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1. Intreduction and Summary

Sir R.A. Fisher (1929, 1939, and 1940) proposed a test for periodicity
in a time series based on the ratio of the maximum to the sum of the
ordinates of the spectrogram or periodogram. In this paper I propose
a one-parameter family of tests that contains Fisher's test as a special
case. Although Fisher's test is optimal in the case of a simple periodicity,
a test can be chosen from this family that loses ¢nly negligiblie power in
this case and yet can gain substantial power in the case of compound
pericdicity. This test is not based just on the largest spectrogram
ordinate, but adaptively and continuously on all large values.

Section 2 contains background information, notation, and a review
of Fisher's test. The new tests are proposed in section 3 together with
a heuristic justification for their consideration. Critical values are
calculated and tabled in section 4, having been obtained through a
duality discovered by Fisher (1940) and using my recent work in geo-
metrical probability (Siegel, 1978). An example of the use of the tables
is also given in section 4. Results of a Monte Carlo power study are
presented in section 5, indicating the strengths and weaknesses of
these procedures, and providing a method of selecting a good test from
this family. Finally, in section 6, the methods are applied to measurements
of the magnitude of a variable star in order to show that these potential

power gains can be realized in practice.



2. Background, Notation, and Review of Fisher's Test

Consider a series Uy (t=1,...,N), observed at equal intervals of

time and arising from the model

u

t

=g +te.  t=1,..N (2.1)

where Ty represents the unobservable, fixed, "true" value at time t of

the phencmenon under study, and €t

ment and/or other sources. We will assume independent identical Normal

is the random error, due to measure-

distributions for the errors:

e, ~ N(0,0?) - ' - (2.2)

where o® is unknown. We are interested in statistical inference about

the behavior of the s=quence [ partiéu]arly regarding perioqfc

activity. The null hypothesis is

Hy: Ly = eee STy (2.3)

For more background about this modé], the reader is referred to
section 4.3 of Anderson (1971), to section 5.9 of Bloomfield (1976) and
to Fisher (1929, 19392, and 1940).

In this paper, we will consider only frequencies‘whose periods
evenly divide the total series iength and we suppose that there is no
a priori reason to exclude certain frequencies from consideration. In

what follows, we will assume that N is odd and define n by

N=2n+1. (2.4)
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The method of Fisher (1939) for handling the case of N even may also be
used with the methods proposed in this paper.

Define the Fourier coefficients in the usual manner:

) | )
Bn = L = o z (2.5)"
0 N g=1 F
N onit -
as =V fZ]HtCOS(_TT~) (2.6)
b, </ sin(Zmt) (2.7)
J N LSS N ’
t=1
where j = 1,...,n. This uniquely decomposes the sequence of unknown
means into periodic components:
. n . - .
- 24 2njt TANL"
Ly = 3 +‘/;.=§]{ajcos(—75~q + bjsxn(—iq—ﬁ]. (2.8)
The squared amplitude at frequency i/N is
R = a% + b2 . (2.9)
3 J J
The null hypothesis (2.3) may be equivalently expressed as
. b S
HO' all Rj 0. (2.10)

He are interested in all departures from HO’ but of pa%ticu]ar

interest are the class of alternatives in which there is periodic

activity at one frequency only. These will be called simple periodicities

and will be denoted

H.: R§ > 0, all other R% = Q. (2.11)



Alternatives of periodicity at two or.more frequencies will be called

compound periodicities. Of particular interest are those representing

activity at exactly two frequencies:

. 2 2 2 .
ij. Rj >0, Ry > 0, all other R = 0. (2.12)

Estimates aj and bj are obtained by replacing the unobservable

Ty by the observed series uy in equations (2.6) and (2.7), and lead to

the spectrogram values

~ ”~
R2 = a2

2+ B%. .
3 f 5 (2.13)

To eliminate the effect of o2, we normalize these so that they sum to one:

Y.=R2/

R2 2.14
Tt RN (2:14)

N3

i=1
and we base our inferznces on‘(Y],...,Yn). Fisher (]940) notes that
Yj is the ratio of the sum of squares due to frequency j/N to the total

sum of squares; this is because

>3

N N '
RZ = ¥ (u,-u)?. (2.15)
Lt L

i=1

Fisher's test i1s based on the statistic
S = max VY. ' © (2.16)
1<j<n
and rejects H0 vhen S exceeds the appropriate critical value, 95 In
theorem 4.3.6, section 4.3.4 of Anderson (1971), it is noted that Fisher's

test is the uniformly most powerful symmetric invariant decision procedure

against simple periodicities.



