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FOREWORD

The DARPA Smart Sensor Program, under the leadership of LTC Carlstrom,
brought together a collection of teams each of which combined Educational
and Industrial Laboratories. This report documents the contributions of
the team consisting of the University of Maryland and Westinghouse Defense
and Electronics System Center and the US Army Night Vision and Electro-
Optics Laboratories.

The teamwork of Government, Educational Institution, and Industrial
Laboratory was, in this case, highly productive. The initial concept
design was influenced by an understanding of the limitations of hardware
implementation and the hardware design considerations validly reflected
the needs of system algorithm design. Both reflect well the constraints of
militarily relevant missions.

The spirit of cooperation and productivity were enhanced by monthly
program reviews attended by all three principal research personnel which
allowed many iterations of the design process in a short period of time.
The result was a great decrease in the delay usually encountered on
transferring a new idea from basic research to implementation in military
hardware.
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1. Introduction

This is the Final Report on Contract DAAG53-76-C-0138,
"Algorithms and Hardware Tcchnology for Image Recognition",
covering research conducted during the period 1 May 1976
through 31 January 1978. The Contract was funded under DARPA
Order 3206, and was monitored by the U. S. Army Night Vision
Laboratory, Fort Belvoir, VA. The project monitors were
Mr. John S. Dehne and Dr. George R. Jones of NVL. The
principal investigators were Profs. David L. Milgram and
Azriel Rosenfeld of the University of Maryland. A subcontract,
entitled "Recognition Technology for a Smart Sensor", was
awarded to the Westinghouse Defense and Electronics Systems
Center; it was directed by Dr. Glenn E. Tisdale, program
manager, and Mr. Thomas J. Willett. Monthly meeting were held
in which key NVL, Maryland, and Westinghouse personnel parti-
cipated.

Under the contract, algorithms for detecting and classify-
ing tactical targets on forward-looking infrared (FLIR)
imagery were developed. The subcontract investigated the im-
plementability of these algorithms in charge-coupled device
(CCD) technology, and also successfully implemented one basic
function, sorting. A list of the principal accomplishments
under the contract is given in Section 2. Section 3 reviews
the Maryland work on algorithms, including image modelling,
pre- and post-processing, segmentation, feature extraction,

and classification. Section 4 reviews the Westinghouse efforts.




A list of reports and publications generated under the con-

tract is given in Section 5.




Summary of Accomplishments

el

Design and implementation of a comprehensive algorithm
for object recognition in FLIR imagery with a detec-
tion rate above 95% and a false alarm rate between 1

and 2 false alarms per frame.

Fabrication and testing of a CCD sorter chip capable
of operating at 3 megapixels/sec. The sorter function
is a crucial step in several image operations includ-
ing histogramming, median filtering, non-maximum

suppression and connected component coloring.

Investigation of the cost, performance and constraint
tradeoff in implementing a target cueing algorithm in
CCD (charge-coupled device) technology. The result-
ing design is within specifications for usage in smart

sensors.

Development of the "Superslice" algorithm for reliable
region extraction based on the cooccurrence of border
points of regions with locally maximum edge detector
responses. This is an important example of the use

of convergent evidence to strengthen assertions.

Design and analysis of statistical models for threshold
selection, image operation response prediction, and

optimal edge detection.

A new method for adaptive quantization of an image
which reduces the number of gray levels present using

only the histogram.

Comparison of image smoothing methods, including

median filtering.

A study of shrink/expand noise cleaning schemes, in-
cluding a local min/max method which cleans the image

prior to thresholding.

Evaluation of a variety of edge detectors and the de-




10.

1l

12.

13.

14.

15.

16.

d7e

18.

19

20.

velopment of a reliable method for edge thinning.

Construction of a "fuzzy" thinning algorithm which
allows thinning to occur in gray level images prior
to thresholding.

Development of methods for threshold selection based
on gray level and gradient value.

Generalization of thresholding to the multiple object
class environment with the ability to predict appro-
priate (gray level, gradient value) segmentation re-
gions for the object classes present.

A variable thresholding scheme which produces a binary

(or ternary) representation of an image.

An extension of threshold selection for sequences of

images.

Simplification of the logic of the standard connected
component coloring algorithm and its extension to
produce a chain encoding of the component boundary in

a single pass.

Implementation of Hyperslice: a recursive segmenta-
tion which improves the Ohlander region extraction
method.

An algorithm for region tracking in image sequences

using dynamic programming.
Comparison of features for target recognition.

Construction of a hierarchical classifier for target

detection and recognition.

Development of Viewmaster - a software aid to assist

in the construction of image processing programs.




The Westinghouse effort complemented the Maryland effort in
several ways. Initially, assistance was provided to Maryland in
describing the requirements for automatic cueing, and in developing
a data base of FLIR imagery. A brief description of the function
of Westinghouse cueing algorithms was offered for background
information only. .

During the conception and test of the Maryland cueing algo-
rithms, Westinghouse carried out an investigation of techniques
for their implementation, with particular emphasis on charge
transfer devices. When processing functions were specified, a
detailed analysis was then carried out so as to determine the feasi-
bility of implementing them in CCD's. This process continued through-
out the first year of the program.

During the final nine months, a specific circuit was chosen for
the fabrication of a demonstration unit. A sorter function was
selected because of its occurrence in several cueing operations.
Chips were fabricated and tested at the Westinghouse Advanced
Technology Laboratories, and a demonstration unit was assembled
and shown at the Image Understanding Workshop in October, 1977.

The unit rearranges a random series of pulses in ascending order by
magnitude.

An estimate was also made of the area in monolithic silicon
required to implement the cuer function in CCD's. The algorithm

presently proposed by Maryland would require an area of 11-1/4

by 7-1/2 inches. If 3-inch bv 3-inch modules were emploved with

1/2-inch centers, an equivalent volume would be 3 inches by 3




inches by 6 inches. This volume has positive implications for

missiles, i.e., Smart Missiles and other airborne platforms.




3. Algorithms

3.1 Introduction

This section describes the contribution made by the
University of Maryland to the state of the art in FLIR target
recognition and computer vision. The subsections describe
the main areas of investigation and cover significant
advances in image modelling and algorithm development. Not
every idea investigated on the project was equally successful;
this report reflects the main lines of effort, while other
investigations are documented in the quarterly and semi-

annual reports [1-4].
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3.2 Image models

The work on image modeling conducted under this

project was concentrated in three main areas:

1) Modeling of the joint (gray level, edge value)
statistics of FLIR scenes, as a basis for de-
fining threshold selection techniques.

2) Modeling of thresholding and edge detection
responses to background regions, as a basis for
predicting false alarm rates.

3) Modeling edges in images as a basis for defining
optimal edge detection operations and for evalu-

ating edge detector output.

This work is briefly summarized in the following subsections.
References are given to earlier project reports in which

detailed treatments can be found.




3.2.1 Hodel-based threshold selection

An approach to modeling FLIR imagery has been developed,
based on the simplifying assumption that targets appear as
homogeneous hot regions within a homogeneous cooler surround.
This model describes the joint probability density of gray
level and edge strength in such images, for various edge-
detecting operations [1,2]. 1In brief, the model predicts
that for low'edge values (corresponding to points in the
interiors of objects and background), there should be two
relatively well separated probability peaks, of different
sizes, representing the gray levels of object and background
interiors, respectively. For higher edge values, corres-
ponding to points on object/background borders, these peaks
should merge together and become a single peak representing
the border range of gray levels.

The model just described can be used as a guide to
segmenting FLIR images by thresholding. At low edge values,
it should be easy to pick a threshold at a gray level in
the valley between the two probability peaks, since these
are relatively well separated. At high edge values, the
peak gray level value itself, or perhaps the mean gray level,
should be a good threshold, since this represents the "center"
of the edges. For intermediate edge values, one can com-
promise between these two thresholds in various ways. A
comparative study of threshold selection schemes based on

this approach has been conducted [5]. This work will be

discussed further in Section 3.5.




3.2.2 Operator response prediction

a) Predicting results of thresholding

Thresholding images is a common process and much
work has been directed towards selecting the correct value
at which to threshold and estimating the expected error.
Normally, one thresholds only images which contain some
signal. Thresholding pure noise is to be avoided when possi-
ble. Since there may be occasions when thresholding noise
is unavoidable (e.g., a poor threshold was chosen), it is
important to predict the expected results. The expected
number of above-threshold regions that result when noise is
thresholded is useful in planning for data structure storage
allocation and in predicting false alarm rates. When a bad
threshold "breaks up" an object, knowledge of the expected
sizes and shapes of noise regions can be used to help dis-
criminate object fragments from noise. No methods currently
exist for predicting the number of connected components of
thresholded spatially correlated signal (or noise). However,
it has been found possible [6] to estimate the moments of
regions, the density of border points, and lower bounds on
the number of connected components in thresholded noise
images. The input grayscale image is modeled as a two-
dimensional random process (stationary random field) char-
acterized by its mean and power spectrum. Tests with both
synthetic data (smoothed noise) and actual data were con-

ducted to compare the predicted and measured responses.




The predictions are worst for thresholds at or near the
mode of the noise distribution, but in general, the compari-
son showed reasonable agreement between the predicted and

measured values.

b) Predicting edge detector response

Statistical response prediction for edge operators
can be used to determine the nature of further processing
of the response. If edge detector output is to be thinned
or thresholded, the false alarm and false dismissal rates
depend on the statistics of the operator responses. A study
has been conducted [7] which discusses the statistical
properties of the outputs of some edge detectors operating
on a general class of images.

The image model considered is the same as in (a)
just above; this model is appropriate for predicting the
response of edge detectors to background noise. The edge
detectors analyzed are the Laplacian and its absolute value,
and the absolute difference of averages over adjacent 2x2 and
4x4 neighborhoods. The response features which were measured
are the mean edge response at each point, the variance, the
auto-covariance, and the cross-covariance of gray level
and edge value at a number of displacements. In addition,
the density of the local maxima of edge values was computed.
Tests using a set of synthetic background images showed good

conformity to the predicted features.
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3.2.3 Edge modeling

a) Optimal edge detection

Many optimality criteria have been proposed for
edge detection. Among the most well known is that devised
by Hueckel [8,9]. It involves fitting an ideal parameterized
step edge to the image data so as to minimize the mean
squared error. A new optimal detector has been designed
[10] that simplifies several assumptions associated with
the Hueckel detector and thereby solves an easier optimiza-
tion problem. Specifically, by assuming that the local mean
is zero and the local variance is unity, two Hueckel para-
meters can be eliminated. Further simplifications follow if
the operator can be applied at each point with the edge
assumed to pass through the center (or not to exist at all).
The resulting formulation can be tuned to favor edges with
known a priori probabilities. The computational effort
involved in applying the operator may be reduced by solving
the associated cubic equation using a simple iterative approxi-
mation, such as Newton's formula. Testing on actual data
has verified that this approach provides greater sensitivity
to edge orientation than a previously proposed [1l] simpli-

fication of the Hueckel operator.

b) Evaluation of edge operators

The Hueckel operator defined in [9] has been
found to incorporate a theoretical flaw leading to eccentric

behavior in textured images. An operator which is conceptually




similar but apparently more dependable has been defined [12].
Comparative tests nave been made of this and several other
operators (including Hueckel's [9], its simplification [11],
and the new optimal operator defined in [10}, as well as the
very simple Sobel operator), to evaluate their adequacy in
obtaining the magnitude, direction, and reliability of the
edge response at some set of image points, for both ideal
and distorted images. The performances of these operators
were, in general, closely related to their sizes (and hence,
to their computational costs). All of the local operators
were able to detect the directions of distorted edges on
small (6x6) domains to an accuracy of about 10°, ana their
magnitudes to within about 10%. On larger (9x9) domains,
angular resolution was improved, but ramps became significant
as a source of spurious responses. The Sobel operator was
judged to perform better than the operator of [11l]. The
operator of [10] was better able to reject ramps on larger
domains, but it is more expensive to apply than the other
local operators. The regional operators of (9] and [12]
performed similarly; the latter was less affected by the

presence of imperfections.




3 w3 Preprocessing

Preprocessing refers to those transformations applied
to the raw image data for the purpose of correcting, simplify-
ing and regularizing the imagery. The resulting images should
therefore be more amenable to further processing and more
alike in certain properties essential to subsequent algorithms.
Thus, for example, sampling and windowing reduce the size
of the image to be processed. Histogram transformation and
requantization convert all image quantization levels to a
range which facilitates feature extraction. Smoothing re-
inforces regional uniformity and decreases the effects of
certain kinds of noise.

Preprocessing steps are best justified by the problem
environment itself. A knowledge of the sensor characteristics
and geometry will suggest various kinds of radiometric and
geometric corrections. For example, with FLIR data, the
image is best understood as an array of thermal measurements.
If these measurements reflect the ground truth, then much
more subtle distinctions can be made; recognizing that a
particular temperature is beyond the normal range for a
vehicle can, perhaps, indicate that the vehicle is on fire.
Similarly, a range map converting pixels to actual size/area
measurements can allow a viewer or a program to gauge the
size of a particular region and thereby discern its identity

more reliably.




