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$ -Optimal Second Order Designs for Symmetrie Regions 

By L. Pesotchinsky 

1.  Introduction. 

At first we must refer to the paper of Kiefer (1975), emphasizing the 

problem of examination of structure and performance of competing designs 

under various changes of criterion.  As an illustration such a study was 

successfully completed in that paper for a family of $ -optimality criteria, 
P 

that included the three most commonly used criteria, those of D-, A- and 

E-optimality,, with respect to quadratic regression on the m-simplex.  In the 

papers of Galil and Kiefer (1977a,b) the study was also completed with respect 

to rotatable designs on a ball and optimal designs on a cube. 

The family of criteria considered is produced by optimality functionals 

$ (|), derived from the N x N information matrix 

M(i) = J f(x) f(x) 6(ax) , 
X 

where N is the number of unknown parameters, %    is the design, that is, 

in general, a probability measure over experimental region X, and f is 

the known regression function (f. (x),... ,fw(x)
e). The corresponding model 

is supposed to be of a linear form: EY = df', where Y is the response 

function and ET coefficients 0 are unknown. We also assume that the 

observations of Y are uncorrelated and with the equal variances.  If in 

case of nonsingular information matrix u, (|),•••,u^(|) denote the eigen- 

values of M(^), then the functionals $ (|) are defined as follows: 



(I) = [N_1 tr {M-P(5)}]
l/P = (N_1 I    u~P(|))l/p ,   0 < p < oo } 

i=l 

(1.1) $ (|) =  lim 0 (!) = {det M~1(!)}l/N , 
p -» 0 + 

$ (|) =  lim $ U) =   max   tp.7 (|)} j 
00     p-> + co p     1 < i < N 

$,., $T  and &  are the familiar D-, Ä- and E-optimality criteria. 
U   X co 

A 0 -optimal design |* is one that minimizes 0 (|). 

In the above mentioned papers of Galil and Kiefer it was noticed in 

particular, that on the unit ball and the simplex the 0 -optimal designs 
ST 

(from a class of rotatable ones if on the ball) were fairly efficient 

relative to the other designs of the same family, which was not the fact 

on a cube. 

We consider in this paper the same family of criteria with respect 

to quadratic regression on the unit ball, on a cube C = [-1,1]  and on 

a cube with the vertices, truncated by planes £ .   |x.| < Q,  denoted 

further as a region 

m 
SI.  (k,a) = C n (xl 51 Ix.l < k+a] , m '     m    ' . ,  l — 1=1 

where integer k e [l,m-l] «and 0 < a < 1.  One of the reasons for the 

artificial in some sense choice of polyhedrons Q  (k,a) is that they can 

serve as an approach in experimental problems when a region, if presented 

as a cube, has unattainable vertices, because the trials at them or near 

them are either expensive or too complicated.  The next reason is that 

the main details of study on Q,   (k,a) follow from the study on a cube and 



that $ -optimum designs, as it is shown in sections 3 and h,  are often 
sr 

unique on   ß   (k,a)    with the same set of support for all    p    and are 

"good"  even for a cube    C .    The same reasons hold for the regions 

m 
ß  (k,a;n,b) = C    n  {x|n-l+b <   £    |x. |  < k+a) 

i=l 

when the center point is also unattainable. 

In the paper the main attention is paid to the study of structure of 

the supports of the § -optimal designs over C ,. ß (k, a) and the unit 

ball (in the latter case with respect to all the designs) both under 

variation of p and transformation of region (the latter mainly in the 

sense of variation of k+a in ß (k,a) with m fixed). m 

There is some regularity to be expected in behavior of the * -optimal 
sr 

supports under fixed experimental region and with p changing, so the study 

of both "extreme" cases p = 0, oo is of special interest, also because 

it can be done algebraically. By  such direct methods we can obtain some 

general results for the case of a ball of arbitrary radius, as well as for 

the study of uniqueness and structure of the $ -optimal supports for all p. 
sr 

These problems are considered in section 3-     In other parts of this section 

we study the asymptotical robustness of the D- and E-optimum designs under 

changes of p with m -* oo . 

The numerical results on structure in the case 0 < p < oo as well 

as the results on the performance of the designs |* with respect to 
sr 

various criteria are illustrated in section k. 



In section 5 an attempt is made to construct some integer designs 

on the cube and the unit ball which are uniformly "good" with respect 

to the family of the 0 -optimality criteria. 

As well as criteria of the <2> -family we consider here the criterion 
P 

of G-optimality with the optimality functional 

G(|) = N-1 max    d(x,g) = W-1 max f (x)M_1(| )f' (x) 
xeX xeX 

where d(x, £) for nonsingular M(|) is the normalized variance function 

of the regression function fitted by least squares.  The original equivalence 

theorem (KLefer and Wolfowitz, i960) asserts that G-optimality is equivalent 

to $n-optimality and that  max d(x,|*) = N.  One of the conclusions of 
u xeX    u 

the study on the regions in this paper is that the high $ -efficiency of 

ti"*'s  (and especially of |*) does not imply the high G-efficiency, as 
p 00 

it was in the case of the m-simplex   (Kiefer,  1975). 