3. The Procedure

There is no reason to suppose that the optimality property of
Fisher's test for simple periodicity extends to compound periodicity,
in which there is activity at several frequencies. In this section we
give a heuristic argument for why it will not be optimal, and introduce
a family of test statistics that should overcome this problem.

Because of the normalization in (2.14), any increase in a smaller
Yj will tend to decrease their maximum, S, and thus lower the power'of
Fisher's test. This is illustrated in figure 3.1. In the case of
simple pericdicity only Y} gives a large contribution, which exceeds
the criticai value gF, and Fisher's test rejects. In the case of
compound periodicity. Y1i and Y2 are both largs, but Y} is therefore
reduced; now neither egceeds 9¢ and Fisher's test no longer fejects the
null hypothesis.

In order to remedy this situation, we should use a test statistic
based on all large Yj’ instead of only their maximum. Such a continuous
adaptive statistic may be constructed by choosing a threshhold value gng.
For each Yj that exceeds g, sum the excess of Yj above g. Setting
A= g/gF, the proposed statistic is

n
T, = 1

L0, SN CR)

where (t)+ = max(t,0) is the positive-part function. HO will be
rejected when TA is large; critical values are found in section 4.
The choice of X, between 0 and 1, is to be made from theoretical

considerations and not from the data itseif. X =1 yields Fisher's test
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Figure 3.1. A hypothetical spectrogram for
simple and compound periodicities.
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because T] > 0 if and only if some Yj exceeds gg. A choice of A near
1 would be used when.at most simple periodicities are expected. A
smaller value of X would be used when compound periodicities are a
possibility. Further guidance in éhoosing X is found in section 5.

A hypothetical spectrogram under H]Z is shown in figure 3.2.
.Fisher's test, based on the largest Yj’ does not reject because no
Yj exceeds the critica] value G- A test based on TA may very well
reject, because it is based on two large terms, U (Y1—A9F) + (YZ-AQF),
allowing soth large Yj to be counted.

-

4. Critical Values for T,..
N

The duality discovered by Fisher (1940) between the distribution
of the statistic S and the probability of covering a circle with random
arcs as treated by Stevens (1939) may be exp]ofted here in order to
obtain the distribution of the proposed statistic TA under the null
hypothesis. My recent work in geometrical probability (Siegel, 1978) leads
directly to an exact formula for this distribution, which is presented
in this section together with a table of critical values for TA and
an example of their use.

Fisher's duality is nicely explained in section III.3 of volume II

of Feller (1971). The key fact is that Y ces¥o have the same joint

1°
distribution as the lengths of the n gaps produced when n points are
independently and uniformly placed on the edge of a circle of circumference
one. Figure 4.1 grahhica]]y illustrates this geometrical configuration.

To make the connection with Stevens' problem, place n arcs of length g,

extending counter-clockwise from each of the n random points,



Figure 3.2. A hypothetical spectrogram for
comparison of the statistics S and TA’

X = .6, in the case of compound p2riodicity.
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Figure 4.1

Representation of Yl""’Yn as spacings between ordered uniform points

on the circle, in the case n=5.
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as illustrated in figure 4.2. From this one can see, for example,
that the probability that no Yj exceeds g is equal to the probability
that n random arcs of length g completely cover the &irc]e.

The corresponding key observation to be made in order to obtain

the distribution of TA is:

Tl has the same distribution as that
proportion of the circle that is left
uncovered by the union of n random arcs

of length g = AgF.

