mVe ~1 ~ ~p ~Vp ~1 é

‘ 3
; . 5. If Aﬁi ot Aﬁi-l’ go to Step 6; otherwise, return to Step 2 l%

L

j for iteration.
|
1

6. Monitor each element to determine if it is in plastic region.

If so, update yield surface parameters and flow law.

7. Print desired results, and return to Step 1.

The above algorithm implies Evp and Svp remain constant within the time .
step; however, these quantities could be modified in the iterarion loop E
to account for transitions from the viscoelastic range to the plastic -
range as was discussed in the section on plasticity. ‘ N
This concludes the viscoelastic-plastic development. It is felt
this model incorporates all of the significant aspects of viscoelasticity
and plasticity into a unique model. Furthermore, the model directly :
reduces to plasticity or viscoelasticity by appropriate designation of _

i the parameters.
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‘ IIENTIFICATION AND APPLICATION OF VISCOELASTIC-PLASTIC MODEL
|

Ekibae b o

In this section, the viscoelastic-plastic model is discussed from a

T PO
. .

conceptual viewpoint to illustrate the types of material behavior that

i g

can be represented and the methods for determining parameters. To

supplement the discussion, the model is compared with experimental data {f

from sea-ice and plexiglass test specimens.

GENERAL CHARACTERISTICS

A conceptual representation of the viscoelastic-plastic model is

s shown in Figure 14 where the symbols (:). (E), and (:) represent the
‘ plastic, viscous, and elastic parts of the model. As suggested by the
figure the total strain, €, is the sum of the parts (E = Ep + v + Ee)' - 3
Also, the figure illustrates that the applied stress, g is transmitted
from (:) to (:) to (:) instantaneously at full value, because the com-
ponents are all in series. Indeed, these characteristics were used in
the previous section for developing the general constitutive model.
As a side comment, other combinations of models with different =
5 characteristics can be developed by various arrangements of the basic
; ; components. This is discussed in Appendix C.
= To illustrate the viscoelastic-plastic model shown in Figure 14,
consider the strain response due to a constant stress, ¢ = (l/Z)GL,
where OL is the linear limit. Since o is within the vield surface, only
elastic and viscous deformation will occur. This is illustrated by the

bottom curve in Figure 15. Note the initial respomse is the iustantaneous

elastic strain, and all additional strain accumulation 1is viscous,
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Next, consider the same test with o o (slightly less). Again, o is
still within the yield surface. Therefore, the strain response is
double the previous strain response as shown by the next curve. Of
course, this result is due to the superposition principle of linear
viscoelasticity. ,
Now consider o = (3/2)0L. This time the yield stress }s eiceéded,
triggering a plastic response. Like the elastic strain, the plastic
strain occurs instantaneously and, thereafter, remains constant because
it only responds to stress changes. The magnitude of the plastié:strain
is dependent on the hardening function, shape of the yield surfagé, and‘
level of stress. Figure 15 shows a representative strain history for

this example. As the stress level is increased on each subsequent test,

the strain magnitudes increase in a nonlinear fashion until the hardening

function becomes zero, whereafter unrestrained plastic deformation
occurs. Again, Figure 15 illustrates these concepts.

A significant characteristic of this model is that for states of
constant stress, only the viscous strain changes with time so that the
strain rate is independent of plastic deformation and is linearly related
to stress level like an ordinary viscoelastic model.

The above insights are useful for determining the parameters of the

model discussed next.

MODEL FITTING TECHNIQUES

The bheautv of the viscoelastic~plastic model presented herein is
that it is a combination of two well-known constitutive theories:. visco=-
elasticity and plasticity. Accordingly, the material information gathered
over the vears for the individual theories can be used directly for the
combined model.

The first step in establishing a viscoelastic-plastic model repre-
sentative of a particular material is to determine the viscoelastic

portion of the model (i.e., (:) + (:) of Figure 14). 1If the material is
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well studied, it is likel~ that viscoelastic paramazters can be found in

PRI O Hy

the engineering literature. Otherwise, Appendix B provides a detailed

IR L el

! z guldeline for converting test data into viscoelastic parameters. .

In this case, the most important consideration is to use test data

with state variables (i.e., load rates, temperature, molsture, etc.) as

et 2l LT ]

t close as possible to the conditions of the problem beiag studied.
. - Since the viscoelastic model represents the linear portion of the
response, it should be based on test data at low stress levels. Or,

more ideally, it should be based on an unloading response history since

i e

) unloading is assumed to be linear.
- . The plastic portion of the model may be simple or as complicated as

desired. In general, a yield condition, flow rule, surface (hardening)

rule, and hardening function must be determined. For many materials

E
Ev : these are presented in the enginecering literature. Also, Appendix A =
g provides a detailed discussion on various plasticity models.
If very little is known about the material being considered, the
v plasticity model should be made as simple as possible; i.e., assume a z
“i;f _ simple yield condition {(such as Drucker-Prager or Von Mises), assume an
asscclative flow rule, assume an isotropic hardening surface, and calcu-
late a hardening function directly from available test data.
To illustrate the viscoelastic-plastic model f{itting procedure,
consider the idealized strain histery data curves that were discussed in f
The first step is to determine the viscoelastic creep func- ';

tion J(t), satisfving the relationship « (t) = J(t)z, (c < Cl)' In other E

Figure 15.
words, by Llnspecting the data, one recognizes the lower two curves obey
the linear viscoelastic superposition principle so that J{t) may be
determined from either one of these curves. The detailed process of

determining J/t) is given in Appendix B, where J(t) 1s of the form:

N -t/f‘ii -
Sty = A+ BU + 3 C(l-e ) (5-1)

i=1
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and the unknown parameters to be determined are A, B, Cl’ C2, ... C

-
T Bl, 82, e BN.
[ To identify a complete viscoelastic model, additional material data

Ni

ot g st

are required (e¢.g., shear or bulk function) as discussed in Appendix B.
However, if no other data are available, some constant value of Poisson's

Methods of inverting creep functions to relaxation

w”

!
! ratio can be assumed.
' functions and converting uniaxial functions to bulk and shear functions

B 30, ST

are also presented in Appendix B.

After the viscoelastic parameters are determined, the plastic

: ; portion of the model is examined by constructing a plot of stress versus

plastic strain. To this end, consider any particular time t* in Figure

é} 15. By definition, the plastic strain is

é - = * ~ c *

: F,p e(t*) ..ve(t )

£

£

o where c(t*) is the strain data at some stress lcvel o, and ¢ (t%) =

E J(t*)s. Therefore, for any time t* a plot of stress versus plastic

E strain may be coustructed as shown in Figure 16. If the material is

E ideally viscoelastic-plastic, this plot will be identical for any choice

of t¥. However, in practice, it 1s prudent to consider several different

values of t* to get an average overtime. In so doing, one may discover
the plastic strain is highly time-dependent so that a viscoelastic-

plastic model is not suitable. 1In this case, consult Appendix ¢ for

other combo-viscoplastic models.

