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1. INTRODUCTION

1.1 Summary

This report presents the results of a research and development

program designed to apply and demonstrate adaptive decision aiding in

anti-submarine warfare (ASW). The work reported here on an adaptive

decision aid (ADA) is designed to improve the decision aiding effectiveness

of the Tactical Coordination Officer (TACCO) aboard the Navy P-3C aircraft

as he deploys his ASW sensors. The ADA consists of a number of aiding

functions that are performed during actual TACCO decision making, and

are specifically suited to decision aiding in the rapid-response,

repetitive, and dynamic environment characteristic of tactical ASW

situations. The ADA has been integrated into existing P-3C simulators

at the Naval Air Development Center (NADC) and successfully demonstrated

in a submarine tracking scenario.

The development program has three main accomplishments:

(1) The transfer of advanced decision aiding from a laboratory

research environment to a specific test environment which

simulates ASW system application.

(2) The demonstration of the feasibility of the decision aid

by implementing and integrating it into the existing

ASW decision task structure and existing simulation

computer hardware.

(3) The construction of an evaluation tool that can be used

to analyze an individual's decision performance and

determine the potential payoff and acceptance of

decision aids in operational settings.
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The ADA is designed to utilize adaptive techniques that "capture"

and model decision making strategies and, then, recommend future actions

based on both objective criteria and the subjective values implicit in

the learned strategies. The heart of the aid is an adaptive pattern

recognition model that is used to learn decision strategies and a multi-

attribute model that is used to generate action recommendations.

The specific function of the aid is to provide decision (i.e.,

action) recommendations to a decision maker faced with time critical,

repetitive, and dynamic decision making tasks. In the case of TACCO

decision making, the decision involves tactical allocation of acoustic

ASW sensors. These allocation decisions are particularly difficult due

to the many factors (attributes) that must be taken into consideration

(i.e., mission objectives, ocean conditions and weather, aircraft resources,

time, etc.). The basic philosophy of the aid is to make sensor allocation

recommendations to a TACCO that are based on his own preferences with

respect to these attributes. The ADA is adaptive in the sense that it

adjusts its internal parameters dynamically based on real-time observation-

of a TACCO's decision strategies. This technique has been proven

successful in laboratory experiments and has resulted in a marked increase

in decision making performance (Freedy, et al, 1976).

1.2 Problem Statement and Approach

Tactical operations are becoming increasingly sensitive to the

quality of decision making. Large stakes rest on the ability of a tactical

decision maker to request and process volumes of information, and to make

rapid and effective decisions. Often, the decisions are made sequentially,

and the consequences of each are likely to affect subsequent future

decisions.

1-2
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The human decision maker (DM) generally performs sub-optimally

under conditions such as those found in tactical decision making.

Cognitive limitations on nnery, attention and processing, and biases

and inconsistencies in aggregating information typify his behavior.

This problem is of particular importance in airborne tactical

ASW operations which are characterized by the usual decision processes

of data gathering, data evaluation, and resource allocation but further

complicated by unusually severe time constraints. Given the complexity

of the general ASW decision task, the often severe time constraints

associated with airborne operations, and the inherent limitations of

human capabilities, the airborne ASW decision maker is normally taxed

to his fullest. Consequently, airborne ASW effectiveness depends heavily

on individual decision making performance. Thus the proper application

of advanced tools for computer decision aiding promises to have a

significant impact on mission performance by improving tactical decision

performance. Specifically, computer aiding can improve performance by

allocating the decision functions between man and machine in a way which

optimizes their respective strengths. Computer techniques can also provide

computational aids for analyzing and formatting relevant decision data,

as well as providing criteria for evaluation of alternatives and eventual

selection of a course of action.

Moreover, in a dynamic setting where the complex future

consequences of any current decision must be considered, the computer

is an ideal observer and responder to a human during his decision making

process. This type of interactive participation requires of course, a

computer capable of adapting to changing task requirements and operator

needs. Also, the often subjective nature of real world decisions requires

some form of an adaptive model of the human decision maker, in order to

determine his preferences and goals.

4 1NiI



Perceptronics has developed and demonstrated, under previous

ARPA and ONR* support, a computerized decision aiding system. The system

combines major concepts of decision theory with adaptive computer

technology to provide fast, real-time decision aiding of the type required

in tactical situations. For example, the following decision aids are

provided:

(1) Real-time probability aggregation and report generation of

exact outcome.

(2) Recommendation of the optimum alternative in any decision

situation.

(3) Decision quality feedback.

Experimental evidence from simulated tasks closely paralleling ASW tactical

operations has indicated that this form of a decision aid (1) significantly

improves operator consistency, (2) significantly improves decision quality,

(3) reduces inter-operator variability, and (4) increases decision rate.

The decision system is described in detail in Section 2.3.

In addition, preliminary analysis of the tactical ASW decision

environment has shown that the aid is well-suited to provide an experimental

testbed for decision aiding research. In particular, the aiding program is

ideal -- in terms of structure and development state -- to supplement the

new computer systems being introduced into ASW operations. The system can

provide high fidelity simulations which (1) permit evaluation of numerous

aiding approaches, (2) give valuable design inputs to hardware/software

structures, and (3) have significant operation potential.

* Contract No. N00014-73-C-0286.
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1.3 S~stem Overview

The adaptive decision aid (ADA) has been integrated into the

Navy P-3C simulators designed to provide high fidelity ground simulation

of the airborne Tactical Coordination Officer (TACCO) coninand and control

console, and to train TACCO's and other P-3C crew members for airborne

anti-submarine warfar, (ASW) missions. In its current form the decision

tasks that are associated with the P-3C crew can be categorized into

three types: (I) deployment of sensors, (2) mission coordination, and

(3) sensor data evaluation. The decision aiding function is designed

to aid in sensor deployment decisions. Sensor deployment involves the

allocation of sensor resources (such as sonobuoys) during the detectie.",

localization, or other major ASW phases when sensor data is retuirted.

Deployment decisions by the TACCO are based on feedback data from pi-vious

sensor deployment, sensor data evaluations, sensor deployment standard

operating procedures, sensor resource availability, and a desire to achieve

optimal sensor responses.

The ADA program aids the TACCO in making sensor pattern

deployment decisions by displaying certain kinds of information on the

TACCO's CRT screen. Specifically, the following major aiding functions

are provided:

(1) Recommendation of the three best sonobuoy pattern

configurations and the number of sonobuoys to be deployed

in each.

(2) Display of data values for the four key attributes that

characterize each recommended pattern.

(3) Reconciendation of the optimal deployment location for

the best of the three patterns recommended. (If the TACCO

1-5



elects either of the other two recommended patterns

the optimal location for it replaces the optimal location

of the "best" pattern).

The recommendation of the three best sonobuoy patterns is based

on the adaptive modeling algorithm which has learned the TACCO's values

by "observing" the actual patterns chosen by the TACCO for particular

situations. The characteristic "attributes" of the patterns are descriptors

that aid the TACCO in making his pattern selection. The four attributes

currently available describe most of the factors taken into consideration

by the TACCO. They are:

(1) Detection Index (DI) - A measure of the probability of

detection associated with the pattern.

(2) Coverage Area (CA) - A relative measure of the projected

ocean area covered by each pattern.

(3) Uncertainty reduction (UR) - The amount of reduction of

uncertainty in the submarine location provided by the

pattern.

(4) Resource Conservation (RC) - The effect on aircraft

sonobuoy resources of deploying the pattern.

These attribute values are displayed to the TACCO along with the pattern

recommendations so that a rational acceptance or rejection of the

recommendations can be made.

The final aid is a display of the optimal deployment location

for the recommended patterns. This display appears on the TACCO

multipurpose display as a location point with a well defined orientation

mark. This information also aids the TACCO in selecting a sonobuoy pattern

for deployment (see Figure 2-3 which illustrates this display).

1-6
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Once the TACCO has accepted or rejected the ADA pattern

reconmmendations, the' adaptive aiding system modifies its internal utilities

so that they reflect the TACCO's pattern preferences in terms of the four

major attributes. In this way, a new pattern recommuendation can be

generated on the next deployment cycle which is closer to the TACCO's

current deployment strategy. After a short time, the model will converge,

capturing the TACCO's strategies and aiding him accordingly.

1.4 E niirical Evaluation

Preliminary evaluations have been completed with the ADA system

in order to (1) evaluate the type of control display necessary for effective

aiding, (2) identify required changes and system improvements, (3) verify

system operation, (4) demonstrate the operational system to experienced

TACCO's, and (5) obtain preliminary data regarding system acceptance with

an evaluation of system potential.

The results of the preliminary evaluation have shown that the

decision strategy of a TACCO can actually be observed and learned by the

ADA system and sensor deployment recommendations can be effectively

generated by the system. Adequate response time was obtained and acceptable

system adaptability to changes in TACCO strategies was achieved.

