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INTRODUCTION

i

At the forefront of modern research in structural mechanics is the

problem of dealing with time-dependent, nonlinear material models. The

stimulus for this interest is due to the increased use of new materials

in structural systems, such as plastics, glues, resins, biological

tissues, fuel propellants, soils, sea-ice, and high temperature metals.

Although constitutive theories for time-dependent, nonlinear models

are still in their infancy, the ability to solve boundary value problems

embracing these theories is well in hand. In particular, the well-known

Finite element method is capable of incorporating tile most elegant

constitutive models with relative ease and sufficient accuracy for

engineering applications. This is a complete turn of events from

classical mechanics, wherein constitutive theories were necessarily .

simplified to afford tractable solutions of boundaryvalue problems.

Clearly, the time has come to re-focus attention on material

modeling to develop constitutive theories that are representative of

real material behavior and are on a par with modern analytical methods. jj

BACKGROUND

Time-dependent and nonlinear constitutive models can generally be

linear viscoelastic, or viscoplastic. The first two classifications are

fairly well defined in the literature [1,2] and will not be pursued

here. Suffice to say, these models have met with limited success in



some engineering applications, but they are not able to replicatemany

of the observed phenomena of real materials, such as the Bauschinger

effect, anisotropic deformation, and cyclic phenomena [3].

As the' name suggests, a viscoplastic model combines the features of

viscous time-dependency with plasticity theory, and in its general form

is capable of faithfully representing observed material behavior, such

as a rate-dependent yield strength, Bauschinger effect, and loading and

unloading phenomena. These concepts will be amplified throughout the
t

text.

The general theory of viscoplasticity is well summarized by Perzyna

[4], wherein he concludes further theoretical development is necessary.

However, two important subsets of the general theory appear theoreti-

cal~y sound and tractable. The first will be called "clastic-viscoplastic"'

and the second, "viscoelastic-plastic." The former is characterized by

an elastic region within the yield surface and a time-dependent yield

ftuiwclon whose domain is not restricted to the yield surface. Zienkluwid4

151 has developed and demonstrated this model in several finite element

applications.

The "viscoelastic-plastic" model is characterized by linear visco-

elastic theory within the yield surface and the combined influence of

viscoelasticity and plasticity on the yield surface. The yield function

Ls restricted to the domain within and on the yield surface as in classi-

cal plasticity. This model is developed in detail in this report.

OBJECTIVE AND SCOPE

The objective of this study is to present an incremental constitu-

tive development for the viscoelastic-plastic model, and furthermore, to

incorporate the model into a finite element formulation. To achieve

this objective, the classical theories of plasticity and linear visco-

elasticity are individually developed in preparation for the combined

2



viscoelastic-plastic development. In themselves, the individual treat-

ments contain many generalizations and unifications of plasticity and

viscoelasticity heretofore scattered throughout the literature. Conse-

quently, this work serves as a reference to plasticity and visco-

elasticity in addition to viscoplasticity.

It is well recognized that any constitutive theory is useful only

if it can be successfully iiLcuIporated into the field equations of

boundary value problems. Accordingly, each of the models presented in

this work is accompanied with a general finite element formulation and

suggested solution algorithms. Since the finite element formulation is

common to all material models, it will be presented at the outset of

this stud',, thereby providing some insight into the desired form of the

I constitutive relationships.

4=
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Chapter 1

NONLINEAR FINITE ELEMENT FORMULATION OF EQUILIBRIUM EQUATIONS

The purpose of this section is to formulate a finite element

methodology capable of handling all of the nonlinear constitutive models

presented later in the text. At first thought, this may appear as put-

ting the "cart before the horse." However, this ordering of the presen-

tntion provides the reader with an informative preview of the assumptions

common to all constitutive theories, as well as demonstrating how the

variLous constitutive laws are utilized to solve houndary value problems.

Perhaps the host powerLui physical law in analytical mechanics is

the principle of virtual work. By evoking this law under isothermal

vnditions, the resulting statement is completely general and valid for

hbth geometric and material nonlinearities. To wit, virtual work may be

stated as: Given a deformed body in equilibrium undor a set of extfrnal

loads, and subjected to any small virtual displacement compatible with

the constraints of the deformed body; then, the virtual work of the

internal forces Is equal to the virtual work of the external loads.

Furthermore, by d'Alembert's principle, inertia loads may be treated as
equivalent external loads, thereby extending the virtual work concept to
dyVnamiC problems. In equation form this statement is:

f 6 i dv = T t ds + f uT(f - ii) o dv (1-1)
v s v

where o stress vector with respect to.ifeformed body (i.e.,

Cauchv stress)

4
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L = infinitesimal strain vector with respect to deformed

body

u = displacement vector measured from some fixed inertial

Cartesian reference system (U denotes acceleration)

t = surface traction vector on deformed body

Q = current mass density per unit volume

f = body force vector per unit mass

v = current volume of body

s = current surface of body

6S( ) => variational quantity

( ) =) vector quantity

( ) transpose of a vector

With regard to large deformations, Equation 1-1 poses a rather

difficult nonlinear problem since all quantities are referenced to the

unknown dcformed configuration. The above formulation of the problem is

often called the "Eulerian description," or "moving coordinate approach."

Alternatively, it is possible to recast the formulation so that all quan-

tities are measured with respect to the original or initial configuration;

this is known as the "Lagrangian description." By this description, all

derivatives and integrals are easily computed with respect to the initial

fixed coordinate system. However, the stress and strain vectors take on

new definitions consistent with their reference to the original configo-

rt iton. Namely, they become the second Piola-Kirchoff stress vector and

the Green-Lagrange strain vector [6], both of which are nonlinear with

respect to the deformation gradient.

EulcrLan and Lagrangian descriptions represent the end points on a

spectrum of possible formulations for large deformation analysis. Manv

innovative combinations and approximations of these formulations have

5
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been presented in the literature [7,8,9]. However, the most significant

point to be kept in mind, with regard to both geometric and material

nonlinearity, is that the constitutive law must be defined in a manner

consistent with the formulation. For example, a La'grangian formulation

requires that the law relate second Piola-Kirchoff stress to Green-

Lagrange strain.

For the remainder of this development, infinitesimal strain theory

will be assumed and inertia loads will be neglected so that attention

can be focused on material nonlinearity. Nonetheless, the constitutive

models presented herein are equally valid for large deformations and

dynamic loadings, provided they are used in a consistent fashion, as

noted above.

In accordance with infinitesimal strain theory, the deformed con-

rFtguration Is assumed to differ infinitesimally from the undeformed

configuration; consequently, Equation 1-1 is assumed valid for all -

quantities measured with respect to the undeformed configuration.

Accordingly, the stress and strain vectors have the classical defi-

nition.

In addition to Equation 1-1, the complete formulation of a boundary

value problem requires the specification of (1) the strain-displacement

relationship, (2) constitutive law (i.e., the stress-strain relationship),

and (3) the boundary conditions. For the present, no restrictions on

the form of the constitutive law will be assumed; however, the strain-

displacement relationship will be assumed linear in accordance with

infinitesimal strain theory, and the boundary conditions will be intro-

duced via the finite element method.

Thus, the strain-displacement relationship takes the form:

II E = Ou (1-2)

6
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where 0 is a linear operator on u. For example, in a Cartesian coordi-

nate system, 0 has the form such that the normal strain components are

given by i = /ax (no sum on i), and the shear strain components

are given by 2AiQ = y u + u/ .
1j .1 J 1

At this juncture, the fundamental finite element approximation is

introduced. The body is subdivided into a discrete set of elements

whereby the integrations in Equation 1-1 apply to each element.' Within

each element, the displacement vector is approximated by an assumed-

spatial interpolation function. Associated with the interpolation

function are a set of unknown nodal displacements located on the surface

of each element. Adjacent elements share common nodes, thereby pro-

viding nodal. point compatibility between the elements. If the interp'-an

lation function is admissible [101, It can he shown that the Clnlte

element approximation will provide the "exact" solution to the boundary.'

value problem with a sufficient number of elements. Symbolically, tlWe

finite clement approximation Is written as:

i- = h O (1-3)

where h matrix of admissible interpolation functions dependent

only on space

A
u vector of nodal displacements dependent only on time

(or load step)

Inserting Equation 1-3 into Equation 1-2, the strain-displacement

relationship within each element is given as:

S B u (1-4)

7



where B equals Oh, which is the strain-to-nodal displacement matrix

dependent only on spatial coordinates. Returning to the statement )f

virtual work, and introducing the finite element approximations imbedded

in Equations 1-3 and 1-4, Equation 1-1 can be written aq (neglecting

inertia):

611(EfBT o dv) 6u , ( hf f p dv + t ds) (1-5)

Here the symbol - denotes summation over the elements with the special

understanding that the contributions of each element are properly assigned

to the corresponding location of the nodal displacement vector.

Since each variation of u is independent, Equation 1-5 represents a

set of simultaneous equations. In preparation for the incremental con-

stitutive relationships to be introduced next, and without loss of

generality, Equation 1-5 can be written in incremental form by replacing

o, t, and f by ½A, At and Af, respectively, to give the set of simul-

taneous equations:

F B' ½o C>' A (1-6)v

Lwhere AP' 1) f(fh X dv +JOfh s) (1-7

In a similar manner, the strain displacement relationship can be

written in incremental form as:

8



Ac F B Au

Thus far in the discussion no assumptions have been made with

regard to the form of the constitutive relationship. Therefore, Equa-

tions 1-6, 1-7, and 1-8, which are completely general with regard to

material laws, provide the proper starting point for incorporating

material models into a finite element formulation. For present pur-

poses, no special restrictions will be imposed on the form of t.e con-

stitutive relationships. However, for the sake of clarity and ease of

presentation, the constitutive relationship will be symbolically denoted

as:

Ao = D ,Ar (1-9)

.,:,e, D represents a stress-strain relationship that may depend on
.n

total stress, total strain, and history of loading. Accordingly, D may
mn

be construed as an operator matrix rather than a simple matrix.

The motivation for introducing the incremental quantities .' and

AF into Equation 1-9 is to facilitate linearization of D . For example,

if sufficiently small time steps (or load steps) are prescribed, it may

be sufficiently accurate to determine D based on the stress-strain

state at the beginning of tile load step (tangent modulus approach). On

the other hand, if larger time steps are prescribed or the material

character is highly nonlinear, it may be necessary to determine 1) based

on the average stress-strain state over the interval, thereby r., jirlng

iteration within the time step (modified tangent or chord modutuus

approach).

In either approach, the nature and the treatment of D are dis-
ul

cussed individually for each (ofsl~itutive model presented in later

sections of this report. For now, it is simply assumed that D exiSts

and may or may not be dependent upon the current time step.

I



With the above understanding, two basic solution strategies for

incorporating the incremental constitutive law into the finite element

formulation arec (I) the "tangent stiffness method," and (2) the "initial

strain method." The names of both methods are misleading; however, the

use of this terminology is widespread in engineering literature [11,12]

and will be retained here. Broadly speaking, the tangent stiffness

method implies the constitutive relationship is incorporated directly

into the global stiffness matrix, whereas the initial strain method

incorporates the linear portion of the constitutive relationship into

the global stiffness matrix, treating nonlinear terms as load vectors.

Both methods are described below.

TANGENT STIFFNESS METHOD

The tangent stiffness method is a straightforward, brute force

technique that requires no further assumptions than already presented.

Formally, Equations 1-8 and 1-9 are combined to give Lo = D B gu, and

this result is inserted into the global equilibrium equations, Equation

1-6, to give:

K A
KTAu= AP(1-1o)

V

in the above KT. is the global stiffness matrix relating dispbwce-

ment inr e ments to load increments. Since D is dependent on the
T n

stress-strain state, KT clhanges accordingly.

The solution algorithm embodies the lol ]owing steps, wherein it is

assumed the system is in equilibrium at tLme stLp "i' with known rIsponsi

- -, 10
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C., and ^i" The objective is to find the response increments Api,

A, and Ao over the interval i to i + 1.

1. Calculate load increment AP (Equation 1-7).

2. Assemble global stiffness Y, based on value of D at beginning

of step (Equation 1-11).

A A
3. Solve K '% = Al', for Au.

4. Determine A and Ao from Equations 1-8 and 1-9.

5. If desired, re-evaluate D based on average values of stress-
-n

strain over the interval, and return to Step 2 to iterate

within time step.

6. Add incremental responses to total responses, advance the time

step, and return to Step I.

In the above algorithm the global matrix K must be assembled and

triangularized for each load step and any iteration within the load

step. For large problems this method may be prohibitively cost!v.

INITIAL STRAIN METHOD

The initial strain method genrra]lv provides a much more efficient

algorithm; however, two additionai assumptions are required witoi regard

to the material behavior. First, it is assumed t-he strain increment can

be decomposed into Linear and non]linear contributicns. That is, the

total strain increment is given by:

V+
• ,~= A~ 4 n- (1-I?)

ll



where Ac is the linear strain, and Ac: represents a combined lumping of
-n

all nonlinear strains. Secondly, it is assumed the total stress incre-

ment is persistently related to the linear strain increment by:

I :o~A = Dl AcL

where D) is a linear material matrix. Combining Equations 1-12 and 1-13

gives:

(Ac -AE) (1-14)

Recalling the general constitutive assumption, A, = D AE, and using"n n

Equation 1-14, a relationship between total and nonlinear strain incre-

nmcnts is obtained as:

D = ( - -15)
=tL -n n (1-15

io make use of the above in the initial strain formulation, Ac. of

Equation 1-6 is replaced by :Ao = D(- - AL n} and the nonlinear terms

are brought to the right-hand side to give:

KL A A 1P + AF(-

where KJB D1  dv (1-17)

12



and

AF = / T D1 AE dv (-8

Equation 1-16 is the global equilibrium equation for the initial

strain formulation. K, is the constant elastic stiffness matrix, and

AF represents a nonlinear force vector composed of nonelastic strain

increments.

Since AF is an unknown vector, it is treated iteratively. To this-n
end, it is convenient to use Equation 1-15 and the strain displacement

A
* relationship to replace D An by (Dh - D)B u. That is, Fn may be

written as: A

-•F B--D- d)B Au (1-19)

o.L (D -

AThus, the basic idea is to solve Equation 1-16 for Au and then redefine

AF accordingly until convergence is achieved.

More formally, the basic steps of the initial strain algorithm are

given below. It is assumed the system is in equilibrium at time step i.

The objective is to determine the response increments AuI etc., for the

next time step i + 1.

1. Calculate load increment AP..

2. Estimate AF = FSnn,-It .-1 1-n

3. Solve (back substitute): K •Z•. = AP, + -F

-4. Recalculate F = ( - D )B dv ] ,.

13



A
5. Compare successive estimates of AF or Au . If converged, go

to Step 6. Otherwise, repeat iteration loop 3-4-5.

6. Advance load step, and return to Step 1.

The most significant feature of the initial strain algorithm is

that KL need only be triangularized once at the outset of the calculations,

thereby allowing rapid solutions by back substitution. Furthermore,

within the iteration loop, the matrix D need not be assumed constant

but can be simultaneously modified in accordance with AA.

The initial strain algorithm will vary slightly for different

constitutive theories (e.g., plasticity, viscoelasticity, and visco-

plasticity). Nonetheless, the basic features remain the same.

J
SUM4MARY I

The intent of this section was to provide the reader with the

framework for implementing the constitutive theories to be discussed.

Moreover, it is hoped that an appreciation for some common assumptions

inherent in nonlinear constitutive model.s was achieved. To wit, an

incremental constitutive equation of the form Au = D Ac is the desired

objective.

1
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Chapter 2

PLASTICITY THEORY

INTRODUCTION

The original intention of this section was to provide a review oft|
classical plasticity theory for the purpose of establishing notation and

concepts to be used later in the presentation of viscoplasticitv.

However, upon reviewing piastlicity literature, no single presentation

was found that could be termed 'classical' in the sense that it was both

complete and conceptually instructive. For example, introductory texts

113,14] deal almost exclusively with a particular form of plasticity,

e.g., Prandtl-Reuss equations with isotropic hardening. Thus, their

treatment is incomplete. On the other end of the scale, the presenta-

tion offered by Nayak and Zienkiewicz [15] is a unified, complete

plasticity theory formulation; however, it offers lit. in the way of

conceptual insights. Furthermore, nowhere in the literature is there a

general treatment of the "universal hirdening law" which combines kine-

matic and isotropic hardening into r. unified theory. This concept was

originally introduced by Hodge [It], and further discussed by Coel and

Malvern [171, but it has not vet been treated in a unified manner.

This presentation is an attempt at a unificd plasticity theory with

universal hardening. Moreover, an original one-dimensional model is

presented that offers an insight into the nature of isotropic, kine-

inatic, and universal hardcning. Accordingly, it is hoped the develop-
inents herein will offer more than a simple review.

r
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The final objective of this plasticity presentation is to obtain a

constitutive relationship compatible with the finite elenment formulations

previously developed. In particular, the following relationship is

desired:

o =D c (2-1)~ ep ~

where Ao = stress increment vector

Ac = strain increment vector

D = incremental elasti,-plastic constitutive matrix~ep

To achieve this objective, a rather detailed development of plas-

ticity theory is offered which ultimately produces the desired matrix

D , Lastly, the initial strain finite element formulation for plasti-,tt!p

city is presented.

PLASTICITY ASSUMPTIONS AND CONDITIONS

Common to all plasticity developments is the assumption that total

strain increment can be decomposed into elastic and plastic components,

and further, it is assumed the stress increment is persistently related

to the elastic strain increment through generalized Hook's law. That

is:

AE AE + Ac (2-2)
-e

l•_ . . . . .. 16



Ac = D AE (2-3)
~e Ze

where Ar = elastic strain increment
~e

D = elastic constitutive matrix (Hook's law)

The above equations are universally assumed in all plasticity

formulations known to the author, and indeed, are identical to the

assumptions employed in the finite element initial strain formulations.

In the course of this work some insights into the motivation of these

assumptions will be given.

It is important to note that the developments presented herein

assume plastic hardening. The special case of no hardening (perfect-

plasticity) is easily dealt with once the general equations have b.een

developed on the presumption of hardening.

In addition to the preceding assumptions, plasticity theory is

built upon four basic conditions. These conditions are formally defined

below and will be clarified in the ensuing discussion.