Assuming the plastic strain remains reasonably constant for each
stress level, the next step 1s to choose a plastic vield condition.
Generally, the Drucker-Frager yield condition (see Appendix A) 1s sufii-
cient to characterize material behavior from one-dimensional tests.

Assuming 1sotroplc hardening, this conditicn is:
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F(c,k) = a 9 + \’JZ - k (5-2)

where o is the average hydrostatic stress, and J2 is the second devia-
toric stress invarient. The yield surface may be visualized in principal

stress space as a cone whose centerline is along the hydrostat (ﬂl =

0, = 03). The yield parameter, k, is the cone radius measured from the

oiigin, and the parameter . measures the rate of increase of the cone
radius in moving along the compression hydrostat. If o = 0, the cone
becemes a right cylinder and the Drucker-Prager condition reduces to
the Von Mises yield condition.

For the problem under consideration, the data in Figure 16 contain
two compression tests that exceed the elastic limit. However, because
these Lests have ldentical stress paths and intercept the same point on
the vield surface, they do not provide sufficient information to deter=-
mine both k and 1 independently. Tf tension yield tests are conducted
in addition to the comypression yield tests (or, if lateral plastic
strains are measured), then bothh k and & can be determined.

Assuming for now only comprec¢sion yield data are available (which
is viten the case), then u must be pre-selected as some constant, say

a o= a (most probably “o = 0). From Figure 16, initial plastic yielding

‘occars at ¢ = ¢y 8o that from Equation 5-2 the initial value of k is:
a .
o) l Ll
k = — g, + — (5-3)
o] 3L \[3
where s < 0 1s the initial compressive yleld stress. During plastic

L
yielding, k increases such that it continuously satisfies the yield

condition.
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Having established a yield condition and its parameters, one next

assumes an associative flow rule and determines the hardening functior.
From Equation 2-24, the associative flow rule for the plastic strain

increment gives the hardening function as:

HO) = o 2 Lo (5-4)

where n, is the component of the yield surface unit-normal collateral

with the loading stress, and is given by:

2/3 a_ + \/2 Sgur o
2 _ (5-5)

1f @ = 0 (i.e., Von Mises conditior), the above reduces to n, = (2/\[5)

Sgn o.
Using Equations 5-4 with ny given by Equation 5-~5, and &o/sep given

by the slopes in Figure 16, the hardening function can »« evaluated as a

fun~tion of plastic work

(i.e., area under o versus cp curve)., This is illustrated in Figure 17

for the case ao = 0,
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The preceding 1llustrates the basic strategy of identifving the
parameters of the viscoelastic-plastic model. Appendixes A and B pro-

vide further insight and details. 1In the next section some examples are

given.

COMPARISON WITH EXPERIMENTAL DATA

In this section, the versatility (and limitations) of the
viscoelastic-plastic model is demonstrated by comparing it to experi-
mental strain data from compression test specimens of Plexiglas and sea-
ice.

The Plexiglas creep data were generated by Marin, Pao, and Cuff
[27), and are shown by discrete data pnints in Figure 18 for three
compressive stress levels, ¢ = 2,500, 3,100, and 4,000 psi. Using the
model fitting procedure in the previous section (including Appendixes A

and B), the viscoelastic-plastic model expression for creep strain is:

-0.3t

O —'?-6[2.57+o.oooz.17t+u.389(1—e Yl o+ .
p
10
with v = 0, when - (-w
N P
¥ y » when L

It is assumed -
1. P P

psi is simplified to a constant. The time unit is hlours.

= 3,100 nei (initial Vinear limit), and E ( ) = S00 000
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The above expression is plotted as a solid line together with

the experimental data points for all three stress levels. For the two
lower stress levels, the model is linear viscoelastic (i.e., no plastic
response) and compaves well with the data points. For the highest
stress level (4,000 psi) a plastic strain is generated that combines

with the viscoelastic strain. This gives a better fit of experimental

strain than just the linear viscoelastic model as shown by the dashed

line.
The above example illustrates a predominantly elastic response, a

foe sl e

moderate amount of viscous response, and relatively little plastic

response. As the stress level increases, plastic response becomes more

T o

and more significant.
The second example, sea-ice, illustrates a highly viscous material

o holeadl

with pronounced plasticity and relatively small elastic response. The
experimental data were generated by Vaudrey [28] and are shown as dis-
crete data points in Figure 19. The data shown are for sea-ice at —270C,

with ice crystals orthogonal to the direction of loading at three com-

ol sttt i bl bl 3

pressive stress levels, ¢ = 70, 175, and 350 psi.

A viscoelastic-plastic model fit gives the expression for axial

strain as:

=(t) = '“26 {2.0 + 1.43t + 21.1(1 - e-o'7jtﬂ +
10

with : = 0, when = - 3
P o




i It is assumed ¢, = 250 psi, and the hardening function, E (¢ ) = o, / 7 é%
! .oz (1 + sp) , which approaches zero as sp becomes large. < &
' ) The above model expression is plotted as solid lines in Figure 19, - g
24
|' . showing excellent agreement with the data points. In particular, the - é
! _ |
[ viscoelastic-plastic model is able to replicate unrestrained plastic E
flow that occurs at the high stress level. ég
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SUMMARY AND RECOMMENDATIONS

This report offers a textbook style development of viscoplasticity.
For completeness, a detailed review of viscoelasticity and plasticity is
also included. The main text focuses on the so-called '"viscoelastic-
plastic model." However, this model is just one example of a general
family of combo~viscoplastic models presented in the appendixes.

Each model is initially presented with visual one~dimensional
concepts and then generalized into multidimensional stress space. The
net result is an incremental constitutive model suitable for numerical
computation. To this end, finite element algorithms are proposed for
each model.

The viscoelastic-plastic model is shown to capture the observed
creep responses of such elusive materials as plexiglass and sea-ice.
Also, it is apparent other materials, such as soil, plastic, epoxy,
concrete, etc., can be suitably approximated with this model within
certain ranges.

A primary advantage of the viscoelastic-plastic model is the ease
of parameter identification. This is because it can be divided into
seprrate viscoelastic and plastic identification problems. The primary
limitation is that the strain rate is independent of plastic strain for
a conatant load. This limitation can be removed by emploving higher
~rder combo-viscoplastic models,

Immed iate future 2fforts should be directed on two fronts. First,
the algorithms developed herein should be incorporated into a finite
element program and tested on selected boundary value problems. Second,
and concurrently, higher order combo-viscoplastic models should be
investigated and compared with experimental test data. Here the objec-

tive is to identifv a single "grandfather" combo-viscoplastic model that

kbl

bl
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contains all thie desired response characteristics and is capable of
degenerating to lower order models.