2.      Definitions and Notation. 

For simplicity we shall define the    $ -efficiency of    %    as the ratio 

$   (^   )/$   (t,))    denoted further as    e   (?);    thus for    p = 0    we obtain the 
P    P      p p 

D-efficiency of Atkinson  (1973).     The G-efficiency of    £    is defined as 

the ratio    g(|) = N/d(^),    where    d(|) = max d(x,|). 
xeX 

We will consider mainly the values of    e   (|*)    and    g(|*),     so for 

brevity they will be denoted as    e   (p)    and    g(p)    correspondingly. 



We examine here second order regression on symmetric regions, so 

the limiting arguments similar to those in papers of Kiefer (197^1975) 

and Farrell et al. (1967) may be implemented to reduce the problem and 

consider only invariant * -optimum designs; that is in our case, designs 

invariant under permutations of indices and changes of signs of the design 

points coordinates.  In general, even on a ball, orthogonal transformations 

preserve only D-optimality of the designsj thus we shall consider only the 

above invariance. 

If {• is an invariant second order design, then M(|) depends only • 

on the even moments 

X2  = E(x^), X3 =  E(Xyp, Xk  = E(xJ)   (1 < i, j < m) 

and the odd moments are zero. These conditions on moments are also valid 

for noninvariant second order symmetric designs, as defined by Kono (1962), 

so we shall not further underline the difference between invariant and non- 

invariant designs with the same information matrix, and shall call both 

types of them "symmetric designs". E.g., the second order symmetric 

D-optimum designs on the cube in the papers of Kiefer (1961) and KSno 

(1962) are invariant and the same designs in the papers of Farrell et al. 

(1967) and Pesotchinsky (1975) are noninvariant with m > 3« 

Throughout this paper E denotes the set of points of the 3 factorial, 

k 
divided into m+1 sets E,  with the k-th set consisting of all 2 ml/k! (m-k)l 

points with k nonzero coordinates; and for the unit ball E,  denotes the set 

of all points with k coordinates equal to + l/v/k and m-k equal to 

zero; E = U, Q E,. We can note that if A. (A c E ) is the set of 

5 



support of a second order symmetric design on a cube, then the corresponding 

set of a ball also supports some symmetric design, because both sets differ 

only in value of levels of factors.  Thus the problem of study of structure 

of supports of the designs over points of E on a ball can be reduced to 

the same problem over points of E on a cube, though the optimal weights 

are different. 

k k 
In the following E_ will denote U. „ E.  and E (k,a) — the set 

0 x=0 i      m . 

of vertices of the polyhedron Q (k,a) — the points with k coordinates 

equal to + 1,  one equal to + a,  and m-k-1 equal to zero, and B (k,a) — 

the set of points with all coordinates equal to + (k+a)/m.  (if k+a = m, 

then B (k,a) = E (k.a) = E  and if a = 0, then the set E (k,a) 
mv mv '   '        m ' m\ 

coincides with    E, ).     The union of all the above sets will be denoted as 
k 

R (k,a);  R  (k,a) = E^ U E  (k,a) U B (k,a)  . m    '     '    mv  '   '        0        mr  '   '        m    ' 

3.  Main Theoretical Results. 

3.1 The sets of support and uniqueness of $ -optimal designs. 

It follows from the General Equivalence Theorem (G.E.T.) (Kiefer, 

1971*); that | is $ -optimal for 0 < p < oo if and only if for all xeX 

(3.1) dt(x) = f(x) M"
P_1f(x) < tr {M"

P
(^)} 

and that an optimal ^ assigns measure one to the set of x for which 

equality holds in (3-1)«  d„(s) in (3«l) is a quartic in x,  and for 
I 

symmetric second order | 



(3.2) d   (x) = A + B   I   xf + C   £   *J + D( £   xlf 
5 i=l i=l i=l 

where    A,  B,  C,  D    are the functions of    p. 

It can be proved in the same way as for D-optimum designs in the paper 

of Farrell et al.   (1967),  that with all    p < 00    « -optimum second order designs 
sr 

on a ball must be supported by points of the sphere of the same radius 

and the center point.  As to X = ß (k,a), then the maximizing points 

of (3.2) must belong to the set R (k,a). 
m 

Moreover, suppose that the points of three sets K , i = 1,2,3* 

give maximum to d (x) for some fixed p.  (These sets can belong to 

the supports of different $ -optimal designs, not necessarily to the same). 
Sr 

Then we have   in the case of quadratic regression that 

(3.3)        A + Bk.   + Ck.   + Dk.   = A + Bk.   + Ck.   + Dk.   ,   i ± j,  i,J < 3 
IX X tJ «J tJ 

and thus D(k;,-k2)(k,-k ) = 0, B+C = -D(k.+k.). So D = 0 and B = -C 

and this fact implies that all the points of E have the same property 

as those of E, . From this fact we can derive that: 
*i 

1) A * -optimal design |* for Q,  (k,a) is also $ -optimal 
sr sr ***• sr 

for cube C , because in this case d (x) = A in points of 

E, where all the possible supports of $ -optimal designs must 
Sr 

be contained. By G.E.T. it means that the design |* is 
sr 

$ -optimal for cube; 
P    • 

2) !*{E (k,a)} = !*{B (k,a)), this follows from p. l) because both 
sr sr 

E (k,a) and B (k,a) must not be contained in the supports of 

0 -optimal designs for cube; 
Sr 



3) A <J> -optimal design on a cube is nonunique if m > 3>  that is 

at least two "basic" <J> -optimal designs exist supported by 

different groups of at most three sets E.  U E,  U E. .  It 

simply follows from the fact that the system of three linear equa- 

tions for the moments of 3> -optimal measure, the same system as in 

the paper of Pesotchinsky (1975)> includes m+1 weights a  of 

sets E , k = 0,1,...,m,  and thus the existence of one solution 

implies the existence of the others. 

