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FOREWORD

This technical report documents dynamic wind tunnel test data and tI>

extraction of nonlinear dynamic roll moment coefficients from these data.

The test and analysis were conducted under a program to investigate the roll-

ing motion of cruciform canard-controlled missiles at moderate angles of

attack.
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INTRODUCTION

This work is part of a joint program with the Naval Weapons Center (NWC),

China Lake, California, to improve the methods of predicting the rolling

motion of non-roll-controlled guided missiles. Guided missiles, whether roll

controlled or not, that are flown to high angles of attack encounter large

variations in aerodynamic roll moment. An effective design requires analysis

and prediction of rolling motion phenomena. This work was conducted to pro-

vide further insight into the roll characteristics of canard-controlled

missiles at high angles of attack.

The specific objective of the Naval Surface Weapons Center (NSWC),

Dahlgren, Virginia, was to provide experimental dynamic roll moment coeffi-

cients (roll damping) for a cruciform, canard-controlled missile. The experi-

mental data are to be used by NWC to evaluate NWC-sponsored prediction tech-

niques of roll damping characteristics for canard missiles. This experimental

data will serve as a data base for comparison with "theory."

NSWC had previously developed a fitting technique to extract nonlinear

roll moment coefficients from single degree-of-freedom rolling motion data.

The basis of this procedure is a nonlinear differential equation of rolling
1*

motion, first set forth by Daniels. The equation of motion describes the

roll phenomena ("linear" rolling motion, roll "slowdown," roll "lockin,"

"breakout," and "speedup") of a cruciform-finned (body plus tail) missile at

angles of attack from 0 to 900. The roll moment coefficients are extracted

from observed roll angular data using a "global" nonlinear least-squares
2

fitting procedure developed by Cohen and Clare. The procedure was used suc-

cessfully by Cohen, Clare, and Stevens3 to determine roll moment coefficients

for a cruciform body plus tail configuration (Basic Finner) at high angles of

attack. It seemed logical to extend the fitting procedures to the canard-

*Raised numerals refer to identically numbered references listed at the end
of •he text.
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controlled configuration, even though the equation of motion was not specifi-

cally developed for guided missile configurations with control deflections.

This report presents rolling motion data and extracted roll moment coef-

ficients for four canard-controlled missile configurations at angles of attack

from 0 to 30* at subsonic speed.

WIND TUNNEL TEST DATA

The canard-controlled missile model used in the wind tunnel tests was a

10-caliber, tangent ogive-cylinder body. The canards and tail were detachable

so that body build-up configurations could be tested. The configurations

discussed in this report include three body build-up configurations (canard

plus body, body plus tail, and canard plus body plus tail) that have zero

canard and tail deflections (6 = 0Q). The fourth configuration was a canard

plus body plus tail configuration with two opposing canards deflected 150

(6 = 150) to simulate a pitch maneuver. Canard and tail deflections werec

fixed during test runs. Figure 1 shows diagrams of the four canard-controlled

missile configurations.

The wind tunnel tests4 were conducted in the 7xl0-ft low-speed wind

turnel of the Army Air Mobility Research and Development Laboratory, Moffett

Field, California. The free-stream velocity was about 113 ft/sec. The

dynamic pressure during the test was approximately 15 lb/ft 2 with a Reynolds

number of approximately 6.6x10 5/ft. The model was mounted on an air bearing

so that it was free tu roll. Angle of attack was constant during test runs.

Measurements of roll angle (y) as a function of time were recorded using

a high-speed motion picture camera. The film. was digitized to obtain roll

angle. Appendix A shows the resulting plots of roll angle versus film frame

2



BODY BUILD-UP
CONFIGURATIONS

CANARD PLUS BODY

BODY PLUS TAIL

15

CANARD PLUS BODY PLUS TAIL
)= 0)

PITCH MANEUVER
CONFIGURATION

CANARD PLUS BODY PLUS TAIL

(8c = 150)

