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Abstract

I The field equations for a transversely isotropic half-space are

defined in terms of potential functions. A form of the potential

I functions satisfying equilibrium is assumed and the boundary value prob-

lam of a tangentially loaded spherical indentor on the half-space is

solved.

Expressions are obtained defining the radius of no-slip for the

static case, and the relationship between the horizontal surface dis-

placement under the indentor and the horizontally applied force.

Stresses for tangential loading are superposed with those previously

obtained for normal loading of the indentor, and the stress field is

defined in the half-space and on the surface for both static and slid-

ing cases.

Von Mises' criteria for the sliding case is calculated and plotted

-- in the half-space and on the surface for two transversely isotropic
-." metals using two separate coefficients of limiting friction, and on the

surface for the static case for magnesium with a coefficient of limiting

friction of .5.
V
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1. Introduction

The stress field created by a circular sliding contact on an isotop-

ic half-space has been solved by Hamilton and Goodman [13. Hotivated by

consideration of mechanical failure they examined constant lines of

j von Mises' yield criteria in the half-space and on the surface. Dahan

and Zarka [23 have recently solved the stress field in a transversely

[isotropic half-space in contact with a spherical indentor under normal
loading. They also plotted von Mises' criteria for several transversely

isotropic metals to show the effect of the anisotropy for the indentation

of an elastic half-space. Both solutions give results in the half-space

in a closed form.

r
L The purpose of the present analysis is to derive the stress ex-

pressions for identical transversely isotropic spheres in contact

under both normal and tangential loading, and to obtain expressions for

[the stresses as the spheres slide relative to each other as a result of
the tangential load. Von Mises' yield criteria is then examined to corn-

[ pare the anisotropic case to the isotropic case. IA [1].

I
I
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2. Formulation

(a) Basic Equations

For a transversely isotropic body the stress-strain relations are

given by Green and Zerna [33 as

. Of xx $4yyAO zz Scyz,$a zx,*axy ) = 11 € 12 .€13 0 0 0 e xx

cC 1  c 0 0 0 e•

C11  1 3  yy

C 0 0 0 '
33 ez

0 a* I44 j yz

44 zx

L 4(c

The relations between the strains and displacements are

aux Buy auze- - • e, - e --

xx ax ' By zz az

au au U a u
+ Buz , e. (: -+-- , . + 2 (2)

yz a z a z = : zy

and the stress-strain relations become

a mc Uz+ c -LU c -u

rxz 11 ax 12 By €13 bs

au au au
Y+ 12 ax 11 by 13 ax

Ii 2 i
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au au a

u 13' -x + :ay c33 a

I a U + a .'Cr. "4'z "( 1 1-c 1 2 )

I
\ y +.

(3)

11 Substitution of the above stress equations into the equilibrium

equations, /Ax - 0, gives the following expressions for equilibriumIi. ,i,-,i,,, Il

in terms of displacement:

a- 2u UX2 u 2ux X

r czz x2 + k(c -'Cz X + c --1a2 2 4

+a / [k (cl+c12) ! + (c13+c jA) .zz  =0 (4a)

-I u2 2 2
j ( 11- 12) 2u 11~ 2 4

ax 11By 84 zZ

Iau Bu
+ My/bY (c1l2) ax + 13+c 44) -- ! "" 0 ( (4b)

S+ I . _. + (c4 + .( 4 c)

44 33 2 13 +c44) a/az(7- 5 -
,B4 B2  33 Xz2

I
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The displacements are defined next by potential functions as in [3]:

I

where k is a constant to be determined later.

Substituting these displacement expressions into the equilibrium

I equations (4) leads to

C 4 4  13 44

11 t 2 + a2 B
+ ( c1 2) Ix + + c4 4  4 0 (6a)

c (e4+ a-0 + [c 4 + k(c 1 3+c )] 4

1c 1 ) 2 4 1 44  2 0

(c + c + kc +4 + c 0 (6c)
-. 13 44 44 2 3 1

Clearly these equations are satisfied if

c is + [,c44 + k(€1"4) U (7a)

I 1 1  +)[c 4  k c 1 3 +c 4 4 )]4 0I A
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2 2 2
(C + c + kc) + + kc33  4 0 (7b)

I
-- and

-(cll - c12) ¥+ ) - c L = 0 (7c)

Equations (7a) and (7b) can be written

,2 2 4 +k(c 1 3 + C4 4 ) 2.x2+ + =0 (8)

txK by ell1Z

and

2k2 k 2 -""2+ + =0 (9)
a. (c 1 3 + c4 4 + kc4 4 ) Bz 2

As pointed out in [3), a suitable, non-zero 0 can be found if (8) and

(9) are identical, which leads to

k(C1 3 + c44 ) + C44  kc33

ell kc4 4 + c13 + c44  (10)