On the other hand, if k+a < m and only two sets Ev , E.   belong 
Kl K2 

to the support of the $ -optimum design, then we can show as above in (3.3) 

that for any integer r, r < k, D(k-,-r) (kp-r) < 0, thus k-, = 0 and kg = k 

and the $ -optimum design is unique on ß (k,a).  (We do not consider here 

the possibility of reduction of number of points of support with the help 

of noninvariant designs.) 

The above reasoning suggest the procedure of theoretical or numerical 

study of 0 -optimal designs for ß (k,a) with 0 < p < a>:  for each m 

we shall find the "basic" $ -optimal designs for the cube C ; let 
P KT 

k (p) be the minimum of k 's for "basic" $ -optimal designs supported 

by at most three sets E , E,   and E. , k. < k < k,j  then the main 
k-»    K.Q        K7    X    £_    l) 

result for the study is given in the following Lemma. 

Lemma.     If    k > k   (p),   then the    $ -optimal design on    ß   (k,a)    can be 

presented by at least one of the <J> -optimal designs on a cube,   and if 

k < k  (p),     then the 0 -optimal design on   ß   (k,a)    is unique and its set 

of support is contained in    EnU E   (k,a) U E,   U B  (k,a);    moreover,   the rr Omkm 

optimal weights of    E„    and    E   (k,a)   are both nonzero. 



This result will be used further in 3.2 and 3-3 for the study of 

D- and E-optimum designs. 

We can also note, that if n (p) denotes the maximum of k.' s for 

"basic" $ -optimal designs on a cube, then the $ -optimal design for 

region ß (k,aj n,b) is unique provided that the condition 

n (p) < n < k < k (p) does not occur and the set of support of such 

design is contained in B (n-l.b) U E, U E (k,a). o m   ' '   k   mv ' ' 

ALI the results above were valid for 0 < p < oo, the case of p = oo, 

that is the E-optimality of the designs, is studied algebraically later 

in this section to remove some difficulties arising for p = oo in an 

analogue of (3-1) (Kiefer, 19Jk). 

3.2 D-optimum designs. 

Our considerations here are limited to the case X =-ß (k,a), 
m 

because both the D-optimum designs on a cube and a ball were studied 

in papers of Kiefer (196l) and Farrell et al. (1967). 

For the D-optimum designs on a cube we have that k (O) = m (Farrell 

et al., 1967); thus the D-optimum designs are unique on ß (k,a) for 

k+a < m. For p = 0 the left-hand side of (3.1) is the variance of the 

estimate of the regression function and the right-hand side is the number 

of unknown parameters, that is N = (m+l)(m+2)/2.  The coefficients A, B, 

C, D in (3.2) can be found algebraically as functions of moments \_, \~ 

and \< , so the condition (3-1) is easy to verify. 

We can start the search of the D-optimum designs on ß (k,a) with 

the D-optimum designs jj*(k,a) from the class of designs supported by 



points of E (k,a) and the center point. Maximizing the value of the 

information matrix determinant, we obtain the weight oc      of the center 

point: a = N   for all m, k, a. Then we verify the condition (3-1) 

at points of E  and B (k,a),  thus obtaining that the designs |*(k, a) 

are D-optimum for the regions ß (k, a) with 2 < k < m-2 (m > k)    and 

0 < a < 1.  Verification of (3.1) for the designs |*(k,a) with k = 1 

or m-1 discloses the existence of such "critical" values a'  and a" 
m      m 

that: 

1) for k = 1 and a > a'  the designs |*(l,a) are still D-optimum 

for 0,   (l.a) and m '   ' 

2) for    k = m-1    and    a < a"     these designs are D-optimum for 

SI  (m-1,a). mv       '   ' 

The values of a'  and a" are independent for m > 3,    but for m      m        * —    ' 

m = 2 we have  (l-a')/(l+a') = a";  this can be proved even geometrically 

because the 4 5 turning of £>(l,a) with suitable normalization gives 

us the region £> (l,b) where a,b are in the same relation as aA and 

a,"    above. 

a'  can be found by solving the equation d„(x) = N at x e B (l,a*), 

| = | (l,a' ),  and a" - by solving the same equation at x e Em_j_, 

| = I (m-1,a").  Both'the left-hand sides of the equations can be reduced 

respectively to polynomials of powers 12 and 8 with at most one root 

on (0,1).  In particular, from the second of them we have 

(a"r(-m +7m-9) + V ß, fa")  = 0, 
k=2 

where ßk'
s depend only on m; that gives us a" = 0 for m >6. 

a'  and a" are listed in table 1. 
m      m 

10 



Table 1. The critical values as (for ß (l,a)) and 

a" (for ß (m-1, a)). 

m 2 3 it 5 6 7 8 

a' m 0.23^ .171 .169 .163 • 157 .151 .11+5 

a" in 
0.621 .476 .332 .150 0 0 0 

To complete the study of the D-optimum designs on ß (k,a) we can 

note that in the case k = m-1 and for a increasing beyond a" the 

set of support of the D-optimum design must be supplemented by the set 

E ,, and in the case k = 1 and 0 < a < a' by the set B (l.a): m-1 m m. ' 

thus the following theorem holds. 