1. Yield Condition. A scalar function signifying when plastic

yielding will occur. It is composed of a positive valued "loading

function" and a "yield parameter" that is never less than the value of

the loading function. Yielding can only occur when the loading function

is equal to the yield parameter. The states of stress satisfying this

condition form a hypersurface in stress space, terme, The yield surface.

2. Surface Hardening. A law that "tracks" or measures the :n0ve-

ment of the yield surface during plastic yielding. Traditional 1, yield

surface movement is restricted to uniform expansion (isotropic hardening)

or "rigid body" translation (kinematic hardening). The former is
denoted by an increase in the yield paraiiiter, whilo the latter is

denoted by a tranilation in stress space of the loading function. The

17



linear combination of kinematic and isotropic hardening constitutes

"universal hardening." (Note, perfect-plasticity implies no hardening,

i.e., yield surface never changes).

3. Flow Rule. An expression relating increments of plastic strain

to increments of stress. The magnitude of the incremental plastic

strain vector is dependent upon the magnitude of the stress increment

normal to the yield surface and a modulus known as the "hardening

coefficient." The direction of the incremental plastic strain vector

may be assumed normal to the yield surface (associative law), or normal

to some other hypersurface (nonassociative).
i

4. Hardening Rule. An expression or set of data points that pro-

vides the value of the "hardening coefficient" as a function of some

plastic deformation measure, such as plastic work or effective plastic

!-.train. (Note, this is distinct from the concept of "surface hardening"

,.tscribed above because one can specify a hardening rule Independent of

.i. form of surface hardening.)

In order to amplify ane clarify these four concepts, a series of

one-dimensional conceptual models are introduced demonstrating the

nature of kinematic, isotropic, and universal surface hardening.- For I
each of the models, the associated one-dimensional yield condition is

gvneralized for multidimensional stress states. Also, the corresponding

rulcs for "tracking" the current location and size of the yield surface *4

are presented. Although the universal model embraces both the kinematic

and isotropic models, it is instructive to study the kinematic and

isotropic models individually to better appreciate the universal model.

"The concept of the "flow rule" and the associated "hardening rule"

is presented after the generalized yield condition with universal hard-

ening. Lastly, having established the four basic concepts of plasticity,

expressions for D are developed for the solution algorithms. Supple-
f VP

mentarv discussions on loading functions and nonassociative flow rule•

are given in Appendix A.
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4

PLASTICITY CONCEPTS WITH ONE-DIMENSIONAL MODELS

Plastic deformation is often called frictional deformation because

of the similarity between plasticity and the classical Coulomb frictional

hypothesis for sliding bodies. To wit, plastic deformation (sliding,

movement) only occurs when the yield stress (frictional resistance) is'

exceeded by active loads. Moreover, during plastic deformatio6, the

plastic work (dissipated energy) is independent of the rate of deforma-

tion (rate of sliding) and only dependent on the deformation path (sli-

ding path).

This analogy between frictional theory and plasticity theory can be

exploited to produce conceptual models that provide a keen insight into

the behavior of elastic-plastic materials.

Kinematic Model

Figure la represents a one-dimensional elastic-plastic model with

kinematic hardening. The sliding block obeys the Coulomb friction

hypothesis in that the frictional resistance, of, is a passive resis-

tance, i.e., equal but opposite to the unbalance of active loads acting

on the block. In accordance with the frictional hypothesis, the maximum

frictional resistanep obtainable is the block weight, W, times the

coefficient of friction, i,. Without loss of generality, let W = a and
v

i= I so that maximum frictional resistance is given by the constant .

The equilibrium equation of the block is (rn - cr) - 0, where

The active load, u, shall be called the "applied stress" aimf f,-;
transmitted to the block bv the linear elastic spring, E , repi -',ting

the elastic portion of the model. Clearly, the applied stress is related

to the elastic strain, ce" by o = E E . The other active load, u" e e p

shail be termed the "plastic tracking stress" and is related to the

plastic strain, , by the relation Gp = Ep c p. The spring modulus, Ep,
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may be assumed constant or considered a function of plastic work or

plastic strain. Lastly, it is observed that the model implies that the

total strain equals the elastic plus plastic strain; i.e., c = ce + c .
e p

With these ground rules, it is instructive to study the model for

one cycle of loading over the nominal range -2.Oa < a < 1.5a . Begin-
y y

ning with a virgin material specimen, a tensile load is applied. Within

the load range 0 < a < a , the model responds elastically as denoted by

the segment OA in the stress-strain diagram in Figure 2. Upon further

load increase (a > a ), the maximum frictional resistance is exceeded
y

(af = a y), and the block moves an amount c such that equilibrium is

maintained; i.e., a = a - a . This response implies plastic deforma-
p y

tion is occurring and is denoted by the segment AB in Figure 2. The

shape of segment AB is dictated by the definition of E p For example,

if E is assumed zero (or nearly zero), the model would depict an elastic-
p

perfectly plastic material, and AB would be a horizontal line. If E is
p

assumed a positive constant, AB becomes the upper portion of a bilinear

stress-strain curve with a slope equal to E E /(E + Ee). Lastly, if E
pe p e p

is assumed to be variable, say a function of plastic work, then a variety

of shapes is possible as suggested in Figure 2.

After having subjected the model to the maximum load, a = aB, the

load is decreased, which produces the intriguing result that unloading

is linear elastic; i.e., no block movement, only elastic spring movement.

If this characteristic of the model is not obvious to the reader, recall

that (Y is a passive resistance, and reverse movement of the block

cannot occur until the frictional resistance is fully reversed to its j
maximum value, a . Clearly, elastic unloading of this model will always

y
have a stress range of 2a as typified by the segment BC in Figurc 2.

V

Upon further unloading, the block moves, which causes plastic straining
I

in the reverse direction; this is denoted by the segment CD. As before,

the shape of CD is dependent on the definition of E . Lastly, the load
p

c'ycle is completed by reversing the load to zero, which produces the
•t

elastic response DE shown in Figure 2.
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Obviously this stress-strain path of the model closely resembles

actual experimental data of many ductile materials loaded into the

plastic range. Consequently, it is reasonable to describe the concepts

of plasticity using the model as a visual aid.

A "yield condition" is described by the scalar function, F, which

predicts whether or not the current stress state in the plastic range,

that is, on the yield surface. With a little ingenuity, such a function

can be found for the one-dimensional model by recalling plastic deforma-

tion (block movement) can only occur when the absolute value of the net

active loads has mobilized the maximum frictional resistance, i.e.,

F(oop) = (a - p)" - o (2-4)

Clearly, F can never be greater than zero, since this would violate tile

equilibrium of the model. However, F can, and does, equal zero when the

active loads have mobilized full frictional resistance, and yielding is

occurring or about to occur. Lastly, if F is less than zero, the active

loads produce a frictional resistance less than ma.imum, implying the

stress state is in the elastic range. In short, F provides the means of

determining whether or not the current state of stress is in the plastic

domain (on the yield surface) or in the elastic domain (within the yield

surface).

With the above insights in mind, it is possible to generalize the

one-dimansional yield condition to a mult- •mensional stress state yield

condition (kinematic) as follows:

F(.,o ) = f(a - o ) - k (2-5)~ -p -p o

L 23
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where f(o - ap) = loading function

k =yield parameter (constant)

As before, F is the yield condition with the following properties:

F > 0 Impossible. A violation of equilibrium,

i.e., inadmissible stress state. (2-6a)

A
F = 0 Implies current stress state is on yield

surface, i.e., in plastic domain. (All

states of stress o satisfying F = 0 form

the current yield surface.) (2-6b)

A F < 0 Implies current stress state is within

yield surface, i.e., in elastic domain. (2-6c)

The loading function f(u - a ) is the single most important concept

in plasticity theory. It is a pobitive-valued scalar function that

measures the magnitude of a "select portion" of its argument I - a that
- p

is responsible for plastic yielding. In the one-dimensional example
2

(Equation 2-4) the loading function is given by (0 - a ) which implies
p

the entire argument is responsible for plastic yielding. However, in a

general multidimensional stress state, the vector argument of the load-

ing function allows a great deal of freedom in choosing the form of the

loading function. For example, some materials, such as ductile metals,

exhibit plastic responses due to shearing stresses, but show no plastic

response when subjected to hydrostatic stresses. Thus, it would be

appropriate to define a loading function that increases with shear
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stress but not with hydrostatic stress, such as the second invariant of

deviatoric stress J2' Other materials, such as soils, demonstrate

plastic responses due to various combinations of the stress invariants.

The literature is full of a wide variety of proposed loading func-

tions for different materials. Several common loading functions are

presented in Appendix A. For now, it is only important to appreciate

that the loading function acts like a filter in the sense it only

increases or decreases its value for some predefined "select portion" of

the stress vector considered to be responsible for plastic yielding.

All other components of stress are filtered out and do not influence the

value of the loading function.

To better appreciate the significance of the loading function,

consider Figure 3. Assume F = 0, which implies the current state of

stress is on the yield surface. Also suppose an arbitrary stress

increment, Ao, is applied to the current stress state. Will this cause

plastic deformation? To answer this, it is merely necessary to know if

the stress increment has any components in the direction of the outward

normal of the loading function, i.e., in the direction that the yield

surface moves. The dot product of the stress increment with the loading

function gradient (which is in direction of outward normal) provides a

simple test with three possible results:

T
f • Ac > 0 Plastic loading; i.e., at least somn

portion of %j is colinear with outward

surface normal. Surface moves out. (2-7a)

T
f • 0 Neutral loading, no plastic deformation

occurs; i.e., ½ is in the tangent plane

of the loading surface. Surface does not

move. (2-7b)

25



21

N z •- p = o p

stress
space,

023 ,AO

yield surface normal at n

022 33 3

Figure 3. Yield surface representation.

26



T
f AG < 0 Elastic unloading occurs; i.e., at least
-0

some portion of Ao is colinear with the

inward surface normal. Surface does not

"move. (2-7c)

where f = 3f/3o is the loading function gradient, and is in the direc-

tion of the outward normal.

Clearly, the importance of the loading function cannot be over-

stressed since it dictates what stress increments promote plastic yield-

ing.I
The yield parameter, k in Equation 2-5 is a material dependent

constant and may be geometrically interpreted as the "radins" of the

yield surface. The value of k may be determined from any type of

standard laboratory test by evaluating the loading function at the

stress state producing initial yielding, i.e., k f 0, where . is

the stress vector producing initial vielding.

In general, "surface hardening" is a simple concept, as it merely

pertains to keeping track of the "radius" and "center" of the yield

surface (not to be confused with hardening rule for H' discussed latLe.).

For the kinematic model under discussion, the radius of the yield sur-

face remains constant, i.e., o for a one-dimensional model, and k for
V 0

the general model. However, the "center" translates every time plastic

deformation occurs. The amount of translation can be deauced by con-

sidering the total derivative of the yield condition.

To see this, first considei" the one--dimensional model . Init.ia1ll,

C = o - 0, and the radius is with the center a', the origin. AV soon
p

as tlh load o reaches the vleid stress, the yield condition is isfled,

i.e., F = 0 and the total deriv.,tive, dF 0, oust aisc be saitifiled.

That is, from Equation 2-4:

I" = 0 = (""2
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In the above Ao and ýA are actually differentials do and do ; however,
P p

throughout this writing the incremental symbol "A" will be used to

emphasize numerical approximations. Equation 2-8 simply states that any

increment A3 of the applied stress is immediately followed by an equal

increment Au of the plastic tracking stress. This implies the "center"
p

of the elastic range shifts an amount Ac , while the "radius" of che

elastic range remains a constant o . Noting o is the sum of its
y p

increments, o = Ej p, a geometric interpretation of the plastic track-

ing stress can be offered. Namely, ci is the current center of theS~p
elastic range as it translates up or down the stress axis. This concept

is demonstrated in Figure 4, wherein the center and radius of the elastic

range are shown at various load points corresponding to Figure 2.

This geometric interpretation of the plastic tracking stress also

applies to multiaxial stress states in that the yield surface translates

rigidly (constant radius k ) in stress space with its "center" located0

by c as suggested in Figure 5.
P

To prove this for the general kinematic case, it is necessary to

assume the direction of Aa during yielding. In the one-dimensional~p

case, this was not necessary since only one direction was possible.

Prager [18) made the assumption that Ac is in the direction of the~p

outward normal of the loading function, i.e., in the direction of its

gradient.

In light of Equation 2-7b, Prager's assumption has great intuitive

appeal since it implies A, is in the direction of the select portion of
~p

the applied stress that causes plastic yielding. Therefore, it is

assumed:

Ao = C f (2-9)

where f = )f/Kj, load ing function gradiUtn with respect to

C = scalar constant to be determined
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The value of C is obtained by taking the total derivative of the

yield condition (Equation 2-5) which must be zero during yielding, i.e.,

dF = 0= fT AO + f a •o (2-10)

p

where fo 9f/ýO , loading function gradient vector with respect to a
- p -P -p

Because the argument of the loading function has the special form,

o- , it is trivial to show that f = -f for any function f. There-

fore, Equation 2-9 can be combined with 2-Ib to give:

: I = T TS C = ( f • Ao ) / (f - f " )

- Returning to Equation 2-9, the desired relationship is obtained:

AT AAo = (nT Aa)n (2-I1l)
Lp 4 

-

A
n = f T (2-12)

* I A
where n is the unit outward normal of the loading function.

Equation 2-11 provides the rule for determining the increment of I
plastic tracking stress for every applied stress increment Ac. The

total sum of the plastic tracking stress increments, i.e., a =E.O ,

provides the coordinates for tracking the "center" of the yield surface

as was suggested in Figure 5.
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This completes the general development for the kinematic yield

condition and surface tracking rules. Next, isotropic hardening is

examined.

Isotropic Model

Figure lb is a one-dimensional representation of an elastic-plastic

model with isotropic hardening. All of the ground rules previously

described for the kinematic model Still hold. The cnlv difference is

that the spring E has been moved to act vertically on the block as
p

shown. Furthermore, it is imagined some servo-mechanism compresses this

spring an amount C 1 i everytime the block moves a distance F in eitherp -p

direction. The accumulation of all plastic strain mcvements is denoted

by c *; i.e., c p* ZICp I.
The significant consequence of this new model is that the load o P

has been transformed from the status of an active load into a passive

frictional resistance and is hereby renamed as o *. Accordingly, the

maximum frictional resistance is no longer constant, but rather is given

by = 0 + a *, where oa* = c £p*. Equilibrium of the model is
max y P p p p

given by a - cf 0, where of < Of
max

With the above in mind, it is instructive to trace the performance

of the new model through a loading cycle as was previously done for the

kinematic model. Beginning with a virgin specimen and referring back Lo

Figure 2, the initial elastic loading follows the same path OA as the

kinematic model. Furthermore, the identical curve AB is traced with a

loading above a . This is because c * which implies a * = a
y P ' p p

and, hence, both models have identical equilibrium equations. AL poi t

B unloading begins. The black cannot move backward until the applied

stress c completely reverses the current maximum frictional resistance

(Of = aB). Therefore, elastic unloading continues to point C', where

o = -0B. With additional negative loading the curve C'D' is traced.

Note C'D' has the same shape as CD; however, it is rigidly shifted along

the elastic unloading path an amount C'C = 2(B - c
B
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It is evident that the kinematic and isotropic models will produce

extraordinarily different results after a few loading cycles even though

E and E are the same for both models. However, the models will give
p e

identical results as long as the load is monotonically increasing.

The yield condition for the one-dimensional isotropic model can be

written as:

O( G (2-13)

V V

where o * = j + a *, the yield stress parameter.
y y p

Generalizing the isotropic yield condition to multidimensional

stress states gives:

F(c,k*) = f(a) - k* (2-14)

where fu,) = loading function -•

k* = yield parameter (increases with plastic defc:mation)

As before, the yield condition, F, denotes whether the current

state of stress is in the elastic or plastic domain, and has the proper-

ties given by Equations 2-6a, 2-6b. and 2-6c.

The concept of the loading function is the same as described for

the kinematic model, and it has the properties given by Equations 2-7a,

2-7h, and 2-7c. The only difference is that the argument is composed of

the stress vector o rather than the stress vector difference c - o;

consequently, the "center" of the yield surface remains fixed at thc.

origin of stress space.
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The "radius" of the yield surface is measured by the yield param-

eter k* which increases with plastic deformation. A pictorial represen-

tation of isotropic surface hardening for the one-dimensional load cycle

is shown in Figure 6, whereas Figure 7 il]ustrates isotropic hardening

in a multidimensional strpss state.

To determine the amount the yield surface expands for every applied

stress increment causing plastic deformation, the total derivative of

Equation 2-14 is set to zero to give:

dF A0 = fT o Ao - Ak* (2-15)

Equation 2-15 provides the surface hardening rule for updating the

"radius" of the vield surface after every increment of applied stress.

Specifically, k* = k + E~k*, where k is the initial yield parameter
0 C,

(radius) and Ak* = f T •

Universal Model

The kinematic and isotropic responses, as displayed in Figure 2,

represent two extreme predictions for re-entry into the plastic domain,

Most ductile materials exhibit a re-entr\ point "C" somewhere between

the points C and C'. Clearly, it would be desirable to choose a surface

hardening model that allows some flexibility in selecting the "radius"

and "center" of the yield surface.

The "universal surface hardening" concept provides this flexibilitv

by taking a linear combination of the kinematic and isotropic M. 'els.

Figure Ic illustrates this concept with a one-dimensional model, wherein

B is a weighting parameter (0 < ) < 1) applied to the vertical load,

o *, and the remaining weight 1-6 is applied to the horizontal load, tjp PP

If B 0, the universal model redu'•es to the isotropic form; if B = 1,
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the kinematic form is attained. Any other value of ( combines the

characteristics of both models so that both radius and center of the

yield surface change during plastic deformation. For example, the

universal model will re-enter the plastic range it point C" in Figure 2

i s chosen as the ratio: 6 = CC"/CC'.

The ground rules for this one-dimensional model are the same as

stated for the kinematic and isotropic models; therefore, during initial

monotonic loading, the stress-strain curve of this model follows the

same path OAB in Figure 2 for any value of 6. However, after elastic

unloading and re-entry into the plastic domain at point C" the stress-

strain path for all future load cycles is a unique function of 6.

(Note, for added generality, P could be specified as a function of the

number of load cycles, 6 = 6(n), thereby allowing the model to shift

-from isotropic to kinematic or vice-versa during load cycling.)