Equation (10) generates a quadratic equation for the solution of v,

2c1 1 2c4 4  + £c13 (2c44 + c13) - c11c 33 'v + c33c4. 0 (11)

-" from which it is found that

I
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CEc (2,4 4 1c13 - - (Cc 1 3 (2,-44,c) 4c c1 c3 ] -

13 1) clc33 13 1) '1'33 11c33c44 3
2cllc 

3

(12a)

I and

- 1-cl 3 (2c4 tc 1 3 ) -cllc 33 3 + Ecl 3 (2c44+c 13  2 21 c 3  k c 1c 3

2 2c 11 c4 3 lc3 c3c44
1

(12b)

b ~with the functions 0 and 0 applicable to v1and v 2. Hence the equations

1 2

2~ ~2 2

+ i- 2I+ (13)-X BY,2) I

T
and

"2 2 2
no +- + ~ 0 (14)

x 2 x 2  2 2

Defining z, 7 z and z = z
v 1 2 'V

a 2 B2 ' z2

a-02a 2a20 0 (15)
2z 2
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I
From (15) and (16) a form of the potential functions is assumed as

I -m.~/.

I 01 - e J (tr) dt cos r8 (17)
n-0 o

02 s~~ t e J n( r) dg cos ne (18)

To determine Y, equation (7c) is written in the form

+ 4) + 4 4= 0 (19)

(c-c"12) 3 3 v3

Then,
2 2 2

~03 a03 a 03-+ 2- + - (20)2-2 2
xz3

and 0 has the form
3

03 " A3  e J (Cr) d§ sin nB (21)
Sn-0 0

The form of the displacement is

BA0€3 + 3
u = /b(¢142) +- U / y(0 1 0 2 ) - , k z(0ld2)

(22)



38

With (17), (18), and (21) representing the functions ' 2 and
2

3 the application of the boundary conditions determines Ain(), 0'

and finally, from the stress-strain relations (1), the stress field.

The stress field for the case of two identical transversely

isotropic spheres in contact is obtained by first solving the

problem of normally loaded spheres. Then the case of tangential load

Iin the positive x-direction insufficient for sliding to occur is con-

-- sidered, where sliding refers to the condition of total slip between

the two spheres. The stress field obtained is then specialized to

give results for the case where sliding of the sphere occurs. The

problem of normally loaded transversely isotropic spheres as previously

noted, has been solved in [2] so that the following solution is for

tangential loading. The two solutions will then be superposed.

-With the orientation of the axes as shown in figure 2.1, the boundary

conditions for the application of a tangential force in the positive

x-direction, Px$ are (when appropriate symmetry conditions are considered

for the two spheres)

T

Figu 2al -P

I Figure 2.1 Physical Orientation of the Problem
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on z - 0:

u -o0 0 <r < C
y

U u -t0 <C

I < r < r) (23)
zx

where0< r < 8is the region of noslip, 8 <r < ais the region that

experiences slip, ot is constant, and g(r) is a function of r to be

determined later.

Since the forms of the potentials are in cylindrical polar coordinates-

the boundary conditions are put in that coordinate system as follows:

u u Cos + usin -a cose0<r
r x y

- (24)

u u Cos -u sin - t sin 0<
e Yx

If u rand uE are expressed in Fourier cosine and sine series,

u = " uCos r Cos 0<r
r I- rn

n-0
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From symetry considerations and equation (25), n - 1 andI
u - cos (1 (26)

ue - E sin a

Then in the region 0 < r < ̂

~a 11cos -u sin m (f - ) +~ +d cog 29 2

j U sin + u cos 6 r= + 19 sin 28 (27b)

IFrom (27a) and (23), with A 2- t
A y r <ue 2a

,a - 0 0 r < (28b)
r 8

I
In the same manner, with a z-5 cos 6,a 8-6 sin 6, (29)

and f(r) - 2g(r),

I (r " -6 )+I (6 + cos 2e = g(r), < r < (30)

zr z zr ze

I yields

d f (r) ,< r < . (31a)
zr z

I +6 -0 , 8<r< . (31b)zr 

(3

I
£



Since

a zX zr ze + r + ^ze s2 3a

and a if(aA +6 a^ in 2, (32b)
ZY zr z6

then a6z +6 -z)=0, A r < (33a)

a 6r a-o 0, r<(33b)

I The boundary Conditions in polar form are

Ur 6+ -o 0 <r < C (34b)

6r -6 a^,Mf(r) E < r<& (34c)

a6z +6az -a0 ~ <r < (34d)

a 17 -o8<~ (34e)Lzr :0

on z 0.

Next, the stresses and displacements are defined in the form of the

I potentials from equations (17), (18), and (21).