In the problem environment at hand it was not possible
to acquire substantial information concerning the sensor or
the imaging situation, due to classification problems. Thus
the "intelligent"” corrections of the previous paragraph were
impossible. However, several preprocessing steps do make

sense. The following subsections describe them.
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3.3.1 Sampling

According to the sampling theorem, the spacing of the
data points should be half the size of the smallest feature
to be detected. Thus, to detect objects of one meter on a
side, pixels should correspond to one half meter on a side.
In practice, however, the presence of noise demands that
the data be redundant to increase the reliability of the
extraction process. A finer resolution can often provide
this redundancy. Naturally, the price must be paid in
additional processing time. This tradeoff is difficult to
model analytically especially since many different features
are extracted from an image and their relative importance 1is
difficult to .assess.

Two processes for region extraction are paramount
for our work -- thresholding for whole region extraction and
edge detection for region border verification. Of these two,
edge detection is more sensitive to noise. The degree of
sampling allowable for the image data set should therefore
not be so great that reliable edge extraction is compromised.
A 2-to-1 size reduction (eliminating every other row and
column) was found to be compatible with reliable edge detection.
In the unsampled images, the average edge ramp cross-section
was found to be about 5 pixels wide; thus a 2-to-1 reduction
gave about a 3-pixel edge ramp which was consistent with the

need to localize edges fairly accurately.
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An alternative approach attempted to reduce high
frequency noise by extracting windows based on 2x2 averaging
rather than sampling. Thus, instead of discarding every
other row and column, each pixel in the sampled image was
the average over a (disjoint) 2x2 neighborhood in the
original image. A smooth, less noisy image was produced and
row dropouts were partially eliminated. However, the images
seemed to have less contrast. Sampling followed by smoothing
appears to be better than smoothing followed by sampling.

A major emphasis in the project has been the detection
of small or faint targets. For this reason, the sampled
images were also windowed so as to capture the target regions
and to further reduce the computational load. Naturally, one
must avoid techniques which assume that each window contains
exactly one target in its central region. This dilemma
asserts itself in subtle ways. Statistical properties of
the window, e.g., histogram, central moments, etc. are good
predictors of object presence, threshold, etc. However,
they cannot be employed in practice unless window size is
correctly estimated and window border situations are handled.
Our approach does not depend on window size (or frame size)
and therefore windowing is an appropriate preprocessing step.
Note, however, that estimates of the false alarm rate cannot
be reliably derived solely from target windows. For this
reason, small noise windows (containing no targets) and

large windows (consisting mainly of background clutter) were

also processed.




3.3.2 Histogram transformations and adaptive guantization

Sensor output is related to actual phenomena according
to physical laws. If this correspondence is well under-
stood beforehand, it is possible to correct and transform
the data to improve subsequent processing. Thus if FLIR
data could be used to estimate reliably the temperature of
objects, then quite stringent tests could be made to enhance
recognition rates. Unfortunately, the analytic interpretation
of FLIR data at long range is complicated by many effects
such as sun-angle, wind, smoke, surface composition, etc.
Furthermore, the sensor hardware itself is subject to un-
predictable electronic noise, disturbances and failures.

Only some of these effects can be alleviated and then (due
in part to the classified nature of the sensor) only statisti-
cally.

Among the conventional gray level modifications con-
sidered useful for producing more manageable imagery are the
rather simple histogram mapping techniques. Figure 3.3.la
illustrates the gray level histogram of an unmodified image.
The gray level range is defined by eight bits-256 gray levels--
and can be seen to exhibit significant non-uniformities of
response. Moreover, from a processing point of view, 256
gray levels do not effectively reflect the true gray level
range and contrast. A simple 2-bit shift operation, converting
8-bit pixels to 6 bits, has the effect seen in Figure 3.3.1b

of smoothing the histogram while reducing the gray level
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256-1level histogram.
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range to 64 gray levels. This technique if continued for
further shifts would ultimately combine significant peaks
corresponding to object/background contrast. However, the
conversion from 8-bit to 6-bit was found to be justified, as
it alleviated non-uniform sensor response without destroying
target discriminability.

If one assumes that a scene consists of the
juxtaposition of objects of uniform temperature taken from a
small number of such temperatures, then it is possible to
convert the image into one with only a few different gray
levels present. An attempt at adaptive requantization is
described in [13]. Briefly, an iterative process
constructs a new histogram from the previous version by
identifying gray level peaks and having them gain strength
(ie., points) from neighboring non-peaks while the non-peak
areas are thereby depleted. The result is a mapping from
the original gray level domain to a new sparse set of gray
levels. The resulting requantized images (Figure 3.3.2)

seem not to have lost object/background discriminability.
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Figure 3.3.2. Result of four iterations of the
peak sharpening process using
neighborhood sizes of 2, 3, and
4 for (a-b), sizes 2, 4, and 5
for (c).
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3.3.3 Image smoothing

In the previous section, preprocessing steps were
described which contributed to the interpretation of a scene
as a mosaic of uniform sensor responses. The techniques
considered the gray level population only. Proximity was not
involved. 1In this section, we discuss attempts to smooth
the image spatially so that nearby points from the same
region will have more nearly identical gray levels. There
are a number of justifications for spatial image smoothing.
First, by making the image spatially more uniform, one
increases the probability that points belonging to the same
region will be treated identically. Thus, the point sets
extracted by thresholding will appéar better defined with
fewer pinholes and fewer isolated points. This is reasonable
since the chosen image resolution is intended to cover any
object with numbers of pixels. The second reason for smooth-
ing is to eliminate insignificant local changes of contrast.
Otherwise the output of edge detection operations based on
differencing would contain many tiny spurious edges which
tend to obscure the proper edge signals. Third, the statisti-
cal properties of a smoothed image are more representative
of the true situation. Thus, many decisions based on the
statistics of the smoothed image are more reliable.

Two methods of image smoothing were investigated.

In a first attempt, the mean value of a fixed neighborhood

about each point replaced the point's value. Figure 3.3.3a




shows the effect of replacing each point of a step edge by

its mean value (blurring). As is evident, blurring smears
edges. Figure 3.3.4a-d illustrates blurring for several target
windows, and also shows the histograms of these windows before
and after blurring. Note that blurring tends to blend peaks
in histograms, thus making thresholding more difficult. Also,
small faint objects tend to become less distinct.

A second approach to image smoothing has the property
of preserving edges. At each point of an image, the median
value of the gray levels over a kxk neighborhood is computed.
The value of k depends on the amount of local noise variation.
For the original images, a 5x5 neighborhood size was chosen.
Figure 3.3.3b illustrates the effects of median filtering or
a step edge. Note that the median does not increase the
ramp width. Thus edges do not smear. This is demonstrated
in the two-dimensional case in Figures 3.3.5-3.3.7 for a
tank image. Iledian filtering does, however, round off sharp
corners. This was not a serious problem in this data base.
Figure 3.3.4e-f illustrates a number of median filtered
windows and their histograms. The general algorithm for
median computation over k2 points is of order kz. However,
better results may be obtained when evaluating a running
median, by making use of the high autocorrelation of gray
level in most images. The cumulative histogram of the k2
data points is maintained in a vector of length d (e.g., d=64).

The k deletions and k insertions are interleaved in pairs.




a.

J

|

Mean filtering b. Median filtering

Figure 3.3.3. Effect of filtering on
step edges using a five
point neighborhood.




a. Originals.

c. 3x3 mean filtered
windows.

Image Reference: 3R 4T
34R 35R
21A 22A
14N 20N

Figure 3.3.4.

6T
41R
23A
26N

24T
52R
37A
38N

d. Histograms of (c).

Comparison of mean and median

filtering.




e. 3x3 median filtered
windows.

Figure 3.3.4 (continued)
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f. Histograms of (e).




Figare 3.3.5.

C.

Gray level images.

Original FLIR image of a tank.
Note the noise content and the
presence of a thin noise line at
the upper left.

Mean filtered image using a 5x5
square neighborhood at each

point. The tank appears blurred,
as does the border between the
road (dark) and the grass (light).
The thin noise line is smeared
into the background.

Median filtered image using a 5x5
square neighborhood. The tank
contours appear sharper, while
overall the image has been
smoothed.




Figure 3.3.6.

Results of Edge Detection

Each of the windows was subjected

to an edge detection operation which
detects the most significant edge

at each point over four orientations.
Note that edges surround the various
regions in the image but that the
edges in the median filtered image
(c) are sharper and have more con-
trast than those in the mean filtered

image (b).

a. Edge detection response for the
original image.

b. Same as above for the mean filtered
image.

c. Same as above for the median filtered

image.

w
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Figure 3.3.7.

Edge Cross Sections

A single line of the edge detection
image passing through the tank is
displayed with height corresponding
to edge value. Notice that the
median filtered response exhibits a

thinner, higher peak corresponding to
a sharper, more contrasting edge
than the mean filtered response.

a. A single line of edge response from
Figure 3.3.6a.

Same as above for Figure 3.3.€b.

c. Same as above for Figure 3.3.bcC.




Each (deletion, insertion) pair isolates a region of the
vector which must be modified. The smaller this region on
the average, the less work to be done. If the deletion and
insertion in a given pair affect the same bin, no change is
necessary. The length of the region of change in the cumula-
tive histogram is the expected gray level difference of
points at distance k. This corresponds to a variogram value,
v(k). After updating, the vector is binary-searched for the
median. Thus the number of vector operations is k-v(k),
followed by log d operations to binary-search the updated
vector. The sum k°*v(k) + log d should be qdite small for

relatively smooth images.
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3.4 Edge detection

The extraction of edge features has proved useful in
a number of project areas. Section 3.5 will describe thresh-
old selection methods which utilize edge information.
Edges are used also in the critical step of the Superslice
algorithm (Section 3.7). 1In this section, we discuss the
variety of edge operations investigated and a method for

thinning edge response so as to locate the apparent edge.
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3.4.1 Comparison of methods

Methods for edge detection abound in the literature
(for a survey, see [14]). Some of the simplest methods
involve convolutions of templates with an image. A number

of these were considered in the current work. These include:

Laplacian: |e - (a+b+c+d+f+g+h+i)/8|, where the

neighborhood of e is

abec
de £ t
ghinu
v w
Roberts Gradient: max{|a-e|, [b-d|}.
Three-by-three: max{ |a+b+c-g-h-i| , |a+d+g-c-f-i]}

2x2 Difference:
1/4*max{|d+e+g+h-f-t-i-u|, |b+c+e+f-h-i-v-w|}.
(In other words, the value corresponds to the
maximum of the differences between 2x2 averages
over adjacent pairs of horizontal and vertical

neighborhoods. This scheme extends to diagonals also.

4x4 Difference: This is the same as the 2x2 difference

except that averages are taken over 4x4 neighborhoods.

8x8 Difference: The same as the previous except that

averages are taken over 8x8 neighborhoods.

Experiments with these operators indicated that the
Laplacian (which is a second difference), the Roberts Gradient

and the 3x3 Gradient were too sensitive to minute changes in




gray level. The differences of averages operators produced
better output by virtue of the increased amount of smoothing
on each side of the edge. Knowledge that typical edge width
in the windows was three pixels suggested that the 4x4
operator could span the edge ramp (to give the maximum
gradient value) while remaining sensitive enough to detect

the edges of small faint regions.




to

3.4.2 Edge thinning

In the world of man-made objects, edges correspond

the juxtaposition of surfaces or shadows. In a well

focused image, edges should appear sharp and should extend

in

some direction for some length. (In the natural world,

the boundaries of regions are not necessarily as sharply

defined, e.g., for trees, fields, etc.) The output of the

operators described in the previous section, however, are

generally smeared at or near the true edge location. None-

theless, for certain types of image understanding it is

necessary to localize the edge so that it lies along the

object boundaries. Given a knowledge of the edge detector,

it
of

of

of
in

be

is possible to design a process which accepts the output
the operator and which produces a thinned representation
the edge at the location of maximum edge response.

It is not sufficient to consider simply those points
maximum response, since this would force adjacent points
the direction of the edge to compete. This problem can

alleviated by taking into account the computed local

direction of the edge and by placing into competition only

those points which are normal to the direction of the edge.

In

practice, a directional mask is associated with each

edge point oriented normal to the direction of the maximum

edge response at that point. The center point is then deleted

(assigned zero response) if any point within the mask has a

greater response. There are four masks:




X X X X X
X X X X X X X
xx0xx , 0 ; 0 q 0 .
X X X X X X X

X X X X X

one associated with each principal edge direction. The
process, called "non-maximum suppression," operates simul-
taneously on all edge values to produce a "thinned" edge map.

Figure 3.4.1 illustrates the process.
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Originals. Edge detector output.

Thinned edge map. Thinned edge map thresholded
to display only edge values
> 2.

Figure 3.4.1. Results of edge detection and non-maximum
suppression on 43 tank windows.
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Originals.

Thinned edge map.

Figure 3.4.1 (continued)
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Edge detector output.

Thinned edge map thresholded
to display only edge values
> 2.




Originals.

Thinned edge map.

Figure 3.4.1 (continued)

Edge detector output.

Thinned edge map thresholded
to display only edge values
> 2.




