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PREFACE

This report of work performed under Contract F33615-76-C-3094 has

two divisions. Since each of these divisions deals with a separate aspect

of the work performed under the contract, they are presented herein as two

separate papers, with independent lists of references. The introduction

presents the historical background for this project, including prior work

directly related to software development, input data documentation, and

an example. Division 1 is a broad-range tutorial on system reliability

analysis, covering a very broad range of related subject matter. Division 2

is specialized to a discussion of the beta and gamma random deviate genera-

tors incorporated into the software developed under this project and docu-

mented in the companion "SPARCS-2 Users Manual," AFFDL-TR-78-18, Volume II.

This work was performed under work unit 2304N104, System Reliability -

Confidence Assessment, with Dr. H. Leon Harter as project engineer.
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INTRODUCTION

SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex

Systems, Version 2) is a PL/I computer program for assessing (establishing

interval estimates for) the reliability and the MTBF of a large and complex

system of any modular configuration. The system can consist of a complex

logical assembly of independently failing attribute (binomial-Bernoulli)

and time-to-failure (Poisson-exponential) components, without any regard to

their placement. Alternatively, it can be a configuration of independently

failing modules, where each module has either or both attribute and time-

to-failure components.

The raw data for assessments are the component failure history data

and the system configuration. The historical data are "successes and

failures" for binomial-Bernoulli components and "failures and testing time

(normalized to 'mission equivalent units')" for time-to-failure components.

The configuration data consist of a list or lists of minimal paths ("minimal

path sets" or "tie sets"), or else a list of minimal cuts ("minimal cut

sets"), for the system as a list of modules, and for each module as a list

of components. If the MTBF assessment option is selected, the system

"mission time" is also needed.

The underlying mathematical model, identical with that incorporated

into the first version of the SPARCS program described in [5], is an amal-

gamation of Boolean logic, probability, and Bayesian and Monte Carlo

techniques. The system reliability, a numerical-valued function of the

component reliabilities, is derived by the method of inclusion-exclusion
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(IE), also known as Poincar6's theorem, from the minimal paths or the

minimal cuts. The failure-history data are "sufficient statistics," for

the parameters of Bayesian conjugate prior distributions (c.p.d.'s) on

the component reliabilities, "beta" for attributes and "negative-log gamma"

for time to failure.

SPARCS assesses by Monte Carlo. At each trial, for each component,

a value of the reliability is generated from the c.p.d. and substituted

into the system function, to obtain a value of the system reliability for

that trial. The resulting "empirical" distribution of system reliabilities,

obtained over a series of trials, provides the basis for an assessment. Per-

centage points on that distribution are interpreted as system reliability

confidence limits. The corresponding MTBF confidence limits are calculated,

based on the simple relationship between the reliability and the MTBF.

SPARCS was developed at Oklahoma State University in a series of

stages. Initially J. L. Burris [1] prepared an estimation program MAPS

(Method for the Analysis of the Probabilities of Systems) to calculate the

system reliability as an exact function of the component reliabilities,

based upon system logical input data. MAPS was modelled to a great extent

after a similar system programmed in FORTRAN and assembler language called

SCOPE (System for Computing Operational Probability Equations) [2, 3],

which had been developed at Rockwell International in the 1960s under a

NASA contract. Certain significant improvements were incorporated into

MAPS, as follows:

1. PL/1 programming: this made it possible to develop a fully
" portable" program package with efficient binary digit
manipulation capability, in a more adaptable higher level
language than FORTRAN.
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2. Modularity: this made it possible to generate the equation
and calculate the probability for a system of substantially
larger sizes than can be processed with SCOPE.

3. "Minimal path" or else "minimal cut" calculations: by
taking advantage of the dual relationship between the paths
and the cuts, the same software can be used either to ob-
tain a system reliability function of the component relia-
bilities from the minimal paths, or else an unreliability
function of the component unreliabilities from the minimal
cuts.

Under Contract F33615-74-C-4072, Cooley [4] programmed the initial

version of the SPARCS system for system reliability- and MTBF-confidence

assessment. The same logical configuration data are needed as for MAPS.

Instead of inputting the component probabilities as in MAPS, however, the

component failure-history data are used, for both attribute and time-to-

failure components. The attribute data are accumulated successes and

failures; the time-to-failure data are accumulated failures and testing

time.

The initial version of SPARCS, as documented in [4] and [5], in our

opinion represents a landmark and a significant state-of-the-art improve-

ment over other programs designed for estimating or assessing system re-

liability. The results of an assessment can be verified in the sense that

they are reproducible; that is, one can input either the minimal paths or

else the minimal cuts and obtain a reasonably similar assessment for any

given set of input data. In addition, accurate reproducible assessments

can be obtained with many fewer trials (20-100) than by older Monte Carlo

programs, which sample missions rather than reliabilities and therefore

require many thousands of trials.

There are some aspects of the initial version of SPARCS which made

it relatively difficult to use. The most significant problem in this
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regard was the fact that in order to generate beta and gamma deviates, it

was necessary to set up calls to proprietary IMSL routines programmed in

FORTRAN and assembler languages. This is a clear interference with the

portability feature, since the rest of the program is PL/I and nonpro-

prietary. It also made the JCL language input more complicated. In addi-

tion, the program was also overly long, and required too much core space

and running time.

Oklahoma State University was awarded a second contract, F33615-76-

C-3094, to make improvements in SPARCS, as well as to perform certain re-

lated studies, such as error analysis of the random deviate generators

and model validation. In the process, we developed a program, now called

SPARCS-2, which not only has corrected major deficiencies in the original

version, but is also more efficient and much more serviceable from the

viewpoint of the user.

The following represent the improvements in SPARCS-2:

1. The new beta and gamma generators, CABTA and RGAMA respec-
tively, both employing a "rejection" technique, are much
faster than the IMSL routines in the original version.
These generators are described in greater detail in
Division 2 of this report.

2. The program is more compact, about ½ the original size,
and makes extensive use of the dynamic storage allocation
feature of the PL/1 language.

3. Core requirements are less than in the original version
and are variable; for example, very small problems can
take about 1OOK.

4. There is an improved "super modularity" capability. Modules
with minimal-cut unreliability calculations can be mixed
with those having minimal-path reliability calculations.
However, all output has been standardized to system relia-
bility or "probability of success," regardless of the form
in which the input data are presented, and whatever the
configuration of modules or elements within modules.
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5. Larger systems can be handled, and limitations are more
clearly spelled out. A system can consist of a configura-
tion of up to 128 modules or components, with up to 256
minimal states. Likewise, a module within the system can
have 128 components, and 256 minimal states. A probability
equation can have up to 3500 terms.

6. Internal documentation is very much improved, based on
"structured programming" concepts, to facilitate the prepa-
ration of input data, and for the benefit of users who may
have to make alterations in capacity or in some of the
internal procedures.
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ABSTRACT

This paper deals with the logical formulation of a system for purposes

of reliability analyses and both exact and approximate methods of calculating

the system reliability. The first part deals with the logical concepts, and

the second part with probability calculations.

The logical formulation in Part 1 starts from first principles. The uni-

versal set U of system states is a "Boolean algebra". The "power set" 9 is

the set of subsets of U. The subset of system success states or "paths" is a

"lattice" within U, also an element of 0, represented by a Boolean polynomial.

The terms of the polynomial are monomials which give the indicators for the

"sublattices" or "complete subsets" of U within the lattice of paths. The

optimal representation of this lattice polynomial is in the minimalized form;

the terms of the minimalized lattice of paths are called the "minimal paths".

Similarly, the subset of system failure states or "cuts" is a lattice polynomial

whose terms are sublattices within the lattice of cuts; the terms of the mini-

malized lattice polynomial are the "minimal cuts". Logically consistent systems

(also known as "coherent structures") have certain properties with respect to

the partial ordering of paths and cuts. The concepts of Boolean logic, mini-

malization, etc., apply to systems that do not have the "consistency" property,

as well as to those that do have it.

