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ABSTRACT

Lossless beam forming networks ucing phase shifters and quadrature

couplers are described. A technique for using dhe Butler network with

randomly spaced arrays is discussed. A synthesis procedure for networks
with N-element arrays i1 described. A method of using these networka

with planar arrays is discussed. A least mean square algorithm for the

"determin;&ation of a beam forming newtork for an arbitrary array and

arbitrary beam directions ia developed. Computed pattern data for two

thinned random planar arrays is included.
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I. INTRODUCTION

Beam formirg networks are generally considered to be circuits which couple

two or more antennas to one or more input/output terminals. The terminal are

considered input terminals if the antennas are transmitting antennas and output

terminals if the antennas are receiving antennas. A power divider r~etwork

which coupleE the antenna elements of a linear array to a single terminal in

such a fashion aR to result in a lineax phase tajer across the face of the

array is one fc -m of a beam forming network. With this network, the array

produces a beam in a direction determined by the array element spacing and the

slope of the phane taper. Similarly, the hybi.d which is connected to two

elements to form the monopulse sum anu differenc& patterns is a beam forming

netv'ork,

Beam forming networks can be linear or nonlinear, recipr.zalt or nonreci-

procal, pa•sive or active, lossy or lossless, matched or .ot matched. They can

be used to couple many antenna elements to a single port or a few antanna

elements to many ports. This technical note is concerned with a single type of

beam forming network. The network In liaear, reciprocal, passive, loseiess,.

matched and connects N sntenna elements to N ports to form N antenna beams.

The network discussed utilizes two circuit elements, the 3-dB quadrature

coupler and th* fixed phase shift.

The discussion will confine itsc.•f to the ust of the iudividut-A 'antennas

as elements of aa array. Initially, some restrictions will be placed on the

antenna array czonfiguration. These restrictions will be removed as the dis-

cussion progrstses. First, the ButlerI Matrix is briefly disaussed. Next the
2Nolan Matrix is described. Methods for simplifying the Nolan Matri:i are

discussed, and the Butler Matrix is shown tc be a special caae of the Nola•

Matrix. Finally, an extension of the Nolan Matrix to completely arbitrary

array configuratlons is described. Computed radiation pattern data are pre-

sented for some arbitrary arrays.

1



II. TWO S IMPLE BEAM FORMING NETWORKS

The simplest form of the N terminal by N antenna beam forming network is

shown in Figure 1. This simply connects each antenna element to each input/

output port, and each beam formed is the beam of a single element. This type

of network may appear trivial but in many situations it can be the best solu-

tion to a design problem. The beams formed are completely independent, the

array configurAition is arbitrary and not relevant to the beams, and failure of

a single antenna has an uffect on only one beam.

Many design prublems, however, require that the be~ms be narrow and that

the aperture size of the antenna array be small; two requirements that are in

conflict with one another. For this situation, it is desirablu to form each

beam using as much of the available aperture space as is possible. Each I/O

port should couple to mors than one of the artenna elements in the array.

Figure 2 illustrates a vothod for doing this with a two-element array.

The coupler convention utilized is indicated to the right of the figure. Note

that an input to Port I results in antenna 2 lagging antenna 1 by 90* in phase

causing the beam formed to squint to the right in the figtire while an input to

port 2 causes the beam to squint to the left. The amcunt of beam squint and

tae width of the beams formed is primarily dependent on the eistance between

the antennas. Ihe beam forming network does not require any specific antenna

element spacing; two beaze will be formed regardless of the spacing. If the

spacing is large enough, the radiation patterns foi- each of the beams will

include grating lebes. If the antenna requirement is such that it is desired

to point the two beams formed nt a narrow field of the view and the pattern

structure ouside this field of viow is of no consequence, then the spacing can
be increased to the point vhere either the grating 1c-ea begin to illuminate

the field of view or the width of the two formed beams reacheo a desired

winimim. Such a requii~ewnt might apply for a space satellite antenna illu-

miuating the disc of the earth, for example.

2
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Generally, for best perforwance of the network shown in Figure 2, the

antewna olemnt radiation pat±erns should be substantially the same, and

the elements should be pointed in the same direction. Obviously, the two-

elment array is linear. These restrictions are imaosed on the arrays which

will be discussed in the next section.

I 4
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III. THE BUTLER BEAM FORMING NETWORK

Butler Beam Forming Networks have been described extensively in the
1,3.4

literature . This discussion will sunsarize some of theme descriptions

with the object of extending the beau forming network concept to a class of

irregularly spaced linear arrays.