3.5 Threshold selection

The properties of a pixel in a single sensor image
are its position and its gray level. Our knowledge of the
imaging environment allows us to predict an object's gray
level more accurately than its position. In fact, the whole
point of cueing is to locate a target. Thus one has little
a priori information about target position; however, inasmuch
as gray level is related to thermal emission in FLIR data,
there are some fairly powerful heuristics available to aid
in target recognition. For example, we may choose to assume
that operating vehicles are warmer than the immediate back-
ground and that they radiate uniformly over their surfaces.
Naturally, such assumptions are not always possible. 1In
cold weather, metal loses heat faster than the ground; at
close range, fine thermal detail is visible and the uniformity
assumption fails. Nor are these assumptions meant to be
exclusive, e.g., we do not claim that every object region
warmer than its surround is a target. The power of these
heuristics is to suggest approaches which capture essential
problem domain knowledge.

In this project, the force of the heuristics of the
previous paragraph is to emphasize methods which isolate
distinct gray level regions from their surrounds. The
simplest of such methods is thresholding -- the assignment
of all points whose gray levels are greater than a pre-

determined level (the threshold) into a single class of
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potential object points. The filtering, aggregation and
ultimate classification of these points are the subjects
of subsequent sections. In this section, we discuss our
investigations of numerous methods for single and multiple
threshold selection.

There is a progression in these methods which corres-
ponds on the one hand to the need for increased sensitivity
in choosing the "right" threshold and, on the other hand, to
the deemphasis of the committment to that particular thresh-
old. However, we still retain the notion that for each
object region in the image there is a "best" threshold. 1In
the worst case, every possible threshold yields a target
region which is invisible (unextractable) at every other
threshold. One must therefore be prepared to threshold at
any gray level and within that thresholded image to discern
the target regions and to ignore the noise regions. These
last comments appear to call for the selection of every gray
level as a value at which to threshold. Indeed, given
sufficient parallel hardware and powerful target/noise
discrimination criteria, this brute force approach could lead
to a reliable and sensitive target cuer. A further dis-
cussion of this option is in Section 3.7 and some relevant
experiments are to be found in Section 3.9. The remainder
of this section describes techniques for finding appropriate
thresholds when hardware and throughput considerations allow

only a few thresholds to be utilized per frame.




3.5.1 Threshold selection based on edge values

In Section 3.2.1 a model was proposed for images
consisting of objects and background, each with characteristic
gray level distributions. If the gray level histogram of
the image is markedly bimodal, one may choose the threshold
at the valley between the two peaks (possibly shifted towards
the smaller peak when using a maximum likelihood estimate).
However, the smaller the object, the less likely the histogram
is to exhibit strong bimodality. The background distribution
engulfs the object's gray level range and tests for bi-
modality are inconclusive.

One approach [15] to solving this problem has been to
select from the original image a set of points that are as
likely to fall within the object as within the background.

If one examines the output of operators which respond to
edges, then high values should correspond to points falling
at or near object edges. The mathematical model has shown
the gray level distribution to be unimodal with a peak at
the mean. Thus, these points are as likely to lie on the
object as on the background and their mean value should
correspond to the desired threshold.

A brief description of the threshold selection method
is as follows: Let e(i,j) be the edge value computed at (i,]).,
and let g(i,]j) be its gray value. Then the chosen threshold
is g = AvG{g(i,j)|e(i,j) = t}, where t is lowest edge value

considered significant. Computationally, two arrays are
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needed. One array, TOTALO,...,TOTAL accumulates the gray

63’
level g for each edge value e between 0 and 63; i.e.,

TOTALe = TOTALe + g. The second array NO""’N63' tallies
the number of points at each edge value. The desired average

gray level g = ( ) TOTAL,)/( ) N.).
izt O gae T

Two parameters were treated in the experimental work:
the choice of edge operator and the edge significance level
t. Previous work with edge operators indicated that the
4x4 difference of averages operator was superior to the
others as an edge detector in FLIR scenes. Experiments in
threshold selection showed that thresholds chosen based on
this operator were better overall [1].

The proper selection of a value for t is important
because this parameter controls the size and quality of the
sample points of high edge value used to compute the gray
level threshold. Setting t too high decreases the statisti-
cal reliability of the sample; while a small t may admit too
many noise values. The choice of t depends on the expected
amount of object edge. Obviously, many assumptions are built
into this notion, e.g., that the window contains only a
single object of known size, shape, contrast, resolution, etc.
In a tactical situation, one could make estimates of these
parameters based on situation data. Based on estimates of
target size, t was chosen as the edge value corresponding to

the 95thpercentile. This estimate was shown by experiment




to provide good thresholds for the windowed data set. This
is illustrated in Figure 3.5.1.

The sensitivity of the chosen gray level threshold
to different choices of t was tested and a graph of the
threshold was plotted as a function of the gradient cutoff
t; see Figure 3.5.2. There is a tendency for this graph to
drift toward the mean gray value as t is decreased. The
chosen threshold is stable for large objects. For small
objects, the choice is quite sensitive to the bin size.

The approach above and several variations [ 5 ] can
viewed as methods of decision surface selection in (gray
level, edge value) space. This space is visualized as a
two dimensional histogram with gray level along one axis and
edge value along the other. Figure 3.5.3 displays such a
2-D histogram for a hypothetical object on a background.
Points at A represent background while object points (perhaps
with some noise) cluster at B. The bottom part of the U-
shaped region contains high-edge value points. As we have
pointed out, the average gray level of these points is a
good threshold. Figure 3.5.1 illustrated 2-D histograms for
several target windows.

One may consider a threshold as a vertical decision
surface separating object from background. Non-vertical
partitions of the space have also been investigated [2 ]
and were found to be capable of adding more points to the

boundaries of object regions without substantially increasing
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1T 2T 37 4T
6T 8T 9T loT
117 12T 13T 14T

15T 16T 17T 21T

Originals. Image reference numbers.

2-D Histograms. Thresholded windows
after shrink/expand
(see Section 3.6.1).

Figure 3.5.1. Results of thresholding and post-
processing 43 tank windows.
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Figure 3.5.1 (continued)
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Figure 3.5.1 (continued)
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Figure 3.5.3.

Ideal 2-D histogram of a scene
containing an object and back-
ground with noise.




the amount of noise. Several other partitioning schemes

which were considered are discussed in [5].
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3.5.2 GSlice range selection

The methods discussed above predict a single thresh-
old to be applied to an image. For images known to contain
a single object class or for small windows, the use of a
single threshold is appropriate. However, in general, no
single threshold will separate all objects of interest from
the background. It is therefore necessary to extend our
threshold selection concept to allow the choice of multiple
thresholds.

Our approach is to produce clusters of points corres-
ponding to region borders and to associate the average gray
level of each cluster with a threshold for the corresponding
region. Edge detectors select at each point the maximum
difference of averages of adjacent neighborhoods over several
directions. By suppressing non-maxinum responses normal to
the selected direction (i.e., across the edge), thin contours
result which appear to surround object regions (see Section
3.7.2). A by-product of this process are points with very
low edge value, including values which truncate to zero.

Such points correspond to the interiors of homogeneous regions.
Figure 3.5.4 illustrates thinned detector responses with
region interior maxima included. After thinning, each re-
maining point is plotted using edge value and average gray
level in a two-dimensional histogram. Figure 3.5.5 shows
examples of images together with their 2-D histograms based

on thinned edges.

3-48




a. b.

Figure 3.5.4a. LANDSAT window of Monterey, CA.
b. Thinned edge detector response
(thresholded) .

Figure 3.5.5a. Disk (gray level 30) within ring (gray
level 40) within background (gray
level 20).

b. 2-D histogram of (a) with gray level as
x—-axis (increasing left to right) and
edge value as y-axis (stretched -- in-
creasing from top to bottom). Interior
of background is leftmost, topmost
cluster.

c. Window containing house.

d. 2-D histogram of (c).

e. Window containing tank.

f. 2-D (stretched) histogram of (e).

g. LANDSAT window of Monterey.

h. 2-D histogram (thinned edge vs. average
gray level).




Two types of clusters are produced: interior clusters

represent the interiors of regions, edge clusters represent

boundaries between regions. The size of a cluster (i.e.,

the number of points in it) is closely related to properties

of the region it describes. Thus interior clusters relate

both to the area of the region and to the size of the neigh-
borhood over which the local operations (edge detection,
non-maximum suppression) are defined. For small object regions,
there may be no points sufficiently far from the object
boundary to resist suppression. Thus, interior clusters may

be indistinguishable from noise, or may be nonexistent.

Clusters of points at higher edge values are more
likely to be significant (based on our homogeneity assumptions).
The size of an edge cluster is therefore related to the
perimeter of the surrounded region in the image. Since peri-
meter increases (roughly, for digital images) as the square
root of area, the edge clusters for objects of moderately
different areas should, nonetheless, be of comparable size.

A priori estimates of size are of use in discriminating true
edge clusters from random noise.

Each edge cluster corresponds (ideally) to these
interior clusters whose locations can be determined from the
location of the edge cluster. Thus a threshold derived from
the edge cluster will separate the interior clusters. How-
ever, care must be taken not to split an interior cluster

at a threshold since this introduces random noise regions.




Figure 3.5.6 illustrates a compound decision surface in the
2-D histogram of a multi-object image. For further discussion

see [16].
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Figure 3.5.6a.

Adjacent object regions on
background (same as Figure
3.5.5a).

2-D histogram.

2-D histogram partitioned into
classification regions.
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3.5.3 Variable thresholding

Previous approaches to thresholding apply the same
threshold to all points of the image. 1In [17], Nakagawa
adapts the work of Chow and Kaneko [18] to interpolate a
best threshold for each point of the image. Briefly, the
image is divided into small windows (say 32x32) and a test
of gray level histogram bimodality is made for each window.
A best threshold is chosen for each bimodal window and
thresholds are interpolated to all image points. A binary
image results when each threshold is applied to its corres-
ponding pixel value. Figure 3.5.7 compares fixed thresholding
and variable thresholding for several FLIR frames. Nakagawa
extended this method to allow multiple thresholds (for multi-

object adjacencies). Figure 3.5.8 illustrates the results.




Figure 3.5.7.

a.
b.

Comparison of fixed and variable
thresholding.

Two FLIR frames.
Two-Gaussian approximations to those

32x32 window histograms that were
judged to be bimodal.

w
1
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Figure 3.5.7

C.

d.

(continued)

Results of applying the interpolated
point thresholds to (a).

Results of applying a fixed threshold
to (a).
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Figure 3.5.8.

a.
b.

Comparison of fixed and variable
thresholding.

Machine parts image.

Two- and three-Gaussian approximations
to those window histograms that were
judged to be bi- and tri-modal.

Three level pictures obtained after
interpolating the multiple thresholds
determined from (b) and applied to (a).
Results of applying a fixed threshold
to (a).
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3.6 Noise cleaning and component labelling

3.6.1 Shrink/expand and min/max

The result of thresholding is a binary valued image.
It often contains isolated points and small noise regions
which are artifacts of the thresholding and may not be
readily visible in the original image. Smoothed images
tend to have fewer (but larger) noise regions. One may
delete noise regions by postprocessing the thresholded image.

The method consists of multiple applications of two
processes: "“shrink" and "expand." The purpose of the
sequence of shrinks is to shrink objects in a uniform manner
so that small or insubstantial objects disappear entirely.
The sequence of expands is meant to regrow the remaining
shrunken objects to their original size. The result of the
shrinks/expands is the elimination of tiny regions (presumed
to be noise regions).

Each shrink or expand requires the simultaneous or
"parallel"” application of a local replacement rule at every
point of the thresholded image. The form of the shrink rule
is as follows: Eliminate all 1's adjacent to 0's. Zero
values are unchanged. Such a rule decreases the number of
1's in the thresholded image; thus, the image "shrinks."
Only 1's surrounded by 1l's will survive a shrink. The
number of successive shrinks determines the minimum dia-
meter of a surviving region.

The expand rule is similar to the shrink rule:

rewrite a 0 as a 1 if any of its neighbors are 1's, but
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leave 1's unchanged. Thus points adjacent to 1's become
1's, thereby increasing the number of 1's. If we wish to
restore objects (that were not eliminated) to about their
original sizes, t shrinks should be followed by t expands.
Such a shrink/expand sequence produces an image whose 1's
correspond to (a subset of the) 1's in the untransformed
binary image. Thus, for example, isolated l1l's are eliminated,
and objects joined by narrow necks of 1's may become dis-
connected. Also, thin protrusions from a region of 1's
will disappear. Figure 3.6.1 illustrates the shrink/expand
algorithm for both the 4 and 8 neighbor cases and t = 1,2,3
(the numbers of shrinks and expands used).

A generalization of the shrink rule was formulated
to fill pinholes and conserve small region shape as follows:
delete a 1 if at least k of its neighbors are 0's ( 0's
remain unchanged). The original shrink rule corresponds to
k=1. If k > 1, it takes more zero evidence to convert
a 1 to 0. The generalized expand is analogously defined:
Rewrite a 0 as 1 if it has at least k 1l's as neighbors ( 1's
remain unchanged).

