NONLINEAR SPECTROSCOPY

Final Report for the Period March 1, 1975 - February 28, 1978

James J. Wynne

April 28, 1978

U. S. Army Research Office
Contract DAAG29-75-C-0016

IBM Thomas J. Watson Research Center
P. O. Box 218
Yorktown Heights, New York 10598

Approved for Public Release; Distribution Unlimited
FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.
Using the technique of multiphoton ionization spectroscopy, we have studied Rydberg series of states in the alkaline earth atoms Ca, Sr and Ba. We observe long series of states not previously identified. We analyze this new data using multichannel quantum defect theory.
Background and Summary of Results

This contract began on March 1, 1975 under the title, "Generation and Detection of Infrared and Ultraviolet Radiation by Nonlinear Optical Techniques". At that time we had shown that nonlinear optical mixing of dye laser beams in atomic vapors was a way to generate tunable, coherent, infrared and ultraviolet radiation. The efficiency of these processes was strongly influenced by resonant enhancement when the lasers were tuned near various atomic energy levels. Under this contract, we began to investigate ways to improve the efficiency of these processes. We saw resonant enhancement from known levels and we also saw resonant enhancement where no levels were previously known. Thus we had found a new way of doing atomic spectroscopy. Subsequently, the discovery and analysis of new energy levels in alkaline earth atoms became our primary interest and the contract title was changed to "Nonlinear Spectroscopy".

During the time we were supported by this contract, the primary problem studied was multiphoton ionization spectroscopy of the alkaline earth atoms Ca, Sr and Ba.

The study of the bound states of atoms by optical spectroscopy has been fundamental in the development of the understanding of atomic structure. However, despite a long and continuing history of achievements, many aspects of the electronic structure of many-electron atoms are still not well understood. The states of many-electron atoms do not, in general, fall into simple Rydberg sequences. The combined effects of Coulomb repulsion and angular momentum recoupling have made it difficult to identify simple Rydberg series of states in the optical spectra of many-electron atoms. Absorption spectroscopy has been extremely successful in observing and identifying Rydberg series because of the well-defined nature of the initial state. In contrast, picking out Rydberg series from emission spectra is a formidable task when the series are complicated by configuration interactions and neither the initial nor final state of the transitions are known. Consequently, emission spectroscopy has had limited success in identifying Rydberg series in many-electron atoms.
We have overcome these shortcomings of emission spectroscopy by using tunable lasers to excite levels in a well defined manner from the ground state. By multiple photon excitation, levels which are not connected to the ground state by one-photon transitions may be selectively excited. For example, with an even-parity ground state, even-parity excited states may be reached by two-photon transitions, but not by one-photon transitions. We have studied the excited states of alkaline earths by observing strong ionization signals when an atomic vapor is irradiated by lasers tuned to multiple photon resonances. This ionization is easily detected by inserting a simple ionization probe into a pipe containing the atomic vapor. If the probe is negatively biased relative to the walls of the pipe, thermionic emission from the probe will lead to a space-charge limited current. Ions produced by the laser excitation partially neutralize the space charge, thereby allowing an increased electron current to flow. Using pulsed lasers, one detects ionization by observing the pulsed current flowing through the external load resistor.

Using nitrogen-laser-pumped dye lasers, we have studied Rydberg series of states in Ca, Sr and Ba. Our experiments allowed us to observe long series of both odd and even parity states which had not been previously identified. Our important experimental findings are now summarized. Using two-photon excitation we have observed the msns 1S_0 and msnd 1D_2 and 3D_2 series in Ca ($m=4$) and Sr ($m=5$). Using three-photon excitation we have observed the msnp 3P_0 series in Ca ($m=4$), Sr ($m=5$) and Ba ($m=6$). We have also seen autoionizing levels of the type 3dns and 3dnd in Ca using two-photon excitation. Finally the Zeeman effect of the 5snd levels of Sr has been studied in the region where 1D_2 and 3D_2 states are strongly mixed.

The analysis of all of this data has been done using multichannel quantum defect theory (MQDT). Within its range of applicability, MQDT is essentially an exact parametrization of the energy levels and wavefunctions of interacting Rydberg series. It treats each whole series as a unit, known as a channel, and is often superior to conventional analysis on a level by level basis. MQDT has enabled us to interpret our data in terms of strong configuration interactions.
with perturbing levels. For example, the 4s and 1D\textsubscript{2} series in Ca is strongly affected by the 4p2, 3d2 and 3d5s configurations. This interaction has prevented previous workers from identifying the levels belonging to 1D\textsubscript{2} configurations from emission spectroscopy. A triumph of our MQDT analysis was the prediction of the Landé g-factor for Sr 5s and states.

Details of our accomplishments may be found in the list of publications which follows.
List of Publications

Participating Scientific Personnel

Dr. James J. Wynne
Dr. Peter Esherick
Dr. John A. Armstrong
Dr. Jean-Paul Hermann
Mr. Louis H. Manganaro