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1. OVERVIEW

This  r epor t  covers  work p e r f o r m e d  in the per iod  October 15,

1977 t h rough  April 15, 1978 on the  c o n t r a c t  to s tudy  A R P A N E T

r o u t i n g  a l g o r i t h m  improvemen t s.  Our progress to date  is repor ted

in six main sections which follow.

Some of the c o n c l u s i o n s  reached to date in the s tudy  are

summarized below for each of these sections (figures in

parentheses denote the pertinent section number):

Analysis of Present ARPANET Performance (2)

—— The change made to the ARPANET causing it to drop

packets which have been unsuccessfully retransmitted 32

times has greatly reduced the number of network

disturbances (2.1).

—— There are significant problems with the present

protocols in that lines can be declared up in one

direction for long periods of time (2.2).

—— We have discovered several classes of routing failures

that cause packets to loop between two or more IMPs , and

have identified the causes of these problem s (2.3).

r 
1
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—— We have performed extensive measurem ents of network

delay and discovered that i t  is extremely variable.

This indicates that routing algorithms which measure

instantaneous delay are inappropriate for the ARPANET.

Furthermore , periodic routing calculations and updates

in the ARPANET are contributing factors to the

variability in delay (2.14).

—— A new “snapshot” measurement package has been developed

as a tool for monitoring network performance , especially

at the time of some transient phenomena such as topology

changes , packet loops , etc . (2.5). - .

Line Up/Down Protocols (3) 4

—— A description of the existing line up/down procedures

and an explanation of observed problems is given (3.2).

—— A set of goals is suggested for handling lines with -T
acceptable quality and unacceptable quality in order to i
insure that variations in line quality will not degrade

network performance (3.3).

—— A consecutive counter for bringing a line up and the

criterion of missing 3 within the last n test messages

for bringing a line down are shown to be adequate for

the goals suggested (3.14).

2
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—— These procedures do not completely eliminate the

possibility of lines being declared up in one direction.

A new state will be added to the line up/down protocol

to remove a known cause of netw or k con ges tion (3 .5 ).

Measurement of Network Delay (14 )

—— It is important to measure network delays directly

rather than to es timate them indi rect ly b y ot her netw or k

par ameters ( 1 4 . 1 ) .

—— We experimented with various means for smoothing the

measure d dela y values.  An average over t he last t ime

period is more appropriate than a median type of

smoothing algorithm (14.3).

—— There is a s t ron g nee d for  cont inue d m e a s u r e m e n t of

delay and re— evaluation of smoothing functions after

implementing any new algorithm since the behavior of

network delay is strongly influenced by the type of

routing algorithm employed (4.11 , 4 . 5 ).

Im provements to t he Current ARPANET Rout ing Al gor it hm (5 )

—— The ARPANET rout ing al gor it hm can be mo di f ied to use

event—driven updating which leads to significant

improvements in performance. However , there are still

• som e difficulties with this approach (5.1).

1.1 
3

I
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—— The current routing algorithm determines reachability

very slowly and uses too much bandwidth in doing so.

This can be improved somewhat but the basic problem

rests with using a path—based routing algorithm relying

on hop counts and timers to determine whether nodes are

rea chab le. Since this is an essent ial feature of an y
- -S

ARPANET — li ke algorithm , we were led to consi der other

types of procedures (5.2).

—— Hold—down can be replaced with a less heuristic form of

loop suppression . This could improve performance

without significantly increasing cost (5.3).

A New Rout ing Algorithm——Shortest Path First (6)

—— We have demonstrate d that it is pra ct ic al to imp lement a

separate and independent shortest path calculation in

each of the IMPs in the ARPANET as oppose d to the

present distributed computation (6.1 , 6.2).

—— Such an algor ithm can be desi gned to be very eff ic ient

in spac e and time , us ing as little as one or two

milliseconds of’ CPU time , on the aver age , to perform an

ind iv idual upd ate when the calculat ion is performe d

incrementally (6.3) .

1;
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—— Efficient and reliable updating procedures can be

developed so that an incremental shortest path algorithm

can be performed on an event—driven basis (6.11).

—— The incremental shortest path algorithm has significant

adv anta ges over the present ARPANET algor ithm in terms

of e f f icien cy ,  reliability, loop freedom and speed of

adaptation (6.5).

—— We will continue to investigate the SPF algorithm as a

candidate for eventual installation into the ARPANET

( 6 . 6 ) .

Message  A d d r e s s i n g  Modes (7)

—— A multi—destination addressing technique is proposed for

significantly reducing the number of packet hops

required for transmission of a multi—destination message

compared to that required for separately—addressed

messages (7).

—— Installation of such a mechanism in the ARPANET will be

easier for group addressed messa ges than for messages

e x p l i c i t l y  a d d r e s s e d  to m u l t i p l e  destinat ions (7).

—— Mult i—dest inat ion addressing and multiple homing of

hosts are mechanism s which will be installed in the

5
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ARPANET for d at a g r a m  t r a f f i c  but probably not for

virtual circuit t raf f ic  due to the complexities involved

in adapting the protocol to multiple sources and

destinations (7) .

— i

i

I

6
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2. CURRENT STATUS OF ARPANET ROUTING

This section describes the current status of routing and

related topics in the ARPANET. Section 2 .1 is a brief summary of

the results of a two—m onth study of routing problem s which BBN

performed for DCA in the s ummer of 1977 (see BBN Report 3641 ) .

Sections 2.2 and 2. 3 describe some problem s which w ere noted

during that study, but not resolved at that t ime. Some of these

problems have been subsequently eliminated; others will be

eliminated in the next few months. Section 2. 14 descr ibes some of

the character is t ics  of s tore—and —forward  delay in the ARPANET ,

and discusses the ways in which these delays are related to

various character is t ics of the current routing algorithm .

Section 2. 5 describes a measurement package which we developed

especial ly for monitoring the performance of routing.

2.1 Summary of Prev ious Wor k on Rout ing and Con gest ion

In late 1976 and early 1977 the ARPANET was subject to a

number of disturbances which made it virtually unusable for short

L. periods of time. These disturbances often occurred severa l  t imes

a week , leading to a serious degradation in the performance of

- - the network.  By using the measurement package descr ibed in

Section 2. 5 , we were able to determine that the disturbances had

the following etiology. First , some IMP woul d become congeste d ;

I-

7
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t h a t  is , it was often forced to refuse packets from its neighbors

because it had no buffering avai lable. Then the congestion would

spread , affect ing a large portion of the network. Finally, m any

IMPs  would  d e c l a r e  t h e i r  l i n e s  to be down , causing the network to

pa rtition. This caused many IMPs to break their connections to

each other. As a result , IMPs  wou ld  d i s c a r d  p a c k e t s  d e s t i n e d  for

the  now u n r e a c h a b l e  IMPs , and this cleared up the congestion .

A f t e r  s eve ra l  m i n u t e s , normal network operation was resumed .

Thus each disturbance had two components: the start of

c o n g e s t i o n, and the spreading of that congestion . The re are many

situations which may cause some IMP to be congested ; two very

important causes were found to be line up/down mismatches j
(discussed in Section 2 .2)  and routing loops (discussed in

Section 2. 3) .  It is easy to see why routing loops can cause

congestion . Packets caught in a loop are stuck in the network 
-~~~

for an arbitrarily long period of time , thereby wasting buffer

space and reducing the network capac i ty .  Furthermore , i f  p a c k e t s

are looping between a pair of IMPs , a sort of lock—u p can occur ,

w i t h  each IMP f i l l e d  w i t h  packets fo r the other . This makes the

line between them useless.

The two major reasons for the spread of congestion are

related to ( 1) the perform ance of the routing algorith-n , and (2 ) 
- 1

the the IMP—IMP protocol . The problem with the routing algorithm

8
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is that it is both u n a b l e  to prevent congest ion f rom a r is i ng , and

unab le  to detect the presence of conges t ion  once it e x i s t s .

These failings have to do largely ( tho ugh not exclusively)  w ith

the a l g o r i t h m’ s method of m e a s u r i n g  d e l a y  by t a k i n g  i n s t a n t a n eo u s

samples of the queue length . As is shown in Section 2. 14 ,

instantaneous samples of the queue length are poorly correlated

with expected delay. In addition , the  q u e u e  l e n g t h s  h a v e  a

relatively small dyn amic range , while delay does not. Section 14

discusses better ways of measur ing the delay. However , even w ith

b e t t e r  d e l a y  m e a s u r e s, the routing algorithm would still react

poorly to congestion , since it is slow to react to any change in

the network .  This issue is discussed further in Section 5.

The problem with the IMP—IMP protocol was that when an IMP

became congested and had no space to buffer any more packets , it

would refuse to acknowledge packets sent to it by its neighbors.

The n e i g h b o r s  wou ld  t r y  to retransm it suc h packets up to 600

times (over a period of 75 approximately seconds) , after which

the line over which they were being transmitted would be declared

down . Unfortunately, these procedures only made the congestion

worse.  Congestion arises when the demand for buffering resources

exceeds the buffer supply. When an IMP becomes congested its

neighbors wo uld dedicate buffers to a single packet for up to 75

seconds , instead of the more usual few mil l iseconds. This

9
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greatly increased the demand on buffering resources in the

ne ighbors , causing the congestion to spread to them .

Furthermore , art if ic ially declar ing a good line to be unusab le

only serves to further deplete netwo rk resources without

decreasing the demand on them .

Ex perimentation showed that the precise value of the

retransm ission limit is not too significant——altering it does

change the character istics of the di stur bances , but does not

eliminate them . The only effective way we found to prevent the

sprea d of congest ion was to re duce the deman d on netwo rk

resources by discarding packets. Currently , the network w ill

d iscar d any oacket that is retransm ite d 32 t imes (over an

interval of 14 seconds) . Over the last six months , ex per ience has

shown this procedure to be successful in preventing the spread of - I

congestion .

2.2 Line Up/Down Mismatches —~~~

It is presently possible for two IMPs which are connected by 
- -

a particular line to disagree as to the state of the line , w i t h

one of the IMPs declar ing it up and the other declaring it down .

The presence of such a l i n e  u p / d o w n  m i s m a t c h  can hav e an

ex t r e m e l y  d e l e t e r i o u s  e f f e c t  on n e t w o r k  p e r f o r m a n c e  s ince  the

IMP—IMP protocol does not operate properly on a mismatched line .

10
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The IMP which has decided that the line is up will continue to

transmit packets over it , bu t  the  o the r  I M P  does no t  r e t u r n

acknowledgments for those packets.  This can cause the packets to

be retransmited up to the maximum number of times , after which

they are discarded from the network.  Thus mismatc hes are a major

source of network congestion and packet loss.

We have observed mismatches happening frequently (several

times a week ) and lasting for periods as long as seven hours

(though several minutes is more typical). Network performance

would be significantly improved if mismatches were eliminated by

changing the line up/down protocols to prevent one IMP from

declaring a line up when the adjacent IMP does not. Section 3

d es cr ibes a metho d for ach iev ing this goal.

r 11
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2.3 Loops in ARPANET Routing

Th is section descr ib es loo p ing problems that have been

observed in the ARPANET. The problem described in Section 2.3.1

was resolved by a minor modification ; the problem s described in

Sections 2.3.2 and 2.3.3 cannot be eliminated without making

major changes to the routing algorithm (see Section 5).

2.3.1 Routing to Singly—Connected IMPs - .

We recently di scovere d a kind of rout ing loop wh ich can .1

cause packets to be routed to singly—connected nodes by mistake . j

Suppose there are two i n d e p e n d e n t  p a t h s  f r o m  IMP A to IMP X , and

that these paths are approximately equidistant in terms of delay.