I Equations for the polar displacements and stress field due to 01
and 0 2are given in [33. Those for 3 are derived by coordinate trans-

I formation. As previously noted, n -1 so that
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Il A(C J1 (r)dC con (3a1 0*

I02 A A(C)eaCz1f 2 J (Cr)dg cose9 (35b)

1 3
10~ 3 J A3(g) a - 1 1 J(gr)dg sin e (35c)

0

Making use of the equations given in [33 and noting that

d2 C_2

dr2 r 22

= -E J (90) +-L J (grz) J (Cr)
L 1r2 I r dr 1

the expressions for displacements and stresses become-

Ur 2(9) e ia(r)

u ~~- a( .r Cr

6 0 A2 (9) a Iz/f IjJ(r

~~I -A3 J U~/vA (Cr)j dg sin 8(3b
A3(C) 0Ldr 1

I'
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I -k2 ~7 )A 2(g) * 2 c(g)} dt coo (36c)
V2

and, with some regrouping after differentiation

r a 1

13 2 ~zf 2

\2  U) 2

+ C02) (A,(C) e- +~/v A 2  e- 2 A3(9)r

_____ -C /fv2
(12011) d1[(Al~ I - A -g/4//) c//

J J(Cr)} dg coo a (37a)

age131 C2 Al2 )

(013k2  12 2 ~-gz/,fv2
12 2

V2 2

r~~~ (2 l2 C 11 C zIf C/fvf
-2 14 A 2(9 a- 2)] j(gr)
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+ ('11.'12) [(A l(C) e +A2(v ) e -gz/(F 2_ ) *C/' 3).

I J1 (r)] } dt coo 63(3b

C 1 L C 12) & 2 A( g) a 9 4 3

C -C Elfv g/ V -z

_+ (C:II 2 1Ci) 4 (A() 1+ A2() G &v A 3() 1(3)

rI

12) }1 d~ [sii~g e 2_3)

i (gr) s in E)(37c )

-q r26  f {.v 1A~) 2
01 lfv 2

drC 44 ~ -cz/,v 3

CA3(g e_ * (C dC sin 8 (37d)

-c " 1+ke- z ,v 0~ 2) CA2 (g) e- z ,v * }( r )j

IzIf
VI 1
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I J(Cr)} dg cos a (37f)

I

I The above stresses and displacements are now used with the boundary

conditions to solve for the A(c), and subsequently, the stress field.

(b) Boundary Value Problem Solution

From the form of the boundary conditions (34) it becomes necessary

-- to define (U - 12 (d + ), ( a " ), and(6 +6 ) in terms of
r 8 r U zr zr ze

the A,(%).

Comparing (26) and (36) after differentiation it is seen that

- z/v -Cz/fv 2 -z/,v

A l e 4 A2 ()e + A 3(g)e 3}j0(Cr) d%

10
(38)

_ Making use of the identity [43 that

[(gr) -I J i(9r)] - ([J0 (gr) - 2 Jl(gr)] 2(Cr)I r

it follows thatI
C z/Ifv C z /v/'+  ('J'(9)e" + A2(V)e 2[ 2"3(ge_9j' 2(Cr)] d9

r r

(39)

Ii

I
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For (r -z) and (azr + ( ) coaaring (29) and (37) after differentiation

I 6 rz +4 C4 j' {(l+kl) A1 (g)(- t,)eZ/VI
0

+ (14k A2(t)(- 7- 2
2

I
A, (9)  aL- V 2(90] d (40)

I
Iand

&2S ca be ~k1 Alme aJti piLthtfomse tyondea on

rz 4 £4 ~.(4 1

I & -& -c . 1v1  )•

( 2k 2~() 2f

12
+ AI a/ 3  [CJ 0 (Cr)] d§ (41)

3

It can be noted at-this point that from synuetry considerations

a -0 on the entire half-space surface, and a relationship exists

I between A.1(C) and A2 (C), simplifying the above expressions. From (37f),

on z - 0, equating a2 to zero gives rise to

zkc

( k c 3 c1 3 )A 1 ~) (cl 23 3) A 2(t)(2
1i1 V2
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ILt

3 (k3 33

I 
-(13 -

then -() K Al(g) . (43)

I fThis simplifies the expressions at hand to

-r +2 (-1-K) Ag)+ A(g)l J (sr) d§ (44a)
,-- 0

' " -e " t(1+K) AI(g) + A3(t)3 J.(gr) dt (4b)r ue 1 3
0

44 1k1(1+c)

6r -+ c T[(, - K 2A() A3(g)] C 2 (r) d
0 v1 2 /3

- (44d)

Sc "( K "1) ( g_2), Cd

Define a- I + K, b - 2-+K
1 KA2] (45)i44 IIViv2 A0 V'3

I r +% COC(C) + fDC~ tj( dt (46a)
0II

!



u T C-fC( ) -eD)dg ("b18 )