Moreover, the system was demonstrated to five current TACCO

instructors who were given questionnaires asking for their estimation

about the system potential. In general, the majority of the TACCOs

were in agreement that the computer aid would help in several ways.

In particular, they all felt that their job would be made easier and

more effective overall.

1-7
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They felt the system would standardize performance and reduce

variability among operators in selecting sensor patterns, especially

in situations where untrained TACCOs are involved. They also felt that

the ADA could provide a recommendation which could be based on more

experienced TACCOs or, at least, help to improve their own choices since

they would be provided with an optimal model.

With respect to the interaction between the system, and the

TACCO, they felt that the procedure for probability entry and other

required information is adequate as currently implemented.

While the ADA system shows substantial potential for TACCO

aiding, further engineering evaluation and controlled experimental studies

should be performed in order to refine the system and move it to full

operational implementation. In particular, it is important to refine and

fine-tune system functions so as to assure that the ADA is completely

compatible with the TACCO task and accurately fits the decision situation

in such a way that its performance improvement and impact is maximal.

In addition, it is important to experimentally measure the effectiveness

of the system in terms of its expected real-world mission payoff and set

up a basis for further functional expansion and transfer to fleetwide

operational applications. Such experiments are also required in order

to provide guidelines for an expanded application in other airborne ASW

mission phases as well as examine its feasibility for shipboard ASW

operations.

1-8



2. BACKGROUND

2.1 Adaptive Decision A idin Methodg.]9 X

The ADA system concept is based on an early development of

adaptive decision aiding methodology ADDAM (Freedy, et al, 10'73). The

adaptive methods involve the on-line acquisition of operator decision

strategies by computer observation of his behavior. This dynamic

modeling is capable of in-task observation of operator decisions made in

response to real world probability data. The decision maker's value

structure is then computationally inferred through a pattern recognition

algorithm, and used as an input to a decision recommendation program.

The resulting behavioral model and aid have the advantages of

(1) functioning operationally in actual tactical circumstances,

(2) adapting to changing task requirements and operator capabilities, and

(3) requiring minimal progranmning complexity. These techniques use

pattern recognition or learning algorithms to estimate behavioral

parameters. The ensuing models are then used to train, replace or

evaluate the operator. The current work extends this field by

placing the operator in a real time interaction with his model. The

system both descriptively models and prescriptively aids the operator.

Because the decision model is adaptive, model-based decision

aiding establishes a complex synergistic relationship between the operator

and the aid. The system adapts to the human operator's pattern of

behavior and, in turn, provides decision aiding which may cause the human

to modify his behavior. In a sense, the decision maker is provided with

a tool that refines his behavior. Rather than confronting each decision

anew, and depending on often fallible processes of recall, recognition,

problem structuring, and evaluation, the operator uses logically derived

reconmmendations to guide and condition his responses.

~2-1
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The current ADA model is based on an underlying expected utility

(EU) model which assumes that the operator chooses that action whose

expected (probability weighted) utility of outcome, is highest (Krantz,

Luce, Suppes, and Tversky, 1971). EL] models, of course, are not a

panacea for structuring decision models. Lichtenstein and Slovic (1971)

argue that descriptive models must take cognitive factors into account,

Luce and Suppes (1965) question the use of deterministically maximized

choices rather than stochastic choices; and Wendt (1970), and Coombs and

Pruitt (1960), contend that the EU model should he modified to account for

preferences in variance of outcome. In general, though, the us,fulness of

EU models is conceded in situations where the number of choices is low and

the decision maker can relate to all attributes in terms of probabilities

(Goodman, Saltzman, Edwards, dnd Drantz, 1971). Also, the EU models have

the advantage of modeling both descriptive and normative (optimal)

behavior, unlike most of the heuristic-based models (Wendt, 1973).

2.1.1 ADA Theoretical Structure. The ADA Support System is composed of

a combination of complementary elements --- a set of utility aggregation

programs, a dynamic model for tracking operator values for outcomes, and a

strategy reconmendation algorithm. Each of these aiding subsystems has a

major role in augmenting the human functions of problem formulation,

analysis, resolution, and evaluation.

Ut i_li_ty Estimation and Ag re9ation. O liile COncern are the

considerations of perceived gains associated with the decision outcomes.

Occasionally, objective values in terms of dollars, ship-equivalents or

other external criteria can be used as criteria for choice. The situation

must be exhaustively quantified to justify this type of calculation. For

instance, a strategy for action selection based on obJective criteria

such as speed, accuracy, or expected value may be relatively easy to derive

when system objectives, behavior, and environmental conditions are

completely specified. Given the inmmediate utilities of obtaining the

1



possible outcomes and given the costs of the consequences, the decision

choice with the highest operator utility can be selected. Objective

performance criteria for the immediate task in most man-machine systems,

however, are not well defined, or are only indirectly related to long-

term system goals. This indeterminacy is particularly evident in

systems operating in dynamic environments, where the results of

earlier decisions affect later decisions. Such systems may rely

heavily on the operator's subjective evaluation of the situation at

hand, and the decisions should be based on measurable subjective

preferences (utilities) of the operator.

Numerous techniques are available for assessment of the

operator's utilities, ranging from ad hoc procedures to completely

axiomatic analysis. The simplest techniques entail eliciting direct

expressions of preference along qualitative or quantitative scales.

Fishburn (1967) lists more than a dozen such direct methods. Other

techniques of utility assessment include the decomposition of complex

decisions into hypothetical lotteries, and the use of multivariate

methods to analyze large numbers of binary preference expressions to

determine underlying factors (Kneppreth, Gustafson, Johnson, and Leifer,

1974).

A major practical limitation to the application of decision

theory is the complexity of utility assessment techniques. Most

applications require a two-step process. The first step is to assess

the decision maker's (DM) utilities, and the second is to apply them to

the decision problem. Because it is not feasible to reassess utilities

frequently in repetitive tasks, it is assumed that they remain static

during this application. Such an assumption might be valid for a "one-

shot" decision. However, there is no reason to assume that the DM's

utilities remain static during the performance of multi-stage decision

2-3



IA

tasks. Nor is it reasonable to assume that they remain the same when

the context changes from that of a laboratory context to the real

world task.

The technique developed in ADA for dynamic utility estimation

circumvents many of these problems. Dynamic estimation uses the

principle of a trainable multi-category pattern classifier to "learn"

the operator's utilities for the outcomes of information acquisition

decisions (Freedy, Weisbrod, and Weltman, 1973). Such an application

of pattern classification techniques was first suggested by Slagle

(1971), who pointed out that the utility function was an evaluation

function which could be learned from a person's preferences. The

adaptive technique assumes an expected utility maximization paradigm

for modeling decision behavior, and uses a pattern recognition algorithm

to successively adjust the model to fit observed decision behavior.

The underlying maximum utility model assumes that the operator chooses

that action whose utility of outcome is highest (Krantz, Luce, Suppes,

and Tversky, 1971).

The advantages of the dynamic observation technique are as

follows. (1) Utilities are estimated non-verbally, without the need

for a skilled analyst highly trained in utility estimation techniques.

In fact, the decision maker need not be aware that his utilities are

being assessed. Utilities can be estimated rapidly and the technique

is not limited by the number of possible decision outcomes. (2) The

utilities are measured on a common scale and are combinable. (3) The

utility assessment technique responds to changes in values and the

utilities are automatically validated by direct comparison with the

decision maker's real world behavior.

Strategy Recommendation. Another major element of the ADA

system, the strategy recommendation program, follows naturally from the

2-4



utility estimators. With these parameters defined it is a simple

Lmatter to recommend individually optimal decisions. The choice with

the greatest utility is determined and displayed to the operator. The

[ recommendations given are thus based on the operator's own apparent

values, and are organized into a normative framework. A certain

generality is present in the normative processing since the

recommendations are not restricted to the identical circumstances of

the observations used for training. Recurrent observations of the

operator actions are necessary for estimation of parameters, but these

determinations generalize to other circumstances of the same structure.

This means that the requirements for successful strategy recommendations

using the adaptive decision aid are (1) a complete set of known

possible actions, (2) a repetitive decision environment, and (3) a set

of relevant attributes of the decision :tuation that reflect the

operator's preferences. It is only necessary to observe a small number

of actual decisions to determine the correct utilities. These utilities

then generalize to any circumstances within the scope of defined

decision environments. These criteria are met in the P-3 decision

environment.

2.1.2 Aiding Dynamics. The strategy reconendation algorithm closes

a man/computer decision cycle or loop of considerable flexibility and

dynamics. The extent of the aiding can be observed by examining the

major decision processes of information acquisition and action

selection. In the information acquisition task, the operator receives

feedback of the data requested and of the costs of data acquisition.

To achieve long-term success, he must ascertain what type of behavior

led to maximum performance, a difficult task with probabilistically

unreliable information sources. He must then use the data obtained to

select timely actions and to evaluate his performance using sporadic or

noisy performance feedback. This cycle repeats itself as information

I
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is converted into action throughout tactical decision making, and

because of the dynamic nature of these cycles, errors tend to compound.