Let B and C be the two neighbors of A which are the “n e x t  hops”

on these  two p a t h s , respectively. Let S be a third neighbor of A

which is not on a reasonable path from A to X .  S may be a

singly—connected node , l i k e  the IMP at H a w a i i , or i t  m a y  h a v e

other neighbors. What is important is that S’s best path to X be

v ia A.

Now suppose that A is routing t raf f ic  to X via B. Let d be

the delay that A sees to X via B. Consider the following

sequence  of e v e n t s :

12
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t.
1. At tO , A sen d s rout in g to S, reporting that the

delay to X is d .

2. At t i , A rece ives an d processe s rout ing from B. As

a resu lt , A now sees a delay of d+5 to X (via B).

Since the increas e in delay is only 5 , A does not

hold down .

3. At t2 , A rece ives and processes routing from C. As

a result , A now sees a delay of d÷4 to X via C.

Since the delay via B is d+5 , A sw itches paths , so

that traffic to X is now routed via C.

4. At t3, A re ce ives and processes rout ing from C

again. (Note that C is sending routing more

frequently than S is.) As a result , A now sees a

delay of d+10 to X via C. Since the increase in

delay is only 6, A does not hold down .

5. At t14 , A rece ives (finally) and proc esses rout ing

from S. Since the routing message from S is based

on the last rout ing messa ge that A sent to 5, back

when the delay to X was only d , A now sees dela y to

X v ia S of d+8. Since the delay to X via C is d+10 ,

A sw i tches paths , routin g traffic to X via S. Since

S is , ex hypothesi , routing t ra f f ic  to X v ia A , a

loop has formed .

13
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Between the  t i m e  A s ends  r o u t i n g  to 5 , and the time it gets

routing back , the delay A sees to X has increased from d to d+ 1O.

However , at the time A receives routing from 5, the increase in

delay on its current best path (v ia C) has only increase d by 6 ,

from d+14 to d+1O . While the IMP accumulates increases in delay

for a per iod of two t icks , it only accumulates increases on its

current best path. When it switches paths , it simply throws away

all information about increases in delay on the previous path .

As shown above , This can cause it to fa il to hold down when it

should , thereby permitting loops .

The solution is that an IMP should hold down when its delay

to a dest inat ion increases by 8 dur ing a per iod of two tick s ,

even if that increase was part ially along one pat h and part ia lly

along another . Thi s modi f icat ion has been ma de , and this type of

loop has not been observed any more.

2.3.2 The Spread of Routing Loops

Anot her kind of rout ing fai lure has been note d in the

network. It begins when a pair of neighboring IMPs report that

packets to a particular destination are looping between them .

Shortly thereafter , other neighbors of this pair of IMPs report - I

looping packets to that sam e destination. Then neighbors of the - j
neighbors of the or iginal pair of IMPs report looping packets to