Figure 1. Canard-Controlled Missile Configurations
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In the preliminary analysis of the canard plus body plus tail with zero

fin deflections, only five basic (first order) coefficients were extracted. 4

These roll moment coefficients included fin cant (C£ 66), linear roll damping

derivative (CZp), induced roll moment (C£( 4 y)), and two asymmetry terms (Cac

and C as). These coefficients were thought to be adequate to model the rolling

motion; however, subsequent analysis of the rolling motion of the configura-

tions at angles of attack from 20 to 300 showed that an additional coefficient

was needed to explain the roll oscillatory motion. The linear roll damp-

ing derivative coefficient variation with roll angle (Ckp(4y)) was introduced

to account for the rolling motion oscillations that do not damp. (Higher

order roll damping variation with roll rate (C p3) was extracted from several

runs; however, the results appeared to be incorrect and data fits were not

significantly improved.) The linear roll damping derivative coefficient vari-

ation with roll angle (C kp(4y)) was extracted only when the data fits were

significantly improved.

Appendix B presents comparison plots of observed and computed roll angle

versus time. The plots show the results of the data fits. The observed data,

roll angle versus time, were obtained from the roll angle versus frame number

data in Appendix A by correlating frame number to time. The computed data

were calculated using Equation (1) and the set of roll moment coefficients

extracted for that configuration at that particular angle of attack. The

small lines drawn normal to the computed lines indicate segment locations

used in the fitting process. The computed data matches the observed data

well.

These comparisons indicate that Equation (1) is an adequate model for

determining the roll moment coefficients for a canard-controlled missile at

moderate angles of attack, and the good agreement is considered to be valida-

tion of the extracted roll moment coefficients.

The linear roll damping moment coefficient derivative (C p) results are

presented in Figure 2. C£ is nonlinear with respect to angle of attack for

all of the configurations. The values of Ctn, noted by darkened data points in

5



Table 1. Aerodynamic Roll Moment Coefficient
Correlation*

Coefficient
Conventional Computer Program
Nomenclature Nomenclature Description

C 6C 00 Fin cant roll moment coefficient

C x C01 Variation of fin cant moment
6(4y) Coefficient with roll angle

C£ 6 C0
k6(8f) 02

C 6 C0 3

Ck6(4Ky)6 COK

Cx C10 Linear roll damping moment coefficient
P derivative

CZ 2 C20 Quadratic roll damping moment coefficient
P derivative

C6 3  C30 Cubic roll damping moment coefficient
P derivative

C xCj

Cz C Variation of linear roll damping
p(4y) moment coefficient derivative

with roll argleC£ C126
p(8y)

C£z C13

Ck ClK1
p(4Ky)

C£(4y) S01  Induced rolling moment coefficients

C ý(sy) S02

Cj(1 2y) S03

SOKC£ (4Ky) SO

C Roll asymmetry coefficientsac (Combinations of aerodynamic

C and mass asymmetry constants)as

*All coefficients aro a function of the missile's angle of attack,

6



NOTE: SOLID DATA POINTS INDICATE THAT
C2 p (4-)WAS ALSO EXTRACATED SIMULTANEOUSLY WITH C2 p

Z C,IU-M0. -20 
/

_ V =113 FT/SEC

CD P4z (6=00) CR~+

Z3 - -15 • (•=0)C
>;• PC+T

2 C2

.-1 -10-i Z

z 0 PC

0 5 10 15 20 25 30
ANGLE OF ATTACK DEGREES

Figure 2. Extracted Linear Roll Damping Moment Coefficient
Derivative Versus Angle of Attack for Canard-

Controlled Missile Configurations

Figure 2, indicate that Cip( 4 y) was also extracted simultaneously with Cp

C0p alone was found to be insufficient to model roll damping moments for those
configurations at those angles of attack. Figure 2 shows that the Cp of the
canard plus body configuration is smaller than the Cp of the body plus tail
configuration over the anqle of attack range. Cp was referenced to -he

model body diameter and the canards are smaller than the tail fins. ae Cip

of the body plus tail and the canard plus body plus tail configurations are

nearly the same over the angle of attack range. In addition, Figure 2 also
shows that the 150 canard pitch control deflections make Cp more negative

at angles of attack above 150.
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Figure 3 shows that there is significant canard/tail interference present

on the canard plus body plus tai. configuration especially at lower angles of

attack. The interference nearly cancels the canard contribution. Figure 4

shows a comparison plot of the extracted experimental and estimated CZ values
p 8

for the canard plus body plus tail configuration. The estimated values

show good agreement with the experimental data exceot at a 300 angle of attack.