Begin with the array restrictions indicated in the previous section and

further that the elements in the linear array are equally spaced and that their
number is equal to an integral power of two. Since there are an even number of

elements, hence beams, it is reasonable to have the beau equally distributed

about the array boresight; N/2 beaus to the left of boresight and N/2 bear'i to

the right of boresight. (Boresight is defined as the direction perpendicular

to the line of the array.) Also, since the eleumnts are equally spaced, a

linear phase taper, which determines a beam direction, is formed by equal phase
th thincrements between elements such that the phase of the k element for the n

beam can be specified as:

-nk., + (2n-1)(k-1)

nk n,l N

where n,l is determined by the network chosen. Table I shows a listing of the

second term of (1) in multiples of w for an eight-eslemnt array. The synthenis

of the network required to form these phase tapers is described elsewhere1 and

is not presented here. The resultant network is shown in Figure 3.

Figure 3 indicates a linear, equally spaced array of antenna elements.

The element spacing, however, can be made Irregular to some extent5 . Figure 4

shows a plot of the phase taper vs. element position for a typical beam. The

plot shows the phase taper for the eight equally spaced elements of Figure 3a

in solid line and the taper required for additional elements if the array were

to be extended without disturbing the element spacing or the beau direction in

dotted line. The dashed line taper would be required if the elements -4

through 0 and 9 through 13 were reversed 180* in phase. This can generally be

accomplished by physically rotating the antenna elements 180*. It can be

seen from the curve that since the phise taper can be drawn as a periodic

S!



TABLE I

RELATIVE PHASE TERMS -EIGHT ELEMENT LINEAR ARRAY -

-,. (2n-1) (k-i)
N

k- . 2 3 4 5 6 7 8

I'

+

1 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

2 0 3/8 3/4 1-1/8 1-1/2 1-7/8 2-1/4 2-5/8

3 0 5/8 1-1/4 1-7/8 2-1/2 3-1/8 3-3/4 4-3/8

4 0 7/8 1-3/4 2-5/8 3-1/2 4-3/8 5-1/ 6-1/8

5 0 1-1/8 2-1/4 3-3/8 4-1/2 5-5/8 6-3/4 7-7/8

6 0 1-3/8 2-3/4 4-1/3 5-1/2 6-7/8 8-1/4 9-5/8

7 0 1-5/8 3-1/4 4-7/8 6-1/2 8-1/8 9-3/4 11-3/8

8 0 1-7/8 3-3/4 5-5/8 7-1/2 9-3/8 11-1/4 13-1/8

6iI
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function, elements within the bounds of the original array can be moved to

positions outside these bounds where the required phase, including the 1-800

reversal, is no different from that at the original element position. This is

done with elements 3 and 7 in Figure 3b~ to produce an irregularly spaced array.

The Butler Beam Forming Network can then be used for both equally spaced

linear arrays and a class of randomly spaced linear arrays. It is, however,

restricted to arrays which have the number of elements equal to an integral

of 2.Nola 2

power o2.Nlnremoved this restriction.



IV. THE NOLAN SYNtHESIS

The Butler Beam Forming Network is restricted to arrays which have the

number of alements equal to &n integral power of 2. The use of a Butler

network with arrays with different numbers of elements usually requires the

introduction of some lose into the network or the use of couplers with more

than four ports. In the latter case, if six-port couplers ware utilized

rather thav four-port couplers, the arrays which have the number of elements

equal to &n integral power of three could be utilized. For the former case, an

N element array could be used with an M element Butler network (M greater than

or equal to N) with the unused outputs of the network terminated. This results

ii a reduction in gain by a factor CN)2.

It is possible, however, to determine a beam forming network for any

arbitrary number of array elements provided that the network transfer function,

A, has specific properties. In general, A can be written us an NxN matrix

"al al aN

a21 :22 a 2 N

LaN aN2 a

nth kth
where ak is the transfer coefficient between the beam port and the kt

array element and

ak - bn,k jnk where bn,k is a real number, (3)

If the beam forming network is to be lossless, linear, reciprocal, and matched,

the matrix A must have the following properties:

10
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1. The sum of the squares of the magnitudes of the terms in any row or

colnmn is unity.

2. The sum of the products of the terms in any row or column with the

conjugate of the corresponding terms in any other row or column is

zero.

These properties are an expression of conservation of energy, i.e., in a

lossless matched system, the power in equals the powet out. The first of these

simply states that the power radiated by each array element for a given beam is

equal to the power input to the corresponding beam port. The second states

that if a received signal induces voltages .n the array elements which are

equal to the conjugate of the transfer coefficients for a given beam, then all

of the received power will be coupled to that beam port, and no power will

couple to any other port. Because the network is reciprocal, it may be reversed,

the beam ports ard element ports interchanged, without affecting its perfor-

mance; hence the statements apply to both rows and columns of the transfer

matrix.

These are the properties of a unitary matrix and can be stated mathema-

tically in matrix notation as

TA A - I (4)

where I is the identity matrix defined by

1 n'k

Tand ( ) represents the conjugate transpose of the matrix.

