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ABSTRACT

Dynamic response of metals and metallic structures
is reviewed with respect to current procedures and
understanding in order to identify research needs.
Emphasis is placed on response in military environments
which involve very high loading rates, such as those
due to air blasts and underwater explosions. Included
in this review is discussion of basic inelastic
deformation mechanisms, mechanical properties, fracture
analysis and testing, structural analysis (including
consideration of buckling response) and scale modeling.
The principal conclusions and recommendations are
given in Section II.
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I. INTRODUCTION

The Department of Defense (DoD) has a major interest
in structural evaluation, design, and testing of equipment.
Current approaches involve, to varying degrees, modern
methods of structural analysis, linear elastic fracture
mechanics, and nondestructive inspection, as well as the
more traditional methods of impact testing of specimens and
scale modeling.

This report concentrates on military environments that
involve very high loading rates, such as those due to air
blasts and underwater explosions. In these problems, valid
approaches must incorporate the strain rate and temperature
sensitivity of inelastic behavior possessed by many struc-
tural alloys. There is presently a considerable amount of
research underway to improve the various technologies and
their interaction in dynamic problems. However, the state
of the art is quite limited, especially for the problems
involving dynamic elastic-plastic response and failure.
Furthermore, in many cases where theoretical methods exist
there are insufficient mechanical and fracture property
data in the high strain rate regime to permit implementation
and verification of the analyses.

Being cognizant of these factors, the DoD requested
that the National Materials Advisory Board (NMAB) appoint
a committee to recommend areas where current procedures
and understanding should be strengthened. Special attention
was directed to the examination of:

e Materials tests which reflect more advanced
concepts in the mechanics of failure,

e Developments which could successfully merge
material property testing with modern methods
of computational structural mechanics,

® Developments which will lead to gquantitative
analysis procedures for assessing the flaw
and load severity in defense engineering
systems, and



e Development of small-scale testing and evaluation
procedures which will reduce the need for large
model or full-scale testing.

Important benefits accruing from implementation of the
Committee's recommendations are:

® Reduction in testing costs,

® More rapid assessment of materials feasibility,
and

e Development of better materials, processing,
and fabrication to cope with dynamic loads.

As a practical matter, considering the very broad
interdisciplinary nature of the study, this Committee
decided to restrict its assessment to metallic structures
and to deal with only nominal strain rates of loading up to
103 seconds‘l; this latter restriction excludes phenomena
such as those produced by high-speed projectile penetration
and particle impact. Fatigue also is excluded from this
study.

It is believed that significant improvements in the
state of the art can be achieved through a proper under-
standing and application of the various interrelated dis-
ciplines which are involved: metallurgy, mechanical
property characterization, fracture analysis and testing,
structural analysis (including consideration of buckling
response) and scale modeling. This report addresses each
of these areas to the extent believed necessary to respond
to the aforementioned DoD request and provide the basis for
the Conclusions and Recommendations given in Section II.
(For the reader's convenience, individual sets of conclusions
are also listed at the end of the most lengthy subsections;
however, only the main ones are collected in Section II.)
Figure I-1 depicts the way in which the several disciplines
interact in the assessment of damage tolerance of structures.

The time variation of the loading is obviously an
important consideration in dynamic problems. Therefore,
background information on the nature of some transient
load environments is given in Section III. Current
understanding of dynamic response of materials and
approaches employed in its investigation are discussed in

2
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Section IV. Of the various areas, dynamic fracture mech-
anics and related testing are covered in the most detail;
the committee believes this emphasis is necessary because
of the complexity of the subject and the fact that there
have been many important developments in just the past few
years that are not summarized elsewhere.

There are many important problems in which the failure
mode is excessive deformation and/or buckling. Prediction
of this type of failure for ductile materials subjected to
large impulse loading can often be made quite simply and
accurately, using the assumption of rigid-plastic behavior.
Inasmuch as Jones (1975, 1976, 1978) and Jones and Okawa
(1976) have recently reviewed both theoretical and experi-
mental studies in this area, it is not covered in this
report. They discuss relatively simple formulas which pro-
vide physical insight into dynamic behavior and quite
accurate estimates of a variety of responses, including
failure of beams, plates, shells, and rings, and slamming
and ice damage of ships. The importance of such dynamic
plastic analyses cannot be overemphasized; they often are
entirely adequate in the early stages of a preliminary
design, provide guidelines for the selection a meaningful
set of parameters for an experimental program, and can
serve as special cases for checking more general numerical
procedures.