The net result of these efforts would be the beginnings of an
analytical tool (finite element program) capable of rationally dealing
with structural engineering problems encountered by the Navy,

Finally, the long-range objective should include a material
identification study. That 1s, for each material type, subtypes would
be grouped by ranges of state varilables, such as temperature, moisture,
impurities, etc. Then, visccplastic parameters (i.e., parameters of the
"grandfather'" model) could be determined by identification procedures
discussed herein. This library of data could be incorporated into the
finite element program so that model parameters would be automatically
retrieved (or interpolated) by specifying the material type and state
variables. Alternatively, experimental data (e.g., triaxial test data)
could be input into the program and the parameters determined directly.

The benefits of this plan are enormous, both technically and
economically. On the technical side the plan provides a rational and
uniform approach for dealing with structural materials, such as concrete,
plastics, soils, sea-ice, epoxies, and a host of other time-dependent
materials encountered day~to-day by Navy engineers., Economically, under
current procedures, it is not uncommon for an engineer to spend more
than one-half of his time groping with material models and their param-

eters, The proposed plan would relieve the engineer of this burden and

allow him to get on with solving the problem,
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Appendix A

PLASTICITY MODELS AND CONCEPTS

In this appendix, plasticity concepts are elaborated for common
yield conditions and flow rules with emphasis on methods of identifying
plasticity parameters from experimental data.

The first and foremost requirement to establish a plasticity model
is the selection of a yield condition. Using the universal form estab-

lished in Equation 2-34, the general yield condition is written as:

F = f(g—ap) - kx (A-1)

such that F 0 implies plastic response

F < O implies nonplastic response
and (g - Bp) = loading function
k* = yield parameter (universal weighting)

For a particular current value of the weighted plastic-tracking
stress, Ep’ and of the yield parameter, k*, the yield surface is defined
by all stress states, ¢, such that F = 0. The unit normal of the yield

surface in six~dimensional stress space is given by:
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N o= ot/ ek (4-2)
~ ~3 ~ ~J
where
f (o - ﬂp)
fc = 3c (a-3)

The unit normal, %, is an important vector, because it controls the
magnitude (AQT . ﬁ) and direction of plastic strain. Observe from
Equation A-2 that ﬁ is determined directly from the gradient of the
loading function so that the choice of loading function dictates the

general nature of plastic flow.
Loading functions are generally written as functions of the stress

invarients:

f(r-3) = flo (g -73), Jyo - Ep), J3(o - §p)] (A-4)

where n is the spherical stress invariant and Jé and Jé are the second
and third deviatoric stress invarients. Using the chain rule, the

gradient vector 1s given by:

3f af af
f.0% 5 281 Y o7t (A-5)
m 2 3
110
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The vectors al, a2, and 33 are independent of the loading function
and are given by:
Bom
ST (a-©)
BJE
~2 = 3o (A=7)
aJ'
33 Y (A-8)

The foregoing has illustrated general forms for yield conditions
with arbitrary loading functions. 1In the next section these concepts

will be illustrated on a particular form.

DRUCKER-PRAGER YIELD CONDITION

A particularly useful and versatile vield condition is the so-called
Drucker-Frager model. For clarity and conciseness, the model will be
developed assuming isotropic hardening (i.e., Op = 0); however, the
inclusion of universal hardening is a straightforward extension.

The Drucker-Prager yleld condition is:

F=<;am+\ﬁ§\)-k*;o (A~9)




which implies the loading function is:

f = a Sy + \’Jé (A-10)

—— e s

. The invarients %n and Jé are measures of hydrostatic stress and

shear stress, respectively, and are defined as:

o = 3 (o, * 0,0y (a-11)
I3 =—:_l,_—[ol-c)z+(02-0)2+(o3-om)2] %
' + 1122 + 1232 + 1312 (A-12) g

ke

Jlul

where o and o, are norma tres and 1 1 and 1 are
h 01, 2 a n ls ses, an 12° Y230 d 31

3
shear stresses.

The parameters of the yield condition are o and k*, which are

R

selected to establish the shape of the yield surface. For example, if é

a = 0, the yield surface becores a cylinder of revolution about the é

hydrostat in principal stress space with radius k*, or equivalently, it §

: may be viewed as a straighc line on a cm,\sz graph as shown in Figure i%
A-la, This type of loading function 1s assoclated with the Von Mises E

yield criterion and is a good representation “or ductile metals. %

' For a more genc¢ral case, 1 1is specified non zero, which provides é
the conical surface shown in Figure A-1lb., The conical surface is §

associated with the standard Drucker-Prager vield criterion, which has E

applications in concrete, soil, rock, etc. E
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(b) Drucker-Prager yield criterion.
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(¢) Modified Drucker-Prager yield criterion.
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Figure A-1. Yield criteria.




AT e

The vield condition can also be applied in piecewise continuous
fashion to better approximate actual yvield surfaces as indicated in
Figure A~lc. To apply this model, one loading function is operable for
values of n < Oo’ and a second loading function 1is operable for Um > co.
Additional functions can be added if desired. This is termed "modified
Drucker-Prager" model.

The Von Mises vield criterion only requires one parameter, k*, and

therefore, only one material test to initially characterize the yield

surface. The standar” "rucker-Prager criterion requires determination

of ax and k¥; thus. 't ".-i' two material tests are required. Table A-1
identifies the Vo. ““: - 7 - meter for a tensile test and the Drucker-
Prager parameters (- - ., . .xial strength test.

The descriptiou ¥ . and k* for Drucker-Prager are in terms of the
cohesion stress, C, and internal angle of friction, &, as determined
from at least two triaxial tests. To illustrate the derivation of a and
k*, consider two triaxial tests under different confining pressures and
loaded axially to failure as suggested in Figure A~2, Drawing Mohr
circles for both stress states at fallure permits defining a straight
line failure surface with constants C and ¢ as illustrated in Figure
A-3. The failure surface prescribes wnat combination of shear stress

and normal stress will cause failure, i.e.,

T = € 4+ ¢ tan © (A-13)

shear stress at fallure (positive)

where :

normal stress at fallure (compression positive)

All stiates of stress (1, ) satisfying Equation A-13 are failure

states, and the equation is known as a Coulomb failure criterion. The
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rotated stresses, : and o, are related to the principal stresses, <, and

1
03, through the Mohr circle geometry as:
(Ul - 9.) :
T = ————— cos g (A-14)
(o, + a,) (cp = 33)
1 3 1 3 N
c = s - 5 sin @ (A-15)
Accordingly, Equation A-13 may be written as:

1l + sin © 2 C cos ¢ _

S ( T = sin ¢ ) 3 T Tostas - © (A~16)

Now the objective is to put the general yield condition, °h +

"Jé - k¥ = 0, into the form of Equation A-16 in order to equate co- fi-

clents and, thereby, determine k* and « in terms of C and ©. For a

. = o~ ~ L -~
triaxial test, we have s ( + 2 )/3 and \/Jz ‘ )/\[3
(assuming compression pOSltlve and ) n3), so that the general yield

condition can be written as:

) 1 Lk
NG E R N T B R (a-17)

T NG PG,

Equating the coefficients of :3 and the constant terms between
Equations A-16 and A-17 gives the values for k* and -« in Table A-1.
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Table A-1. Yield Surface Parameters