One of the properties of a unitary matrix is that it can he factored into

the product of elementary unitary matrices. A particular form of elementary

unitary matrix which is of interest becruse it represents a simple r.f. circuit

is- -

11



con ej ( +2) sin e-a2 0 0 ... 0

in e e 2 -) cos e a 0 0 ... 0

E 0 0 1 0 ... 0 (5)

0 0 0 1 ... 0

0 0 0 ... 1

The circuit which has E as a transfer function is shown in Figure 5.

I1e, -i,,h1

1 2 3 41

2' 1'

Fig. 5. Circuit representation of N x N elementary unitary matrix.

12



I

Where the element 0 is a directional coupler with the properties as shown in

Figure 6.

118-6-19020 2

sin~e Co C9

Fig. 6. Di-ectional coupler transfer properties.

This elementary circuit provides a means for determining a beam forming network

for the general N element array. The transfer function of the array is speci-

fied by (2) and (3) and can be drawn in circuit form as shown in Figure 7.

i 1,8--1 aiol

1 2 N .,-ELEMENT PORTS

_________
A BEAM PORTS

Fig. 7. Beam forming network before reduction.
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The circuit A can be also conf'gured, usix4 the circul. in Figure 5, as

shown in Figure 8:

S1 •3 N-4-ELEMENT PORTS

4) 61

2 .---, 2 BEAM
A PORTS

--10- N i!

Fig. 8. Beam forming network - first Nolan reduction.

Comparing Figures 7 and 8, and making use of the relations in Figure 6, it can,

be seen by inspection that

j(o + j-# +(* +
an, 1 - a'n1 cos e e a' sin C e (6)

an, 2  n sin + an, 2 cos e e (7)

or, in matrix notation

A'E A

The circuit A' can then be reduced in the *ame manner as wae the circuit A by

operating on terminals 1' amd 3 with a similar coupler, such that the circuit

ir. Figure 9 is obtained.

14-..
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3 --.--02

S... 2' A" -..- 0 3 BEAM
PORTS

Fig. 9. Beam forming network -stecond holan reduction.

and
(A"E2)E A'E A

Since this second cL-upler operates on ports Itand 3, itsi transfer functien Is

expressed as:

10 -J-i
coo 82 e 0 sin e2 e 0 ... 0

32 2

0 A ... 0

sin 8., a 0 coo l2e 0 ... 0

E2 C: 0 1 .. 0

0 0 G ... 1

15
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Continuing the same process for N-1 couplers results in the circuit in Figure 10.

2 3 4 N ELEMENT PORTS

2' 3' 4 N'

--- 03

BEAM
Aht tn fc PORTS

Fig. 10. beam forming network - N-lst Nolan reduction.

No
where the transfer function • is an an N-1 matrix, a matrix of order less

than the original matrix A. The circuit A can then .F i-educed in the

same manner as was A, starting with the 2' and 3' ports and so on, until the

circuit is completely reduced to the form show, in Figure 11.

S 2 3 4 * N-.-ELEMENT PORTS

" ]2' 3- N

000 3
BEAM

PORTSI' 0 I
-[i°"--°4 N

Fig. 11. Beam forming network - completely reduced.
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It remains now to determine the values of 0 end * throughout the circutt,

to complete the synthesis. The two preceding circuits show that there is no

coupling between bean port 1 and the port 2' of A ° and similarly of A' because,

as shown in Figure 6, an input from the tight of an:' coupler is not coupled to

its bottom port. This means that the matrix elemont a' 1 , 2 Is equal to zero.

This allows Equations (6), and (7) tc be solved for eI and #1 and for aj 1 .

Similarlv, a 1,3 is equal to zero and 82 and #2 can be determined. This

procedure can be continued, and the circuit synthesis then is thus one requiring

successive solutions to equations of the form of (6) and (7). Using matrix

notr-tion, this method can be succinctly expressed. Since A is unitary, it can

be expressed as the product of the factors

A - EN(N-l)/2 EN(N-1)/2 -1 "-" E3 E 2 E1

where r is an elementary matrix of the general form

Jf -')j
coo e e 0 sin 0 e :0

O 10
0 1 0 0

s4_n e eo + 0 coo e e 2  0

0 0 0 1

Then successive post multiplications of A by El E , etc., will eventually

reduce A to an identity matrix. The procedure is to choose the en, *n para-

meters in E1 through EN-l so as to force successivc terms in the upper row of

the product matrix to zero until all of the terms in the row are zero except

the first term. Because the matrix is unitary, the first term in the row will

be unity, and all other terms in the first colum will be zero. This reduces

the N x N transfer matrix tc an N-1 x N-1 transfer matrix. The second row is

reduced in a similar way by proper choice of the next N-2 values of En, etc.,

until all values of 6 and *n are determined.