However, the generalized expand rule is not quite as
generous in providing new 1 values, although it does fill
pinholes in sufficiently large regions. Figure 3.6.2 pro-

vides a comparison for t=1, 2 and k = 1, 2, 3. The shrink/

expand rule with t = 2 and k 3 applied to each image point

and its 8-neighbors provides efficient noise cleaning with




Pigqure 3.6.1. Effects of iterating SHRINK/EXPANDS (S/E's).

a. Original images - each column is a single
image thresholded at four different values.

b. 4-neighbor rule - one S/E

c. 4-neighbor rule - two S/E's
d. 4-neighbor rule - three S/E's
e. 8-neighbor rule - one S/E

f. 8-neighbor rule - two S/E's

g. 8-neighbor rule - three S/E's
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Figure 3.6.1

(continued)
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Figure 3.6.1 (continued)




Figure 3.6.2. Leniency in SHRINK/EXPAND definitions
for windows thresholded by two methods.

a. 4-neighbor rule, one S/E, k=1,2,3
b. 8-neighbor rule, one S/E, k=1,2,3
c. 4-neighbor rule, two S/E's, k=1,2,3

d. 8-neighbor rule, two S/E's, k=1,2,3




ORIG k=1 =2 =3

4x4
DIFF
3T

8x8
DIFF

4x4
DIFT

31R

8x8
DIFF

Figure 3.6.2 (continued)




Figure 3.6.2 (continued)




most noise regions eliminated, pinholes filled, and only a
modest amount of target shape distortion.

One may further generalize this process for application
prior to thresholding. This technique, called "precleaning",
involves a sequence of local MIN/MAX operations applied to
the gray level image (analogous to shrink/expand applied to
a binary image). The resulting precleaned image may now
be thresholded as desired. The above threshold regions are
as they would have appeared after shrink/expand processing.
Figure 3.6.3 illustrates the process. This work is described

in [19].




(a)

(b)

(c)

Key:

4-nbr. 8-nbr.
Original MIN-MAX MIN-MAX
MINZ-MAX2 MINZ'MAX2

Figure 3.6.3.

Results of applying repeated local MIN and re-
peated local MAX to three FLIR images. In each
part, the upper-left picture is the original; the
second column uses 4-neighbor local MINs followed
by 4-neighbor local MAXes (1, 2, and 3 repetitions,
in the first, second, and third rows); and the
third column is analogous, using 8-neighbor oper-
ations (i.e., including the diagonal neighbors).
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3.6.2 Connected component extraction

The result of thresholding is a binary image. After
noise cleaning operations filter this image (as needed), it
still remains to aggregate points into identified (labelled)
regions. A process which labels the individual disjoint
regions in the binary image, in a single raster scan, is
well known in the literature [20]. It is described briefly
here.

A set of 1's in a binary image is connected if any
two points in it can be joined by a path (sequence) of pair-
wise adjacent points lying in the set. A maximal connected

set is called a connected component. The algorithm to be

described produces the (unique) decomposition into connected
components, labels the individual components, and constructs
for each connected component a descriptive feature vector.
Although we do not specify the features, it is assumed that
they are all extractable from a raster scan using a 3x3
processing window. Additional storage is available to hold
the feature values for the components. Section 3.8.2
describes the features.

When a new region is encountered during a raster scan,
it is assigned a vector of registers to store its feature
values. As the region is being tracked on the same row or
continued on the next row, values continue to be accumulated
into its feature vector. In order to specify the corres-

pondence between a region and its register vector, a label
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is created and assigned to each point of the region which
has already been visited. The label will identify the
appropriate register vector, usually by some indexing scheme.
Region points found to be adjacent to already labelled region
points inherit that label and contribute their feature values
to its register vector.

Often a region encountered for what is thought to be
the first time may on a later row prove to be connected to
a previously encountered region. Such regions are called

subcomponents. Inasmuch as feature values were being main-

tained separately for each subcomponent, it becomes necessary
to combine the feature values (eventually) and to create
a flag that signifies that the two subcomponents belong to
the same component. These flags reside in the label equi-
valence table. This table can be stored either as a bit
matrix or as a list.

Since region labels propagate from point to point,
we must also keep the labels of those points in the preceding
row that are neighbors of unexamined points in the current
row, with the labels of those examined points in the current
row. The amount of storage necessary for labels of
points is thus only a single row.

The label assigned to a component should designate
whether the component is above or below threshold. If the
background is not partitioned into regions (i.e., is ignored)

by the algorithm then the data structure becomes simply a

3-68




list of above-threshold regions. This is suitable for many
applications, e.g., infrared target cueing. 1In general,
though, the containment relation defines a tree structure.
It is evident that if two components of a binary image are
adjacent then one encloses the other. However, if more than
one object-background transition has been detected, one
cannot know which encloses which from strictly local informa-
tion at the time of initial label assignment. The determining
condition is "which region terminates first?" The region
terminating first is enclosed by the adjacent region. Thus
whenever a region terminates, the data structure is updated
to reflect the containment relation. When a region is
initiated it is entered onto a "active" list -- the list of
unterminated regions. At the end of each row, the active
list is compared with the list of component labels of the
current label row. Any active component whose label does not
appear in the current label row is known to have terminated.
Additionally, when overlapping regions are combined, the
discarded label is deleted from the active list.

It is possible to modify the above to create a des-
cription of each connected component's boundaries. Such a
description is called a "chain encoding" and is discussed

in [20].
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3.6.3 Fuzzy thinning

Objects which are everywhere elongated are often
thinned down to a "medial line" for the purpose of extracting
thickness-invariant topological features of the objects. The
basic strategy for thinning is to iteratively delete border
points (but not end points) of an object which do not locally
.disconnect it. For binary images, various parallel algorithms
exist. The recent extension of the topological concept of
connectedness to fuzzy subsets allows us to generalize thinning
to gray level images [21]. Given thin dark objects on a
light background, we define gray level thinning to be the
successive replacement of points by the minimum gray level
of their neighbors if those changes do not affect the local
fuzzy connectedness for any pair of neighbors. The result
of applying such an algorithm is a set of high gray level
"curves" lying on the ridges and peaks of high gray level
in the original picture. If the original picture is noisy
there will be many local peaks; so while thinning is defined
for unsegmented pictures, a local threshold is necessary to
overlook these small noise peaks. Unlike binary thinning,
however, we no longer need to distinguish between border and
interior points since thinning a homogeneous region will not
significantly change the gray level of any point; only a
slight smoothing results. The results of experiments with
this technique are described in a technical report [22] .

See Figure 3.6.4 for examples of this process.
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Figure 3.6.4a.

b.

Iterations 0-3 of fuzzy thinning
on LANDSAT window of Monterey.
Iterations 0-5 of fuzzy thinning
on the output of an edge detect-
or.




3.7 Superslice

The object extraction task is somewhat simpler for
FLIR imagery than for visible-light imagery since the objects
of interest (military vehicles) are generally compact regions
of (more or less) uniform thermal intensity. For this
reason, thresholding has been chosen as an appropriate
method of segmenting the scene. However, one can criticize
threshold selection schemes on a number of grounds. First
of all, if a window contains no object then thresholding it
is dangerous, since above-threshold noise regions may often
produce probable looking "objects." Secondly, if more than
one object is present in the window then a single threshold
will not suffice. Thirdly, if an object overlaps several
windows then there may be no consistent representation of
an object (i.e., no representation using a single threshold).
Attempts to divide the scene up into overlapping windows,
so that objects of maximal size are guaranteed to lie com-
pletely within a single window, answer this last objection
at the cost of greatly increased overhead. In any case, the
size of the smallest thresholdable region -- as well as the
particular threshold chosen -- depends on the window size,
the coarseness of the grid, and the type of statistical test

used to determine if a region is thresholdable. One would

prefer, however, to be able to extract a small region regard-

less of the clutter and noise beyond its borders.




Another objection to pure thresholding is the presence
of noise regions in addition to object regions. Noise regions
may be difficult to distinguish when based on size, shape
or gray level features. The broader and higher the valleys
of the gray level histogram, the more likely that the noise
regions will be extensive and numerous.

A final objection concerns the design of optimal
thresholding techniques in which the optimality is based on
a statistical model of the gray level population. In situa-
tions where an object contrasts strongly with the background,
there may be a number of thresholds at which the object appears
well defined. As the threshold decreases through this accept-
able range, each object exemplar is contained within a
slightly larger one. Thus although the exemplars may each
look reasonable, the optimality criterion for the thresholding
does not necessarily choose a "best" exemplar. This is be-
cause the optimality condition was based on the whole window
rather than on the component corresponding to the object.

For these reasons, a segmentation method which does
not require a commitment to a single threshold in arbitrarily
chosen regions of an image is preferable. Our method uses
thresholding as a means of discovering candidate object
regions. Candidates are then accepted or rejected based on
the coincidence of an edge map with the region boundary.

The surviving object regions are compared with the survivors

of other thresholds, and those that best match the
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edge map 'are used to describe the actual objects in the
image. Thus, while a number of thresholds are used, only

the one defining the greatest coincidence of thresholded
region border and (thinned) edge is deemed valid for a
particular region. This method can be considered as defining

a best exemplar for each object region.




3.7.1 Algorithm

The algorithm consists of several steps as follows:
median filtering; extraction of an edge mask by edge detection
and thinning; thresholding; forming connected components; and
object validity checking. For a given picture, smoothing and
edge map extraction need to done only once; whereas thres-
holding and the subsequent steps are to be performed over

- a range of threshold sufficient to extract any objects in

the picture.

Figure 3.7.1 illustrates the basic concepts involved.
Figure 3.7.1a shows several object windows along with a number
of possible thresholds for each. Note that it is not at all
obvious which threshold is best. However, when the edge map
(Figure 3.7.1b) is overlaid on the thresholded picture
(Figure 3.7.1lc), we have much better guidance. Figure 3.7.1d
shows the object region extracted from each window using the
method to be described.

A number of steps of the Superslice algorithm have
been discussed in previous sections: smoothing (Section 3.3.3),

. edge detection and thinning (Section 3.4.2), threshold

selection (Section 3.5.1) and connected component extraction
(Section 3.6.2). However, several problems associated with
threshold selection deserve mention:

a) The omission of a threshold from consideration

increases the probability of missing extractable

regions.




Figure 3.7.la. Four target windows (large tank,
small tank, truck, APC) thresholded
at seven different gray levels.
b. Edge maps (thresholded for wvisibility).




Figure 3.7.1lc. Edge maps from (b) overlaid on
(a).
d. Object regions extracted by the
Superslice algorithm.




b) The greater the number of thresholds considered,

the greater the false alarm rate.

c) The speed of the algorithm is approximately linear

in the number of thresholds used.

The probability of missing a object region due to the omission
of a single threshold is the product of the probability that
the scene contains an object region and the probability that
the object region is discernible (by the algorithm) at

exactly the omitted threshold. Although knowledge of the a
priori probability is dependent on a model for the scene

(which does not at present exist), experiments have demon-
strated that an object region which is discernible at all

by the algorithm can be extracted over a range of thresholds --
dependent, of course, on the steepness and homogeneity of the
edge region bordering the object. Noise regions, on the other
hand, do not tend to persist over a range of gray level thresh-
olds. This tradeoff may therefore be posed as follows: By
sampling at every kth gray level, we reduce the workload to

a fraction (1/k) without appreciably increasing the false
dismissal rate; however, we lose some redundancy in the
extracted data which would help us discriminate object regions
from false alarms.

The false alarm rate is a function of input window size,

w
1
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as well as a function of the number of thresholds and the
positions of the thresholds in the overall gray level his-
togram. Certain thresholds are worse than others in producing
false alarms -- specifically, those at or adjacent to peaks

in the histogram.

After thresholding and connected component extraction,
each component must be validated as to whether the extracted
region really corresponds to an object in the scene. If one
considers validity checking to be a classification process,
then one can compute a large number of potential features
and, using standard techniques, determine a discriminant
function. We have established three heuristics to be of
value. One is that objects should be "well-defined," i.e.,
have discernible borders. Note that not all real-world
regions satisfy this constraint. For example, in LANDSAT
scenes, forests, urban areas and clouds can blend into
their surrounds with no discernible edge. The second heuristic
is that an object's interior should "contrast" with its
surround. In this study, contrast is based on gray level
difference. However, other local features including texture
measures are worth considering as defining object interior.
The third is that the region size lie within an acceptable
range. The size test is applied first, eliminating any
region with fewer than 20 or more than 1,000 points.

"Well definedness" of a region is measured by the

percentage of border points which correspond spatially to
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(match) actual edge points in the edge map. "Contrast"
is measured by the absolute difference of average gray
level between the border region of the component and its
interior. Figure 3.7.2 shows a scatter plot of these two
features for the regions extracted from a set of windows.
A reasonable discriminant based on these two features
appears to be: match > .5 and contrast > .6 -- i.e., at
least 50% of the border matches the edge map, and the con-
trast is at least .6 gray levels (out of 64). Note that
neither feature is by itself reliable enough to discriminate
noise regions from object regions. Optimal discriminants
may be computed based on several models. Regardless of the
particular model chosen, the discriminant value can be inter-
preted as a "score" for the component. Components with very
low scores are discarded as pure noise. In practice, we have
used the match measure as a score for objects which were
above the pure noise threshold.