U
1-4

-5-- -—-. - - 5.-- -5—— - - —-.. ~~..‘
. — - - - - 5-5 - -



— - 5-

~

- 5- -- 
- -

- j5-r— - - . —- - - - .
~~~~~~~~

.- 
. .• - - — -. . 5- .

Report No. 3803 Bolt Beranek and Newman Inc.

that sam e destination. Then ne ighbors  of the neighbors of the

neighbors.. .etc. This phenomenon has been observed to spread

qu ite far , with as many as 314 different IMPs reporting looping

packets to the same destination . Eventually , routing stabilizes

and the reports cease. This phenomenon is explained below and

illustrated in Figures 2—1 and 2—2.

Let A and B be a pair of neighboring IMPs. Let X be a third

IMP such that there is at least one path from A to X , and a

second path from B to X which is independent of the f irst , and

approximately equidistant in terms of delay. Whenever this is

the case , it is possi b le for packets to X to loop between A and

B. That  is , it is possible that A will decide its best path to X

is v i a  B , and B will decide its best path to X is via A.  Let C

be A’ s neighbor on i ts path to X , and 1 D be B’s ne ighbor on its

path to X (see Figure 2— 1)  and consider the following sequence of

events:

1. At tO , A ’ s delay to X via C is d , and B’ s delay to X via

D is d. A and B send routing to each other .

2. At t i , A and B get rout ing from C and D , respectively.

As a result , A now has a delay to X v i a  C of d+5, and B

has a delay to X via D of d+5.

15

— - - - -~~~~~~ ---5 .5-- -~~~ ---.~~~~ --5— - - - 5  -- 



Report No. 3803 Bolt Beranek and Newman Inc.

3. At t 2 , A and B receive from each other the routing that

they sent to each other at tO. As a result , A now has  a

delay to X via B of d+Lt. Since its delay to X v ia C is

d+5 , A switches paths. Similarly , B now has a delay to

X v i a  A of d+14. Since its delay to X via D is d+5 , B

switches paths. At this point , a loo p has forme d

between A and B.

It is obvious that when such a loop forms , A and  B w i l l

enter hold—down as soon as they excha nge routing . In fact , they

will re— enter hold—down every time they exchange routing, since

the delay each sees to X will increase by 8 with each routing

update. Since A and B are bound to exchange routing at least

once before the hold—down timer expires , and since they re—ent er

hold—down whenever they exchange routing, t h e y  w i l l  n e v e r  l e a v e  j
hold—down . Or rather , they will never leave hold—down unless

some special action is taken. And as long as the situation

p e r s i s t s, no packet will ever be able to get from A or B to X.

To prevent this situation from persisting, the following

strategy is presently used : If A receives a packet for X from B,

then since A ’ s route is via B , A simply comes out of hold—down

prematurely. Of course , coming out of hold—down does not break

the loop. Whether the loop gets broken depends on which of A ’ s

neighbors is the next to send it routing . There are two cases to

16
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cons ider: e ither A ’ s next rout ing update comes from B , or else

i t  comes f r o m  some ‘ other neighbor of A (call it E) .  In the

former case , the loop is not  b roken , and A just goes back into

hold—down . The latter case has two sub—cases: either A switches

i t s  p a t h  to X f rom B to E , or it does not . Only in the former

case (wh ich is by no means the inev ita b le case ) is the or ig inal

loop broken .

Let us suppose then that A sw i tches i ts best path to X from

B to E , thereby breaking the loop between A and B. Now we have

two more cases to consider. Either E’s path to X is via A , or it

is not . In the latter case , ever ything is fine. But in the

fo rmer  case , there is more trouble. Now there is a loop between

A and E (see Figure 2 — 2 ) The same process cou ld potent ially be

repeate d indef inite ly unt il the phenomenon sprea d s to ever y IMP

in the network. Thus the phenomenon of looping packets to a

g iven dest inat ion can sprea d awa y from the locat ion of the

or iginal loop.

Clearly, the extent of the sprea d is di rect ly pro port ional

to the number of IMPs wh ich are di rect ing the ir t ra f f ic to X

I 
- 

towar ds the area of the original loop. If there is a loop

between A and B , and every other IMP in the networ k is di rect ing
p 

i ts t raf f ic for X to either A or B, then the phenomenon w ill

spread far ; if no other IMP is directing its traffic for X to A

17
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or B , no spreading will occur . When a loop forms between A and

B , the dela y that these two nodes see to X wi ll be constantly

increasing. Therefore , most of the t ime when such a loop forms ,

most traff ic gets di recte d away from the loop , and the loop does

not spread . However , there are certain unusual conditions which

can cause man y other nodes in the network to di rect the ir t raf f ic

towards the loop. For instance , suppose one or more of the li nes

along a real path to the destination X go down . Then , for  a

per iod of t ime , man y nodes will see inf inite delay to X .

However , the two nodes between whir’h there is a loop to X will

not see inf inite delay. They wi ll see only a constantly

increasing finite delay. This will cause many nodes to direct .

their traffic for X toward the loop, and thus will cause the loo p

to spread. Since this in turn causes many IMPs to come out of

hold—down prematurely, the ult imate effect is that the ne twor k is

forced to adjust to some “bad news”—— an increase in

delay——without the benefit of hold—down . As is well—known , this

can take a long time.

This phenomenon has been observed frequertly in the network.

It usually starts in the Washington area , with the first loop

either between NBS and NSA or NBS and PENT or NBS and ABER. The

dest inat ion of the looping pac kets is usually (though not

always). one or more of the European IMPs , and Euro pe is usua lly

18
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(though not always) unreachab le while the phenomenon is

occurring.

While the current routing algorithm may be more prone to

form ing loops than som e ot her algor ithms , it is doubtful that

there can be an y rout ing algorithm whi ch can be guarantee d to be

loop— free in actual operation . Thus some scheme for detecting

and breaking loops will always be needed.
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2. 3.3 Loops Due to Different Updating Rates

Rout ing upd ate messa ges are transmitte d periodi cal ly by ea ch

IMP. However , the phasing among IMPs is essentially random . As

a result , the same information may travel much more rapidly along

one path than along another . This can result in a certain kind

of loo p , as shown in Figure 2—3 . Suppose that all IMPs are

sen di ng t raf f ic to IMP X along the routes indicate d in the

figure. Suppose further that the line to IMP X goes down , and

that the information about the line failure travels much more

rapidly in the counter—clockwise direction than in the clockwise

di rect ion. Then several of the nodes on the upper pa rt of the

ring will have time to change their routing so that they send to

X v ia A , before A determines that it has no path to X.

Eventu ally, A will decide that it has no path , and will pass this

information around clockwise. This will cause the nodes closest

to A to real ize they have no path to X . However , no des f a r ther

from A have now begun to route to X via A. It is as if the

correct information (“ no path to X”) is chasing the incorrect

(“path to X via A”) around in the clockwise direction , but is

never able to overtake it.

Whil e loops of this sort are certa inly poss ib le , it is not

known how often they occur. No fully satisfactory way of

eliminating them has been devised .
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2.’4 Packet Delays in the ARPANET

One very important goal of the ARPANET rout ing algor ithm is

to ensure that pac kets travel over paths wh ich minimi ze networ k

delay. In order to determine the delay on a particular path , the

rout ing algor ithm must in some way add up the delays whi ch a

packet would experience on each “hop” of that path. Thi s implies

that the rout ing algor ithm must have some way of measur ing the

delay at each hop. This aspect of the routing algorithm , though
- 

often neg lected , is quite crucial , for  no rou t ing al gor i thm can

be more accurate than its delay measurement portion—— an algorithm

with poor dela y measurement fac ilit ies w ill perform poorly, no

matter how so phi st ic ate d its other fea tures are.

W ith an eye tow ard s evaluat ing and improv ing the ARPANET

routing algorithm ’s delay measurement fa cil it ies , we have been —

gather ing data from the net on the delay a packet ex per iences as

it passes through an IMP. (Our data gathering methodology is

described in Appendix 1.) This section reports on that data.

When we plotted store—and— forward delay and its various

com ponents aga inst t ime , we found that data gathered from

di fferent IMPs at di fferent t imes and under di fferent con di t ions

were all similar in important respects. This leads us to believe

that our data is not aty pi cal , and can be used to dr aw

214
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con clusions about store—and— forward delays in the AR PANET

general ly . Of course , only a small amount of the data we ’ve

gathered can be reproduced here. In all of the plots reproduced

here , packet delay (in 10’ s of milliseconds) is on the y— axis ,

and packet arrival time (in 10’ s of seconds) is on the x— axis.

Figures 2—~4 , 2—5 , and 2— 6 show the processing delay , mo d em

queue ing delay, and transm iss ion delay res pect ively for pac kets

on the line between ISI22 and 13152. The most interesting thing

about the plots is the extr eme , indee d extraor di nary, variability

of the packet delays. This variability occurs in both the

processing delay and the modem queueing delay. In fact , the

extreme variability of the delays is the single most consistent

property of the data we have gathered—— it is present in all

samples. This variability is not what one would expect a priori.

Rat her , one might expect consistently high delay during periods

of high load , and consistently low delay under periods of low

load. So it is worthwhile to inquire into the reasons for the

variability.

One can never totally rule out the poss ibility that som e

r e s u l t  is an a r t i fa ct e ither  of the d ata gather in g or d a ta

analysis techniques. One hypothesis we considered is the

follow ing . “Packets may be high priority or low priority. If

high prior it y packets have cons istently low delay, an d i f low

25
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priority packets have consistently high delay, and if both kinds
- - 

of packets are freely intermixed in the sample , then of course

the delay appears to be very variable. But that variability is

not real; it is a result of improper analysis. ” Of course , this

hypothes is coul d not ex pl a in the var iability in the process ing

delay, but only in the modem queueing delay. In order to test

this hypothesis we simply plotted the delay for high priority

packets separatel y from the delay for low pr ior it y pac kets.  (See

Figures 2—7 and 2—8 .) The extreme variability is present in both

S plots , and hence the hypothesis is false.

There are several possible explanations for the variability.

.
~~

- The current way of doing routing may contribute variability to

-- both the processing delay and the modem queueing delay. The

processor may be interrupted as often as 32 times per second in

order to perform the rather lengthy routing computation (15—20

ms . ). Thi s can cause the process ing delay for packets to v ary.

Similar ly, out put on any given line may be interrup te d as often

as 8 t imes per secon d in or der to sen d a rout ing messa ge , which

takes about 23 ms. This can cause the modem queueing delay for

packets to vary.

It is also poss ib le tha t the var iabili ty is a na tural

characteristic of the traffic pattern . Perhaps traffic enters

the IMP in bursts , so that queues fill up an d then empty out

29
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before any new t raf f ic arr ives.  Or it ma y be due to v ar ious

latenc ies due to the relat ive t im ings and pr ior it ies of the IMP

rout ines. Or it may have to do with unforeseen (and unknown)

throughput restrictions imposed by the End—End protocol on the

IMP—IMP protocol . It ma y also be due to measuring every tenth

packet only, as described in Appendix 1 .

In or der to get some gras p on all this , we conducted the

third of the experiments described in Appendix 1 , artificially

created heavy load with reduced frequency routing. If we see

less variability with reduced frequency routing than with routing

at the or di nary fre quency, we may conclude that at least some of

the variability is due to the high frequency with which routing

computations are performed and routing updates sent. While the

d ata from thi s run implicat e rout ing as a major source of t he

t rou ble , they also suggest that it is not the sole sour ce.

Figure 2—9 shows the processing delay during the experiment.

The artificially created heavy load is roughly from 250 seconds

to 550 seconds. During the periods when we were not arti1~~cially - r

creating load , the var iabili ty in the dela y was muc h less than we

hav e seen previously. During the period of induced load , the

delay is more var iab le , but st ill less than what was or ig inally

observed . Therefore , it seem s that we can attr ibute at least A
some of the var iabil ity in the process ing delay to the high

32
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frequency with which routing is performed . It is possible that

the rem aining var iability is also due to rout ing , whi ch even at

its minimum rate is quite frequent.

Figure 2— 10 shows the modem queueing delay of high priority

packets during the experiment. Figure 2— 11 shows the length of

the high priority queue. Note that during the periods when we

were not inducing heavy load , the delay of the high priority

packets was cons istent ly low , with only a few spikes , much fewer - -
than with ordinary routing. These spikes do not correlate - with

the queue lengt h , hence they must be due to interference by

routing messages. The delay of high priority packets is more

variable during the period of induced load . This is expected ,

however , since high pr ior ity packets would often have to wa it if

an artificially generated low— priority full length packet was

alrea d y in transm iss ion. These data furn ish ev id ence that at

least some of the var iability of the mo dem queue ing delay is due

to the fact that packets often have to wait for routing messages

to be transmitted.

Figure 2—1 2 shows the modem queueing delay of the low

priority packets. Figure 2—1 3 shows the length of the low

priority queue. Note that even under induced load , the  e x t r e m e

variabil i ty of the delay remains. Further , the delay is highly

correlated with variat ions in the queue length. Furthermore ,

- _ _ _ _ _  _ _-- _ _ _ _
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even though we have induced an extremely high load , the queue

len gth falls periodically to zero. We do not yet understand this

effect. No doubt the large amounts of processor bandwidth and

transm iss ion t ime re quired even by reduced rout ing make some

contribut ion , but it seems clear that other fa ctors are invo lve d

also . Discovering the cause may require considerable

investigation.

Another interest ing point reveale d by Figures 2—12 and 2—13

is that instantaneous sam p les of the queue length show little

correlat ion with the actual delay. Since the current ARPANET

routing uses such an estimation technique , it is not

systematically adaptive with respect to changes in delay. Its

delay measurement facility is inadequate to the task of finding

the least— delay path. In fact , no instantaneous measure of de lay

can be adequate for the pur pose of pre dic t ing future delay , if

the delay is as variable as we have seen . Therefore , a good

rout ing algor i thm will have to include an algor i thm for smoot hing

the delay data over time . This is discussed in more detail in

Section 14.

Perha ps the ma in thing to be learne d from this data is the

important po int that the rout ing algor ithm itself may af fect  the

delays through each IMP in hard—to— foresee ways. As has been

pointed out , any routing algor ithm must include a delay
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measurement fac ility, and the accura cy of the algor it hm is

constra ined by the accur acy of this facil it y . The current

algorithm , by contr ibuting a great deal of var iability to the

delay, makes it difficult to obtain any meaningful predictive

measure of delay. Furthermore , because of the way the current

routing algorithm influences delays , it is di ff icult to use data

gathered at present to predict the behavior of different routing

algorithms. This means that the task of gathering delay data

must cont inue after a new algor ithm is implemented .
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2.5 Snapshot Measurement Package

2.5.1 Introduction

The snap shot measurement package , from now on called the

SNAP package or sim ply the package , is a set of routines that can

be loaded into an IMP to measure and report key variables and

events. It was designed to obtain data about the performance of

routing during periods of stress (congestion) and is expected to

be used in the anal ysis of new routing algorithms during the next

few years.

It is always difficult to obtain measurements in a network ,

especially when congestion is present . For one thing , in or der

to understan d the cause of the congest ion , we must  gat her

information about what was happening in the network immediately

prior to the formation of the congestion. Since we do not know

in advance when congestion will arise , some form of cont inua l

measurem ent is nec ess ar y. Second , b y its v e r y  n a t u r e , congestion

ma kes it undesi ra b le to tr ansmit measurement d ata at the t ime of

the event being recorded. The network is clogged and adding new