0

I 2
+-cC() tj2 (tr) dg (47c)

1 0

I rz - aze fcD~ 2 Jgd C 0d

I0

where C(g) - - - Al(t) + A3 (g) , D(t) At - b (47)

and d = b, e - k(d 1 +1), f -f (d 1 -1). (48)

The boundary conditions (34) can now be written

f CeC(g) + fD(g)] gJ 2( r) dg - 0 0 < r < cA (49a)

- f fC(C) + eD(g)] gJ (tr) d 0 < r < CA (49b)
2 0

0

-= 2
c D(g) g Jo(gr) dg - f(r) < r < (49c)

4 0

0D(g) g 2J(gr) dg - 0 < r < m (49d)

I
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I
a

0

Motivated by the work of Westmann [5] and Goodman and Keer £6] a

solution is assumed in the form

I C(9) 0 (5a

-I . 0

I -2f' j g tko0(t) J. (t) dt (Ob)

Ia
where f' is the coefficient of limiting friction to be subsequently

'I introduced.

From (50a) it is seen that (49e) is satisfied identically. Sub-

I stituting (50b) into (49d) leads to

d
dr fX(t) dt - 2f' 0 So(t) dt - 0 (51)

1r 0

which is satisfied automatically.

Substituting (50b) into (49c) leads toI
JT f2 (r) d t 2 2 ~(2

2 2c r- rr. 00(t):£t(t-r) d:, < r < (2)

r

I
I
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At this point the nature of f(r) is examined. An noted in £2) the

pressure distribution under the area of contact, 0 < r < A, for normal

Iloading, Phas been determined as

p (r)i -7(a. -r) (53)

I where p. the pressure under the center of the contact region, is

3P

Po - Z (54)

Upon application of a tangential force, P ,sufficient to create

a slip region, C < r < Athe surface traction in the slip region may

be expressed as *
ox ifp(r) < r < (55)

Then by (23) and the fact that f(r) -2g(r),

f(r) 0 (12~ r 2) (56)

and (51) may be written

2_2 ~ 1 d 2 2IB(& r r , (t) Et(t -r) )dt, 8 < r < A (57)
r
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where B - T ! Knowing that 0 (t) must satisfy, the form (57), by
~2 Ac 0

examining p. 60 of £4] an expression for 0 (t) is found to be

(t) -G(t 2  a2 (58)
0

where, defining c by (45),

G a a (59)

Substituting equations (50) into (49b), and dividing through by e

gives the form

r Xl(t)
J 2- dt 0 <r < C (60)

Examining [43, p. 67, it becomes apparent that if )C (t) is constant,

(60) will be satisfied. With X1l(t) H , integrating,

a~f -- H(YT/2) (61)

and 11 :' . Therefore

satisfies (49b). It is easily verified that (67a) is automatically

satisfied by X(t) and 00(t) as defined above. The boundary value

problem is thereby satisfied by
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0 M G(t 2- 2  X(t) (63)

I Utilizing the identity J_00) cos(Ct) and integrating (50b),

D(C) is found to be

I - 8 2o[s2)

-8 cos(8) + 2sin(6' ) + (2.2)s (64)

I (4

I From (47) it is seen that

IQ - CbDg (65a)

I A3 (g) - -I D(C) (65b)

I
and by (43)

A2(C) D( ) (65c)

(c) Auxiliary Relationships

I Before proceeding to the evaluation of the stresses it is of interest

to examine two conditions key to the determination of 8, the radius of

the ao-slip region, and the relationship between P , the tangentially
x

applied force and a, the displacement in the x-direction on the surface

under the area of contact.
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In the work of Goodman and Keer [6], upon tangential loading and

3 creation of the slip region, 8 < r < 1, a singularity arises in a whichzx

can be eliminated by an appropriate choice of C. To examine that

phenomenon in this analysis attention is turned to the expression for

I a given in (32a). Using (46c) and (50a) it is seen that the stum ofzz

the Fourier coefficients vanishes. Therefore any singularity in a

is reflected in (6 z -a ze) 
zZ

zr ze

Performing the indicated integration and differentiation it is

found that j

"zr ze ( + 2f2 r2)I [2 2  - ((2222)k)

2f'Gfi (a r 0 < r < 6 (66)

As the radius r goes to 6 the singularity generated in (66) can be

- eliminated if

-- (-~a -2f 'G (12-a) (67)

-- or
.. ,Ga 2 22

- 2fGe a (68)

- An expression for the radius of contact under normal load, p

has been determined (similiar to that of [2]) as

I3PaR 6 -8 1/3
I
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where R is the radius of the sphere, and 6 and 6 are quantities to
1 2

be defined later which are dependent only on the elastic constants of

the half-space. Therefore with (69) to determine ,,, (68) can be solved

I- for S if, is known.