The score is important in comparing (nested) object
regions corresponding to the same object. When an object
2 tr Casa2 B

is thresholdable at gray levels t this gives

1 2 k'’
rise to k connected components, C <« C £...=«C,_, . Since
t t =
1 2 k
each Ct represents the same object, we call each an "exemplar."
i

In general, we wish to select a single exemplar as the best
representative of an object. The score provides a criterion

for selecting among exemplars. Thus, one could choose the
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Figure 3.7.2.

cohay

Scatter diagram plotting
well-definedness against
contrast for a set of noise
regions (plotted as periods)
and object regions (plotted
as hash marks).




exemplar C with the highest score. It is not always easy,

£,
J

however, to determine the nested sequence {Ct }. 1In parti-

i
cular, if one object thresholdable at gray level t is contained
within another thresholdable at gray level t' < t, then
regardless of the comparative difference between the two

scores, we would want to retain Ct and C This situation

£
can be handled by assuming that nested components whose areas
are sufficiently different (say, 50% change in size) corres-
pond to different (although nested) objects. 1In thermal
images, this might correspond to a warm vehicle with a hot
engine compartment, or to a vehicle on an asphalt road.

The results of applying the algorithm to a set of 16 APC
windows are illustrated in Figure 3.7.3. HNote that in almost
all cases (the negative image was not processed), the re-
sulting labelled images contain the target regions (as well

as other regions).

In summary, the algorithm for region extraction con-

sists of the following steps:

1. Smooth the image, if necessary (to promote clean
thresholding).

2. Extract a thinned edge picture.

3. Determine a gray level range for thresholding.

4. For each gray level in the range:
a. Threshold the smoothed image.
b. Label all connected regions of above-threshold

points.




Figure 3.7.3a.
bo

C.

Sixteen APC windows.

Edge maps (thresholded for visibility).
Object regions extracted by the
Superslice algorithm.
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c. For each connected region:

i. Compute the percentage of border points
which coincide with significant thinned
edge points.

ii. Compute the contrast of the region with the
background.
iii. Classify the region as object/non-object
based on the size, edge match and contrast.
Construct the canonical tree for the set of object
regions based on containment.
Prune the containment tree by eliminating adjacent

nodes which are too similar.
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3.7.2 Conformity - a measure of region definedness

The Superslice algorithm relies on the heuristic
that thresholded object regions are distinct from background
because they contrast with their surround at a well-defined
border. The coincidence of high contrast and high edge value
at the border of a thresholded region is an example of the
use of convergent evidence supporting the assertion of the
object region. The definedness of the border may be evaluated
as the percentage of the border points which coincided with
the location of thinned edge (locally maximum edge response).
Thus a match score of 50% means that half the border points
are accounted for as being on the edge. However, it does
not mean that the matched points adequately represent the
object. Figure 3.7.4 illustrates two cases of 50% match.
(Matched points are indicated by thick strokes.) Clearly,
the second case is a better representation than the first.

The traversal of the border of a thresholded region

induces an ordering on the matched points. Let rl,...,r

n

be the runs of matched points encountered during a border
traversal. By connecting the proximal ends of runs along
the traversal, one creates a polygonal approximation to the
thresholded region. We define "conformity" as the measure
of match of the polygonal approximation to the thresholded
region. High conformity means that the region is well-
represented by its approximation regardless of the actual

percentage of matched border points. Figure 3.7.4a illustrates




low conformity; while Figure 3.7.4b shows good conformity.
Conformity is evaluated as the ratio of the absolute
difference in area (between the two polygonal representations)
to the area of the threshold region. Experiments have in-
dicated its utility as a feature for discriminating noise from
objects. A quantitative study of its discrimination value

is described in Section 3.9.4.2.

Figure 3.7.4a. Contour whose matched edgg points
(thickened strokes) exhibit poor

conformity.
b. Contour showing good conformity.




3.7.3 Hyperslice - An algorithm for recursive region

extraction

The algorithm (Hyperslice) described here is an amalgam
embodying the recursive control structure of Ohlander [3]
and the object extraction techniques of Superslice. Hyper-
slice consists of the following steps [24]:

1. Preprocessing - image smoothing, thinned edge
map extraction.

2. Initialize the extracted region mask (ERM) to the
empty mask. Initialize the available points mask
(APM) to the entire image.

3. Compute histograms for all feature images based
on the APM.

4. Determine a "best" slice range over all current
histograms and slice the corresponding image.

5. Generate submasks for regions satisfying the Super-
slice criteria. Add them to the ERM; delete them
from the APM.

6. Apply algorithm steps 3-5 recursively to the back-
ground set (APM). The algorithm should also be
applied recursively to each submask added to the
ERM, since the extracted region may be a union

of regions discriminable by some other feature.

Several comments are in order. First, the slice
ranges chosen for Hyperslice should be rather liberal (i.e.,

extending beyond valley bottoms in the histogram), since




points not corresponding to well-defined regions will be
returned to the APM. The resulting histograms appear more
natural (not "carved-out") for this reason. Secondly, the
resulting decomposition is order-dependent, i.e., different
results may be obtained if the order of selection of slice
ranges is changed. If two adjacent regions in the image
contribute adjacent peaks in the histogram, then points in
the intersection of the overlapping slice ranges will gener-
ally belong to the shared edge region. Whichever region is
sliced first will tend to accrete more of these points.
Since these points lie at or near the true edge, they tend
to increase the edge match criterion for that region. Once
they are removed from the APM, they are not available to the
adjacent region. Consequently, the edge match criterion of
the adjacent region may suffer. This is most likely to occur
for adjacent regions which lack a strong common border. The
2-dimensional histogram approach in [16] can detect adjacency
along weak borders. 1In practice, the edge match criterion
is relaxed somewhat from demanding actual coincidence to
allowing proximity (e.g., a region border point adjacent to
a thinned edge point is counted as a match).

The algorithm has been implemented as an interactive
system of programs. Several examples illustrate its ability
to segment images based on gray level alone (i.e., no other
features were used to aid the segmentation). Figure 3.7.5

depicts a window of an ERTS frame of the Monterey area in
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California. The water area contrasts sharply with the land
and very little noise is extracted and subsequently returned
to the APM. The subsequent slices extract light and dark
fields which contrast with the undifferentiated background
region.

The second example is derived from Ohlander's house
scene. The average of the three color bands provides the
gray-scale. The resulting image has been smoothed by 3x3
median filtering. The first slice range extracts the sky
regions and the bright crown of a bush. Next the shadow
regions appear along with the bushes. The somewhat darker
grass is extracted in the third slice range. Finally, the
brick is extracted. Figure 3.7.6 illustrates this sequence.

Images such as the Monterey and house images are
difficult to analyze since regions need not be well defined
due to the complexity of light reflections and shadows.
Nonetheless, this algorithm provides a mechanism for retrieving

those regions which are well-defined.




Figure 3.7.5.

d. e.

Recursive region extraction on
Monterey image.

LANDSAT window.

Edge map.

Histogram of (a), with selected slice
range indicated.

Mask of slice range. Within range
points are white.

Extracted regions mask.
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Figure 3.7.5
£.

= I R L A R e ]

(continued)

Histogram of remaining points after
deleting extracted regions of (e).
Slice range mask.

Extracted regions mask.

Histogram of remaining points.
Slice range mask.

Extracted regions mask.

Histogram of remaining points.

Mask of remaining points.
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£ g.

Figure 3.7.6.

a.

h.

Recursive region extraction on house
image.

House window.
Edge map.

Histograms after successive deletion

of extracted regions. New slice ranges
are indicated.

Slice range masks.

Extracted region masks.

Mask of remaining points.
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Figure 3.7.6 (continued)




3.8 Feature extraction

3.8.1 Feature design

In this section, as in most work dealing with pattern
classification,a "feature" is taken to be some numerical
quantity which can be calculated for each object
to be classified. ("Shape" is not a feature, since many
features, such as height/width, measure characteristics of
the shape.) To be consistent with a high processing rate
throughout, all features used in this study are based on
accumulatable quantities. That is, a number of crude
features have been chosen (listed in Table 3.8.la) which are
defined at each pixel. The value of any of these features
for a region is just the sum of the values over all the pixels
of the region. These crude features can be accumulated as
the image is being segmented, and are therefore immediately
available for any region as soon as it has been completely
extracted. The descriptive features actually used are simple
functions of these accumulatable quantities, so that once
any region has been extracted, brief calculations produce
all the information required for classification of that
region, with no further reference to the original image.

One additional feature, "conformity," has been obtained for
many of the images. This feature requires rather more post-
processing after region extraction, and is included as a
nearly optimum measure of one region characteristic which

should be of importance in target detection: cooccurrence
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a. Accumulatable features per connected component

Symbol
Th= N

2-3. s8X,SY

4-6. SXZ,SYZ,SXY

Was P

8. E

24 SPE
10. SIG
ili. SPG

12-13. sSG,SG

Meaning

Area

IX,LY - first moments

EXZ,ZYZ,ZXY - second moments
Perimeter point count

High edge point count

Total edge value on the perimeter
Total interior gray value

Total perimeter gray value

Total gray level, total sguared
gray level

b. Intermediate quantities

1. Xave
2. Yaug
3. R®
4. v

Table 3.8.1. Features.

4% Y sx?

4% sy?

SX2 g5 SY2

sG2/N - (sG)2/N%
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C.

d.

Recognition features

1. h/w

2. (h/w)'
3. (h*w)/A
4. (h+w)/P
5. diff

6. skewness

7. asymmetry

8. SDEV

9. Gray level
difference

10. E & P

ll. %

Special features

1. conformity

Yave/Xave

- * 3
| Xave™ - 8* Yave !/ ¥ Xave* Yave

*
Xpve* Yave/N

( -4)/P

xAVE+YAVE

2

(sx2-sv?) /R?

ISXYI/R2

2

( (sxY) 2-sx®sy?) /%

Yo

SIG/ (N-P) - SPG/P

(Number of perimeter points
at high edge local maxima) /P

SPE/P

(See Section aTie )

rshape

=

> brightness
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of the region perimeter and points of high brightness gradient.
This gives a useful standard for measuring the adequacy of the
rapidly calculated feature (E&P, in Table 3.8.1lc ) which is
used as a measure of the same property.

A decision rule is effectively a mapping from the
feature space to a lower-dimensional space (the decision
space) in which each point is associated with a fixed class.
While this structure is very general, commonly used decision
rules are very severe specializations of this general scheme.
Usually the initial mapping is produced by a set of poly-
nomial functions on the features, one function for each
dimension of the decision space. Within this space, the
class regions are usually separated by planar boundaries.
Thus, the Fisher method utilizes a single linear mapping
onto the line, which is bisected by a point (at the Fisher
"threshold") to establish the two class domains. Speciali-
zation of decision rules places sharp restrictions on what
constitutes an appropriate feature.

To discriminate tanks from trucks, a naive observer
might point out that one need only examine the shapes. One
more familiar with computational measures would recognize
that the shape of an object involves a great many features,
but might suggest that the height-to-width ratio would be
one useful feature. However, height-to-width, width-to-
height, log(height-to-width), etc. are all quite distinct

features, one of which may be highly effective in the desired
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decision while others may be totally useless. Useful features
must thus satisfy a number of conditions, some of which are
general, the others being imposed when particular simple
decision rules are to be applied. The present classification
study has considered linear and quadratic classifiers, a
decision space with no more dimensions that the number of
classes, and simple boundaries for each class within the
decision space. Several levels of restriction on the features
to be used with such a classifier can be stated:

1. Each feature must exhibit a different distribution
for each of at least two classes.

2. The classes should tend to fall in different value
ranges for each feature, since class assignments
in the decision space will be to connected regions.

3. When the classifier utilizes sample means and
variances to estimate parameters for the mapping
(as those used here do), the true feature distri-
butions of each class should be unimodal, approxi-
mately symmetric about the mode, and with a
minority of points contained in the wings of the
distribution.

4. For use with linear classifiers, each feature
should have a distinctly different mean for at
least two classes. For use with quadratic
classifiers, it is only necessary that some range

of values tend to characterize one class, while
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the other class predominates on the complement.

Despite these "rules" for good features, it should
be noted that for a multi-feature decision scheme, none of
these rules is essential. However, only when some of the
features are very strongly correlated can the above princi-
ples be violated without destroying the classification, and
while this situation is not necessarily to be avoided, it
makes interpretation of decision rules much more difficult.
Moreover, as a practical matter, features which fail to
have the above properties normally turn out to be ineffective
(or worse, countereffective) when employed in automatic
classification. Since one is not really restricted in the
particular form of the features to be used (but only in the
underlying characteristic being represented) one may as well
assure that the features being considered are, as far as

possible, individually effective means of class discrimination.

Finally, one more restriction should be stated.

5. The features should not reflect characteristics
which effectively delineate the sample classes,
rather than the true classes.

This, of course, is the familiar failing of "small"

samples, but may appear even in apparently large enough samples.

In our data base (Section 3.9.1), several such "extraneous
differentiations" did arise. In cases where a large number
of features are employed in a classifier, there must always

be doubt about whether condition 5 will hold. It is this

3-99




condition, more than any other, which restrains the number

of features which can usefully be included in a classifier.