packets  f il le d with me asuremen t da ta woul d mere ly increase  the

congest ion and contaminate the results. Thus it is necessary for

the package to remember its data , waiting patiently until the

congest ion sub side s an d the netwo rk is back to normal before

send ing the data to a central collection point for analysis.
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The mec han i sm that was develo ped to meet these re quirements

of cont inual generat ion and storage of data employ s a r ing of

measurement buffers. Routines were written to record the values

of key variables and queues in the IMP. The main routine runs at

a f ixe d interva l , ca pturing the state of the ma chine , and

recor ding notable events that occurre d dur ing the prev ious

interval . Each time i t  runs , it fills the next buffer in the

ring with the data it has gathered. The buffer full of

measurement data is known as a snapshot . When the package

rea ches the beginning of the ring , it overwri tes the data alrea d y

in that buffer , data which by now is presuma bly too old to be of

interest. Thus , if the package has N recor di ng buffers , it can

remember the state of the IMP for the last N intervals.

When the network is under stress , certa in symptoms become

evi dent to the IMP: lines may go down , packets may be discarded

or reroute d . The occurren ce of one of these events can be use d

to ha lt the recor di n g pro cess , thereby freez ing the last

snapshots taken. The package will stay in this state until the

data is collected and the package is reset . Events that freeze

the recor di ng process are calle d tr iggering events or s imply

triggers.

Sometimes several im portant events may occur in rapid

succession . It is desirable to have data about each of these
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events , yet it may not be possible to reset the package between

them . Therefore , the snapshot mechanism has multiple sets of

data bu f f e r s , each one capable of recor di ng informat ion about one

tr igger . When the trigger fires , t he sna pshots in t he presen t

set of buffers are frozen and re cor ding is starte d in a new se t

of buffers. This process cont inues unt il all sets of buff ers are

used. Since each set of buffers records the-events leading up to

one tr igg er , the num ber of sets is usually referred to as the

n umber of triggers. Thus a particul ar implementation of the

package might have three triggers of two snapshots each—— the

snapshot immediately preceding the triggering event and the

snapshot immediately following it. Our experience has been that

the right combination of triggers and snapshots depends upon the

particular phenomenon being studied .

2.5.2 Measurement Routines

There are four com ponents of the measurement package: the

SNAP loo p , the mar ki n g rou t ines , the triggers and a patch to the

IMP program . The main one , the SNAP loo p , is called by the I M P ’ s

slow timeout routine and fills a snapshot buffer with data that

it computes itself or with data which has been recorded by the

mark ing routines. It also manages the snapshot buffers ,

reco gnizing triggers and freezing a set of snapshots. The

mar king routines are small pieces of code that set flags or
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increment counters to indi cate the occurrence of a part icular

event during the previous interval . Each piece is hooked into

the IMP program at the point where an action that is to be

recorded is initiated or discovered . The trigger routines are

mu ch like the marking routines in that they are short pieces of

code that are hooked into the IMP program at points where events

are recognized . However , rather than merel y mar king the

occurrence of an event , a tr igger routine sets the trigger flag

so the current set of snapshots are frozen after the next SNAP

run .

The SNAP routine is called at the end of every slow timeout

run (i.e., once every 6140 ms.) . It first checks to see if it has

any measurement buffers rem aining , and if not , it r e t u r n s

immediately. Next , SNAP checks to see whether i t  is time to

re cor d anot her sna pshot . Currently, SNAP onl y re cor d s d ata every r
fifth time it is called (i.e., once every 3.2 seconds). If it is 

- -

not yet t ime for the next sample , control is returned to the IMP.

‘)therwise , the data gathering process begins. Various time

measures are computed first. Next , an attem pt is made to account

for all the IMP ’s buffers. Following this , SNAP scans each line

and records various data about its state.

The f inal act ion of the SNAP code is to check whether any

tr iggering events happened during the last interval. If not ,
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SNAP returns contro l to the IMP. If a tr igger ing event has

oc curre d , the data is frozen so that it can be collected. With

the new data properly recorded and frozen , the SNAP routine

returns to the IMP. 
-

The mark ing rout ines re cor d as ynchronous events for the SNAP

rout ine , thereby ena blin g it to see whet her some even t  ha s

occurre d since it last r an. (Note that the events marke d here

are not necessar ily triggering events.) The trigger routines

mon itor event s which are indi cat ive of some sort of di stur bance

or mal func tion; the pur pose of the tr igger is to fr ee ze the

latest set of sna pshots. The occurren ce of a tr igg er ing event

causes a messa ge to app ear on the NC C log , thereby alerting the

network controllers to collect the snapshots. Many network

pro b lem s , especially those which involve routing , invo lve

interactions between IMPs. Therefore , the package has a

mec han ism to ind uce tr iggers in two IMPs at app rox imate ly the

sam e time by sending a special packet to the adjacent IMP.

2.5.3 Conclusions

The SNAP package has already proved its usefulness , and we

ex pect to cont inue t he evolut ion of t hi s flex ible , real—time data

gathering mechanism . One clear conclusion is that a modular

app roach has  been ver y hel p f u l  here , since the events be ing
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monitored and the data being gathered are subject to the

continual change as analysis and development proceed .

3. LINE UP/DOWN PROTOCOL

3 .1 Introduction

As note d in Sect ion 2, we hav e observed a number of line

mismatches , some of them last ing for consi dera b le lengths of

time. Therefore , some analysis of the present line—up counter

was carried out. This analysis indicated some rather severe

weaknesses , and in the course of considering alternatives , it

became clear that the line—down counter could also be improved .

This section first outlines present line up/down counters and the

d ifficulties inherent in these procedures. Then some general

goals are described and a new solution is proposed that will meet

the stated goals. This solution involves the use of new counters

and the addition of a new state to the line up/down protocol .

3.2 Existing Counters

Currently, lines ex change Hellos and I Hear d You ’s (IHYs).

The former are long packets (approximately 1100 bits) , whereas 
r

the latter are short (approximately 150 bits). Depending upon

line utilization , an IMP sends one to five Hellos per tick (6140

msec ). The IMP will get an IHY if (1) at least one Hello gets - r
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through w ithout error , and , (2) the IHY is received without

error . A line is b rought down i f an IMP misse s ~HYs in five

consecutive ticks. After some dead time (10 ticks) to insure

that the other sid e of the line is brought down , an up/down

counter is used to determine when to bring the line up. The

up/down counter is initialized to C —60 and then follows the

al gor i thm :

if (— 6O<C<O ) then
if (get IHY during interval) then (C<— C+1)else(C<— C— i) ;

if (—2140<C< — 6O)then
if (get IHY during interval) then (C<— —60)else(C<— C— i) ;

Finally, if C reaches _2LI O , the line hardware is reset and C is

reset to — 60.

There are sever al d raw bac ks to the present sc heme:

1. Poor lines are brought down too slowly. If the

probability p of missing an IHY is 0.2, then the

expected time to bring the line down (i.e., to m iss f ive

successive IHYs) is approximately 110 minutes. In fact ,

even a very poor line with p Q • II, will remain up for

an average of 1. 7 minutes.

2. Poor lines are brought up too quickly. Clearly, if the

pro babili ty of missing an IHY is less than 0 .5 , then the
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up/down counter will tend to count up toward zero. For

exam ple , if p 0.2, then the expected increment to the

counter is 0.6 during each tick , and the line w ill , on

the avera ge , come up in about 100 ticks (1 minute) .

3. Line mismatches can occur . The dif ferent lengths of the

Hello and IHY lead to an asymmetry that can cause line

mismatches if communications in one direct ion on a line

are not as rel iab le as commun icat ions in the oppos ite

direction . Consider the following situation : Line AB

and its assoc iate d har dware carr ies t raf f ic from node A

to node B; line BA carr ies t ra f f ic in the reverse

direction . Assume that line AB is perfect (no errors

occur) but  t hat l ine BA in t r o duces e r ro rs  su ch t ha t

Hellos are received in error with probability 0.5, but

IHY5 , about 1/6 the size , are damaged with probability

0.1. This would correspond for example to random bit

errors occurr ing with probability 0.0006. Then , s h o r t l y

a f t e r  both l ines are  b rough t  down , line AB will be

brought up again , but BA w ill rem a in down for a ver y

long period . Analogous situations can result in

shorter , but still undesirable mismatches .
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Figure 3—1 is a graphic illustration of the last point. The

horizontal and vert ical  axes correspond to random bi t e r ro r s , but

the same principle applies if these axes were labeled in terms of

packet errors. The different regions in the figure correspond to

different durations of line mismatches. For example , if both

lines have error probabilities less than 0.0001 , then both sides

will come up within about 10 ticks of each other . On the other

han d , if the error probability of each line i s app rox imate ly

.0003, then both lines will tend to come up, but they will be

mi sm atc hed for 50 or more t icks.

3.3 Goals

An ideal set of line up/down procedures would instantly

bring a line down when it becomes bad and would immediately bring

a line up again when it is restored to good health. Obviously,

such ideal goals cannot be met in pract ice.  The table below

summarize s the ideal goals and the sort of goals that we can

realistically expect to achieve. Ideally we would like to

specify very sharp transitions between the up and down states.

The particular “realistic ” entr ies in the ta bl e c an , of course ,

be modified , but the idea is (1) to bring poor lines down quickl y

and kee p th em down longer than the per iod over which a line is

usually bad ; and (2) to rarely bring a good line down but to

bring a good line up with reasonable speed .
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L i n e  Q u a l i t y

Nom inal Poor -

Bringing ideal: never ideal: instantly

Line Do wn realistic: realistic:
less than once/week within about 10 sec.

Br inging ideal: instantly ideal : never

Line Up real ist ic: real ist ic:
within about 1 m m .  less than once/hour

The problem now is to quant ify the terms “nominal line ” and

“poor l ine ” . It is best to divorce our criteria from line

characteristics and instead to relate them to desired network

pe r f o r m a n c e chara cter istics , v ia the packet error rate . For

exam ple , as the packet error rate increases , d elay inc reases an d

through put decreases . In addition , an increas ing fract ion of

control messa ges are also lost , further degrading performance.

Since the packets in the network are of di fferent si zes , it is

difficult to specify a single packet error rate that

characterizes a poor line . A reasonable criterion is therefore

to def ine a nom inal an d a poor line in terms of the errors

exper ienced by the packets used in the line up/down protocol

i tself.

With event—dr iven updating, routing messages alone cannot be

used in the up /down protocol . Instead , a special purpose packet
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must be exchanged periodically to allow nodes to determine line

s ta tus , and these packets should be small in order to reduc e the

impacts on line bandwidth and queueing delays. Since these

packets will be considerably smaller than the maximum packet

s i ze , and s ince packet error rate increases w ith packet s i ze , we

must be fairly conservative in specifying poor and nominal lines

in term s of the error rates of these packets. Furthermore , we

may choose to implement a two—way strategy on the line up/down

packets ; that is , we m ight define correct reception of a line

packet at node A only if (1) A receives a line packet from its

neighbor B during a given interval , and (2) B’ s packet indicates

that B had correctly received a packet from A during the previous

interval . A two—way strategy allows closer synchronization of

two ends of a line at a slight increase in complexity.

For illustrat ive pur poses below we w ill occ as ionally use the

values p 0.1 and p 0.001 as the packet error probabilities of

poor and of nominal lines respectively. The specific values used

in the f inal des ign w ill of course be chosen carefu ll y and on the

basis of the entire routing strategy that we develop .

3.11 Line Up/Down Counters

The type of counter we shall consider will be called a “k

out of n coun ter ” and , for conven ience , w ill be denoted b y (k ,n).
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This “counter ” is said to trigger if within any block of n or

f ewer  i n t e r v a l s, k events occur . For a line going down , an e v e n t

would be missing a packet , and thus the line would be brought

down if k packets were missed in n or fewe r intervals.  For a

line coming up, the appropriate event is receiving k packets in n

intervals. The (k ,n) counter is a fairly general type of counter

and is one that can be impl emented in a straightforward manner .

Another possibility would be to use a counter that counted

+1 if a certain event occurred and —A if the event did not occur .

Such a generalized up/down counter would trigger if some

threshold T were crossed . This counter is also easy to implement

and it is roughly equivalent to the (k ,n) counter in the sense

that we can choose values of A and T that give performance

similar to that of a particular (k ,n) counter . A minor drawback

of this generalized up/down counter is that it has a longer

memory than the (k ,n) counter. That is , the up/down counter can

t end  to c r eep  in one  direction and therefore might not truly

ref lect the most recent history of the line. On the other hand ,

the (k ,n) counter has a memory of exact ly  n intervals. For this

reason we shall consider only the (k ,n) counter .

The performance parameter of particular interest is the

expected number of intervals until the counter tr iggers. With a

li1t1e thought , it becomes apparent that this type of counter can
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be expressed in the form of some standard queueing theory

prob lem s , namely,

—— A single server queue with Poisson arr iva ls  and constant
server time equal to n units; what is the expected time
until the queue reaches a length of k?

—— k servers with Poisson arr ivals and constant server time
n ; what is the probability that the next arr ival will
be blocked ( i .e . ,  cannot be served immediately)?

Although these queueing theory problem s can be stated simply, i t

turns out that they are examples of some classic unsolved

problems. The dif f iculty lies in the constant server time.

Thus , we cannot expect to obtain a general solution to the (k ,n)

counter. Nevertheless , we have obtained a few useful analytic

results for some specific counters of interest . If additional

results were necessary ,  simple sim ulations were conducted .

3 . 11.1 Line Down Counter

Obviously, we cannot base the line down procedure on missing - -

a single packet since such an event occurs often enough that a

line would then be brought down too frequently. We shall

therefore consider the next simplest counter , a (2 ,n )  c o u n t e r ,

and determine whether such a counter is adequate for bringing a

line down .

Define

p Pr [line packet misse d during interval ]
q 1-p

I
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E(N) ex pecte d number of intervals for even t (line
UP or line DOWN )

Then , it can be shown that for a (2,n) coun te r

2-q~~~ (3-1)

E (N)2 p( 1—q

For small p , the above expression reduces to

1 P<< 1 (3—2)
E2(N) P

2
Ti~— 1 )

Th is relat ion can be derive d intuit ively,  since the probability

t h a t  a secon d packet is missed in one of the (n— i) intervals

follow ing a misse d packet , is approximately p (n— 1). Hence , the

expected interval until the occurrence of the event “m i s s

2—out—of— n” is ( 1/p ) ’ ( i/ p ( n~ i) ) .  This equation shows that even

if n can be chosen as small as 10 , and  i f  p 0.000 3 (optimist ic

for a nominal line) , t h e n  E2 ( N) < 10 6 , or abou t  one week  i f  each

interval is one tick (6 140 msec ) .  In other word s , a (2 ,ri) counter

will bring good lines down too often.

We shall therefore consider a ( 3 ,n) counter. First , some

simpl e calculations are given to just i fy the suitability of this

counter . An intuitive argument similar to the one used above ,

yields the expected number of intervals for bringing a line down

if p<<i:
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E (N) 
_______ 

(3—3)
P~ (n—1)(n—2)

If  p< 10 3
, then n<146 ensures that E

3
(N)>i0 6. Another quantity of

interest is the pro b ability that a line will go down within , sa y ,

the first m<n intervals after the line becomes bad . Since three

p a c k e t s  m u s t  be m i s s e d , the line will be brought down in exact l y

k intervals if the k—th packet is m.~ssed and if two of the first

( k — i )  packets are also missed . Hence

rn— i 
~ 2Pr [DOWN within m intervals] = k p

J
q