Criterion

Von Mises

oy/\fg

Drucker-Prager

2 3 sin #

3 - sin 6

2

3 C cos %

3 - sin 8

where ¢, = vield
’ state

C = shear
sure

4 = slope

stress 1in one-dimensional stress

strength at zero confining pres-

of tvriaxial strength envelope

ettt ! vt o ol e it s i gl ‘_ il i o il i BB Lt e L g | ‘ ik

B e 50 0o e A 0 i wtll

al

duki L




? o at failure (test 2)
I' T 03 = constant (test 2) ‘01
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!i -ﬁa 03 = constant (test 1)
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Axial Strain, €,

Figure A~2. Typical triaxial test data.

shear stress

A

normal pressure

Test 2

Figure A-3. Mohr circle plots of test data.
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: It should be appreciated that the cetermination of a and k* can be
% : achieved in a direct manner without the need of computing C and ¢,

That is, Equation A-17 can be used directly by inserting the failure

stresses, 2 and 93 for the two test specimens, thereby providing two

equations for the two unknowns k* and a.
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DRUCKER-PRAGER ASSOCIATIVE FLOW RULE AND HARDENING FUNCTION

In general, an associative rule (e.g., Equation 2-26) can be

S o i o it

: written as:

b

ket

re = = N 0 (A-18)

i,

[ B

' where

| A

1]
b
1>

In the above, Acp is the plastic strain increment, Ag is the total

e g

stress increment, H' is the hardening function, and N is dependent on

the urit normal of the yield surface, n.

~

Consider the Drucker-~Prager loading function (Equation A-10) for

LT LT TRt

3 states of stress characteristic of common tests (such as, triaxial or

o e

confined compression); 1.e.,
a.: independent stress

= ¢,: 1independent stress

TR W T W
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The yield surface unit normal for this stress state is:

| ?
I (A-20)
0
! 0
! where g = 22 2V3 sgn
2a - Y3 sgn
A = 2« - V3 sgn
| - =
Vo2 o + )
sgn = sign of (ol - 03)

Assuming the material is initially isotropic, the two independent

stresses (say o, and 03) produce a corresponding strain state as follows:

1

€ independent strain

iy = c3: independent strain

Yig T Y237 M3 70
With the above symmetry, the plastic flow rule (Equation A-18) can

be reduced to the following:

2
At H |3 2

é’ {Acl A2 82 g
plastic

|
J s (a-21)

3) total
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The correspo~ding elastic strains for this stress state are:

it st St ek

Age 1 -2 v Acl
A€

-v (1 =) Ac
elastic total

L :
- ¥ (A-22)

Therefore, the total stress~-strain relationcship is given by the sum of

elastic and plastic strain as:

. A282+1_> 2
1 it E H

o) a2 v 2A2+l-v> Ay
o CF J\E E

(A-23)

Equation A-23 1s applicable for any test data conforming to the symmetry
conditions: Acz = A53, A02 = Ao3, and all shear stress and strains are
zero,

For a triaxial test, Aol and A03 are specified, and Ael is the
measured axial strain increment (elastic and plastic). Assuming the
elastic properties E and v are determined by standard procedures, the

hardening function H'(ep) can be determined from Equation A-23 as:

A2 B(R Ao, + 2 Acz)

1

Ag 2 v Ao

H (cp) = (A-24)

2
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As another example, a one-dimensional strain test specifies Aol and

measures Ael with the constraint Ae3 = 0. For this case, the hardening

function is given by:

i 1 4™

Ae
A2 +8%2Q -v) +480] - == (2 A% B)

1 (A-25) =

R'(e ) =
P 1 (2 v2 +v-=-1) + Ael (1 - v)
B3 ZEI

It is interesting to note that for the one-dimensional strain case,
a perfectly plastic material, H'(cp) = 0, does not result in unrestrained
plastic flow. This 1is because the lateral stress, Oqs adjusts to keep

the stress state on the yield surface.

ol e o o, G o

DRUCKER'S POSTULATE AND FLOW RULES

Lt

Drucker's postulate may be stated as: 'Given a stress state in

T

equilibrium on the yileld surface and an external load cycle slowly

applied and removed, then the external agency does positive work during

Tl e

loading, and the net work over the cycle is non-negative."

A material conforming to this postulate is termed stable. Also, a

IR S

mathematical flow law ensuring this condition is admisuyible (i.e., will

ad

not create energy). 1In equation form, Drucker's postulate is:
T
dg (dep + dee) > 0 (loading)

dcT(dep +de) - doT(dﬁp) > 0 (full cycle)

. g
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The first relationship signifies both elastic and plastic work
increments are positive during loading. The second relationship implies

unloading work is all elastic so that for a full cycle we must have:

do” de_ > 0 (A-26)

Now replacing dap with the general flow rule (Equation 2-26) the

above equation becomes:

(do" « Do - m) 0 (A-27)

where % is the assumed direction of plastic straining. If % = ﬁ, the
flow rule 1is said to be assoclative; otherwise, it is nonassociative,

By virtue of the vield criterion, the scalar product dQT . ﬁ is
always non~negative during plastic deformation. Therefore, Equation
A-27 1s always satisfied for an assoclative {low rule, since H' is also
non-~negative for stable materials.

In order for a nonassociative flow rule ro satis{y the stability

T
criterion, we must have dE « > 0 for any dg that causes plastic flow.

Further implications of nonassociative rules are beyond the scope of this

appendix and require additional research.
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Appendix B

IDENTIFICATION OF VISCOELASTIC RELAXATION AND CREEP FUNCTIONS

The intent of this appendix is to provide guidelines for converting

viscoelastic data into creep and/or relaxation functions of an exponen-

tial series form, Specifically, the following three basic problems will

be addressed:

1. Obtaining a creep function from creep data, or obtaining

b el b

a relaxation function from relaxation data.

williod

Inverting a creep function to a relaxation function and

(2%

vice versa.

[T

[

3. Transforming relaxation functions from one type to another,

such as transforming a Young's Modulus function into bulk

and/or shear functions.

I. CREEP AND RELAXATION FUNCTIONS FROM VISCOELASTIC DATA

The objective is to curve-fit (by least-square error) an exponen-
tial series with available viscoelastic data to achieve either a creep

or relaxtion function. The exponential series has the general form:

X, t
ko (8-1)

1

N
A+ Bt 4+ 3 oC(l-e

Y(tvi)
- k=1

123




where A, B. Cl, CZ’ PN CN’ Xl, Xz, o XN are unknown parameters to be
determined. In this form, the term A is the initial elastic response, B
is the rate of linear response, Ck is the long-time viscous response,
and Xk is the inverse of retardation or relaxation time. For conveni-~

ence, these parameters are denoted by ¢, i.e.:
¢ = ¢1, @2, e QM} = ‘A, B, Cl’ C2, o CN’ xl, X2, e XN (B-2)
where M = 2(N + 1)

The form of Equation B-1 is applicable for either a creep or
relaxation function with the necessary provisions of Y(t,¢) > O and
£k

relaxation function, Y(t,¢) must be a monotonically decreasing function

> 0 to insure decay of each exponential term. In the case of a

so that the linear parameter B 0. However, a creep function mono-
tonically increases; thus, the parameter B .ieed not be specified zero.
Figure B-1 illustrates example forms of Ejuation B-1 for creep and
relaxation functions,

The known viscoelastic data represent either creep data or relaxa-
tion data. Here, creep data are defined as a recorded strain history
corresponding to a material specimen subjected to a constant unit of
stress, Such as axial stress, shear stress, or hydrostatic stress.
Conversely, relaxation data are defined :s 2 recorded stress history
corresponding to a material specimen subjected to a constant unit of
strain deformation (c.g., axial, shear, volumetric, etc.)