The second part of this paper deals with ways of using a minimalized lattice

polynomial to derive a numerical-valued probability function from which to cal-

culate the system reliability: also computer software, error bounds and ap-

proximations. The reliability is the probability that the actual state of the
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system is an element of the lattice of paths. The exact probability is derived

from the minimalized lattice polynomial of paths by the method of inclusion-

exclusion, also known as Poincare's Theorem. Dually the probability of failure,

or system unreliability, is derived from the minimalized lattice of cuts. Mod-

ularization and/or inversion can be helpful in keeping the probability function

reasonably small in size. Computer software is available both to generate

the probability polynomial and to calculate either the reliability or unrelia-

bility. Approximations can be used based upon simplifying assumptions which

delete low probability terms from the function. Conservative error bounds are

obtainable for some models. The approximation techniques include serializing

methods ("single-point failures" and "parts count"), very large system approxi-

mations for fault-tree applications and the Esary-Proschan bounds.
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INTRODUCTION

System reliability analysis is closely related to Boolean logic. From

George Boole's classic 1854 book, The Laws of Thought [9], it can be seen

that the kind of problem Boole was trying to solve

... to make that method itself the basis of a general method
for the application of the mathematical doctrine of Probabili-
ties ... [9, p. 1]

... it is always possible ... to express the event whose

probability is sought as a logical function of the events
whose probabilities are given ... [9, p. 15]

is essentially the same problem that a system reliability analyst tries to

solve. In this paper, the objective is logically symbolizing the success

or failure of a system as a function of success or failure for various com-

binations of its components, and evaluating the probability of success, that

is, the system reliability as a function of the component reliabilities.

Boole made some errors. His explanation of "inversion" involved a

clumsy use of series expansions and divisions by logical zero, in contrast

to the more elegant De Morgan's theorems. Also, he did not exhibit a deep

understanding of "duality". Subsequent work by others, based on Boole's

foundations, led to many significant developments in mathematics, symbolic

logic and philosophy, including set theory, particularly lattice theory

and the theory of partially ordered sets, Boolean algebra, and minimalization

by Quine [46, 47, 48]. The contributions of Boolean logic to applied disci-

plines such as computer science and electrical engineering, particularly

through the pioneering work of Shannon [54], are well known and recognized.

Logically based system reliability analysis appears to have been ini-

tiated by von Neumann in connection with his search for ways of explaining
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how large digital computers having many thousands of unreliable components

such as vacuum tubes could operate reliably. In a paper published in 1956

based on lectures given in 1952 at California Institute of Technology,

von Neumann [59] showed that by the use of redundancy, it is possible to

build and maintain a complex system having a greater reliability than any

of its components.

Moore and Shannon [41] used essentially parallel-series circuits con-

sisting exclusively of idealized identical relays all with identical re-

liabilities to develop functions relating the reliability of a system R

to that of the components. Bounds on this relationship were developed

showing at what point R could be greater than the reliability of the com-

ponents. Mine [40] generalized this work further by introducing Boolean

and set-theoretic notation, and employed linear graph theory to find the

functional relationship between system and component reliability. He also

developed bounds and conditions under which arbitrarily high R could be

obtained.

Birnbaum, Esary, and Saunders [8] extended the Moore-Shannon approach

to the general class of "coherent" systems that have certain logical con-

sistency properties. Their paper introduced terminology which has been

widely used, such as "minimal paths", "minimal cuts", and essential (rele-

vant) components". Esary and Proschan [16, 17] obtained approximations

for the reliability of coherent systems, including upper bounds based on

the minimal paths and lower bounds based on the minimal cuts. The theory

of coherent systems based on this general approach is discussed by Barlow

and Proschan [4, pp. 1-51]. A review of the literature, with special
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reference to the contributions of Z. W. Birnbaum and his students and

colleagues, is given by Saunders [52].

The research reported upon in the body of this paper deals primarily

with generalized approaches that apply not only for a complex system of

any configuration, but also if every component is different. Several large

scale computer programs of this type were prepared in the early 1960s in

connection with the U. S. space program. Some of these programs employed

Monte Carlo approaches. As a general rule, very little documentation is

available as to what theory was employed or what was done.

A FORTRAN software package with the acronym SCOPE (System for Com-

puting Operational Probability Equations) was developed about 1965 at the

Rockwell International Corporation. SCOPE provides an exact system relia-

bility function of the component reliabilities for a complex system of any

configuration but of limited size, based on either the minimal paths or

else the minimal cuts. This function is derived by the method of inclusion-

exclusion, also known as Poincard's theorem. To obtain the system value,

simply substitute the component values into this function. The SCOPE soft-

ware is available through NASA [44], and the mathematical theory is given

in [28], including some comparisons with the Esary-Proschan bounds.

An improved version of SCOPE was prepared in 1972 by Burris [11] at

Oklahoma State University with the acronym MAPS (Method for the Analysis of

the Probabilities of Systems). Instead of FORTRAN, it is programmed in

PL/I, which is better adapted to binary-digit manipulation. It also incor-

porates a modularity feature so that the system can optionally be processed

as a complex configuration of independent modules, each module consisting

of a complex configuration of independently failing elements. Consequently,
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there is simultaneously both an increase in capacity and a saving in com-

puter time, over the requirements of the parent SCOPE program.

A further extension of MAPS is SPARCS (Simulation Program for Assess-

ing the Reliabilities of Complex Systems) programmed by Cooley [13] at

Oklahoma State University under Air Force Contract F33615-74-C-4072. This

uses Monte Carlo combined with Bayesian techniques to assess (provide a

schedule of confidence levels for all values of R between 0 and 1) both R

and the MTBF (mean time between failures) of a complex system of any con-

figuration consisting exclusively of pass/fail and/or time-to-failure com-

ponents, or any mixture of these, from failure-history data. Both MAPS

and SPARCS are described in [29]. A more efficient version of SPARCS,

called SPARCS-2, has been prepared by Lee [26].

A related and parallel effort to SCOPE and its daughter programs (or

SPARCS and its parents) is the development of the fault-tree methodology.

Initially designed for aerospace applications at Bell Labs [6] in 1961,

and subsequently also at Boeing Airplane Company, as an aid to engineers

in analyzing sequences of events leading to system failure, it has recently

been used extensively for reactor safety studies by the Atomic Energy Com-

mission and its successor, the Nuclear Regulatory Commission. A recent

but historic document reporting the results of extensive applications of

the methodology is the "Rasmussen Report WASH-1400" [55], particularly

Appendix II, "Fault-Trees". Descriptions of the methodology are given by

Mearns [37], Haasl [23], Eagle [14], Schroder [53], Barlow and Lambert [3],

Vesely [56, 57, 58], and Barlow and Proschan [4, pp. 264-266].

A fault tree is a Boolean-equivalent diagrammatic representation of

all the ways of failing a complex system through combinations of failures
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and repairs of one or more components. It is derived from block diagrams,

schematics, and/or blueprints, and logical analysis of the interrelation-

ships of the elements. "Minimal cut sets" are obtained from the tree. By

substituting the component values, an estimate of R, the system availa-

/ bility or the failure rate are obtained. A rather substantial library of

fault-tree methodology computer programs is available, including programs

which build the trees, find the cut sets, or perform numerical evaluations.

Vesely made some major contributions with the development of the PREP and

KITT codes [56, 57]. Salem, Apostolakis, and Okrent [51, pp. 34-45] and

Worrell and Burdick [62] give reviews of the available software.

In general, the fault-tree methodology incorporates the same Boolean

and probabilistic theory that SPARCS and its parent programs do. However,

because the methodology is generally applied to large systems having only

low failure-rate components, various types of "rare event approximations"

are employed, to save computer time. These include both Monte Carlo and

deterministic selections of components and cut sets according to importance,

deleting higher order intersection terms in the probability equation, and

basing calculations on failure rates rather than probabilities. "Importance"

measures are discussed by Nagel [42], Nagel and Schroder [43], Lambert

[25], and Mazumbar [36], and Barlow and Proschan [4, pp. 26-29].

