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FOREWORD

This technical report documents dynamic wind tunnel test data and tro
extraction of nonlinear dynamic roll moment coefficients from these data.
The test and analysis were conducted under a program to investigate the roll-
ing motion of cruciform canard-controlled missiles at moderate angles of

attack.
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INTRODUCTION

This work is part of a joint program with the Naval Weapons Center (NWC),
China Lake, California, to improve the methods of predicting the rolling
motion of non-roll-controlled guided missiles. Guided missiles, whether roll
controlled or not, that are flown to high angles of attack encounter large
variations in aerodynamic roll moment. An effective design requires analysis
and prediction of rolling motion phenomena. This wcxk was conducted to pro-
vide further insight into the roll characteristics of canard-controlled

missiles at high angles of attack.

The specific objective of the Naval Surface Weapons Center (NSWC),
Dahlgren, Virginia, was to provide experimental dynamic roll moment coeffi~
cients (roll damping) for a cruciform, canard-controlled missile. The experi-
mental data are to be used by NWC to evaluate NWC-sponsored prediction tech-
niques of roll damping characteristics for canardzmissiles. This experimental

data will serve as a data base for comparison with "theory."

NSWC had previously developed a fitting technique to extract nonlinear
roll moment coefficients from single degree-of-freedom rolling motion data.
The basis of this procedure is a nonlinear differential equation of rolling
motion, first set forth by Daniels.l* The equation of motion describes the
roll phenomena ("linear" rolling motion, roll "slowdown," roll "lockin,"
"breakout, " and "speedup") of a cruciform-finned (body plus tail) missile at
angles of attack from O to 90°. The roll moment coefficients are extracted
from observed roll angular data using a "global" nonlinear least-squares
fitting procedure developed by Cohen and Clare.2 The procedure was used suc-
cessfully by Cohen, Clare, and Stevens3 to determine roll moment coefficients
for a cruciform body plus tail configuration (Basic Finner) at high angles of

attack. It seemed logical to extend the fitting procedures to the canard-

*Raised numerals refer to identically numbered references listed at the end
of the text.
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controlled configuration, even though the eguation of motion was not specifi-

cally developed for guided missile configurations with control deflections.

This report presents rolling motion data and extracted roll moment coef-
ficients for four canard-controlled missile configurations at angles of attack

from 0 to 30° at subsonic speed.

WIND TUNNEL TEST DATA

The canard-controlled missile model used in the wind tunnel tests was a
10-caliber, tangent ogive-cylinder body. The canards and tail were detachable
so that body build-up configurations could be tested. The configurations
discussed in this report include three body build-up configurations (canard
plus body, body plus tail, and canard plus body plus tail) that have zero
canard and tail deflections (6 = 0°). The fourth configuration was a canard
plus body plus tail configuration with two opposing canards deflected 15°
(dc = 15°) to simulate a pitch maneuver. Canard and tail deflections were
fixed during test runs. Figure 1 shows diagrams of the four canard-controlled

missile configurations.

The wind tunnel tests4 were conducted in the 7x10-ft low;speed wind
tunnel of the Army Air Mobility Research and Development Laboratory, Moffett
Field, California. The free-stream velocity was about 113 ft/sec. The
dynamic pressure during the test was approximately 15 1b/ft2 with a Reynolds
number of approximately 6.6x105/ft. The model was mounted on an air bearing

so that it was free tou roll. BAngle of attack was constant during test runs.

Measurements of roll angle (y) as a function of time were recorded using
a high-speed motion picture camera. The filn was digitized to obtain roll

angle. Appendix A shows the resulting plots of roll angle versus film frame

PR




BODY BUILD-UP
CONFIGURATIONS

CANARD PLUS BODY

BODY PLUS TAIL

1

CANARD PLUS BODY PLUS TAIL
5 = 0°)

PITCH MANEUVER
CONFIGURATION

CANARD PLUS BODY PLUS TAIL
6, = 15°)

Figure 1. Canard-Controlled Missile Configurations
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In the preliminary analysis of the canard plus body plus tail with zero
fin deflections, only five hasic (first order) coefficients were extracted.4
These roll moment coefficients included fin cant (C266), linear roll damping
derivative (Clp)' induced roll moment (Cg(4Y)), and two asymmetry terms (Cac
and Cas)' These coefficients were thought to be adequate to model the rolling
motion; however, subsequent analysis of the rolling motion of the configura-
tions at angles of attack from 20 to 30° showed that an additional coefficient
was needed to explain the roll oscillatory motion. The linear roll damp-
ing derivative coefficient variation with roll angle (Clp(4Y)) was introduced
to account for the rolling motion oscillations that do not damp. (Higher
order roll damping variation with roll rate (Cgp3) was extracted from several
runs; however, the results appeared to be incorrect and data fits were not
significantly improved.) The linear roll damping derivative coefficient vari-
ation with roll angle (Czp(4y)) was extracted only when the data fits were

significantly improved.

