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I. INTRODUCTION

The vulnerability of ammunition to fragment attack is an important
factor in vulnerability analysis, because targets such as tanks,
armored personnel carriers, and self-propelled guns all contain stowed
ammunition. Should the ammunition burn or deflaprate inside the
vehicle, a catastrophic kill would most likely occur, given current
ammunition stowage techniques. Since ammunition survivability is so
critical to the survival of the crew and vehicle, a more detailed treat-
ment of the ammmition conditional kill probabilities than is afforded
by the standard PK/H methodologyl was considered worthwhile.

The PK/H methodology specifies the kill criterion for a critical
component in terms of the minimum hole size in the sensitive region
which a striking fragment must make after perforating whatever inert
layers there may be on the component, exterior to the sensitive region.
As applied to a cartridge case filled with propellant, this criterion
requires estimating the minimum residual mass, after perforation of
the case itself, which will ignite the propellant. (Mass can be related
to hole size by a ''shape factor'). Attacks are considered from six
aspects around the component (top, bottom, right, left, front, back)at
two incidence angles, 0 and 45 degrees. For several reasons, an ap-
proach other than the P /H Program seemed appropriate. For an approxi-
mately cylindrical cartridge case, three of the aspects would
yield no additional information. Secondly, two incidence angles were
considered insufficient to represent the possible attack conditions.
Thirdly, no reliable data existed from which a minimum mass could be
estimated.

Of particular interest are 100 mm rounds found in a Soviet tank
attacked by the XM70 scatterable mine. This mine projects a dense
spray of potentially lethal fragments over a wide area inside the
vehicle. It is expected that many of these fragments are capable of
perforating the cartridge case and igniting the propellant in stowed
ammunition.

II. PROCEDURE
The New Mexico Institute of Mining and Technology (NMI) compiled

data® from various sources in which fragments were fired at US and
Soviet cartridge cases filled with propellant. The probability of a

1 Loren R. Kruse and Paul L. Brizzolara, "An Analytical Method for
Deriving Conditional Probabilities of Kill for Target Components',
Ballistie Research Laboratories Report No. 1563, December 1971.

2 2%i§?%{8%%&%is, James J. Forster, and John P. McLain, "Vulnerability
of Propellant-Filled Munitions to Impact by Steel Fragments', New
Mexico Institute of Miming and Technology, TERA Group, Socorro, New
Mexico, Ballistic Research Laboratories Contract Report No. 65,

March 1972. (AD #893651L)



burning reaction (either slow or violent) was characterized as a
cumulative normal function of fragment striking speed, given a partic-
ular mass., A convenient parameter for comparing burn probability
functions for various cartridge cases, propellants, striking masses,
etc. is the threshold velocity or VSO' This is the striking velocity

at which 50 percent of the fragments are expected to cause a burn, No
consistent variation in V50 was observed when any of the following

conditions were varied: cartridge case type, propellant type, pro-

pellant geometry (single or multi-perforated), fragment temperature,
or fragment incidence angle relative to the longitudinal axis of the
case, The V50 did exhibit a marked dependence on fragment mass, de-

creasing as mass increased. Though only a few shots were available
against Soviet cases, NMI noted that the V50 for Scviet cases was

about 300 m/s higher than for US cases. We observed that the perfora-
tion ballistic limit velocity was approximately 300 m/s greater for

the Soviet cases than for the US cases. From this we concluded that

the most important difference between the Soviet and US rounds was

in the case thickness and that differences in propellant characteristics
made a negligible contribution,

The Soviet case used in the NMI tests was a 10Jdmm round; however,
it is unrepresentative of most Soviet 100mm cases. First, in all the
NMI experimental rounds the propellant grains were Doured directly into
the case. Some Soviet cases contain an interior liner between the
propellant grains and the case wall. One such line- is 95 percent
wax and 5 percent paper. Second, the case thickness was not typical.

The first variation, the lack of a liner, could not be addressed
with the available data. The consequence is that our model may predict
greater ammunition vulnerability than should be expected.

The second variation, case thickness, was hand.ed in the follow-
ing manner, We combined all available data, in addition to the ten
shots against Soviet cases, and defined the burn criterion in terms
of residual speed rather than striking speed. This greatly enlarged
our sample size, a requirement for modeling probabilistic phenomena,
and it made the burn probability less dependent on case thickness and
material. We assumed a cumulative normal relationstip between burn or
kill probability and residual speed. We then applied a probit analysis
to obtain the necessary parameters to the cumulative normal function.
Results of the probit analysis are presented in Appendix A.