Equilibrium of the universal model can easily be deduced as:

(a- So) - -- 0

p

where C o + (1 - B)O *
max -

iof, of
max

The corresponding one-dimensional yield condition is given by:

.) y( _)p I5 )2
35(.'-,5 ),- 5y (2-14)
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where a 6 a
p p

a * = a + (1 - 6)o *
y y p

Generalizing the universal yield condition to multidimensional

stress states gives:

F(a,•ak*) = f(c- op) - k* (2-17)
p -p

where o = B a, "weighted" plastic tra'king stress_p ~p

k*= k + (1 - S)k*, weighted yield parameter
0

As always, F is the yield condition with the properties denoted in

Equations 2-6a, 2-6b, and 2-6c, and f is the specified loading function

whose gradient can be used for the plastic yielding test denoted by

Equations 2-7a, 2-7b, and 2-7c.

The vector a and the scalar k* specify the origin an6 the radius,

respectively, of tile universal yield surface. Figure 8 demonstrates the

concept of universal hardening for the one-dimensional load cycling,

while Figure 9 portrays an example evolution of the yield surface in

multidimensional stress space.

To determine the amount of radius expansion Ak* and center shift

A7 for any applied stress increment causing plastic deformation (F = 0),
-p

the total derivative of Equation 2-17 could be set to zero to permit

solving for do and dk* in terms of f and d.-. However, it is farp ~o0 -

simpler to directly use the definitions of o and k* from Equation 2-17
- p

to determine the derivatives; i.e., Ak* = (I - P,)Ak* and Ao = B.ý;i .~p -p
With the aid of Equations 2-11 , 2-12, and 2-15, the increments of the

radius and center of the universal yield surface are:
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A* (1- Auf (2-18)

( Ao) (2-19)

Thus, the universal surfa,:e hardening rule may be written as:

k* = k + *(220)

a = E(2-21)
p -

where k* is the current "radius" of the yield surface, and ap is the

A current vector from the origin of stress space to the "center" of the

yield surface.

Flow Rule

The purpose of a flow rule is to define increments of plastic

strain accompanying an increment of applied stress during plastic

yielding (F = 0). For any and all of the one-dimensional models this is

a straight-forward application of the grouid rules, and it is easy to

deduce the flow rule to be:

AE C E (2-22)
P
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where E ' is the tangent value of the uniaxial curve relating total
P

plastic strain to total stress as illustrated in Figure 10.

When the flow rule is generalized to multidimensional stress-strain -_

states, the development is not quite as simple. The complication is due

to the fact that now the plastic strain increment is a vector; there-

fore, it must be defined with respect to direction as well as to magni-

tude. (Note, in the one-dimensional idealization, direction and mag-

nitude were one.)

Thus, for the general case, the plastic strain increment vector may

be described by

A

. = d^, m (2-23)~p~

where m is some directional vector (in stress or strain space) of unit

magnitude, and d). Is a scalar denotino the magnitude of the plastic

strain increment. To determine d\ and i require assumptions similar to

the assumptions made for the plastic tracking stress vector.

The first assumption is based on the observation that the magnitude

of the plastic strain increment should be proportional to the magnitude

of the applied stress increment which is colinear with the outward

normal (n) of the loading function; i.e.,

d (T . (2-24)

AT
The inner product, n AL\, is the scalar measure of stress that pushes

the yield surface outward, and H' is a hardening coefficient (modulus)

determined from experimental tests. H' will be discussed further in the

hardening rule.
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With regard to the direction Am of the plastic strain increment, two

assumptions are available. By far the most common is the so-called

"associative flow rule assumption." Here, the idea is that plastic

straining occurs in the same direction as the outward normal of the

loading function. Although this may be aesthetically pleasing, it is

still only an assumption. Other plastic potential functions (loading

functions) could just as well be used to predict the direction -f the

.[. astic strain. In such cases, the procedure is termed "nonassociative

ficu rule assumption."
* A

In short, the direction m has two possibilities:

A A
* m n~ associative flow law (2-25a)

A A
m n nonassociative flow law (2-25b)

More on nonassociative flow rules is given in Appendix B.

Inserting Equation 2-24 into Equation 2-23 and with the understand-

ing of Equation 2-25, the general flow rule is:

A- = 1_ A(T Ao)A (2-26)

Hardening Rule

The hardening coefficient, H', is the only quantity that remains to

be defined. The value of H' must be determined from experimental results

A Aconsistent with Equation 2-26. That is, H' is dependent on n and r as

well as c and c. At; an example, suppose it is decided to determine H'
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by means of a simple tension test. Let the curve in Figure 10 represent

axial stress versus plastic strain (i.e., elastic strains have been

subtracted from total strains). Since all components of stress are zero

except aI, the inner product in Equation 2-26 is simply AolnI. Also,

Equation 2-26 is valid for every component of plastic strain, in parti-

cular, it is valid for AE pl* Therefore, H' = mIn 1 (AýC/Apl), or using

Equation 2-22 the hardening coefficient determined from a tensile (or

compression) test is:

H' = mI nI E ' (2-27)
p

For the special case where a Von Mises loading functiot, -- d an associative

flow rule is assumed, nI = mI = 2/\-f, and H' = 2/3 E '
P

Furthermore, it is emphasized that the determination of H' is not

rt.stricted to tensile tests. Any type of experimental data can be used

to determine H' providing Equation 2-26 is used consistently.

In the event H' is constant throughout the loading path, no addi-

tional assumptions are necessary, and the flow rule is well defined for

all stress states. However, in general, H' varies throughout the load

path as implied in Figure 10. This gives rise to the need of a "harden-

ing rule," wherein H' is assumed to be a function of some plastic response.

The first inclination is to consider H' a function of the magnitude of

plastic strain, i.e., H' = r , where E is plastic strain magnitude
o T

given by e P p •p. Although this assumption is adequate for a: ° -- p ,,p
monotonic radial loading, for general loadings it produces results

unrepresentative of actual material behavior. For example, consider the

response of the one-dimensional kinematic model shown in Figure 2. If
0 0

E = E '(0 ), then, during the reverse loading phase, the value of

reduces. This results in an increased value of E ', and the shape of

segment CD is concave up rather than concave down as desired.
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To avoid this anomaly, the hardening rule must be based on some A

nondecreasing measure of plastic response. Two such measures are

commonly employed: plastic work and "total" plastic strain. The former I
is known as the "work hardening rule" and simply asserts that H' is a

function of the plastic work per unit volume, W A

p

H' H'(Wp) (2-28)

p

fT d
where Wp P

The second method is known as "strain hardening," wherein it is

assumed that H' is a function of the "total path" of the plastic strain

magnitude, c *:
p

H' = H'(c *) (2-29)P

where E , = AF£

0
Note: c * is not the same measure as c , since E * increases with

every increment AE ; however, c 0 is the measure of current plasticP P
strain magnitude regardless of the path.

The choice of one hardening rule over the other is largely % matter

of computational convenience. By either rule, H' is generally not known

as a continuous function, but rather as discrete points of the plastic

work or total plastic strain as suggested in Figure 11. It is a trivial

matter to store the discrete points in the computer and interpolate to

find the current value of H'
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Figure 11. Hardening coefficient versus plastic

work or total plastic strain.
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INCREMENTAL PLASTICITY RELATTONS

The four basic concepts of plasticity have been presented. The

remaining job is to pull the pieces together to find the matrix quantity

D denoted in Equation 2-1.
mep

Beginning with the combination of Equations 2-2 and 2-3, Ao is

given as:

AC = D (AE- Ac ) (2-30)
S-e -p

Taking the dot product of Equation 2-30 with respect to the unit gra-

dient of the loading function L, and replacing AF- by Equation 2-26,
ATp

the scalar quantity (n :a) can be determined as:

* AT
nTD Ac

AT - -e 2n &Ac (2-31)
S+ D )/H'

Using Equation 2-31 in Equation 2-26, the plastic strain increment

is related to the total strain increment by:

AE C D ._ (2-32)
-p Mp -e

A AT

where C W _ Z
"P +AT A

H, + (n D mn)

L~k. 45



7I
Lastly, inserting Equation 2-32 into Equation 2-30, the desired stress-

strain relationship is achieved:

Lo= (D - D )AE (2-33)

~,e tp ~

where D D C D
N.p me fp -e

Equation 2-33 is the kcy incremental stress-strain relationship for use

. in elastic-plastic boundary value problems. The plasticity matrix, DI. p
A APis dependent on the variables H' and n (and m for nonassociative law).

Traditionally, these quantities are updated at the beginning of each

load step and are assumed to be constant over the load increment. Thebe

concepts will be discussed later when the plasticity relationships are

incorporated into a finite element formulation. For now, the plasticity

constitutive theory is reviewed.

SLMMARY OF CONSTITUTIVE THEORY OF PLASTICITY

For easy reference, the pertinent plasticity relationships for

universal hardening are listed below.

The universal yield condition is:

F(c,5 ,k*) = f(o - 5 ) - k* (2-34)
~ ~p ~ ~p

F is the yield function, such that F = 0 implies yielding. c is the

total stress vector, S is the plastic tracking stress locating the
~p
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"1"center" of the yield surface, and k* is a scalar stress measure defining

"radius" of the yield surface. The function f is the prescribed loading

function.

The surface hardening law is given by:

(1-- ofT AG (2-35))f

Ao( (2-36)

= (�a• • (2-36)

where = 4f (2-37)

f
^ ~(2-38)STf f

-0 -j

Equations 2-35 and 2-36 give the rule for keeping track of the yield

surface, i.e., k* k + 2'k* and 3 . . is the universal harden-
0 -P -

ing parameter (0 < q < 1), where 6 = 0 implies isotropic hardening,

Simplies kinematic hardening, and other values of 8 imply a linear

combination of kinematic and isotropic hardening. In Equation 2-37 f

is the gradient of the loading function and is, 1:y definition, in the
A

direction of the outward normal of the yield surface. Accordingly, n in

Equation 2-38 is the unit outward normal.

The hardening rule is:

H' VH'( *) (2-39)
p4
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E (2-40)

pp
Ac *-- c T AE(2-41)

P EpT A~p

Here H' is known as the hardening coefficient to be used in the

flow rule. It is -assumed H' is a function of the accumulated plastic

strain norm, c .* The function H'(i *) is prescribed W3tarial data.p p

The flow rule is given by:

1=

= A (= T AO)•, (2-42)

The direction vector, m, is the direction of plastic straining.

If A n, Equation 2-42 is termed an "associative" flow rule. If m is

defined from some other potential function, Equation 2-42 is termed

"nonassociative." In either case, the flow rule can be used to deter-

mine the incremental plastic constitutive law:

A = (D - D )AL. (2-42)
-' e ftp

D A AT

D e T - (2-44)"P H' + ( D A)

Equations 2-34 through 2-44 summarize the incremental laws of plasticity.

In the next section these laws will be Incorporated into a finite element

formulation.
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PLASTICITY FINITE ELEMENT FORMULATION

From the previous finite element development, the general equilib-

rium equation (Equation 1-6) was given as:

BT Aa dv = AP (2-45)

In the above, B, is the strain-to-nodal displacement matrix, AP is the

external load increment, and the symbol * implies the ordered summation

of the element volume integrations.

Inserting the constitutive law, Equation 2-43, into the equilibrium

equations, and using Ac B u, Equation 2-45 can be written as:

(K - Kp)A = AP (2-46)
,..e Rop .

-K = fBTDe B dv (2-47)
v

K fBT D B dv (2-48)v WI

In the above, K is the global elastic stiffness matrix which remains

constant throughout the loading schedule. K is the global plastic

ýtiffnoss (reduction) matrix which is dependent on stress state. Note,

K = 0 whenever the stress state is within the vield ýurface. As dis-

[played in Equation 2-46, the equilibrium equations are in the proper
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form for a direct solution by the tangent stiffness method. This method

requires the combined stiffness matrix K - K to be triangularized at
se Mjp

least once for each load step in which plastic deformation occurs.
Although this method may be inefficient, many researchers prefer this to

the uncertainties of iterative techniques.

Alternatively, to obtain the proper form for the initial strain

method, Equation 2-46 is written as:

K Au AP + AF (2-49)
ape -p

weeAF E LB D B dv A"' (-5O)

-pv M p

TN Equation 2-49, K needs only to be triangularized once. All non-
me

linearities are introduced through the unknown force vector AF, and an

iterative method is employed. 
.u

Both solution procedures are outlined in the following pages.

Tangent Stiffness Method

It is assumed the following quantities are known at load step "n':

AUs' n a and En, along with the current plastic measures Dp, k*, Pn

and 7Tn. The objective is to find the increments of the above quantities

from load step n to n + 1; i.e., Au, Au, Ac, etc., and to update zhe

plastic measures.

1. Determine load increment AP.

2. Assemble K - K from Equations 2-47 and 2-48, where K is
fe p ,p

based on D at the beginning of the step.

50



A

A A
3. Solve (K - K )Ai AP, for "u.

we 'p ~ -

4. Compute stress and strain increments for each element (or ea'ch -_

integration point); i.e.,

P, F B A u

b. An = e - D )Ar

5. Monitor each element (or integration point) to determine if the

current stress state is in the plastic region or Elastic region:

!:a. Compute F = f(o n+1 - p n
SP~n n

b. If F < 0, stress state is elastic. Set D 0 and go to

Step 8.

p c. If F > 0, stress state is plastic. Go to Step 6.

6. Update yield surface measures:

- AT A
a. o 0 + Ao , where Au = (n AJ )

n~l (On+I -

b. knn+1 Pn+l

7. Update plastic flow law:

a. n = ~f /..f, f, where f is evaluated at stress state

n4- 1+

A A
b. m n for associative flow rule; otherwise compute m from

nonassoclative function.