Appendix B presents comparison plots of observed and computed roll angle
versus time. The plots show the results of the data fits. The observed data,
roll angle versus time, were obtained from the roll angle versus frame number
data in Appendix A by correlating frame number to time. The computed data
were calculated using Equation (1) and the set of roll moment coefficients
extracted for that configuration at that particular angle of attack. The
small lines drawn normal to the computed lines indicate segment locations
used in the fitting process. The computed data matches the cbserved data

well.

These comparisons indicate that Equation (1) is an adequate model for
determining the roll moment coefficients for a canard-controlled missile at
moderate angles of attack, and the good agreement is considered to be valida-

tion of the extracted roll moment coefficients.

The linear roll damping moment coefficient derivative (Clp) results are

presented in Figure 2. Clp is nonlinear with respect to angle of attack for

all of the configurations. The values of Cq,s noted by darkened data points in
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Table 1. Aerodynamic Roll Moment Coefficient

Correlation*
Coefficient
Conventional Computer Program
Nomenclature Nomenclature Description
c, § c Fin cant roll moment coefficient
L 00 .
8
Cc 8 C Variation of fin cant moment
L5 (4y) o1 Coefficient with roll angle
o] 8 c
02
%5 (o)
C 8 C
Ysaazy) o3
C C
%5 (axy) ¢ oK
C!L Clo Linear roll damping moment coefficient
P derivative
C:2 2 Czo Quadratic roll damping moment coefficient
derivative
ci. 3 C30 Cubic roll damping moment coefficient
. . derivative
(o c
3 JO
pJ
Cl Cll Variation of linear roll damping
P (4y) noment coefficient derivative
with roll argle
) 12
p(8y)
Cc C
2 13
p(l2y)
Cc C
3 134
p(4Ky)
C“‘”) S01 Induced rolling moment coefficients
S
Cetey) 02
S
S a2y o3
’ s
€4 (aky) CK
[of Roll asymmetry coefficients
ac (Combinations of aerodynamic
Cas and mass asymmetry constants)

*All coefficients are a function of the missile's angle of attack.
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NOTE: SOLID DATA POINTS INDICATE THAT
ch (47)WAS ALSO EXTRACATED SIMULTANEOUSLY WITH C,
P

p

20 <¢—14 (4, = 15°)
V = 113 FT/SEC 5 - 00
(0 =0°%cC
-15 |- <= focar
p 3 CQPT
10 +

COEFFICIENT DERIVATIVE, C,

i
4
59
\O\’____.\‘\G B R ——. Q

0 - | L
0 5 10 15 20 25 30
ANGLE OF ATTACK ~ DEGREES

LINEAR ROLL DAMPING MOMENT

1 A i po

Figure 2. Extracted Linear Roll Damping Moment Coefficient
Derivative Versus Angle of Attack for Canard-
Controlled Missile Configurations

Figure 2, indicate that clp(4y) was also extracted simultaneously with Cgp.
Czp alone was found to be insufficient to model roll damping moments for those
configurations at those angles of attack. Figure 2 shows that the Czp of the
canard plus body configuration is smaller than the Cﬂp of the body plus tail
configuration over the angle of attack range. Clp was referenced tc +he

model body diameter and the canards are smaller than the tail fins. ae Czp
of the body plus tail and the canard plus body plus tail configurations are
nearly the same over the angle of attack range. In addition, Figure 2 also
shows that the 15° canard pitch control deflections make Clp more negative

at angles of attack above 15°.
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Figure 3 shows that there is significant canard/tail interference present
on the canard plus body plus tail confiquration esvecially at lower angles of
attack. The interference nearly cancels the canard contribution. Figure 4
shows a comparison plot of the extracted experimental and estimated CQP ;alues
for the canard plus body plus tail configuration. The estimated values
show good agreement with the experimental data exceot at a 30° angle of attack.
However, estimates of the canard/tail interference shown in Figure 5 do not

agree with the experimental interferencz shown in Figure 3.