However, estimates of the canard/tail interference shown in Figure 5 do not

agree with the experimental interferenc shown in Figure 3.

Examination of the values obtained for C p(4) in Figure 6 shows that

opposite trends are observed in this coefficient for the configurations with

and without a tail. These trends are obvious in the rolling motion data,

Appendix A. When the canard plus body configuration (without a tail), is

circulating, the average roll damping moment is smaller at all angles of

attack than the configurations with a tail. This is evident in the rolling

motion plots, since it requires more revolutions for the canard plus body to

V = 113 FEET PER SECOND
I- ,Zot

W- C -20+ Cp (TAKEN FROM FIGURE 2)

Z -15

.j ý- -10
-Jz
OWu EXPERIMENTAL

cc . CANARD/TAIL INTERFERENCE (CC)
"u. (TAKEN FROM FIGURE 2)

0 5 10 15 20 25 30

ANGLE OF ATTACK - DEGREES

Figure 3. Experimental Canard/Tail Interference Versus
Angle of Attack for the Canard Plus Body

Plus Tail Configuration (6 = 00)
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- - ESTIMATED DATA FROM NWC TM-2929"
20 0 NSWC/DL EXPERIMENTAL DATA

u00"
20

15 V = 113 FTISEC

w 0

5

C.,

I-,
0

z

10 -- I 0

0

0 5 10 15 20 25 30

ANGLE OF ATTACK -- DEGREES

*Meeker, R E Roll Da,np.ing Studoes fPro~ress Report For F Y 1976 and 1976 TO NWC Technical Memorandum 2929.
Naval Weapons Center, Chinm Lake, California, October 1976

Figure 4. Comparison of Experimental and Estimated Linear
Roll Damping Moment Coefficient Derivative Versus

Angle of Attack for Canard Plus Body Plus
Tail Configuration (6 = 0")

DATA TAKEN FROM NWC TM 2929"

-20

5 -15

-- V - 113 FEET PER SECOND

00

0 5 ~~~10152253

Nava WeoZ- ESTIMATED CANARDCTAIL
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Ti Cl (ESTIMATEDo P(

0 --i i l
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75 U

0 5 10 16 20 2 3 0
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"ME PR E ROLL DAMPING STUDIES PROGRESS REPORT FOR FY 19,6 A-VD ;197T0, NWC TECHNICAL
MEMORANDUM 2929. NAVAL WEAPONS CENTER CHINA LAKE CALIFORNIA, OCTOBER 1976

Figure 5. Estimated Canard/Tail Interference

Versus Anlgle of Attack for the Canard Plus
Body Plus Tail Configuration (N 0")
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lo.
0.

- to-
-- 20-

S0

I-3

-40-

j1 ANGLE OF A TTACK - OEGREES

o I' 210 25 ;0

Figure 6. Linear Roll Damping Moment Coefficient Derivative
Variation with Roll Angle Versus Angle of Attack for

the Canard-Controlled Missile Configurations

damp. However, after the canard plus body configuration begins an oscillatory

motion ("lockin"), the number of cycles to damp to a roll trim angle is smaller

than for the configurations with a tail. This indicates the presence of

strong negative damping moments in roll angle (y) regions near the "lockin"

roll trim angle and implies that Ck p(4-v) must be of the same sign as the

induced roll moment coefficient for the canard plus body configuration. The

extracted values for C p(4y) and C£(4y) show this result.

The roll angular data for the configurations with tails exhibit oscilla-

tory motion at angles of attack from 20 to 300 that does not damp to a roll

trim angle, but oscillates about that roll trim position. Because the roll

oscillations do not damp, there must be a region of positive roll damping

moment near the roll trim angle. For configurations with a tail, the sign of

Ctp(4y) must be opposite the sign of C£(4y) . To exhibit undamped oscillations,

-0



f

the configurations with a tail must have CZ( 4 ) negative and larger than

for the particular angle of attack. This result can be shown by the super-

position of average linear roll damping moment and the variation of the roll

damping moment with roll angle, Figure 7.

