TECHNICAL REPORT ARLCD-TR-77010

A TECHNIQUE FOR ASSESSING THE DURABILITY
OF STRUCTURAL ADHESIVES

RAYMOND F. WEGMAN
MARIE C. ROSS
ELIZABETH A. GARNIS
STANLEY A. SLOTKA

MAY 1978

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.
Report Documentation Page

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A TECHNIQUE FOR ASSESSING THE DURABILITY OF STRUCTURAL ADHESIVES</td>
</tr>
<tr>
<td>Authors</td>
<td>Raymond F. Wegman, Marie C. Ross, Elizabeth A. Garnis, Stanley A. Slota</td>
</tr>
<tr>
<td>Abstract</td>
<td>A new method for inexpensively evaluating the durability of a large number of adhesives was developed and evaluated. This test method enables an investigator to simultaneously evaluate many adhesive-adherend variations and to estimate the durability of the variations under conditions of load, temperature, and humidity. The method will save time and money in the screening process used.</td>
</tr>
</tbody>
</table>
20. ABSTRACT (Continued)

to select the best adhesives and adherend surface treatments for a particular application. The method involves determining the residual strength after the bonded joints are immersed in 60°C water for prescribed periods of time.

Data are presented for twelve structural adhesives which are 121°C (250°F) curing systems. The adherends used were 2024T3 aluminum, either acid-dichromate (FPL) etched or anodized, 6A1-4V titanium and commercially pure (CP) titanium, both phosphate-fluoride etched.
ACKNOWLEDGMENT

The authors wish to acknowledge the assistance of Dr. David W. Levi for his invaluable assistance in preparing this report for publication.
TABLE OF CONTENTS

Introduction ... 1
Discussion .. 1
Experimental Procedures 2
 Preparation of Adherends 2
 Methods of Testing 3
 Mathematical Calculation of the Best Fit of
 Data for Durability Curves 3
 Conversion to SI Units 4
Conclusion and Recommendation 5
References .. 5
Distribution List ... 37
Tables .. 10
 1 Adhesives ... 10
 2 Comments on data plots 11
Figures .. 13
 1 Comparison of 60°C water-soak residual-strength
 curves to stressed-durability curves for FPL
 etched 2024T3 aluminum alloy joints bonded with
 adhesive A ... 13
 2 Comparison of 60°C water-soak residual-strength
 curves to stressed-durability curves for anodized
 2024T3 aluminum alloy joints bonded with
 adhesive A ... 14
 3 Comparison of 60°C water-soak residual-strength
 curves to stressed-durability curves for etched
 CP titanium alloy joints bonded with adhesive A 15
4 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched 6, 4 titanium alloy joints bonded with adhesive A

5 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive B

6 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched 6, 4 titanium alloy joints bonded with adhesive C

7 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive C

8 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive C

9 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive D

10 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive D

11 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive D

12 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive G

13 Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive I
<table>
<thead>
<tr>
<th></th>
<th>Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive I</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive J</td>
</tr>
<tr>
<td>16</td>
<td>Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive J</td>
</tr>
<tr>
<td>17</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive E</td>
</tr>
<tr>
<td>18</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
<tr>
<td>19</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
<tr>
<td>20</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
<tr>
<td>21</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
<tr>
<td>22</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
<tr>
<td>23</td>
<td>Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F</td>
</tr>
</tbody>
</table>
Effect of -20°C storage of the adhesive on the durability of bonds tested by using the 1000 hour, 60°C water-soak residual-strength values
INTRODUCTION

The durability of adhesive-bonded joints has been evaluated a number of times (refs. 1-30). One method used (ref. 26) involves applying stress to the joint and subsequently exposing the stressed joint to a test environment. This is expensive and time consuming because it requires environmental test chambers.

A new test has been developed (ref. 31) in which a large number of specimens can be conditioned unstressed, simultaneously, and tested for residual strength. The results can be compared to rank the adhesive joints in order of durability. By combining this new test with the data for a single stress level test, a prediction curve for the behavior of the joints under the ASTM D-2919-71 test can be prepared (ref. 31-34).

DISCUSSION

The twelve adhesive systems used in this investigation are listed in table 1. All are 121°C (250°F) curing systems. The adherends and their surface preparations are as follows:

1. 2024-T3 aluminum alloy, acid-dichromate (FPL) etched or anodized.
2. Commercially pure (CP) titanium alloy, phosphate-fluoride etched.
3. 6 A1-4V titanium alloy, phosphate-fluoride etched.