~~~~~ (3...4)
2

k=2

Th is ex p ress ion shows , for exam ple , that if p = O .i and n>20 ,

then with probability 0.32 the line will be b r o u g h t  down w i t h i n

20 i n t e r v a l s ;  s i m i l a r l y ,  if n>140, the line w ill be brought down

wi th in  40 i n t e r v a l s  w i th  probability 0.79.

More deta i led analysis of the (3 , n) counter is quite --
d i f f i c u l t, and t h e r e f o r e  s i m u l a t i o n s  were  p e r f o r m e d  in  o r d e r  to

obtai n specific quant i tat ive data.  The solid curves in Figure 
- -

3—2 show s imulat ion results for E
3
(N) as a funct ion of p fo r

several values of n; the curve for inf inite n is based upon the

theoret ical result , E3
(N):3/p; and the dashed curve represents

a(2 ,5) counter , as given by Eq. (3—i). If the design points are

p:0.i and p:0.OOi , then the (3, 40) counter just meets the
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criterion of bringing a good line down on average of onl y once

per week. However , the measure d stan dar d d ev iat ion of the number

of ticks to bring a line down is quite large , approximately equal

to the mean . A more conservat ive approach is therefore to use a

smaller value of n in or der to re duce the likel ihood of an

undesirable sequence of events , such as bringi ng a part icular

good line down several times in one week. The only penalty in

this app roach is a slight increase in the t ime to br ing a bad

line down , the following table illustrates such a trade—off:

E
3
(N)

n=140 n=20

p=0 .i 32

p=O .OO 1 1.5xi06 6.Ox i O6

Thus , for  these pa r a m e t e r s , a one—th ird increase in E
3
(N) at

p:0.i corresponds to a four—fold increase at p=O .OO 1. Note also

that a (3,n) counter responds faster to very bad lines (p=i) than

the ex isting counter .
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Simulat ion results , shown as solid curves , for (3,n) counters ‘
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-- 

3.14.2 Line Up Counter

First cons ider an (n ,n) counter (i.e., a consecutive

c o u n t e r .) The expected number of intervals until the occurrence

of a success—run of length n can be expressed in closed form , and

is given by

ni— q
En (N) (3—5)

pq

Here a “success ” is receiving a packet correctly (probability q).

Equation (3—5) is plotted in Figure 3—3 for E~ (N)<i0 3. In order

to ensure that with p:0.i , E (N)>5600 (once/hour with 640 rnsec

intervals), we must choose n> 61 . If, for example , n=6 i , t hen

with p=10 ’3, E(N)<63. Thus , there is a reasona b le ran ge of n

that will satisfy our goals for the line up counter .

It is also possible to use an (n— i ,n) counter to meet thes e

goals. However , it is clear from the goal for br ingi ng up poor

lines that such a counter must have a lar ger n than an (n ,n)

counter . Since the time to bring a good line up will thus be

increase d , and since there are no concomitant benefits , the (n ,n)

counter is preferable.

Ii 
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Ideal 

} / / J
z
W n=20

a

~~~~~Io _ na

—U —  _ _ _ _ _ _

•1 I

icr 3 10 2 iO” l
p: Pr [Packet Error ]

Figure 3—3
Performance of consecut ive line up counter
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3.5 READY State

A lthough the use of improved counters can significantl y

reduce the likel ihood of a line mismatch , they cannot eas ily

eliminate mismatches entirely. Therefore , a new state——the READY

state—— is being added to the line—com ing—up protocol. Rather

than alwa ys be ing e ither UP or DOWN , a line w ill be eit her UP ,

DOWN , or READY. The new state can be defined by its transitions:

1 . A line makes the transition from DOWN to READY when its

line up counter triggers.

2. A line makes the transition from READY to DOWN under the

same con di t iors as it makes the trans it ion from UP to

DOWN .

3. A l ine m a k e s  the  t r a n s i t i o n  f r o m  R E A D Y  to UP w h e n  i t

rece ives  a packet indicating that the IMP on the other

end of the line has declared the line to be non—DOWN

(i .e.  either READY or UP) .  Furthermore , when a line

makes this transit ion , a spec i a l  p a c k e t  is sen t  to

notify the neighbor that the line has been declared

non—DOWN . This ensures that the neighbor will have a

chance to bring the line up before receiving any data

packets .

6i
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Exce pt for the trans it ions in 2) and 3) above , a line in the

READY state is t reated as if it were DOWN .

The proposed protocol modification will prevent sub—standard

lines from corning up in one direction only. For normal lines , i t

may lengthen slightly the time it takes for the line to come up.

H o w e v e r , whereas it is important to keep poor lines from corning

up  in one d i r e c t i o n, there is no important reason to bring a good

line up in the shortest possible time .

.11

62



Report No. 3803 Bolt Beranek and Newman Inc.

3.6 Conclus ions

The pr inc ipal results of this sect ion are that

1. A (3,n) counter should be used to bring a line down .

2. A consecutive counter should be used to bring a line up.

3. A READY State ~an be used to eliminate line mismatches.

Equations (3—3) — (3—5) and Figures 3—2 — 3—14 can be used in the

final design , after the si zes , contents , and des ire d error rates

for the packets use d in the line procedures have been

established .

In addition to using a line—down counter , it may be

desirable for eac h IMP to measure the error rate of real tra ff ic ,

bringing the line down if the rate exceeds some threshold . Such

a procedur e would ensure that poor lines are brought down even if

for some reason the line protocol pac kets tend to be rece ive d

correct ly .

L 

63



Re port No. 3803 Bolt Beranek and Newman Inc.

‘ 4 .  DELAY MEASUREM ENT

14 .1 Better Measures of Network Delay

A c r u c i a l  i s sue  in the  d e s i g n  of a n y  r o u t i n g  a l g o r i t h m  is

the design of a facility to provide meaningful measures of delay.

Two p a r t i c u l a r  i s sues  a r e :

i . Making the measurements accurate

2. Making the measurements predictive (i .e. ,  good

est imates)

The key question is: how should the IMP estimate delay ?

There are two possibilities:

i . Measure the actual delay experienced by packets

2. Measure the factors determining this delay (line speed ,

packet length , l i n e  u t i l i z a t i o n, e tc .)  and estimate

d el a y

‘4 . i .i  Measuring Delay Directly

The measurement of end—to—end delay is complicated by the

fact that two IMPs cannot readily keep time synchronized between

them . An alternative , therefore , is for each IMP to measure

delay by t ime stam ping packets on rece pt ion and , just before

614
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t r a n s m ission , to calculate how long the packet had remaine d in to

that IMP. The next IMP could add in the speed of light delay and

the t r a n s m iss ion de lay  to th is delay  before  re pea t in g the same

process. Thus , total transmit delay can be accumulated . An

8— bit field could be added to the packet header to accumulate

delay from 0 to 6.5 seconds in units of 25 milliseconds.

Speed—of— light delay between IMPs can be measured by:

1 . Sav ing the t ime at wh ich a null pac ket with a gi ven

identifier is sent out;

2. Wait ing until that null is acked , and computing the time

i n t e r v a l;

3. Subtracting any other delays , such as tr ansm iss ion dela y

fo r  t h e  n u l l  and i t s  ack , and dividing the remainder by

2;

~4. Re— performing steps 1— 3 enough times (once a minute? 5

minutes?) to arr ive at a minimum value representing the

speed of light delay.

Al ternat ively,  we could assume 5 milliseconds for land lines an d

275 m i l l i s e c o n d s  for  s a t e l l i t e s, and we woul d be reasona b ly

close.
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A more real isti c app roa ch to com put ing total path dela y in

the context of a rout ing algor ithm for the ARPANET would be for

eac h IMP to com pute one—hop delays to each adjacent IMP , and to

use those as inputs for the routing update process. The routing

com putation would take these values and deliver total path

delays . An IMP can compute its own delay to send a packet to an

adjacent  IMP without assistance from the adjacent IMP as fol lows:

—— Just before transmission , calculate how long the packet

has remained in the IMP (by time stamping , as note d

above ) .

—— Add in the speed—of—light delay to the neighbor (as

above) .

—— Add in the transmission delay to the neighbor , d e r i v e d

by a table lookup based on packet length and line speed .

— i
This approach has the advantages of not requiring additions to

the packet header or inter—IMP control t ra f f ic .

1 4 . 1 .2  Estimating Delay Indirectly

Delay from one IMP to another can be calculated from the

equation
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Delay (Speed of Light Delay) + (Process ing De lay) +

(Av ~ rage Packet Length) X (Line Utilization )
(Ci~ cuit Bandwidth) (1 — Line Utilization)

assum ing an M/M/1 queue. The first two terms can be estimated

directly ; the last term requires more careful estimation , and

also the poss ibi lity of multip lies and di v id es , wh ich the IMP

does not do very well. A simple approximation would be to:

1. Assume we know circuit bandwidth to be one of a small

number of possibilities (9.6 Kbs , 50 Kbs , 230.4 Kbs) .

2. Assume we know average packet length (it is about 250

- 
b i t s  fo r  the net as a whole over the last several

years).

3. Measure line utilization to within iO% .

Then one can construct a table like this:

Ii 
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Utilization 9.6  Kbs 50 Kbs 230. 4 K b s

10% 1
20% 3 1
30% 5 1
140% 9 2
50% 13 3 1
60% 20 ‘4 1
70% 30 6 1
80% 52 10 2
90% 117 23 5

Delay (milliseconds)

This table reduces all the multiplies and divides to a simple

lookup based on line speed and utilization.

The short com ing of this app roa ch is that it does not perm it

the IMPs to includ e the effect of different packet lengths for

data flowing over different network lines. Delays could vary

f rom hal f as big to fou r  t imes lar ger , d ependi ng on the actual

distribution. Furthermore , the assumption of an M/M/i queue is

not  com pl e t e ly  accu r a t e , so the e quat ion itself introd uces

inac curac ies.

To summar ize , i t seems that the indi re ct calculat ion of

network dela ys is diffic ult to do w i th the re quired accuracy,

es pec ially cons id er ing the limitat ions of the IMP as a number

cruncher .
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14 .2 Smooth ing Algorithms

How shoul d the IMP derive a believable estimate of delay

from a number of noisy, fluctuat ing samples? Expressed

di f ferently, how can the IMP d eterm ine when delay has chan ged by

a significant amount (say iO%) which should be communicated to

other IMPs to determine if new routes shoul d b e use d ? There is

substantial technical literature on the subject of smoothing

algorithms , also k n o w n  as “f i l ters” in signal—processing jargon.

Some wel l—known smoothers a re:

—— a l ow  pass  f i l t e r, a linear smoother which operates to

r emove  h i g h  frequency components; e.g., an a v e r a g e  of

the last n samples.

—— a high pass filter , a s i m i l a r  smoother  w h i c h  r e m o v e s  t h e

low frequency components (including the mean) — not

useful for us.

—— a nonlinear filter , which is capable of preserving sharp

1~ 

discontinuit ies in the data (unlike the linear

smoothers ) , while still filtering out noise.

Recent ly ,  resea rchers have suggested the use of a running

median rather than a running mean . In certain a pplicat ions , the

m e d i a n  of t h e  l a s t  n p o i n t s , say  5 or so , is a very good method
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for smooth ing out most no ise and for fol low ing major

di scontinu it ies in the delay values (reco gnizing new dela y

levels). The paper “A pplications of a Nonlinear Smoothing

Al gor i thm to Speec h Process ing ,” by Lawren ce R. Ra bi ner , Marv in

R. Sam bur , and Carolyn E. Schmidt , IEEE Transa ct ions on

Acoust ics , Speech , and Signal Process ing , December 1975 , makes

use of a runn ing median of 5 points followed by a liner smoother

of 3 points with weights 1/14 , 1/2 , i/4 . The second filter acts

to further reduce the effect of small—amplitud e high—frequency

noise. The excerpt below details these points.

- “Fig. 6 [LI_i] shows a comparison between several
alternat ive smoothing algorithms for an artificially
created test input sequence. Fig. 6(a) shows the input
se quenc e , and Fig. 6(b)— (d) show the outputs of a
linear smoother (a i9— point finite impulse response
(FIR) low—pass fi lter) , a c o m b i n a t i o n  of m e d i a n  and
l inear  smoother  (a running 5 median and a 3—point
Hanning window) , and a median of 5 smoother ,
respectively. The smearing effects of the linear
smoother at each input discontinuity are clearly in
ev id ence in this f igure , whereas the me dian smoother
alone essentially preserves the data exactly. The
com binat ion of me di an an d linear smooth ing is seen to
p rov id e a good com prom i se between the medi an and linear
smoothers in this example. Fig. 7 [4—2 ] shows the —

effects of adding broad—band noise to the input of Fig.
6. In this case , the medi an smoother is ina dequate for
filtering out the broad—band noise on the input ,
thereby producing a rough output sequence , as shown in
Fig. 7 (d ) .  The linear smoother does an excellent job
of filtering out the noise , as ex pected , and  the  o u t p u t
shown in Fig. 7 (b)  is almost identical to the output in
Fig. 6 (b)  when there was no addit ive noise. Finally,
the combination smoother is seen to again be a good
com promise between the linear and the median smoothers.
As seen in Fig. 7(c), the noise is smoothed a great
d eal , and the di scont inuities in the input are fa irly
well preserved .
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“In summary, a smooth in g al gor ithm cons ist in g of a
com bi nation of running medi ans and linear smooth ing
appears to b e a reasona b le candid ate for smooth ing
noisy sequences with discontinuities. ”

_ _  

-

‘_ _  
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Fig. LI~~i Examples of several  smoothed outputs for a simple
test input.
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Fig. ‘4 —2 Ef fects  of addi t ive no ise on several smoothers

Ii
71

1~



Report No. 3803 Bolt Beranek and Newman Inc.

Computationally, s u c h  m e t h o d s  are quite ’efficient. Finding

a running mean or median can be accompl ished by maintaining a

circular buffer of the n points along with a fill pointer. The

mean can be calculated incrementally by subtracting the

(weighted ) value of the old po int before overwr iting it in the

buffer , an d adding in the (weighted ) value of the new point. A

running medi an can be com pute d b y mainta ining a hea p structure ,

or a heap of pointers to the circular buffer.

.i E

I