3 Mary Gibbons Natrella, Experimental Statistics, Reprint of the
Experimental Statistics Portion of the AMC Handbook, National
Bureau of Standards Handbook No. 91, August 1963.
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The next step was to apply the kill criterion to the two cartridge
cases of interest. Combinatorial Geometry descriptions?4 of the
cartridge cases were prepared (see Appendix B). Shotlines were traced
through an array of hit locations on each case., A vulnerable area
code® evaluated several combinations of striking mass and speed at
each hit location with the new kill criterion to determine the
probability of kill (burn) when the cartridge cases are subjected to
fragment attack., The kill probability results are presented in
Appendix C. Lastly, the mass/speed/kill probability data were input
to the regression sections of the pK/H program which yielded general-

ized equations for conditional kill probabilities as functions of

fragment striking mass and speed. The final pK/H equations for each

cartridge case are presented in Appendix D.
ITI. CONCLUSIONS

We now have a procedure for generating conditional kill proba-
bilities for fragments attacking propellant-filled munitions which
can be applied to a wide spectrum of cartridge case designs and which
is based on actual test firing. This is considered an improvement
over the standard pK/H approach because all incidence angles from

0 degrees to grazing impact have been included in the analysis, rather
than only 0 and 45 degrees.
ACKNOWLEDGEMENT

The authors wish to acknowledge the contribution of Mr. Larry
Losie of Falcon Research and Development, who programmed the exact
probit solution on a Wang 720 programmable desk calculator.

4 Lawrence W. Bain, Jr. and Mathew J. Reisinger, '"The GIFT Code User
Manual; Volume I. Introduction and Input Requirements', Ballistic
Research Laboratories Report No. 1802, July 1975. (AD #B006037L)

5 Calvin Candland, Gary Kuehl, B.E. Cummings, "A Survey of Models
Used Within the Vulnerability Laboratory - Cirea 1973", Ballistic
Research Laboratories Memorandum Report No. 2435, January 1976
(see section entitled Vulnerable Area, VAREA). (AD #B001871L)
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Appendix A. Derivation of New Kill (Burn) Criterion

The NMI data presented in Table A-1 of Reference 2 consist of
impact speeds and reactions (none, burning, or violent) for several
combinations of striking mass, incidence angle relative to the case
longitudinal axis, cartridge case_type, and propellant type. Using
THOR equations for residual speed we converted impact speeds to
residual speeds. All residual speeds were rounded off to the nearest
100 m/s. Data for each striking mass were handled separately; however,
data from various cartridge cases and propellants and for incidence
angles of 0 and 45 degrees were combined.

Our probit solution assumes that the probability of reaction can
be described as a cumulative normal function of the level of stimulus,
or the residual speed in our problem:

Vres

P(Vies) = 1/(y2m 0)“/ﬁexP('(V = Vr50)2/202) dv A-1

where Vrgp and o are parameters to be derived from the probit solution.

One relates the observed burn probability (number of reactions divided
by number of trials at a given level of stimulus) to the standard normal
variable, z, which would yield such a probability as follows:

Pobserved =

z
= P(z) = IAJE;“/Qexp(—uZ /2) du A-2

Given P(z), one can find z. If the cumulative normal function is a
good description of the probability of reaction, z should be linearly
related to the level of stimulus, or the residual speed:

z = (V - Vrso)/o

res
A linear regression of the z's corresponding to the observed probabili-
ties of reaction against the levels of stimulus which produced the

reaction will yield the parameters VrSO and o. This is the graphical

probit method. We carried the solution one step further by performing
one iteration of the "exact' or computational method. Table A-1 sum-
merizes the results of the exact probit solution.

6 ""The Resistance of Various Metallie Materials to Perforation by Steel
Fragments: Empirical Relationships for Fragment Residual Velocity and
Residual Weight', Ballistic Analysis Laboratory, Institute for Co-
operative Research, The Johns Hopkins University, Project THOR
Technical Report 47, April 1961.
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Since the number of trials with the 0.65 and 3.89 gram fragments
were so small compared to those with the 0.32 and 0.97 gram fragments,
less significance was attached to the former resulzs than to the

latter. Values of VrSO for the 0.32 and 0.97 gram fragments were

virtually identical; therefore, averages of the Vrgo's and o's for

these two masses were considered the most representative values of the
parameters required in Equation A-1.

Table A-I. Probit Solution Parameters for Various Fragment

Masses
Mass Vrso o Nurber of Trials
(gm) (m/s) (m/s)
0.32 444 463 296
0.65 554 242 19
0.97 443 541 329
3.89 681 277 8

10



Appendix B. Combinatorial Geometry Model of Cartridge Cases

Two cartridge cases were modeled by the Combinatorial Geometry
technique. Each represented a 100 mm round. (We assumed the warhead
was invulnerable to fragment attack: the warhead end of the cartridge
case was represented by an impenetrable cap.) The first cartridge
case is a model of a mild steel case whose wall thickness is about
1.9 mm (0.074 inch) thick. This case will be referred to as the V500
ammo. The other represents a brass case whose wall thickness is about
2.5 mm (0.10 inch). This is called the V600 ammo. Residual mass and
speed equations are not available for cartridge case brass, so mild
steel equations were used to degrade fragments perforating this case
as well as the V500 case. Figure B-1 shows a side view of the solids
comprising the Combinatorial Geometry model of each case. The radii of
solids 3, 5, and 7 are smaller for the thicker-walled V600 case.
Tables B-I and B-IT present the Description of Solids for the V500 and
V600 ammo, respectively. Tables B-III and B-IV present the Region
Combination Data and the Identification Table, respectively, which
are identical for each cartridge case.