c. H' = H'(p7 '), where Ln* = * + AFp*,

Pý E* A C r and Ac D A
~~~~p -P P;p fe M

51
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I;

AAT , .T A
d. D D m n D /H + (An D ]#M p ae ~ .e - e

3. Print out desired results, and return to Step 1 for next load

increment.

The preceding algorithm is a relatively straightforward procedure;

however, it is not computationally efficient. Worse still, the transi-

tion error may require additional matrix triangularizations within the

r load step. It is assumed the matrix D remains constant (chord value)

during a given load step. This assumption is reasonable providing the

element is in the plastic region at the beginning and end of the load

step, or it is in the elastic region at the beginning and end of the

load step. However, when an element shifts from the elastic zone toI- the plastic zone or vice versa (the transition region), it must be

treated with special care. in these cases, D actually abruptly changes

from zero to some finite value as the element transcends from an elastic

state to a plastic state, or conversely, from a finite value to zero for

the reverse transition.

To account for these transitions in the above algorithm, two basic

approaches are available. First, and simplest, is to divide the load

into sufficiently small increments so that the transition error can be

ignored. By this method, the algorithm lags the transition responses by

one load step.

The alternative approach is to modify U is some way to account for" ,p

transition and resolve the problem. In the case of the transition from

plastic to elastic zukie, D should be set to zero because all. unloading
-p

Is elast[i. However, when the transition is from the elastic to the

plastic zone, Lhe first part of the load step is it, the elastic zone as

the stress path moves from some point within the yield surface to the

yield surface. The second part of the load step is in the plastic zone

as the stress path moves with the yield surface. To reflect the abrupt

change of D during the load step, it is convenient to take a weighted

average based on the proportion of the load increment in tht plastic

zone as measured by the ratio:
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i• k

r -- f(o i+1 ) - f(o - - ) 2-1)

Thus, in the algorithm, each element is checked to see if it undarwent a

transition phase. If so, the load step is repeated, wherein D for each

transition element is re-estimated as follows. For an unload transi-

tion, set D = 0. For loading, the transition ratio, r, is computed
-p

from Equation 2-51, and the stress state at the yield surface is

= 2ni t (] - r)Aao. Next, D is calculated at the stress state a and

then reduced by the factor r. The reduced value of D is used forS•'P
calculating the plastic stiffness K, and the algorithm proceeds as

before.

The computational inefficiencies of the tangent stiffness method

are clearly evident, since the combined stiffness matrix must be assem-

bled and triangularized, not only for each load step, but also again

within a load step when element transitions occur. The advantages of

the initial strain method are demonstrated in the next section.

Initial Strain Method

Equation 2-49 represents the governing equations for the initial

strain method. It may be observed that it differs from tangent stiff-

ness formulation only in that the plastic contributions have been moved

to the right-hand side, i.e., \F,, - K Au, leaving K as a constant
p -p we

global stiffness matrix that requires only one triangularization. To

achieve the same accuracy as the tangent stiffness method, It is neces-

sarv to Iterate within each load step Many of the calculations are the

same for both methods, and only the differences are emphasized here.

As before, it is assumed all quantities are known at time step n,

and the objective i.i to determine the quanLities at time step n + i.
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1. Determine load increment AP; let U

2. Estimate AF ( D B dv) Au

3. Solve K A 6 ?P + AF . If A 6U A , go to Step 4; other-
-e -n p n n-l

wise, go to Step 2.

4 through 8. Same as tangent stiffness method.

The heart of the initial strain method is embedded in the iteration

loop within the load step, i.e., steps 2 and 3. As illustrated in the

above algorithm, AF is reconstructed on each iteration based on the new
-p

estimate for Au . However, there is no reason D cannot also be changed

simultaneously on each iteration to reflect abrupt changes in transition

zones or even subtle changes in D over the time interval. Herein lies

the advantages of the initial strain method. To wit, after the initial

triangularization of K , each solution merely requires modifying the

right-hand side and performing a back substitution. Moreover, each

estimate of AF can simultaneously consider variations in D as well as
A -

A• in obtaining a convergent solution.

This concludes the development and implementation of plasticity

theory. In Appendix A some common loading functions are presented

together with some fine points on flow laws and hardening rules.

5
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Chapter 3

LINEAR VISCOELASTICITY

In this section a general three-dimensional isotropic viscoelastic

constitutive formulation will be developed that is compatible with the

finite element formulation previously presented. To this end, a brief

review of viscoelastic constitutive theory will be given, beginning with

simple one-dimensional concepts followed by a generalization of multi-

dimensional stress-strain states. For a comprehensive introduction into

viscoelastic theory, the reader is referred to Flugge [191 and Christensen

[20].

BASIC CONCEPTS

Viscoelastic materials are often called "memory" materials, that

is, the strE.s in the material is determined not only by the current

state of deformation, but also by all past deformation states. More-

over, the "memory" exhibits a fading phenomenon in that past deformation

states influence the current stress slate to a lesser degree than do

more recent deformation states. As a consequence of this memory phenom-

enon, viscoelastic materials dissipate energy during deformation; thus,

the external work put Into the system cannot be completely recovered.
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ONE-DIMENSIONAL MODELS

The above characteristics of linear viscoelasticity can be exhibited

by one-dimensional mechanical models composed of an assemblage of springs

and dashpots, where the springs denote a linear relationship between
stress and deformation while dashpots denote a linear relationship

between stress and rate of deformation. Mechanical models provide an

insight into the nature of viscoelastic behavior and also provide a

basis for defining a differential equation relating stress and strain.

Differential Equations

Consider the one-dimensional model shown below, which is known as

the standard linear solid.

EI

o,•.•-------- -- CC/V.O--•~

a = total stress, c = total strain, E. elastic strain, c = viscouse v

strain, EV,E2 = spring constants, and iu dashpot constant. Using

simple concepts of equilibrium, it is easy to deduce 7 = E Ie in the

elastic spring and c = + E± E9 g in the parallel assembly, where (')

denotes a time derivative. As implied by the model, the total strain is

given by £ý = E: + r_ . Combining these three reiationships, a differen-

tial equation relating total stress to total strain is obtained as:

56



E E E2 E + "J (3-1) -

To use the mechanical model as a visual aid, it is noted that the

dashpot cannot move instantaneously. Thus, at the first instance of ]

deformation (from t = 0 to t = 0 ) only the spring El can deform;

k-r.ce, o(0) = E] c(0). Furthermore, if the load is maintained for an

extended period of time, the dashpot will finally come to rest, shifting

all the load to spring E2 in series with E1. Hence, at t

E E
1 2E1 + E

These concepts are often useful in Interpreting viscoelastic responses.

Equation 3-1 represents a one-dimensional viscoelastic relationship

for a particular model. If the strain were prescribed over some time

interval 0 < T < t, where t is the current time, then it would be possi-

ble to solve for the stress response. For example, suppose the strain

is input by a Heavyside step function, such that c(t) = F h(t), where

e is a constant strain magnitude and h(t) is the unit Heavyside function

(i.e., h(t) = 0 for t < 0, and h(t) = 1 for t > 0), then the solution of

Equation 3-1 is:

E1 E2E

C(t) E 1 + E2  + E1 + E2 exp[-t(E 1 + E))/ý] (3-2)
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where the initial condition o(O) E c was used to determine the

constant of integration.

In a manner similar to the above example, more complicated one-

dimensional models can be constructed by adding spriags and dashpots in

series and/or parallel that will always result in a linear differential

equation of the form:

0 -o + P 1 + P 2  " + = qo + q, E + q 2  " + ... (3-3)

where p., P1I P 2  ...", ' o, ql, q2' ... are constants composed of the I
parameters of the springs and dashpots.

Equation 3-3 may b. considered as a general linear viscoelastic

constitutive relationship for a one-dimensional problem. However, it is
i

not a particularly useful form for solving boundary value problems

because both stress and strain are expressed in terms of their deriva-

t ives.

Integral Equations '_M

A more useful form can be obtained by expressing Equation 3-3 in an

integral form in the following manner. First, assume the strain is

prescribed by a Heavyside step function; i.e., E(t) L h(t), where co 0

is some constant strain amplitude and h(t) = 0 for t 10 or dt) = 1 for

t 0 0. With this prescription for strain, the right-hand side of Fqua-

tion 3-3 reduces to the constant q E for all t > 0. Therefore,0 0

Equat ion 3-3 represents an ordinary linear differential equation in

terms of stress for which a solution is always possible. Symbolically,

this solution can be expressed as:

S:(t) = Y(t) (3-4

58



Here Y(t) is termed the relaxation function and is an intrinsic charac-

teristic of the material model because it describes the nature of the

stress response due to a prescribed strain equal to unity. Implicit in

the definition of a relaxation function is Y(t) = 0 when t < 0; i.e.,

there is no stress response prior to application of strain. As an

example, the relaxation function for the standard linear solid is

enclosed in braces in Equation 3-2.

Next, to extend the solution of Equation 3-4 to apply to an arbi-

trary strain input, linearity and superposition are exploited as follows.

Consider an arbitrary strain input E(t), shown in Figure 12, along with

a step-k..ise approximation to this curve given by

n
-(t) = c h(t) + • Ak h(t - k At)

k=1

[ where Ack is an increment of strain applied at the time = k At.

Because of linearity the solution given by Equation 3-4 applies to

each strain increment corresponding to the time it makes its contribu-

tion; i.e., Aok - Y(t - k At),1k. Thus, the solution for stress is

given by the superposition of solutions as:

n
(t) Y(t) + - k At) -5)

k=1

where t n At. In the limit, as n %f', At - 0, and t is current time.

The -tress is given exactly by the integral form:
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o(t) Y(t) o + Y(t ) aC(T) dt (3-6a)
0

For simplicity it is convenient to adopt the shorthand notation of

convolution algebra, wherein Equation 3-6a is written equivalently as:

o(t) = Y* dE (3-6b)

where * is called a convolution operator.
Equation 3-6a or 3-6b is known as a heredity integral and isA

physically and mathematically equivalent to the differential form given

by Equation 3-3. However, the heredity integral provides an expression

for stress without stress derivatives, thereby facilitating displacement

formulations for boundary value problems. Moreover, many investigators

assert that the heredity integral is the proper definition for the

linear viscoelastic constitutive law, and, thus, there is no need to

concoct mechanical models or their associated differential equations.

When this viewpoint is adopted, the relaxation function Y(t) need not be

considered related to any particular mechanical model, but rather may be

considered as some monotonically decreasing function that predicts the

stress response (relaxation) which occurs from an imposed unit of strain. =

In the remainder of the study, the relaxation function will be

assumed to be given by an exponential series, i.e.,

N
Y(t) E + E exp (-t/Xi) (3-7)
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where E., El .... are relaxation moduli, and 2.3 are

relaxation times. Specification of these non-negative material con-

stants is all that is required to completely define the relaxation

function which in turn can be used in the heredity integral to form a

one-dimeisional viscoelastic constitutive law.

it can be shown that the exponential series form of th- relaxation

function will always correspond to some mechanical model; thus, it is

left to the discretion of the reader as to whether or not he will accept

the relaxation function at face value, as given in Equation 3-7, or

interpret the relaxation function in terms of a mechanical model.

To summarize the discussion thus far, Equation 3-6a or 3-6b repre-

sents a general one-dimensional viscoelastic constitutive relationship,

wherein Y(t) is a relaxation function characterized by an exponential

series, Equation 3-7. The parameters of the exponential series may be

determined directly from experimental data or interpreted from mechanical

models. In the next section, multidimensional stress-strain models will

be discussed.

MULTIDIMENSIONAL MODELS

General Viscoelastic Constitutive Law

Extending the constitutive relaxation from one dimension to multi-

dimensional stress states follows reasoning directly analogous o the

generalized Hook's law for elastic materials. Namely, each component of

stress is c-nupled in some fashion to various components of the strain

vector through a constitutive matrix, i.e.,:

c = D* dE (3-8)
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where the convolution symbol, *, denotes the inLegral relationships

given by Equation 3-6b. In general, the matrix D may contain 21 inde-

pendent relaxation functions for describing anisotropic materials;

however, for isotropic materials, only two independent relaxation iunc- A
tions are required. -

In this writing, only the isotropic form will be pursued. It is -

convenient in solving boundary value problems to choose the isotropic

relaxation functions as the response due to bulk and shear deformations.

That is, the bulk relaxation function, K(t), is defined as the hydrostaicic

stress response due to a prescribed unit of volume change by a Heavyside

step function. Similarly, the shear relaxation function, G(t), is

defined as the shear stress response due to a prescribed unit of shear

strain by a Heavyside step function.

Thus, for isotropic viscoelastic materials, Equation 3-8 has the

following expanded form, where K and G represent the independent relaxa-

tion functions:

K+(4G/3) K-(2C/3) K-(20/3) 0 0 0

K-(2G/3) K+(4./3) K-(2C./3) 0 0 0 22

K-(2G/3) K-(2G/3) K+(4G/3) 0 0 0
120 0 0 2G 0 0 d '-129

213 0 0 0 0 2G 0 13

230 0 0 0 0 2C 2
03 23

Iz

Equation 3-9 is the general viscoelastic constitutive law for

isotropic materials and has a strong restm-lance to the analogous elastic

constitutive law. However, it must be kept in mind that K and G are

functions of time, and the convolution operator, *, denctes an integral

relationship. For example,

t
\* dr Y(t) c(o) + Y(t - i) 3

0
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By integration of parts, it can be demonstrated that the con-

volution operator is communicative, i.e., Y* dE = E* dY. Also, the

convolution operator is linear in the sense that if Y = Y K + Y then

E* dY = c* c' + t* dY. Therefore, Equation 3-9 may be uncoupled in

shear and bulk and written as:

= 2K(E* dK) + D (e* dG) (3-10)

This may be written in expanded form as:

g [ •K(t - t) i_
o = D E(t) - D (t) di

ft:.- /t 9G(t- T)
-E I0 _) di (3-11)2G f aOT

0+

111i0001

11100011 10 0 0

where 2 K = 0 0 0 0 0

000000 0 0 0 0 0•

2 -1 -1 0 0
-1 2 -1 000

S (2/3) 2 0 0 0
2G ~ 0 0 0 30 0

0 0 0030
0 0 0 00 3

D K(o) D + G(o) D
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In the above, D and DG are constant dimensionless matrices forelas-Sbulk and shear, respectively, whereas D is the familiar constant elas-

tic constitutive matrix representing the instantaneous response of the
viscoelastic mdl

h• Viscoelastic Law With Exponential Series

As previously discussed, the relaxation functions can be repre-

sented by an exponential series with no serious degradation of generality.

Accordingly, the bulk and shear relaxation functions are taken as:

NKF K(t) K + K. exp(-t/a ) (3-12)

4~Nc NG

G(t) = G + C G1 exp(-t/-yi) (3-13)

where K., Kit K29 ... KNK and CG , G19 C ... GNG are relaxation moduli
for bulk and shear, respectively, and 61, 62 •N and

.9 112'"'BNK ~1 ~2' .
'fNG are relaxation times for bulk and shear, respectively. Determina-

tion of these parameters is discussed in Appendix B of this report and

elsewhere [2]]. For now it is assumed these parameters are known, and

the relaxation functions e completely defined.

Inserting the relaxation functions, i.e., Equations 3-12 and 3-13,

into the general constitutive law, Equation 3-11, the following rela-

tionship may be written:
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NK N
c(t) = e (t) + K. k + DC Fr G, (3-14)

~.e (K 1 1

where ki = j (c) ( -i exp[-Ct - 1)/Bi1 dT (3-15)0
o 1-

-J c(T) 1 exp[-(t - T)/yI]dt (3-16)
0 "'-i

The vector sets, k. and are often called "hidden coordinates"

or "internal variables" [22,23] for bulk and shear, respectively. The

motivation for introducing these internal variables will become evident

A:. subsequent derivations. It will be shown that incremental recursion

rclatimnships for ki and gi can be used to great advantage in circum-

venting the ned for storing the complete history of deformation [21,24].

lncremental Viscoelastic l.aw

In anticipation of using an incremental solution procedure,

the constitutive law can be cast in incremental form by defining the

current time increment as At = tn 1 - t and ,~ -~%k and !gi~as
nt1 n - g

,= ct -(t ), etc. With these definitions, Equation 3-14 can be

directLIy written in incremental form as:

Nh NC

K .C
=1) Ac +2KZ K. ;,k, + 1) G Ag(-1)
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To obtain corresponding incremental relationships for the

internal variables given by Equations 3-15 and 3-16, the time inte-

grals are subdivided into n + 1 time intervals, not necessarily of
constant size, Then, using the definition Ak = ki(tn)- k,(tn)

-.i =4 itn-ii - n)

and Ap. .=- (t n+ - i(tn), the following recursive relationship

can be found:

ftn+1

Ak.• = -f -()--- exp[-(tn+ - -)I/ idT + r ki(tn) (3-18)
f1 n- i ýi-in

t 1
n

where "r 1 - exp(-At/6.)

and

tI
ftn+1 i

h•.= -1 o(r)- exp[-(tn~ - :/•~•+q it)(-9

• , n+1in

n

A

where q = I- exp(-At/Yi)

It is significant to note that Ak[ and \g can be determined by j•a L

integrating over the current time step, t to t , rather than the
n 11+1

entire time history. The time history effect is given by the recursive

terms J ki(tn) and q

L
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As yet, no numerical approximations have been made. However, in

order to evaluate the integral in Equations 3-18 and 3-19, it will be

assumed the strain vector varies linearly over the time step. That is,

in the time interval tn < T < t + At, let:

T -nt

Then Equation 3-18 can be evaluated as:

Aki = -r Ac - ?ic(t) - kit() (3-20)

where i 1 - exp(-ALt/B)

r1 -- rt

In an identical fashion, an incremental recursion relationship for

Agi can be deduced as-

Agi - A" -AElc(tn) -n i (tn)) (3-21)

where i 1 - exp(-.At/y 1 )

q, ¥t q

q = -68
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Inserting Equations 3-20 and 3-21 into Equation 3-17 and separating the

current strain increment from history terms, the following incremental

constitutive law is achieved:

ao = (D -D)AE - (3-22)
- e ~v _ v

where VD =D ND +i G D
v K 2K 'G 2G

i- K

N
SaG : Gi qi"-

G i=l

CY stress-history influence vector~v

Note that D is composed of the constant, dimensionless matriccs D and