17



The ciruuit synthesized by this method uses fixed phase shifts and quad-

rature couplers which, in general, are not 3 dB couplors. These can be made

using 3 dB couplers using the circuit in Figure 12, however.

Fig. 12. Directional coupler circuit using 3 dA couplers.

The transfer function is then:

_3 4

ii 1!
Ji J2

I cos 0 e sin 0 a

-J- J'n
2 sin e e coa e a

as is required for the coupler characteristic chosen for the synthesis.

This synthesis procedure is applicable to an array of any number of

elements in any desired configuzation. The only restrictic£n is that the desired

transfer matrix be unitary. Figure 13 shows the circuit for a 5 element array

synthesized by this procedure where the terms of the tranafe" matrix take the

form
2wfSI ~J (n-1) (k-l)

nk " 
1

for the nth beam port and the kth array element. This network can be used for

five element linear array with equally spaced elements and uniform amplitude

aprture distribution.

18
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V. A NETWORK SIMPLIFICATION

The form of the b6am port/element port transfer coeffi.clents for the

network of Figure 13 is generally applicable to all lirear equally spaced

arrays and, an will be described in a later sectiou, to some planar arrays as

well. For uniform illumination, the desired network transfer coefficients will

usually take the form

1 j(n-l)(k-l)
an,k -/i e (8)

This can be simplified somewhat by noting that the N-(k-2)st terms in each row

have the values

jJn(n-l))[N-(k-1)
a n,[N_(k_2)] ,e

1-J(n-1)(k-1) 2 J(n-1)2w

J (n-1) 2w

and since e =l

-j (n-1) (k-l)-ý

n,[n-(k-2)] e

which is the conjugate of the term an,k. A similar argument for the

N-(n-2)st term in each column can also be made. This suggests a possible

simplification of the network to be synthesized.

Consider a 3 dB-coupler circuit with inputs /12 cos a &nd /r sin a. As
ja -jaindicated in Figure 14, the outputs will take the form a and e-.

19
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]so 45 -90 35.3 -90 30 -90 26.6 1

130 55.3 -143 41 -150 30 2

Fig. 13. Five-element array BFN.
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E0 8 Cosa1sia a e+ E0 8COS a-jainaeo

-tso

Fig. 14. 3 dB coupler circuit transfer properties.

Using this property, the beam forming network can be represented as in Figure 15

where the transfer function of the network B takes the form (when N is odd):

2 r2 .0.. 0 0
2w 4w 4w 2w

cos N , N co .- . . . ,•sinjj- /•sinj•-

4w 44 87 s 4

1,r coos =-- /2- cos(•- .... r2aI v r sin- -- I-
N N

1 r2 cos(- o / c(- - /2) . 2 sin(- rw 2 sin(- N

21



S2 3 N-1 N

IcI

3

B S

Fig. 15. Beam forming network - first reduction.
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Figure 15 shows that the matrix B can be treated am two separate matrices B1

and B2 where B2 is comprised of the first Ni- columns of B, and B2 is comprised

of the remaining columns.

1 F2c Ž r24 .... 1)Vir 2 27 NN-1 2?r
B - 1 co/2 -coso A . . /. cos,--o ,L--

08 . .• 'N (_ N

1 Y' co0 A F2 c. . . . . 0 coo(--

N N 8 ' N

B

-~~ 4wr Ni y

/2 cos s- . .2 co - (N-1)-

2w 4s i N-1.271 V2 2,, ,coo-- _ . . . F2coos- -iI

N N '2N.

sic cscx-co( co) E-mnto fB hw h. the N(n,2)t ro isth

0 0 . . .. 0

4yr v- --N-1 27r
norow since s min Ti m t

maio o te hbem nd h (N- (sn -2-s bemi...lyte. inof.e em

2,:, in/2 s in .. r2- sin (N-1._) .-2!i
SNN N' )

inthhB mtrx
1I

2 23

Examination of B shows that the n row is ide" to the N-(n-2)st row
since coo a - coo(-a). Examination of B 2 shows th&,. the N-(n-2)st row is the

negative of the nh row since sin a - -sin(-a). This suggests that the number

of rows in each matrix mitght be reduced since the difference between the for- :

Smotion of the n th beam and the (N.-(n-2)st beam is sipythe sinof thetem
in the B2 matrix. i

22
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A coupler with the properties shown in Figure 16 setxes the purpose for this.