Figure 2-1 illustrates the generalized form of the adaptive

decision aiding system investigated by Perceptronics over the past five

years. The upper part of the figure shows the usual control loop of

the human decision maker. He or she processes decision information,

presented on some form of display, and makes choices which both affect

the decision environment and alter the information available for the

next decision. The lower part of the figure shows the aiding system,

resident in a digital computer that has as its input the same decision

information available to the human operator, as well as the decisions

made by the operator on the basis of that information. Using adaptive

programs and normative decision criteria, the computer builds a decision

model of the decision maker, and, by means of interactive display

programs, provides the operator with on-line recommendations based on

his own preferences and decision strategy. Later, for evaluation or

training purposes, the computer provides a performance report, in which

decision making effectiveness can be separated from the actual,

probabilistic consequences of the decision.

The ADA support system was developed following the above concept.

ADA consists of an adaptive decision model which continuously observes

both the decision environment and the decision maker's behavior, learns

his decision policy, and makes decision suggestions based on the

apparent value of the alternatives to the decision maker. Currently,

the modeling technique is based on the prediction of decision behavior

according to a maximum utility strategy. In simple terms, utility is

calculated by multiplying the subjective value (utility) of a decision

outcome by its corresponding attribute levels. Previous investigators

have shown that such a model is robust, and adequately represents human

decision behavior in a variety of circumstances.

2-6
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The adaptiveness of the ADA system is realized through the use of

a trainable multi-category pattern classifier that is used to estimate a

decision maker's utilities or value structure. As the tactical decision

maker performs his decision task, this on-line pattern classifier

observes the choices among the various decision options. The classifier,

using attribute values as inputs, attempts to classify these

probability patterns by adjusting utility weights according to an adaptive

error correcting algorithm. In this manner, the pattern classifier tracks

an individual's decision making preferences and learns his utilities.

Such an approach has a number of advantages compared to off-line utility

estimation. Dynamic estimation observes and models actual behavior

rather than responses to hypothetical decisions. It does not interrupt

or intrude on the process of decision making; it responds to ongoing

changes in task characteristics and operator needs.

2.2 The P-3C ASW Environment

2.2.1 Overview. This section describes the decision environment around

which the aiding model is designed. The analysis is the result of an

in-depth study of current Navy ASW operations. A typical peacetime anti-

submarine warfare (ASW) mission consists of detecting and tracking an enemy

submarine for as long as possible using a specially designed aircraft

called the P-3C. The aircraft is equipped with different types of

acoustic sonobuoy sensors and a computer system capable of processing

tracking information.

The individual responsible for the major decisions aboard the

aircraft is the Tactical Coordination Officer (TACCO, pronounced TACK-O).

He must make decisions concerning (1) the course of the aircraft, (2) the

pattern and type of sonobuoys to be dropped, and (3) the probable location

of the submarine, etc. These decisions are part of the overall tasks of

integration and evaluation of sensor information, management of sensor

deployment, and (in wartime) management of weapon deployment.

2-8
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2.2.2 The P-3C Aircraft. The Lockheed P-3C ASW aircraft (see Figure

2-2) contains three ASW sensor positions, a navigator position, and the

TACCO station in addition to the pilot and co-pilot. The acoustic sensor

stations are Sensor Station 1 (SS1) and Sensor Station 2 (SS2). These

stations are capable of listening either actively or passively for

submarine sounds (passive listening) or sonar echos (active listening) in

the water. They are linked via radio with the sonobuoys deployed. Sensor

Station 3 (SS3) is the Magnetic Anomaly Detector (MAD) station and the

radar station.

The P-3C acts as the sensor and weapon platform from which the

ASW mission is conducted. The aircraft carries a fixed number of

sonobuoys and (in wartime) ASW weapons. The TACCO is in charge of the

ASW search, detection, localization, and tracking (as well as attacking

if in wartime) of hostile submarines. The navigator provides mission

navigation information and acts as communications officer during the

mission. The SSl, SS2, and SS3 operators are enlisted men who operate

their respective sensor equipment.

2.2.3 The P-3C ASW Mission. The P-3C ASW mission consists of four

phases: (1) search, (2) classification, (3) localization, and (4) attack

(if in wartime) or tracking and gaining intelligence (if in peacetime).

A mission begins with an intelligence report indicating that a submarine

is in some area of the ocean. This initial area (and all subsequent

areas in which the submarine is thought to be) is called an "area of

probability". The ASW mission objective is to reduce this initial area of

probability -- which starts out very large -- until it is small enough to

successfully attack the submarine.

Once the preflight planning is completed, the P-3C departs for the

initial area of probable submarine location, and the ASW mission begins.

The search (and subsequent phases) are mostly acoustic. Visual and radar

2-g
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searches are infrequently used and MAD is used only in the tracking

stages. (In the U.S. fleet, a training mission scenario is developed.

U.S. submarines move into an area of probability and behave like enemy

suh'- ,"es. In the training center, fleet mission exercises are simulated

by cumputer.) During a mission, there are three types of sonobuoys that

can be used: (1) LOFAR which is a general passive, non-directional

sonobuoy and not very expensive to use, (2) DIFAR which is passive and

provides a bearing to a target but is about five times as expensive to

use as LOFAR buoys, and (3) active sonobuoys. During a mission, the

TACCO must decide how to place the sonobuoys and what type to use. He

must consider how many of each type are on board, their lifetimes, depth

settings, and quantities of each. After takeoff, most of the buoys cannot

be changed. The settings decided upon in the preflight planning session

are fixed in all but a few of the sonobuoys. Only these few can be

changed in flight.

The mission really begins full force once an initia! detection

and classification occurs. The TACCO must then decide what course of

action to take. What is the source of this sound? Must passive or active

sonobuoys be used? (Often these questions are answered by fleet

policies.) How is the target to be classified? These are examples of the

types of questions that run through the TACCO's mind during the mission.

2.2.4 The TACCO Decision Task. Once the TACCO has dropped sonobuoys,

some critical decisions must be made. He must decide what the sensor

feedback or lack of it means. Conflicting feedback information can affect

decisions. For example, items that influence the noise factor in sensor

feedback are bottom bounce, conflicting bearings, loss of contact, (the

submarine may hide behind undersea mountains, etc.), errors in sonobuoy

bearings, and submarine course and speed changes. If a contact is lost in

the passive search phase, one option is to go active (if permitted by

fleet policies). In the localization and tracking phase, the critical
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factor is the time to make a decision in addition to the "rightness" of

the decision. An incorrect or slow decision can cause a contact to be

lost.

During an ASW mission, the utility of the various sensors may

change. For example, early in the search phase, LOFAR sonobuoys are very

valuable as sensors. Later in the localization or tracking phases, LOFAR

buoys are much less valuable and DIFAR buoys become the valued sensors.

This clearly indicated that values are dynamic dur ipjan ASW _mission, and

suggests that adaptive decision aiding can be extremely helpful. Static

decision aids cannot account for value changes as they occur, based on

feedback patterns from the sensors in all the infinite variations that

are possible.

2.2.5 Cgomputational _Aids. A sophisticated computational and information

display system is available on the P-3C aircraft for the purpose of making

the tasks of the TACCO more effective. The heart of the system is the

TACCO display screen which sumnmarizes sensor information and provides a

visual mechanism for making decisions. Figure 3-2 shows a schematic of

the TACCO station with the display screen in the center. The screen

represents a designated area of the ocean around the current location of

the aircraft. Information received from deployed acoustic sensors is

initially entered into the computer,system by the sensor operators at

their individual stations. This information appears on the TACCO display

screen as bearing lines emanating from previously indicated sensor drop

point locations (see Figure'3-2). The TACCO must use the various

computational and display aids provided to plan the allocation of new

sensors so that contact with the submarine can be maintained as long as

possible.

The primary computationl aid is the "tracking bug" which predicts

the most probable location of the submarine based on current information.
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The tracking bug moves on the screen in real time and, consequently, is

a continuously updated estimate. In order to produce the tracking bug,

sensor information must be selected and entered by the TACCO. This is

done by selecting promising intersections of bearing lines that appear

on the screen and marking them for data entry. The intersections are

called "fixes" and represent possible locations of the submarine based

on pairs of sensor contacts. However, because of errors, it is rarely

the case that all pairs of sensors will intersect at the same point.

Thus, it is up to the TACCO to choose those fixes that seem most

reliable and request a tracking bug based on this choice. Possible

errors can arise from (1) sensor failure, (2) bearing errors, (3) signal

reflections, and (4) operator errors, etc.

2.2.6 The P-3C Simulator Update System. The P-3C training simulator

is an exact replica of the actual P-3C aircraft stations along with

computer support for simulating the ASW mission environment. The latest

additions to the simulator (called the "update" system) contain many

improved data processing and display features. The following sections

summarize a few of these features and their effect on the TACCO decision

making task.