Examination of the values obtained for CQP(4Y) in Figure 6 shows that
opposite trends are observed in this coefficient for the confiqurations with
and without a tail. These trends are obvious in the rolling motion data,
Appendix A. When the canard plus body configuration (without a tail) is
circulating, the average roll damping moment is smaller at all angles of
attack than the configurations with a tail. This is evident in the rolling

motion plots, since it requires more revolutions for the canard plus body to

V = 113 FEET PER SECOND

p

-20 F

C;, +C; (TAKEN FROM FIGURE 2)
Pe Py

-15

-10

EXPERIMENTAL
CANARD/TAIL INTERFERENCE (C, )

LINEAR ROLL DAMPING MOMENT
COEFFICIENT DERIVATIVE, C,

S Te, (TAKEN FROM FIGURE 2) Py
Pc+ T
0 L . . 1 A A i —-
0 5 0 15 20 25 30

ANGLE OF ATTACK ~ DEGREES

Figure 3. Experimental Canard/Tail Interference Versus
Angle of Attack for the Canaxrd Plus Body
Plus Tail Configuration (8§ = 0°)
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Figure 4. Comparison of Experimental and Estimated Linear
Roll Damping Moment Coefficient Derivative Versus
Angle of Attack for Canard Plus Body Plus
Tail Configuration (8§ = 0°)
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Figure 6. Linear Roll Damping Moment Coefficient Derivative
Variation with Roll Angle Versus Angle of Attack for
the Canard-Controlled Missile Configurations

damp. However, after the canard plus body configuration begins an oscillatory
motion {"lockin"), the number of cycles to damp to a roll trim angle is smaller
than for the configurations with a tail. This indicates the presence of

strong negative damping moments in roll angle (Y) regions near the "lockin"
roll trim angle and implies that CQp(Av) must be of the same sign as the
induced roll moment coeff{icient for the canard plus body configuration. The

extracted values for Cgp(4Y) and C2(4y) show this result.

The roll angular data for the configurations with tails exhibit oscilla-
tory motion at angles of attack from 20 to 30° that does not damp to a roll
trim angle, but oscillates about that roll trim position. Because the roll
oscillations do not damp, there must be a region of positive roll damping
moment near the roll trim angle. For configurations with a tail, the sign of

Czp(4Y) must be opposite the sign of Cg(4y). To exhibit undamped oscillations,

10
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the configurations with a tail must have Clp(4y) negative and larger than CQP
for the particular angle of attack. This result can be shown by the super-
position of average linear roll damping moment and the variation of the roll

damping moment with roll angle, Figure 7.

The roll angular data for the body plus tail configuration at a 25°
angle of attack, Figure B-~13, and for the canard plus body plus tail (Sc =
15°) at a 20° angle of attack, Figure B-26, show a gap in the computed data
where the roll oscillatory data shifts from one roll trim angle to another.
This cannot be predicted by the eguation of motion. However, both data runs
exhibit roll asymmetry and the extracted values of Czp(4y) show a region in
Y where the damping moment is nearly zero. The zero damping region appears
to be near a saddle point in the Yy versus & phase plane, Figure 8. Because
the damping is zero near the saddle point and a roll asymmetry is present, it

is possible that any small disturbance or unmodeled transient could cause

—
30t P

..... Copiay) COSINE 4y
20k —— GV = G + C () COSINE 4y

/2> POSITIVE ROLL DAMPING MOMENT COEFFICIENT REGIONS

TOTAL ROLL BAMP MOMENT COEFFICIENT, Cy ®Y)

1 | i 3 1 1 i H

0 45 90 13b 180 225 270 315 360
ROLL ANGLE, Y ~ DEGREES

Figure 7. Total Roll Damping Moment Coefficient Versus
Roll Angle for the Body Plus Tail Configuration
at a 25° Angle of Attack
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Figure 8. Rolling Motion Phase Plane for Body
Plus Tail Configuration at a
25° Angle of Attack

the model to jump from oscillations about one roll trim angle to oscillations
about one roll trim angle to oscillations about another adjacent roll trim
angle. From Figure B, it is possible for the motion to jump from Trajectory 1
to Trajectory 3, even though the jump is not modeled. Note that the phase
plane was computed using extracted roll moment ccefficients. The gap in the
data does not effect the extracted coefficients since the observed roll data

was segmented around the gap.