Theorem 1. The D-optimum designs for quadratic regression on ß(k,a) are 

supported by the center point and with respect to values of k,a by the 

following sets: 

1) E (k,a): (i) for k = 1 and a > a', (ii) 2 < k < m-2, 

(iii) k = m-1 and a < a" ; — m ' 

2) Em(l,a) and B (l,a): for k = 1 and 0 < a < a' 5 

3) E„(m-l,a) and E ^: for k = m-1 and a" < a < 1. m   '      m-1 m 

We should note that the optimal moments X ,  X, and \.  are the 

functions of weights of sets B (l,a), E (m-1,a) and E , , so these 
m      mv  ' y     m-1 

weights under m, k, a fixed could be found by direct maximization of 

det M„ . 

11 



We can note that the points of E (k,a) belong to a sphere of 

radius k+a and |n(k,a) assigns to this sphere the same measure 

m(m+3)/{(m+l)(m+2)} as the D-optimum design on a ball (Kiefer, 1961). 

Hence we expect that the designs | (k,a) have good D-efficiencies 

relative to a ball. 

For instance the D-efficiency of |0(k,0) on a ball of radius k 

(this efficiency is denoted further by f (k)) varies as a function of 

k e [2,m-l]  from f (2) up to 1  (at k = (m+2)/3) and then to f (m-l). 

We have that f (2) 4 1/2 and f (m-l) f 1 as m -» 00 :  the minimum value of 
m m    ' 

f (m-l) is O.787 at m = 11 and f (2) > O.829 for m < 11.  Also 

the estimations show that the D-efficiency of g*(k,0) relative to the 

"larger" region ß (n,0)  (k < n < m) is more than k/n and that |*(l,a) 

is fairly D-efficient even in cases when 0.05 < a < a'.  It turns out 

from these remarks, as well as from the evident remark that |*(k,a) is 

invariant under truncation of cube vertices in points of E (k,a) by 

any concave (to the center point) surface, that the designs £*(k,a) 

are somewhat robust in their D-efficiency under variation of experimental 

region. 

3.3 E-optimum designs. 

The result for cube was independently obtained by V.K. Denisov and 

A. A. Popov of Novosibirsk (not yet published), Galil and Kiefer (1977b) 

and the author. For details we can refer to the paper of Galil and 

Kiefer (1977b), and here we can mention briefly that the E-optimum design 

on a cube has moments X    = \, = 2/5, X-,  = l/5  (independently of m). 

12 



Wfe can easily find that the basic solution of the equations for moments 

exists  for the weights of sets    E    ,  i = 1,2,3,     iff 
K.. 
X 

0 < ki < {2mk3-m(m+l)}/(5k3-2m) < kg < 

(3 A) 
< {m(m+l)-2mk1}/(2m-5k1) <k , 

so we can find that for the E-optimum design  (p = oo) k (oo) = (m+l)/2 

for odd m and m/2+1 for even m and n (oo) is the integer part of 

(m-l)/3. It is also of interest that basic solutions with two nonzero 

iponents exist, as, e.g., with k, = kp = 0 and k, = k (oo) with com; 

odd m. 

Taking into account the fact that k (p) decreases with p, we 

can note that all § -optimum designs are unique on Si  (k,a) iff 

k < (m+l)/2. On the other hand, it means that for good (in the sense 

of $ -optimality) designs on a cube the minimum of maximal distance of 

the design points from the center point should never be less than (m+l)/2. 

In the case k < k (oo) the E-optimum designs on Q,   (k,a) can be 

found by the same reasoning as for the cube. E.g., if a = 0, we have that 

|* is supported by points of En U E  with |* (E ) = m(m-l)(km-2k+l)/ 0 u k       5oo ' k' 

/[kC(k-l)(km-2k+l) +m(m-l)2}]. 

For the study on the unit ball we shall note that the moments of 

invariant measure obey the following equalities: 

(3.5) \k +  (m-l)\3 = X2  = ag/m , 

where a  denotes the measure of the unit sphere. For the proof of 

(3«5) we can consider the chain of equalities: 

13 



m 0 m      „ 
X    =  [ I   E(x2)}/m = (E( I   xp]/m = aj* 

i=l i=l 

(E( X   x?)  }/m =  (E( X   x7) + E( V   xfx2)}/m 
i=l i=l i£j 

= Cm\,   + m(m-l)X.,}/m = A.,   +  (m-l)\,   . 