The roll angular data for the body plus tail configuration at a 250

angle of attack, Figure B-13, and for the canard plus body plus tail (5=c
150) at a 200 angle of attack, Figure B-26, show a gap in the computed data

where the roll oscillatory data shifts from one roll trim angle to another.

This cannot be predicted by the equation of motion. However, both data runs

exhibit roll asymmetry and the extracted values of Ckp( 4 .) show a region in

y where the damping moment is nearly zero. The zero damping region appears

to be near a saddle point in the y versus y phase plane, Figure 8. Because

the damping is zero near the saddle point and a roll asymmetry is present, it

is possible that any small disturbance or unmodeled transient could cause

304 p
------------- -C( 4 ) COSINE 4-y
24 cV(p,y) = CQ + C COSINE 4-y

Z 20- P =p(4Y)

2 • POSITIVE ROLL DAMPING MOMENT COEFFICIENT REGIONS

S'° t / / 'V
U.)

i- I0

O -20 V

0 -30{ I

0 45 90 135 180 225 270 315 360
ROLL ANGLE. ^Y DEGREES

Figure 7. Total Roll Damping Moment Coefficient Versus
Roll Angle for the Body Plus Tail Configuration

at a 250 Angle of Attack
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RUN 352 RLeHR = 25.0 DEG.

01- DENOTES STARTING POINT OF ITH TRAJECTORY
X1- DENOTES TERMINqTION POINT OF 

1
T6 TRAJECTORY

Cr.

.00 45.00 90.00 135.00 180.00 i25 00 270 00 1 00 360 00
ORMMRIDEGREES)

Figure 8. Rolling Motion Phase Plane for Body
Plus Tail Configuration at a

25' Angle of Attack

the model to jump from oscillations about one roll trim angle to oscillations

about one roll trim angle to oscillations about another adjacent roll trim

angle. From Figure 8, it is possible for the motion to jump from Trajectory 1

to Trajectory 3, even though the jump is not modeled. Note that the phase

plane was computed using extracted roll moment coefficients. The gap in the

data does not effect the extracted coefficients since the observed roll data

was segmented around the gap.

Figure 9 presents plots of the extracted induced roll moment coefficients

(C£( 4 )) as a function of angle of attack for the canard-controlled missile

configurations. It should be noted that C( 8y) was also extracted for the

canard plus body plus tail configuration (6 = 00) at a 250 angle of attack.

The Cz(83) was extracted because, in this instance, the fit was improved sig-
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Figure 9. Extracted Induced Roll Moment Coefficient Versus

Angle of Attack for Canard-Controlled
Missile Configurations

nificantly. The total induced roll moment coefficient amplitude was plotted

for this special case in Figure 9. Figure 9 shows that the canard plus body

configuration has small induced roll moments when compared to the body plus

tail configuration. The canards appear to contribute little to the induced

roll moments of the canard plus body plus tail configuration. The 150 pitch

control deflection of the canards does not appear to influence the induced

roll moment of the canard plus body plus tail configuration. The body plus

tail and the canard plus body plus tail (6 = 0Q) configurations had negative

values of C£( 4 7) at a 50 angle of attack. A small negative value of C4

was shown previously for a Basic Finner configuration at small angles of

attack. The stable "lockin" roll trim angle is 450 or a 90* multiple of 45*

when C£( 4 7) is positive and 0* or 900 multiple of 00 when Ci(4 ) is negative

(see Figure 10). Note that C4 is positive and then changes to negative
CP(4y)

at higher angles of attack for the canard plus body configuration.
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Figure 10. Roll Trim Angle Due to the Induced Roll Moment

Figure 11 presents the extracted fin cant coefficients as a function of

angle of attack for the canard-controlled missile configurations. All of the

extracted coefficients were small since there was no intentional fin cant.