The reader will see that different sets of units are
used in this report. Many figures are reproduced from
publications, and conversion of data and units would be
rather time-consuming and costly. Therefore, we implore
the indulgence of the reader and offer a brief conversion
table between English, metric, and SI units in Table I-1.
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TABLE I-1 Standard International Values of Some

U.S. Units
in. = .0254 m
ft. = .3048 m
1bf = 4.448 N

kgf = 9.807 N
dyne = 10 E-6 N

e

1000 psi = 6.895 MN/m2

1 bar = E 6 dyne/cm? = .1 MN/m2
1 atm = .1013 MN/m?

1 torr = 1 mm Hg = 133.3 N/m?

1 kgf/mm? = 9.807 MN/m2

1000 psi vin. = 1.099 MN/m
1 1bf/in. = 175.1 N/m

lbm = .4536 kg

ft 1bf = 1.356 Nm

erg = 1 dyne cm = ,lE-6 Nm
hp = 745.7 Nm /s

kw = 1000 Nm /s

3/2

lbm/in.3 = 27.68 E 3 kg/m3
gm/cm3 = 1000 kg/m3
centipoise = .00l N s/m?
1bf s/ft2 = 47.88 N s/m2

Cair = 344 m/s
Cwater = 1470 m/S
Csteel = 5000 m/s

Clight = 299.8 E 6 m/s

g 9.807 m/s2 5 .
y = 66.70 E-12 Nm “/kg
or m3/kg—s2
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ITI. CONCLUSIONS AND RECOMMENDAT IONS

These conclusions and recommendations represent the
composite opinion of the committee. Every effort was made
to be objective in the evaluation of the recent literature
and current activities in the field.

As an aid to the reader, section numbers in which the
relevant background discussion appears are indicated in
parentheses.

A. Conclusions

1. A reasonable understanding of the processes govern-—
ing constant strain rate and temperature effects on yield
and stable plastic response has been achieved. Experimental
techniques and data are available for many structural
materials in the ranges of strain rate and temperature of
engineering interest. However, existing constitutive
equations and data are not adequate for predicting inelastic
response under conditions of unloading and reloading into
the plastic state. (Sections IV.B.1-3.)

2. One of the oldest ideas in fracture control is the
certification of materials for service by testing under high
rates of loading. Impact tests such as the Charpy test, the
drop-weight tear test, and the dynamic tear test have been
(and continue to be) widely used. These tests were original-
ly intended to give gqualitative information only, such as
the transition temperature. Recently, however, it has
become widely realized that it may be possible to extract
useful quantitative information from the results of impact
tests. What is not yet generally recognized is that the
conventional analytical interpretation of such tests via a
completely static point of view can be substantially in
error. Recent research work using dynamic (i.e., inertia
forces included) analyses described in this report have
clearly shown this for precracked charpy specimens and for
the drop-~weight tear test. Hence, there is a strong need
for additional dynamic analyses to accompany high strain



rate testing. These will likely lead to improved specimen
design and test techniques to evaluate fracture properties
of more direct use in engineering structural design
(Section IV.B.4.)

3. The two main approaches in dynamic fracture analysis
and testing are: 1) the dynamic propagation of a crack
initiated under quasi-static loading conditions, and 2)
initiation of crack growth under dynamic loading. Obviously,
a full and proper treatment of dynamic fracture must combine
dynamic initiation, propagation and arrest of cracks; such
a capability does not yet exist. (Sections IV. B.4-6.)

4. Provided the loading is known, or can be established
if structural coupling exists, prediction of dynamic
response without flaw growth and large deformations can be
made for many engineering structures. (Section IV.B.6.)

5. Large and full-scale models are currently used for
structural evaluation despite the high costs and time con-
sumption, generally because there is a lack of confidence
in small scale model tests. However, analytical and
numerical techniques to predict scale model and prototype
response have improved dramatically in recent years. These
techniques have led to a significant increase in understand-
ing of dynamic structural response and of the way in which
flaws and geometric inperfections, respectively, influence
fracture and buckling behavior. Although uncertainties
still exist, the progress made so far appears to provide
the basis for significant cost and time savings through
greater reliance on analysis and scale models in structural
design and evaluation. (Sections IV.B.6 and IV.C.)