~~~1

ii
- 5 1
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14. 3 Choosing a Smoothing Algorithm

The choice of a smoothing algorithm depends on two things:

the properties of the raw data (i .e.,  packet delays) , and t h e

properties we want the smoothed data to have (e . g . ,

pre d ict iveness , responsiveness to certain sorts of changes in

delay but not to others , etc.). As reported in Section 2, we

have gathered data on the packet delays in the ARPAN ET. We have

teste d several smoot hing algor ithms by runn ing them on thi s dat a.

Our results and conclusions are reported in Section 14 .3 .1 .

We must , however , enter a very im port ant caveat about the

results. As pointed out in Section 2, it seems that the

char acter ist ics of the r aw d ata  whic h we have  gathere d are

extrem ely dependent on v ar ious char ac ter ist ics of the curren t

rout ing algorithm . If we implement a new routing algorithm whose

line band wid th and CPU bandwi d th are much less than that of the

current algor ithm , the characteristics of the raw data may change

a great deal . This may invalidate our choice of smoothing

algorithm if our choice is based on data which we can gather at

present . On the other hand , we can har dly base our choic e on

data which cannot be gathered until the future. As a result , we

cannot expe ct tha t our initial cho ice of smooth ing algor it hm will

be ideal for any new routing algorithm . When the new algorithm

is implemented , we will have to cont inue to take measurements and

test smoothers , so as to be able to refine our initial choice.

73



I~~’ ~~~~~ t . N ’ , . ~ Rr I C . U~’ r : i r i  ‘ k :1I’, d Nt’wtn :Ir1 In ‘-

• 1 Hc. r~Ij I t . —i ‘‘1 Arr,’i’,t.h I ri p . t P ~c’ f~~it .  .i

iF ,t’ (~iJr  ~~~~ i
~~f r.r ,, ’ i i t h I  rip ~ t t i c ~ ii~’I ~iy  ‘l~i C .:, 1 1  t i ,  ge-’ I. :, Tfl ti;i~~ ,ir-

wh I ‘h 1 ~. ,~ mnwh~,t . (,r c~ (i I (l i V e ’  ‘if f u t u r e - ’ ~~~~ I ~i~ f . (ti:iri pc’i in t .hr

-,nui, ’i t t , c—e i  ‘I~~t ..-1 i h i,uj l ’ i t .r~~i ’k rn:i 3’ ur tui rige- ’ i In C F i r ’  r~~i w  ‘1:it.~i f : i i r I  y

wei l I , wti l I c-’ t i c - ’ I rig I r, ie’ r ,r i l 1 1  y e- ’ l i i  ml ri’ ,, ‘-h:inp ,rri whi ‘ t i  ‘ :;n he’

I h i t  (‘(1 I.’, r i ’ ’  I •i c’ . T h u c - ’ r r :ir e— ~i v i  r l.ij :i I I y u n  I Im I C. c-’ il nii~mhr’ r ‘ , f

i~~ I h I c’ i,n ’u ’,t .ti 1 rig ~i I~ gnr I I. tirn i wh ‘-1 , ‘- nn he-’ u.ie-’ c i , c-’ I lhr’ r

i , ,c I i V I ‘ii i  ~i I I y , ‘ ‘ -  I ni ‘ ‘urn h I ~i : i C . I ‘III . I t I ri I m iu ’ u ri I It ) 1 e’ I. u in I I y t . e-.

e’ ’,’ c-
~~ y ‘ ‘ u r u ’ n l v a t , I c ’  .irri ’,’,t .tic -’r . Itit . ni :1 pI ufuil iIr ’ :u I i,i t r i l l  I I1 I.t . t  nI

.~r u 1  ‘-‘I I ’ ,  ‘ X C ~~’1 It ~ c itit .~iI. I ’ t u  • WC~ ~i c ’ t - t ,  h i d u n  t. r’ r - i % . t r i g Uic’ ( ‘i t  In wi iii.’,

I w ’  •-‘~n’~~ ’I hI rig I r t - P i n i  I q iic i i

~i ) Mciii I : i i u  ~~ui’ ‘ C , Pi I r,~ . I t u r ’  r- nt I ‘in;; I r ‘ i f  me- it t I ;in ~m ’ u ’  t .h t ri g I -i

e II,, ui—i ri c’’I It, e’ i C I n s  S I . . ’ . II -  I n  e ’ x C r r mr iy  nrt;.n i I Iv r’  I mn~~ u,

‘Ii iu i r i l I n u u i l C I c ’ ni I n  I hri ul;i I :i , t i u i t  l n , n n , i iI t I vr ’  C - i’ u t i lnir’ . j~~~ci nx ;*~ I

; Ig’ i II t u r n  we’ I r .j I, c’ul Ii t h e ’  I I  I’,w I ri g:

I~ I I t  ii , C nk t-’ :1 i- u i t s n s l n s g  ,nrII nus ‘ i f  ‘ i ‘ i f  t he-’ m w  ‘lii i ~uy

V n I lie’ I.

I i )  ~~e ’ ’ ’ u n i ’ i  , qi i:;iit I -pr ( , ‘ ‘ u i t i c l ) t h e ’  ,r r l u j  t~ rit . put t  itt C i i  I t ie’