This article is a review of the state of the art of evaluating R for

a complex system as a function of the reliabilities or failure rates of

the elements. It develops the common Boolean theoretical structure which

underlies all the different methodologies, and shows some of the similarities

of and the differences between exact methods and approximations. There are

two parts: Part 1, on "Logical Formulation" and Part 2 on "Probability

Calculations".
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Part 1 of the paper gives the logical formulation, starting from set-

theoretic first principles, from the viewpoint of lattice theory. We

describe the universal set U of system states and the power set 0 of

lattices or events which are subsets of U. Events such as system success

or system failure are collections of success states, called "paths", or

else failure states, called "cuts", described by lattice Boolean polynomials.

The terms of the minimalized form of the "success" polynomial are the

"minimal paths" and for the "failure" polynomial the "minimal cuts" where

each term denotes a sublattice.

Part 2 describes how to calculate the system reliability. First a

probability function, a numerical-valued function of the component proba-

bilities, is derived from the lattice polynomial by the method of inclusion-

exclusion. Then the component probabilities are substituted into this

function. Part 2 discusses exact methods, error bounds, approximations,

serializing methods and the fault-tree methodology.
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Part 1: LOGICAL FORMULATION

BOOLEAN ALGEBRA

Components, System States, and the Universal Set

A system has n zero-one (binary-valued) components, each representing

in reliability terms a potential failure mode or type. The value "0" denotes

a failure condition and "I" a success. The binary representation is not

meant to include only attribute failure modes. Both time-to-failure com-

ponents and those for which success or failure is defined by exceeding or

not exceeding a critical value of a variable can be included, since these

too can either be failing or operating successfully.

A state of the system is a binary n-vector, with each two-valued com-

ponent denoting a value for the corresponding failure type. Since there are

n components and two choices for each component, there are 2n different

n-vectors, each representing a "unit event" or "simple event" which is a

possible state of the system. The collection of these vectors is called

the universal set U. Those n-vectors which represent system "success" are

called "paths" and those for "failure" are called "cuts".

The Boolean operations of addition, multiplication, and inversion are

performed on the n-vector elements of U, component by component, in the

usual way: 0 + 0 = 0; 0 + I = I + 1 = 1; 0 • 0 = 0 • 1 = 0; 1 • I = 1;

1= 0, 0 = 1. The Boolean sum of any two or more n-vectors is their least

upper bound l.u.b., and the Boolean product is the greatest lower bound

g.l.b.
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Let X = (xl, ... I xn), Y = (YI' "''' Yn)' Z = (Zl, ... , zn), xi., yi.,

zi = 0, 1, i = 1, ... n, be any three binary n-vector elements of U.

Both the Boolean operations of addition and multiplication are associative

((X + Y) + Z = X + (Y + Z), (X • Y) Z = X • (Y • Z)) and commutative

(X + Y = Y + X, X • Y = Y • X) and the system is distributive with respect

to the operations of addition and multiplication ((X + Y) - Z = XZ + YZ).

Since there is a unique "zero" element (0, ... , 0), all components failed,

a unique "one" element (1, ... , 1), all components working, and all Boolean

operations are performed on any two or more n-vector elements of U to yield

another n-vector, the universal set U is a Boolean algebra (see Halmos

[24, p. 5, 40]).

Comparison and Partial Ordering

The universal set U is partially ordered, with the < operation. For

any pair of n-vectors X = (xl, ... , xn) and Y = (YI' ... , Yn)' X < Y (X is

smaller than or equal to Y) if X • Y = X (xi = 1 v* yi = 1). This also im-

plies that X + Y = Y. Equality, strict inclusion, and strict noninclusion

are defined as follows, respectively:

X = Y: X < Y, Y < X

X < Y: X < Y, Y # X

X ý Y: X • Y < X.-

Subsets and Lattices

A lattice L is a nonempty (meaning: it contains at least one ele-

ment) subset of U, for which every pair of elements (i.e., binary n-vectors)
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has both a g.l.b. Boolean product and l.u.b. Boolean sum (see Birkhoff

[7, p. 6]). In the probability sense, a lattice is also known as an

"event". Since every pair of n-vectors has both a g.l.b. and l.u.b., L

also has a g.l.b. Boolean product and l.u.b. Boolean sum for all the n-

vectors in the lattice. Both the g.l.b. and l.u.b. are members of U, but

not necessarily of L.

The differences between a lattice and a Boolean algebra have to do

with both complementation and membership. In a lattice, the only operations

are Boolean addition and multiplication; in a Boolean algebra, there is also

complementation or inversion. With respect to membership, the n-vector

resulting from an operation or sequence of operations upon any two or more

members of the same Boolean algebra is in the algebra. By contrast, for

a lattice L, the result of either operation, addition or multiplication,

on any two or more members of L does not necessarily result in a member

of L.

The Power Set

The set of lattices generated by forming subsets of U is called the
"power set" 6. For a system with n components, 0 has 22n lattices. This

can be rationalized in essentially the same way we explain why U has 2n

elements. 9 has a set of subsets created by forming collections of n-vectors.

For every lattice in 0 and every n-vector in U, there are two choices:

either the n-vector is in the lattice, or else it is not. Since these two

choices are available for every one of the 2n n-vectors in U, there are

2 2 lattices in Q.
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Complete Subsets: Sublattices

The most convenient way of representing subsets of U is as inclusive-

or unions of "sublattices" or "complete subsets". According to Rutherford

[50, p. 9], a sublattice S is a lattice which includes both the g.l.b. and

l.u.b. for every pair of elements in S. Let X e S, Y e S be any n-vectors;

then X + Y E S, X • Y c S. Equivalently, a sublattice is a lattice which

contains both its own g.l.b. and l.u.b. and every n-vector element in the

interval between. Every sublattice is characterized by m fixed-valued com-

ponents called "indicators", m < n, which have the same value for every one

of the n-vector elements in S. In [34], it is shown that there are 3n sub-

lattices in U.

Example

A system has two components. The universal set U has 22 = 4 elements

U = {00, 01, 10, i1}.

The power set 9 has 222 16 different subsets of U

= {0, {0o}, {01}, {10}, {11}, {00, 011, {o0, 101, {00, 11i, {01, 101,
{01, 11i, {01, l0}, {00, 01, 10}, {00, 01, 11i, {00, 10, 11i,
{01, 10, 11}, Ul.

As is customary, 0 denotes the "empty set" (with nothing in it). There are

32 = 9 sublattices in 9

{001
100}
{10}
{11}
0 • = {00, Oi1
1 • = {10, 11}

0 {00, 10}

I= {01, ii1
U.
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The Algebra of Sets and Lattices

The power set , is an algebra of lattices. Algebraic operations are

performed on lattices which are elements of 9 to form other elements of •.

Somewhat comparable to the Boolean operations on n-vector elements of U,

these set-algebraic operations are "inclusive-or union (U, V, also called

'join')", "intersection (n, A, also called 'meet')" and "complement". Let

L L 2', L3 be any three lattices of -. The union and intersection of opera-

tions are associative: (L 1 V L2 ) V L3 = LI V (L 2 V L3 ), (L 1 A L2 ) A L3 =

LI A (L2 A L3); commutative: L V L2 = 2 V L19 LIA L2 = L2 A L and

distributive: (L1 V L2 ) A L3 = (L 1 A L3 ) V (LI A L2 ).

Let LI, ... , L be any m lattices in Q, m < 22". The union J Lm -- 1  j

consists of all n-vectors in at least one of the lattices L,..., L. The

m
intersection L L. consists only of the n-vectors in at least one of the

lattices LI, ... , L m. The complement L of a lattice L consists of all n-

vectors in U that are not in L.

BOOLEAN POLYNOMIALS AND MINIMALIZATION

A lattice subset of U which is also an element of V is characterized by

a Boolean polynomial. Each term or monomial, also frequently called "min-

term", is a collection of indicators for a sublattice subset of the lattice.