1 1 1 i

42 ./2 iIt -/2

.1

345 OR 348

Fig. 16. 3 dB coupler circuit transfer properties.

and the network becomes that shown in Figure 17. The 90* phase shifter at

the beam inputs indicated in Figure 16 is omitted in Figure 17 since this

affects only the relative phase of the beam. The transfer matrices of the

networks C1 and C2 are

1 2T-I / .... r2

I Ao,2wN-1. 2w "i

F 2 c . . . 2 coso-(
SN N

NN--1 2l 2-r2 2 costT W 2 coo(=-,-)21•

22 ' . . . . :N
2 lN 2N.. . . =T•

c 1
C2 '"I°)

• N-l I% _N 22r
i 

aN

24
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Ii 1 2 N 3 N-1

90 90 90

""_L _., _ __, __ __ __ _

______ ___ __ ____
SC• ¢

ScooGooo

Fig. 17. Beam forming network - second reduction.
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___ 
d4

ISO 54,1 .901.

Fig. !ad. Simplified 5-element BFN.
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N(N-l`4In general, the Nolan synthesis of an N x N network will require-.2

of the 6 type couplers described in the previous section or, as previously

indicated, twice as many 3 dB couplers, N(N-l). The five &lement array in

Figure 13 uses 10 of the 6 couplers, and if fabricated with 3 dB couplers would

require 20 of these. Examination of Figure 13 shows that this number can be

reduced to 18 since the two 450 couplers are already 3 dB couplers. The pre-

ceding simplification for transfer coefficients of the form (8) where N is odd
N+l N+I N-1 N-1

require the synthesis of two networks, one -- x - and the other - x- .

Together these matlices would requite 2 x) 2 - of the 6 type couplers and N-1

3 dB couplers or N- 3 dB couplers. The total number of 3 dB couplers required
N+l

is reduced by a factor 2T. This reduces the number required for a five-

element array to twelve 3 dB couplers. The five-element array network has been

synthesized using the simplification, and the result is shown in Figure 18.

Thus far, the discussion of simplification of the network has been con-

cerned with networks for arrays which consist of an odd number of antenna ele-

me- Because of this, the first column of the A transfer matrix was left

unu irbed in the conversion to the B transfer matrix. If the number of j

eeie, s and beams is even, a matrix with transfer coefficients of the form (8)

is ger.erally unsuitab]h. This matrix would include an element-to-element phase

shift or ±80'. This results in a beam, for a linear array, which points along i

the axis of the array in both directions. A more suitable transfer matrix for

even n. itred arrays is the form used for the Butler Matrix

1 j (2n-l) (k- 1)'
a =- e (9)n,k VN

it tb
This form results from adding a phase shift of (k-l)1 to the k element port

of a ratrix with transfer coefficients of the form (8).

Using a desired transfer matrix of the form (9) with N even, the rows

and columns of the matrix having a 0-r80c or + 900 relationship may first be
N Ncombined with 3 dB couplers. This reduces the transfer matrix to two --

transfer matrices. If is odd, then each matrix may be simplified as descriued

27
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for arrays with odd numbers of elements. If Is even, then the matrix may be

further reduced. The simplification of the eight element network is presented

as an example.

Using (9), the A matrix is

1 2 3 4 5 6 7 8

0it it 3w it Sn 3w 7ff

3i 71 Sw3 7 tir 3w 7
84 8 2 8 48

31r 3w 7nT IF W it ..5
8 4 8 2 8 4 8

5nr it Sir it 7w ff

08

o 8 482848

11 7wT T 51w it 3N 3w Vt
0 8 4 8 2 8 4 8

7wT 7T if it 3wt 3a 3
o8 48 28 48

5nr 3w 7ir 7t It 3w5i

o8 4 8 2 8 4 8

SnT 3w W 57r 3N 7w
8' 4 8 2 8 4 8

Columns 1 & 5, 2 & 6, 3 & 7, and 4 & 8 have a + phase relationship on a term by

term basis. These are combined using 3 dB couplers to form the circuit in

Figure 19.
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Fig. 19. Eight-element beam forming network- first reduction.
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The B1 and B2 transfer matrices become:

0 ,/4 W/8 3I/8

o -(3i /4) 5w /8 -(W /a

8 n w/4 -(7v/8) -(SW/8

0 -(3 /4) -(3fw/) 71/8

-(w/2) v/4 -(/18) 71/

F2 - e/ -(7r/2) -(3,K /4) 3w/8 w18

-(w/2) -(3'./4) -(5w/8) -(7w718

Note now that adding w/4 to columns 2 aud 4 of B1 and to columns 1 and 3 of

B2 again producc a +(7/2) relationuhip as bafore. Therefore using a coupler

which results in a +(w/2) relat'Lonship and subtracting w/4 produces .he

desired result. Figure 20 shows thm resultant circuit.
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Fig. 20. Eight-element beam forming network - second reduction.
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The C matrices are:

ro 0 /81" 21r8 :,,) e1[° "8

0-(7w /8)J
c2- C./• e 0 •8

10 -7•iI8]

C (2/r8) ej (

(w/4) -(7w/8)J

C4  (2/46) eJ /8

.-O.,,,) (7-,/8)j

And note here that: the &ddition of 3w/8 to column 2 of C1 and column 1 of

C 4 esuilts in a quadrature relationship. Also the addition of w/8 to

column 1 of C2 and column 2 of C3 produces a quadrature relationship.