This may be seen from figure 4.2, because (Yj-g)+ is precisely that
proporticn of the circie within the gap of length Yj that is not covered
by any arc. In.the Ganguage of coverage problems, the uncovered

proportion is called the vacancy. Its distribution in this case is

known (Siegel, 1978) and is given by

n -1
= k+2+1 2-Ty,n-1, .k -k-1
P (8 = L I TR )(n",)t (1-2egp-t)) (4.1)

Critical values tl for TA’ computed from (4.1), are listed in
tables 4.1 through 4.4. These cover significance levels .05 and .01,
values of n from 5 through 50, and X = .2, .4, .6, and .8. If
A =1.0, we reject if T] > 0; this is Fisher's test.

As an example of the use of these tables, suppose we have a time
series of length N = 35. Then we use n = 17 because 2n+l = 35. If

we decide to usé 1evé] .05 and X\ = .6, we see from table 4.1 that the

initial threshhold is g = A9 = .183. We then compute
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Figure 4.2
Y

in the case n=S.

l""’Yn generate n random arcs of length g on the circle,




Table 4 .1. TLevel .0

=]

O O = O u o

10
11
12
13
hR

16
L7
18
15
20
21
22
2>
2k

.25

valtes o

.BgF
-SL7
- k93
.hlhg
<413
.382

o)m

Q
0

@

o e
= N

O

e

2
£ A

<137
.12%
.112
.103
-0955
.0891
.0835
.07187
Roygit
0707
0873

L0642

.0615
. 0590
.0567
. 0546
.0527
- 0509
.0Lk92
Lok77
Lou62

-12-

critical

and for

e,

410
.370
<337
- 509
.286
267
.250
.235
. 225
.211
. 201
.192
.183
A6
-169
.162
.156
.151
-1L6
.1&1'
L1357

.66

-587
564
.5kl .
.528
<513

. 500

.188
478
. 468
-us59
451
bk
437

430

42k
.19
413
.408
40k

velues Ty for T,, for several
n =5 through 25.
te lep t 28p

.27k L2Th W2 137
246 - L2ug .381 .123
225  .224 .356 2112
208 .206 - .33h 103
193 L1901 .316 .0955
181 .178 .301 0890
171 167 287 -083L
162 .157 .275 .0785
<154  .148 . 265 .07h2
BT .1l .255 .0703
L2140 134 .eh7 L0669
25k 128 .239 . 0638
29 122 .232 . 0611
A2k L1117 - 225 .0585
120 .112 .219 . 0562
116 .108  .213 .05kl
.112  L10% - .208 .0521
2109 101 .203 . 0503
.106. .0973 .199 .0L86
103 .09h1 .195 LOLTL
L0997 .0912 .190 .0lks56

. =399



Teble 4.2,

=

26
27
28

30
31
32
33
b2
35
36
37
38

39 .

Lo

oy

L2
43
Lk
45

L7

k9
50

5

s}
0

[ ] [ ] »
I,J ',J | -d
W

3

[ ]

d -t

1 g\ h\ 6‘\
N R
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N
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pat

~
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&
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.
B
=

o
]
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S i i
\ VI R G R
Jr Oy 0}

.

\§2)
'..-l

Level .05,

values of ),

.8gF

<277
.172
-16T7.

©.163

-158
<154

.150

<147

112

2207
.105

ts

.oklg
.0l36
.okl
.ol13
.oko2

.0392

.0383
037
.0365
.0357
. 0349
.03k2
.0335
.0328
.0322
.0316
.0310

0304

.0298
. 0293

.0288

. 0283
.0279
.027h
.0270
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critical
and for n = 26