Thus we have for the only five distinct eigenvalues of    M(|): 

\\ = 1-H^.g-fe      and      u_ = X^ , 

and,   taking into account the uniqueness of solutions of the equations 

u.   = u.     (l < l,j < 3)>    we obtain in the same way as for the cube the 

E-optimum values of    X , X'. 

X2 =   (m+l)/ (m2+2m+2)  , A.    = \2/(m+l)  . 

Now we have for the ball that 

(3.6) maxminju.)  = A, =   (m +2m+2) 

and the E-optimum measure of the unit sphere is    a   (co) = m(m+l)/(m +2m+2). 
s 

The existence and structure of finite supports over points of E of 

the E-optimum measure follow from the more general result (theorem 2.), 

proved later in this section. 

Ik 



3'h    $ -optimum designs on a ball. 

In this case the more detailed description of the $ -optimal designs and 

their properties can be found algebraically. For the case of the unit ball we 

shall consider now the two "free" parameters \ and A.., remaining from (3 • 5) (both 

depending on p for the $ -optimal design), denoting the ratio of them by 

r = \ /\ .    Thus the functional $ (|) may be considered as depending 

only on values of X0 and T,    and the formal differentiation of $  with d &     a* p 

0 < p < oo    gives us the equations      —^ = -jr*- = 0    for the $ -optimal 

values of   r    and   \p.    From the first of them we have    r = {m+2 ' ^    '}" 

(and this is also valid for    p = 0,co),  and the second can be easily solved 

now algebraically  (as for    p = l) or numerically.    We can prove that the 

solution   \p(p)    as a function of    p   monotonically decreases from 

(m+3)/{ (m+1) (m+2)}    at    p = 0    to     (m+l)/(m +2m+2)    at    p = oo    and the 

approximate solution  (to order   m"  )    of the equation for   \p(p)    is 

\2(p) = l/m-{21^p+1^}/{m2+1^p+1hj    thus the <D -optimal measure of. the 

unit sphere   a  (p)    is approximately  (to order   m    )    equal to 

1_{2l/(P+l))/{ml+l/(P+l)} 

for    0 < p < oo. 

If we want to represent the $ -optimal (for any p) measure over 

points of E,  then we can find the equations for the moments 

m 

MP) = a (p)/m = ( Z   ak(p))/
m > 

(3.7)        \,(p) = [ I (a (p)k (k-l)/k^}]/{m(m-l)} = 
0 k=2  K 

m 
= (a (p) - I    (a (p)/k)}/(m(m-l)} , 

S    k=2  k 

15 



where a
k(p) denotes the 0 »optimal weight of the set E, , 0 < k < 

For basic solutions of (3• 7)j. say a (p), a.(p)> we have for each p 

(with \3(p) = \2(p) r(p)) that 

a. (p) = ia (p){m-i-2l/(p+l)(i-l)}/{(i^)(m+2
l/(p+l))} , 

where i,ü axe  equal, respectively, to k, j or j,k.  By positivity 

of the solution we obtain that 

m. 

k>   (Hl421/(->+1h/tH2l/(P+l)}   >J 

The latter condition on k, j does not depend on the value of the 

unit sphere measure a (p);  thus all the 0 -optimal designs can be 

supported by points of E. 

The formal result is given in the following Theorem. 

Theorem 2.  All the Q -optimum designs for quadratic regression on a ball 

are second order symmetric ones and can be supported by points of Ej if 

A denotes the set of support of such a design, then the vector 

P•=  U(Am),...,|(AQ)] , 

where A = Afl E , may be represented as a linear convex combination 

of the basic solutions of (3»7). 

In particular, all such designs can be supported by points of 

E U E U E  with the $ -optimal weights, respectively, as follows: 

16 



1-a (p), a (p)(l-r(p)m), a (p)r(p)m. We can note that for basic D- and 
s     s s 

E-optimum solutions we have, respectively, that k > (m+2)/3 > j and 

k > (m+l)/2 > jj thus basic D- or E-optimum designs exist over points of 

EQ U E , where k is equal to  (m+2)/3  (with m = 3n+l, n = 0,1,...) 

or  (m+l)/2  (with odd m). Moreover, only these designs can be supported 

by points of one set E,  and the center point. 

The D-optimum designs supported by points of E„ U E.. U E  were 

constructed in the paper of Farrell et al. (1967)* and for m = 7 such 

a design over points of E U E/ ?v /, can be constructed with the help 

of simplex-sum design of Box and Behnken (1960a). 

It is interesting to compare the above results with those of Galil 

and Kiefer (1977a), where the.4 -optimum designs from the class of rotatable 

designs, say TJ*(R), were considered on a ball of arbitrary radius R. 
Jr 

Substituting   (3.7)  for a ball of radius    R    for 

(3.8) \h +  (m-l)\    = R2\2 

and denoting by r the ratio A.^/R A.p, we can prove that 0 -optimal 

r(p) = l/{m+2 ' ^P  ^} for all R.  This fact implies that the structure 

of the 4> -optimal designs over points of E is also the same for all R. 