Subracting thegue, as before, from the coupler outputs produces the circuit,

4a, nglecting tents which only affect the relative phase of the bems, shown

in Figure 21. This circuit Is identical to that shown iU Figure 3 for the

eight element Butler beam-forming network.
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Fig. 21. E-ight-element bea,- forming network -third reduction.
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It should be noted that if, during the simplifying process, the required

transfer matrices had an odd number of rows and columns, as would be the

case for a 6 element network, the simplification procedure described for

odd numbered arrays is applicable.

The result in the preceding example indicates that the Butler matrix is

a special case of a more general beam forming network synthesis procedure.

It is possible to apply the Nolan synthesis p--)cedure directly without using

the procedures desccibed in this uection and obtair the same result. This

p ocedure, however, involves reordering the columns of the transfer matrix

after each operation. The methods presented here for simplification of the

networks involve less effort than does the direct application of the Nolan

procedure.
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VI. PLANAR ARRAYS

The phase taper for a linear array can be represented graphically as a

line as in Figure 4. The phase taper for a planar array tikes on an added

dimension and can be represented as a plane. If the phase argument for an

N element linear array is as in (5) (i.e., (n-1)(k-l)-), then the phase taper

will begin a new cycle at the N+lst element. Application of this property to

planar arrays results in the synthesis of multibeam planar arrays described

by Shelton. 1'" First, the geometric configuration of the desired planar array

is selected and a reference element (k-l) is arbitrarily chosen as in the seven

element hexagon in Figure 22.

o H

1
REF'REEhCE - 0 0

ELEMENT

O o

Fig. 22. Seven-element array.

Next, this array is inserted Lnto a lattice structure of "phantom" arrays as in

Figure 23.
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Fig. 23. Hexagonal lattice structure.
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It can then be seen that the phase of the reference element of arrays A&B

must differ from the reference element of the "real" array by 2n/n for the n th

beam. 3Since the phase taper is planar, one can write

m X + r.. Y - 27(n-1) (10)

where m and mV are the slopes of the phase taper in the X and Y directions,

respectively. If X and Y are measured in terms of the number of spaces between

elements, then Equation (10) can be written as

S2 A

K 2(n-1) X + K (n-1) 27r Y 27T(r. (11)-
x ~ yN

where K and K are integers. The equation simplifies to
x y

K X + K Y - N (12)x y

and for the example of the 7-elewent array with the "phantom" arrays A and B,

the two equations

3K-K 7x y

K + 2K 7x y

can be written for which

K -3
x

K = 2.

y

This determines the phase increments for the 7-element array. These az-e

tabulated for k-l through 7 in Figure 24.
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Fig. 24. E~lement Phases as a multiple of 7for a 7-element hexagonal
array.
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Note that if these phase increments are tabulated with element numbers assigned

as in Figure 25, the desired transfer matrix becomes:

0 0 0 0 0 0 0 n-i
S0 1 2 3 4 5 6 n-2

0 2 4 6 1 3 5 n=3

A e (1/7)ei(21T/7) 0 3 6 2 5 1 4 n=4

0 4 1 5 2 6 3 n-5

o0 5 3 1 6 4 2 n-6

LO 6 5 4 3 2 1 n-7j

I'0",""" I

3 6
o o

'0 40 70

20 80

Fig. 25. Seven-element hexagonal array.

This matrix has transfer coefficients of the form

J (n-1) (k.-1) 27
a - (lr') e N
an k

which is no different from the matrix previously described for a linear array.

The beam forming network for this type of array is identical to that used for

a linear array.
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Although this procedure allows the beam forming network to be applied

to planar arrays, it is somewhat restricted. First, the array elements raust be

arranged such that they are on a regular lattice such as in the example;

second, not all arrays even if configured in this way will result in use of the

rectangular lattice reduces to two four element arrays by this method.

Random element spacing, subject to the restriction that the array elements

ii.t on the lattice, is possible. This is an extension of the principle described

for the Butler array. The appropriate elements in the "real" array are replaced

by the elements in the "phantom" array.
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VII. THE GENERAL ARRAY CASE

In the beginning of the discussion, the restrictions placed on the antenna

array used with the beam forming network were that it was required to be a

linear, equally spaced array of similar antenna elements of number equal to an

integral power of 2. Subsequent discussion removed the equal spacing require-

ment and substituted the requirement that the element spacings must be integral

multiples of some arbitarily chosen basic spacing interval. Section IV extends

the array to allow any number of antenna elements by using the Nolan synthesis

procedure. The restriction that the array be a linear array was removed in

Section VI and the use of planar arrays configured on a regular lattice was

discussed.