References 32 and 33 show that the hot-water soak test gives a pattern of results similar to those obtained from the stressed durability tests for 121°C (250°F) adhesives. Plotting the time-to-failure data obtained at one stress level at 60°C and 95% relative humidity (RH) and the hot-water soak/residual strength data on the same graph, and drawing a line parallel to the hot-water soak line, yields a prediction curve for the stressed durability test (fig. 21). The prediction curve origin is taken at the average of the time-to-failure at the stress level chosen.
Figures 1 through 23 summarize graphically all the data obtained in this program. Most of the graphs contain hot-water soak and stressed durability curves along with a prediction curve. Figures 21 through 23 contain only the hot-water soak curve and a prediction curve based on one set of time-to-failure data. The slope of the actual curve may vary from the slope of the predicted curve; most of the differences are considered within experimental error due to the scatter expected in adhesive mechanical data. Reference 35 shows that a reasonable estimate of lifetime can be obtained from hot-water aging data for some of the adhesive systems which were studied in this investigation.

Some comments on the individual plots are given in table 2.

For each set of data, the stressed-durability test is generally quicker than the hot-water soak test. If a large number of adhesive-adherend combinations are to be tested, however, the hot-water soak test will be faster and will cost less. Water-soak specimens can be conditioned without using stress fixtures, large environmental chambers, or extensive instrumentation. Only the temperature-controlled water bath and standard tensile testing equipment are required.

In reference 34, the hot-water soak/residual-strength test was used to monitor the storage lives of D, I, K, and L adhesives. The adhesives were stored at −20°C (−4°F) immediately after their manufacture and removed monthly for specimen preparation. Figure 24 is the graphic presentation of the results for the systems. The 1000 hour hot-water soak/residual-strength curve shows a substantial decrease for adhesive sample I at 9 months, indicating that the maximum useful storage life of the adhesive at −20°C is 8 months. For adhesives K and L, the storage life at −20°C was at least 13 months. Adhesive D slowly decreased in durability after 7 months storage.

EXPERIMENTAL PROCEDURES

Preparation of Adherends

The 2024-T3 aluminum alloy was etched with acid-dichromate (FPL) etch as described in reference 32. The anodized 2024-T3 aluminum was prepared as described in reference 32. The CP and 6 Al-4V titanium were prepared as described in reference 21.
Methods of Testing

Lap-Shear Tensile Strength

A Baldwin Universal Test Machine was used for load application. The load rate was 16.5 MPa (2400 psi)/minute.

Hot-Water Soak/Residual-Strength

Adhesive-bonded, lap-shear specimens were immersed for a prescribed time in a thermostatically controlled tank at 60°C (140°F). The specimens were removed and placed in a 60°C (140°F) container of water. The water container, with the specimens inside, was placed in the test chamber of a Baldwin Tensile Test Machine at 60°C (140°F). The individual specimen to be tested was removed from the water container and placed in the test grips. A thermocouple was attached with adhesive tape. When the digital thermometer attached to the thermocouple registered 60°C, the specimen was tested to failure to determine its residual strength after the hot-water immersion.

Stressed Durability

The stressed-durability testing was done in accordance with the basic method described in reference 26 except that the fixtures were equipped with a timing device to record the elapsed time the specimens were under test before failure. This timing device is described in reference 18.

Mathematical Calculation of the Best Fit of Data for Durability Curves

The data was processed with a Hewlett Packard 9100A calculator using the Hewlett Packard program 09101-70803. This program calculates the equation of the straight line of best fit of a set of data points. The best fit is determined by minimizing the sum of the squares of the deviations of the data points from the line.

The program calculates m and b for the equation

\[Y = mX + b. \] (1)

The program also calculates a correlation coefficient r, an indication of goodness of fit. Note \(-1 \leq r \leq 1\) where the sign corresponds to the slope m. If \(r = 0\) there is no correlation, and if \(r = \pm 1\) there is perfect correlation or a perfect fit.
The defining equations taken from reference 36 are

\[m = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \]

(2)

\[b = \bar{Y} - m\bar{X} \]

(3)

where

\[\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \]

(4)

and

\[\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \]

(5)

\[r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} \]

(6)

The program was adapted to change the x axis data to log x for convenient use with semilog graph paper.

Conversion to SI Units

Conventional stress units of pounds per square inch (psi) were converted to SI units by the following:

\[\text{psi} \times \frac{6.8948}{1000} = \text{MPa} \]

This was in accordance with ASTM E 380-74, table 4.
CONCLUSION AND RECOMMENDATION

The hot-water soak/residual-strength test described in this report can inexpensively predict the stressed durability of many 121°C curing/adhesive-adherend combinations. This method needs only one set of stressed data for each combination.