Probability Contour. A probability contour is a single ellipse

that appears on the TACCO display screen. It is based on the

probability of a submarine located at the intersection of two or more

sensor bearings. The contour is not based solely on where the

submarine itself is or could be. The contour is a combination of both

sensor feedback probabilities and environmental conditions.

The Track-Fix. The update version has a built-in track-fix

feature. In the previous version, the TACCO had to find the intersection

of two bearing lines by himself visually. In the update system, the
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intersection is found automatically by the computer, and shows an "x"

on the TACCO display screen. He must then decide whether or not to

enter this fix into the computer. After a series of two or three fixes

are plotted, the computer generates the tracking bug.

Buy _Pattern Aids. After exchanging some information with the

computer system and indicating some points on the TACCO display screen,

the computer will automatically place the buoys in a pattern and

designate the fly-to points for the pilot.

For example, in order to construct a "wedge" pattern, the TACCO

is not required to enter data for each sonobuoy individually. He need

only enter the parameters of the wedge, such as (1) anchor location,

(2) spread angle, (3) orientation, (4) number of buoys, and (5) buoy

spacing. These types of pattern aids also ist for the "barrier"

pattern (straight line) and the "entrapment" pattern (circle).

2.3 The P- 3C- Adapt-ive Decis-ion Aidilg_(ADA)_ Model.

2.3.1 Overview. The adaptive decision aiding methodology is intended

to aid in the passive tracking phase of the ASW task. The phase can be

described as a decision cycle shown in Figure 2-4. The TACCO receives

information from previously deployed sensors, integrates and evaluates

this information, makes his best estimate of the submarine motion, and

decides where to optimally drop the next pattern of sensors so that the

tracking be continued as long as possible with the least amount of

resources expended. This cycle will be described in detail and the

decisions to be made in the process will be indicated.

The cycle begins when the TACCO receives information from the

previously deployed sensors (step A). The SENSO (sensor operator) --

who filters the raw information coming from the sensing devices -- presents
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the submarine contact information as directed bearinqs and ranqe circles

on the TACCO's main data display screen.

The TACCO (step B) evaluates the incoming data and integrates his

assessment of the situation by placing "fixes" at the bearin n line

intersections he believes to be true submarine location". It he needs

more information, he can prompt the SENSO to obtain more data from any

sonobuoy in the water. The decisions he must make at this stage are:

(1) which signal is a true submarine signal, (L') which intersection of

bearing lines should be a designated fix, and (3) when to stop askinq for

more information and qo to the next -tep.

In step C he makes, with tht aid of the computer system, the best

estimate of the current submarine location. This is given by the system

as a probability distribution map which is calculated from the TACCO

assessment of the tracks and from a priori statistical information on

submarine behavior. It represents the probability that the submarine

will be at various locations at any given time. The most likely location

is displayed as a tracking "bug" and is updated in real time.

Step D comprises the decision aiding portion of the cycle. The

adaptive decision aiding system calculates the optimal positions for each

sensor pattern in the decision space and presents one of the patterns as

a recommendation thus relieving the TACCO from this central decision.

The reconnendation is consistent via the adaptive model with (1) the past

performance of the TACCO in similar situations, (2) the determined

probability distribution of the projected submarine location, (3) the

current environmental situation, and (4) the capabilities of the sensors

used in the pattern. The recommendation appear- on the screen as a text

message indicating the pattern type and the number of buoys to be

deployed. Upon request, the TACCO receives a display of the pattern

superimposed on the map of the search area.
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It is now incumbent upon the TACCO to approve or reject the

recommended pattern (step E). If the TACCO rejects the pattern, he must

allocate his own pattern of sensors manually. This manual allocation

will, of course; follow established standard procedures as they now exist.

In either case, the internal decision parameters are updated to reflect

the TACCO's preferred strategy (step F).

The final step (G) of the decision task cycle is the actual

deployment of sensors into the ocean. With the completion of this action,

the cycle begins again when new contact information is received.

2.3.2 Decision Space. The decision space is the set of alternatives

from which the TACCO has to make his choice. From all of the possible

decisions confronting the TACCO in his submarine tracking task, the

decision space has been reduced through detailed analysis and interviews

with experienced TACCOs to two critical variables:

(1) Sensor pattern type

(2) Number of sensors in the pattern

The basic unit for sensor placement is a pattern. A basic

experimental set of patterns has been developed for the decision aiding

prototype system as one of the dimensions of the decision space. The

basic pattern types which will be permitted in the decision aiding model

are the following:

(1) Tri-Tac

(2) Barrier

(3) Wedge

(4) Entrapment
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Figure 2-5 shows these patterns in graphical configurations. The black

triangles represent sonobuoys. The small circle is a moving submarine

entering the pattern group.

Tri-Tac. The Tri-Tac pattern is a qroup of three sonobuoys placed

in an equilateral triangle configuration. One of the buoys is placed at

the best current estimate of the submarine's location and the other two

are placed so that the submarine will travel between them if it proceeds

on a straight-line course. This pattern tends to be used early in the

tracking phase of the mission, when the submarine location is known only

through intelligence data, to get a quick initial estimate of the

submarine's behavior without expending a great many sonobuoys.

Barrier. The Barrier pattern is a linear row of sonobuoys

centered on the submarine's predicted path. The pattern usually consists

of four or five buoys equally spaced and, on rare occasions, will contain

as few as three or as many as eight. The pattern is perpendicular to

the submarine's course so that the angles of contact bearings will be as

orthogonal to each other as possible. The parameters required to

specify a barrier pattern are (1) anchor-buoY location, (2) orientation

angle, (3) number of buoys, and (4) buoy spacing. These paramet "s must

be specified by the TACCO in addition to information about buoy type,

depth setting, and lifetime.

Wede. The Wedge pattern is normally used when the submarine's

course and speed is known to a greater degree of accuracy. The wedge

consists of from three to eight sonobuoys placed in two straight lines

intersecting at an apex that is directly in the path of the submarine

and oriented so that contacts will be as orthogonal as possible. The

parameters required for wedge specification are as follows: (1) anchor

(apex) location, (2) orientation angle, (3) wedge (acute) angle,

(4) number of buoys, and (5) buoy spacing.
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EntraLment. The Entrapment pattern is a circle of sonobuoys
placed so that the center of the circle and one of the sonobuoys are

directly in the path of the submarine. The pattern may contain from

four to eight sensors. The necessary parameters are (1) the center of the

circle, (2) the radius, and (3) the number of buoys.

Pattern Characteristics. As described above, the decision space

of sensor patterns has two major dimensions: (1) pattern type, and

(2) number of buoys. The combination of 4 pattern types with a choice of

6 sensor densities (3 to 8) makes 24 possible decision alternatives in
all. However, it is a unique characteristic of the tri-tac pattern that

it always contains exactly three sonobuoys. Furthermore, the entrapment

always contains more than three buoys. Thus, the total decision space
consists of 18 distinct decision alternatives (see Figure 2-6). The

decision aiding recommendations to the TACCO will be selected from this
decision space. The sensor patterns have, of course, many more dimensions

than pattern type and sensor density. Sonobuoy type, spacing, lifetime,

and depth settings are all necessary information, but are not included in

the decision recommendation space.

2.3.3 The Adative-Utili tyoMdel. The P-3C decision aiding algorithm is

based on the ADDAM decision model developed over the past three years at

Perceptronics (Freedy, Davis, Steeb. Samet, and Gardiner, I076). ADDAM

decision aiding algorithms were modified to accoimiiodate the increased

complexity of the realistic P-3C ASW problem. Sensor patterns are used

as the basic decision choice and critical factors such as sensor

capabilities, sensor errors, tracking strategies, environmental conditions,

and human factors were analyzed and incorporated into the developed

algorithms (see Leal, et al, 1977).

2-22



PATTERN NUMBER OF SONOBUOYS

3 4 5 6 7 8

Tri-Tac*

Barrier* * * * *

Wedge* * * * * *

Entrapment (circle)* * * * *

FIGUREF 2-6- THE DECISION SPACE PERCEPTRONICS
I 2-23



The dynamic utility estimation used bv ADA is based on a

trainable pattern classifier. As the TACCO performs the decision tasks,

the on-line utility estimator observes his choices among the 18 possible

decision options available to him. His choice is viewed as a process of

classifying patterns of "attributes" or characteristics which are

calculated automatically from available information on sensor capabilities

and current submarine location. The utility estimator then attempts to

classify the patterns by using a linear aggregation utility rule as the

discriminant function. These classifications are compared with the

TACCO's decision and, whenever they are incorrect, an adaptive error-

correcting training algorithm is used to adjust the utilities. In this

manner, the utility estimator "tracks" the TACCO's decision making and

"learns" his utilities. A more detailed discussion of the adaptive

decision model and the training algorithm may be found in Freedy, Davis,

Steeb, Samet, and Gardiner, 1976.