In either case, it 1s assumed the data are reduced to a set of

discrete values (Yi':i)’ i=1, 2, ... n, where Yi is the creep/

relaxation data point at time ti.
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These discrete data may be written as a plecewise linear function
of time as follows:

B

Y(t£) = Wi + Y, ¢, for t, <t < tis1 (B-3) g

vhere W = (Y -\'( t,)

In the above, Y(t) is a piecewise function connecting successive data
points, as illustrated in Figure B-2 for the case of creep data. Higher
order interpolation functions could be used if desired.

To fit the function Y(t,¢) (Equation B-1l) to the viscoelastic data
Y(t) (Equation B-3), the leas:-square~error method with Newton~Raphson
solution procedure is used as follows.

First define error:

error(t,d) = Y(t,4) = Y(t) (B-4)

Squaring the error and summing it by integrating over the time of

interest, 0 < t < t gives the net square error:

t

n Y
e(¢) = f (Y(t,¢) - Y(£)]" dt (B-5)
~ 0
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Y (1), Equation B-1
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Figure B-l. General forms of Equation B-1.

t-! YBI\ L
./
Y¢ O”‘(T”’ .
— Equation B-2
Ys |- /0/4’/
A creep data (Yj, tp)
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Figure B-2. Creep data example. %

24 ¢t AT

BT AN A 1




T
i
5

VN R

Minimizing this net error with respect to each unknown parameter,

¢m = (A, B, C, ... CN’ Xl, X2’ e XN) gives M equations:

prne e e

t

n
| -2 f T s - 1) Hotd qr = 0 (B-6)
. m 0 ~ “m

@
™
~
©
~

Q
<

1

i

|

where m = 1, 2, ... M. For brevity, the above equations are denoted by

an M~dimensional vector equation as:

f(¢) = 0 (B-7)

ail b

where ¢° = {AO, BO, Cko, XRO} represents the solution vector satisiying

Equation B-7, Since the equations are nonlinear with respect to the "

parameters ik’ an iterative solution technique 1s required. In the

following, a Newton-Raphson iterative solution procedure is presented.
The Newton-Raphson procedure is based on a Taylor series expansion

. o .
of Equation B-7, where ¢ 1s written as:

40 = 4T 4+ A (B-8)

s . o .
such that ¢ 1is any estimate of ¢ , and 4% corrects the estimate to

~ ~

satisfy Equation B-8, The objective is to successively obtain a better

s
! estimate of 3~ so that 43 > 0. To this end, the Taylor series expansion

-~

of Equation B-7 can be written as:




"

:
L
E
f
2
E

£(63 +8¢) = 0 = £(°) + F®) « A¢ + higher order terms (B-9)

vhere F(¢°) = 3(f)/3¢

~ o~

F(¢°) is an MxM-dimensional Jacoblan matrix evaluated at ¢°, and
the higGer order terms are second order and above products of A¢ (i.e.,
squares, cubes, etc.). )

If Ag is small so that higher order terms are negligible, then Af

may be approximately determined as:

) (B-10)

o5t - 0%+ e (B-11)

Returning to Equation B-10, the process 1is repeated utilizing 23+1 in
place of gs. After a sufficient number of iterations, we have Ag + 0
and 28+1 - ¢°, providing the desired solution.

The ma}or effort in the above algorithm is establishing the vector
E(ES) and the Jacobian E(¢S) for each iteration. These somewhat labo-
rious developments are gi:en next,

For specificity, the M equations represented by £(¢) = 9 and
defined by Equation B-6 are distinguished by the parame;er groups A, B,

C,, and X, as follows:

3 3
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0

t
n
f = M = f [Y(t'¢) ‘?(t)] dt (8“12)

A 3A A
t:1'1
£, = %22 = f [Y(t,$) ~ Y(t)] t dt (B-13)
4 <
tn =X, t
fo = E%éﬂl- = J/. (Y(t,4) - Y(£))(L -~ e 3 ) dt
3 i 0 B
j=1, 2, ... N (B-14)
tn -X,t
£, = ?%)(iﬂ = f (Y(t,¢) -~ ¥(t)) Cj te J 4t
h| i 0

j=1,2, ... N (B-15)

where the common factor 2 has been divided out of all M equacions.
Performing the indicated time integration for Equations B-12 through
B-15 gives the results presented in Table B-2, where the functions P, Q,
R, and S are defined in Table B-1.

Next, expressing the components of the Jacobilan matrix f in a

similar notation, we have:

of n
F = A _ f de (B-16)
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Table B-2. Integrated Expressions for Error Functions f(¢) and Special Term ay
3

. 2 N n-1 . (t 2
n ) i+]
fA = A t + B 2 + E ck[cn - P(tn.o,xk)] - Ewi(tiﬂ - ci) + Yi 3
: k=1 i=1
tnz tns N c“2 :l - n-l (ti+12 _ ti2) o™
EB - AT + B-——3 + ch - " Q(tn.O.Xk) - Zwi 3 + Y1
k=1 i=1
A 2 N
- L. - -
A[tn P(tn,O.Xj)] + B[z Q(cn.o,xj)] + zCk[:n P(tn,O.XJ) P(:n.o,xk)
! . k=l
7] : n-1
[
(= - - -
2 f, - PG 0X 4K )] Z Woltgyy =ty = Plegy et X))
(%} j 1.1
o N
-]
9 .
o 2 2
o t -t
A : i+1 i
fal e
+ Yi[ 3 Q(tiﬂ'ti‘xj;]
N
: + + Ve sty - [ALEY
: A Cj Q(tn,O Xj) B cj R(cﬂ 0 Xj) + cj Z ck[o(:n 0 xj) Q(cn 0 xj+xk)]
. k=1
£ -
X
.j n~1
. - Cj Ewi Q(ti+l'tj‘xj) + Y, R(‘Hx"i'xj)
i=1
N
- AC R(t ,0,X + BC, SC_,0,X +<:Z R(t ,0,X,) - ,0,
g .| g e 00X g SCE0X) 3 2 ClR(EL 00X ) = RUE LOX 4%
o k=1
1
g &
— i n-1
b . . . .
g - Cj ki R(tl.ﬂ,ti,kj) + Y s(tiﬂ,tf,.\j)
& 1=1