and the scalar multiples iK and acG that are only dependent on time-

step size 'It and not the time t. Therefore, D only changes its value

when the size of the time step is changed.

The term o will be called the viscoelastic stress-history influence~V

vector and is given by:

NK

(L n) K D K1 ri[t ) - k (tn)]
_vn K 1 n _L n

N
G

+ D Gi q [(t) - [i(tn] (3-23)

"A
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The stress-history influence vector accounts for the influence of

all past deformation states on the current stress increment given in

Equation 3-22. It should be observed that a is not dependent on the_v

current time interval t to t therefore, " is a known quantity at
n n+l; ~v

the beginning of each time step and can be treated as an initial stress.

In computational practice it is convenient to compute 5 at the end

of a time step in preparation for the next step. Summarized below are

the necessary relationships to update a after the time step tn to tn+I:

1. Aki - r Lr -C i [ (t) - ki(t )n

2. i =i -- q, - Ei (tn) - g (t n))

3. k (t k (tn) + Ak
i n+l -i n -i

4. gi(t n+l) g i(t n + 1ig

5. c(t t ) = c(t ) + AC

N
NK

6. v (t n+l) 2 K Ki ýi[",(tn+l) - k,( tn+l)

NG

M •G i Gi (tn+l) - n+l

In summary, Equation 3-22 is the general viscoelastic constitutive

relationship to be incorporated into the boundary value problem, and the

above relationships provide the algorithm for updating V . In the next

sections the constitutive relationship is introduced into a finite

element formulation and a step-by-step procedure is outlined for the

Solut ion.
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VISCOELASTIC FINITE ELEMENT FORMULATION

For convenience, the general equilibrium equations previously

derived in the finite element development are repeated here;

TE

E f= Gd AP' (3-24)

where it will be recalled that B is the strain-to-nodal point displace-

ment matrix, AP is the external load increment, and the symbol K

denotes the ordered summation of each finite element volume integration

into its correct location of the global stiffness matrix. Replacing Ac

by the viscoelastic constitutive law, Equation 3-22, and using the

strain-to-node displacement relationship, Ac = B A, Equation 3-24 may

be written as:

(K -Kv)A• = AP~ + F (3-25)
fte -v - -V

where

TI
K T D B dv (3-26)

we JBf ,,.v

• l~ =£ TDv B dv (3-27)

V
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=f a dv (3-28)

Equation 3-25 represents the familiar set of linear algebraic

equations common to step-by-step methods. K is the constant, elastic,
ze

global stiffness matrix, and K is the global viscous stiffness matrix•v

whtch is independent of time, t, and is only dependent on the current

size of the time step, At. F represents the viscoelastic force history
-V

vector which is independent of the current time interval, t to t
n n+l'

and, therefore, is known at the beginning of each time step.

.9 The solution procedure for Equation 3-25 can be handled in a

straightforward manner. However, caution must be followed with regard

to the calculation of F . Note the volume integral in Equation 3-28
~V

requires that the spatial distribution of 5 be known within each ele--v

ment. Unfortunately, it is not known in a continuous fashion. There-

fore, in order to perform the volume integration, several approaches are

possible. First, it may be assumed that a is constant within the_v
element. Thus, 3 is determined at the element center. Second, o may

-V -V
be computed at the numerical integration points (Gauss points), thereby

facilitating a direct numerical integration. Although this second

approach is accurate, it may require excessive auxiliary storage because

the calculation of C requires the storage of all the internal variables
-v

k and g for each integration point (see Equation 3-23).
A third and last approach is the most consistent. Basically, the

idea is to develop an updating procedure for F based on a recursion

scheme. To this end, Equations 3-23 and 3-28 are combined to express F

in the following mnnner:

F h (3-29)

"+ -G
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where
- ,

r2

FT
h h Ki B. TK[•(tn) D k.(tn)ldv (3-30)

-K, K i lBt K-

hGc -gt D) ]dv (3-31)

ii D n

In the above equations, hKi and hGi represent viscoelastic force history

vectors for bulk and shear within each element.

As expressed in Equations 3-29, 3-30, and 3-31, the calculation of

hKi and h0_ and then F does not provide any advantage over the calcul]a-

tion for F as given previously in Equation 3-28. However, if Equations
-V

3-30 and 3-31 are written in '.ncremental form (that is, AhKi = K(tn) -

. n- and hei h0 (t)- hGi _, if Ac is replaced by B At, and

if Ak and 'g. are replaced by their recursion relationships given by

Equations 3-20 and 3-21, then the following recursive relation.ships are

found for AhK and AhG.

(Ki ?i + r)S I + FA 2 + (3-32)

i 1t -

A
Ahi = G qi(I'+ q1 )S + (3-33)

ft ýý iG

where s = f T DK B dv, dimensionless bulk stiffness

- BD B dv, dimensionless shear stiffness
7v3
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At the end of each time step, Equations 3-32 and 3-33 provide a

simple and consistent method of determining the force history increments

.hK and AhGi for each element by making use of the knowm displacement

increment Au and the accumulated force history vectors, hK and hi.

It should be observed that the volume integrations are consistently

defined by the dimensionless element stiffness matrices, S and S

Furthermore, S and S are independent of time and time step; therefore,

they need only be computed once for each element and stored.

The foregoing viscoelastic finite element formulation is summarized

in the following step-by-step solution procedure. Equation 3-25 is the

governing equilibrium equation to be solved at each time step. To

present the solution strategy, it is assumed that all quantities have

been calculated at time tn, i.e., 1(t), h and hG (t ). The
nP n _K i (n -i n

objective is to find the increments A, and hG from tine

1. Form new load increment AP.

2. Assemble force history vector, Fvs from Equation 3-29.

3. Assexecle total stiffness matrix, K - K., from Equations 3-26

and 3-27 (only required if time-step size changes).

A -- A
4. Solve (K - Y. )Au AP + F for Au.

e v _v

5. Evaluate lh and .h from Equations 3-32 and 3-33.
ýG. _K.

6. Update all quantities: (tn+ ), hG (t n+), hK. (t n+).

7. Print results, and return to Step 1. (Note stresses may

be >alcalated from Lquations 3-22 and 3-23.)

To start the abItv/ aLorithm, it is assumed the body is undeformed

prior to loading -,o that iuitiat]y i(o) hK(O) - = 0. For the

initial instantaneou.z elastic solution over the time interval t 0 to

., L"h - i= = 0, and 0. = O.
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Therefore, the first solution at t = is obtained by solving the

elastic system, K Au = AP, where AP is the instantaneous load applied

at t = 0. With this starting procedure, the above algorithm can be used

for each succeeding step.

As previously mentioned, the viscoelastic stiffness matrix, i ,

only changes its value when the size of the time step, At, changes. If

the time step is kept con'tant, computation time (steps 3 and 4) may be

considerably reduced by reusing the total triangularized stiffness

matrix to modify each new right-hand-side vector, LP + F 9 and perform-

ing a simple back substitution to determine 'u. -
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Chapter 4

VISCOPLASTICITY

GENERAL

The general theory of viscoplasticity is discussed in Appendix C.

In this section, a particular viscoplastic model called "viscoelastic-

plastic" is developed in detail. The model is a member of a family of

combo-viscoplastic models introduced in Appendix C.

The viscoelastic-plastic model is characterized by a linear

viscoelastic model within the yield surface and the combined visco-

elastic and plastic response on the yield surface. Figure 13 portrays

a one-dimensional representation of the viscoelastic-plastic model. As

suggested by the one-dimensional model, plastic deformation is not

retarded by viscous components; consequently, plastic deformation may

occur instantaneously as in classical plasticity. Accoruingly, the

yield function is restricted to the same rules of classical plasticity.

The viscoelastic-plastic model is developed in detail in the next section

for a general multidimensional stress-strain state wherein previously

derived relationships for plasticity and viscoelasticity are employed.

VISCOELASTIC-PLASTIC CONSTITUTIVE DEVELOPMENT

In this section, a general constitutive relationship is developed

for the class of "viscoelastic-plastic" materials described above. The

fundamental assumption for viscoelastic-plastic materials is that the
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total stress is persistently related to the viscoelastic portion of the

total strain regardless of the amount of plastic straining, i.e.,

a = D* dE (4-1)•, • ,ve

where D* dc denotes the convolution constitutive relationship pre- I
-ve

viously developed in Equations 3-8 through 3-11.

In accordance with the above assumption, it is further assumed that

the total strain can be decomposed into viscoelastic and plastic compo-

nents, i.e.,

C = E + t (4-2)~ ve ~p

where c is the viscoelastic strain vector, and c is the plastic
-ve _p

strain vector. Note the assumptions embodied in Equations 4-1 and 4-2

are directly analogous to the assumptions made in the elastic-plastic

formulation, wherein it is assumed a = D c and c = E + ci
~ Ze _e ~ ~e p"

As always, the objective of this constitutive development is to

determine a relationship between the current stress increment, An, and

the strain increment, Ac. To this end, the development begins with the

incremental equivalent of Equation 4-1 given by Equation 3-22 and is

repeated here for convenience:

1= ) Aý - ( (4-3)
Mve V ve .v
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where

D = D - D (4-4)
sve me IV

and

NK

=D •KE K. • (t) - k,(t-v i ye n n

NG

+ D G0 Eic (tn) -~g.(t )] (4-5)
AVG ....ve n i nl

In Equation 4-3, the incremental quantities imply the increments from

time tn to tn+I. The stress-history influence vector, • ' is evaluated

at time t and, therefore, can be considered as a known initial stress.
n

All of the quantities on the right-hand side of Equations 4-4 and 4-5

were previously defined and discussed in the viscoelastic formulation.

The significant point to be borne in mind is that all references to

strains in Equations 4-3 and 4-5 are with respect to the viscoelastic

strain and not the total strain.

To achieve the desired constitutive form, Ac may be replaced by-eve

Ac - Ac in accordance with Equation 4-3; thus, Equation 4-3 becomes:

Aa = D (Ac - AZ. ) - 0 (4-6)
mve -Vp
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Except for the term 5v, Equazton 4-6 is simi-lar to Equation 2-30 in the

elastic-plastic development. Therefore, at this point, the development

parallels the plastic formulation, and it is assumed the plastic flow

law (Equation 2-26) remains valid, i.e.,

AT

_P .. 4~ (4-7)

A

where n is the outward normal of the yield surface, M is the ,Irection

of plastic straining (m = n implies associative law; m # • inplies

nonassociative law), and H' is the hardening coefficient. Furthermore,

it is assumed all the previously established rules for plastic deforma-

tion still hold. That is, yielding can only occur for states of stress

on the yield surface with some component of the stress increment colinear

with ^, and the methodology of tracking the universal yield surface

remains unaltered,

Inserting the flow rule, Equation 4-7, into Equation 4-6 and taking

the inner product with respecL to the outward normal, nT, the scalar

quantity n T Ao is determined as:

AT- v v(8
Z (D AE--,

AT ~ ,ve - v)
n A0 (4-8)

1 1+ (AD meve

Inserting Equation 4-8 back into Equation 4-7, the plastic strain Incre-

ment is related to the total strain Increment by:

Ap - C (D AE-v) (4-9)
-p ..Pv ftve 2 v



1]

where

A AT
- mn

NP +AT AH' +n D m
Smve -

Lastly, returning to Equation 4-6 and replacing Ac by Equation 4-9, the

desired viscoelastic-plastic constitutive relationship is achieved:'

Aa (D -D )Ac (410
- ve Mvp - e (410)

where

TD =D C D (4-11)•vp ve ftpv mve ( l

G = (D - D )D 1 (4-12)
~vp ,ve mvp mve ~v

In the above, D is a viscoplastic material matrix, and 7 is the
~vp ~Vp

viscoplastic stress-history influence vector and is related to 7

through Equation 4-12. Note j reduces to 7 whenever D = 0.
-vp V MVp ft

In utilizing Equation 4-10, 7 is treated as a known initial-vp

stress during each time interval. At the end of each time step 7 is-Vp

updated in preparation for the next step. Summarized below are the

necessary relationships to update 7 after Aý and %o' have been deter--vp ) --

mined in the time interval t to t
1 8 n+l
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1D [A0 + • (tn)1-we ye _ v nl

2. Ak. = AD ~ (t k in2. •k~ - i ve - -[ve tn) -k tn)

3..[ (g q AE[C% g (t ). g -ve - i ye n - n

4. k itn) = ki(t ) + Ak.

5. gi(t ) g.(tn) + Ag
-t n-I- -1 n -

6. E (tn) -E c (t ) + Ac
~ve n-i .ve n -ye

NK

7. 0 = D Ki ) - k (t ))]
~v n+1 DK -=1 1iZve(tn+1 ." n--

N
G

+ 2G G, i qi[ve(tn+I) qi (tn+l)]i~=l

8. °v (tn ) = (D - D )D . (t )
vp n+1 fve fvp Mve _v n+l

In summary, Equation 4-10 is the general viscoelastic-plastic

incremental constitutive r'i; tionship useable in any boundary value

i..rmulation. The abovv sequence of steps provide the algorithm for

updating 5 at the end of each time step. Lastly, it can be observed
-Vp

th:'t Eqtation 4-10 reduces to the linear viscoelastic model (Equation

4-3) whenever D - 0 (i.e., C = 0). Alternatively, if viscous compo-
,,vp fp -

nents are zero (i.e., D = 1) and = 0). then Equation 4-10 reduces".Ve we -V

to the elastic-plastic model.

In the next section, Equation 4- 0 is incorporated into a I imitLL

element formulation, and a step-by-step solution procedure is pi -,..nttcd.



fri

FINITE ELEMENT VISCOELASTIC-PLASTIC FORMULATION

beginning with the general finite element equilibrium equations

(from Equation 1-6):

T Ao dv =AP (4-13)

v

where B is the strain-to-nodal point displacement matrix (i.e.,

Ac = B A"), AP is the external load increment, and * implies the ordered

*; summation of the elements.

a Replacing Ac by the viscoelastic-plastic constitutive law, Equation

4-10, and using AE B AO, Equation 4-13 may be written as:

(K -K )A•u - AP + F (4-14)
#.ve ,vp ~ vp

where

- r3
K f BT D B dv (4-15)

• ,re E,,rae
v

',vp ,vp w

F BT dv (4-17)A

-vp -Vp
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In the above, K is the global viscoelastic stiffness matrix anl
-ye

could be written as K = K + K as was done in the viscoelastic formu-latIon.--ve v .e w
lation. Recall that K remains constant if the time step is constant...ve
K is the global plastic stiffness (reduction) matrix and is similarly
Mvp
defined in the plastic formulation. The vector Fvp will be called the

viscoelastic-plastic force history vector and represents the interaction

of viscous and plastic response. If D 0, F reduces to the pre-
Mvp ~vp

viously defined viscoelastic force history vector, Fv,

The governing equations, as shown in Equation 4-14, are in the

proper form for a direct solution by standard elimina'ion methods.

Alternatively, the plastic portion, K Au, could be taken to the right-,, ,Mvp
hand side and treated as an unknown force. These solution strategies

will be detailed later; for now the attention is focused on computing

the force history vector, F'vp
The calculation of F presents the same problem as did F in the

_vp -V
viscoelastic development; namely, Equation 4-17 requires the volume

integration of 3vp'however, the spatial distribution of a- is not
known in a continuous fashion. There are two basic options available to

overcome this difficulty. One method is to calculate a at a suffi-'-Vp
cient number of points to afford a proper representation in a numerical

integration scheme. For example, in Gaussian quadrature, the calcula-

tion of 3 at the Gauss points would be appropriate. The disadvantage~vp
of this method is that each point at which 3 is cahulated requires

-vp
the storage of all the internal variables ki and g.i•

The alternative method is to use element force history vectors

(e.g., hK and hGi) as was done In the viscoelastic formulation. How- A

ever, in this case, the development is not as clean due to the interaction

of viscous and plastic responses. As a result, a portion of F is
ývp

dependent on plastic strain which, in turn, must be evaluated at points

within the element and numerically integrated. Consequently, as long as

it is necessary to calculate plastic strains at the integration points,

it is only a little more work to obtain o at Gauss points and obtain-vp
F by the first method.

.Vp

8
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SOLUTION ALGORITHM I
The solution procedures developed in the elastic-plastic and

viscoelastic sections contain most of the concepts for solving the

viscoelastic-plastic problem. Here, only the highlights of the initial

strain method will be discussed.

*. From Equation 4-14, the proper form for the initial strain method

is given as:

K L' - P + ýF + F (4-18)
*ve _ - -p _Vp

where

AFp BT D B dv) • (4-19)

Recall that K remains constant as long as the size of the time stepve
remains constant; thus, K only needs to be triangularized when the",ve
time step size changes. To establish the algorithm, it is assumed all

quantities are known at time t , and the objective is to determine then
quantities at time t

1. Form new load increnent AP, and estimate AuI AU
- -4 .n-l

2. Calculate AFp B T pD B dv Wu

3. Compute Fv B dv, where o is given by Equa-~vp -vp ~vp"
v

tion 4-12
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4. Solve K Ai = AP + -F + F forA•.".ve ~ -p -vp -

5. If Au =A&i go to Step 6; otherwise, return to Step 2

for iteration.

6. Monitor each element to determine if it is in plastic region.

If so, update yield surface parameters and flow law.

7. Print desired results, and return to Step 1.

The above algorithm implies D and o remain constant within the timeft'p ~vp
step; however, these quantities could be modified in the iteration loop

Sto account for transitions from the viscoelastic range to the plastic

range as was discussed in the section on plasticity.

This concludes the viscoelastic-plasti.c development. It is felt

this model incorporates all of the significant aspects of viscoelasticity

and plasticity into a unique model. Furthermore, the model directly

[ reduces to plasticity or viscoelasticity by appropriate designation of

the parameters.
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Chapter 5

IIENTIFICATION AND APPLICATION OF VISCOELASTIC-PLASTIC MODEL

In this section, the viscoelastic-plastic model is discussed from a

conceptual viewpoint to illustrate the types of material behavior that

can be represented and the methods for determining parameters. To

supplement the discussion, the model is compared with experimental data

from sea-ice and plexiglass test specimens.

GENERAL CHARACTERISTICS

A conceptual representation of the viscoelastic-plastic model is

shown in Figure 14 where the symbols , , and represent the :
plastic, viscous, and elastic parts of the model. As suggested by the

figure the total strain, e, is the sum of the parts (E = c + E + e ).--. -p -v -e

Also, the figure illustrates that the applied stress, o, is transmitted

from to 0 to (D instantaneously at full value, because the com-

ponents are all in series. Indeed, these characteristics were used in

the previous section for developing the general constitutive model.

As a side comment, other combinations of models with different

characteristics can be developed by various arrangements of the basic

components. This is discussed in Appendix C.

To illustrate the viscoelastic-plastic model shown in Figure 14,

consider the strain response due to a constant stress, a = (I/2)ol,

where aL is the linear limit. Since o is within the yield surface, only

elastic and viscous deformation will occur. This is illustrated by the

bottom curve in Figure 15. Note the initial response is the iistantaneous

elastic strain, and all additional strain accumulation is v•icous.