There are, inevitably, some design situations where more general types of

arrays are required. For example, it may be necessary to configure the array

in three dimensions rather than one or two; or, the array element patterns may

be silpnificantly different for one reason or another.

*': 'lan sypshesis is confined by only one restriction, that the speci-

fied tr-: ier function be a unitary matrix. This is another way of

sayit,. hat the beam-forming network is lossless. Throughout the discussion

thus far, only two unitary transfer matrices have been discussed, those of

Equations (8) and (9). These do not exhaust the possibilities, however.

In the general case, a transfer matrix which is not unitary may be desired

in order to achieve a particular set of array excitations. Such a network

will be lossy. It is d4 '- -ult to determine a minimum loss network which will

have the desii * ýans' ±unction; and if the network can be determined, it is

very likely to be too lossy and to produce beams of unequal gain. Usually,

however, there is some tolerance on the desired beam directions so that the

desired transfer function i considered to be approximate. Allowing some

deviation from the desire •ansfer function, the problem then becomes one of

finding a unitary transfer function which best approximates in some sense the

desired transfer function.
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One method of approi Lmation is to minimize the mean square difference

between the terms of the unitary matrix and the desired network transfer

matrix. Using this as a basis for approximation, the unitary matrix which best

approximates a given desired transfer function is given as

A a VTT

where A is the resultant unitary matrix and V and T are eigenvector matrices

associated with the product matrices SST and STS,respectively. S is the

desired transfer matrix and ) indicates the conjugate transpose of a matrix.

The derivation of this expression is described in Appendix I. The matrix A

will not necessarily represent a transfer function which will produce accep-

table antenna bears. Much depends on the original desired transfer function S.

If the desired beams are uniformly distributed in the region between grating

lobe positions of the array, tVen A will provide a good approximation to the

desired signal matrix. If, however, the desired beam!, are closely grouped with

a relatively large angular separation between this group and the grating lobe

positions, then the approximation will probably be a poor otis. In more rigorous

terms, the more completely the desired beam vectors span tha N dimensional

vector space of the NxN desired transfer matrix, the closer the approximation

of A to S. This is simply a result of the fact that beam vectors of A will

always completely span the vector space.

The anterna beams obtained with a beam-forming network A will usually be

somewhat different in gain with respect to one another, the differences depend-

ing on the closeness of the approximation to the transfer function S. (This

assumes that S specifies equal gain beams although this is not necessary. If S

specifies unequal gains then the statement applies in a relative sense.) This

results from the fact that the sidelobe structures of the individual beams yill

differ dud that the beamwidths and shapes of the beams will also not be iden-

tical.

The approximation described coupled with the Nolan synthesis proaidos some

significant advantages in most cases, however. Together, they represent a
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straightforward procedure for the design of lossless beam-forming networks for

arbitrary arrays. Since the desired transfer matrix S is completely arbitrary

the array can take any conceivable configuration. The array element spacing

can be anything. The array can be linear, planar, or tLree dimensional; it can

consist of regularly spaced or randomly spaced elements. The array can be a

filled array or a thinned array, and it can even be nade up of elements with

differing partern gain characteristics. In addition, it is possible to specify

aperture distributions to produce low sidelobes or to shape the beam. The

degree to which the resultant design satisfies these requirements is, in

general, dependent only upon how completely the specified signal vectors span

the N dimensional vector space of the matrix.

The results of this approximation have been applied to the synthesis of

beam-forming networks for randomly spaced thinned planar arrays of similar

elements. The characteristics of two such arrays were computed. The first, a 7-

element array with a single central element and 6 elements randomly spaced on

the circumference of 10 foot radLus circle. The desired beams were specified

to be of equal gain and to be located on the vertices of a hexagon at an

angular separation of 7P from the array boresight. A sirgle beam was specified

to be on boresight. Figures 26 and 27 show the computed 1 dB and 3 dB contours

for the beams formed at 350 MHz using the transfer function A.