An important prerequisite to the application of decision aiding

in the ASW environment is a realistic structuring of the decision process.

In Figure 2-7, the decision task is presented as a decision structure.

At the initial decision node on the left, the TACCO has to decide which

sensor pattern Pi to deploy so that his task of continuous submarine

tracking will be performed efficiently. This decision is based on

maximization of utility. For each alternative choice there are four

possible attributes:

(1) Detection Index (DI)

(2) Coverage Area (CA)

(3) Uncertainty Reduction (UR)

(4) Resource Conservation (RC)

Detection Index (DI). This is a measure of the likelihood that a

given pattern will detect the submarine. It takes into account the
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pattern shape, the total number of passive sonobuoys in the pattern, the

sonobuoy spacing as e,,tered by the TACCO, the distance from the pattern

to the current location of the submarine as predicted by each track, the

track probabilities as entered by the TACCO, and a simplified distribution

of submarine movement behavior. The final result is a number between 0

and 100 which is proportional to the probability of detection.

Uncertainty Reduction (UR). From the track probabilities entered

by the TACCO, an information-theoretic measure can be obtained that

describes the TACCO's overall uncertainty. The uncertainty reduction

attribute is deduced for a given sonobuoy pattern. This value is

converted to a measure between 0 and 100 that reflects reduction: the

higher the value, the more the uncertainty will be reduced by that

particular pattern.

Coverage Area (CA). The coverage area attribute is a relative

measure of the projected area covered by each sonobuoy pattern. The

smallest pattern (tri-tac) with a minimal sonobuoy spacing is assigned

the value 0 and the largest pattern (barrier, 8 buoys) with maximal

spacing is assigned 100. The others are valued accordingly. The attribute

values will be altered by the sonobuoy spacing parameter entered by the

TACCO.

Resource Conservation (RC). The number of passive sonobuoys still

on board the P-3C aircraft is an important consideration when deciding

which pattern to use and how many sonobuoys to drop. Through interviews

with experienced TACCOs, it is clear that, ideally, the sonobuoys should

be depleted in proportion to the length of time into the mission so that

the last sonobuoys will be dropped into the water just before the mission

is over. Thus, the sonobuoys and on-station time should end together.

If the sonobuoys are depleted before the on-station time is exhausted,
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valuable time is wasted which could have been used to track the

submarine if more buoys were available. Conversely, if the on-station

time expires before all sonobuoys have been used, the aircraft is forced

to return to its base with less than optimal utilization of resources.

The resource conservation index is at its highest (100) when the

number of sonobuoys on board is directly proportional to the time

remaining in the mission. If sonobuoys are used too rapidly or too

slowly, this index will decrease. The value displayed on the screen

(see Figure 3-4) is, of course, that value which would result after the

currently recommended pattern has been dropped.

Utilities are numbers which characterize a decision maker's

value of a particular situation. They can be estimated only within the

context of a particular decision model. In the P-3C model, the TACCO has

an internal value associated with continuation of successful tracking of

the enemy submarine and with conserving resources, etc. The expected

utility model asserts that the TACCO will choose the alternative which

will maximize his utility.

Initially, each alternative member of the decision space has a

different vector of utilities associated with:

U= (jU I , jU2 , jU3 , jU4)

They represent the TACCO's personal preferences for each attribute of

each pattern in the decision space and depend on various external

variables such as weather conditions, submarine type, sea conditions,

etc. In the P-3C model, the environmental variations are extracted from

the adaptively varying part of the model. A different set of utilities

is assigned to each combination of state variables. -Once the state

variations have been extracted, the decision tree can be simplified into
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the fom shown in Figure 2-8. Since all choices of patterns have the

same set of attributes for a given state of the environment, the utility

of each attribute does not depend on which sensor pattern is dropped to

obtain it.

The expected utility equation for each pattern has a sinqle set

of utilities fo ...e various patterns which are wei(lhed by the levels of

their attributes. The model computes an aggregate multi-attrihute

utility (MAU) as a weighed sum of each attribute level A. multiplied by

the importance or utility of the attribute UIi . The calculated MALI of an

alternative is used as the selection criterion.

2.3.4 T he Tra inin gAl Iprith!1m. The training algori thm is a linear

multi-category pattern classifier. Using a fractional correction factor,

it traverses cyclically through the schematic diagram of Figure 2-9. On

each trial, the model uses the previously calculated weights Ui for each

attribute i to compute utility MALIj for each pattern in the decision
I

space.

The attribute levels jAi are derived from previously known facts

about the sensors, their reliability, coverage capability, etc. These

levels are presented to the TACCO for analysis so that he will base his

choice on the same information set. The model then assumes that the

TACCO will always prefer to deploy the sensor pattern with the maximum

MALI value. After the selection, the TACCO's choice and the model

prediction are compared. If the prediction is correct., i.e., the TACCO

chooses the pattern with the highest MALI in the model, no adjustments

are made to the utility weights. However, if the TACCO chooses a sensor

pattern with a MAU less than that of the predicted pattern, the model

adjjsts the utility weights using a correcting vector which is the

difference between the attribute vector of the chosen pattern and that

of the predicted one. In this manner, the utility estimator is "shifted"
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in the direction of the pattern that it "should" predict, and away from

the pattern it did predict. The training rule used to adjust the

utilities is illustrated in Figure 2-10. The correction factor X

controls the speed of convergence and is determined by experimentation.

With a high A, the utilities are adjusted more strongly, resulting in

faster convergence to the operator's utilities. However, this also

produces a higher sensitivity and thus, less stability.

The vector of utilities is initialized arbitrarily with all

utilities equal to 1. It is guaranteed to converge to a solution vector

if such a solution exists. That is, if the TACCO is behaving

rationally, the model is guaranteed to find his internal values.

There are two phases in the training algorithm behavior which

alternate according to a parameter 0 representing the level of confidence

the algorithm has about the TACCO's behavior. One is the "training

phase" and the other is the "predictive phase". The effect of the two

phases is that when e is low, the system does not recommend a solution to

the TACCO. When a is high, it presents that element of the decision

space with the maximum MAU as its recommendation.

The training phase takes place at the beginning of system use

when the utilities have not yet had the chance to converge to a stable

solution. The adaptive algorithm is bound, then, to make many prediction

errors. In such times the system should not influence the TACCO by

presenting erroneous predictions. Internally, the system performs the

training process as given above. The training phase is defined by:

0 < 0.7 where 0 = n

where n is the number of correct prediction in the most recent 10 trials.

When the confidence level goes above the specified threshold, the
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predictive phase begins. The system continues to apply the training

algorithm but it also presents the TACCO with a recommendition: the

pattern choice with the maximum value of MAU. The TACCO has the option

to accept or reject this recommendation and the system will apply the

Ierror-correcting algorithm accordingly.

I
]

I
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3. SYSTEM DESCRIPTION

3.1 Overview

Figure 3-I shows the overall decision task cycle that the TACCO

follows when allocating passive sonobuoys for submarine tracking. One of

the most crucial decisions in this cycle is the type of sonobuoy pattern

to be used given current tactical conditions and mission objectives. The

ADA system provides the TACCO aiding for this particular decision.

The aiding is activated by the depression of a specific button on

the TACCO's console. Thus, ADA must be voluntarily activated when needed.

Once activated, the program time-shares with other active tactical

activities. Thus, there is no interruption of normal procedures or

activities. The aiding program may be cancelled at any time during its

operation by depressing the same button. Since the utility training

portion of the system is the last function performed in a cycle, a

premature cancellation will not affect the model.

When activated, ADA begins its operation (Figure 3-1) by

requesting an update on (1) the desired sensor spacing, (2) the desired

time until pattern drop, and (3) an assessment of the TACCO's confidence

level for each existing track. When this information has been entered,

ADA displays a set of pattern recommendations along with the attribute

information concerning each one. In addition, the optimal location for

the best pattern is displayed on the screen.

With this information, the TACCO must decide whether to accept or

reject the pattern recommendations. If he accepts, no further interaction

with ADA is necessary. However, if he rejects the recommendation, he must

indicate his pattern preference by entering this information as ADA
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requests it. When this procedure is completed, ADA adapts its internal

parameters to the TACCO's actual pattern selection and displays the

optional location for it. The program is then ended.

3.2 Sensor Spacing

The "sensor spacing" refers to the desired distance between

adjacent sensors in a particular sonobuoy pattern. This information is

required to calculate the probability that the pattern will detect the

submarine. At the beginning of the aiding program, ADA asks the TACCO if

he wishes to change the current value for sensor spacing (see Figure 3-2).

The standard decision buttons on the console marked Dl through D4 are

used by this portion of the program as well as others. (TACCOs are

currently familiar with the operation of these buttons as simple choice

selections.) If the TACCO wishes to change the spacing, he indicates this

by depressing Dl, and then enters the new value on the keyboard. The

spacing usually remains constant during a mission but may change due to

weather changes, ocean temperature changes, etc.