11
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Figure B-1.

Solids in the Combinatorial Geometry Model of Cartridge Cases.
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Table B-1IV.

Region
1

2

Identification Table for V500 and V500 Ammo

Item

1001

1002

1003

1004

1005

1006

1007

1008

16

Base

Lower cylinder outside
Lower cylinder inside
Main cylinder outside
Main cylinder inside
Taper outside

Taper inside

Impenetrable cap



Appendix C. Analytical Evaluation of Average Kill Probabilities for
Various Striking Mass and Speed Combinations

We wise to apply the new burn criterion (Equation A-1) to a set
of representative attack configurations for fragments against the two
cartridge cases modeled in Appendix B. The PK/H program considers only

two incidence angles relative to the case surface, 0 and 45 degrees.
This was considered inadequate for our purposes. Therefore, shotlines
were traced at a randomly chosen point in every 25.4 mm square cell on
a grid plane which was overlaid on the target. The shotlines were
perpendicular to the grid plane. Several orientations of the grid
plane were considered; the plane made angles of 0, *30, *60, and

190 degrees relative to the case diameter. Several mass and speed
combinations were traced along each shotline. The residual speed

was inserted in the burn criterion to determine the kill (or burn)
probability for that shotline and the particular striking mass/speed
combination under consideration. The THOR fragment penetration
equations predict an increasing fragment mass loss with increasing
fragment speed. This is because the empirical data base upon which
the equations are based included the residual mass of only the

largest single perforating fragment, Additional pieces of the resid-
ual penetrator were ignored. This procedure meant that our cartridge
case kill probabilities for a given mass peaked at a certain fragment
speed, then declined. However, the propellant is impacted by all
these residual fragments, not just the largest single one. Therefore,
we felt it more realistic to level off the kill probabilities at the
peak rather than accept a declining kill probability with increasing
fragment speed. For the grid plane at +90 degrees, every mass/speed
combination yielded a zero kill probability. Tables C-I through C-XII
present average kill probabilities for the mass/speed combinations at

the grid plane angles of 0, *30, *60, and -90 degrees for the V500 and
the V600 Ammo.

The final conditional kill probabilities must be independent of
the grid plane angle, so the results presented in Tables C-I through
C-XII were averaged over all angles. Since much less of the spherical
area around the case is available for attacks from *90 degrees,
results for these angles were weighted less than those from the
other angles. Experience has shown that a reasonable approximation
to the correct weights is to weight all angles other than *90 degrees
by eight and to weight *90 degrees by unity. Results of this procedure
are given in Tables C-XIII and C-XIV, which present weighted kill
probabilities for each mass/speed combination for the V500 and V600
ammo cases, respectively. A fragment shape factor (see Appendix D) of
57.98 cm?/kg2/3 was used in the penetration equations that were uti-

lized in the generation of the kill probabilities given in Tables C-I
through C-XIV,

17
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Appendix D. Conditional Kill Probability Equations

Conditional kill probabilities as functions of fragment mass,
average presented area, and striking speed were generated using the
MAXFIT and GENREG subroutines of the PK/H program with the results

presented in Tables C-XI and C-XII used as inputs. The equations are
in_the following forms:

Pesi = Pnax (1 - exp(-b(mv/A - k)™)) |

where m is in kilograms, v in metres/sec, and A in square centimetres;

n'
= ' = 9 = ' -
Poutoff = ©'max(l - ©@(-b' (1 + logygm - k)7 ))  D-2

where m is in grains.

Equation D-1 is used to compute conditional kill probability
unless it is greater than Equation D-2; if so, Equation D-2 is used.

The average presented area, A, is expressed as a function of the
mass:

A=km D-3
where k is a shape factor which depends on fragment density and
geometry. The fragments produced by a steel plate attacked by the
XM70 mine are nearly random in shape, and k = 57.98 cmz/kgz/s.

Table D-I lists the coefficients for Equations D-1 and D-2 for

both the V500 and V600 ammunition. The minimum mass, below which the
PK/H is always zero, is 0.06 gm for the V500 ammunition and 0.19 gm for

the V600 ammunition.

Table D-I

Ammo P k b n P k! b

nax max n'

V500 .832 1,2 1541 1,3032 .838 0 006963  5,2472

V600 +793 1.6 .1258 1,3492 .803 0 003227 5,6526
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