*Special function By is used in F\, X in Jacohian Marrix:

J “17

tn
-X.t

- f . . 3 2 J
g i [Y(t.d) = F() ] 7 e
4 n
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BfA f n
. FAB = T’;E_ = t dt (B=17)
. 0
;
|
‘ 2, ftn -X, €
N F = = (L -e 7)) dt (B-18) |
: AC;’, 3C2 0
; BfA ftn -XQt
FAX = ﬁ— = Ci; t e dt (B-19)
'. I 2 0
!
a g ftn 5
FBB = TB—— = 7 de (B-20)
: 0
ry
3y ftn -X,t
}BC_ = Yo = t(l - e ) dt (B-21)
. 2 0
3fB j‘tn ) -X.t
F.. = —Z— = c. t°e © dt (B-22)
: B}\'-’. QXE' 0 %
'z
- 3fcJ ftn -X.t Xt
: Fo o = 3G = (1 - e (1 - e ) dt (B-23)
) j - ) 0
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n _ -X X
+ f [Y(t,g) -Y(t)]t e 3 a-ij- dt (B-24)
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af t
X, n (X X )t
FX X = —ax—l = / - C CQ. tz e 37 dt =
: 18 ¢ 0 J 3
- (B-25) :
: ﬁ/ftn _ ) SIS E
: ! | + / [Y(t,f) - Y(t)]1(-¢t Cj e ) —éﬁ dt ;

skl il e,

The integrated expressions for Equations B-16 through B-25 are given in

Table B-3. Nota E is always symmetric by virtue of mixed partial deriva-

L

tives, i.e., F¢joQ = aze/a¢Q a¢j.

To summarize, the following steps comprise the curve-fitting

algorithm:

f , 1. Make initial estimate of pzrameters:

s E ]

1 % e Xy :

o
w
/2]

¢® = | A%, B°, c.°%, c2s e cNS, X

2, Compute error funcrions f(¢s) and Jacobian matrix F(¢°)

(Tables B-2 and B-3).

3. Solve for estimate correction Ad, L.e.,

F(%) = a3 = -£(87)

3
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4. Update estimate, ¢S+1 = ¢% + a¢; Af |a#! 1s near zero, solution
~ +
is complete. Otherwise, return to step 2 using ¢S 1 to replace
8
¢ .

For the implementation of this algorithm it is prudent to provide
the capability of specifying any combination of the parameters at pre-
determined values, This 1s useful {f the algorithm cannot converge on a
solution when all parameters are unspecified. In particular, the con-
stant term A should be specified as the initial elastic response. This
is the reason the exponential terms were written as C(l - e-Xt), instead
of simply Ce—Xt as presented in the main text. Also, if all Xk are

specified, then a lirnear solution i3 achieved (no iterations).

II. INVERTING CREEP AND RELAXATION FUNCTIONS

Once a creep or relaxation is determined, its inverse can be
determined by the procedure outlined in this section., 1t Is assumed the
creep or relaxation functions are characterized by exponential series as

iollows:

M -8.¢
J)y = J_ o+ J ot + Y I, e I (B-26)
a b =1 3
N
N -ait
Y(t) = Y+ 3 Y e (B-27)

In the abcve, J(t) represents a general creep function, and Y(t)
represents a general relaxation function. These forms intenticnally

exclude materials that do not exhibit an initlal elastic response.
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The objective can now be gstated as: given the parameters of the
“ o BM), what are the corre-

sponding parameters of relaxation function (Ya, Yl' .o YN’ Uy e aN)?

creep function (Ja, Jb’ Jl, o JM’ Bl,

Or conversely, given the relaxation parameters, what are creep param-—

eters?
As 1illustrated in Figure B-l, the behavior of a material is

different depending on whether the material is solid-like or fluid-like.

Accordingly, the creep and relaxation functions may be subdivided into

two types as follows:

1. Solid-like creep/relaxation function forms (M = N, Jb = 0):

) = 3+ g e d (B-28)

Y(e) = Y+ S v, e ! (B-29)

2, TFluid-like creep/relaxation function forms (M = N - 1):

N-1 -8,t
O = a4 a ot Y g e (B-30)
a j=1 3
N —ait
Y(e) = Y e (B-31)
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where the following restrictions on the parameters are implied:

M
g+ 23, >0
I=1

Note the solid-like creep and relaxation functions have identical forms:
each contain a constant term and decaying exponential series. However,
the fluid-like creep function contains the lineir term Jbt which permits
continued creep (or flow) for all time. The corresponding fluid-like
relaxation function contains no constant term or linear term, but rather
an additional exponential term. This permits the stress to relax to
zero under a fixed strain.

To determine the respective inverse functicns for either the fluid-
like or solid-like forms, the fundamental convolutiun identity between

creep and relaxation functions is exploited:

t
“/f Jx dY = 1}

0

or, in expanded form:
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E

t 3Y
J(t) Y(O) + f J(t - ) a—d‘l’ = 1 (B-32)
0 T

For the solid-like case each function contains 2N+l parameters.
Upon inserting Equations B-28 and B-29 into the above identity and
integrating, the results may be grouped into time functions of e_ait,
e-sit, and a constant, The groups of terms associated with each expo~
nential time function must be zero, and the congtant terms must equal 1
in order to satisfy Equation B-32 for all time. This gives 2N+1 rela-

tionships berween the constants as follows:

Joy. =1 (B-33)
a a
N §E N
J o (B, -a,) - «a J.mw B, -a,) = 0
a k=1 k i i s j k=1 k i
(S
i=1,2, ... N  (B-34)
N ) N 55 N
Y 4+ 3 (&, - a) + a Y, W (B, =) = 0
( a ) e 3k 1t iy 3k
k#4

j=1,2, ... N (B-35)

If the creep function parameters are known, the relaxation parameters
Ups By +e. uy are determined by solving for the roots of the N-degree
polynomial of « in Equation B-34., Next, the relaxation coefficients Yl’
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Y2, SN YN are determined by the linear solution of Equation B-35, with
Ya = l/Ja. On the othe: hand, if relaxation parameters are known, the

creep parameters Bl, 82, oo

BN are determined from the roots of Equa-
tion B-35 first, then the creep coefficients are determined from Equation

R-34, with Ja = l/Ya’ Table B-4 provides solutions for N = 1 and 2.