Figure 12 shows the~ extracted roll asyammetry moment coefficients versus

angles of attack for the canard-controlled missile configurations. The ex-

tracted asymmetry roll moment coefficients (Cac cos y Ca sin y) are combina-

tions of mass and aerodynamic asymmetry roll moments. As a result, mass and

aerodynamic contributions to the total asymmetry moments cannot be determined 4
unless one of the contributions is known. At zero angle, the aerodynamic

asymmetry is "theoretically" zero. Therefore, Figure 12 indicates that the
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mass asymmetries of all the configurations are small. Mass asymmetries are

independent of angle of attack and, therefore, constant with angle of attack

for each configuration. Thus, the large roll asymmetry coefficients are due

primarily to aerodynamic asymmetry moments.

The canard plus body configuration had small asymmetry coefficients and

the canard plus body plus tail configuration (6 = 150) exhibited large aero-

dynamic asymmetry coefficients that varied as the cosine y (because of the

large asymmetric canard deflections.) These results were anticipated.

However, the symmetric body plus tail and the canard plus body plus tail

configurations (6 = 0°) exhibited large aerodynamic roll asymmetries at angles

of attack above 25'. The corresponding rolling motion data indicates the

presence of a large roll moment that varies as sine y and/or cosine y. The

origil, of these asymmetry type moments is not known.

SUMMARY AND RECOMMENDATIONS

Subsonic free-rolling wind tunnel data have been presented for four

canard-controlled missile configurations. Nonlinear static and dynamic roll

moment coefficients were extracted from the test data.

Linear roll damping coefficient derivative (C p), linear roll damping

coefficient derivative variation with roll angle (CZ p(4y)), induced roll

moment coefficient (C£( 4 7)) fin cant roll moment coefficient (Ck 6 ), and two

asymmetry coefficients (Cac and C ) were extracted. The extracted values ofac as
these coefficients have been presented for three body build-up configurations

(canard plus body, body plus tail, and canard plus body plus tail) with zero

fin deflections and a canard plus body plus tail configuration with 150

canard pitch control deflections. The extracted linear roll damping coeffi-

cient derivatives (Cjp) were nonlinear with respect to angle of attack for all
p

of the configurations. Extracted experimental values of CZ for the canard plus
p

16



body plus tail configurations (6 = 00) agreed with predicted values of % up

to a 250 angle of attack. The body build-up configurations showed that there

is significant canard/tail interference. Because of the canard/tail inter-

ference, the body plus tail and the canard plus body plus tail configurations

(6 = 00) have values of % versus angle of attack that are nearly equal.

Extracted values of the linear roll damping moment coefficient derivative

variation with roll angle (Cip( 4 y)) showed that there is significant roll

damping variation wit/, the roll angle for all of the configurations at angles

of attack above 250. The 150 canard pitch control deflections were found to

make Cjp more negative at angles of attack greater than 150. The body build-

up configurations also showed that the canards contribute little to the

induced roll moment coefficient of the canard plus body plus tail configura-

tions.

The results indicated that the fitting technique and the equation of

motion are generally adequate to describe the rolling motion of the canard-

controlled missile configurations. However, the large aerodynamic asymmetry

coefficients extracted for the symmetry configurations (200 < a < 300) indi-

cate the presence of aerodynamic moments that are not fully explained by the

equation of motion. Future investigations should address this cosine y/sine y

roll moment phenomena.

Ultimately this technique, if applied to a variety of configurations

over a complete Mach number range, could provide a design data base. Tran-

sonic and supersonic tests should be included in future efforts. Future

work may also include applying Kalman filtering techniques to the fitting

V technique to streamline the analysis.
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APPENDIX A

OBSERVED ROLL ANGLE VERSUS FRAME NUMBER FOR CANARD-CONTROLLED

MISSILE CONFIGURATIONS AT ANGLES OF ATTACK FROM 0 TO 300
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Figure A-I. Observed Roll Angle Versus
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Figure A-3. Observed Roll Angle Versus
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Frame Number at a 100 Angle of

Attack for Run 264

S. CANARD+ BODM' + TAIL (8:00)

.
.. : :2T 

6

S• ~~w .. '::;