(E denotes now the sets of points with the coordinates + R//k , k = 1,2,...,m)j 

that is that Theorem 2 is valid as well as the remark after it. The only 

value that changes with R is a  (p). E.g., we can find a (00): 
s s 
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m(m+^ h if      R2 < m+1 

as(oo) -    I   <m+1> +R 

1 5^3J     if  R
2>m+1, 

(m+R -1 )R 

Compared with the corresponding result from the paper of Galil and 

Kiefer (1976a) it gives us the estimate of the * -efficiency of 
00 

•x- -2 
T\   (R) of order m : 

eff(ti*(H)/i*(R)) = 

1-l/m  if R < m+2 

if R > m+2 . 

Thus the rotatable designs -n (R) are nearly E-optimum for all R. 
00 

For p < oo we can expect the result of the same order, because the 

designs ru(R) are D-optimum for all R, so a good performance is 

provided for both the.extreme cases p = 0, oo. 

We should note also, that the representation of the $ -optimal 

measures over points of E is not the unique possible way; e.g., the 

D-optimum designs with m = 2 can be supported by the vertices of a 

regular polygon (with the number of sides more than k)  and the center 

point, and, for arbitrary m, by any orthogonal transformation of any 

D-optimum design over points of E.  (The latter is not valid for 

$ -optimal designs with p > 0,  except the trivial cases of permutation 

of factors or change of signs of them). 
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3-5 Remarks on the efficiency behavior. 

We shall estimate now the values of e_(oo), g(oo) and e (0) for 
U oo 

large    m    on a cube or 2   (k,a),    thus obtaining some information about 

the "extreme" cases of    g(p)    and    e   (p)    behavior. 

For the D-optimum designs on a cube or   Q  (k,a)    the minimum eigen- 

value is 

u3 = N"1 + 0(m"3) , 

thus e (0) •*• 0 as m •*• oo . For simplicity the calculation of e„(oo) 
oo U 

is given in case of odd   m,    when    |*    exists supported by    E/    .. wp U E . 

The D-efficiency    |*   relative to the D-optimum design on   & {(m+l)/2,0} 
oo m 

_o 
is approximately (to order m ) the ratio of weights on the set 

E( +l)/2' that is Mm+2)A5(m+3)}« The D-efficiency of the D-optimum 

design on SI  { (m+l)/2,0} relative to that on a cube is approximately (to 

order m~ )  (m+l)/{2(m-2)}, thus en(oo) -* 0.!+ as m -» oo . Also we have 

for e* on a cube that 
00 

g(oo) = (m+l)(m+2)(m+5)/{5(m5+5m2+^m+2)} -»0.2 

as m •+• oo . 

These calculations exhibit the difficulties arising in the problem 

of choice of "uniformly good" design on a cube. One of the possible 

ways of solving such a problem with respect to the family {$ , 0 < p < oo} 

is the search of the design | which maximizes min{e (|)} over q in 

a subset R c R+ = [0,) u [oo)j the value of g(|) maybe also considered. 

For R = R+ we can find approximate (to order m ) values of moments 

of the solution for max min [e (£)}; the moments of such | are as follows: 
qeR+  

q "'   . 
19 



\3 = 25M, \2 =  7^/5 and min{e (£)} = eQ(g) = \3  (qeE+).  Though 

for moderate values of m the results are more favorable, as one can 

see in sections k, 5, the use of a compound criterion (Kiefer, 197*0 

may be more promising; an example is given in section k. 

In case of a ball we can use the approximate solution for X from 

section 3.*+ to estimate G-, D- and E-efficiencies. Thus, we have that, 

to order m" , for p fixed, 0 < p < co, e (p) = (2/m) ' ^ ' •* 0 as 

m -* co (and e (p) •> 1 with m fixed and p -> oo ;  this is quite 
CO 

natural because  f* = lim £* as p -*oo).  In the same manner we find 
^oo        sp 

that, for p fixed, 0 < p < oo, e„(p) = l-c(p)/m -*• 1 as m •+ oo , 

where c(p) depends on p . 

For g(p) the result is less favorable: g(p) = 2 ' ^    '~      (to 

order m )j thus g(p) i l/2 as p •>* oo . This result could be 

considered as somewhat strange because er)(v) ~* I* but in the general 

case, with the help of estimations for det M(|)/det M(|*)  (Kiefer, I96I; 

Fedorov, 1972, section 2.6) we can prove that 

(3.9) e0<S< ^(e/e^r1  , 

where e_ = {det M(|)/det M(|*))    and g = W/d(|), so the convergence 

-2-ß 
of eQ to one with departure of order, say m    with ß > 0, would 

be sufficient for the convergence of g to one. 

The estimations above show that for the ball the efficiency behavior 

is much better than for the cube and we can expect that with m fixed the 

performance of |* improves with p increasing and that with large p, 
-IT 

or p = co,  the $ -optimum designs on the ball would be fairly efficient, 

20 



or even robust, with respect to family    (* ,  0 < p < co}|     thus the 

problem of choice of "good"  design would not cause any difficulty. 

k.       Numerical Results. 

The qualitative study of the behavior of structure of $ -optimal 

designs was presented in section 3,  so we shall underline here some 

main conclusions. 