89- ._.
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6AV\/\AA Elastic model,
Sj) :•, • ¢'N'V instantaneous response

"•friction Plastic model, dependent
Sblock on stress magnitude

//////////777/77

07>
0 : Viscous model,

dependent on time

(always present)

Figure 14. Conceptualization of viscoelastic-plastir model.
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Figure 15. Typical strain histories for various

levels of stress.
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Next, consider the same test with a a 0L (slightly less). Again,-a is

still within the yield surface. Therefore, the strain response is

double the previous strain response as shown by the next curve. Of

course, this result is due to the superposition principle of linear

viscoelasticity.

Now consider a = ( 3 / 2 )aL. This time the yield stress is exceeded,

triggering a plastic response. Like the elastic strain, the plastic

strain occurs instantaneously and, thereafter, remains constant because
it only responds to stress changes. The magnitude of the plastic'strain

is dependent on the hardening function, shape of the yield surface, and

level of stress. Figure 15 shows a representative strain history for

this example. As the stress level is increased on each subsequent test,

the strain magnitudes increase in a nonlinear fashion until the hardening

function becomes zero, whereafter unrestrained plastic deformation

occurs. Again, Figure 15 illustrates these concepts.

A significant characteristic of this model is that for states of

constant stress, only the viscous strain changes with time so that the

strain rate is independent of plastic deformation and is linearly related

to stress level like an ordinary viscoelastic model.

The above insights are useful for determining the parameters of the

model discussed next.

MODEL FITTING TECHNIQUES

The )eauty of the viscoelastic-plastic model. presented herein is

that it is a combination of two well-known constitutive theories: visco-

elasticity and plasticity. Accordingly, the material information gathered

over the years for the individual theories can be used directly for the

combined model.

The first step in establishing a viscoelastic-plastic model repre-

sentative of a particular material is to determine the viscoelastic

portion of the model (i.e., + of Figure 14). If the material is
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well studied, it ir. likel- that viscoelastic parameters can be found in

the engineering literature. Ocherwise, Appendix B provides a detailed

guideline for converting test 6ata into viscoelastic parameters.

In this case, the most important consideration is to use test data

with state variables (i.e., load rates, temperature, moisture, etc.) as

close as possible to the conditions of the problem beiag studied.

Since the viscoelastic model represents thv linear portion of the

response, it should be based on test data at low stress levels. Or,

more ideally, it should be based on an unloading response history since

unloading is assumed to be linear.

The plastic portion of the model may be simple or as complicated as

desired. in general, a yield condition, flow rule, surface (hardening)

rule, and hardening function must be determined. For many materials

these are presented in the engineering literature. Also, Appendix A

provides a detailed discussion on various plasticity models.

If very little is known about the material being considered, the

plasticity model should be made as simple as possible; i.e., assume a

simple yield condition (sach as Drucker-Prager or Von Mises), assume an

associative flow rule, assume an isotropic hardening surface, and calcu-

late a harlLning tunction directly from available test data.

To illustrate the viscoelastic-plastic model fitting procedure,

consider the idealized strain history data CUrveS Lhat were discussed in

Figure 15. The first step is to determirie the viscoelastic creep func-

tion J(t), SaLisfvJng the relationship f(L) = J(L)--, (C < C L ). In other

words, by inspecting the data, one recognizes the lo,,;er Lwo curves obey

t1io linear viscoelastic superposition principle -so that J(t) may be

detcainlined from either one of the--,e curves. The detailed process 01

determ.inJ.ný; _71,ý) is given in Appendix B, where T(t) is of the form:

N
J(t) A + B t + C i (I e (5-1)
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and the unknown parameters to he determined are A, B, C1, C,.. CN2l N2,

N* A

To identify a complete viscoelastic model, additional material data

are required (e.g., shear or bulk function) as discussed in Appendix B.

However, if no other data are available, some constant value of Poisson's

ratio can be assumed. Methods of inverting creep functions to relaxation

functions and converting uniaxial functions to bulk and shear functions

are also presented in Appendix B.

After the viscoelastic parameters are determined, the plastic

portion of the model is examined by constructing a plot of stress versus

plastic strain. To this end, consider any particular time t* in Figure

15. By definition, the plastic strain is

S•: = c(t*•) (t•)
p ve

where c(t*) is the strain data at some stress level c, and c (t*)
ve

J(t*)cj. Therefore, for any time t* a plot of stress versus plastic

strain may be constructed as shown in Figure 16. If the material is

ideally viscoelastic-plastic, this plot will be identical for any choice

of t*. However, in practice, it is prudent to consider several different

values of t* to get an average overtime. in so doing, one may discover

the plastic strain is highly time-dependent so that a viscoelastic-

plastic model is not suitable. in this case, consult Appendix C for

other combo-viscoplastic models.

.\ssum[ng the plastic strain remains reasonably constant for each

stress level, the next step is to choose a plastic yield condition.

Generally, the Drucker-Prager yield condition (see Appendix A) is siffi-

dcent to characterize material behavicor from one-dimensional tests.

Assuming Isotropic hardening, this condition is:
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F (c~i. a a0  + -k (5-2)

where a is the average hydrostatic stress, and Jis the second devia-

toric stress invarier.t. The yield surface may be visualized in principal

~~ j stress space as a cone whose centerline is along the hydrostat (
02 =C ). The yield parameter, k, is the cone radius measured from the

origin, and the parameter *z measures the rate of increase of the cone

radius in moving along the compression hydrostat. If u = 0, the cone

becomes a right cylinder and the Drucker-Prager condition reduces to

the Von Mises yield condition.

For the problem under consideration, thE data in Figure 16 contain

two compression tests that exceed the elastic limit. However, because

theste LesLz, have identical stress paths and intercept the same pnint on

the yield sufface, they do not provide sufficient information Lo deter-

mine both k and *-, independently. If tension yield tests are conductedI

in addition to the compression yield tests (or, if lateral plastic

strains are measured) , thcn both k and can be determined.

Assuming for now only compression yield data are available (which

is oiten the case), then tt must be pre-selected as some constant, say

= t(most probably a= 0) . From Figure 16, initial plastic yielding

occur.'3 at ý7 0so that from Equation 5-2 thle initial value of k is:

0..2 + (5-3 )

where 0 is the initial compressive yield stress. During plastic

yielding, k increaser, such that it continuously satisfies thle yield

condition.
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Figure 16. Typical. plastic hardening curve.
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Figure 17. Hardening function.
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Having established a yield condition and its parameters, one next

assumes an associative flow rule and determines the hardening function.

From Equation 2-24, the associative flow rule for the plastic strain

increment gives the hardening function as:

2 Ao

H(W) nI 2-- (5-4)
P 1 AC

where n 1 is the component of the yield surface unit-normal collateral

with the loading stress, and is given by:

2/3CL+ 2Sgi!o

nI 0 (5-5)

a 2+32o

If = 0 (i.e., Von Mises condition), the above reduces to nI (2/V6)

Sgn a.

Using Equations 5-4 with n1 given by Equation 5-5, and ,a/Ap given
p

by the slopes in Figure 16, the hardening function can , evaluated as a

fun'-tion of plastic work

! W =u d L
-I

p 0

(i.e., area under o versus c curve). This is illustrated in Figure 17P

for the case a 0.

97



The preceding illustrates the basic strategy of identifying the

parameters of the viscoelastic-plastic model. Appendixes A and B pro-

vide further insight and details. In the next section some examples are

given.

COMPARISON WiTH EXPERIMENTAL. DATA

In this section, the versatility (and limitations) of the

Sviscoelastic-plastic model is demonstrated by comparing it to experi-

mental strain data from compression test specimens of Plexiglas and sea-

ice.

The Plexiglas creep data were generated by Marin, Pao, and Cuff

f271, and are shown by discrete data points in Figure 18 for three

compressive stress levels, = 2,500, 3,100, and 4,000 psi. Using the

model fitting procedure in the previous section (including Appendixes A

'.Td B), the viscoelastic-plastic model expression for creep strain is:

-0.3t

--_() - [2.57 + 0.000417t + (.389(i - e )] + *•.1 0 6 P
f

with 0= , when

K (, ) , when L

it is assumed 1 .(1o, n,; (initial linoar limit), ad I ( E 500,000

psi is simplified to a constant. The time unit is hours.
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Figure 18. Comparison of vfiscoelastic-.plastic modelwith experimental data for Plexiglas
(Ref 27).
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The above expression is plotted as a solid line together with

the experimental data points for all three stress levels. For the two

lower stress levels, the model is linear viscoelastic (i.e., no plastic

response) and compares well with the data points. For the highest

stress level (4,000 psi) a plastic strain is generated that combines

with the viscoelastic strain. This gives a better fit of experimental

strain than just the linear viscoelastic model as shown by the dashed

line.

The above example illustrates a predominantly elastic response, a

* moderate amount of viscous response, and relatively little plastic

response. As the stress level increases, plastic response becomes more

and more significant.

The second example, sea-ice, illustrates a highly viscous material

with pronounced plasticity ani relatively small elastic response. The

experimental data were generated by Vaudrey [26] and are shown as dis-

crete data points in Figure 19. The data shown are for sea-ice at -27 0 C,

with ice crystals orthogonal to the direction of loading at three com-

pressive stress levels, c = 70, 175, and 350 psi.

A viscoelastic-plastic model fit gives the expression for axial.

strain as:

()= • 2.0 + 1.43t + 21.1(1 - e 0 75t +
10 6

with 0, when -: Lp L

p p

. . . 100



It is assumed L = 250 psi, and the hardening function, E (E) o IL/

+ , which approaches zero as p becomes large.

The above model expression is plotted as solid lines in Figure 19,
showing excellent agreement with the data points. In particular, the I

viscoelastic-plastic model is able to replicate unrestrained plastic

flow that occurs at the high stress level.
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Figure 19. Comparison of viscoelastic-plastic model
with experimental data for sea-ice.
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SUMMARY AND RECOMMENDATIONS

This report offers a textbook style development of viscoplasticity.

For completeness, a detailed review of viscoelasticity and plasticity is

also included. The main text focuses on the so-called "viscoelastic-

plastic model." However, this model is just one example of a general

family of combo-viscoplastic models presented in the appendixes.

Each model is initially presented with visual one-dimensional

concepts and then generalized into multidimensional stress space. The

not result is an incremental constitutive model suitable for numerical

computation. To this end, finite element algorithms are proposed for

W_ each model.

The viscoelastic-plastic model is shown to capture the observed

creep responses of such elusive materials as plexiglass and sea-ice.

Also, it is apparent other materials, such as soil, plastic, epoxy,

concrete, etc., can be suitably approximated with this model within

certain ranges.

' A primary advantage of the viscoelastic-plastic model is the ease

of parameter identification. This is because it can be divided into

seotrate viscoelastic and plastic identification problems. The primary

limitation is that the strain rate is independent of plastic strain for

a cunsta-it lad. This limitation can be removed by employing higher

order combo-viscoplastic models.

Immediate future efforts should be directed on two fronts. First,

the algorithmsl developed herein should be incorporated into a finite

element program and tested on selected boundary value problems. Second,

and concurrently, higher order combo-viscoplastIc models should be

investigated and compar-d with experimental test data. here the objec-

tive is to identify a single "grandfather" combo-viscoplastic model that

10i I
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contains all the desired response characteristics and is capable of

degenerating to lower order models.

The net result of these efforts would be the beginnings of an

analytical tool (finite element program) capable of rationally dealing

with structural engineering problems encountered by the Navy.

Finally, the long-range objective should include a material

identification study. That is, for each material type, subtypes would

be grouped by ranges of state variables, such as temperature, moisture,

impurities, etc. Then, visccplastic parameters (i.e., parameters of the

"grandfather" model) could be determined by identification procedures

discussed herein. This library of data could be incorporated into the

finite element program so that model parameters would be automatically

retrieved (or interpolated) by specifying the material type and state

variables. Alternatively, experimental data (e.g., triaxial test data)

could be input into the program and the parameters determined directly.

The benefits of this plan are enormous, both technically and

economically. On the technical side the plan provides a rational and

uniform approach for dealing with structural materials, such as concrete,

plastics, soils, sea-ice, epoxies, and a host of other time-dependent

materials encountered day-to-day by Navy engineers. Economically, under

current procedures, it is not uncommon for an engineer to spend more

than one-half of his time groping with material models and their para'n-

eters. The proposed plan would relieve the engineer of this burden and

allow him to get on with solving the problem.

I



REFERENCES

1. Oak Ridge National Laboratory. ORNL-4783: Representation of creep

metals, by E. Turan Onat and F. Fardshisheh. Oak Ridge, Tennessee, Aug

1972.

2. Green, A. E., and R. S. Rivlin. "The mechanics of nonlinear mate-

rials with memory, Part I," Archive for Rational Mechanics and Analysis,

vol 1, 1957. I
3. McLean, D. Mechaiiu,,al properties of metals. Wiley, New York, N.Y.,

1962.

4. Perzyna, P. "Fundamental problems in viscoplasticity," Advances in

Applied Mechanics, vol 9, 1966, pp 243-377.

5. Zienkiewicz, 0. C., and I. C. Cormeau. "Visco-plasticitv, plastic-

ity and creep in elastic solids, a unified numerical solution approach,"

International Journal for Numerical Methods in Engineering, vol 8, 1974,

pp 821-845.

6. Fung, Y. C. Foundations of solid mechanics. Prentice-Hall Inc.,

Englewood Cliffs, N.J., 1965.

7. Bathe, K., E. Ramm and E. Wilson. "Finitc element formulations for

large displacement and large strain analysis," Report No. UCSF.SM 73-14.

University of California, Berkeley, Calif., 1973.

105



8. Stricklin, J. A., W. E. Haisler and W. A. Von Riesemann. "Formula-

tion, computation, and solution procedures for material and/or geometric

nonlinear structural analysis by the finite element method." Sandia

Corporation Report SC-CR-72-3102, Alburquerque, N.Mex., Jan 1972.

9. Hartzman, M., and J. T. Hutchinson. "Nonlinear dynamics of solids

by the finite element method," Journal of Computer Structures, vol 2,

1972, pp 47-77.

10. Zienkiewicz, 0. C. The finite element method in engineering

science, McGraw-Hill, London, 1971.

It. Marcal, P. V. "Finite element analysis with material nonline-

arities, theory and practice," Prepared for Office of Naval Research,

NR-064-512, Aug 1969.

12. Grumman Aerospace Corporation. Grumman Research Department Report

RKl-483J: Plasticity - Theory and finite element applications, by

H. Armen, Jr., H. Levine, and A. Pifko. Bethpage, N.Y., 1972.

13. Mendelson, A. Plasticity: theory and application. MacMillan

Company, New York, N.Y., 1968.

14. Hill, R. Mathematical theory of plasticity. Oxford, University

Press, 1950.

15. Nayak, G. C., and 0. C. Zienkiewicz. "Elasto-plastic stress analysis.

A generalization for various constitutive relations including strain

softening," International Journal for Numerical Methods in Engineering,

0ol 5, 1972, pp 113-135.

106



I!L

REFERENCES

1. Oak Ridge National Laboratory. ORNL-4783: Representation of creep

metals, by E. Turan Onat and F. Fardshisheh. Oak Ridge, Tennessee, Aug

1 :1972.

2. Green, A. E., and R. S. Rivlin. "The mechanics of nonlinear mate-

rials with memory, ?art I," Archive for Rational Mechanics and Analysis,

vol 1, 1957.

3. McLean, D. Mechanical properties of metals. Wiley, New York, N.Y.,

1962.

Perzyna, P. "Fundamental problems in viscoplasticity," Advances in

Applied Mechanics, vol 9, 1966, pp 243-377.

5. Zienkiewicz, 0. C., and I. C. Cormeau. "Visco-plasticity, plastic-

ity and creep in elastic solids, a unified numerical solution approach,"

International Journal for Numerical Methods in Engineering, vol 8, 1974,

pp 821-845.

6. Fung, Y. C. Foundations of solid mechanics. Prentice-Hall. lnc.,

Englewood Cliffs, N.J., 1965.

7. Bathe, K., E. Ramm and E. Wilson. "Finite element formulations fot

large displacement and large strain analysis," Report No. 'CSESM, 73,-14.

University of California, Berkeley, Calif., 1973.

105al

-- - - - -



..

16. Hodge, P. G. "'Discussion on a new method of analyzing stress and

r strains in work hardening plastic soi:.ds' by W. Prager," Journal of

"Applied Mechanics, vol 24, 1957, pp 482-484.

17. Goel, R. P., and L. E. Malvern. "Biaxial plastic simple waves with

combined kinematic and isocropic hardening," Journal of Applied Mechanics,

vol 37, 1970, pp 1100-110b.

18. Prager, W. An introduction to plasticity. Addison-Wesley Publish-

ing Co., Inc., Reading, Mass•., 1959.

19. Flugge, W. Viscoelasti--ity. Blaisdell Publishing Company, Waltham,

Mass., 1967.

20. Christensen, R. M. Theory of viscoelasticity. Academic Press

Inc., New York, N.Y., 1971.

21. Naval Civil Engineering Laboratory. Technical Report R-803: Ice

engineering: Viscoelastic finite element formulation, by M. G. Kato-:a.

Port Hueneme, Calif., Jan 1974.

22. Distefano, N. Nonlinear processes in engineering. Academic Press

Inc., New York, N.Y., 1974.

23. Malone, D. W. "Finite elements and dynamic viscoelasticity,"

Journal of Engineering Mechanics Division, Proc. ASCE, Aug 1971.

24. Taylor. R. L. "An approximate method for Lhermoviscoelast i ý;truss

analysis," Nuclear Engineering and Design, vol 4, 1966, p 21.

25. Univcrsity of Californi;j, College of Engineering. Report No.

Al-67-2: A lass of viscoelastic-plas'tic media, by A. E. Green and

t P. . Naghdi. Berkeley, Cal if., Mar 1967.

107



I
L•I

TT

26. Bazant, Z. P. "Endochronic theory of inelasticity and failure of

concrete," Journal of Engineering Mechanics Division, ASCE, vol 102, no.

EM4, Aug 1976, pp 701-735. .
4,j

27. Marin, J., Y. Pao, and G. Cuff. "Creep properties of Lucite and

Plexiglass for tension, compression, bending and torsion," presented at

ASME meeting, Division of Rubber and Plastics, paper no. 50-A-19, Nov 26, -•

1950.

28. Civil Engineering Laboratory. Technical Memorandum TM-61-76-3:

Preliminary creep results from viscoelastic laboratory testing program,

by K. D. Vaudrey. Port Hueneme, Calif., Mar 1976.

-__.... . ____108



Appendix A

PLASTICITY MODELS AND CONCEPTS

In this appendix, plasticity concepts are elaborated for common

yield conditions and flow rules with emphasis on methods of identifying

plasticity parameters from experimental data.

The first and foremost requirement to establish a plasticity model

is the selection of a yield condition. Using the universal form estab-

lished in Equation 2-34, the general yield condition is written as:

F - f(o-5) - k* (A-l)

such that F = 0 implies plastic response

F < 0 implies nonplastic response

and f(a - • ) = loading function
- p1

= yield parameter (universal weighting)

For a particular current value of the weighted plastic-tracking

stress, 3 , and of the yield parameter, k*, the yield surface is defined

by all stress states, o, such that F = 0. The unit normal of the yield

surface in six-dimensional stress space is given by:

A
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A T1

i/n f/i f (A-2)

where

3f (a- )
f = (A-3)

-7 3C

The unit normal, n, is an important vector, because it controls the
T ^.

magnitude ( n) and direction of plastic strain. Observe from

Equation A-2 that n^ is determined directly from the gradient of the

loading function so that the choice of loading function dictates the

general nature of plastic flow.

Loading functions are generally written as functions of the stress

invarients:

f - ) f[Om(a -(0 ), JH(5-p), J'(o - P)] (A-4)
-P m m- -.P ft.p 3 -p

where c; is the spherical stress invariant and J2' and J are the second
m 2 3

and third deviatoric stress invarients. Using the chain rule, the

gradient vector is given by:

f + a + ,;f a (A-5)
m 2 3
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The vectors a, a 2 , and a are independent of the loading function

and are given by:

m

aI = (A-6)

a 
(A-7)

a - (A-8)

The foregoing has illustrated general forms for yield conditions

with arbitrary loading functions. In the next section these concepts

will be illustrated on a particular form.

DRUCKER-PRAGER YIELD CONDITION

A particularly useful and versatile yield condition is the so-called

Drucker-Frager model. For clarity and conciseness, the model will be

developed assuming isotropic hardening (i.e., - 0); however, thep
inclusion of universal hardening is a straightforward extension.

The Drucker-Prager yield condition is:

F + -k* 0 (A-9)

A 1



which implies the loading function is:

= a + N (A-10)

The invarients 0 and J' are measures of hydrostatic stress and
M 2

shear stress, respectively, and are defined as:

0tm -- 1(oI +2+ 03) (A-Il)

J2 2 [°l m)a2 + (o2 - )2 + (a2

+ 122 + ¶232 + T 312 (A-12)

'I

where al. 02, and 03 are normal stresses, and T12' 123' and 131 are

shear stresses.

The parameters of the yield condition are a and k*, which are

selected to establish the shape of the yield surface. For example, if

a = 0, the yield surface becories a cylinder of revolution about the

hydrostat in principal strers space with radius k*, or equivalently, it

may be viewed as a straigh- line on a o graph as shown in Figure

A-Ia. This type of loading function is associated with the Von Mises

yield criterion and is a good representation ".r ductile metals.

For a more geneýral case, .-i is specified non zero, which provides

the conical surface shown in Figure A-lb. The conical surface is

associated with the standard Drucker-Prager yield criterion, which has

applications in concrete, soil, rock, etc.
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(c) Modified Drucker-Prager yield criterion.

Figure A-i. Yield criteria.
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The yield condition can also be applied in piecewise continuous

fashion to better approximate actual yield surfaces as indicated in

Figure A-ic. To apply this model, one loading function is operable for

values of ; < , and a second loading function is operable for o >. 7opm

Additional functions can be added if desired. This is termed "modified

Drucker-Prager" model.

The Von Mises yield criterion only requires one parameter, k*, and

therefore, only one material test to initially characterize the yield

surface. The standarA nrucker-Prager criterion requires determination

of a. and k*; thus.t . two material tests are required. Table A-1

identifies the Vo. . .meter for a tensile test and the Drucker-

Prager parameters I- • xial strength test.

The descriptiot '-. and k* for Drucker-Prager are in terms of the

conesioLn stress, C, and internal angle of friction, 6, as determined

from at least two triaxial tests. To illustrate the derivation of a and

k*, consider two triaxial tests tinder different confining pressures and

loaded axially to failure as suggested in Figure A-2. Drawing Mohr

-ircles for both stress states at failure permits defining a straight

line failure surface with constants C and t as illustrated in Figure

A-3. The failure surface prescribes what combination of shear stress

and normal stress will cause failure, i.e.,

r
t T C + a tan (A-13)

where = shear stress at failure (positive)

= normal stress at failure (compression positive)

All states of Ltress (,, %) satisfying Equation A-13 are failure

states, and the equation is known as a Coulomb failure criterion. The
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rotated stresses, and o, are related to the principal stresses, ':1 and

through the Mohr circle geometry as:34

(aI - 03)

2= cos e (A-14)

( = i + •~3) -(c 1 - •~3) (-S
= 3 sin (A- 15)

2 2

Accordingly, Equation A-13 may be written as:

(1 + sin - 2 C cos,'- 0 (A-16)
Il - - sinC 3 1 - sn 6n

Now the objective is to put the general yield condition, *M +m

47- k* = 0, into the form of Equation A-16 in order to equate cu. Ii-

cients and, thereby, determine k* and t in terms of C and ,. For a

triaxial test, we have :m = -(j1 + 2 •3)/3 and = (1- 93)/\F"

(assuming compression positive and "3 so that the general yield

condition can be written as:

( + 2 rx) 3 k* (A-17)

Equating the coefficients of :3 and the constant terms between

Equations A-16 and A-17 gives the values for k* and * in TFable A-I.
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Table A-i. Yield Surface Parameters

Criterion Ek* k

Von Mises 2 0 2 /

S2 N3s in A 2 V 3 C Cose
Drucker-Prager 3 - sin 8 3 - sin 2

II

where 7 yield stress in one-dimensional stress
state

C shear strength at zero confining pres-
sure

A slope of triaxial strength envelope

1
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at failure (test 2)

03 constant (test 2)

a1 at failure (test 1 02 03

03 constant (test 1)

I1

Axial Strain, el

Figure A-2. Typical triaxial test data. i

shear stress

01 normal prcssure

'rest I

Test 2

Figure A-3. Mohr circle plots of test data.
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It should be appreciated that the determination of a and k* can be

achieved in a direct manner without the need of computing C and e.
That is, Equation A-17 can be used directly by inserting the failure

stresses, i and j3 , for the two test specimens, thereby providing two

equations for the two unknowns k* and a.

DRUCKER-PRAGER ASSOCIATIVE FLOW RULE AND HARDENING FUNCTION

In general, an associative rule (e.g., Equation 2-26) can be

written as:

1
A C N 'c (A-18)

= T
where N n n

In the above, .xc is the plastic strain increment, ½ is the total
-p

stress increment, H' is the hardening function, and N is dependent on

the unit normal of the yield surface, n.

Consider the Drucker-Prager loading function (Equation A-1O) for

states of stress characteristic of common tests (such as, triaxial or

confined compression); i.e.,

i independent stress

2= '3 independent stress

•12 = '13 ' 23 0

"11 3



The yield surface unit normal for this stress state is:

A 1i~
n A 0 (A-20)

10
0

where =2 a - 21f3 sgn

2 I - sT sgn

A = 2 c - )3 sgn

•6(2 a + 3)

sgn = sign of (o1 - a3)

Assuming the material is initially isotropic, the two independent

stresses (say oI and c3) produce a corresponding strain state as follows:

Ci independent strain

L2 = 3: independent strain

Y12 'Y23 : YI3 = 0

With the above symmetry, the plastic flow rule (Equation A-IS) can

be reduced to the following:

" I -[ ý 2 81 11 (A-21)
At 3 H' 2 .:3 (A 2I

plastic ) total
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The corresponding elastic strains for this stress state are: :'

-2 v IIE = E -v (1- v) 13 (A-22)

elastic total

Therefore, the total stress-strain relationship is given oy the sum of

elastic and plastic strain as:

(ffi (A-23)

HL E EH' E

Equation A-23 is applicable for any test data conforming to the symmetry

conditions: Ac2 39 AO 2 = A3 3 , and all shear stress and strains are

zero.
For a triaxial test, AI and Ao 3 are specified, and AE1 is the

measured axial strain increment (elastic and plastic). Assuming the

elastic properties E and v are determined by standard procedures, the

hardening function H'(E ) can be determined from Equation A-23 as:(p

2
A B(B Ac1 + 2 Ao 2)

H'(c ) ,= (A-24)
P ) 2 0 io2

I E E
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As another example, a one-dimensional strain test specifies AuI and
1

measures Ac with the constraint Ac - 0. For this case, the hardening
1 3

function is given by:

S - -

2 + 2  
- ) 4B -Ac 2A [2 + 62(1 v) + 4 8 Ac) (2 A' E)

H'(cp) a (A-25)
p 1 2 6cI

T (2v + v -) +T (I- \J)

It is interesting to note that for the one-dimensional strain case, A

a perfectly plastic material, H'(cp) 0 0, does not result in unrestrained
p

Splastic flow. This is because the lateral stress, a39 adjusts to keep

the stress state on the yield surface.

DRUCKER'S POSTULATE AND FLOW RULES

Drucker's postulate may be stated as: "Given a stress state in

equilibrium on the yield surface and an external load cycle slowly

applied and removed, then the external agency does positive work during

loading, and the net work over the cycle is non-negative."

A material conforming to this postulate is termed stable. Also, a

mathematical flow law ensuring this condition is admissible (i.e., will

not create energy). In equation form, Drucker's postulate is:

doT(de + dE ) > 0 (loading)"- .p _e

do T(de + dc ) - do (d) O 0 (full cycle)
p -e _p
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The first relationship signifies both elastic and plastic work

increments are positive during loading. The second relationship implies

unloading work is all elastic so that for a full cycle we must have:

doT dL, > 0 (A-26)

pp

Now replacing dE with the general flow rule (Equation 2-26) the

above equation becomes:

dT AdT "0 (A-27)
H "

where m is the assumed direction of plastic straining. If n = •, the

flow rule is said to be associative; otherwise, it is nonassociative.
TA

By virtue of the yield criterion, the scalar product do • n is

always non-negative during plastic deformation. Therefore, Equation

A-27 is always satisfied for an associative flow rule, since H' is also

non-negative for stable materials.

In order for a nonassociative flow rule to satisfy the stability
'Tcriterion, we must have do, m > 0 for any do that causes plastic flow.

Further implications of nonassociatlve rules are beyond tile scope of this

nppendix and require additional research.
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Appendix B

IDENTIFICATION OF VISCOELASTIC RELAXATION AND CREEP FUNCTIONS

The intent of this appendix is to provide guidelines for converting

viscoelastic data into creep and/or relaxation functions of an exponen-

tial series form. Specifically, the following three basic problems will

be addressed;

1. Obtaining a creep function from creep data, or obtaining

a relaxation function from relaxation data.

2. Inverting a creep function to a relaxation function and

vice versa.

3. Transforming relaxation functions from one type to another,

such as transforming a Young's Modulus function into bulk

and/or shear functions.

I. CREEP AND RELAXATION FUNCTIONS FROM VISCOELASTIC DATA

The objective is to curve-fit (by least-square error) an exponen-

tial series with available viscoelastic data to achieve either a creep

or relaxtiou function. The exponential series has the general form:

N -X kt
Y(t,f) A + B t + L (1 - e ) (B-l)

k=Il

123



where A, B. C1  C2 , ... CN X1, X2, .. are unknown parameters to be

determined. In this form, the term A is the initial elastic response, B

is the rate of linear response, Ck is the long-time viscous response,

and Xk is the inverse of retardation or relaxation time. For conveni-

ence, these parameters are denoted by 0, i.e.:

= ~ 2 = A, BC1 C .. C, X10 X,..X (B-2) -

' 2' 'B 1 2' x.N. 2 N

where M 2(N + 1)

The form of Equation B-i is applicable for either a creep or

relaxation function with the necessary provisions of Y(t,s) > 0 and

Xk > 0 to insure decay of each exponential term. In the case of a

relaxation function, Y(t,$) must be a monotonically decreasing function

so that the linear parameter B 0 0. However, a creep function mono-

tonically increases; thus, the parameter B .eed not be specified zero.

Figure B-I illustrates example forms of E4uation B-1 for creep and

relaxation functions.

The known viscoelastic data represent either creep data or relaxa-

tion data. Here, creep data are defined as a recorded strain history

corresponding to a material specimen subjected to a constant unit of

stress, such as axial stress, shear stress, or hydrostatic stress.

Conversely, relaxation data are defined .s P recorded stress history

corresponding to a material specimen subjected to a constant unit of

strain deformation (L.g., axial, shear, volumetric, etc.)

In either case, it is assumed the data are reduced to a set of

discrete values (Y -, ), i = 1, 2, ... n, where Y is the creep/
i

relaxation data point at time t .
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These discrete data may be written as a piecewise linear function

of time as follows:

Y(t) = W1 + Y t, for t< t < ti+1 (B-3)

where W, - (Y -Y t)

= i+l- Yi)/(ti+l - ti)

In the above, Y(t) is a piecewise function connecting successive data

points, as illustrated in Figure B-2 for the case of creep data. Higher

order interpolation functions could be used if desired.

To fit the function Y(t,o) (Equation B-l) to the viscoelastic data

Y(t) (Equation B-3), the least-square-error method with Newton-Raphson

solution procedure is used as follows.

First define error:

error(t,ý) = Y(t,4) - Y(t) (B-4)

Squaring the error and summing it by integrating over the time of

interest, 0 < t < tn, gives the net square error:

C(W) - f ttn - 2 dt (B-5)
1 0
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B linear parameter of Equation B-1

Figure B-i. General forms of Equation B-i.
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Time

Figure B-2. Creep data example.
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Minimizing this net error with respect to each unknown parameter,

= (A, B, C, ... GN9 Xl, X2, ... N) gives M equations:

c(f) _2 J [Y(t,4)- Y(t)] Yt,q) dt = 0 (B-6)

where m = 1, 2, ... M. For brevity, the above equations are denoted by

an N-dimensional vector equation as:

f =(o) 0 (B-7)

0 0 0, 0, 0

where to {AO B° Ck° Xk represents the solution vector satisfying

Equation B-7. Since the equations are nonlinear with respect to the

parameters Xk, an iterative solution technique is required. In the

following, a Newton-Raphson iterative solution procedure is presented.

The Newton-Raphson procedure is based on a Taylor series expansion

of Equation B-7, where o is written as:

,to = .5 + .4 (B-8)

s 0

such that f is any estimate of ¢ , and At corrects the estimate to

satisfy Equation B-8. The objective is to successively obtain a better

estimate of 4 so that A, -> 0. To this end, the Taylor series expansion

of Equation B-7 can be written as:

i1-
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f(4s + At) = 0 = f(ýs) + F(4s) • AO + higher order terms (B-9)

where F(4s) a(f)/a-

F(Os) is an MxM-dimensional Jacobian matrix evaluated at s and

the higher order terms are second order and above products of A¢ (i.e.,

squares, cubes, etc.).

If At is small so that higher order terms are negligible, then AO

may be approximately determined as:

s7

A -F 0). f(O) (B-10)

With this approximation for AO a better estimate for s is:

g~l +l s + Aa (B-Il)

Returning to Equation B-10, the process is repeated utilizing p8+ in

place of 4s. After a sufficient number of iterations, we have Aý - 0
S+l 0and cs+ 4 , providing the desired solution.

The major effort in the above algorithm is establishing the vector

f(08) and the Jacobian F(4 ) for each iteration. These somewhat labo-

rious developments are given next.

For specificity, the M equations represented by f(ý) = 0 and

defined by Equation B-6 are distinguished by the parameter groups A, B,

C and X as follows:
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(B-12)

td

A BA
0

t

SfA = f n[Y(t,4) - Y(t)] t dt (B-13)
B B

j 0

ft

f a FY f tn [Y(t -Y(t)] C t e dt

XaB 0~

tn -j U

j = 1, 2, ... N (B-iS)

where the common factor 2 has been divided out of all M equations.

Performing the indicated time integration for Equations B-12 through

B-15 gives the results presented in Table B-2, where the functions P, Q,

R, and S are defined in Table B-I.

Next, expressing the components of the Jacobian matrix F in a

similar notation, we have:

FM - A - dt (B-16)

0
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Table B-2. Integrated Expressions for Error Functions f(t) and Special Term q

-- 2 N (n-i(t 2

fA A t + B 2 + F.C k t n P(t n',OX~k)] - 'S w(t 1 .  )~ + - t
2

)

k-i i

B2 3 E 2 n j1

k-i1i.

24 N

A(t -P(t ,O,X )J + B - Q(tCO,X ) + S 0 O. ~
n n 2 n + E CkR 0n P~n 'j) 0~nO'Xk)

k-l

C:

0 f j + '(t ,a'X +x kj - (t t - ~ t

C i -i i1

0

C2 2

[t+1 -2 - Q(ti+i't1 'Xj]

N
A C (t O 2~ + B C~ R(tn 0.X) + C~ CI cQ(t O,O +xX )Ij

i~~~~~ ~ ~~ 0~nOX X n' )] ak )Q~n"
k- 1

f X

(n-i

~C j i Q(t 41+1 i,t < + y R(t 1+1,i.'

a -A C R (t, * + B S(t QlX) + C~ C IR~t~~~ Rt O.J+Xk

k-1

f n-i

W R(t ti +X Y ~

*Special function g Iq used in XXX in .Iacobilin lThtris:

n ~-X t

91. X IYj~ f ~ t
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F - dt (B-17)
AB B 0

AC A (I - e zt1 dt (B-18)

0

BB 6B 0

;FfA ftn -Xt

F BC. ;C ti e dt (B-21)

BC. 0

2tn -X,t

FB C, t 2e I dt (B-22)
FBX, 3x f x
FtC = ,(1 l - e • ) dt (B-21)

. 2. 0

FBX -____= 132



.7-

fcn -Xt -Xt ]
F I IX I C t e (I - e ) dt

ji 2.+ f [(t,0 -(tlt e ax t (B-24) Ao t~~ ~ j 2  /
0

a fx ftn -X+ )t

ftX- C t -(XX+X)tF X X - = c 2  e dt

(B-25)

~tn2 -X. t /X

e 
- t -

The integrated expressions for Equations B-16 through B-25 are given in

Table B-3. Note F is always symmetric by virtue of mixed partial deriva-

tives, i.e., F O a = a c/a ý Z 3 J ,

To summarize, the following steps comprise the curve-fitting

algorithm:

1. Make initial estimate of parameters:

S= ,A BS, C, C2 S . CN S, , XS x2 S ... xNS

2. Compute error functions f(ps) and Jacobian matrix F(W)

(Tables B-2 and B-3).

3. Solve for estimate correction Att, i.e.,

F(1s) = f(ss)
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s+l s
4. Update estimate, s = 4s + A4; if jA4)~ is near zero, solution A

s+lis complete. Otherwise, return to step 2 using 4) to replace

-).

For the implementation of this algorithm it is prudent to provide

the capability of specifying any combination of the parameters at pre-

determined values. This is useful if the algorithm cannot converge on a

solution when all parameters are unspecified. In particular, the con-

stant term A should be specified as the initial elastic response. This
-Xt

is the reason the exponential terms were written as C(l - e ), instead

of simply Ce Xt as presented in the main text. Also, if all Xk are

specified, then a linear solution is achieved (no iterations).

II. INVERTING CREEP AND RELAXATION FUNCTIONS

Once a creep or relaxation is determined, its inverse can be

determined by the procedure outlined in this section. It is assumed the

creep or relaxation functions are characterized by exponential series as

I ollows:

M - .

Jt = Ja + Jb t + .Jj e J (B-26)j=l

N -ait
Y(t) = Y a + E i e (B-27)

i1

In the above, J(t) represents a general creep function, and Y(t)

represents a general relaxation function. These forms intentionally