,, e ’n r n .iC ‘ p ,

I I I )  Thi id , C . n kc i ;~ i , u s , i u s  t r ig rn n ’II ~n ~~ 7 ~ I hi’ ui1I~~niI, I ird

~~~~ nIi , ( W e’ n t i t ie ’ u i  t h u  t~ ,it.ø;) whø ns II I u i r r ir ~ t i i u , i t  I hni 
—

Ill



Re port No. 3803 Bolt Ber anek and Newman Inc .

the result of applying steps 1) and ii) was

insufficiently smooth.-)

b) Block—average smoothing. The output from this smoother

is simpl y the result of quantizing to the nearest 5 ms . the

average of the first ten sampled points , followed by the average

of sampled points 11— 20 , followe d by the average of sampled

points 21—3 0 , etc . We chose a block average rather than a

r u n n i n g  a v e r a g e  because we felt that the former wou ld be mor e

sensitive to discontinuities than the latter . We chose to

average over a fixed number of packets rather than over a fixed

time interval because we thought that our sampling frequency was

too low to yield representative results for fixed— interva l

avera gi ng .

We applied the two smoothers to the sum of the processing

delay and modem queueing delay of each sampled packet. Some

typical results are plotted in Figures ‘1—3 through Ll— 8 . Figure

LI~ 3 shows the sum of the processing delay and modem queueing

delay for data from the line between IS122 and 1S152. Figure LI— U

shows the result of applying the median smoother to that data ,

and Figure 14~ 5, the  r e s u l t  of app lying the average smoother.

Figures ‘4— 6 , ‘1— 7 , an d L1—8 are the corresponding plots for dat R

obtained from the line between MIT6 and MITLI LI during an

experiment with artificiall y induced heavy load (mul t i— packet

I-
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messages) with reduced frequency of routing. Note that the 

median smoother produces one output point for every input point. 

In order to construct comparable plots with the averaging 

smoother, we have drawn the output as a constant during each 

measurement period; i.e., each averaged output is repeated ten 

times, once fo~ each input po~~t. 

As can be seen from the plots, the average generally results 

in smoother output than the median does. Both the average and 

the median do a fairly good job of tracking the changes in delay, 

rising when delay rises, going down when delay goes down. 

Sometimes, however, the average will rise when the median goes 

down, or vice versa. It is these differences in the behavior of 

the two smoothers whiQh we must evaluate in trying to decide 

between them. 

The differences seem to be du~ to the following. A property 

of the median is that it eliminates individual points which 

differ greatly from the points which surround them in the sample. 

However, it does not eliminate small clusters of points which 

differ only slightly from the points surrounding them in the 

sample. For example, if most sampled points are around 10 ms., 

the median will eliminate zn isolated point which has the value, 

say, 100 ms, It will not eliminate a cluster of 3 points which 

have the value 5 ms. The average, on the other hand, has just 
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the opposite properties . It will be greatly affected by a single

po int w it h the value 100 ms. ,  but much less affected by 3 points

with the value 5 ms . The cases where our median and average

smoothers seem to disagree can be attributed to these properties.

We believe that where the average and median smoothers

disagree , the average is preferable , for the following reasons:

a) A single point which is extremely anomalous in the

sam ple may not be so anomalous in the data.  It may be t ha t where

we see one 100 ms . point in the sampled data , t here a re t h ree or

four of them in the real data. If this is the case , t hen  we wan t

to count  tha t  po int , as the average does , not eliminate it , as

the median does. (Note , howe v er , that the reason may be biased

by the limitations of our data gathering methodology , see

Appendix 1.)

b) A small cluster of slightly anomalous points should not

result in the generation of a routing update. Thus a function

lik e the average , which is not sensitive to such clusters , is

better than a funct ion like the me dia n , which is. Of course , we

nee d not re port a chan ge to the netwo rk jus t because our smoot her

detects it , but we m igh t as well try to get a smoother which d oes
— not react to chan ges wh ich we wou ld not want to re port an yway.

I

I
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c) Whi le the me di an is better than the avera ge in f il ter ing

out certain kind s of noise , it is not clear that we can ident ify

any of our data as noise .

d) It is true that the average is unlikel y to react as f ast

as the median in detecting major discontinuities . But ,

1) A compar ison of Figures ~4—7 and ~4 —8 shows that the

avera ge can also detect di scont inuit ies reasona bl y

well.

ii) The sort of major di scont inuit ies wh ich may be

important to detect quickly does not seem to occur very

often. We hav e seen them in our data only under

artificially induced load .

We therefore inten d to implement a b lock average smoother

initially. However , if it shoul d turn out that the

character ist ics of delay change a lot when the new rout ing

algorithm is implemented , we may need to re—evaluate this choice.
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‘4.14 Implementing Delay Measurement and Smoothing in the IMP

The delay measurement port ion of a new rout ing a lgor ithm

should be implemented in four separate modules : a sampling

module , a smoothing module , a com par ing module , and a reporting

module . The sampler would be responsible for sampling the delay

values of packets being transmitted on a particular line. The

out put of the sam pler woul d be input to the smoother , which would

implement an algorithm such as the ones discussed in Section Ll- .3.

The output of the smoother would be input to the comparer . The

comparer will compare the smoother ’s latest output with p rev ious

ones , and decide whether to generate a routing update message.

The actual gener ation and transm iss ion of a rout ing upda te wou ld
- - 

be the responsibility of the reporting module.

There are st ill many unresolve d quest ions about the

algor ithms to be use d by each of these mod ules , an d t here are

many ex periments which must be done in order to answer these

questions. We believe that we have reached the limits of what we

can learn us ing our p resent means of gathering data.  The on ly

way to gat her the addi t ional data nee ded to answer our rem a ining

quest ions is to im plemen t these four mo dules and run them in the

IMPs . In itially, we will use the modules only for generat ing

d ata , under a variety of normal and/or experimentally created

conditions. Eventually , the mod ules w ill becom e an essen ti a l

part of a new routing algorithm .

Ii
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5. POSSIBLE IMPROVEMENTS TO CURRENT ARPANET ROUTING ALGORITHM

Thi s sect ion exam ines th ree poss ibl e improvements to the

current ARPANET rout ing algor i thm :

—— event— driven updating
—— improved reachability determination
(faster and more eff icient)

—— improved loop suppression

We were able to develo p improve d tec hniques in ea ch of these

aspects of the routing algorithm . However , some prob lems st ill

rem ain , and we were led to consi der a com pletely new rout ing

algorithm (SPF , described in Section 6 below) which does not

suffer from these deficiencies.

5.1 Updating Policy

An alternat ive to the current use of per iodi c rout ing

updates in the ARPANET is to use event—driven routing updates .

If this tec hnique is appli ed to the present ARPANET algor ithm , a -A
node would transmit routing messages to its neighbors only if its

rout ing ta b le changes or if its delay to some dest inat ion changes —

by some pre—specified amount. Such a change can come about

e ither because the delay on one or more of the node ’s own lines

changes or because of a routing message received from a neighbor .

With event—driven updates it may still be necessary to transmit

routing messages periodically, but the fre quency of these

messages will be quite low.

-~~~~~~~ 
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The principal motivatio n for using event—driven updating is

that routing should adapt very quickly to changes. Furthermore ,

since a given routing change often affects only a fraction of the

nodes in the network , and since the frequency with which changes

occur might under normal circumstances be relatively low , we can

anticipate that the average line and node bandwidths required by

this techn ique woul d both be lower than that of the presen t

algor ithm . Finally , the size of the routing message itself could

possibly be reduced since information onl y on the changed routes

need be circulated .

At present there are two potent ia l pro blems tha t we see with

such event—driven updating. First , when a significant routing

change occurs , there may be som e appreciable settling time before

new and stable routes are obtained . During this settling time ,

many nodes are exchanging information which is only partially

up—to—date . The exchange of routing messages cannot end until

all nodes have all the latest information , and this can require

that many rout ing messa ges be ex changed . In other wor d s , the

necessary peak line and node bandwidths required may be

excessiv e; at any rate , the peak /average ratio will be very high.

A possible solution to this problem is to set a minimum updating

per iod for each node , with no more than one update per period .

Clearly, if this period is chosen to be 2/3 of a second , then the

I
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adaptation time would be similar to that of the present algorithm

(ignoring hold—down). A very short period would permit rapid

ad aptat ion but could cause the prev iousl y ment ione d exce ss ive use

of bandwidth. Some thought is required to determine whether such

an updating period is beneficial , and i f so , t he v alue of t he

period that yields a good compromise between speed of adaptation

and elimination of unnecessary and unreliable updates .

A second problem with event—driven updates is somewhat more

involved and requires more detailed explanation . Assum e first

that on the basis of a routing update , no de A ’ s delay to node B

decre ases signif icantl y . Then , whether or not A was form erly

using this route to B, A will now use the improve d route an d

since its delay table changes , A will forwar d upd ates to i ts

ne ighbors. Now assum e that A receives information that indicates

that the delay to B via line L is larger than A’ s present delay

to B. If A ’ s presen t route to B is not v ia L, then A simpl y

discar c’s the message . If , however , A is us ing L, then A must

update its table and forward the change to its neighbors ; but A

has no informat ion on alternate routes , and , t h e r e f o r e , it must

st ill route messa ges to B v ia L, even thou gh the dela y alon g thi s

path may be excessive and better paths might exist . Thus , the

basic event—driven updating allows information on routing

problem s to propagate quickly, but it does not prov ide a

mechan ism to alleviate these problems.

- t  -
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We v isual ize two possible solutions to this problem . As one

alternative , each node could maintain information on a

second—best route to each destination . With this approach

additional storage is required at each node , but no addit ional

l i n e  b a n d w i d t h  is needed , since this information is conta ined ~n

the routing messages that are normally exchanged . However , there

may be some difficulties associated with maintaining two sets of

up—to—date routing and delay tables and with ensuring that the

delay along the second—best path is not also affected .

A more desirable alternative is for a node to reques~

updates from its neighbors. In the above example in which the

delay to B increases , node A would request updates from all its

neighbors except the one on line L. In fact , A could incorporate

this request in the routing updates it transmits to those

neighbors. The overall schem e might thus function as follows.

As above , we assum e that node A receives an update on its route

to node B via line L.

1 . If the dela y to B d ecrease d , then A updates its tables
and forwards the message on its other lines but does not
re quest an upd ate from these ne ighbors.

2. If the delay to B increased , then if A was using line L .
it updates its tables , forwards the informatio’~ c~r i s
other lines , and requests updates from these neight: ’ ‘.

3. If , along with the routing update for line L , r.o ’’ &

rece iv es an upd ate re ques t , then A updates ~~s t a t .’
and serv ices the re quest unless the up~’ate ca used  £ .

I -
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delay v ia L to increase . In this case A ignores the
update request.

Step 3 above insures that unrel iable informat ion will not be

exchan ged between neighboring nodes. The technique works by

propagating informat ion on increase d delays outwa rd alon g with

update requests and by hav ing these requests ignored unt il the

increased delay no longer affects a node ; this node then sends

information on a superior path . Of course , before the proposed

technique is adopted , considerable thought must be devoted to

insuring that loops do not form .

ii
:i
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5.2 Improved Reachability Determination

The present ARPANET routing algorithm determines

reacha bi lity by means of the following heur istic: whenev er the

hop—count to a certain destination becomes “infinite ” (i.e. 32)

and remains infinite for 10 seconds , the destination is declared

unreachable. Because the ARPANET routing algorithm does not

ma intain information about individual network lines , and because

it cannot di stinguish among paths which have the same “next hop” ,

there is probably no way it can determine reachability other than

by using some such heuristic. That is , the algori thm is not

capable of providing more information about a particular

destinat ion than whether or not there is a path to it , and if so ,

what the ho p—count and delay along that path are. Therefore ,

there is little that can be done to determine that an IMP is

unreacha ble other than to note that there is no path to it , and

that there has not been any path to it for a certa in time

interval . As a result , the only way to im prove the reacha bility

aspect of the ARPANET routing algorithm is to improve the

performance of the heur istic .

There are two obv ious problem s with the present performance

of the reachability heuristic: It does not work quickly enough

and it uses an excessive amount of line bandwidth . These points

are d iscussed in the sections below.
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5.2.1 Speed of Adaptation

No IMP can be declared unre achable unti l 10 seconds after it

actuall y becomes unreachable. This means that there is a period

of at least 10 second s dur ing which the network does not know

what to do with packets for an unreachable destination . During

this period , the network is forced to buffer those packets in

store—an d— forward space. Since the network does not have enough

store—an d— forward capacity for such buffering, the result is that

packets have to be di scar ded , and the packets which get discarded

m ay not even be packets for the IMP which is unreachable.

The optimal length of the time interval during which packets

for possibly unrea chable IMPs must be buffered depend s on the

speed at which the network can find a second path to a

destination when the original path to that destination is lost. - á

If the time interval is too small , IMPs will be spur iously

declare d unrea chable , result ing in packet loss; if the interval

is too large , packets are also lost . We hav e data which show j
that an interval of ~$ secon ds would be too short. However , since

packets can be di scarde d from the subnet after being buffered in

store—an d— forward space for 14 seconds , any interval that exceeds

LI seconds is too long.
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If t he ARPANET rout in g a lgor i thm were mo di f ied to use the

event— driven updating schem e described in the previous section ,

the t ime in te rva l  to di scover an a l t e rna t e  path woul d of course

become much shorter . Hence the reachability determination would

automatically be improved , since the time interval could be

reduced from 10 seconds to (hopefully) less than 14. However , it

is d i f f i c u l t  to say a prior i what the in t e r v a l  woul d have  to be

with event— driven updating.

5.2.2 Bandwidth Considerations

Every rout ing update message contains a hop—count , as wel l