The polynomial or form is an "inclusive-or" union of these sublattices. It

is customary to employ the logical "or" (V ) symbol to separate terms; some-

times "+" is used instead if there is no ambiguity as to the difference be-

tween logic and arithmetic.

For example, a system has three binary-valued components: xl, x2 , and

x3; xi denotes that x. = 1 and x. 0. The lattice
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L = x1I V X2x2 3
{ l~X2X3 XlX2X

has two sublattices x1 = x x 2X3, XX3 and x 2x3 =

{XlX2x 3 , Xlx 2x 3 }. This representation is not unique. There are other

sublattice configurations, including, for example:

X1 X2 V X1 X2 V XX 2 x 3

X1X3 V xxX3 V XlX2X3 .

Clearly, because it is shorter and has more coverage per term and the small-

est number of indicators in each term, "xI V x 2x 3" is better than any of the

alternatives.

The "optimal" or "best" representation of a lattice is a "minimal"

form, such as "xI V X x 3" in the above example. This implies the largest

coverage in each term, the smallest number of terms, and the smallest average

length of a term. In general, minimal forms may or may not be unique.

Quine [46, 47, 48] defined the scope of the minimalization problem in terms

of finding all the so-called "prime implicants", the terms of all the dif-

ferent alternative minimal forms. In a recent series of papers, Locks [31,

33, 35] introduced the "reversal" method of minimalization, partially based

on Quine's methodology, without necessarily finding all the prime implicants.

Coherent and Noncoherent Systems and Minimal States

Birnbaum et al. [8] introduced terminology which has since been widely

used, such as "minimal paths", "minimal cuts", etc., in the context of a

coherent structure which has certain logical consistency properties appro-

priate for system reliability analysis. The system has n zero-one elements

xi, i = 1, ... , n; x. = 0 denotes component failure and x. = 1 success.
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The 2n n-vector elements of U are divided into two major lattices or

"events", the lattice of "paths" L for the success states and its comple-

ment, the lattice of "cuts" L for the failure states.

For a coherent system, the "zero" element (0, ... , 0), all components

failed, is a cut, the "one" element (1, ... , 1), all components successful

is a path, and no path can be smaller than a cut (X a path and Y a cut

X 9 Y). Otherwise, the system is "noncoherent". In the coherent case,

when the lattice polynomial L for the set of success states is in its mini-

malized form, every sublattice subset of L is represented only by one-valued

components and no sublattice is a proper subset of any other sublattice.

The terms of the minimalized polynomial for L are called the "minimal paths"

or else the "minimal path sets". Similarly, the minimalized polynomial L

for the lattice of cuts has terms containing only zero-valued components,

called the "minimal cuts" or "minimal cut sets".

For example, the minimalized lattice of paths for a two-component

parallel case is

L=aVb

and the polynomial of cuts has one term

L = ab.

This is an example of coherence. The previous example is noncoherent since

L = xI V x 2 x 3, and

E= XIx2 V x1x3•

This is not coherent because the cut state 011 contains the path 010. While
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the literature does not yet explicitly define minimal paths and minimal cuts

for noncoherent systems, there would be no conflict with current practices

if we called x1 and x2 x 3 minimal paths and x 1x2 and xlx3 minimal cuts.

Minimalization of a coherent system is simpler than for a noncoherent

one. The minimal form in the coherent case is unique, and the only simplifi-

cation operation employed is absorption (example: abc V ab = ab). By con-

trast, for a noncoherent system, the minimal form may or may not be unique;

also, because complementary components are involved, the process requires

the operations of merging (example: ab V ab = a) and redundant indicator

elimination (example: abc V ac = ab V ac). Cycling is also needed as de-

scribed in [31] and [33] to test for both minimality and uniqueness.

The literature on coherent systems and the financial investment that has

been made in computer software for computing estimates of the reliability of

coherent systems are rather extensive. For further information, refer to the

Introduction. Comparatively little theory is available about noncoherent

systems. However, there is a computer program by Worrell called SETS (Set

Equation Transformation System) for noncoherent minimalization in the con-

text of system reliability fault-tree analysis (see Worrell [61] and Atkinson

[1] in [2]). Noncoherence arises whenever there is dependency of one failure

mode type upon another. Examples of potential applications of noncoherence

include: maintenance, test, repair, and human factors problems, the so-

called "common cause" failures [12, 15, 60] and [55, Appendix IV] (failure

modes which can simultaneously cause failures of more than one component),

and "phased missions" [18] (missions in which success or failure in one

phase depends upon success or failure in another phase) (see also Example 3

in [28] and Figure 1 of Powers, Tompkins, and Lapp [45]). Since many of
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the same definitions ("minimal path", "minimal cut", etc.) seem to carry

over from coherence to noncoherence, and since the common linkage between

the two seems to lie in techniques for minimalization, a further develop-

ment of the theory of noncoherence would be helpful in understanding the

properties of both coherent and noncoherent systems.
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Part 2: PROBABILITY CALCULATIONS, SOFTWARE,
APPROXIMATIONS AND ERROR BOUNDS

INTRODUCTORY

The Boolean foundations of system reliability analysis are presented

in Part 1. The transition from logic to probability is the method of

inclusion-exclusion (IE). Both exact and approximate IE methods for gener-

alized complex systems are described in Part 2, based on lattice theory and

the minimal path-minimal cut approach of Part 1. The universal set U is a

probability space, and its lattice subsets are "events". The sublattice

events in the minimalized lattice of paths are represented by the "minimal

path sets" and those in the minimalized lattice of cuts by the "minimal cut

"sets". IE generates a system reliability function of the component relia-

bilities from the minimal paths, or else an unreliability function of the

component unreliabilities from the minimal cuts. The component probabilities

are substituted into this function to obtain the system probability.

System reliability analysis by exact methods frequently requires ex-

cessive computer time. By inverting the logic function or portions of it,

or by modularizing the system, in many cases the computer time can be reduced.

However, in large scale applications, such as large fault-tree problems or

microminiaturized logic circuit "black boxes" consisting of many thousands

of elements, cancellations and reductions achieved solely in the context of

the exact methodology may still not be enough. Approximations can be employed

in those cases if the probability of system failure is small. Part 2 covers

exact methods, including computer software, and approximations, including

error bounds.
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DISCUSSION

The Universal Set as a Probability Space

In order to simplify the calculations, assume that the n components all

succeed or fail independently. Under this assumption, the probability of

the unit event representing each n-vector element is obtained by multiplying

the probabilities of success (reliabilities) of the one-valued components

by the probabilities of failure (unreliabilities) of the zero-valued compo-

nents. Let

xi = 0, 1, i = 1, ... , n

be the logical value of the i-th component; xi = 0 denotes "failure" and

xi = 1 denotes "success". Also, let

ri, 0 < ri < I, i = 1, ... , n

be the component reliability or probability of success, and 1 - ri the com-

ponent unreliability or probability of failure. Let

X = (Xl, ... , xn)

be an n-vector element of the universal set U. Then

pr X = n rixi (1 - r.)lxi

is the probability of the n-vector. It is shown in [28] that under these

assumptions U is a probability space, since the probability for each element

is nonnegative, the sum of the probabilities is one, and the probability of

any subset is additive in the probabilities of its mutually exclusive

elements.
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Sublattice Events

The simplest case is a "sublattice event". The probability of the

event is the numerical product of the probabilities of the indicators, those

components which have the same value in every n-vector element of the sub-

lattice. Let S be a sublattice with m indicators, xi, i = 1, ... , m, m < n;

for each i, r. is the reliability. Under the independence assumption:
1

n xil l-xi
prS = r.

For example, for the sublattice x 1 x 2 x 3 x 5

pr S = r 1 r 2 (0 - r 3 )r 5.

Series and Parallel Systems

An important special case of a sublattice event is the so-called

logical "series" system. In this case, every component must operate for

the system to function successfully. The universal set U has a single path,

the unit event (1, ... , 1), and all other n-vectors are cuts, because the

failure of only one component is all that is needed in order for the system

to fail. Thus, if there are n components, the system reliability R is the

product of the component reliabilities

R = r1 r 2 ... rn.