In order to determine the relationship between the displacement,

j t, and the tangential force, P , (and therefore between & and P X)xx

- equilibrium must be considered. On the surface z - 0, suing force.

in the x-direction gives that

a 2rT

_Pm f a (r,e,o) r de8dr (70)

0 0

Again using (32a) to define a on the surface, with the sum of
mx

the Fourier stress coefficients equal to zero as noted previously,

performing the necessary differentiation and integration on the dif-

-- ference of the Fourier stress coefficients it is found that

. c (71)

By means of (68) and (71), A (and therefore cy) and E can be

calculated given A and P
x

;[
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1

1 " 3. Stress Expressions

(a) Preliminary Integration

Before proceeding it is necessary to coment on notation. Since

I the stresses from (37) are for the tangentially loaded spheres and will

be superposed with the solution of Dahan and Zarka [2] for the normally

loaded case, the notation to follow will, as much as possible, be con-

t sistent with [2]. In the present analysis for tangential loading, the

elastic constants, cij, are the moduli for a given transversely isotropic

metal. In [2] analysis is carried out using the compliance, aij , as the

Telastic constant in the basic equations. The relationship between the

two is herewith stated as:

alla33_a132 a13 -a 12a33
- 11 ~ 1 2 -

2 2

a a1 3 a12 -a 1 1 a1 3  a _a 1 2
2

,c - 1 * (2

- 1€ °

-- 2 2 2 2
11where t, a 12a33-2a 13a 11-a 122a33 +2a13 a12 (73)

-- Further relations are given in Appendix A.

It is apparent from equations (37) that several key integrals will

be involved in the stress expressions. From equations (65) by letting

MI " " - ' "K , M-K - (74)

25
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it can be seen that AL(C) - HL D(C) where L - 1,2 or 3. All Bessel

3functions in (37) are in 30M forIZ Of j 1(9r), so that the key integrals

I are

IID(C)e Lj (Cr) dg (75a)
0

C1u//v i (r) dC (75b)

0

0

2) sn8e-gz//fv

-(-& ; ~ i inS)eJ( r) dC

a a

+26fit co(C aFczlfvi - d% (r)

0 a

0
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From [2] define

S (i 51fl6V J( r)e zd (77a)0 0

S - i~ft i JCre dg (77b)

0

-T 1 C _____ J (gr)e *CS-dt (77c)

- 0

and

(~)_sin_ -gzs± (7a

Of [n()-c~sr1i)1 J (r)e dC(78a)
- j0 L m C1

D- It cas be seen thatAV

f in( L ( g - 1r)e dg (7d8b1()

00

so tat bequatin (7)hecme

II
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I

C () J ( cr) Vd

0

I - ( 2 2) s j. ()] (81) )

i

7D() + (&2.r) d -$8(D2().

1 ((±) + 12e

-2f'GA -T[.2i D. 4 () + 26 D T(6)

I
C D(C) ( 2 )e T (8))] (8)

I0
44,2'

I

r~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~7 .... . (,8)l 2f 
... ...... 

Dill~ 
...... ............

2.8.... ........ .
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I
To evaluate the integrals defined in (77) and (78), from [2] let

Yi(r2 2 + a 2 ) 2  (83a)

I
ot a 2 w J(r 2 _ j2 + si2zZ + &2 y 12) (83b)

I) " "--- - )(83c)

S sil1)-arctan( (84a)

I S z' ( i)l" "rb)

Ir
I Ti,l()"a'iT (84c)

1 2 3tz

C 0 (A) + zS (i)(85a)
12 i" i ,St

13 2 7 1 49

4 i,l (L )T-' (85b)
I

I. . . ..... . . . . ... .. . .. ,
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D12~)m(r S 1 ) -sa z11 (An) Ai Tit n)

2122

I

D4(i) is not given in [2] and is evaluated by definition (78b) and
L4

integration by parts. The result is

i i()" sil ) J§s(r)e ~dg
14 4J2 1(~~

S sin(-) .cosi (i) J(r)e
43 "g382a0

4 0 2 J 1 ( r)eid

or, by the previous definitions

- in2  1s
D4(n ~ (Din + T 1  i) + Ci~n D (in (86b)

I
(b) Stresses in the Half-Space

(i) Static Case

By differentiation and substitution of the appropriate integrals

(80)-(82) into (37) the stresses in the half-space become

.
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Cose a " IT J2,

I
I -2 Di 2 (a) + (S2_8 2) ( d.,

1 12 1
(DT

2_6 1

C-21 D 4'() + 2 D 4'() + (52- 2)A D2'( ) + T ' ()g J
4 A 2 ,1

(87a)