.6gF

-135

.129

.125
2122
.119
.116
<113
.110
.108
.105
.105
.101
.0984
0964
.09kk
.0926

.0908

.0891
.087h
.0859
.0843
.0829
.0815
. 0801

.0788

values tk fér TA’ for several
through 50.
te 'th f.h -2ep to
.0971 .0885 .187 LOh43  .395
.09% .0859 .183  .0l30 .391
.0923 .0835 .180 .ok8 .387
.0901 .0813 .77 .0u06  .383
.0880 .o19r .73 <039 .380
L0861 .0TTL  .ATL .0386 .376
.08k2 .0752 .168 L0376 375
.082% .0734%  .165 L0367 .370
-0807 .O7TL7T .163 .0358  .367
.0791 .0701 .160  .0350 .364
L0776 .0685 .158 0343  .361
0761 .0570 .156  .0335 .359
LOo7h7 L0656 .15k .0328  .356
L0735k L0643 L3151  .032L  .353
L0721 L0630  .150 .0315 .351
.0708 .0617 .148 .0309 .3hk9
L0695 .0605 .146  .0303 .3%6
L0685 .059% .1k .0297 .3L4
06Tk .0583  .ak2 - L0292 .3k2
L0663 .0572 .1k .0286 .3%0
.0653 .0362 .139 .0281 .338
L0643 .0553% .138 L0276 .336
L0634 .0s5h3  .136 L0272 334
.0625 .053L  .135 L0267 332
L0616 .0525 .133 .0263 . .330



Teole L.3.
-g, .
5 .789
6 .722

-
8 .615
g .35

10 .535

11 .50k

12 .47

35 k55

ik k27

15 k07

16 .38
T 372

18 337

19 353

20 .330

21 .338

22 .307

25 .297

2y .287

25 .273

Level .01

-l4-

critical

ralues

tk for ISE

values ef A , and for n =5 through 25.

8g,
.631
.5T7
.532
492
. 458
429
. 503
.380 -
.360
342
.326
311
.297

ts

——

.158
L1hY
<133
.123
2115
-107
.10
.0950
.0900
.0855
-081Y
-OTTT
.07kl
Noyakt
. 0686
. 0660
. 0636
. 06LL
. 0594

0575

-0557

.6gF

475
433
<399
. 369
-3hk
522
- 502
.285
.270
.256
.24
-235
. 225
.21k
.206
.198
.19
.184
.178

172

.167

‘e

.315
.289
. 266
.26
.229
.21k
.202
.190
.180

.72 -

<164
157
.150
R
<1359
.13
.129
. 125
121
LT
.11k

.th

——t

.315

.289
.266
.246
.229
.21k
.201
<190
.180
<171
.163
<155
.1&9
<13
237
132
127
123
2119

-115

T.11)

for several

.2gF

.158
< 1hk
-153
.123
.115
.107
<101
.0950

.0900

.085L
. 081k
<OTTT
LOThk
L0713
. 0685
. 0659
. 0636
. 061k
. 0595
.057h
.0556

n

g

.6h2

.610
.580._
«555
<554
.516
. 500

185

A2
461
.450
it
431

423

115
.Lo8
.hop
395

,389

.383
378



Table 4.k4.

26
27
28
29
30

52

33

Sk
35
36
37

38

59

. ko

b1
L2
L3
hY
L5

L

.L}9
50

&

—

.270
.262
-235
.248

241

.235
.228
.22k
.228
. 209
.20k
.200
.196
.192
.188
184
.181
<IT7
S17L

.168

.165
.162
260

Level

.Bgé

.216
.210
.20k

.198

[8))

L]
v

LN D
\AN

] L ]
= G
300

L1k
1h2
.139
<137
A3k
.132
.130

128

. Ll

.01
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values of A, and for

. 0319

313
.368
364
.359
.355
.351
.348
.3l
34
337
.33k
<331
.328
.325
302
.320
.317
.315
.312
.310
.308
.306
.303
.301
.299