"'Series reliability" implies "parallel unreliability" since only one

component failure is needed to induce system failure. The dual concept is

"parallel reliability"; if only one component works, the system operates

successfully. By a similar reasoning, parallel reliability implies "series
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unreliability" since the failure of all components is required for system

failure and the unreliability R = 1 - R is the product of the component

unreliabilities (1 - rI) (I - r 2 ) ( -n).

Compound Sublattice Events

Compound sublattice events are obtained from combinations of unions,

intersections, and complements of sublattices and are represented by Boolean

polynomials. The most elementary compound event is an "intersection", since

the intersection of sublattices is also a sublattice. The intersection L of

sublattices LI, ... , L

m

L = j 1Lj,
j1J

being a proper subset of all the L., is also a sublattice represented by all

of the indicators for all of the Lj; in other words, the set of indicators

for L is the union of the indicators for the L.. For example, the intersec-

tion of the three sublattices XlX2 , x2 x 3 , xIx 4 x5 is a sublattice XX1X2X4X5.

Under the assumption that all components are independent, the probability is

r 1 r 2 r 3 r 4 r 5 .

The inclusive-or union L 1V L2 of two or more sublattice events L and

L2 is a lattice and might be, but is not necessarily a sublattice, because

the lattice L1V L2 may or may not contain both the g.l.b. and l.u.b. Since

the intersection L A L2 is double counted, the probability of the union is

pr LIV L2 = pr L 1 + pr L2 - pr L, A L2.

For example, under the independence assumption

pr x 1 x2 V x 2 x3 = pr xIx 2 + pr x 2 x 3 - pr Xlx2 X3
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Under distributivity, a compound event is factored into a Boolean

polynomial. For example,

(x 1 x 2 V x2 x 3 ) A x 1 x 4 x 5 = xIx 2 x4 x5 V xIx2x 3x 4x 5 .

A further reduction is possible in this case. Under the absorption rule

described in Part 1, xIx 2 x 3 x 4 x 5 is a proper subset of x1 x2 x 4 x 5 . Therefore,

this simplifies to just x1x2 x 4 x 5 with a probability of r 1 r 2 r 4 r 5 .

Inclusion-Exclusion: Inclusive-or Unions

The probability function for the inclusive-or union of three or more

sublattice events is built up recurrently by associating sets pairwise. For

three lattices L,, L2, L3

L1 V L2 V L3 = (LI V L2 ) V L3 .

Therefore,

pr L 1 V L2 V L3 = pr L, V L2 + pr L3 - pr (L 1 V L2 ) A L3

= pr LI V L2 + pr L3 - pr (L1 V L3 ) A (L2 V L3 ).

For the three sublattice events x1 x 2 , x 2 x 3 , x1 x 4 x 5

XIX2 V x 2 x 3 V xIx4X5 = (xIx2 V x 2 x 3 ) V XlX4 X5 *

The probability function is

pr (x 1 x2 V x2 x 3 ) V X1X 4 X5

= pr x1 x 2 V x 2 x 3 + pr x1 x 4 x 5 - pr (xlx 2 V x2 x3 ) A xlx4 x 5

1 rl2 + r2r3 1 rl2r3 + r1r4r5 - r1r2r4r5.
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The generalization of this process is the method of inclusion-exclusion

(IE), also known as Poincar6's theorem (cf. Feller [19, p. 99] and Riordan

[49]). Let the lattice L be the inclusive-or union of m sublattice events.

Let S1 denote the sum of the m probabilities of the sublattices, S2 the sum

of the probabilities of the (m2) intersections taken two at a time, S3 the

sum of the probabilities of the (3) intersections taken three at a time, etc.,

and S the probability of the intersection of all m sublattices. Thenm

pr L = S1 - S2 + S - ... + (-1)m Sm. (1)

Minimal States

For system reliability analysis, L could be either the minimalized

lattice of paths and its terms the "minimal path sets", or else the minimal-

ized lattice of cuts with terms that are the "minimal cut sets". Note that

the form of the function is not affected by whether or not the system has

the coherence property with all common-valued components. Therefore, it

applies equally well to both coherent and noncoherent systems. Since L

could be either the lattice of paths or else the lattice of cuts, the designa-

tion "minimal state" is used in the sequel for the terms of a minimalized

polynomial, whenever it is possible to do so.

Computer Programs

Computer software is available to generate probability functions of the

form of Equation (1) and to calculate the system reliability, with the mini-

mal states and the component probabilities as input, but only for coherent

systems. Three programs of this type are SCOPE [44], MAPS [11], and SPARCS

[13, 29], all of which are now available as "packages", so that the user

need supply only the necessary input data.
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Although all three of these programs are virtually indistinguishable

in the way IE is employed, there are certain differences. For example,

SCOPE is a two-pass FORTRAN program, with the function generated in the

first pass and the calculation in the second pass. Both MAPS and SPARCS

are one-pass PL/1 programs, with all operations in a single pass. MAPS and

SPARCS also have a modularity feature so that the system can optionally be

processed as a complex configuration of independent modules, with separate

probability calculations for each module and for the system as a whole.

Also, both SCOPE and MAPS are "estimation" programs and provide merely a

single value of the reliability of the system, whereas SPARCS "assesses"

the system reliability; this means that it provides a schedule of confidence

levels associated with every potential value of R between zero and one.

SPARCS also optionally assesses the system MTBF (mean time between failures).

SPARCS assesses by a combination of Bayesian and Monte Carlo techniques.

The components are all assumed to be either attribute-type or else time-to-

failure type, or any mixture of these, with no restriction as to their place-

ment. The component reliabilities are subject to Bayesian prior distribu-

tions that are functions of the prior history data, either beta for attribute-

type components or negative-log gamma for the time-to-failure case. The com-

ponent values are sampled from these prior distributions and substituted into

the IE system function in a series of repeated Monte Carlo trials; the re-

sult is an empirical distribution of the system reliabilities, from which the

assessments are performed. A newer version of SPARCS, called SPARCS-2 [26]

incorporates a "super modularity" feature. It is modular not only in the

sense that the system is represented as a complex configuration of indepen-

dently failing modules, each module in turn being a complex configuration of
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independently failing components, but also in that modules with minimal-

path reliability functions can be intermixed with minimal-cut unreliability

modules, with no restrictions.

Computer Time Management: Keeping the Probability Function Small

The probability function, Equation (1), could potentially be enormous,

because of the upper limit of 2m - 1 terms. For example, with m = 10, there

could be up to 1023 terms representing the ten minimal states and all the

different possible sublattice intersections of two at a time, three at a

time, etc. Since the maximum increases as the power of two for additional

minimal states, this could be beyond the capacities of the fastest and

largest computers. Fortunately, the IE probability polynomial almost never

gets this large; in most practical problems, the part that is used is a

tiny fraction of the maximum. The more overlapping components there are

between minimal states and the more complementation, the more terms are

cancelled. Modularization and inversion can help reduce the costs even

further.

Overlapping components reduce the size of the probability polynomial

because most of the higher order intersections are nonexistent. Those

higher order intersections generated by IE can have many multiple entries

cancelling against each other, so that the ultimate size of the polynomial

is a very tiny fraction of a 2 - 1 maximum. For example, Burris [11] re-

ports a case of a coherent system with 33 partially overlapping components

between and among 18 minimal paths, processed by the MAPS program, with a

probability polynomial having only 84 terms instead of the potential maxi-

mum of 2 - 1 = 262,143.
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Complementation reduces the size of polynomial by cancelling out inter-

sections of complemented sublattices. This can be done only for noncoherent

systems, because there are no complements in a minimalized lattice form with

coherence. Since there is no known special software for noncoherent IE

polynomial generation, there are no examples of case studies of experience

with complementation.