6. Similitude analysis is vital to the success of any
scale model test, even though it may prove impossible to
match all geometric, kinematic dynamic, and constitutive
similitude parameters. Many materials of DoD interest
exhibit moderate to high toughness values; however,
similitude analysis and testing is not restricted to linear
elastic behavior and can be extended to treat elastic-plastic
behavior. (Section IV.C.)



B. Recommendations

The two most critical needs are concerned with fracture
criteria and scale modeling:

1. Establish criteria and associated tests for the
initiation, propagation, and arrest of cracks in tough
structural materials. Current dynamic fracture mechanics
can treat linear elastic behavior only. Both experimental
and mathematical analysis work needs to be done to identify
and establish the appropriate material parameters needed
for a dynamic elastic-plastic fracture mechanics methodology
and to verify the basic concepts. (Section IV.B.4-6.)

2. Develop methods of structural model testing which
incorporate fracture mechanics principles. 1In view of the
importance of flaws in the damage tolerance of structures
subjected to dynamic loading, model tests must be able to
incorporate flaws in sensitive areas. To.circumvent the
difficulty arising from thichness dependence of the fracture
toughness, a research program addressed to toughness-
scaled materials should be conducted. This program should
include analysis and experiment in order to select appro-
priate scaling parameters and to verify that model tests
using toughness-scaled materials will give reliable infor-
mation on actual structures with flaws. (Section IV.C.)

Additional recommendations follow. (It should be
noted that recommendations 3 and 4 are made with little
support given in the body of the report because of the
paucity of information reported in the open literature.)

3. Further work is needed to develop better analysis
techniques to handle shock wave-structure interaction
problems. These analyses should be verified by experiment-
model and prototype. (Section IITI.)

4., For close-in explosions, such as contact mines or
other near field problems with high peak pressure, addi-
tional definition of reflected shock parameters is needed
(Section III.)



5. Where gaps exist in data for dynamic flow stress
of structural materials of interest, they should be filled
and a catalog of data prepared by one of the appropriate
DoD information centers such as MCIC. (Section IV.B.2)

6. Through experimental and theoretical investigations,
develop improved constitutive equations for dynamic inelastic
behavior under multiaxial stresses and time varying strain
rates. (Section IV.B.3)

7. Standardization of test methods for measuring
stress-strain behavior at high rates should be considered
before these data are used in critical design applications.
(Section 1V.B.3)

8. Develop improved analysis methods for prediction of
dynamic buckling and large deformation response of shell
structures. This work should include both theoretical and
scale-model investigations. (Section IV.B.6)

10



IITI. LOADING

The starting point of any dynamic response analysis
is a definition of the geometry of the structure, the
physical properties of the materials from which the struc-
ture is fabricated, and the nature of the loading. The
details of structural geometry are generally prescribed
and known within the accuracy limits of manufacturing
tolerances. For statically loaded metallic structures, the
set of material properties needed to adequately describe
the elastic, inelastic and fracture behavior is relatively
well defined. 1In the dynamic loading regime, there remain
some uncertainties as to the adequacy of our ability to
describe material behavior. Proper prescription of dynamic
material properties will be a major concern of remaining
sections of this report. The remaining prerequisite, that
of load definition, will be the subject of this section.

The committee has restricted its attention to a
regime of high strain-rate loading which excludes high
velocity projectile or particle impact. These latter pro-
blems involve localized, intense deformation which produces
very high strain rates and therefore should be treated
separately. The present report is concerned with dynamic
loading sources which produce gross structural damage, such
as impingement by a propagating blast wave, structural
impact or collision, or the sudden release of energy as in
propellant expansion. These loading sources generally
produce impulse durations on the order of milliseconds. The
response depends, of course, on the overall stiffness and
mass distribution of the structure. Typical inelastic
strain rates associated with permanent damage are of the
order of 1-100 sec™', with local rates at strain concentra-
tion sites (notches, corners, cracks, etc.) reaching and
perhaps exceeding 1000 sec”™ . Our review of material con-
stitutive properties will concentrate, therefore, on the
strain-rate range between "static" and 1000 sec~'.