3.3 Track Probabilities

Because incoming sensor data may have errors, the TACCO is able to

cluster different sets of data points into predictions of the current

location of the submarine. Each different set of data points constitutes

a "track" and each track predicts a different submarine location. The

TACCO has the capability of defining multiple tracks and monitoring all

of them simultaneously. When the aiding program is operating, the TACCO

is requested to input his preferences for tracks, specifying which are

more likely to be the more accurate ones. Each track is thus dssigned a

numerical probability reflecting the TACCO's preferences (Figure 3-3).

The probabilities are given in percent form from 0 to 100, entered on the

keyboard console, and displayed immediately after entry for verification.
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The probabilities for all tracks must sum to 100 for consistency. If

they do not, the values are normalized.

3.4 Time- to Drop

Because of the current tactical location and orientation of the

aircraft (e.g. entering a standard turn), the TACCO may wish to lengthen

or shorten the time until the sensors are dropped. The pattern must be

completely dropped before the submarine enters its detection range and

thus, there is a decision to be made about the estimated time-to-drop

based on the current estimated submarine location. The aiding system

requests an entry from the TACCO indicating the number of minutes until

pattern drop. This information is required to calculate the optimal

location for pattern placement.

3.5 Recoiinenda tions

Figure 3-4 shows the type of recommendations given by ADA. On

the lower part of the display screen are the three best pattern

recommendations for sonobuoy deployment. The abbreviations are:

BAR Barrier

WED Wedge

ENT Entrapment

TRI Tri-tac

The single digit immediately following the pattern designation is the

recommended number of passive sonobuoys to be used. Figure 3-4 shows a

barrier of 8 passive sonobuoys as the best choice; a wedge of /

passive sonobuoys is the second choice, and a barrier of 5 passive

sonobuoys places third.

3-6
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On the display screen above the pattern reconwendations is the

optimal location of the best. pattern (BARS in this example). This is

shown by the letter "R" surrounded by a circle. The location is the
"anchor" point for the particular pattern (see Figure 3-4). For example,

for the entrapment, the anchor point is the center of the circle of

sonobuoys. In the wedge, the anchor point is the apex of the wedge angle.

Tri-tac has its anchor at the leading buoy and the barrier has an anchor

at the center of the barrier line. In addition to the anchor point, a

directional orientation line is provided for reference.

After receiving the three best pattern recommendations the TACCO

must either choose one of them or reject them all. This is acc(.'nplished

by using the decision buttons Dl to D4, [ach recoimiended pattern is

associated with one decision button (see Figure 3-4), Dl to D3. Button

D4 is reserved for "others" which means a rejection of the three

recommended patterns.

In order to aid the TACCO in making a choice, pattern

characteristic information is provided along wit h each recommended

pattern. This information is in the form of four relative values called
"attributes". The four attributes are:

(1) Detector Index (DI)

(2) Coverage Area (CA)

(3) Uncertainty Reduction (LIR)

(4) Resource Conservation (RC)

Each attribute is measured on a scale from 0 to 100 arid is a primary

component of the adaptive al orithln. The TACCO must underst and the

meaning of each of these attributes before le can use the dec ision aid

effectively (see Section 2.3.3).
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3.6 Recomnendat ion Rejec-t-ion

If the TACCO closes one of the buttons DI to D3, he is indicating
his preference for a recommended pattern. Because of the nature of the

utility training algorithm, no adjustments will be made if Dl is chosen,

and slight adjustments will be made if D2 or D3 is chosen.

If D4 is chosen, it is an indication that the TACCO is unhappy

with all of the three recommended patterns and wishes to choose his own.

At this time, an aid to choice appears on the lower part of the screen

(Figure 3-5). The four decision buttons are now used to select one of

the four possible pattern shapes. After each pattern name is a list of

the possible number of sonobuoys for reference. After the pattern shape

is selected, the TACCO must enter the desired number of sonobuoys on the

keyboard. At this time, the training algorithm adjusts the utilities

based on the TACCO's actual pattern choice. In some instances, it may

happen that the TACCO prefers to drop a pattern which is totally outside

the scope of the decision aid (i.e. a single sensor or an extension to an

existing pattern). If this is the case, the TACCO simply cancels the

aiding program before it is completed, and no alteration of utilities is

performed.

3.7 Environmental States

The adaptive model is linear, combining additively the

contributions of the different parameters konsidered. The influence of

variations in weather conditions as well as differing submarine type and

behavior is important in the evaluation of the sensor patterns, but this

influence is not linear. It crops up as influences in the submarine model,

sonobuoy sensitivity range, error rate, etc. These variations are

accounted for by defining "states of the envirunment" which are

combinations of state variables. After questioning experienced TACCOs,

3
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the number and range of the state variables was narrowed down to the

following:

(1) Sea condition: a. rough

b. calm

(2) Weather condition: a. stormy

b. clear

(3) Submarine type: a. diesel

b. nuclear

(4) Submarine maneuvers: a. en route

b. evasive

Each combination of environmental variable values defines a

different state of the environment and a different set of parameters is

associated with them. The four state variables with two values each

produces sixteen possible "states of the world". These parameters are

used in calculating the different probabilities in the model.

Furthermore, a separate set of utilities is associated with each state of

the environment and each such set must be trained separately. Although

this requires a longer training period, convergence speed is gained on

each set. When the state of the environment changes, the TACCO can

indicate such a change and the system will switch to the appropriate set

of parameters (pretrained) and can immediately aid the TACCO's decisions

in the new situation. Without this provision, the system would have to

go through a phase of retraining before it could predict correctly the

TACCO's choices for each change in environmental condi+ions.

The environmental states procedure has been implemented in the

*model but has not, as yet, been tested.

I
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3.8 System Implementation

This section describes the software structure for the

implementation of the decision aiding system. The system was implemented

on the P-3C training facility at Moffett Field, San Jose, California, and

integrated into the P-3C simulation system at NADC. The vehicle for

implementation was the Laboratory Functional Prototype System (LFPS): a

self-contained subset of the entire P-3C system developed at NADC. The

LFPS was ideal for integrating the adaptive aiding system since it

contained a submarine generation package as well as simulated sensor

contacts which appeared in the same way as real contacts. Thus, the LFPS

was designed to be used by TACCOs while the P-3C aircraft was on the

ground.

The display format and switch selection on the TACCO control

console are each designed to resemble as closely as possible the standard

format used in the current TACCO station. Due to the mathematical

calculations in the decision aiding program, the ADA program is segmented

into several sections, and only one section is allowed to execute during

any updating period. Because of this segmentation, interruptions of the

normal operation of the existing P-3C procedures are not apparent to the

TACCO.

The adaptive decision aiding program is divided into six

components: (1) The Real World Generator, (2) The Adaptive Decision Aiding

Model, (3) The Supervisor Program, (4) The Interrupt Handler, (5) The

Display Program, and (6) The Accessory Routines. The TACCO interacts with

the supervisor program, which monitors the TACCO hardware interface and

schedules the operation of all sub-programs. The function of the adaptive

decision aiding component is to model the TACCO and the environment, and

to aid the TACCO for decision making on how and where to deploy sensors.

3-12
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The decision aiding system includes the following programs and

subroutines.

(1) Real World Generation

(a) Submarine Model

(b) Weather Model

(2) Adaptive Decision Aiding Model

(a) Attribute Generation

(b) Sensor Pattern Recommendation System

(c) Utility Adjustment System

(3) Supervisor Program

(a) Master Systems Scheduler

(b) Message Data Routine

(c) I/O Dispatcher

(4) Interrupt Handler

(a) Interrupt Acknowledgement Routine

(b) Program Segmentation

(5) Display Program

(a) Cue Display

(b) Sensor Pattern Recommendation Display

(c) Resultant Track Generation

(6) Accessory Routines

(a) System Initialization

(b) Automatic Training Technique

The above programs are illustrated in the following paragraphs:

3-13
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3.8.1 Real World Generation

Submarine Model. The movement of the submarine is modeled in such

a way that its speed and heading are updated every five minutes. The

speed, ranging from 9 knots to 19 knots, and the heading, ranging from 0

to 156 degrees, are preset in a look-up table, and the real-time counter

initiates the updating action. The speed and heading can be modified

while the system is running through the on-line debugging routine which

is built into the systems.

Weather Model. As the weather condition changes, the weather

model selects the appropriate utility vector for the multi-attribute

utility model and utility adjustment.

3.8.2 Adaptive Decision Aiding Model

Attribute Generator. This subsystem generates four attributes

for each sonobuoy pattern in the decision aiding space. With the proper

selection of the adjustment constants, the values of all four attributes

fall within the range from zero to one hundred. The four attributes are

Detection Index, Uncertainty Reduction, Coverage Area, and Resource

Conservation.