Modularization means representing the system as a configuration of

modules, generating a separate IE polynomial for each module, and another

one for the system as a configuration of modules. This not only eliminates

most of the irrelevant higher order intersections, but also saves processing

time because fewer components and terms are processed at a time; also, the

combined sum of the sizes of all IE polynomials for all of the modules is

still very much less than for processing as a unit. This modularization

feature is incorporated into both MAPS and SPARCS. Burris [11, p. 82] re-

ports that for 33 components with 18 minimal paths, when the system is rep-

resented as three modules in series, there is a combined total of 20 terms

in all three polynomials, all of them much shorter than the 84 terms of

the probability polynomial for the integrated system; also, the processing

time was reduced from 9.09 seconds to 1.5 seconds on an IBM 360/65.

"Inversion" as a form of computer-time management is related to the

fact that the user has an option of doing either minimal-path reliability

analysis, or else minimal-cut unreliability analysis, whichever is more

convenient, has the smaller number of minimal states, requires the least

computer time, etc. The minimal cuts can be obtained from the minimal paths

or vice versa, by inverting the lattice polynomial, using De Morgan's theo-

rems, and minimalizing. For a coherent system, this is particularly con-

venient, since the only simplifying operation needed is absorption. For a
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noncoherent case, because there are complementary terms, a more complex

form of minimalization is needed such as the reversal method discussed in

[31, 33, 35]. In reference [32], a case is reported of a software relia-

bility analysis problem originally due to Brown and Lipow [10] processed

by SPARCS-2 with artificial data. There are 13 components. One module has

nine minimal paths or 26 minimal cuts. The IE polynomial for the minimal

paths has 91 terms and required 31 seconds of CPU time (370/158) for 100

simulations; the polynomial for the minimal cuts has 421 terms and required

152 seconds for 100 trials.

APPROXIMATIONS

Because the reliability R is frequently estimated for systems on the

order of .95, .99, .999, or even higher, the probability of failure R = 1 - R

can be very small. By approximating, we may either overestimate or under-

estimate R but have little noticeable effect upon the estimate of R. Ap-

proximations are based on the idea that if the probability of a failure for

a single component is very small, the probability of having simultaneous

failures of two or more components may be insignificant and negligible.

The approximations which are employed include: serializing methods, such as

"parts count" and "single point failures"--these effectively delete minimal

cuts with two or more components; methods that delete unimportant components,

cut sets, or higher order intersection terms from IE generated polynomials--

this includes the popular "singles, doubles, etc." in the fault-tree method-

ology which does a combination of all of these; the Esary-Proschan bounds;

and error bounds.
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Error Bounds

An approximation implies a willingness to accept a reasonably small

error in exchange for computational feasibility. It is useful, whenever

possible, to set bounds on the amount of error. These bounds depend upon

the form of the approximation. Since the analyst may be mixing several dif-

ferent kinds of approximations and not doing any one of them in a "pure"

form, but basing his way of applying each type on arbitrary numerical cri-

teria, there is no single error bound that would ordinarily be relevant to

a mixture of approximations.

For example, consider the "singles, doubles, etc." approximation, vari-

ations of which have been widely used in "risk assessment" software for

fault trees. Each software package does it a little differently, but the

standard treatment appears to be as follows: first, delete all components

with very low failure probabilities, then all cut sets of two or more com-

ponents with a combined very low failure probability, then three or more,

etc., stopping, for example, at cut sets of five or more components. Then,

in generating the IE probability polynomial, delete all higher order terms

beyond a specified number of intersections or below a specified probability,

or possibly both. Clearly, no generalized error bound can be established

for a procedure that combines this many different types of approximations.

The best known and possibly most useful error-bound model is Bonferroni's

inequality (see references [19, p. 110] and [39, p. 8]). This is based on

truncating the IE probability polynomial, Equation (1), by deleting higher

order intersection terms beyond a certain point. Suppose that only the first

r - 1 terms of the right-hand side of Equation (1) are used, viz:

pr L _ SI - S2 + S- ... + (-)r-2 Sr-I.
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Then, the maximum error (true value minus the approximation) is smaller in

absolute value than the next term S . Note that because the polynomial isr

an alternating series, if r is an even number, the probability is under-

stated, and overstated if r is an odd number. Messinger and Shooman [38]

provide some Bonferroni-type error bound calculations for examples with

idealized components all having common probability values, following the

general Moore-Shannon approach.

A conservative error-bound model is given in [27], based on deleting

minimal states under the twin assumptions that the minimal states are in-

dependent (i.e., have no overlapping components) and all have identical

probabilities. If the system has m minimal states and mI of these are not

accounted for, the error approaches 1 - exp {-mI/m}. Since

x ; 1 - exp {-x}, for x < .10,

this implies, for example, that if up to ten percent of the minimal states

are unknown or not used, the maximum error in the estimate of the system

probability is approximately equal to the proportion of missing states.

This model overstates the error for most practical problems because

the usual practice is to delete only states (i.e., cut sets) having very

low probabilities and to retain those with high probabilities. Likewise,

since the minimal states are in general mutually dependent (i.e., with over-

lapping components), the independence assumption causes a larger error than

would be obtained in practice. On the other hand, this model provides use-

ful information in the sense of the potential effect of missing data. For

example, suppose a system unreliability study is performed, and the analysis

inadvertently or erroneously yields a fault tree that does not account for

all of the relevant system failure modes. Then, based on the possibility
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that the unknown cut sets could have a reasonably high probability, the

maximum error 1 - exp {-m 1 /m} does not seem to be all that conservative.

For further discussion on the potential effect of missing information,

refer to Barlow and Lambert [3].

Serializing: "Parts Count" and "Single Point Failure"

Serializing is a form of approximation which has a very simple model

to calculate an estimate of the system reliability. The simplifying as-

sumptions are threefold: (1) the system is logically "serial"--the only

minimal cut sets are individual failures, and all components are needed for

system performance; (2) the components all have extremely low (constant)

failure rates with all individual failures governed by the exponential dis-

tribution; and (3) all components have the same duty cycle.

An example of serializing is "parts count" (cf. Bazovsky [5, pp. 90-91])

which is often used for complex circuits consisting of very many parts of

several different types, such as, for example, microminiaturized electronic

circuits with many thousands of individual elements: so many diodes of each

different type, so many transistors, so many resistors, etc. Let the system

consist of m different types, with nl, n 2 , ... , n elements of each type,

respectively, and failure rates x, ... , xm. To get rid of the "nuisance"

parameter "mission time", scale time in "mission equivalent" units; there-

fore, the failure rates xi are "failures per mission". Under the exponential

assumption, for each type i the component reliability is simply exp {-xi}.

Because of the very high reliability assumption, the failure rate for each

type is approximately equal to its unreliability, that is,

exp {-x 1 - xi, i = 1, ... , m.
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The system reliability is approximately

m m
exp {- 2 nixi} 1 - 2 nixi,i i i i

m
and 2 nixi may be used interchangeably as the approximate system unre-

Si 2

liability or else the approximate system failure rate.

There is clearly an error in this approximation, but we cannot tell

in advance how much or in which direction without a case-by-case analysis.

The method overstates R in the sense that not all cut sets are accounted

for; R is also understated, however, in the sense that the approximate system
m

unreliability 2 n.x. is for all practical purposes the sum of the first
i=1 1 1

order terms of Equation (1). Because all terms after the first one are

deleted, R = 1 - R is overstated, and R understated.

Another serializing method similar to parts count is "single point

failure (spf)" analysis. The assumptions are similar to those in parts

count, and the method of calculation the same. The difference, if any, is

one of degree; spf is usually applied to large systems having relatively

few components, perhaps one, two, or three of each type. Although the system

is complex and possibly may have many redundancies, identify, isolate, and

concentrate attention upon the "single point failures", those failure modes

which could individually cause failure of the system because no adequate

backup is available. Because this requires detailed study to isolate the

most significant potential trouble spots, spf should be viewed more as a

management tool than a method of estimating the system reliability.