exclude materials that do not exhibit an initial elastic response.
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I

The objective can now be stated as: given the parameters of the
creep function (J , iJ ... Jl .M.. 8 a ), what are the corre-

a" b' 1 M 1M
sponding parameters of relaxation function (Ya YI ." YN al ... N)?

Or conversely, given the relaxation parameters, what are creep param-
S~ eters?

eteAs illustrated in Figure B-I, the behavior of a material is

different depending on whether the material is solid-like or fluid-like.

Accordingly, the creep and relaxation functions may be subdivided into

two types as follows:

1. Solid-like creep/relaxation function forms (0 - N, Jb - 0):

N -- t
SJ(t)+ F d J e (B-28)S~a

j=

V N -ait
Y(t) Y + i (B-29)

a + Y e
_ i-1

2. Fluid-like creep/relaxation function forms (M N - 1):

N-I -8 t
J(t) J Ja + Jb t + EJje (B-30)

J-1

aa b t

N -cit

Y(t) - i e (B-31)
i13
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where the following restrictions on the parameters are implied:

a 0 bp Yi9 a, 0Ja'Jb' Ya' Yi' •i' •J 0

Ji < 0

M
a + J > 0

Note the solid-like creep and relaxation functions have identical forms:

each contain a constant term and decaying exponential series. However,

the fluid-like creep function contains the linei.r term J bt which permits

continued creep (or flow) for all time. The cor'esponding fluid-like

relaxation function contains no constant term or linear term, but rather

an additional exponential term. This permits the stress to relax to

zero under a fixed strain.

To determine the respective inverse functions for either the fluid-

like or solid-like forms, the fundamental convolution identity between

creep and relaxation functions is exploited:

oftJ* dY I 1

0

or, in expanded form:
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t]
J(t) Y(O) + J(t - d• - = 1 (B-32)

0

For the solid-like case each function contains 2N+l parameters.

Upon inserting Equations B-28 and B-29 into the above identity and

integrating, the results may be grouped into time functions of e ,
-Bit

e , and a constant. The groups of terms associated with each expo-

nential time function must be zero, and the constant te-ims must equal 1

in order to satisfy Equation B-32 for all time. This gives 2N+l rela-

tionships between the constants as follows:

J Y = 1 (B-33)
a a

N N N
ak_ (Bk- C( - Ni L -7r ( 6 k - a1) 0

k~j

i = 1, 2, ... N (B-34)

I N \ N N N
Y + E i m (j -Vk) + E X Yi V (B. - 0

il k=l i=l k=l - k
k#ii

j 1, 2, ... N (B-35)

If the creep function parameters are known, the relaxation parameters

"VIt A UN are determined by solving for the roots of the N-degree

polynomial of u in Equation B-34. Next, the relaxation coefficients Yi
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Y "'" Y are determined by the linear solution of Equation B-35, with

Ya = 1/iJ On the othr" hand, if relaxation parameters are known, the

creep parameters 81 , 2 9 .... 6N are determined from the roots of Equa-

tion B-35 first, then the creep coefficients are determined from Equation

B-34, with J a 1/Y . Table B-4 provides solutions for N 1 I and 2.Sa a

In a similar manner, parameter relationships for fluid-like mate-
rials can be developed by inserting Equations B-30 and B-31 into the

convolution identity. For convenience, the following expression is

used.

Y* dJ = 1
0 7

For this case, there are 2N parameters per function along with 2N

relationships between the creep and relaxation functions given as:

NN j

Jb I Yi/i = 1 (B-36)

N-1Ij N-1

k=l j--i k=l

N-i N-1
+ AJ (,J -7r) = 0

j• -l ] k=l i
k#j

S=1, 2, N (B-37)
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N N
F Y 7r (ai - = = 1, 2, ... N-i (B-38)

i=]l k=l

If creep parameters are known, the relaxation parameters al, a ... aN

are d.'termined from solving the roots of che polynomial given by Equa-

tion B-37. Thereafter, Y.. Y .2P .. YN are determined by the linear

solution of the N-i equations of Equation set B-38 together with Equation

B-36. On the other hand, if relaxation parameters are given, the N-I ]

roots of Equation B-38 give BI6 B2' BN-1, and the creep coefficients

J Jb Jg J, ... I are determined by the N equations in Equation
a' b'1 29 N-1

set B-37 together with Equation B-36. Table B-5 shows solutions for

N = and 2.

III. RELAXATION FUNCTION INTERRELATIONSHIPS

Thus far, relaxation and creep functions have been denoted in a

general manner by the functions Y(t) and J(t), respectively. However,

in practice, Y(t) represents a particular kind of relaxation function,

such as shear modulus, bulk modulus, Young's modulus, or confined

modulus, etc. Similarly, J(t) represents the corresponding inverse

function.

If experimental data are available for one particular type of

function, it may be necessary to convert the data to another type of

function. For example, suppose a Young's modulus relaxation function

E(t) has been determined from a test coupon along with an observed time

function for Poisson's ratio v(t). If it is desired to determine the

equivalent bulk and shear relaxation functions, then the material data

must be transformed.
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To transform from one function type to another, the same relation-

ships that apply in elasticity between scalar moduli also apply in

viscoelasticity between functional moduli. To prove this assertion,

recall the general viscoelastic constitutive relationship for isotropic

materials has the form:

O D D D 0 0 0 E

yyaD Db 0 0x0

Dya b ~ yy
01D 0 0 0

zzk a ZZ
d (B-39)

TSym D 0 f
z c yz

w a D b

where D D and D are functions of time, and the symbol * is the

convolution operator. It is evident that Equation B-39 has the same

form as an elastic constitutive matrix, and, like an elastic matrix, the

terms D, Db, and Dc are composed of, at most, two independent material

properties, which in this case are functions of time. Possible time

function pairs are: Young's modulus and Poisson's ratio, bulk modulus

and shear modulus, and confined modulus and lateral stress coefficient.

Clearly, it makes no difference what pair or combination of material

time functions is used as long as they combine to produce the same time

functions for Da(t), Db(t), and D (t). Therefore, the various visco-

elastic moduli (functions) have the same interrelationships as the

corresponding elastic moduli.
Table B-6 provides some useful interrelationships to aid in trains-

forming from one type of function to another.
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Table B-6. Interrelationships Among Elastic and
Viscoelastic Material Functions

Young's Modulus Bulk Modulus Confined Modulus
Material and and and
Function* Poisson's Ratio, Shear Modulus, Late.al Coefficient,

E, v K, G Ms, XK

Young's (1 + 2K )(- K)
Modulus, E 9GK M 0 0

S3K + G s 1+ K

Poisson's KS3K - 2G Ko0

Ratio, v K2o
2(3K + C) 1 + K

Bulk E M
Modulus, 3(1 - 2) K- (1 + 2Ko)K 3( v

Shear E M
Modulus, 2(+) - (I - K

G-
Confined

Modulus, (1 + v)(1 - 2v) 3 s

s

Lateral v3K- 2G
Coefficient, 1 - 3K + 4GK

Ko

*All parameters may be functions of time.
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To illustrate the procedure for transforming viscoelastic functions,

consider the example of d.etermining bulk and shear relaxation functions

given test data from a simple creep test. That is, a test coupon of the

material is axially loaded with a constant stress, and axial and radial

strain are recorded. Then the following steps are required:

I. Normalize experimental data. Divide axial strain by applied

stress to get creep data (this corresponds to inverse of Young's modulus

relaxation function). Also, divide radial strain data by axial strain

data to get Poisson's ratio function, 7(t).

2. Determine creep function. Using the creep data, employ the

methods of Part I of this Appendix to determine the best-fitting creep

function.

3. Determine Young's modulus relaxation function. Invert the

above creep function to get the corresponding Young's modulus relaxation

function, E(t). Use the techniques in Part II of this Appendix for

inverting.

4. Transform to bulk modulus relaxation function. From Table B-6,

the bulk modulus is given as K(t) = 1/3 E(t)/Il - 7(t)]. If the experi-

mental data show •(t) is constant (or near constant), then K(t) has the

same form as E(t) and only differs by the scalar divisor, 3(1 - 1).

If, on the other hand, 7(t) is not constant, K(t) can be determined by

the best-fit procedure in Part I of this Appendix where the data points

are K(t 1/3 E(t)i/[l - 7(ti)I.

5. Transform to shear modulus relaxation function. Again using

Table B-6, the shear modulus is given as G(t) = 1/2 E(t)/f1 + ,(t)]. As

discussed in step 4, if •(t) is constant, G(t) is known directly from

E(t). Otherwise, 6(t) must be determined by the best-fit procedure

using the data points; G(ti) 1/2 E(ti)/IM + (tf). .

The above steps illustrate one set of transformations for a partic-

ular type of e' erimental data. Other types of transformations with

other types of experimental data can be treated in a similar manner.
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Appendix C

A PERSPECTIVE OF VISCOPLASTIC MODELS

Throughout this Appendix, the term "viscoplastic" is used as a

general term to embrace all constitutive models that contain elements of

elasticity, viscosity, and plasticity. In the main text the discussion

focused on a particular viscoplastic model called "viscoelastic-plastic."

The objective of this Appendix is to present a broad view of

viscoplastic models and demonstrate the characteristics of different

models. Concepts and imagery are emphasized as opposed to detailed

equations and solution algorithms.

To begin with, we recognize thiat viscoplasticity is a phenomological

* approach for characterizing the behavior of materials. That is, math-

ematical models are sought which .-an replicate the observed performance

of materials. Yet, the mathematical models must conform to cortain

thermodynamic restrictions.

Three mathematical models or constitutive theories that satisfy

thermodynamic restrictions and are well accepted are: elasticity,

viscoelasticity, and plasticity. These separate theories can (I) be

directly combined to provide viscoplastic models (combo-viscoplasticitv)

or (2) the separate theories can be altered or extended to providc

v Iscoplastic models (neo-viscoplasticit.). This is an imp)r tact Jii-

tinction and is the first ma or division in the hierarc:hy :)'- vi- ;i . L i. .

models as shown in Figure C-I . tn the r igh t b ranch of this f i,:.r-r., L

and L represent classical models for characterizing plastic,

viscous, and elastic response. Varions combinations and arrangemrents on

these basic cornm )nents dc ine a particul.ar combo-v iscoplast ic rnod--l
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Viscoplastic
Models

Neo-viscoplasticity Combo-viscoplasticity

models introduce models composed of
extended theories classical theories

Figure C-1. ti:o classes of viscoplastic models.

Visual Model General
Symbol (c-ic-dimensional) Description

-oe 0 Elastic response

0 Linear with ae
0 Time independent

S~(optional)

* Viscous response

, .- - Linear with oa
A.* 'rime dependent

,-- --v- (no initial response)
[__• }_....._• (always

present)

* Plastic response

frition . Nonlinear with a
blok depend•n on ,ardening

p _ Time independent

Figure C-2. Components of combo-viscoplastic model.
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such as the viscoelastic-plastic model presented in the main text.

Other combo-viscoplastic models will be illustrated in subsequent

paragraphs.

The properties of the classical models, (, , and , are

illustrated in Figure C-2. The identification of each component may be

as simple or complicated as needed. For example, UE may be isotropic

(two parameters) or anistropic (three to twenty-one parameters). Also, ]
the component & may be isotropic or anistropic, and each relaxation

function may have as many parameters as required. Lastly, 0 may

represent any classical plasticity model, ranging from a simple non-

hardening Von Mises yield criterion (one parameter) to complicated

"capped" yield functions with universal hardening (e.g., twenty-seven

parameters).

The important distinction for combo-viscoplasticity is thaL each

component, (,-', and"-', remains within its classical limitations.

That is, the viscous component, (V , deforms with time under constant

load and responds in proporticn to the load magnitude acting on .

The plastic component, ®, deforms as a function of the curreut load

magnitude acting on ). There is no explicit reference to time in the

Omodel except implicity through the load.

Contrast the above to neo-viscoplasticity (left branch of Figure

C-l), where the component @ may represent a modified Lasticity

formulation with a flow rule explicitly dependent on time (see for

example, Green and Naghdi [25], Zienkiewicz and Cormeau [5), and Perzyna

[4]. Alternatively, \V) may represent a modified viscoelastic formula-

tion, which accounts for plastic-type responses by the assumption of

intrinsic Lime. Effectively, this means real time in portions of the

viscoelastic model is replaced with intrinsic time, which is actually a

measure of strain. This method is called the "endochronic theory" (see

Bazant (26].

The relative merits of the various neo-viscoplastic models will not

be argued here. However, it's the author's contention that combo-

viscoplastic models are preferable to the neo-viscoplastic models for

149



the following reasons: (1) combo models provide a rational approach for

synthesizing a constitutive model, (2) combo models are formed from

well-accepted constitutive theories that satisfy thermodynamic restric-

tions, (3) parameter identification for combo models is relatively easy,

(4) pre-existing elastic, plastic, and viscoelastic material information

can be used directly, and (5) virtually any type of observed material

behavior can be replicated by some combo-viscoplastic model.

There is no limit to the number of component elements thaL can be

used to synthesize a combo-viscoplastic model. However, five-element

models are probably a practical upper limit. As an example, consider

the five-element model shown at the top of Figure C-3, along with the

example four- and three-element models. Here, the models are restricted

to those containing at least , , and and have an initial

elastic response. (Note: tLii mudels 6huwli. are all named using hyphen

(-) to denote a series connection between two elements and a slash (M)

to denote a parallel coupling. However, for expressiag - the

hyphen is omitted, i.e., viscoelastic = visco-elastic, and for

we write elastoplastic = elastic-plastLc.)

To appreciate the different behavior of these models, compare the

nature of the viscoelastic-plastic model (c) with the elastLic-visco/

plastic model (d) as they respond (deform) for a suddenly applied stress.

If the stress is less than the elastic limit (ýi -. ;, model (c) behaves

viscoelastically and model (d) elastically, as shown in Figure C-4. If

the applied stress is greater than the elastic limit (: 3 , ) and the

Lardening function # 0, theon model (c) responds with an instantaneous

elastic plus plastic strain followed by a viscoelastic creep. On the

-othet hand, model (d) responds with an instantaneous elastic response

r •(regardless of stress level) and progresses with plastic strain at rate

dependent on 0
As another ex.'imple, consider the I Our-c•ement model (b). This

model is capable of representing primary, secondary, and terniary creep

ranges*, as showil In Figure C -5. Materials, soc-, as soils, plas tics, and

S•.iea-i'ce, exhibit this type of behavior.
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Five-Element Model

Viscoelast ic-Viscoe last ic/plast 1c

Four-Element Models

Viscoe lasti1c-V isco/plast ic Viscoclastic/Elastoplastic

Threc-E!ernent ModeIs

Viscoclastic-Plastic

Elastic-Visco/plastic

~' Viscoclastic

p> Elastoplastic

Figure C-3. A five-elemenit coinbo-viscoplastic element
and its family.
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I(c)

modes (c and(d).

0 O

d)-d

'-ITime

piary secondary tertiary

Time

Figure C-5. Typical behavior of model (b).
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SYNTHESIZING COMBO-VISCOPLASTIC MODELS

To synthesize a viscoplastic model (i.e., stress-strain relation-

ship) from a particular configuration of @, and 0 requires

following a few simple rules. To wit, elements in series have the same

stress and deform separately, whereas elements in parallel have the same

strain and split the net stress between them. In the main text, these

rules were used to synthesize the series model, viscoelastic-plastic.

Here the synthesis proce4ure is demonstrated for the parallel assembly,

viscoelastic/elastoplastic, shown in Figure C-6.

Using the notation in the figure, we have:

~ ep + areC (C-1)

!P + e -vs (C-2)

where a and c are the stress and strain vectors in the elastoplastic
.eep -ep

subassembly, and a and c are the stress and strain vectors in theZ.ve -ye

viscoelastic subassembly. Both series' subassemblies were developed

fully in the main text. Thus, from Equation 2-33, the elastoplastic

stress-strain relationship is:

-ep 2 D - Dp)Aep (C-3)

where D is the elastic matrix representing E and D is the plas-

ticity matrix, which is a function of a (i.e., not total stress a).
-ep

Similarly, from Equation 3-22, the viscoelastic stress-strain relation-

ship is:
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(D +D )Ac + (C~,-4)
...l Mv ,..ve -'v

where Disth elasticmti representng Ev is the viscoelastic

marxdependent on time step, and 3 is the stress history matrix. -

Adding Equations C-3 and C-4 and using the relationship, in Equa- -

tions C-1 and C-2, the final stress-strain relationship is:

A (D + D -<D >')Ac o (C-5)
.e Mv Mp _

in the above, D D + D is the total elastic matrix. If D = ,the
me M1 "2 ~

model degenerates to an elastoplastic mnodel, or if D,, = 0, the model is

viscoelastic. Any other linear combination of D and D2 provides a

viscoplastic model.

Other combo-viscoelastiC models can be developed by following the

procedures outlined above.

V El _P_0V

tvc

Figure C-6. Viscoelastic/elastoplastic model.
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MEXICO R. Cardenas
MOBIL. PIPE LINE CO. DALLAS. TX MGR OF ENGR (NOACK)
MUESER. RUTLEDGE. WENTWORTH AND JOHNSTON NEW YORK 'RICHARDS)
NEW ZEALAND New Zealand Concrete Research Assoc. tLibrarian). Porir-ua
NEWPORT NEWS SHIPBL.DG & DRYDOCK CO. Ne,.port Ne\&s VA (T'eclh. Iib.i
NORWAY DET NORSKE VERITAS (Rorenl Oslo: I. Foss. Oslo; J. Creed, Ski: Norwegian T.ch Univ (Brandtzaegl.

-c Trondheim

OFFSHORE DEVELOPMENT ENG INC. BERKELEY. CA
PACIFIC MARINE TECHNOLOGY LONG BEACH. CA iWAGNER)
PI)RTLANI) CEMENT ASSOC. SKOKIE. IL iCORELY): Skokie II_ (Rsoh & Dev Lab. Lib.)
PRESCON CORP TOWSON. MND (KELLER)
RAND CORP. Sinta Monica CA (A. Laupa)
RAYMOND INTERNATIONAL. INC. E Colle Soil Tech Dept. Pennsauken. NJ
RIVERSIDE CEMENT C'S) Riverside CA 0A. Smith)
SANDIA LABORATORIES Libtar, DIi.. Livermore CA
SCHUPACK ASSOC SO. NORWALK. CT (SCHIIPA( K1
SEATECH CORP. MIAMI. FL (PERONI)
SHELL DEVELOPMENT CO. Houston TX E. Doyle)
SHEI.I. OIL. CO. HOUSTON. TX (MARSHALL)
SOUTH AMERICA N. Nouel. Valenia. Venezuela
SW%'EDEN GCeoech Int: VBB (I.thrary). Stockholm
TIDIEWAFER '()NSTR. CO Norfolk VA iFouler)
TIR•W SYSTEMS CLEVELAND. OH tENG. l.I8.): REDONI)O BEACH. CA )I)AII
UNITED KINGDOIM Cement & Concrete Assoc iexhatm Springs. Slough Bucks: Cement & Concrete As,,c. I.it.

Ex), Buck': D. Lee. London: ) Nevw. G. Maunsell & Partners, London: Librari. Sr ol: Shay% & Hatton tF.
Hansen). London: lavlor. Woodrow% Constr (oI4PI. Southall, Middlesex, Univ. of Bristol tK. Morgani. RHi•tol

WATT BRIAN ASSOC INC. Houston, TX
WESTINGHOUSE ELECTRIC CORP. Anoapolis MD tOceanic Div L.ib. rroan): L.ibrar%. Pittsburgh PA
WISS. JANNEY. ELSTNER. & ASSOC Northbrook. IL IJ. Hanson)
WOOI)WARI)-CI.YDE CONSULTANTS (A. Harrigan) San Francisco: PL YMOUTH MEETING PA (CROSS. III)
AL SMOOTS L.os Angeles. CA
BARA, JOHN P. Lakewood. CO
BROWN. ROBERT Universit)y At.
BUL.LOCK La Canada
F. HEUZE Boulder CO
CAPT MURPHY SunnNsale. CA
GREG PAGE EUGENE. OR
R.F. BESIER Old Saybrook CT
T.lA. MERNIEL Washington DC
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