The common features of the study on the m-simplex  (Kiefer,  1975) and 

in other cases are the changes in structure of the designs with p increasing, 

although in the case of the cube the value of k  (p) decreases,   increasing for 

the case of the m-simplex,  and we have the regularity of behavior of   optimal 

weights for p fixed and m increasing.     Some results can be obtained alge- 

braically for    p = 0,oo ;  e.g., the weight of    E^    for the D-optimum 

designs on a cube with support on    K   U E    ,  U E      is  equal to & ** s.       m-1        m 

[m(m-l)/{(m-k)(m-k-l)}][VUm+2)(2m+3)}  +0(m    )]   , 

the weight of    E„    for the D-optimum designs of   Q   (k,a)    with 

k+a < m-l+a"    is    N~" ,     and for the E-optimum designs with support 

on   E(ffl+l)y2 U E0    (with odd   m)    g*    (EQ) =  (m+5 )/{5 (m+1)) • 

As an example of structure behavior the optimal weights    a    = \   (E  ) 

for the cube were listed in Table 2 by Galil and Kiefer   (1977b). 

Of interest-for us is the computation of such values    p    ..(m,k) 

that for    p > p    ., (m,k)    $ -optimum designs on   0.  (k,a)    are also 

21 



$ -optimum on a cube, or on the other hand, for p < p .,(m,k) 

$ -optimum designs on & (k,a) are unique.  The values of k (p) 

can be found now from the conditions p .,{m,k (p)} < p < p .,(m.k (p)-l] 
•^crit '  m    —    -^crit   m 

The values of p .,(m,k) for 3 < m < 8 are given in Table 2. 

Table 2.  The values of P .,(m.k). 
criV ' 

m 

k < 

/ m-1 

m-2 

m-3 

m-U 

1.7 0.1 

6 7 8^ 

0.46 0.38 0.29 

6*ß 2.k 1.8 

00 CO 7.0 

As a typical illustration of the efficiency behavior in our problem 

on a cube the matrix of eq(p) a*d g(p) efficiencies is presented in 

Table 3. 

Table 3. The matrix of efficiencies (#) for cube when m=5. 

0 

0.1 

0.5 

1 

2 

10 

g(p) 

100 

95 

81 

69 

57 

h5 

31 

0 

100 

99. 

95 

88 

79 

68 

52 

0.1 

99-6 

100 

97 

91 

8l 

70 

5h 

"0.5 

91 

95 

100 

97 

90 

.79 

6l 

73 

81 

96 

100 

96 

87 

68 

48 

57 

82 

95 

100 

95 

76 

10 

25 

26 

45 

6l 

77 

100 

19 

2h 

ki 

56 

72 

88 

100 
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The numerical solution of the equation for s: e(s) = min(e (s)} = 
q  q 

max min[.e (p)} (p,q e R ) gives us for m = 4,5,6,7 the values of s 
P  q  q 

and e(s) respectively as follows:  2.06, 2.25, 2.45, 2.54 and 0.80, 

0.77, 0.73, 0.71. 

Thus the performance of g  is probably the best of what we can 
s 

obtain on a cube with respect to family [$ , 0 < p < <x>) if no particular 

reasons for the choice of criterion are given and we restrict considerations 

to designs of the form | . 

If the value of g(p) must be taken into account, then e(s) coin- 

cides with e (s) and, e.g., with m = 5, we have that s = 1.4- and 

e(s) = 0.64. 

We can compare the results for the cube with the results for the 

region Q   (3.0), for which all $ -optimum designs are unique with the 

support on E, U E„.  In Table 4 the optimal weights of the center point 

are given, and in Table 5 are the efficiencies with respect to both 0,  (3,0) 

and cube. 

Table 4.  The optimal'weights a    of the center point on 2^(3,0). 

P    0     0.1    0.5    1      2     5     10     oo 

aQ       1/21   .059   .102   .143   .196   .259   .291  1/3 
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Table 5«  Some efficiencies ($) of $ -optimal designs on SI  (3,0). 

P            g(p) e   (p) e   (p) e   (p) e   (p) 
U -L d 00 

0 100,38 100,66 83,56 51,10 15,15 

1 81,38 95,63 100,79 96,81 h^M 

2 75,36 91,61 98,77 100,8k 61,61 

10           6i,33 82,55 90,71 9^,79 88,88 

57,31 78,52 86,68 90,76 100,100 

The left-hand number is the efficiency for    2,-(3,0)    and the 

right-hand number is the efficiency of the same design for the 

cube. 

Such comparison exhibits the fact that the    $ -optimum designs on 

SI   (3,0)    are relatively constant in their efficiency    e   (p) firstly with 
5 1 

small q and secondly with large p. Also of interest is the fact that 

the efficiencies of these designs for the cube are less variable than for 

ßm(k,0). 

All the    $  -optimum designs on    SI   (k,0)    with    k/m "far"   from one 

are fairly efficient with respect to any compound criterion based on a 

convex average of    $ -optimality criteria.     For example in the case 

SI   (3,0)    all    1*    with    p > 2    have efficiency more than O.99 relative 

to the    ^-criterion,  defined as  follows:     $(?) =  0~(t )+$, (| )+$   (|)}/3, 
U     _L     oo 

and the minimum of ^-efficiency is equal to O.85 with p = 0.  Thus 

an integer design can be chosen with 80 trials at points of E, and 

with such a number of trials at the center point that both the exact 

<T> -optimality for some p and "average goodness" are provided. 
Jtr 
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These results can be obtained algebraically because all the <$ -optimum 

designs on Q,   (k,0) with k < (m+l)/2 have the same simple structure; in 

general, the performance of the designs on Q  (k,0) improves as k decreases, 

or as the region "approaches" the m-simplex. 