critical ralues ti for..T,, for several
r =26 through 50.
tg b te lep ty 28
L0541 .162 110 .108 -190 . 0540
.0525 " .157 2307 .105 .185 .0524
.0511 .153 105 L1022 -181 .0509
L0897 .1k9 2102 .0991  .178 ° .oLgb
.0u8L%  .1ks L0993 .0965 .17k . 0483
LOb7L Lk L0969 .09k0  .1T7L . 0470
.0L60  .138 .09L6  .0917 .167 .0L58
LOLkg .13k 0925 .0895  .16L . Okl7
0438  .131 .090%F .087h 161 . 0437
Joko8  .198 L0884 .085L4 .159 0427
.0119 .125 L0866 .033% .156 .07
.0410 .122  .08h8 .0816 .153  .OL08
.0k0L  .120  .08%1 .0799 .151  .0399
.0395 .117  .0815 .0782 .148  .0391
.0385 .115  .0799 .0766 .146 .0383
L0377 113 L0784 L0751 .14k . 0376
.0370 .110 .0770 .0736  .1k2 . 0368
.0363 .108 L0756 .0722 .140  .0361
L0356 .106 LOTH3  .0709 .138 . 0355
.0350 .10k .O0730 .0695 .136 . 0348
© L0343 .303  .0TA8 .068kF .13k .03k2
L0338 101 L0706 .0672 .133 - 0336
L0332 .0990 L0695 .0660 .131 -0350
L0326 .0973 .0684 .05k9  .129 . 032k
.0321  .095T  .0673 .0638  .128
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17
Te= §

-

](Yj-.183)+ ' (4.2)
i

.6
compared to the critical value t 6 " .129, atso found in table 4.1.

which includes only those terms for which Yj > .183. T . is then
If T &> .129, then we reject the null hypothesis.

5. Power Study of Tests Based on Ty-

The heuristic arguments of section 3 suggest that the tests based on
TA will be more powerful than Fisher's test against alternatives of
compound periodicity. The results of a Monte Carlo power study are
now presentad that nof oﬁly confirm this, but also yield two further
dividends. First, when Fisher's test is optimal, we find only a
neg]igib?e 1oss of power when using TA instead, over a wide range of
values of A. Second, fhe graphs of this section suggest a good choice
of X to use in practice.

When the null hypothesis fails to hold, the spectrogram ordinétes ﬁ% are,
up to scale, independently distributed as noncentral Chi-Squares with two
degrees of freedom and noncentrality parameters Rg, the squared am-
plitudes at the frequencies j/N (j=1,...,n). Using the computer, the
proper pseudorandom noncentral Chi-Squares were generated. From these the
statistics TA were calculated, and it was noted whether each test rejected or
not. Each power estimate is based on 10,000 repetitions, and thus has a
standard deviation of less than .005, as calculated for the binomial distri-
bution. Computationé were done on Stanford Univérsity's 184 370 and on the
University of Wisconsin's Univac 1110 computers, using the pseudorandom
number generators RANDK and RANUN respectively.

The results are presented graphically, for significance levels

.05 and .01 at n = 10 and 25. Each curve is a graph of the power of TA



as a function.of X in the case as labelled. Note that the power of
Fisher's test is the height of the exfreme riﬁhﬁ of each curve,
corresponding to X = 1. The presentation is simplified because the
power remains fixed when the amplitudes Rj are permuted among the
frequencies j/M. Thus power is a function of the significance level,
the values of n and A, and a list of amplitudes. The actual
assignment of amplitudes to fregquencies need not be spéc*fied.

The case of simple pericdicity is shown in figure 5.1 for various

amplitudes of periodic activity at cne frequency only. Fisher's test

o

de

is optimail in this case, as noted in section 2, and indeed the curves
do slope downwards to the ieft, illusirating loss of power as we

depart from X = 1. Nois. however, that the curves are nearly hori-

zontal over the range .5 < A < 1.0, indicating practically no loss of
ower in this range ¥ we use T, instead of Fisher's test. In fact,
A
only a smail amount of power is lost for i as low as .4; substantial power

loss begins for A in the range .2 to .4. Of course, we don't want to
choose A tooc close to zero hecause TO is identically one, and data-
independent tests are generally frowned upon.