If an arbitrarily large number of features are measured for

a particular set of classified samples, it is virtually
certain that spurious characteristics will allow them to be
well separated by a decision function based on those features,
but there is no reason to expect anything other than random
classification of new samples. The problem is sufficiently
pervasive that a simple means of dealing with it could

almost be elevated to a principle:

5'. Features should be included in a classifier only
if they identify true differences between the classes
more than they do spurious differences between
the samples.

While the above rule may seem obvious, it is important
to realize that including additional features that do not
discriminate between classes makes the classifier worse, as
the features may very well distinguish the class samples,
even though they do not distinguish the classes. (Self-
classification of the training set improves, while classifi-
cation of independent test sets degrades.) Class differences

must be effectively reflected in the feature to make it safe

to use. "Height-to-width" ratio is a dangerous feature to
include in a linear classifier for target vs non-target since
its mean values for target and non-target classes may not be

greatly different (though the distributions may differ greatly),
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so that small spurious differences in sample means may
produce most of the "strength" of the feature. 1In a quadratic
classifier, however, the problem would be much less severe,
since the discrimination provided by the feature more nearly

matches the requirements of the decision function employed.
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3.8.2 Computation

The principal attributes of image regions which can
be used to identify them are shape and relative brightness.
Corresponding locally accumulatable properties are pixel
coordinates, and functions of them, and gray level, and
functions of it. Additional information can be obtained
from the contrast between the region and its surround at
the region boundary. One can know as one examines each image
point whether it is in the interior of a region, on the
region boundary, or in the background. Statistics of inter-
est can therefore be accumulated separately for these classes.
Finally, the pre-computed edge value (gray-level gradient)
is associated with each point, and these values may be
accumulated or may be used to index subsets of points (e.g.,
"high edge" points) for which other quantities may be
accumulated separately. The accunulated features actually
used are all of one or the other of the above types, and
were listed in Table 3.8.1la.

The features calculated for use in classification
studies are given as Table 3.8.1c-d. They are further divided
into two groups -- those that are purely shape measures, and
those that depend in some way on the brightness of the region
(or some part of it). Many of the functions appear to be
straightforward measures of significant characteristics, but
others seem less straightforward. The criteria for choosing

the specific functional forms used are discussed in Section
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3.9.4, A discussion of the relative utility of the features

appears in that same section.
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2.9 Region Classification and Experimental Results

3.9.1 Data base description

For a description of the complete "NVL" data base
and its ground truth see [l]. From it a set of 174 128x128
windows were selected, extracted, requantized, median filtered
and sampled 2 to 1. The set consists of 164 target windows
(75 tanks, 34 trucks, 55 APC's) and 10 non-target (noise)
windows. Figure 3.9.1 displays this set of windows and

their identifiers.
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Figure 3.9.1.
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NVL data base consisting of 164

target windows and 10 non-target

windows.
75 tanks.
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Figure 3.9.1 (continued)

3-106

68T 69T
75T 76T
80T 89T

99T 105T

ll4T 1227
125T 126T

1297 130T

73T 74T
78T 79T
92T 95T
109T 110T
123T 124rT
127T 128T
131T




3R 4R 6R 9R
18R 22R 24R 26R
31R 32R 33R 34R

35R 41R 47R 51R

52R 53R 54R 55R
56R 57R 58R S59R
71R 72R 77R 100R

104R 109R 132R 133R

134R 135R

Figure 3.9.1 (continued)
b. 34 trucks.
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Figure 3.9.1 (continued)
c. 55 APC's.

3-108

21A
28A
35A

44A

50A
54A
58A

74A

79A
91A
97A

111A

22A
32A
37A

45A

51A
55A
59A

75A

80A
93A
98A

112A

24A
33A
38A

46A

52A
56A
61A

76A

86A
94A
101A

113Aa

27A
34A
4247

48A

53A
57A
73A

78A

90A
96A
102A

114A




115A 122A 123A 125A
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c. APC's (continued).
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26N 32N 38N 44N
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d. 10 non-target windows.

Figure 3.9.1 (continued)
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3.9.2 Overview of classification

There are two general approaches to classification
of objects into a preassigned set of mutually exclusive
categories. The first might be called "semantic" classifi-
cation. Each category is examined for particular character-
istics which distinguish its members from those of every
other category being considered. These characteristics are
used to identify each object submitted for classification.
(Difficulties, of course, occur if an object has none of the
"key" characteristics, or has "key" characteristics suggest-
ing more than one classification. Such an occurrence in-
dicates that the classes suggested simply do not include

everything within the domain of interest, or are not truly

mutually exclusive -- at least as defined by the set of "key"
features.) This is a form of classification which is ubiquitous
in human experience. Unfortunately, in many cases of practi-
cal importance, the objects to be classified cannot be
characterized by properties which will always be observed
within one class, and never in any other class. 1If the
classes really are well-defined, this difficulty may arise
because of the need to classify using noisy or poorly re-
solved data. It may also occur because characteristics

quite plain to human observers may defy expression as cal-
culatable quantities (one vehicle may be "sleek and speedy
looking", another "squat and out-of-date"). For whatever

reason, when such incompletely characterized problems arise,

3-110




a method is required which provides a computable "best guess"
classification. All such methods accept a number of (usually
numerical) features which are assumed to be relevant to the
classification intended. The distribution of these features
for a large number of objects whose identity is already known
is then used to provide a rule which assigns a class to an
object given the n-tuple of features measured for that object.
Typical rules of this sort are simple polynomials over the
features, whose values are used to determine the class
assignments.

"Statistical"” classification finds the best rule for
a fixed class under some (usually very restrictive) assump-
tions about the way the features ought to be distributed.
Since the data available in this study appear not to provide
enough resolution to produce a semantic classification, we
have utilized a procedure which includes a statistical
classification component. A completely statistical classifier
was not used, however. The full procedure consists of a
semantic pre-classification of régions which could not
represent targets, followed by a statistical classification
" of the "reasonable" regions. This approach was chosen pri-
marily to ensure greater robustness in the resulting classi-
fication scheme, as will be discussed more fully below.

Finally, it is important to analyze the types of
errors made by a classifier. For example, a well-behaved

classifier should be wrong more often on distorted images
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than on undistorted ones. This type of performance may be
tested By "training a classifier-of the same type on a
"training set" of half the samples, distributed evenly
through the classes. The resultant classifier can then be
used to reclassify the whole data set. If the "training"
and "test" results are similar, then the classifier is
judged fairly stable. If the results are good, then the

classifier can be considered fairly powerful.

It is important to distinguish between human interaction

in classifier design and human interaction in the operation
of the classifier. The former is permissible since the

classifier is fixed once it has been effectively designed
and trained. No further human assistance is allowed and
the classifier is applied in an automatic fashion to the

test set.
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3.9.3 Detailed classification description

The objects to be classified in this study are con-
nected regions of an input picture, extracted by thresholding
the image. More than one threshold may have been used on
any given picture, so the regions need not be disjoint; rather
one may be entirely contained in another. For each region,

a feature vector containing information about shape and
brightness (as described in Section 3.8) is used as the sole
source of information about the region for classification.
The extraction procedure has somewhat preselected these
regions, so that every region examined has at least minimal
(20%) correspondence between its perimeter and the high-
edge points, has at least minimal contrast (.2 gray level),
and is of roughly appropriate size (between 20 and 1000

pixels).
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3.9.3.1 sStage 1l: pre-classification

" If the classification is thought of as a two-
stage process (shown schematically as Figure 3.9.2), the
first stage is a crude "semantic" classifier which identifies
some regions as having properties which indicate that they
are not targets. Thus, all targets have similar height and
width, seen at any aspect angle. Any region with h/w
greater than 3 or less than 1/3, then, may be confidently
rejected from further consideration. Similarly, targets
"should" show some minimal contrast at their perimeters, a
good edge-perimeter overlap, and small targets should be of
nearly uniform brightness. All these criteria are set by
establishing numerical thresholds such that at least 95%
of the sample targets satisfy the criteria.

This is called "semantic" classification,
rather than a very crude statistical classification, because
the particular criteria used have been chosen to distinguish
the targets on the basis of physical characteristics of
true target images. A statistical classifier, even if it
arrived at the same scheme, would be assessing discriminatory
ability on the sample of classified regions provided for
training, and could reflect any peculiarities which happened
to distinguish the categories in that sample. (In the NVL
data, APC's often exhibit an asymmetry which is due to the
fact that most of those in the sample appear in only a

single aspect. An apparently good statistical classifier
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Figure 3.9.2b. Stage 1 - the pre-classifier
(for feature list, see
Table 3.8.1).
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Figure 3.9.2c. Stage 2 - the classifier
(for feature list, see
Table 3.8.1).
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could be formed which would unhesitatingly identify any APC
in some other aspect as a tank.)

This pre-classification examines individual
features to determine whether they could be reasonably
associated with true targets, and discards "ridiculous"
cases. A side-effect of this sorting is to assure that
feature values seen by the subsequent statistical classifier
are never very far from their characteristic values. This
makes the classifier much better-behaved than one which
accepts non-normally distributed features (as most do) that

have not been "critiqued."
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3.9.3.2 Stage 2: statistical classification

Once the set of extracted regions has been
reduced to a set of bright, compact, reasonably uniform
regions, statistical classification is used to assign a class
to each particular combination of features (or rather, to
its associated region). A great many kinds of statistical
decision rules exist. Access to the MIPACS [25] interactive
system allowed us to design a decision tree (each node of
which is a standard classifier) for efficient classification.
The system allows individual decision functions to be either
linear (e.g., Fisher), gquadratic, Or maximum
likelihood, and provided a convenient mechanism for selecting
which decisions to make, and just which features to use at
each decision point.

The basic structure selected was shown in
Figure 3.9.2c. The first node actually represents a non-
statistical selection. Because of the wide range of apparent
sizes of the target images (from 25 to 1000 pixels) and the
consequent wide range in visible complexity of detail, it
was quickly determined that statistical classifiers would
not provide good discrimination over the entire size range.
(Almost every feature measured showed substantial correlation
with apparent size, and since the various sample classes
happened to have rather different image size distributions,
our earliest classifiers used that factor as a main classi-

fication indicator.) Therefore, the first step in the
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classification is a simple split on image area -- with allre-
gions of less than 95 pixels going to the "small" subtree,
and the remainder passing into the "large" subtrees. For
several reasons, principally a presumed lesser urgency for
detailed identification of small or distant objects and the
fact that in the smallest images no significant differences
between the various target classes are apparent, the small
regions are simply sent to a node which classifies them as
(small) "target" or "non-target" -- the specific type of
target is left unspecified. For the large regions, a two-
stage process followed. As neither APC's nor trucks are
particularly well characterized by the features used and
their distributions are very similar, they were merged into
a composite "truck-like" class. Any region found to be in
this class is then assigned as APC or truck by a Fisher
discriminant. (A major reason for this breakdown is that
it permits fairly large samples to be used at an important
decision point and relegates use of the sparsely sampled
truck class to a relatively inconsequential discrimination.)
The principal decision was therefore between the "tank" and
"truck-like" classes and the "non-target" class. Two
different approaches were tried for making this decision,
both based on a quadratic maximum-likelihood discriminant.
These are described more fully in Section 3.9.4. One
approach ("fixed classes") applied the maximum likelihood

criteria directly to the tank, truck-like, and non-target
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classes. The second approach included two "reject" possi-
bilities as well -- non-target, and unclassified target.
(Notice that the non-target label is applied either if a
region looks sufficiently like a "typical" non-target or
if the best label implies too unlikely a value for the
features measured.) The latter approach was included to
further minimize reliance on characterizing non-targets

in detail.

Given the tree structure for the classification,
the kind of classifier and the set of features at each node
were determined. The number of features which can reliably
be used depends on the size of the sample set used for
training. Assuming that the features are chosen so as to
avoid apparent vagaries in the set of exemplars, one can

confidently use an additional feature for each ten samples

in the smallest group, and sometimes may use up to one-third
the sample number (for a linear classifier). As guadratic
classifiers utilize more detail of the presumed distribution
one is restricted to the conservative end of that range.
These rules of thumb, while not universally valid, are non-
theless useful guides.

. By merging the truck and APC classes, we allow
comfortable use of a quadratic classifier on five or six
features at the main decision node, while the smaller samples

make a linear classifier or a three or four feature quadratic
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classifier more reasonable at the lower node. The "small"
node could utilize five or six features -- but one is hard-
pressed to find even that many which provide any discrimin-
atory power at all. (However, one feature, E&P, is very

powerful indeed.)
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3.9.4 Experimental results

3.9.4.1 Feature selection

As in any classification problem, much of the
initial feature selection for the vehicle recognition task
was carried out informally. This phase is largely intro-
spective, determining characteristics of the images that
seem helpful for human judgement, then identifying some
features that should suitably reflect these characteristics.
This initial feature set (conveying "shape" and "relative
brightness") is listed in Table 3.8.1, Section 3.8. All
of these features seem appropriate for use with linear or
quadratic classifiers.

The features were examined in several ways.
First, histograms for each feature were produced for every
sample class. These histograms were examined
to see whether the sample distributions satisfied the criteria
noted in the last section. The differentiation that appeared
was interpreted as to whether it was a true difference be-
tween classes, or simply a sampling anomaly. (At this stage
too, particular features might be replaced by similar features
of slightly different functional form, to better satisfy the
requirements of automatic classification.) Second, those
features that seemed to have some merit were ranked for
classification power at each node of the decision tree.