In this section some typical dynamic loading sources
of interest to DoD are described. This characterization is
intended only to illustrate the nature of the loading

function and the relative range of the load defining para-
meters. The values presented represent typical ranges and
therefore are not recommendedlfor use in specific problems.
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Conditions Cited in Table III.1
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Table III-1 presents a list of dynamic loading sources
of concern to military structures or components with a
typical range of peak pressures, load durations and total
impulses for each source. Most problems of the type we are
considering involve a single loading event; in some cases,
however, the impact load may be repetitive. Examples of the
latter are ship hull slamming in rough seas or repetitive
firing of a weapon. In such cases, damage is cumulative
and failure may occur only after long time periods (number of
impacts). Figure III-1 plots the peak overpressure versus
duration for sources listed in Table III-1.

The details of the pressure pulses from various
sources are illustrated in subsequent figures. For an air
blast, either from conventional or nuclear sources, the
idealized pressure wave is as given in Figure III-2. It has
a sharp rise time followed by a positive and then a negative
pressure phase. From a structural point of view, the
critical parameters are the peak positive pressure, the
duration, and total impulse of the positive phase. Figures
III-3a, b, and c give the magnitude of these parameters for
different standoff distances for nuclear and scaled TNT
equivalents (Baker, 1973). Reflected pressures from the
exposed surface of a structure in the field of a blast wave
may be many times the free field pressure. The pressure-
time history can be modified as well by the presence of
surrounding reflecting or refracting surfaces, such as the
ground.

Underwater explosion loading (Cole, 1965) is normally
of two types: plane waves of moderate peak pressure with
a slow exponential decay and spherical waves with rapid
exponential decay, as illustrated in Figure III-4. The
plane wave is associated with a nuclear explosion located
at a considerable distance from the structure and the
spherical wave is associated with a conventional chemical
explosion located close to the structure. For the case of
the chemical explosion, the loading is much different than
the free field wave, as shown in Figure III-5 due to non-
linear interaction between the structure and the shock wave
(Barton and Pilkey, 1974). This nonlinear interaction is
associated with the deformation of the shell. Also, local
cavitation occurs as the shell responds to the shock wave.
Typically, a few milliseconds after shock wave arrival a
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FIGURE III-2 1Idealized Blast Wave

SOURCE: Baker, W.E., 1973

reloading occurs due to closing of the cavitation. Other
secondary loads due to surface reflected waves or bottom
reflected waves can also occur.

In the case of plane wave excitation (Huang, 1969) due
to anunderwater nuclear explosion at a considerable distance
from the structure, the response of a typical cylindrical
shell consists primarily of rigid body motion, beam whipping,
and axisymmetric (breathing mode) motion. Other motions,
such as asymmetric shell bending modes, contribute to a
lesser extent.

In terms of strain response, the strain rate for the
nuclear explosion is an order of magnitude less than the
strain rate for a conventional chemical explosion (cf. Table
ITII-1). The spherical wave from the chemical explosion
excites the high frequency shell bending modes, resulting in
a high frequency strain response. The order of magnitude
difference in strain rates is based on both analytical and
experimental data (Cole, 1965).

For the case of mechanical impact on underwater struc-
tures, the structure is subjected to a high impulse loading
over a small area and for fairly long durations. For both
mechanical impact and chemical explosions, impulses on the
order of 1 to 10 psi-sec are typical (cf. Table III-1).

In rough seas, the impact of the ship hull (Inter-
national Ship Structures Congress, 1976) against the free
water surface can produce pressures which results in

15
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permanent hull plating damage. Figures III-6a, b, and c
show the nature of this ship slamming problem for a typical
large ore carrier. For high-speed surface effects ships,
data have been taken for slamming events and are reproduced
in Figure III-7. Slamming represents a repetitive impact
which may lead to damage accumulation.

The detonation of propellant in guns and other projec-
tile launch systems is another source of impulse loading.
Interior ballistics is concerned with the pressure-time
loading within the breech and the launch tube (barrel). In
some cases, the transient pressure field external to the
muzzle, created as the projectile exits, may significantly
affect surrounding structures. A particular example of the
latter is that of heavy weapons externally mounted on light
weight aircraft such as helicopters. Figure III-8 illus-
trates typical conditions for internal ballistics of a
calibre .30 gun {Handbook AMCP 706-342, 1970).

A severe threat to military land vehicles is the buried
mine. Severe shock pressures may be experienced by tank
hull bottom plating due to mine explosions. In this case,
the total impulse is produced both by the expanding gases
and by the added momentum of the soil mass carried by the
explosion (Westline, 1972). The pressure-time history can
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