Further evaluation should be made for other adhesive systems, especially those cured at temperatures above 121°C.

REFERENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>B</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>C</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>D</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>E</td>
<td>Unsupported, modified epoxy film</td>
</tr>
<tr>
<td>F</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>G</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>H</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>I</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>J</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>K</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>L</td>
<td>Supported, modified epoxy film</td>
</tr>
<tr>
<td>Figure Number</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>The prediction curve is almost identical to the stressed durability curve, with a slightly different slope.</td>
</tr>
<tr>
<td>2</td>
<td>The slope of the prediction curve is slightly different than the slope of the stressed durability curve.</td>
</tr>
<tr>
<td>3</td>
<td>The predicted time-to-failure is slightly lower than the actual time-to-failure.</td>
</tr>
<tr>
<td>4</td>
<td>The curves are almost identical.</td>
</tr>
<tr>
<td>5</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>6</td>
<td>The prediction curve indicates longer time-to-failure at high loads and shorter time-to-failure at low loads than the stressed durability curve.</td>
</tr>
<tr>
<td>7</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>8</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>9</td>
<td>The prediction curve indicates shorter time-to-failure at high loads and longer time-to-failure at low loads than the stressed durability curve.</td>
</tr>
<tr>
<td>10</td>
<td>Same as 6.</td>
</tr>
<tr>
<td>11</td>
<td>Same as 2.</td>
</tr>
<tr>
<td>12</td>
<td>The prediction and stressed durability curves are identical.</td>
</tr>
<tr>
<td>13</td>
<td>Same as 3.</td>
</tr>
<tr>
<td>14</td>
<td>Same as 4.</td>
</tr>
<tr>
<td>15</td>
<td>Same as 2.</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Same as 4.</td>
</tr>
<tr>
<td>17</td>
<td>Same as 2.</td>
</tr>
<tr>
<td>18</td>
<td>Same as 2.</td>
</tr>
<tr>
<td>19</td>
<td>Same as 9.</td>
</tr>
<tr>
<td>20</td>
<td>Same as 9.</td>
</tr>
<tr>
<td>21, 22, 23</td>
<td>Stressed durability curve not determined; only a prediction curve based on one set of time-to-failure data is shown.</td>
</tr>
</tbody>
</table>
Figure 1. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive A.
Figure 2. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive A.
Figure 3. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive A.
Figure 4. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched 6,4 titanium alloy joints bonded with adhesive A.
Figure 5. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive B.
Figure 6. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched 6,4 titanium alloy joints bonded with adhesive C.
Figure 7. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive C.
Figure 8. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive C.
Figure 9. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive D
Figure 10. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive D.
Figure 11. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive D.
Figure 12. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive G
Figure 13. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive I
Figure 14. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive I.
Figure 15. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive I.
Figure 16. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive J.
Figure 17. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for etched CP titanium alloy joints bonded with adhesive K.
Figure 18. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive K.
Figure 19. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive K.
Figure 20. Comparison of 60°C water-soak residual-strength curves to stressed-durability curves for anodized 2024T3 aluminum alloy joints bonded with adhesive L.
Figure 21. Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive E.
Figure 22. Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive F
Figure 23. Comparison of 60°C water-soak residual-strength curves to predicted stressed-durability curves for FPL etched 2024T3 aluminum alloy joints bonded with adhesive H
Figure 24. Effect of -20°C storage of the adhesive on the durability of bonds tested by using the 1000 hour, 60°C water-soak residual-strength values.
DISTRIBUTION LIST

Commander
US Army Armament Research & Development Command
ATTN: DRDAR-TSS (5)
 DRDAR-LCA-OA (15)
 DRDAR-LCN (5)
 DRDAR-LCU (5)
 DRDAR-QA (2)
 DRDAR-TSF (2)
 DRDAR-QAA
 DRDAR-QAN
Dover, NJ 07801

Commander
US Army Materiel Development & Readiness Command
ATTN: DRCPP-PI
 DRC-QA
5001 Eisenhower Avenue
Alexandria, VA 22304

Commander
US Army Missile Research & Development Command
ATTN: DRSMI-RLM, Mr. E. A. Verchot
 Chief, Document Section
Redstone Arsenal, AL 35809