As it was expected, the ball exhibits much more regularity. The 

values of optimal weights a , a      and a     were computed as well as 

the efficiencies for some values of p.  With m fixed cc      is monoto- 

nically increasing from 2/( (m+l) (m+2)}  (at p = 0) to  (m+2)/(m +2m+2) 

(at p = oo) and   a      decreases from 2m(m+3 )/•£ (m+l) (m+2) }  (at p = 0) 

p 
to m/(m +2m+2)  ( at p = *).  The value of a      increases from m 
P p 
m (m+3)/{ (m+l) (m+2) }  (at p = 0) to some maximum (near p = l) and then 

2   2 
decreases to m /(m +2m+2)  (at p = oo)j the behavior of a ' s with 

respect to m is also strongly regular. 

The designs |  appeared to be remarkably robust in their efficiency? 
CO 

the value of    e  (oo)    monotonically increases with    q    from    e  (oo)    to    1, 

and it was shown in section 3«5 that    e0(oo) -»-1    as    m -* ooj    eQ(oo)    is 

already equal to    0.871    at    m = 3. 

The characteristics of the designs    |      are given in Table 6 for the 

ball of dimension 5« 
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5.  Integer Designs 

Some of the results of sections 3 and k may be implemented for the 

construction of integer designs. On a cube for any p  nearly $ -optimum 

designs can be found approximating the moments \ , \-,    of |* ;  e.g., 

we have with m = 5 nearly A-optimum design with 32 trials at points 

of Es and k-0  trials at points of Ep, its A-efficiency being equal to 

O.996 and the other efficiencies being close to those of |,. In the 

same way exact integer E-optimum designs can be constructed for any m; 

e.g., with m = 5 such a design has 80 trials at points of E, and ^0 

trials at the center pointj with m = 7 a design approximating |  of 

the same structure has 112 trials at points of a minimal second order 

symmetric set I.  (such sets were defined in the paper of Pesotchinsky, 

1975) and kQ  trials at the center point. The set I.  consists of seven 

subsets E. n {x |x. | = 1, 1 < k < k]  = E. (i,,i ,i,,i^)j each of them is 

2 -factorial, with the following groups of indices: 1,2,3,^J 1,1+,5,6$ 

1,6,7,3; 2,k,6,7; 2,5,7,1',  3,^,7,5j and 3,5,6,2. The digits in groups 

are written in such a way that the first three of them correspond to the 

subsets E, (i.., i , i-) of the set L, with 56 points, used by Box 

and Behnken (1960b) for their three-level design. 

The E-optimum designs over points of E0 U E/ ,-, w? on a ball have 

the same structure as on a cube. 

For the search of designs on a cube, both practicable and "good" 

with respect to the family of G- and $ -optimality criteria, we used 

the following procedure. 

For each m by the study of known symmetric integer designs (Atkinson, 

197^; Box and Behnken, 1960a,b; Walimov, Golikova and Mikeshina, 1970j 
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Pesotchinsky, 1975) the "basic" sets were selected and the addition of 

some (sometimes duplicated) sets with a small number of points, such as 

EQ, E , was considered. With m = i+,5,6 the basic sets were E , E 

and I   n     and the supplemented sets were E0 and En: thus we m,m-l ** 0      1? 

started with the star point designs (Atkinson, 1973J Nalimov et al., 1970) 

and DP, DB designs  (Pesotchinsky, 1975)- 

For m = k    the best were the star point designs with the set E. 

duplicated two or three times, and for m = 5>6 the best were the designs 

with the basic sets I   n     and the supplemented sets E, and E_. m,m-l ** 10 

For the integer construction on a ball we can note that the values 

of   a       (the measure of the sphere)    and    r = \,Ap    are "independent"; 

thus we can have    \„ = a /m    close to the E-optimum value,  and   r    close 2   s' 

to the D-optimum one, providing both the E- and D- goodness of the 

design (and, consequently, $ -goodness for any p). This reasoning can 

be supported by theoretical arguments, because $n(|) depends mainly on 

r, and <J> (|) on \?. Thus we considered the star point designs for 

k < m < 6 and the designs over points of E„ U E,  w, for m = k,T. 

The characteristics of integer designs on a cube and on a ball are 

listed in Table 7.  (I  for a ball denotes a half-replica of the 2 

factorial with levels + l//m and I, the minimal second order symmetric 

subset of E, (m=7)^ constructed by Box and Behnken (1960a)). 

It is interesting to note that the minimum of $ - and G-efficiencies 

of optimal designs |* from section k  is less than that of integer designs 

constructed above, but the latter are not $ -optimum for any p. Also we 

may note that the variation of an additional set or number of duplications 
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enables one to construct integer designs with improved characteristics 

for a particular subset of a family of criteria. 

The author is grateful to Professor J. Kiefer for encouragement, 

helpful discussions and valuable remarks. 
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