Figure 9 presents plots of the extracted induced roll moment coefficients
(Cg(4y)) as a function of angle of attack for the canard-controlled missile
configurations. It should be noted that CZ(By) was also extracted for the
canard plus body plus tail configuration (§ = 0°) at a 25° angle of attack.

The CQ(BY) was extracted because, in this instance, the fit was improved sig-
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Figure 9. Extracted Induced Roll Moment Coefficient Versus
Angle of Attack for Canard-Controlled
Missile Configurations

nificantly. The total induced roll moment coefficient amplitude was plotted

for this special case in Figure 9. Figure 9 shows that the canard plus body

configuration has small induced roll moments when compared to the body plus
tail configuration. The canards appear to contribute little to the induced
roll moments of the canard plus body plus tail configuration. The 15° pitch
control deflection of the canards does not appear to influence the induced
roll moment of the canard plus body plus tail configuration. The body plus
tail and the canard plus body plus tail (8§ = 0°) configurations had negative
values of C2(4y) at a 5° angle of attack. A small negative value of C2(4y)
was shown previously for a Basic Finner configuration at small angles of
attack.l The stable "lockin” roll trim angle is 45° or a 90° multiple of 45°
when C£(4y) is positive and 0° or 90° multiple of 0° when C£(4y) is negative
{see Figure 10). Note that c2(4y) is positive and then changes to negative
at higher angles of attack for the canard plus body configuration.
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Figure 10. Roll Trim Angle Due to the Induced Roll Moment

Figure 11 presents the extracted fin cant coefficients as a function of
angle of attack for the canard-controlled missile configurations. All of the

extracted coefficients were small since there was no intentional fin cant.

Figure 12 shows the extracted roll asymmetry moment coefficients versus
angles of attack for the canard-controlled missile configurations. The ex-
tracted asymmetry roll moment coefficients (Cac cos Y Cas sin y) are combina-
tions of mass and aerodynamic asymmetry roll moments. As a result, mass and
aerodynamic contributions to the total asymmetry moments cannot be determined
unless one of the contributions is known. At zero angle, the aerodynamic

asymmetry is "theoretically" zero. Therefore, Figure 12 indicates that the
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mass asymmetries of all the configurations are small. Mass asymmetries are
independent of angle of attack and, therefore, constant with angle of attack
for each configuration. Thus, the large roll asymmetry coefficients are due

primarily to aerodynamic asymmetry moments.

The canard plus body configuration had small asymmetry coefficients and
the canard plus body plus tail configuration (8§ = 15°) exhibited large aero-
dynamic asymmetry coefficients that varied as the cosine y (because of the

large asymmetric canard deflections.) These results were anticipated.

However, the symmetric body plus tail and the canard plus body plus tail
configurations (§ = 0°) exhibired large aerodynamic roll asymmetries at angles
of attack above 25°. The corresponding rolling motion data indicates the
presence of a large roll moment that varies as sine y and/or cosine y. The

origil. of these asymmetry type moments is not known.

SUMMARY AND RECOMMENDATIONS

Subsonic free-rolling wind tunnel data have been presented for four
canard-controlled missile configurations. Nonlinear static and dynamic roll

moment coefficients were extracted from the test data.

Linear roll damping coefficient derivative (Cgp), linear roll damping
coefficient derivative variation with roll angle (Cgp(4y)), induced roll
moment coefficient (C2(4y))' fin cant roll moment coefficient (0166)' and two ‘
asymmetry coefficients (Cac and Cas) were extracted. The extracted values of ¢
these coefficients have been presented for three body build-up configurations
(canard plus body, body plus tail, and canard plus body plus tail) with zero
fin deflections and a canard plus body plus tail configuration with 15°
canard pitch control deflections. The extracted linear roll damping coeffi-
cient derivatives (Cgp) were nonlinear with respect to angle of attack for all N E

of the configurations. Extracted experimental values of Cgp for the canard plus

P

P
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body plus tail configurations (§ = 0°) agreed with predicted values of Clp up

to a 25° angle of attack. The body build-up configurations showed that there

is significant canard/tail interference. Because of the canard/tail inter-
ference, the body plus tail and the canard plus body plus tail configurations
(6§ = 0°) have values of Czp versus angle of attack that are nearly equal.
Extracted values of the linear roll dampinrg moment coefficient derivative
variation with roll angle (Cip(4Y)) showed that there is significant roll

damping variation witli the roll angle for all of the configurations at angles

of attack above 25°., The 15° canard pitch control deflections were found to

make Cgp more negative at angles of attack greater than 15°. The body build-

up configurations also showed that the canards contribute little to the

induced roll moment coefficient of the canard plus body plus tail configura-
tions.