The "Automask" method, available within MIPACS, was used
([25]1). Briefly, Automask finds, for each feature, its

"share" of the total dispersion both between and within sets,
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and finds the single feature which produced the greatest
comparative variance between sets. This feature is then
deleted from consideration, and the other features reexamined
to find the next best feature, and so on. The relative merits

of the features for each node are shown below.

Node Good features Usable features

Small E&P (h/w)', (h*w) /A, (h+w) /P,diff,
skewness, asymmetry

Large E&P, diff (h/w) ', (h*w) /A ,skewness,
asymmetry, Ep

Trucklike Ep, asymmetry (h/w)', (h+w) /P, skewness,E&P

Shape features:

In the first stage, the (h/w)' height-to-width feature
was useful in identifying small bright streaks as non-targets.
In the statistical classifier for small targets, shape features
were individually very weak in distinguishing targets from
non-targets. For large targets, diff was the best shape fea-
ture at node LARGE; all the others but asymmetry were also of
some use. At node TRUCK-LIKE, on the other hand, asymmetry

was the best shape feature, with the remainder of no value.

Brightness-related features:

Edge-border coincidence (E&P) was by far the strongest
single feature for both nodes involving target/non-target
discrimination (OBJ and LARGE). For small targets, it

provides nearly all the discrimination in the second stage.
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For large targets, it provides evidence which is well
complemented by shape information -- both must be included
for adequate performance. Also very useful, particuiarly

at stage 1, is Ep, which provides substantially different
information from E&P. Gray level variance is used to some
effect in the first classifier stage, but is not effective
in the second stage. Perimeter contrast information appears

to be much more effectively conveyed through Ep than dgl.

These rankings, while not dependable when taken
alone, have been very helpful in suggesting which features
could usefully be included in decisions at each node and
which should be omitted. This was especially helpful in
the case of the shape features, for which estimates of
relative merit were not obtainable.

The final stage of feature testing was experi-
mental. Features suggested either by Automask or by the problem
definition were included in decision functions, and self-
classification attempted. In many cases, the results were
not satisfactory and one or more features were added or
deleted until "good" results were obtained. If too many
features were present in this classifier, features were
removed until the best classification obtained with an

acceptable number of features was found.
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3.9.4.2 Classification

The NVL data base as windowed for classifi-

cation purposes consists of:

75 Tanks

34 Trucks
55 APC's

164 Target windows
_10 Non-target windows

174 Total windows

Associated with each window was a liberal
threshold range extending from the shoulder of the background
peak gray level to the highest gray level at which there was
significant sensor response. Although these ranges were
manually selected, this is not a significant interference
with the automatic nature of the algorithm since the gray
level ranges can be chosen by a simple scheme which identifies
the background peak and proposes every threshold above the
peak. (If a coarse temperature calibration is available,
this task is even simpler.) See Section 3.9.4.3 for
further discussion.

The Superslice algorithm was run on these
windows using the selected gray level ranges. Connected
components whose contrast, edge-perimeter match score and
size were within tolerance were retained. The resulting

sets of regions are described by the containment forests in
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Table 3.9.1. Within each containment tree, Superslice
selects the best exemplar(s) for the candidate object region
based on edge match. Thus, every tree has one or more best
exemplars associated with it. All other (non-exemplar)
regions are suppressed since the algorithm has proposed
better representatives for classification.

Each containment tree is manually labelled as
either "target-related" (containing regions associated with
the target) or noise (spatially apart from a target region)

so that false dismissals can be determined.

Of the 164 target windows, two windows (64T,
86A) had containment forests with no target-related regions
present. At this stage, the false dismissal rate is 2/164 v 1%
for Superslice. Determination of a false alarm rate is in-
appropriate since the discrimination performed by Superslice
is "object vs. non-object," not "target vs. non-target," and
there is no ground truth for the number of objects (including
targets, hot rocks, trees, etc.) in the frames.

The next stage - preclassification - performs
possible-target vs. non-target screening. [For the purpose
of building the screening criteria and subsequent classifier,
a single exemplar per target was hand-chosen. No other
target-related regions were considered; all noise regions,
however, were retained.] Of the 162 target windows, the pre-
classifier retained 161 for a false dismissal rate of 1%. 1In

addition, 44 noise exemplars also survived as possible targets.
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Window

Reference Lowest

Containment Forests

Number Threshold
JEA L 23 X(N,TTT (PPPPPP,PP) ,NNN,N(N,NN) ,iN) ;NN
2T 23 TTTTTTTT
3T 25 TTTTTTT (PP,P) ; NN; NN
4T 30 iyl ]
6T 25 TTTTTT
8T 26 TTTTT
9T 24 TTTTTT (P,P)
10T 25 TTTTTT
ALDINT: 25 TTTTTTTT ; NN
127 22 X (pPPPPP(P,P(P,P)),N)
13T 20 XX (N,TTTT) ;N
14T 22 TTTTTTT
157 30 TTTTT
16T 24 TTTTTTT
17T 26 TTeTT
21T 26 TTTTT
22T 25 TTTTTT
24T 29 T TET
26T 26 TTTTT
28T 27 TTT
31T 27 TTT
327 21 X(TTTT,N,N)
33T 23 VTTTT; N
34T 26 TTT
35T 24 TTTT;N
38T 24 TTTTTTT
40T 23 TT;NN; N
42T 24 TTTTT(P,P (PP,PP))

Table 3.9.1. Containment forests of regions extracted by
Superslice (Tanks). "AB" means that region A contains
region B. "A(B,C)" means that region A contains the
disjoint regions B and C. "A;B" means that A and B are

disjoint regions in the window. Underlined letters denote
"best" exemplars of the target region. Target trees begin
at lowest threshold.

Legend: target

partial target

target with additional noise

target invisible in noise

noise region

fiducial mark

target region not present at this threshold

<M™MZOX'"H
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43T
457
46T
48T
50T
51T
52T
53T
54T
55T
56T

57T
58T
59T
61T
62T
63T
64T
65T
66T
68T
69T
73T
74T
75T
76T
78T
79T
80T
89T
92T
95T
99T
105T
1097
110T
1147
1227
123T
124T
1257
126T
1277
128T
129T
130T
131T

26
25
26
24
22
24
23
23
23
23
22

22
20
21
43
24
24
28
46
47
26
26
43
45
22
23
27
24
22
23
22
24
i
24
23

25
20
22
21
24
23
24
23
24
25
26

TTTTT
TTTTTT

TTTTTT

TTTTTTTTT

OTTTT

TTTTT

TTTTT

TTTTT

TTTTT

TTTTT

T;N;N

TTT;NN;N

X (NN, NN, TT)
X(TT,NN) ;N;N
TTTTTT

TTTT; N

TTT; N

FFFFF;H;N (no target region found)
”

Pr

TTTT; N

TTTT; NN

TTTTTTT

TTTTT

TTTTTT (P(P,P),P)
TTTTTTTTTTTT
TTTTTIT (P, P)

TTT (PPPP, PPP)
TTTT (P, PPPPP (P (P,P) ,PP))
TTTTTTTTTT
TTTTTTTTTTTT
TTTTTTTTTT
TTTTTTTTTTTT
TTTTTTTTTT (P,P,P)
TT (PPPP,PPPPP,P (PPPP,PP))
TTTTTT
TTTTTTTTTT

TTTTT

TTTTTTT

TTTTTTTT

TTTTT

TTTT

TTTTTTTT

TTTTTTT

TTTTTTTT

TTTTTT

TTTTT
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Window

Reference Lowest Containment Forests

Number Threshold
3R 23 X (TTT, NNN (NNNN, NNNNN) ) ; N
4R 22 TTTTTT ; N; N; NNN
6R 23 OTTTTTT; NN
9R 23 X (TTTT,N (NN,N) ,NN,N,N)
18R 26 VTTT;N
22R 24 TTTTTT
24R 28 X (X (TTT (PP,P),N))
26R I TTT; N
31R 26 OTTTT
32R 21 X (PP,N,N,N) ; NN
33R 23 X (X (TTT,N),N
34R 24 VVTTT;N;N;N
35R 23 TTT;N;N;N
41R 25 TTTTTTTTTTT
47R 25 TTTTTTTTTTT
51R 25 TTT;N; N
52R 23 TTT
53R 24 e
54R 23 TT; N
55R 28 VTTT;N; N
56R 24 TTTTTT ; NNN
57R 24 TTTT ; NNN; N; NN
58R 24 TTTT ; NN
59R 23 TTTT; NN; N; N
71R 44 1l 1
72R 46 TTT;NN; N
77R 27 TTTTTT (P, P)
100R 23 TTTTTTT
104R 27 TTTTTTT
109R 27 TTT (P, PPP)
123R 27 X(TT(P,P) ,N)
133R 27 TTTT
134R 27 XTTT (P,P)
135R 26 LT

Table 3.9.1. Continued. (Truck windows)
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Window

Sﬁiﬁ;ince ggg::ﬁold Containment Forests
21A 26 TTTTTT
22A 22 TTTTTT
24A 28 TTTTT
27A 27 VTTT;N
32a 25 TT
33A 25 T;N;N
34A 26 TTT
35A 25 TT
37A 21 TTTTTTTT
38A 23 TTTTT
42A 24 TTTT (PP, PP)
44A 28 TTTTTTTT
45A 26 TTTT;N;N
46A 26 TTTTTT
48A 26 TTTTTTT
50A 24 TT
51A 25 TTTT;N;N
52A 25 TT;N;N
53A 24 TTT;N;N;NN
54A 25 TTT
55A 26 T
56A 25 ey ey
57A 24 TTTT
58A 25 TTTTT
59A 24 TTTTTTT
61A 41 TTTTTTT
73A 43 TTTTTT
74A 43 TTTTTTT
75A 25 TTTTTTT; N
76A 26 TTTTTTTTT
78A 3 P (PP, P)
79A 25 TTT (PPPP,PPP)
80A 24 TTTTTTT
86A 24 FFFFF;NN;N; N (no target related region found)
90A 25 TTTTTTTTTT
91A 26 TTTTTTTTT
93A 26 TTTITTTT(P,P)
94A 26 TTTTTTTT
96A 27 TTTTTT
97A 24 TTTTTTTT;N
98A 24 TTTTT

Table 3.9.1.

Continued. (APC windows)
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101A
102A
111A
112A
113A
114A
1154
122A
123A
125A
127A
129A
130A

44
44
24
24
23
29
24
23
24
24
24
26
23

TTTTT
TTTTT; N
TTTTTTTTT

i b iy i
IO
X{TT(P,P) ,NN)
TTTTTTTTT (P, P)
TTT

PRI

iy e

TTTT

TTTT

TTTTTT
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The false dismissal was 66T (small, very faint).

After preclassification, 150 selected target
exemplars and all 44 noise exemplars were split into a
training set (74 targets and 22 noise regions) and a test
set (76 targets and 22 noise regions). The training set
was used to design the optimum decision rule. It was felt
that similar results in classifying both sets would then
indicate that the classifier had utilized robust character-
istics of the target class and thus could be expected to
give similar results on further data of the same type.

A linear discriminant was used at the
trucklike node while a maximum likelihood discriminant
was used at the small target/non-target node. Five
features were used at both nodes, of which four were
the same: (h*w)/A, (h+w)/P, asymmetry, E&P. The fifth
feature was diff for the small target discriminant and skew-
ness for the truck/APC discriminant. The large targets are
divided into three classes (tank, truck/APC, other) by a
guadratic maximum likelihood discriminant using six
features: (h/w)', (h*w)/A, diff, skewness, E&P and Ep.
Two different procedures for classifying large regions
(> 94 pixels) were tested. One procedure attempted to dis-
criminate between four fiked classes (tank, APC, truck,
other); the other procedure used three classes (tank, APC,
truck) and two "reject" categories (non-target, unidentified
target). Both used identical polynomial maps into decision
space. In the latter classifier, however, the maximum
likelihood class assignment of a region had to be signifi-

cantly better than for random noise regions (otherwise, the
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non-target class was assigned) and significantly better
than the next best target class assignment (otherwise, it
was called an unidentified target).

The detection results using the fixed class
classifier on the 150 selected target exemplars are

summarized by:

Train Test Total

Large 53/53 53/55 106/108

Small 20/21 20/21 40/42

Total 73/74 73/76 146/150
where "M/N" means "M successes out of N tries." This

classifier thus appeared to be robust.

Table 3.9.2 displays the results of this
classifier for all extracted regions, including all target
and noise exemplars. A false dismissal for a window con-
taining a target occurs when no target exemplar (at any of
the thresholds) is classified as a target (i.e., classified
as tank, truck or APC). Similarly, a false alarm is any
noise exemplar (i.e., not associated spatially with a tar-
get region) classified as a target. However, multiple ex-
emplars for the same noise region are counted only once.

In effect, we are counting the image regions (as opposed to
exemplars) which are classified as target regions by at

least one exemplar. If a region is, in fact, a target re-
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gion and some exemplar of it is called a target, that is a
success. If no exemplar is so called, then a false dis-
missal has occurred. Finally, if the so-called target re-
gion does not, in fact, contain a target, then a false alarm
has occurred.