Approximating the System Failure Rate and R with a Fault Tree

An approximation is presented in this section which has been widely used

in the fault-tree methodology. In principle, it is a form of serializing,

38



like "parts count". Instead of serializing on the components, however, the

serializing is on the minimal cut sets. For a system with m minimal cuts,

let xi, i = 1, ... , m denote the net failure rate of cut set i, that is,

the contribution to system failure rate, in failures per "mission equivalent"

time unit. Since for each component the failure rate and the unreliability

are approximately the same, xi is the product of the failure rates of the

components in cut set i. Accordingly, the system failure rate is approxi-
m

mately • x . As was shown above, if time is in "mission equivalent" units,
m i=l
Z x is also approximately equal to the system unreliability R, and R is

i=l m m
therefore approximately 1 - Z x.. Since Z x. is an approximation to the

i=1 1 i= 1
first term of Equation (1), it can be seen that this method overstates R and

understates R. The one advantage it seems to have is speed, particularly

for hand computations. For further background, refer to Fussell [21].

The Esary-Proschan Upper and Lover Bounds

In references [16] and [17], Esary and Proschan present an approximation

based on the assumption that the minimal states are independent and have no

elements in common, similar to those incorporated into the conservative error-

bound model in reference [27] described above. The independence assumption

is equivalent to parallel-series, parallel in the minimal states and series

in the components within minimal states. It also overstates the probability

which is being approximated. Let the system have m minimal states, either

paths or else cuts, with probabilities xi, i = 1, ... , m, respectively. The

approximate probability is

m
P = 1 - _l (1 - xi).
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For example, if the {xi} are minimal paths, P is greater than the

system reliability R; this is called the "upper bound on the system relia-

bility". If the {x i} are the minimal cuts, P is greater than the unrelia-

bility 1 - R; I - P is called the "lower bound on the system reliability".

In reference [28], there is a discussion of the upper and lower bounds and

a comparison to exact results for a five-component bridge circuit. It

showed that for highly reliable components, the upper bound greatly over-

states R, and is unusable. The lower bound, however, appears to yield

fairly accurate results--the more reliable the components are, the greater

the accuracy.
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SUMMARY

This paper attempts to amalgamate the logic of system reliability

analysis with the computational aspects. A system reliability function is

derived by inclusion-exclusion from the minimal states, the terms of a

minimalized lattice polynomial of system states. Both exact methods and

approximations are covered. The theoretical bases of several widely used

approximations are discussed. Related topics include coherence versus non-

coherence, error bounds, computer software, and fault-tree methodology.
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ABSTRACT*

The SPARCS-2 program for system reliability- and MTBF-confidence

assessment employs Monte Carlo sampling from Bayesian conjugate prior

distributions (c.p.d.'s) on the component reliabilities. Deviates are

generated for two different families, "beta" for zero-one attributes

(success or failure, pass-fail, go-no go, etc.) subject to a Bernoulli

process, and "negative-log gamma" for constant failure-rate times

to failure subject to a Poisson-exponential process. In both cases,

new "rejection" methods are used which are at least as accurate as and more

efficient than older methods.

The beta generator, an original one designed by Professor J. Chandler,

employs a modified improper Cauchy function as an auxiliary distribution.

The gamma generator was originally designed by Marsaglia [2], and it is

also incorporated into the McGill Random Number Package. A negative-log

gamma deviate is obtained from the gamma by a change of variables, since

there is a one-to-one relationship between the two distributions. Both

generators were programmed in PL/I by K. K. Lee. The beta generator is

named PROCEDURE CABTA and the gamma generator is PROCEDURE RGAMA. The

purpose of this report is to describe these procedures, including a dis-

cussion of the theory of rejection methods.

* This report is based upon the junior author's MS thesis in Computer

Science [3]. The assistance of Professor J. Chandler of Oklahoma State
University in preparing it is gratefully acknowledged, however the authors
assume all responsibility for errors.
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TECHNICAL DISCUSSION: INVERSION AND REJECTION METHODS

Inversion

There are two principal classes of Monte Carlo sampling methods from

continuous distributions, "inversion" and "rejection." The difference is

that inversion inverts only the distribution function, whereas rejection

is a more complex eclectic technique involving the probability density

function (p.d.f.). Rejection methods also incorporate two-step Monte

Carlo and frequently include inversion. For a random variable X with

d.f. F(*c) = pr(X <_x) and p.d.f. f(x) = dF(x) inversion may generally
dx

be described as follows: Generate a uniformly distributed pseudorandom

variate u, 0 < u < 1, from the uniform distribution U(0,1), representing

the d.f. F(x). Then invert to obtain the corresponding percentage points

x = F-1(u), by formula, if it is possible to do so, or by an approximating

polynomial or by some iterative method if necessary.

Familiar examples of inversion are the uniform distribution U(O,1),

the one-parameter exponential distribution with parameter X, and the

N(0,1) normal distribution with zero mean and unit variance. For the

uniform distribution, the process is trivial; the pseudorandom variate

u = F(u) is the result desired. This is usually obtained by a congruential

generator. For the exponential distribution, the d.f. is

F(x) = 1 - exp{-Xx}.

With u substituted for F, the corresponding exponential random variate is

en(1 - u)

This is an example of inversion by formula. The N(O,1) normal distribution
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is an example of inversion by an approximating polynomial, since the

Hastings approximations [1, p. 191, p. 192] are usually used for this

purpose.

Other examples of distributions which can be inverted easily are the

Weibull, and the Cauchy and other one-parameter distributions. The Weibull

can be standardized easily, and the one-parameter distributions are in-

verted by formula. Aside from these examples, however, there are rela-

tively few cases where inversion is convenient or simple. This is due to

the fact that most families have two parameters or more and cannot readily

be standardized. Iterative inversion, which is employed sometimes, can

be a very clumsy and time-consuming process because of the difficulties

of converging within a reasonable amount of computer time.

Rejection Methods

There is a variety of two-step rejection generators based on the

p.d.f. For each deviate, the first step is a trial value. This trial

value is either "accepted" or "rejected" in the second step, depending on

a second pseudorandom number, so that the values accepted are in proportion

to the p.d.f. height. In the sequel, we discuss a form of "geometric"

rejection with an approximating or auxiliary distribution at the first

step to generate a trial deviate. This type of rejection, which is exact

in the sense that it depends upon an exact relationship between the auxil-

iary distribution and the parent being generated, is incorporated into

SPARCS in both the beta generator CABTA and the gamma generator RGAMA.

In a simple "geometric" rejection scheme, the parent p.d.f. f(x)

is "blanketed" from above by an auxiliary function g(x), g(x) > f(x),
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where g(x) is such that trial random deviates can easily be generated

from a p.d.f. equal to

Co g(x)dx

In principle, g is a "little taller" and a "little fatter" than f, so that

the two functions do not intersect, except possibly at a logical point of

contact, such as the mode of f. G cannot be a "proper" distribution;

because g is always above the p.d.f. for the proper distribution f

G(w) =J g(x)dx > 1.

Parenthetically, it should also be noted that one way of obtaining a trial

deviate is to invert G, that is

x = G-1 G(x)

is the trial deviate. This is the technique incorporated into both the

CABTA and RGAMA generators in SPARCS.

The procedure is as follows. Obtain a trial value of the random

deviate x from an operation on G. The decision as to whether to use x
f(x) "acp" ;ohews

is based on a pseudorandom number u2 . If u2  f X-$ 1,accept" x; otherwise

"reject" it and repeat the process again.

A simple example of rejection is with a uniform distribution U(0,1)

as the auxiliary function for a beta distribution. Let f(x), 0 < x < 1,

be the p.d.f. for a beta distribution with mode x0 and density f(xo) at

the mode. Let us also designate f(x ) as a "scale factor" representing

the "height" of the uniform distribution. Since the auxiliary function
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is uniform, generate a first pseudorandom number uI = x as a trial value,

and calculate f(x). Generate a second number u2 . If the ratio

f(x)>
f(Xo) u2,

x is "accepted" as a random deviate under the beta distribution, otherwise

it is "rejected" and another random number is drawn. The process is re-

peated as often as necessary to obtain an acceptable deviate x, and then

again as many times as necessary for the specified number of Monte Carlo

trials.