-- where J- 1,2 summed, i - 1,2,3 summed, pried notation (with the ex-

ception of f') denotes d/dr, and
7-

1  91  L2  M2  L3 = -" 3

I-

I,
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I
gee c13k J( -) 2 r

COI~~ ~ (r -2 -2)Q d ' )) 2Gf~2 a

- - -,

I + 26 j2'  2.6 ((- ,  ) j (°,6) ,l , i'
" (( ) L ( 2 2

C-2 D 14 (a)+ 28 D14 (A) +a0c)SD 2 (8) + T )i

+(C Id CL12 L {( 2 D;6 T6)-2'Gfr

E-2a ~ (& +26D~~6 + T~ 2)(C 2:E1 '~)

I "(87b)

I~2 +i~ (1l C12\ {(2) d T()) A T

1 +2 ~. )D32(a) + T2e2)(. c T3 1 ())i}

S( 1 1 C1 2  ' , \ D
Li 6,: (D CA) +-T2ffG ,,,, r -z 21 (+ - -r 2  )L A a IT/ 12 1Tr1* 14

I
I+ 26 D£4 (8) + (A2_,42)6 (DC+ T,, (a),J

1

I !
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C (c -C Le ( ' ~ -~
+ r1 L ILI d +2 T 1,1)) -2f GV-[-2R D I(&

*1+ Z6D 1 'V) + (a2̂ -; 2) A (D 1 ; +T 1e

a., C 4( 1+k)1

- ______ 1 {( N (A)- 2ft F1T[- 2 h D (6) 2C D ()rV e r/TT J3 j

L 4eL T! 1~'(8) fIG , -r -2 6D(& + 2e D ( )
Ir 3ii 33 D33

S3,1(A(8d

a rz -c,.,(1-k)
z~Lz 2\ 2f'G TE D 1 ()jC-26 D 4-(& 2e DIecase av T j,1 r

-~ 2

C4 4  1  2f~2 "G, ; ,C 21+ Z+ -rL 3  e -*ri S3,1() - fTTE2 D3 3 (&) 33~ ~
V3

+ (a s2 S3,j(8A)j (87e)
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C.

ac d- 1 \ IT

+ j8 a) + AcT 8 1 (87f)

Equations (87) represent expressions for the stress components due

to a tangential loading, Px, insufficient to cause overall sliding of

I the spheres. The results of Dahan and Zarka [2] for the stresses due

to the normal load, P , areI z

a r P sl- 2 )d' 'SlCl2(a)" s2C22( ))

I + V slp2D13()- s2 p D2 3(a))j (88a)
I r(s1-s2)

slD3 (s 2 C1 2 () -

s7z.- )(a'3 _;7 5(8b

I r(s1-S2) (Slp 2D130) - 2PJD 23(&))j (88b)

s2C12 ()-slC 22 ()
Izz 0 Po (88c)

Oa D12(9)-D 22(1)

Irz o (S1-s2)/d'

I
I
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I
With equations (88) superposed with equations (87) the solution

fox ihe stress field of the static case is complete.

III (ii) Stresses for the Sliding Speres

From the static case, if the force P is gradually increased, the

size of the no-slip region, 0 < r < 6, decreases until P reaches a
x

value of f'Pz, at which point C becomes zero and the spheres slide over

the entire surface of the contact. The effect of C-+O is analyzed

and generates the stress expressions in the half-space due to slid-

ing.

As 6-.0 it can be seen that

S (C)-.0 S *(S)-0, and- d~ )-0

so that the complete stress expressions for sliding, including con-

tributions from both normal and tangetitial loading, can be written

as

r c1k2" 11c112 )(f cD 0\
-. r - LY - cll)L D 2 (a) + 2)a~i

L jJ r21

.+(c rcl Li D (a): 4f 'GO.!, a cos e

1l 2

+ + ((s v6p 2D 13(S - P 3(~ (89a)
1 2

LI

I
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36  - 6

I + (cl].l2) LD 1,<C>] (4fC] ) co; e

II
I +C [ . - (^)c )- 9qc a)(a -3)( '-1d 1) (Sl212 2 122()

1 2

Sr(s1 s2)(A) - sPD() (89b)

a am (Cll-C12) LD 2 ( (Cu1 -C12 )
re 2-(n z L3D32(i) + r J n' 14(1

I

I D 1  Di4(a) (4f T ) sin e (89c)

c44(1+kJ) c)44

Lze( )D 3 (9) - ~LSD3 a) (4fG1) sin e

(89d)

44'j 44 /\1ff
rz [ 4 LJD J3(&).) L3D3(&)i (4feG~ cos 8

A i i A v33 \TT/

+ p (89e)(s -.s2)c

I

i
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I (k'c3  -c j

a2 C12 (a)-$1C 22(1)

2, ) (89f)a ( a 1 -82 )

J where, as before, J - 1,2 suemd, i - 1,2,3 sumed, L -M l ,, M2

I '"

j (iii) Stresses as r-+O

By substituting the leading terms of the series expansions of the

IL Bessel functions into equations (37) the stresses can be examined as

the radius r approaches zero for tangential loading. The analysis for

1normal loading has been performed in [2]. For the tangential loading

I P, a6 ,a , and a vanish as r-O. In the normal case a vanishes(YET % ZZ' rz

and are and a6z do not arise under normal loading.