Sonobuoy Pattern Recommendation System. This subsystem represents

the mechanization of the TACCO behavior model. It computes the expected

Multi-Attribute Utility (MAU) for each sonobuoy pattern and selects the

pattern with the maximum MAU. This selection is considered the "best"

choice in the recommendation list.

Utility Adjustment System. This subsystem trains the utilities

whenever the recommended pattern is different from the pattern which is

actually chosen by the TACCO. The basic idea of training is to punish the

recommendation and to reward the actual choice.
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3.8.3 Supervisor Program

Master System Scheduler. This is the supervisory program for the

decision aiding system and the TACCO system interface. It can be used by

the TACCO to make minor changes in the sequence of events in the decision

aiding process. Its main function is to control the calling sequence of

the other programs. Figure 3-6 shows a flow chart of this program.

Message Data Routine. Messages to the TACCO are moved from the

addresses reserved for messages according to the design of the display

image on the multi-purpose data display to the display buffer for later

display.

I/O Dispatcher. Communication from the TACCO and messages to the

TACCO are handled in two ways. The cue display is performed by calling

the cue display routine with the appropriate value stored in the Q-

register to indicate whether it is a decision cue or a non-decision cue.

The graphic display is performed by calling the re-scale and display

routine with display buffer filled with the code of symbols.

3.8.4 Interrupt Handler

Interrupt Acknowledgement Routine. An external interrupt is

generated when the decision aiding switch is depressed. The interrupt

acknowledgement routine sets the task-active flag in the periodic task

table, and the active flag is then sensed for activation of the master

system scheduler when the EXEX operating system makes the periodic search.

Meanwhile, the task period time is stored in the periodic task table for

triggering of the periodic execution of the master system scheduler

routine. Similarly, when the decision aiding is terminated, the task

period time is replaced by the maximum time in order to prevent the

decision aiding routine from getting attention.

3-15



DI CALCLALABE RFWWN("

COSEVAIO PTTRIRFIRN

ENTE TRACK

FIGURE~ ~ 3-6.O SUP RV SO PR G A NE C E T O N C

N t3-1S



I

ENTER TIME TO

DEPLOY SENSORS

UPDATE TRAC

F GENERATE RESULTANT TRACK

CALCULATE ATTRIBUTES
OF DETECTION INDEX,
UNCERTAINTY REDUCTION
AND COVERAGE AREA

COMPUTE ORIENTATION

AND LOCATION FOR ALL
PATTERNS

13-1

D ISPLAY BEST
THREE RCOWNDATONS

RECMEOTINYES

OOF SENSORYE

S DISPLAY TACCO's]

DECISION

FIUR 36.SUERISRPRGRM COIUL)PERCEPTRONICS

3-1 7



Program Segmentation. Due to the time constraint of real-time

operation, the decision aiding program is segmented into several sections.

The segmentation routine directs the control to execute only one section

when the decision aiding program gets system attention each time. This

will allow all other routines to perform their functions normally when

they require services.

3.8.5 Display Program

Cue Display. The cue display data have been coded into the cue

tables labeled by the cue sequence. When the cue display is initiated,

the address of the labeled table is loaded into A-register, and the Q-

register indicates what type of cue to be displayed. One of the decision

keys needs to be depressed in order to complete a cue action if it is a

decision cue.

Sensor Pattern Recommendation Display. The message for the

sensor pattern recommendation is constructed in this routine and stored

in a temporary display table. Those data are later retrieved and

displayed on the screen by the periodic display routine.

Resultant Track Generator. The displayed data are calculated

and formed into a specified format based upon the predicted resultant

track. The resultant track is generated with respect to all the existing

tracks; the weight of each track and the time to deploy sensor pattern

contributes heavily in this calculation.

3.8.6 Accessory Routines

System Initialization. The LFPS system initialization routine

calls the accessory routines routine to initialize all the variables and

constants used in the decision aiding program.
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Automatic Learning Routine. If the automatic learning technique

is activated, the decision aiding system makes its own decision based

upon the expert's utilities without any TACCO interference for decision

making. This learning routine will make decisions in such a way that

the system utilities will eventually adapt to the present experts

utilities.
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4. EMPIRICAL EVALUATION

4.1 Overview

A preliminary evaluation study was performed in order to test

the Adaptive Decision Aiding system operation, verify its computational

functions, and measure its acceptance by the TACCOs. The precise

objectives of the evaluation were as follows: (1) to evaluate the TACCO

display and control, (2) to identify required changes and improvements,

(3) to verify system operation in terms of computational functions,

adaption, and strategy learning behavior, and (4) to demonstrate the

system operation to experienced TACCOs to determine system potential for

future tactical ASW operations.

4.2 Functional Tests

4.2.1 Utility Convergence. Convergence is the key element of adaptive

decision aiding. If a model converges, it indicates that (1) the decision

strategy of a TACCO can be observed and learned by the model in ASW Task

environment, and (2) the decision model can be reliably used for decision

recommendation feedback. It is thus a key functional test in system

evaluation to determine whether the model utilities are converging and to

examine the rate of the convergence (that is, the number of trials

required for convergence)(Freedy, Davis, Steeb, Samet, and Gardiner, 1976).

Convergence can be defined as the level which is approached by the model

utilities while observing a given, consistent decision strategy. The MAU

model parameters are continuously being adjusted as shown in Figure 4-1

until the model's recommended decisions agree with the actual decisions

that are being used to train the model.

This test reported here, involved the ADA monitoring the

performance of repeated sensor allocation decisions where a predetermined,

4-1
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stable decision strategy was employed. Figure 4-1 illustrates the

convergence curves of the model. As shown, the four utilities URC' UDI'

UCA, and UUR converged after four trials. The model therefore is said

to be convergent after that period since no more changes in utilities

I occur. This is an indication that the model has acquired the decision

strategy used by the operator. Under the experimental strateqy, high

value was placed on Resource Conservation (RC), and low value was placed

on Uncertainty Reduction (UR). Comparing this curve to earlier results in

adaptive decision models, it is apparent that the curve reflects good

adaptability of the model and the proper range in the learning parameters

(Steeb, Chen, and Freedy, 1977).

4.2.2 Cognverence Accuracy. Convergence accuracy indicates how well

I a model can learn specific utility ratios from a given decision strategy

and illustrates the accuracy level to which the model can be adapted.

Figure 4-2 shows the learning utility strategy curve in the

Idecision model. The broken line shows the utility ratio UrCe /i that is

used in "training" the model, while the solid line illustrates the

learned strategy U'C/U6 as shown. The utility ratio converged to within

15", of the training strategy indicating adequate model accuracy. This

example indicates the model adaptability to a given strategy.

4.2.3 Dynam ic .Be havior. Dynamic behavior measures model capability to

I adapt to new decision strategies in the event a TACCO changes strategies.

Dynamic behavior of the ADA model was tested by employing a number of

different tactical strategies and alternating between them while tracking

a submarine on the LFPS. It has been shown through the data that ADA will

recognize and adapt to a strategy change within two trials on the average.

These results indicate adequate adaptiveness of the model. However, it

should be emphasized that the adaptability of the model can be fine-tuned

by changing the increments by which utilities are being modified. The

I
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results achieved here merely indicate that the model adaptability and

computational functions for changing strategies is operational and can

achieve satisfactory dynamic behavior for operationai utilization.

4.2.4 Response Time. System response time indicates the computational

time that is required to generate a decision aiding recommendation

following the TACCO's probability entry and his request for decision

aiding. This time covers all the computational functions which are

required to adjust model parameters and compute and display the optimal

sonobuoy patterns. The system response time varies with the number of

tracks that are being processed simultaneously by the adaptive decision

aid. Figure 4-3 illustrates the system response tiw:e as a function of

a number of tracks. The system response time ranges from 2.2 seconds

for one track, to four seconds for four tracks. This response time is

adequate and is within the range of an acceptable man-computer

interaction response time (Miller, et al, 1967).

4.3 Subjective Assessment

To evaluate the acceptability of the adaptive decision aid, a

questionnaire was developed to obtain attitudinal responses from a

selected group of individuals. The collection of such attitudinal data

provides valuable information regarding reactions, feelings, and

preferences toward the aiding system. Since attitudes are an important

determinant of behavior, questionnaire responses from a representative

group of potential users allow a reliable estimate of what the reactions

might be to the aid in actual field use. These reactions also may be

used to anticipate and resolve potential problems during development to

insure their avoidance in future applications. The questionnaire was a

12-item open-ended questionnaire, a format usually preferred for

ilj obtaining subjective data from a small group. The decision aid was

4-5
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K ~demonstrated to five TACCO instructors, to assess their initial reactions

to the decision aid. The results of these questionnaires appear in full

in Appendix A.