The "efficiency" of the method described in the previous paragraph,

the ratio of the number of deviates used to those generated, is potentially

very low for highly concentrated beta distributions having large para-

meters and narrow, tall "spikes", because a large number of deviates would

have to be generated to obtain acceptable values. The efficiency is also

surprisingly high for diffuse distributions such as those with small

parameters. For example, if f were uniform, the efficiency would be 100%

since all deviates would be accepted. Since rejection tends to have low

efficiency and computer time is a major consideration, higher efficiency

is attained if the auxiliary function g and the p.d.f. f are reasonably

close to one another.

The rejection generators, PROCEDURES CABTA and RGAMA, incorporated

into SPARCS are both relatively efficient because the g(x) is relatively

close to f(x). The beta generator has a shifted and scaled improper

Cauchy function, with a mode identical with that of the beta distribution,

and obtains efficiencies of approximately 80% in most cases. The gamma

generator, PROCEDURE RGAIA, employs a "squeeze-down" between two auxiliary
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functions, a normal from above the gamma and an exponential from below,

and has efficiencies that are commonly 90% or better.

THE BETA GENERATOR: PROCEDURE CABTA

The beta generator, PROCEDURE CABTA, employs an improper Cauchy

auxiliary function. The modifications are:

1. The Cauchy mode is shifted (from zero) to coincide with
the beta mode po.

2. The Cauchy- height g(po) at the mode is (1.1) times the
beta density f(po).

3. The beta normalized second derivative, a measure of "curvature",
f" (po) 2 g" (po)
f(po) at Po is (1.1) times g(p)

These modifications help insure that g(p) > f(p) in the vicinity of the

center of the distribution, for all but some "worst cases" which are not

relevant to the applications of the SPARCS program. The general procedure

for deriving the Cauchy function as it is described below does not work

if the beta p.d.f. has a mode at either p = 0 or p = 1. Fortunately, a

simpler alternative is available in those cases, with inversion and direct

integration.

The Beta p.d.f. and Mode

The beta p.d.f. is

f(p) = r(a + b) pa-1(I - p)b-I a > 1, b > 1, 0 < p < 1. ()
r(a)r(b) -

In the SPARCS application, this is a prior p.d.f. on the component relia-

bility p, where the parameters a and b are "sufficient statistics" for the
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prior test data: a = number of successes + 1; and b = number of fail-

ures + 1. The specifications a > 1, b > 1 insure that the distribution is

unimodal, but (uniform) U(0,1) only in case there are "no data". The

case "no failures (b = 1)" results in a mode at p = 1, with f(1) = a.

By differentiating Equation (1) and setting the derivative equal to zero,

the mode can be obtained; that is

a (2)
PO a + b - 2

The Improper Cauchy Function g(p): The General Procedure

The general procedure for the Cauchy function described below

differs slightly from that already incorporated into the SPARCS CABTA,

but it is mathematically simpler and obtains similar results. The major

difference is the fact that in the program, the second derivatives f"(p)

and g"(p) of the beta and improper Cauchy densities respectively are the

measures of curvature, whereas in the description, these are normalized

by dividing by the densities. Hence f"P and g"(P) are used instead
f(p) g(p)

in the description below.

The auxiliary Cauchy function has the density

s

g(p)c 2 (p 2, c > O, s > 0, 0 < p, po0 < 1. (3)

The parameters are a vertical scale factor c, a horizontal scale factor s,

and p0 , the mode of the beta distribution. First, find s by the relation-

f" (Po) 2 g"'(Po)

ship f(pi ) (1.1) g(Po) i and then c by the relationship

g(po) = 1.1 f(po). The formulas for s and c, which are given below, are

very simple. The mode po is obtained by Equation (2).
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Under the beta p.d.f. (1), the "curvature" at the mode Po is

f"(po) (a + b - 2)3

f(po) (a -1)(b - 1)

Under the Cauchy density (3), the curvature at po is

g" (Po) 2

g(po) s

Since f = (1.1) 2 g'' (po)
f(po) g(po) ' the formula for the horizontal scale factor

S is
s 2.42 (a- 1)(b - 1)

(a + b - 2)

To obtain the vertical scale factor c, we have

g(po) 2i = 1. 1 f(Po)

therefore

c f (1.1)s f(po).

In CABTA, the first step in obtaining a beta deviate is inverting a

pseudorandom U(O,1) number under the Cauchy function. We do this with a

"proper" Cauchy distribution having the same horizontal scale factor s
1

and location parameter po, but with the vertical scale factor c =

Under these conditions the trial value generated by the first pseudorandom

number ul, 0 < u, < 1, is

P = Po + s tan- [7r(U-½)].
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The second step is an accept-reject decision for the trial value p.

Generate a second pseudorandom number u2 . If U2 < f(P) "accept" p as--g(p),

a beta deviate under the distribution being inverted; otherwise "reject" p.

Special Case: b = 1

The case "b = 1" represents the Bayesian prior distribution on p

when there are "no failures" in the prior component data. In this case,

the beta density f(p) simplifies because (1) becomes a one-parameter

distribution

f(p) = a p a

By integration, we have

F(p) =J • f(x)dx

a

Therefore, a value of the variate p can be obtained by direct inversion of

a pseudorandom number u, without resorting to rejection

p = u1/a.

Limitations of CABTA

Reference was made above to a few cases, not occurring in normal SPARCS

problems, in which CABTA might fail. These ate cases where the quantity

a - is either very large or very small. It should be pointed out that
b-I

any such failure causes g(x) to lie below f(x) at some point, and each time

a beta deviate is generated, this possibility is tested one or more times.

If it occurs, a message is printed and the run is terminated. Thus each
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usage of CABTA constitutes a stochastic test of its validity for a partic-

ular pair of values (a,b). It has never failed on any SPARCS problem to

date.

The possibility of failure for some (a,b) values occurs because the

beta p.d.f. may become sharply pointed (have a large curvature) at the

mode, without becoming narrow at, say, its half-maximum. An example of

this is a = 2, b = 1.00001, where the p.d.f. is almost a right triangle

with vertices at (0,0), (1,0), and (1,2). (The case a = 2, b = 1 gives

exactly a triangular p.d.f., but this is handled separately with no pos-

sibility of failure.)

It is believed that CABTA can be modified to eliminate any possi-

bility of failure. This may be done in the future.

The Harsaglia "Squeeze" Method of Generating Gamma Variates

PROCEDURE RGAMA incorporated in SPARCS is based upon a rejection

technique called the "squeeze method" designed by Marsaglia [2]. Since

that paper is being published, we reproduce herein only the relevant

paragraphs from Marsaglia's paper describing the procedure.
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Refer to Figure 1, which shows, for several values of the parameter a,

three functions h(x). g(x) - f(x). The top function, f, is the normal

density. The method is to choose points (X,Y) with a uniform distribution

under f(x) until we get one that also lies under g(x), then exit with

W - a(sX+l-s 2 ) 3 , where s - a-½/3. We may avoid testing under g most

of the time by first testing under h. The functions f and h are chosen

to be close to g and convenient to handle. This is the essence of the

squeeze method. (f is not very close to g when a < 1, but the procedure
1

is still reasonable for - < a < I because h is close to g.
3

ALGORITTH! FO, GENERATING A GAMAM4 VARIATE W,
DENSITY wa- e-/Ir(a), w > 0, FOR ANY VALUE
OF THE PARANETER a > 1/3, BUT RECOMMENDED
FOR a ! 1.

Step 1. Generate a standard normal random variable X. Put

Z OsX + 1-s 2, where s = a-1/3. If Z ! 0 repeat

this step.

Step 2. Generate a standard exponential random variable E.

Step 3. If

jX2- E < JA + a(Z 3-z3) + (3a-1)(t+jt21 3), then exit

with W = aZ 3

else if

- E X2 + a(Z_-z3) + (3a-1)log(Z/z ), then exit

with W= aZ 3 .

else go back to Step 1.

In this algorithm, x0 = s - /3, z0 = I - s/3, t = 1 - zo/Z.
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