I For the case where tangential loading is not producing sliding of

the spheres, the superposition of the stresses for r-O is

a a o (l ) rtn-)
rr m 7 . -

I -( - arctan (9-a) },

I
II

I
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a's -o (90b)

I
lC. 4( . 2) -2f'GT 2 [-21(l - si, S .())

+ 2r 2\/',-

I (90c)

I i "

I + 2S2 :

I (

I 28( (-14k 1) 
S  cY- _)2 ) 2 2C+ 2( ,

I (90d)

I ~a Po _ - S [arctan(L aran L)}

1 2 12

0 (90.)

vhere i - 1,2,3 suned and k 0.

For the case of the sliding spheres ,-,0 and equations (90a,b,e)

I remain the same. Equations (90c,d) become

-c4 4 (1+kL)

Hi ; S (p)i Cos (91&)
Ir
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C. (14ki) cooI
cze ~ i M,(2f' / 5( - (S ) cae(91b)

fV i \ / a i

with the same a- ation convention as (90).

I (c) Stresses on the Surface

On the surface z - 0 the exponential term in (37) goes to unity.

The integral expressions (75) are likewise simplified and evaluated.

Performing the necessary differentiation and substitution in (37),

the stress expressions on the surface for tangential loading are obtained.

The stresses on the surface for the normal loading are given in [2]. The

superposed results give the stress state for the static case on z -0 as

on

I f. 1 { /1 ( r24)4 + a2 [( r2 3/2-}

I

I o'e -1 (92a)

| - -- Az' r( 2 4) : a' (a [ - r -,)I r- 2 3( ) L ) 2

2 22 2 - 222)

, 2r 2  WO)(, -r 2 ) +k ( 8 2 -r) cos 8 (92d)

,I
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;2 . ) (82 r)-4 -2f 'GjTE[2(tzr2)i + (82 -r)23 2

I + (^2 2 )_ 2r2) 't)} sin 9 (92.)

I

Ir - r~( (92f)

I
I on < r <

I o-, (Clrk- - o~) L {(-.A.') ['8(rk82

2f'G 4 #[F2T+f (r2'8254 + r 2/ 23( .

- ro
I

~(L'r ) Zr -2

(C -0L '- A )C(r-82)k

\ i ~e T. " r2

/2 r 3

2 2 2 +/2 ) 16

I 1{2(-t)4 + "'a [I (1 Erz) (93I
I



I
.11

* ) T. {( - .2-) Ea '2  ")4 /T" *+
17 ee (c3k, . [Ar2 - =

v r

]j

-2f 'Gfi[1; ME .(r c2 ) + r min-

-- 3-1):2}cae

+.Cl li ((9)[3b))4 2fGT[

2r

2 .3

7 e 1c2 23( ]

-(IL 3r(r"2 +" siO r" Cos 2
r 4 4

+ p'~ 3

o(7d(, 2432[ -2)3/~

(93b)

C2 2 2
'2\ r L r Tr 2 24 2

2 a2 3~ 3~/L A8 2 4r

+ rsin- _ 4r ) (r') sin e

C 11 -C 12 2__ _ 2 f' 2 62_ 2)3/2

+~ (TO r22 ITj~ L~6r2 2  8 2r2

- 34 (2r) +. E sin'(I) 2- sinc

e2 4 -
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4 2

rz {~ fG /I( 2~ 2 A

cr{-2f Gji! -2 ( 2 -r 2 ) ]J Csin (93e)1I 2 sin

&I 0 2 (93f)

Iand on A< r<

1 8 2 2 2

-snr ~ r 4r 4~~ 4

I -hl 2  IL c 12r-iI (r 2 2~ } Cos e+ ( ll-C 2 )( F) ( _1

- 2f 'Gf A (r 2_92 3/2 + 3A4 3 2_ .2 r in(2

TI e ~ 2 3  2  (24c2  A+2 (r r i
2r rr r

(94a)
+ P

Ir
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I k 2215
( 11 c1)L {( A.) I.6('Ir -C
Vi 2)L e L-I

_9 4r - r - a (r- _ 2

2 2r i-1

2f+ rr 6r)(2 {(- 1 5,L Ce

I r 1 1 L 2r 2

) 2 2 )2 3/2

j3f , 2) 2_&21k r2  +ifA\+~---(r-C +-sin 1)JJCl

__ 2

Po 3 r2  (94b)

rr

(Cll-fC 1 2 \ f A2r 2_2152 _21k

Te _2 M Ak ;)[§(r c ) -2fJ frj (r2-

-r sn - (r2  + r sin " .