Commander
US Army Armament Materiel Readiness Command
ATTN: DRSAR-MP-PC
 DRSAR-RDP
 DRSAR-RDM
 DRSAR-RDT, Dr. Daryl Penrod
 DRSAR-RDT
 DRSAR-ASF, Mr. H. Wohlferth
 DRSAR-LEP-L
Rock Island, IL 61299
Commander
US Army Electronics Command
ATTN: DRSEL-TL-ME, Mr. Dan Lichenstein
 DRSEL-TL-ME, Mr. A. J. Raffalovich
 DRSEL-TL-ME, Mr. C. Platau
 DRSEL-PP-EM2, Sarah Rosen
Fort Monmouth, NJ 07703

Director
US Army Tank-Automotive Research
 and Development Command
ATTN: DRSTRA-KMD
Warren, MI 48090

Commander
US Army Materials & Mechanics Research Center
ATTN: DRXMR-FR, Dr. G. Thomas
 DRXMR-PL
 Technical Information Section
Watertown, MA 02172

Director
US Army Production Equipment Agency
Rock Island Arsenal
ATTN: DRXPE-MT, Mr. H. Holmes (2)
Rock Island Arsenal, IL 61299

Commander
USA Troop Support & Aviation Materiel
 Readiness Command
ATTN: DRSTS-MEU(2), Mr. E. Dawson
 DRSTS-ME(2), Mr. C. Sims
 DRSTS-MEN(2), Mr. L. D. Brown
 DRSTS-MEL(2), Mr. Bell
 DRSTS-MET(2), Mr. Ceasar
P.O. Box 209, Main Office
St. Louis, MO 63166

Commander
Corpus Christi Army Depot
ATTN: DRSTS-MES (STOP 55) (2)
 DRSTS-MESA, Mr. T. Tullos (2)
 DRSTS-MESP, Mr. Bulloch (1)
Corpus Christi, TX 78419
Director
US Army Ballistic Research Laboratory
USA ARRADCOM
Bldg 328
Aberdeen Proving Ground, MD 21005

Commander
US Army Materiel Development & Readiness Command
ATTN: DRCPM-UA, Mr. C. Musgrave
 DRCPM-LH, Mr. C. Cioffi
 DRCPM-HLS-T, Mr. R. E. Hahn
P.O. Box 209
St. Louis, MO 63166

Commander
Natick Research & Development Command
Natick, MA 01760

Commander
US Army Engineer Research & Development Labs
Fort Belvoir, VA 22060

Department of the Navy
Naval Air Systems Command
ATTN: Mr. John J. Gurtowski (AIR 52032C)
Washington, DC 20360

Naval Ordnance Station (NOSL)
ATTN: Mr. W. J. Ryan, Code 5041
Southside Drive
Louisville, KY 40214

Naval Avionics Facility
ATTN: Mr. B. D. Tague, Code D/802
 Mr. Paul H. Guhl, D/033.3
21st and Arlington
Indianapolis, IN 46218

Commander
US Naval Weapons Station
ATTN: Research and Development Division
Yorktown, VA 23491
Commander
Aeronautical Systems Division
ATTN: Mr. W. Scardino, AFML/MXE
Mr. T. J. Aponyi
Composite and Fibrous Materials Branch
Nonmetallic Materials Division
Wright-Patterson Air Force Base, OH 45433

Dr. Robert S. Shane, Staff Scientist
National Materials Advisory Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, DC 20418

US Army Air Mobility R&D Laboratory, Headquarters
Advanced Systems Research Office
ATTN: Mr. F. Immen, MS 207.5
Ames Research Center
Moffet Field, CA 94035

Naval Ship Engineering Center
ATTN: Mr. W. R. Graner, SEC 6101E
Prince George's Center
Hyattsville, MD 20782

Mare Island Naval Shipyard
Rubber Engineering Section
ATTN: Mr. Ross E. Morris, Code 134.04
Vallejo, CA 94592

Hanscom Air Force Base
ATTN: Mr. R. Karlson, ESD/DE, Stop 7
HQ, ESD
Bedford, MA 01731

Naval Air Development Center
Materials Laboratory
ATTN: Mr. Coleman Nadler, Code 30221,
Div, AVTD
Warminster, PA 18974
Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Commander
US Army Armament Research & Development Command
Plastics Technical Evaluation Center
ATTN: Mr. H. Pebly
 Mr. A. Landrock
Dover, NJ 07801

Technical Library
ATTN: DRDAR-CLJ-L
Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Director
US Army TRADOC Systems Analysis Activity
ATTN: ATAA-SL (Technical Library)
White Sands Missile Range, NM 88002

Weapon System Concept Team/CSL
ATTN: DRDAR-ACW
Aberdeen Proving Ground, MD 21010