In a similar manner, parameter relationships for fluid-like mate-

rials can be developed by inserting Equations B-30 and B-31 into the

convoluticn identity. For convenience, the following expression is

used.

t
fY*dJ=1

0

For this case, there are 2N parameters per function along with 2N

relationships between the creep and relaxation functions given as:

N
Jy & Yyla, =1 (B-36)
i=1
N-1 N-1 N-1
a, o (x, = 8)X(J + J - Jm (a4, - 8)
i k=1 i k a i1 j b k=1 i k
N=-1 N-1
+ a 3, J. (a, - 3,) = 0
i Iny! j 3 k=1 i k
k#j
i=1, 2, ... N (B-37)
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N N
Y Y m o -8 =0 j=1,2, ... N=1 (B-38)
i=1 k=1

k#d

I1f creep parameters are known, the relaxation parameters a,, O, .- oy
are d.termined from solving the roots of che polynomial given by Equa-
tion B-37. Thereafter, Yl’ Y2’ ces YN are determined by the linear
solution of the N-1 equations of Equation set B-38 together with Equation
B-36. On the other hand, if relaxation parameters are given, the N-1
roots of Equation B-38 give Bl, 82, . BN—l’ and the creep coefficients
Ja’ Jb’ Jl, J2’ e JN_1 are determined by the N equations in Equation
set B-37 together with Equation B-36. Table B-5 shows solutions for

N =1 and 2.

III. RELAXATION FUNCTION INTERRELATIONSHIPS

Thus far, relaxation and creep functions have been denoted in a
general manner by the functions Y(t) and J(t), respectively. However,
in practice, Y(t) represents a particular kind of relaxation function,
such as shear modulus, bulk modulus, Young's modulus, or confined
modulus, etc. Similarly, J(t) represents the corresponding inverse
function.

1f experimental data are available for one particular type of
function, it may be necessary to convert the data to another type of
function. For example, suppose a Young's modulus relaxation function
E(t) has been determined from a test coupon along with an observed time
function for Poisson's ratio v(t). 1If 1t is desired to determine the

equivalent bulk and shear relaxation functions, then the material data

must be transformed.
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To transform from one function type to another, the same relation-
ships that apply in elasticity between scalar moduli also apply in
viscoelasticity between functional moduli. To prove this assertion,

recall the general viscoelastic constitutive relationship for isotropic

materials has the form:

Ox D, D, D, O O © € n
o] D D 0 0 0 €
vy a b yy
ozz Da 0 0 0 Ezz
= ' % d (B-39)
1 D 0O O £
Xy c Xy
Tyz Sym DC 0 ﬁyz
Txz L D | ©x2

where Da’ Db’ and DC are functions of time, and the symbol * 1s the
convolution operator. It is evident that Equation B-39 has the same
form as an elastic constitutive matrix, and, like d4n elastic matrix, the
terms Da’ Db, and DC are composed of . at most, two independent material
properties, which in this case are functions of time. Possible time
function pairs are: Young's modulus and Poilsson's ratio, bulk modulus
and shear modulus, and confined modulus and lateral stress coecificient.
Clearly, it makes no difference what pair or combination of material
time functions is used as long as they combine to produce the same time
functions for Da(t), Db(t), and Dc(t). Therefore, the various visco-
elastic moduli (functions) have the same interrelationships as the
corresponding elastic moduli.

Table B-6 provides some useful interrelationships to aid in trans-

forming from one type of function to another.

ol 5 s e i s el ol e

T

siailaist.

bl 1,

et o 2 2 1




Table B-6.

Interrelationships Among Elastic and

Viscoelastic Material Functions

Young's Modulus

Bulk Modulus

Confined Modulus

Material and and and
Function¥* Poisson's Ratio, Shear Modulus, Late.al Coefficient,
E, v K, G M, X
s o
Young's (1L +2k)Q -K)
9 G K 0 0
Modulus, E IK + C Ms T+ K
Es= 0
t
Ratin N K - 26 Ko
v = 2(3K + G) 1+ KO
Bulk E Ms
—_— — (1 +
Modzl:a, 31 - 29) K 3 1 ZKO)
Shear E Ms
Modulus, A+ Y ¢ 7 (1K)
Confined
E{(l -v)
+ —_
Mod;lui, T+ 9 = 2v) X G Ms
]
Lateral
Y 3K = 2G
Coeéfi:ienc, 1 v K + 4G KO
o

]
E |
4
=
2
i
E|

*All parameters may be functions of time,




To illustrate the procedure for transforming viscoelastic functions,
consider the example of datermining bulk and shear relaxation functions
given test data from a simple creep test. That is, a test coupon of the
material is axially loaded with a constant stress, and axial and radial

strain are recorded. Then the following steps are required:

1. Normalize experimental data. Divide axial strain by applied

stress to get creep data (this corresponds to inverse of Young's modulus
relaxation function). Also, divide radial strain data by axial strain

data to get Poisson's ratio functiom, V(t).

2. Determine creep function. Using the creep data, employ the

methods of Part I of this Appendix to determine the best-fitting creep
function,

3. Determine Young's modulus relaxation function. Invert the

above creep function to get the corresponding Young's modulus relaxation

function, E(t). Use the techniques in Part II of this Appendix for
inverting,
4. Transform to bulk modulus relaxation function. From Table B-6,

the bulk modulus is given as K(t) = 1/3 E(t)/[1 - ¥(t)). 1If the experi-

mental data show v(t) is constant (or near constant), then K(t) has the

same form as E(t) and only differs by the scalar divisor, 3(1 - ©).

1f, on the other hand, V(t) is not constant, K(t) can be determined by
the best-fit procedure in Part I of this Appendix where the data points
are K(ti) =1/3 E(t)illl - v(ti)J.

S. Transform to shear modulus relaxation function. Again using

Table B-6, the shear modulus is given as G(t) = 1/2 E(t)/f1 + V(t)]). As
discussed in step 4, if V(t) is constant, G(t)} is known directly from
E(t). Otherwise, G(t) must be determined by the best-fit procedure

using the data points: a(ti) = 1/2 E(t /(2 + ?(ti)].

The above steps 1llustrate one set of transformations for a partic-
ular type of er erimental data. Other types of transformations with

other types of experimental data can be treated in a similar manner.
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Appendix C

—— e

A PERSPECT1VE OF VISCOPLASTIC MODELS

Throughout this Appendix, the term '"viscoplastic'" is used as a
; general term to embrace all constitutive models that contain elements of
elasticity, viscosity, and plasticity. In the main text the discussion

focused on a particular viscoplastic model called "viscoelastic-plastic.”

The objective of this Appendix is to present a broad view of

viscoplastic models and demonstrate the characteristics of different

models. Concepts and imagery are emphasized as opposed to detailed
equations and solution algorithms.

To begin with, we recognize that viscoplasticity is a phenomological S
approach for characterizing the behavior of materials. That is, math-
ematical models are sought which -:an replicate the observed performance
of materjals. Yet, the mathematical models must conform to certain
thermodynamic restrictions.

Three mathematical models or constitutive theories that satisfy
thermodvnamic restrictions and are well accepted are: elasticity,
viscoelasticity, and plasticity. These separate theorizs can (1) be
directly combined to provide viscoplastic models (combo-viscoplasticity)
or (2) the separate theories can be altered or extended Lo provide
; viscoplastic models (neo-viscoplasticity). This is an important dis-

tinction and is the {irst maior division in the hierarchy of i

oyt stic

models as shown in Figure C-1. In the right branch ol this Tigure, i,
7o o - .