The second array computed was a 19-element array with 3 elements randomly

located on a 15 foot diameter circle, 6 elements on zi 30 foot diameter circle,

and 10 elements on a 45 foot diameter circle. The de ;red beam directions were

again chosen in a heiagonal pattern to form two concent c hexagons with a beam

on the rray boresight. Figures 28 and 29 show the compuLed 1 dB contours at

350 MHz for this array with a beam-forming network with the unitary transfer

function A and the array configuration, respectively.
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Fig. 26. Random circular array 1 dB contours.
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Fig. 27. 3 dB contours circular array same an preceding.
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Fig. 28. 19-bei array.
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VIII. FhUMMARY
tI

This discussion has attempted to describe possible methods of deriving

lossless beam-forming networks for various types of arrays beginning with the

well-known Butler array and extending this array to unequally spaced linear

arrays, planar arrays and finally to the completely general type of array. For

this last, it is indicated that it is not always possible to synthesize a

lossless BFN but that there exists a least mean square optimization which leads

to the synthesis of a lossless EFN which provides perfo-mance which approxi-

mates the desired performance.
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APPENDIX I

Denoting the optimum unitary transfer function by A then as in Eqiation (4)

ATA - I

and denoting the desired transfer function by S and pramultiplying by AT

results i:

TA S - B (A-i)

where B is approximately equal to I. If S is represented as the sum of the

matrix A and some matrix R such that

A + R S (A-2)

then

AST S AT(A + F) - I + ATR - B

and

TATR - B- I

which indicates that if A is a non trival (not all zeros) matrix, that it is

dcsirable to minimize R in order to make B approximate I as closely as pos-

sible.

One way of minimizing R is to minimize the sum of the squares of the

magnitudes of each term in R. Or,
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rl nl 2 - minimum
ij

or, with more convenient notation

I IRl12 " minimum (A-3)

In order to determine the optimum transfer matrix A which will minimize R,

it is necessary to assert two matrix transformations..[8 First, the eigenvalue

transformation

UT MMT U - A (A-4)

where M is any matrix with n rows and p columns and U is an NxN unitary

matrix. The matrix A is diagonal with each term on the diagonal a real number
T

called an eigenvalue of the 'natrix product M9T. The columns of U are called

the eigenvectors of the matrix MMT. If the matrix MM is known, then the

eigenvalues Ai and the eigenvectors of U1 can then be determined by straight-

forward (but tedious) computational methods. Second, using the notation of

(A-3)

Ilu2Ni N -, lI u3112  -I1,,112 (A-5)

where U2 and U3 arc any unitary NxN matrices and N is any NxN matrix. This can

be demonstrated by carrying out the sutmation on a term by term basis and using

the properties of the unitary matrix.

Referring back to Equation (A-3), it i.s desired to min~mize (I ERj2 and

hence from Equation (A-2)

I S-Al1 2( minimum (A-6)
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There is a matrix transformation which will diagonalize the N by N matrix S
such that

v ST I (A-7)

where V and T are unitary matrices and Z is a diagonal matrix with positive
real terms on the diagonal. This is shown by premultiplying (A-7) by V and

postmultiplying by TT and

VVT STT T VETT

and since

T T

S - VETT (A-8)

From (A-8), ST - TEVT since is diagonal positive real and

ET
E T E

then

SS V E TTT T VT

SV E2 VT

and

T T 2V SSV -
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2Since the matrix E is diagonal positive real, then fr= Equation (A-4), V is

the eigenvector matrix of SST aud the terms of the matrix E, ai, are the square

roots of the eigenvalues Xi. Similarly,

T~ T T

s55 = T EVT V ET

- T 2 T

and

TsT 2
T S ST

where it is seen that T is the cigenvector matrix of S TS.

Using Eq. (A5) to re-write Equation (A-6) provides

I IS-All 2  II VrST - TTATII." mir.iimm

or

lIl - VTATI! r minimum

The problen, then is to minim II E-P ; 2 where is diaona•l positive real and

P is the matrix VTAT.

Writing as a term by term summation

1 2 N

lPj I E E IE-Pi2

but since E is diagonal

N N N

IE•:-PH 2  - .2+ Z a
i-i F 1 I- i i -PL1 J"1 i-I"
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and expanding

N N N
E pij 2 1 + E (IPiiI 2  *ii(piip a) + a 2

i-l. i-i

i~j

where ( indicates the conjugate.

And rewriting
N N NIE_-Ph 2  "- E N i j12 + Z [a2 - oi(Pii + A*i (A-9)

i z pi
i-i J-1 i-i

N
Now the double summation for the first term is positive and also E ar is

i-i

some positive number which is dependent upon how thE original desired transfer

matrix was determined. Sin-.e I I Z-P2 must be greater than or equal to zero,

it is minimized when the negative term of Equation (A-9) is maximized, i.e.,

N
a + p1 i - maximum (A-1O)

i-i

Now the matrix P is unitary since

PTp P TTATVVTAT - TTATAT T TTT I

and the maximum possible value ef Equation (A-10) is achieved when piil+jO.

* •If this is true, then the matrix P is the identity matrix I and

T
V AT I

from which is follows that the optimum unitary beam forming network transfer

function is
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T

A=VTT

where V and T are the eigenvector matrices associated with the product matrices
SS and S S of the desired non-unitary transfer function S.
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