+ 4r) (r2C2)-] sin a

II ... ... .. ...... ...
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+ r 1.64-ZL -2f'/GJ7[1 A(r-S )
rr Zr2

3I _ 3 2 2 2 ,23 /2

+ 2&:) (r2&2+)in sir

I r2  4 4

(94c)

I r z -z -oZZ  (94d)

here i - 1,2,3 stued, j a 1,2 sim ed, L m V 2 - 2  L3  -M3

I before, and c is defined by (45).

The above results are easily specialized for sliding

I as follows:

I on

a c 13 kj , c cl - "f I/J 2
- [((f .ILL - C1 1 )rL+ LfI -'r Cos e

+o P r 2 eL2[, (I _ r- 3/21{ 2) + 2 -; ) (95,a,
! 'd'3r2-

! "- ,~--, ,,,l,,)

1 r21 o(C(,k - ,(-'GJ- r -(-)3 1 (f'

3r2 112/ (95b)

Bo m- -
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I

(95)

rz- _r, (A2-2'] coo G (95d)

I = [2fGf (&2 )] sin (

I r24

AI .- o( - .2 (95f)

i and on <r <i

c 13 k I Lj {-2f'G (J_,12) -r sin'l(t]} coo

Cc___ ,f12 ( 2 -S2 ) 3 / 2 ~ 3 2

l C 2) GF 1+ _&-fLTr2 -r22r \4 r2

I2
I - .. ,-n( )] } ole

I 2

o 3 r(96a)

I



46

I
c kL(13 i - 1 )o -2 2 s-( )]- ooca

Lee {-2 'GWL 2 (r) r (sin- Cosr-*Y
r) r r)

- -1ff 2 29/

C + , '/ LiL r r 3

r 2 T

-L- "sin-s e

0rz Po -0. (96b)

- e  -" )=0

Lz {-2 'G 2" (r296d)

r 2
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1 4. Numerical Results

In order to show the effect of this kind of anisotropy on the stress

state, the stresses in the half-space and on the contact were examined

numerically for magnesium and cadmium, two metals studied in [2]. For

these calculations the coefficients of limiting friction f41-. .25 and

f,! - .50 were used. As in [1 and C2], von Mises' criteria for plastic

yielding,

- {2 2+/6( 2 ax2(xxa 2 2

I
was calculated and lines of constant J/p plotted in the sphere on the

y = 0 plane, and on the z - 0 surface inside the contact zone. Figures 4.1-

4.4 illustrate the results in the half-space, while figures 4.5-4.8 illus-

trate the results on the surface for r r 4 . Figure 4.9 represents the

I static case on the surface for magnesium with f' = .5, and 8 - .5a, and

is included for contrast with the sliding cases.

It is noted in £2] that it is not generally possible to use von

Mises' criteria to predict yielding in anisotropic metals. It is plotted

herein as a means of contrasting the stress disturbance in the trans-

I versely isotropic metals to that in isotropic metals as displayed in

[13. It can be seen that magnesium behaves in much the .same manner as

I the isotropic case in [1], while cadmium's elastic properties create a

more unusual situation. Except for the case of magnesium with fV - .5

(which parallels the isotropic case of f' - .5) the maximum value of

J/Po is found on z - 0 at the leading edge of the contact, as is the case

in Ell.
I 47



I
The elastic moduli of magnesium and cadmium used in the numerical

Ianalysis are given in Table4.1. Also listed are the moduli of steel

for v - .3 illustrating values for an isotropic case. All units are

N/rM2 .

TABLE 4.1 ELASTIC WDUfTLI FOR MAGNESIUM,
CADMUM, AND STEEL

Steel
Magnesium Cadmium (c I1,,c33, c 127'13,

c447.(cll-c12

10 11 11c 5.857 x 10 1.092 x 10 2.691 x 10
110 10010 11

c 2.501 x 10 3.976 x 10 1.153 x 10
12I10 10 11

c 2.079 x 10 3.754 x 1010 1.153 x 10
13 11 001

c33  6.110 x 10 4.602 x 1010 2.691 x 10

10 10 10

c44 1.658 x 10 1.562 x 10 7.690 x 10

I -c 1 1.678 x 10 3.472 x 10 7.690 x 10
(11-12).60x0

I
I
I
I

I

I
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Figure 4.1: Magnesium, V'-.25
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Figure 4.2: Magnesum, V-..50
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Figure 4.5: Magnesiu, f'-=.25

-LO

Figure 4.6: lMgnesium, f'-.50
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I Figure 4.7: Cadimiu, f '-.25
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I Figure 4.8: Cadmiu, f**.5o
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