The results indicated that the fitting technique and the equation of

motion are generally adequate to describe the rolling motion of the canard-

controlled missile configurations. However, the large aerodynamic asymmetry

coefficients extracted for the symmetry configurations (20° < a < 30°) indi-

cate the presence of aerodynamic moments that are not fully explained by the

equation of motion. Future investigations should address this cosine y/sine y

roll moment phenomena.

Ultimately this technique, if applied to a variety of configurations
over a complete Mach number range, could provide a design data base. Tran-

sonic and supersonic tests should be included in future efforts. Future

work may also include applying Kalman filtering techniques to the fitting

technique to streamline the analysis.
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APPENDIX A

OBSERVED ROLL ANGLE VERSUS FRAME NUMBER FOR CANARD-CONTROLLED
MISSILE CONFIGURATIONS AT ANGLES OF ATTACK FROM 0 TO 30°
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Figure A-1l. Observed Roll Angle Versus
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APPENDIX B

COMPARISON PLOTS OF COMPUTED AND OBSERVED ROLL ANGLE
VERSUS TIME FOR THE CANARD-CONTROLLED MISSILE
CONFIGURATIONS AT ANGLES OF ATTACK
FROM 0 TO 30°
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Figure B~3. Comparison of Observed
and Computed Roll Angles at a 10°
Angle of Attack for Run 26
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Figure B~4, Comparison of Observed
and Computed Roll Angles at a 15°
Angle of Attack for Run 27
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Figure B~6. Comparison of Observed
and Computed Roll Angles at a 25°
Angle of Attack for Run 29
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Figure B-7. Comparison of Observed
and Computed Roll Angles at a 30°
Angle of Attack for Run 30
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Figure B-8. Comparison of Observed
and Computed Roll Angles at a 0°
Angle of Attack for Run 347 §
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Figure B-9. Comparison of Observed
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Figure B-10. Comparison of Observed
and Computed Roll Angles at a 10°
Angle of Attack for Run 349
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Figure B-1l1. Comparison of CObserved
and Computed Roll Angles at a 15°
Angle of Attack for Run 350
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Figure B-19. Comparison of Observed
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Angle of Attack for Run 266
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Figure B-24. Comparison of Observed
and Computed Roll Angles at a 10°
Angle of Attack for Run 285
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APPENDIX C

NOMENCLATURE
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Clpj

2o (4y)

2o (4xy)

T TN

S N B,

4
Al

NOMENCLATURE
Roll asymmetry coefficients, defined in Equation (1)

Roll moment coefficients, defined in Equation (1)
(See Table 1)

Linear roll damping moment coefficient derivative

Linear roll damping moment coefficient derivative
contribution due to the canards

Linear roll damping moment coefficient derivative
for the canard plus body plus tail configuration
(6 = 0°)

Linear roll damping moment coefficient derivative
due to the interference between the canard and tail

jth order roll damping moment coefficient derivative,
defined in Equation (1)

Variation of roll damping moment coefficient derivative
with roll angle for a four-finned missile

kth variation of roll damping moment coefficient
derivative with roll angle for a four-finned missile

Fin cant roll moment coefficient

Varialicn of fin cant moment coefficient with roll
angle for a four~finned missile

kth variation of fin cant moment coefficient with
rcll angle for a four-finned missile
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NOMENCLATURE (Continued)

Linear roll damping moment coefficient for the body
plus tail configuration (6 = 0°)

Induced roll moment coefficient for a four-finned
missile

kth induced roll moment coefficient for a four-finned
missile

Missile reference diameter, d = 3 min
Missile axial moment of inertia
Missile spin rate, p = §

Dynamic pressure

QSd/Ix

Missile reference area

Velocity (ft/sec)

Angle of attack

Missile roll angle

Missile roll angular acceleration

Fin deflection angle
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(6

(8,

0°)

= 15°)

NOMENCLATURE (Continued)

All fin deflection angles on configuration are zero
(See Figure 1)

Two opposing canards are deflected 15 to simulate
missile pitch control
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