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I. INTRODUCTION

The preliminary design of projectiles must include a determination
of drag coefficient in order to establish the retardation which is
required to estimate the velocity of the projectile at the target. 1In
lieu of range test results defining a particular configuration, the
appropriate values are calculated. Predictive calculating schedules

include BRLESC computer codesl and tabulationsz; wherein, the retarding
forces acting on the projectile are composed as wave drag, viscous drag
and base (pressure) drag. Reference 1 is derived in rigorous mathematical
expression to model the forward fluid flow but is limited to axisymmetric
bodies of revolution. Reference 2 requires extensive use of selected
charts which are geometrically restrictive in application.

This report presents a simplified technique for estimating the
component drag in algebraic expression. Drag coefficients for both
finned and flared projectiles are calculated and the results compared

. : 3
with aerodynamic range test data .

II. PROCEDURE

Figure 1-a is a schematic of a long rod projectile with a fin empennage
and Figure 1-b a projectile with a flare. Figures 2-a and 2-b define
the common nomenclature.

Considering the body drag:

1. The wave drag coefficient is given as

. ~.28 -1.73
Coup = -7 "7 8

directly from Figure 8-29 of Reference 2 and reproduced as Figure B-1

of Appendix B. Both conical and ogival noses are described adequately

by this equation with divergence occurring only where there is a combination
of short nose length and high Mach number. The expression applies to

both the finned and the flared projectiles for the Mach range M>.8.

1. Robert L. McCoy, "MACDRAG" BRLESC computer program.
2. AMCP 706-280, "Design of Aerodynamically Stabilized Free Rockets', 1968.

3. Walter F. Braun, "Aerodynamic Data for Small Arms Projectiles," BRL
Report 1630, January 1973, p. 187-188. (AD #909757L)
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2 The base drag is deduced from a linearization of Figure 8-41,
Reference 2, modified to Figure B-2 of Appendix B. This takes the form

.60 d2

C B (-.048M + .265) e b

DB
. 60
where the factor e converts the flare half-angle data to an
approximation of the linearized characteristic.

Note that a tapered afterbody on finned projectile presents special
difficulties in estimating base drag and Reference 2 does consider such
projectiles. However, this requires an assumption that the expanding
flow from a fenced channel (a cornered lattice) is equivalent to flow
around an unbounded two dimensional corner. Efforts to validate this
assumption by either calculation or by aerodynamic range data have been
unavailing. In this report the maximum fin hub diameter is taken to
identify the base drag area for the finned application.

3. The viscous drag coefficient is obtained from a combination of
Figures 8-39 and 8-40 of Reference 2, converted to Figure B-3 of Appendix
B. CF'=f(M) is the flat plate friction factor, an empirical constant,

(CF"=1.51) is established by comparison with Reference 1, and a
multiplier (C_''' = 1.15) transposes the classical flat plate coefficients4
P F

to cylindrical application.

cvc' e 2 wetted surface
F

C =
DV (B+F) F F A = o

wetted surface

B ref

10‘4 (28.75 - 4.166 M) (1.51)(1.15)

A wetted surface
A

0.000173 (28.75 - 4.166 M)

ref

The drag effect of the driving grooves is assumed as part of the
empirical constant CF".

The A includes the conical flare surface, Figure 2-b,
wetted surface

for the flared projectile. For the finned projectile, the fin viscous
drag is separately determined.

4. L. Michael Freeman, Robert H. Korkegi, "Projectile Aft-Body Drag
Reduction by Combined Boat-Tailing and Base Blowing,' AFAPI-TR-75-
111, February 1976.

14



4. A wave drag contribution, emanating from a shock at the body-
flare junction, is given in Reference 2 as Figure 8-33, and as Figure
B-4 in Appendix B, whereby

_ 30, _ .6
CDWF_ M (.75 d];,)

The .6 term approximates the compressed curves.
db
5% Considering the fin drag:

A. The wave drag coefficient for the fins is suggested by
Reference 5 and is recommended for fins with a single bevel leading edge.

C _n [t 2 Awetted fin
BHE 8 J Aref

B. The fin base drag refers to the axial drag at the fin
trailing edge. An area ratio with the body base area determines this
quantity.

_ Abase fin

I =
Abase body

DBF &

DBB

This report considers that the full thickness fin area represents the
drag cross section. This is a conservative assumption. Also, some
effects on drag coefficient may result from fin-body interference flow

in the base region. This is given5 by

Lo ot (.825 __-_(E> - Apase fin

D & M2 M Abase body

C. The fin viscous drag is taken as the area ratio of the
respective wetted surfaces of the fin and body as modified by the flat
plate cylinder correlation coefficient.

A .
c a 1 wetted fin c

il S Awetted body

DVB

5. Sighard F. Hoermner, Dr. Ing, Fluid Dynamic Drag, Published by the
author, 1958.

15



6. The total zero yaw drag coefficient is then equal to that of
the sum of the parts.

ITI. RESULTS

Figures 3-a and 3-b show the results of the calculating procedures
for a typical finned and an atypical flared projectile. Correspondence
with range test data appears satisfactory.

IV. CONCLUSIONS

The modifications of the calculating scheme and the reference data
of AMC Pamphlet 706-280 to predict zero yaw drag coefficient in the Mach
range from 2 to 5 is demonstrated. The technique is to simply linearize

. , g . 3,6 . ..
the region of interest. Agreement with available test data >~ indicates
that the procedure warrants employment in preliminary estimating or in
screening analyses.

6. Eugene D. Boyer, "Free Flight Range Tests of a MINUTEMAN Re-Entry
Stage Model", BRL MR 1346, May 1961 (AD 326744).

16
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BODY/FLARE GEOMETRY
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