Several cases of compound pericdicity are considersed. Power in
the case of equal amplitudes at each of two frequencies is illustrated
in figure 5.2. The fact that these curves now slope upwards to the left
(when .4 < A < 1.0) indicates that one gains substantial power in these
cases by departing from Fisher's test and choosing A smaller than one.
These gains continue down to A = .4, after which there eventually must

be a loss of power.
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Figure 5.1. Estimated power of TA as a function of ) under simple
periodicity'of amplitude R], indicated next to curve.

level .05 level .01
1.0 1.0¢-

=10 .5+
0 L—
0
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Figure 5.2.
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Estimated power of TA as a function of )\ under compound

periodicity at two frequencies with equal amplitudes R1 and R2’
indicated next to curve.
1.0¢ level .05 1.0¢ level .01
Sk
IS
4]
0
1.0¢
!
Bl
0 D 0 . : A
0 1.0 0 1.0
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Power in the case of unequal amplitudes at éach of two frequencies
is 1llustrated in figure 5.3; one amplitude is twice the other. Again
the curves generally slope upwards to the left (when .6 < A< 1.0),
but the power increases available are less dramatic here than they were
in the case of equal amplitudes (figure 5.2).

Power for contributions at three frequencies is illustrated in
figure 5.4 for the case of equal amplitudes, and in figure 5.5 for
the case of unequal amplitudes having the proportions 1:2:3. We see
again that power generally increases as X decreases from 1.0 to .4,
sometimes dramatically,as in figure 5.4 when n = 10.

The main conclusion to be drawn from this section is that substantial
power gains are often available by using TA instead of Fisher's test,
without sacrificing significant power in the case of simple periodicity
when Fisher's test is optimal. A conservative choice for A is .6; a choice
of X = .4 often allows even larger power gains under compound
periodicity at the cost of a small but significant power loss under

simple periodicity.
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Figure 5.3. Estimated power of TA as a function of A under compound
periodicity at two frequencies with unequal amplitudes
R] and R2, indicated next to curve.
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Figure 5.4. Estimated power of TA as a function of X under compound
periodicity at three frequencies with equal amplitudes
R Ry and R, indicated next to curve.
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Figure 5.5. Estimated power of TA as a function of X under compound
periodicity at three frequencies with unequal amplitudes
' R],Rz, and Ry indicated next to curve.
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6. Application: Variable Star Data

In order to demonstrate that these potential power gains can be
realized in real data situations, we now apply tﬁem to the analysis of
the magnitude of a variable star. The data is taken from pages 349-352
of Whittaker and Robinson (1924), and has been analyzed in chapters 2
and 5 of Bloomfield (1976). This example is appropriate because it is
an essentially c105ed-physical system in which periodicity is likely,
and we have no auxiliary information favoring some periods over others.

We wiil analyze N = 21 measurements of the magnitude (thus n = 10),
obtained from observation at ten day intervals. The raw data is shown
in figure 6.71. The spectrum was calculated as outlined in section 2, and
the normaiized speétrogram is shown in figure 6.2, normalized so that
the ordinates sﬁm to cne. -We see'two strong peaks, at per%ods of
about 30 and 23 days. This is not surprising because the raw data in
figure 6.1 do seem to exhibit a pattern of “beats" characteristic of
the superposition of two close frequencies. -

We wish to test to see if these peaks represent true periodic
fluctuations in the magnitude of the star, or if they might have arisen
from purely random fluctuations. Tests for periodicity may now be
compared. Table 6.1 shows the outcome of level .01 tests; all level
.05 tests did reject HO' In the level .01 case, we see that Fisher's

test (based on TA with A = 1) does not reject H,, largely for the

0)
arguments presented in section 3. However, the tests based on TA do

reject H0 when A = ;6, .4, and .2, and accept H, when X = .8. Recall

0
from section 5 that A = .6 and possibly A = .4 were the recommended

values, and these were not chosen from the data!
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Figure 6.1, Variable star data: brightness sampled at ten-day intervals
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Figure 6.2. Normalized spectrogram for vaiiahle star data
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Table 6.1. A comparison of tests for periodicity in the variable

star data, at level .01. X = 1.0 corresponds to Fisher's test.

X }gE_ Il. El. ieject Hy?
1.0 .536 0 0 no

.8 .429  .065  .107 no

6 322 242 .214 yes

4 214 457,329 yes

2 107 .671 .516 yes
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If we consider the daily observations (600 instead of 21 points)
as analyzed in Bloomfield, we see that there reai]y is perijodicity, and
hence we do hope to reject the null hypothesis. Thus the extra power
gained by'using TA with A = .6 or .4 instead of Fisher's test can be

quite useful in practice.
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