4.3.1 Operator Acceptance. Overall, the reaction to the aid was quite

positive. Four of the five subjects indicated they would like to see

such an aid installed on the P-3C aircraft, while one subject preferred

to defer his judgment until a more formal test and evaluation of the

system was carried out. Two subjects showed some concern about the

amount of core available. All subjects felt that the aid made pattern

selection more effective. Three out of five thought it helped in overall

job effectiveness, one thought it helped only in certain situations, and

one deferred his initial judgment until he had more experience with the

aid during actual flight conditions. In general, all subjects thought

the aid would make it easier for them to carry out their tasks.

The subjects' responses to speed of decision with the aid were

mixed. Four of the subjects thought both the organization of the display

and the procedures for using the aid were acceptable, while one subject

remained neutral. When asked what advantages and/or disadvantages the

aid had when compared to manual methods, all subjects listed only

advantages. In summary, these included (1) standardizing procedures

with a rational basis, (2) aiding the decision processes, and (3) time

savings.

4.3.2 Data Entry. In terms of data entry procedures for situation

estimates, four of the subjects felt the procedure for entering

probability estimates was acceptable, and one thought a direct switch

entry of probability ranges would save time. The one subject who wanted

the probability entry procedure changed thought the procedure could have

been integrated with the probability control matrix function already

available at the TACCO station. This suggestion should be investigated

as it may offer the potential for higher overall system effectiveness.

4
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0.3.3 Training Impact. The general opinion of the subjects was that

the aid impacted minimally on training requirements. The time estimates

ranged from 15 minutes to 8 hours. Nevertheless, the reactions of the

subjects to the ease of understanding the attributes suggest that some

improvements could be made in this area. Responses from four of the

subjects suggests that choosing attributes that are already used by the

TACCOs and thus standardized, would improve the ease of understanding and

the effectiveness of the aid.

4.3.4 System Changes. When asked what improvements/changes they would

suggest for the aid, three of the subjects suggested essentially the same

thing, expressed in different ways. They would like to have a display

aid that would graphically show the buoy patterns. In addition, two of

the subjects suggested integration with existing software that produces

flight instructions for the pilot.
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5. CONCLUSION

I The installation and preliminary testing of the adaptive decision

aid in the P-3C aircraft simulators has demonstrated its application to

TACCO decision making tasks. Moreover, implementation feasibility within

the current computational and task constraints of the system has been

demonstrated. With respect to general application, the P-3C development

has shown that adaptive decision methodology fits the task domain of

general tactical decision making. It also has demonstrated that such a

model can effectively describe the ASW tactical environment and can
1 "capture" pattern selection strategies. The critical factor which has

been shown is the compatibility of ADA with existing tactical

environments. This operational decision aid has been incorporated into

the TACCO structure with no detectable interference to the TACCO or with

team operations. With respect to implementation feasibility, it has been

shown that feasible hardware/software interfaces can be developed and

that the computational functions of adaptive decision aids can be

interfaced efficiently into the existing software and hardware computer

systems. In particular, the information display and required data input

can be accomplished using already existing TACCO multi-purpose data

displays and control panels. With respect to actual tactical operations,

it has been demonstrated that given an operational computer, ADA is able

to provide satisfactory response time to operator requests for aiding.

This prototype system thus provides the first step of a transition from

basic research to operational systems technology. The current system can

already be used as a practical demonstration and evaluation tool of

decision aiding in airborne operations and could easily be expanded to

other types of aircraft. Also, implementation of the aid appears feasible

on any high-performance aircraft or shipboard operations which involve

large amounts of data and repetitive action selection under stress (such

as radar intercept operations, AAW, and so on). Since the aid is

operational in a simulated command and control test facility, one of the

I
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main questions that can now be studied is the procedure and criteria for

evaluating operational crew acceptance of decision aids and eval'jating

the training requirements necessary to introduce such systems into

tactical fleet operations.
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QUESTION

1. Do you feel that the computerized aid for sensor pattern selection

wxuld:

a. Help you do the job more effectively overall?

TACCO A: Yes TACCO D: I think I could only make this
judgment in a real aircraft

TACCO B: Yes against a real submarine.

TACCO C: Yes TACCO E: In certain situations.

b. Help make it easier for you?

TACCO A: Yes, but only in certain flight modes (localization)
Pass Trk

[ TACCO B: Yes TACCO E: When there is sufficient time
to react.

TACCO C: Yes

TACCO D: Probably

c. Help make pattern selection more effective?

TACCO A: Yes TACCO D: Yes

[ TACCO B: Yes TACCO E: Yes

TACCO C: Yes

d. Help make eelection decisions faster?

r TACCO A: No

TACCO B: This depends on experience level of TACCO. If
TACCO is very experienced, he may consider it a
nuisance and not use it. If TACCO is inexperienced
he will rely on it and it will make selection decisions
faster.

TACCO C: Yes

TACCO D: Probably. If not, it should allow for a better
decision in the same time (included in this is
blindly accepting the D-1 recommendation when
no time is available).

TACCO E: Not necessarily. I would need to evaluate the entire
program in an aircraft under actual situations to
formulate a better feel for its capabilities.



QUESTION

2. Is t:-? .....dur e for entering probability estimates acceptabZe in ter.s
of ti---' _r i effcrt?

TACCO A: Yes, however probability estimates are just that:
estimates from TACCO. It seems that the entire
process is based on this one input.

TACCO B: Possibly use of decision switches would save TACCO
some time.

Exampl e

Median

15," 10% - 25% Dl
40% 30% - 50% D2 use median in
70% 60% - 75% D3 each group for your
90% 80% - 100% D4 calculations

TACCO is never 100% sure. This would save TACCO
several key depressions.

TACCO C: Yes

TACCO D: Yes

TACCO E: Not really. I think that the procedure could possibly he
accomplished through some of the functions already available
such as probability contour matrix readout button.

QUESTION

3. How easy is it to unmerstand the attributes that ar to b? used in
compar.-in recornnendat ions?

TACCO A: Very

TACCO B: Could be simplified for easier understanding

TACCO C: Somewhat confusing at first; but had little time to
look the information over prior to the test. Once
explained, they are easily understood.

TACCO D: I need more help with this.

",- 1: Not very difficult when related to our terminoloqv.



QUESTION

Z. E-"! r:ch training wmuZd be necessary in order to use this aid during an
act'xi miission?

TACCO A: Very little, 15 minutes of personal instruction

TACCO B: Minimal

TACCO C: Very little. A one-hour lecture would accomplish it.

TACCO D: 1/2 day lecture to explain the aid and define all attributes
followed by two 2-hour trainer (WST) periods to put it into
practice. I am assuming that one is starting with a
qualified TACCO.

TACCO E: Hard to say -- at least a couple trainer periods and stress
the use of it throughout his training.

QUESTION

5. Is the procedure for accepting and rejecting recornrendations acceptable
in terms of time and effort?

TACCO A: Yes

TACCO B: Not familiar enough

TACCO C: Yes

TACCO D: Yes

TACCO E: Seems adequate. I believe the total number of
recommendations could be limited to max. 3 or 4.

QUESTION

e. Can you. suggest more useful ways to organize the display of reconendation3?

TACCO A: No, already in standard format of information currently
displayed.

TACCO B: Notfamiliar enough

TACCO C: No

TACCO D: No

TACCO E: Display is alright.



QUESTION

7. What advantages/disadvantages do 'ou see for this aii! c :i'," .
manual methods?

TACCO A: Aids TACCO in positioning patterns and helps in
sonobuoy management.

TACCO B: Would standardize procedures (see note Question 1 d)

TACCO C: Helps a great deal in the decision process at the T/C
Station.

TACCO D: 1) Time savings; 2) Having the ability to select a
pattern based on reasonable accurate attribute values;
3) If time becomes super-critical, just select the D-1
recommendation and go. This could bail the TACCO out
of a time crunch.

TACCO E: The computer can be programmed to stress certain attributes,
coming up with the most logical patterns. Could be very
useful under certain limiting operations.

QUESTION

8. What improvements/changes would you suggest for the aid?

TACCO A: Show buoy positions for selected patterns.

TACCO B: Not familiar enough.

TACCO C: None. I liked it.

TACCO D: When a pattern selection is made from those options offered by
the aid, the expendable fly-to-points should be displayed at
the recommended positions. Once the TACCO sees this, he could
respond to the one D-1 ACCEPT D-2 REJECT D-3 MODIFY and be on
his way to drop the sonobuoys. Additionally, buoy selection
(type, life, depth) must be part of the sequence.

TACCO E: Limit the number of patterns and the amount of steps to come
up with a pattern. Also program the computer to go into
building the pattern after the TACCO has made his selection.

QUESTION

9. Would you like to see such an aid, with necessary ip rolvmcnts, iusta7 !cJ
on the P-3 aircraft?

TACCO A: Yes, if I don't lose any computer space (function already
available)

TACCO B: Yes, if core would allow.

TACCO C: Yes, very much.

TACCO D: Yes.

TACCO E: Would need to evaluate it more - under controlled
situations in the trainer.
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