GD , and \E) represent classical models for characterizing plastic,
viscous, and elastic response. Varions combinations and arrangements af

these basic components deline a particu!ar combo-viscoplastic model,

[ T S T ey,
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Viscoplastic
Models
Neo-viscoplasticity Combo-viscoplasticity
models introduce models composed of
extended theories classical theories

i | @ ®.©.0

Figure (-1. Tuos classes of viscoplastic models.

i : Visual Model General
Symbol (cne-dimensional) Description

. : $—‘\ VYV >0, ® Elastic response

® Lincar with O

‘-.—-— € ———»-l
¢ e Time independent

;-—/V\A/\—":T. (optional)
® Viscous response

® [inear with oy

@ 13— >0y
7 ® Time dependent
(no initial response)
_ ‘ L j (always
| present)

| e

Y 9 | ® Nonlincar with g,

friction|— o
@ brll;cic -~ dependin  on Z.ar%ening
functior.

[ }-4—— p ——){ ® Tinc independent

® Plastic response

Figure C-2. Components of combo-viscoplastic model.
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such as the viscoelastic-plastic model presented in the main text.
: Other combo-viscoplastic models will be illustrated in subsequent
. paragraphs.,
The properties of the classical models, (:), (:), and (:), are
illustrated in Figure C-2. The identification of each component may be

as slmple or complicated as needed. For example, (:) may be isotropic
: (two parameters) or anistropic (three to twenty-one parameters). Also, N ;é

the component (:) may be isotropic or anistropic, and each relaxation

function may have as many parameters as required. Lastly, (:) may
represent any classical plasticity model, ranging from a simple non- B 3

hardening Von Mises yileld criterion (one parameter) to complicated

"capped" yield functions with universal hardening (e.g., twenty-seven

parameters).
The important distinction for combo-viscoplasticity is thal each
component, (E), (:), and (:), remains within its classical limitations,

That is, the viscous component, <§>, deforms with time under constant

3

el th

load and responds in proporticn to the load magnitude acting on (g).
The plastic component, (:}, deforms as a function of the curreut load
magnitude acting on (}). There i1s no explicit reference to time in the
(:) model except implicity through the load.

Contrast the above to neo-viscoplasticity (left branch of Fipure d

€-1), where the component mey represent a modified | lLasticity
formulation with a flow rule explicitly dependent on time (see for
example, Green and Naghdl {25]), Zienkiewicz and Cormeau [5), and Perzyna
{4]). Alternmatively, \VP may represent a modified viscoelastic formula-
tion, which accounts for plastic-type responses by the assumption of
Intrinsic time. Effectively, this means real time in portions of the
viscoelastic model is veplaced with intrinsic time, which is actually a
\ measure of strain, This method is called the "endochronic theory" (see
Bazant [26].
The relative merits of the various neo-viscoplastic models will not

be argued here. However, it's the author's contention that combo-
’

viscoplastic models are preferable to the neo-viscoplastic models for




the following reasons: (1) combo models provide a rational approach for
synthesizing a constitutive model, (2) combo models are formed from
well-accepted constitutive theories that satisfy thermodynamic restric-
tions, (3) parameter identification for combo models 1is relatively easy,
(4) pre-existing elastic, plastic, and viscoelastic material information
can be used directly, and (5) virtually any type of observed material
behavior can be replicated by some combo-vigcoplastic model.

There is no limit to the number of component elements thaL can be
used to synthesize a combo-viscoplastic model. However, five-element
models are probably a practical upper limit., As an example, consider
the five-element model shown at the top of Figure C-3, along with the
nxample four~ and three-element models., Here, the models are restricted
to those containing at least (:), (y), and (E) and have an initial
elastic response. (Note: the wudels showe are all named using hyphen
(-) to denote a series connection between two elements and a slash (/)
to denote a parallel coupling. However, for expressiag (:)-(:) the
hyphen 1s omitted, i.e., viscoelastic = visco-elastic, and for (:)—(:)
we write elastoplastic = elastic-plastic,)

Teo appreciate the different behavior of these models, compare the

nature of the viscoelastic-plastic model (c¢) with the elastic-visco/

plastic model (d) as they respond (deform) for a suddenly applied stress.

If the stress 1s less than the elastic limit (o <« GL), model (c¢) bebaves
viscoelastically and model (d) elastically, as shown in Figure C-4. If
the applied stress 1is greater than the elastic limit (s - oL) and the
tordening function # 0, then model (¢) responds with an instantaneous
clastic plus plastic strain followed by a viscoelastic creep. OUn the
other hand, model (d) responds with an instantaneous elastic response
(regardless of stress level) and progresses with plastic strain at rate
dependent on (E).

As another example, consider the tour-element model (b). 7This
model 1s capable of representing primary, secondary, and tertiary crevp
ranges, as shown in Flgure -5, Materials, such as soils, plastices, and

sea-fce, exhibit this type of behavior,
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SYNTHESIZING COMBO-VISCOPLASTIC MODELS

To synthesize a viscoplastic model (i.e., stress-strain relation-

E ship) from a particular configuration of (:), (:), and (:) requires
i following a few simple rules. To wit, elements in series have the same

S R T A VTR

stress and deform separately, whereas elements in parallel have the same
strain and split the net stress between them. In the main text, these
rules were used to synthesize the series model, viscoelastic-plastic.
Here the synthesis procedure is demonstrated for the parallel assembly,
viscoelastic/elastoplastic, shown in Figure C-6.

Using the notation in the figure, we have:

2 = gep + gve (C-l)
E " Zep * o Sve (©-2)

where Se and €op 8T the stress and strain vectors in the elastoplastic
-~ L 4

subassembly, and Ove and Eve 2T€ the stress and strain vectors in the
viscoelastic subassembly. Both series' subassemblies were developed
fully in the main text. Thus, from Equation 2-33, the elastoplastic

stress~strain relationship is:

Agep ® (2 - Pp)ASep (€-3)

where 22 is the elastic matrix representing CEE), and Dp is the plas-
ticity matrix, which is a function of oep (i.e., not total stress o).

Similarly, from Equation 3-22, the viscoelastic stress-strain relation=-

ship 1is:

i 500 0 7 e i et il il i s
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AOVE = (El + PV)AEVE + g\/' (C_l.)

~

where Dl §s the elastic matrix representing (::), DV is the viscoelastic
L L

matrix dependent on time step, and §v is the stress history matrix.
Adding Equations C-3 and C-4 and using the relationship. in Equa-

tions C-1 and C-2, the final stress-strain relationship 1is:

Ag o= D+ Dy - <BpMhe = gy (€=3)
In the above, D_ = D1 + D2 is the total elastic matrix. If Dl = 0, the ;
L] £l ~ ~ ~ E

model degenerates to an elastoplastic model, or if 27 = Q, the model 1is

viscoelastic. Any other linear combination of Dl and 02 provides a
- o~

viscoplastic model.
Other combo-viscoelastic models can be developed by following the oo

: procedures outlined above.

Figure C-6, Viscoelastic/elastoplastic model.
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