The classifier results consist of 6 false
alarms and 3 false dismissals from the 162 target windows
and 2 more false alarms from 10 non-target windows. No
window contained more than one false alarm cue. Details

are as follows:

False Dismissals False Alarms

32R 3T
35R 11T
33Aa 3R
56R

59R

86A

2N

8N

Figure 3.9.3a displays the 6 (total) false dismissals.
Masks of the 8 false alarms along with their gray level
windows are shown in Figure 3.9.3b.

The question of how target identifications
can be made in this environment of multiple exemplars,

while secondary to the task of detection, is an interesting
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64T 66T 32R 35R

36A 86A
a.
3 11T
3R 56R
59R 86A
2N 8N

Figure 3.9.3. Classification results for NVL
data base.

a. Six false dismissals.
b. Eight false alarm region masks
with their gray level windows.
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one. Since each exemplar in a containment tree can be
classified independently, there are many ways of arriving
at a final region label. Section 3.9.5 discusses the use
of context and considers the identification of object re-
gions from the classifications in their containment trees
as an example of context. We discuss the issue here simply
from the point of view of critiquing the classifier perfor-
mance. For each containment tree containing at least one
exemplar classified as a target, we chose the target type
of the exemplar with the best edge-match (E&P) score in
the tree and used that target type to designate the region.
In the event that the "best" exemplar was not described as
a target, we labelled the object region "unknown target".
Only large targets were considered, since small targets
while detectable were not considered identifiable.

In a test which classified all best exemplars
of large targets (55 tanks, 21 trucks, 36 APC's) the

between-types confusion matrix was:

classified as

T 40 5 6 4
A priori Tr 6 8 7 0
A 9 5 20 2

where "UT" is the "unknown-target" type. The 8 false

alarms were classified as 1 truck, 2 APC's, and 5 small
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targets. Between-class confusion is high, with tanks

being the most successful class. Trucks and APC's were
often confused with tanks. A number of reasons can be ad-
vanced for this performance. First, tanks were the most
numerous target and therefore could be identified most con-
fidently. Second, large APC's appeared with the wooden wave

deflection board in view, producing a characteristic "c"
shape. No attempt was made to utilize this special know-
ledge. Third, the large targets appeared in only a single
aspect and no generalized shape descriptors separating the
different types could be extracted realiably. It seems
most sensible to model the target types as three-dimensional
objects and to derive discriminators from their inherent
shape and size differences from all aspects.

The second classifier (which applied a
threshold to reduce the false-alarm rate) did not improve
classification as might have been expected. Any threshold
which would have reduced the number of false alarms also
caused a number of false dismissals. Thus while the
method might be of use, its utility could not be judged on
the limited data set available especially since there is no
model relating the false alarm rate to the false dismissal
rate.

We may summarize the principal classification

results as follows: the false dismissal rate of the system

is less than 4%, giving a system detection rate of 96%.
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The false alarm rate, based on the number of false alarm re-
gions per unit area, is 8 false alarms in 174 (128x128)
windows. Assuming there are 500x800 pixels per frame and
that a target occupies about 1/10 of a window, we conclude
that the total processed area corresponds to about 6
frames. Thus the false alarm rate is 8/6 or 1.3 per frame.
A separate test of the false alarm rate was made using a
set of four 512x512 pixel frames (Figure 3.9.4). All
available targets were detected. 1In addition, 4 large
false alarms and 8 small false alarms were detected (see
Figure 3.9.5). However, 5 of the 8 small false alarms
corresponded to fiducial marks. Moreover, one large false
alarm (in Fl) appears to be a target. In any case, 7

false alarms in 4 frames agrees well with the previous

estimate of the false alarm rate.
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Figure 3.9.4. Four 256x256 frames (after median
filtering and sampling).
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Figure 3.9.5.

Cued regions in the four frames
of Figure 3.9.4. All targets
were detected (masks indicated
with arrows), along with 12 false
alarms (5 corresponding to
fiducial marks).

3-151




3.9.4.3 Threshold selection evaluation

Our method of threshold range selection was
described previously. However, it bears repetition in this
section. Using the histogram of gray levels (perhaps of
the previous image), choose as a range the sequence of gray
levels from the mode to the highest gray level with
appreciable response (e.g., more than 5 points). The pre-
vious subsection demonstrated that this brute force approach
gave excellent system detection efficiency. Naturally, the
liberal range of thresholds has important effects on
system architecture, as discussed in Section 4.

Since the number of thresholds used deter-
mines the time cost (in a sequential implementation) or
the hardware replication cost (in a parallel implementation),
it is appropriate to consider methods which can accommodate
a limited number of thresholds. "Intelligent" methods of
threshold selection are discussed in Sections 3.5 and 3.10.1.
We wish to consider "brute force" methods which select
thresholds at every other gray level, at every third gray
level, etc.

As may be seen from Table 3.9.2, correct
target detections for single windows tend to occur in ex-
tended runs. Table 3.9.3 provides a histogram of run
lengths. In general, large targets had better contrast
and their detections were stable over long runs. Small

targets were fainter and were detectable over only a few
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Cumulative
Run length # of windows count
0 5 164
1, 17 159
2 25 142
3 29 117
4 27 88
5 19 61
6 12 42
7 10 30
8 8 20
9 7 12
10 3
11 2

Table 3.9.3.

Statistics of longest runs of
correct target detections in
164 target windows.
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% of 164
windows

100
97
87
71
54
37
26
18
1-2




thresholds at most. Table 3.9.3 shows what percentage of
the targets were detected within runs of I or longer for
I=1,2,... . Thus the false dismissal rate would be

11% if every other threshold in the range were omitted.
Since there were so few false alarms, it is not possible to
give comparable statistics of any reliability, but any
scheme which considers fewer exemplars is bound to detect
fewer false alarms.

From a slightly different point of view, we
might consider how to allocate a fixed number of thresholds
within a given gray level range. In the Hardware Technology
section, the design assumes that five thresholds were im-
plemented in parallel hardware. Thus, for a gray level
range of 10, thresholds would occur at every other gray
level; for a range of 20, thresholds would occur at every
fourth gray level. If we use the gray level ranges in-
dicated by brackets in Table 3.9.2 and distribute
N (=1,2,3,...) thresholds equally spaced (where feasible)

throughout the range, we compute the following results:

N # False Dismissals $# False Alarms
1 25 1
2 14 3
3 7
4 and above 8

Thus, for four or more thresholds equally spaced through-

out the available gray level range of each window, no
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additional false dismissals occurred beyond those already
dismissed using the whole range. Interestingly, for small

N the increase in false dismissals is just about compensated
by the decrease in false alarms. One is doubled as the
other is halved.

Naturally, the threshold ranges depend both
on window size and on window content. It is therefore not
likely that three thresholds will be sufficient in practice.
The best choice of N, the number of thresholds, will result
from estimating the probability/cost tradeoff for faint tar-
gets. Given a range of x gray levels for target regions, N
should be about x/2 or x/3, which for the current data
base suggests that N should lie between 5 and 10. For an

extension to image sequences, see Section 3.10.1.
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3.9.4.4 Classifier extension

An attempt was made to apply the classifier
derived from the NVL data base to a different set of thermal
images. The Alabama data base is a set of imagery taken
with a thermoscope. The actual sensor data are classified;
radiometric noise was added to mask the source. Figure 3.9.6

exemplifies the type of imagery involved. The gray level
histograms are not smooth and in some cases runs of gray
level bins contain no points. Median filtering (using odd
sizes) cannot be used to smooth such images since it pre-
serves false contours. Median filtering using even sizes
provides a small degree of smoothing. We elected to smooth
by locally averaging over a 2x2 neighborhood just to intro-
duce sufficient gray level variation so that 5x5 median
filtering would be effective.

The resultant images were windowed and
threshold ranges were selected. The Superslice algorithm was
then applied in order to extract candidate object regions.

It was necessary to increase the contrast threshold since

the inherent contrast (including false contours) was higher
than in the NVL data base. With this adjustment, the Super-
slice algorithm extracted regions corresponding to 64 out of
65 targets. After classification, 60 out of 65 were detected.
In addition, there were 3 false alarms in the 48 64x64 win-
downs considered (although one of the false alarms appears

to be a target missing from the ground truth).
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Figure 3.9.6. Alabama data base (selected frames).
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Figure 3.9.6

(continued)
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3.9.4.5 Feature data base

This subsection tabulates for each window
all exemplars and their associated feature vectors (Table
3.9.4). It also includes the feature weightings for each
node of the classifiers and the associated thresholds

(Table 3.9.5).
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Table 3.9.4 (continued)
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Table 3.9.4 (continued)

Non-target windows.

d.
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1. 20 =N = 1000
2. Gray level difference = 0.2
3. E&P =20.2

a. Superslice decision thresholds. Candidate object
regions must satisfy all of these conditions.

) 5 (h/w)' = 1.0
2. (h*w)/A = 2.5
3. |SDEV-3| = 2.5
4. (E&P =2 0.4).V ((E&P =2 0.25) A (logeN > 4.5))
5. E =20.75
p
6. Max(h,w) < 64

b. Preclassifier decision thresholds. Candidate target
regions must satisfy all of these conditions.

Table 3.9.5. Classification decision threshold.
(Feature variables are defined in
Table 3.8.1.)
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Feature Noise Target

factors coefficients coefficients

c3 . #98+02 . ©51+03
c4 . 458+02 . 481+03
c5 . e17+01 -, 953402
c7 . &75402 . £54+02
clo . H4B87+02 . 994403
c3 c3 - -, 218+02 -. 118+03
céd c4 - H84+03 -. 132+04
c5 c5 - 466401 —-. 180+02
c? c? ~. 434+02 -. 349402
clo clo -. 719+02 ~-. 106+03
c3 cd $933+03 . A35+C3
c3 ab . 789+01 -. &00+02
c3 c? —. 341+02 -, 87+02
cé cl0 -, b24+02 -. 121+03
c4 c5 - 497402 . 3142+03
c4 c’ . 129403 . 783+02
c4 clo . 413+03 . 352402
c5 c7 111402 . PHe+0E
c5 clo . 151+02 -, &78+01
c7 clo -, 594+02 -. 476+01

-. 785+02 -. 257403

Table 3.9.5c. Maximum-likelihood discriminant
used at small node using
features c3, c4, c5, c7, cl0. A
region is small if logeN = 4.5,
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Feature
factors
¢2
c3
c5
c6
clo0
zll

eé2 c2
c3 c3
c5 c5
cé6 cb
clo clo
cll cll
(o] c3
c2 c5
c2 cé6
&2 clo0
c2 cll
cB ch
€3 c6
e3 clO
c3 (ol
c5 cé6
c5 clo0
c5 cll
c6 clo0
c6 cll
clo cll

Noise
coefficients

+ 169403
+519-01
~-.5951+01
632402
+ 259403
157403
-+ 325402
~+112402
=+.454101
=.500+01
=+153403
“0264+02
526101
-+2535401
—e211402
=.808+02
~.487402
283401
175401
377402
+ 700401
= 230401
127402
+ 266401
-, 205402,
-.184+02
~¢7744+02
~e 267403

Truck-like
coefficients

Tank

coefficients

«277402
174402
¢ 216101
262401
+6834+02
-+132+01
-+1604+02
-.4658+01
-+320101
-¢3391+00
~.5824+02
~+688+00
-.857+01
+151+01
= . BP2 -0l
—+203402
+ 248401
~+303+01
835400
~s 220401
+ 125401
«387+00
647401
—+641400
=g BENHO A
-1 236400
+597+01
~+413402

179402
698402
138402
eP LB EA1
+21C+02
-+ 189401
“0273+02
=+176402
-5 1 324022
=+ 457400
“y 473402
=+ 367400
~.878+01
022?+02
= 2514+00
~+1194+02
+3234+01
+ 157401
- e 287401
~e199+02
235800
=, 2424+00
= 124402
-+ 3468401
150400
+ 424401
= 924402

Table 3.9.5d. Maximum-likelihood discriminant
used at large node using features

c2: €8y,

e5, c6, elo,

A re-

region is large if logeN > 4.5.
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Feature Fisher direction

(h*w) /A -.45
(h+w) /P .088
skewness .028
asymmetry .56
E&P =69

Threshold = -.7736

Table 3.9.5e. Fisher linear discriminant
used at truck-like node
using features c3, c4, cé6,
(oA =R
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3.9.5 Classification and context

Our approach to the target cueing problem has been
to extract and classify object regions independently of one
another. That is, segmentation is based on the assumption
that the object regions are individually thresholdable,
though not necessarily by the same threshold. Classification
is based on information derived from measurements on the
individual components but does not take into account the
intra- and inter-frame context of a region.

The Gestalt laws of grouping (see [26]) are of
interest in this respect since they refer to factors that
cause some parts to be seen as belonging more closely to-
gether than others. These rules are applications of the
basic principles of similarity which assert that region
association is partly defined by region resemblance.

There are several types of similarity which could be
used with FLIR imagery, e.g., similarity of appearance
(size, shape, brightness, etc.), similarity of location or
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