. 0 4 846 2.0� •1 6.20 A.7.40 2.0 2 .80
FRAME NUMBER w10t

EXPERIMENTAL CANARO MISSILE
(ALPHA= 15 BEG.. RUN 265 1
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APPENDIX B

COMPARISON PLOTS OF COMPUTED AND OBSERVED ROLL ANGLE
VERSUS TIME FOR THE CANARD-CONTROLLED MISSILE

CONFIGURATIONS AT ANGLES OF ATTACK
FROM 0 TO 300
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Figure B-4. Comparison of Observed
and Computed Roll Angles at a 150

Angle of Attack for Run 27

B-2



a=2O0 
- CANARD.BODY

X< OBSERVEmIEVERY 4TH PT PLOTTED)

COMPUTED

V0200 60 9 00 12 00 Is 00 09 00 2,1 00 24 00 '21.00

TIME IN SECONDS

Figure B-5. Comparison of Observed
and Computed Roll Angles at a 200

Angle of Attack for Run 28

az25* - CANARD+BODY
X OBSERVEWIEVERY 4TH PT PLOTTED)I

g COMPUTED

AIA

(09

b~ 00. 30 0 9.0 2.00 15.00 18.00 2,1.00 2,4.00 -2 .00

TIME IN SECONDS

Figure B-6. Comparison of Observed
and Computed Roll Angles at a 250

Angle of Atta.zk for Run 29

B-3



a-=30' - CANARD+BODY
X OBSERVED(EVERY 4TH PT PLOTTED)

-COMIPUTED

3'.00 6'.00 9'.00 12.00 10.00 16.00 21-00 2'4.00 2,00o
TIMlE IN SECONDS
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Figure B-15. Comparison of Observed
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Figure B-24. Comparison of Observed
and Computed Roll Angles at a 100

Angle of Attack for Run 285
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Figure B-25. Comparison of Obseived
and Computed Roll Angles at a 150

Angle of Attack for Run 286
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Figure B-26. Comparison of Observed
and Computed Roll Angles at a 200

Angle of Attack for Run 287
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Figure B-27. Comparison of Observed
and Computed Roll Angles at a 250

Angle of Attack for Run 288
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Figure B-28. Comparison of Observed
and Computed Roll Angles at a 300

Angle of Attack for Run 289
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NOMENCLATURE

C , C Roll asymmetry coefficients, defined in Equation (1)as ac

Cjk, Sjk Roll moment coefficients, defined in Equation (1)(See Table 1)

Czp Linear roll damping moment coefficient derivative

Ckpc Linear roll damping moment coefficient derivative
contribution due to the canards

C~C+ Linear roll damping moment coefficient derivative
for the canard plus body plus tail configuration
(6 00)

%p Linear roll damping moment coefficient derivative
due to the interference between the canard and tail

.th
Cipj j order roll damping moment coefficient derivative,

defined in Equation (1)

Ctp(4y)r Variation of roll damping moment coefficient derivative
with roll angle for a four-finned missile

Cip(4ky)kth variation of roll damping moment coefficient
derivative with roll angle for a four-finned missile

Ct66 Fin cant roll moment coefficient

C£-(4y) 6 Varia'Lizn of fin cant moment coeff Lcient with roll
angle for a four-finned missile

C6(4ky) 6 kth variation of fin cant moment coefficient with
roll angle for a four-finned missile

C-1
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NOMENCLATURE (Continued)

Cp Linear roll damping moment coefficient for the body
plus tail configuration (6 = 0Q)

Induced roll moment coefficient for a four-finned
missile

C-(4k)kth induced roll moment coefficient for a four-finned
missile

d Missile reference diameter, d = 3 min

I Missile axial moment of inertia
x

p Missile spin rate, p =

Q Dynamic pressure

QQSd/Ix

S Missile reference area

V Velocity (ft/sec)

a Angle of attack

Missile roll angle

Missile roll angular acceleration

Fin deflection angle
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NOMENCLATURE (Continued)

(6 = 00) All fin deflection angles on configuration are zero
(See Figure 1)

(6c = 150) Two opposing canards are deflected 15 to simulate
missile pitch control
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