as a delay for each destination . The hop—count , which is used

only to determine reacha bil it y ,  adds 5 bits per destination to

each update . Since the hop—counts change very rarely (relative

to the upd ate f r e quen cy) , th is wastes a great deal of’ line

bandwidth . Thus , it would be useful to remove the hop—counts

from the rout ing update messages. If the hop— counts are removed

from the rout ing update messages , there are two ways to determ in e

r eachab ili t y :

a) An IMP m ay be dec la re d unreacha ble when the dela y

(rather than the hop—count) to it becomes infinite and

r e m a i n s  i n f i n i t e  over a c e r t a i n  t ime i n t e r v a l .  This  way

of determ in in g rea cha b i l i t y  d is penses wi th  the

hop—counts entirely.
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b) Hop—counts may be contained in “reachability update

messa ges” which are separate from the routing update

messages. Reachability updates would be event—driven ,

sent only when there is a change in the hop—count to

some destination . These updates would be generated very

rarely.

The method of dispensing with hop—counts entirely was at one

t ime cons idere d by the A R P A N E T  des igners , and rejected . Their

reason for re ject ing it was v alid at the time , but ma y not be as

applicable with hold down or other loop—suppression (see Section

5.3 below) and event—driven updat ing as par t  of the rout ing

algor ithm . Their reasoning was as follows :

Le t IMPs A , B, C , D, an d E be conne cte d in a

chain , and suppose C crashes. Then C’ s ne igh bor s,

B an d D , will immediately set their delays to C to

be infinite . But if ’ B and D now get updates from

the ir respect i v e  ne igh bors A an d E , which indicate

(because the ir informat ion is out date d) tha t  they

have finite delays to C , B an d D wi l l  assume tha t

they too have finite delays to C. Thus the

infinite delays are purged from the network. Of

course , if C is r ea l ly  unreacha bl e , f u r t h e r

updates will eventually cause the delay from all
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other IMPs to get larger an d lar ger , even tuall y

reach ing its max imum value . But since the m a x i m u m

value  of delay is so large , t hi s will take an

excessively long time. So long as the maximum

value  of ho ps is much smaller than the max imum

value of delay, using hop—counts results in a much

qu icker determination of reachability.

However , if there is event— driven updating and loop— suppression ,

there will be less outdated information in the network , an d muc h

of it will be ignored anyway. Therefore , once the delay to a

cer ta in des t ina t ion is set to inf in i t y ,  the probability is high

j that it will remain at infinity, unless  an a l t e rn ate path rea l l y

does exist . However , the probability is not 100%, since rout ing

updates about the same event can reach an IMP from different

directions at different times (as detailed in BBN Report 36141).

Therefore , there are some cases where the reachability

de te rmina t ion  will be unacce pta bly slow if it is base d on dela y

count ing up to infinity. Furthermore , when su ch cases do occur ,

they will cause an excessive number of routing update messages to

be gener ated .

An event— driven routing algorithm with loop—suppression

would need hop—counts much less frequently than the unmodified

algorithm . However , hop counts are safer to use for reacha bility
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determinations than are delay values . The question that must be

resolved is whether  the add it ional  cost involve d in us in g

hop—counts is justified on the basis of the additional amount of

safe ty  they prov ide.

I
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L 5.3 Improved Loop Suppression

J One im portant  way of im provin g the ARPANET rout in g algor ithm

would be to replace the current means of loop—suppression

(hold—down ) with a more effective one. In this section , an

alternat ive method of loop—suppression is proposed . Section

5.3.1 compares it to hold—down from a theoretical point of view.

Section 5.3.2 discusses implementation considerations.

5.3.1 Hold—Down vs. Explicit Information

Hold—down (HD) is a set of procedures add ed several  years

ago to the basic ARPANET routing algorithm . Its purpose is to

su ppress the format ion  of pat h loo ps, and thereby to decrease the

time it takes for the ne twork  to adapt to chan ges in to pology or

line—loading . HD will be compared throughout this section with a

d ifferent loop— suppression schem e which we term the “Explicit

I n f o r m a t i o n ” scheme ( E l ) .  We consider  f i r s t  the issue of

suppressing loops of arbitrary length . Later we consider the

issue of suppressing only loops of two nodes (“ ping— pong loops”).

Suppose IMP A has a non—looping path to some destination IMP

X. In order for a looping path to form , the fo l low ing tw o

con d it ions must  hol d :
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1. A receives a routing update from one of its neighbors

(say ,  from B) accor di n g to wh i ch the dela y from A to X

v ia B is less th an A ’ s current delay to X.

2. A is inc lu ded in B’ s path to X. (If a network path is

- represented as an ordered sequence of IMPs whose first

element is the source , whose last element is the

dest inat ion , an d is such that  any cont iguous pa ir of

IMPs in the sequer ce  are topological  ne ighbors , then we

say that  an IMP is inc luded  in a path if it appears  in

the sequence which  represen ts  the path . A loop ing  path

is a sequence in which some IMP is included more than

once.)

If condition 1 does not hold , a looping path is not formed ,

because A does not switch paths. If condition 2 does not hold , A

ma y sw it ch paths , but the new path will not have a loop. Note

that in the ba sic ARPANET rout in g al gor ithm , conditions 1 and 2

are not only necessar y for loop— formation , but are suf f ic ient  for

it .  One way of su ppress in g loo ps then is to  detect the

co— occurrence of conditions 1 and 2, an d to take app ro pr iate

action on that basis. A very simple schem e is the following :

Explic it Information Scheme (El): When a node sends a

rout ing update message to a ne ig hbor , it spec i f ies the path to
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each destination . When a node processes a routing update from a

neighbor , it checks to see whether it is included in the

neighbor ’s pat h to a dest inat ion.  If so , it ac t s  as i f t he

ne ighbor had reported infinite delay to that destination.

Of course , El coul d har d ly be im plemente d in a real  ne twork .

It is not pr ac t ical to have the rout ing up d ate messages conta in

the ent ire path from a node to all others. It is mentioned here

only because it is a sim ple , “brute—force” metho d of

j  loop—suppression which can be interestingly contrasted with HD.

It is clear tha t  El pr even t s  many  loo ps from form in g , since an

IMP will never switch to a path which has infinite delay.

However , El does not prevent all loops . Suppose that B has a

path to X which does not include A. It is possible that B sends

a rout in g u pd ate to A , an d imme di atel y a f t e r w a r d s swi tches  to a

path which does include A. In this case , it is possible that A

is included in B’ s pat h to X at the t ime A processes the rout in g

u pda te from B , alt hou gh it was not so inclu ded at t he t ime B sent

the rout in g upd ate to A. That is , El cannot ensure that A will

always know whether condition 2 holds at the time A’ s rou t in g

calculation is being done. Thus El does allow some loops to

form . However , El does ensure that any loop which form s will be

quickl y broken , and a non— looping path quickly established to

replace it. For , onc e a loo p does form , El causes the IMPs to see
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inf in ite dela y on the loo ping path . Th is will caus e a I
non—looping path to be preferred as soon as one can be found .

I

To sum up : El works by ena bl in g the IMPs to detect

conditions which are sufficient for the formation of loops . In

m a n y  cases , the informat ion can be used to prevent loops from - .

forming. In other cases , the in fo rma t ion can be use d to --

el im inate  loops , and to ensure that they are replaced with

non—loo ping paths. El’s major disadvantage is that a pair of

ne ighboring IMPs must work together to determine whether

conditions sufficient for loop formation are present. This

requires very large routing update messages .

Hold—down is an attempt to suppress loops by utilizing

purely local information , thereby avoiding El’s ma jor

disadvantage. To understand how it works , we nee d the not ion of - -

one rout ing update message being based on another . If A and B

are ne ighbor ing IMPs , and a and b are routing update messages

generate d by A an d B res pect iv e l y ,  then a is directly based on b 1
with res pect to dest inat ion D if an d only if b is the most recent

upd ate from B wh ich A processe d before  generat in g a , and a

reports the delay to D for a path whose next hop after A is B. I
If P and Q are any two IMPs , not necessar ily neighbors , and p and

q are routing update messages generated by P and Q respectively , I
then p is based on q with respect to destination D if and only if -
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either p is directly based on q with respect to D, or t here is a

third routing update message r such that p is directly based on r

with respect to D, and r is based on q with respect to D.

With this notion , we can present the following two

propositions (again , let A and B be ne ighbors , and let X be some

destination IMP):

3 .  If conditions 1 and 2 hold , then the upd ate whi ch A most

recently received from B must be based on an old update

generate d by A an d sent to B, and furthermor e , A’ s dElay

to X must have increased since that old u pd ate w as

g e n e r a t e d .

14~ Let p and q be routing update messages generated by some

pair of IMPs , not necessar ily neighbors. Let t(p) and

t(q) be the times at which p and q were generated

respectively. Then there is some length of time T such

t h a t :

if t(p) — t(q) > T, then p is not based on q

Propositi on 3 is fairly obv ious. B coul d not ever switch to a

path which includes A , exce pt as a result of receiving an update

from A , or else rece iv ing from another ne ighbor an upd ate wh ich

is based upon an update received from A. And B could not see a
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smaller delay on a path includi ng A than is seen by A itself,

unless A’ s de l ay  has increased since it genera ted the up date on

which B’s information is based . Proposition 14 simply states that

the informat ion conta ined in any given rout ing upda te has on ly a

finite life—span in the network , which is less than the value T.

These two propositions suggest a purely local scheme for

loop—su ppression :

Hold—down schem e (HD): Whenever a node ’s delay to a

particular destination increases , it. pays no attention to what

its neighbors say about that destinat ion unt il an interval of

length T elapses.

If propositions 3 and LI are true , HD ensures that whenever a

rou ting update message is rece ived such that condi tions 1 and 2

hol d , the update will be ignored . That is , HD ensures that the

only updates which are processed are those for which conditions 1

an d 2 do not hold. Since conditions 1 and 2 are necessary for

the format ion of loops, HD ensures that no loops are formed . In

fa ct , HD is more effective in preventing loops than is El.

Wherea s El allows some loops to form tem porar ily, HD never allows

a loop to form . El works by detecting sufficient conditions for

the formation of loops . Despite the large overhead incurred in

detectiflg these conditions , it is not always able to detect them

soon enough to prevent a loop from forming (although it does
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detect  them soon enough to be able to to break loops q u i c k l y) .

HD , on the other han d , works by detecting conditions which are

necessary for the formation of loops. It is always able to detect

these condi tions in time to prevent the form ation of loops, and

it detects them by using purely local information , the reby

incurring low overhead .

Nevertheless , HD has some serious disadvantages. For one

t h ing , in a network the size of the ARPANET , the v alue of T is on

the order of minutes. This means that whenever the delay between

A and X increases , the network will be very slow to adapt. Sinc e

the pur pose of a loo p suppression schem e is to speed up

adaptation , not slow it down , HD may be self—defeating .

Another di sadvant age stem s from the fact that althou gh

propositions 3 an d 14 are true , the ir converses are false . The

con di tions which HD detects ma y be necessary for the formation of

loops, but they are not sufficient . This means that although HD .

causes the IMPs to ignore upd ates for wh ich con d it ions 1 an d 2

hol d , it also causes t hem to ignore , unn ecessarily, some updates

for which conditions 1 and 2 do not hold. In fact , for all that

has been said so far , it coul d well be the case that most of the

updates which HD causes the IMPs to ignore are updates which , if

processed , would not result in loops . If this were the case ,

then HD’s major effect wou ld be to slow adaptat ion time , rather
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than to speed it up. So HD’s utility depends on the putative

fact that most of the updates it causes to be ignored would

result in loops if they were processed . That is , HD’s ut ility

depen ds on the assum ption that the condi tions it detect s, which

are necessary for loop formation , are also highly correlated with

conditions which are sufficient for loop formation . This means

that HD is a heur istic , probabilistic procedure , whose true

utility cannot be determined a priori.

While neither El nor HD appears to be a practical way of

suppressin g loops , they are perha ps too ambi tious in that they

seek to suppress loops of all lengths. It must be noted however

that without any loop suppression technique , lon g loops are much

less likely to form than are short loops . Since each hop in a

path add s apprec iably to the total delay on that path , paths with

long loops will generally show a much higher delay than paths

with short loops, or no loops at all. Therefore , t he longer  a

loop is , the less likely it is that conditions 1 and 2 can be

satisfied simultaneousl y , hen ce the less likely it is that the

loop can actually form . This means that a schem e which only

suppresses , say, two—node “ping—pong ” loops , may be nearly as

effect ive at suppressing loops as a schem e which tries to

suppress all loops . Both El and HD can be easily modifted to

attempt to suppress only “ping— pong ” loops.

1014



Re port No. 3803 Bolt Beranek and Newman Inc .

To modi fy El , we need only note that in order to suppress

loops which are n nodes long, it is onl y necessar y to inform

one ’s ne ighbor of the next n— i hops in one ’s path . Therefore ,

the following scheme suffices.

Ex plicit Information Schem e for 2—node loops (E12): When a

node send s a rout ing upd ate message to a neighbor , it specifies ,

for each destination whether that neighbor is the next hop on its

path to that destination . When processing a routing update

message from a ne ighbor , it checks to see if it is that

neighbor ’s next hop to any destination . If so , it acts as if

that neighbor had reported infinite delay to that destination .

E12 is a more practical schem e than is El. If it is

allowa ble to send di fferent rout ing messages to di fferent

neighbors , then E12 can be im plemented with no additional

bandwidth at all ; if the sam e routing message must be sent to all

neighbors , the cost is sti ll low: onl y n bi ts per destinat ion

per routing update , where n is one more than the greate st integer

of the base 2 logarithm of the num ber of neighbors an IMP ma y

have. These two means of implementation are discussed in Section

5.3.2. Otherwise , E12 is just like El — it cannot always prevent

loops, but it quickly eliminates loops which do form . And it.

never causes a rout ing upd ate messa ge to be ignored

unnecessar ily.
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To see how to m o d i f y  HD so as to p reven t  only  two — node

loops, we note that in order for a two—node loop to form between

IMPs A and B for destination X , the follow ing two con di tions must

hold:

1’ . A receives a routing update from B according to which

the delay from A to X via B is less than A’ s current

dela y to X.

2’. A is the next hop on B’ s path to X.

Fur thermore ,

3’ . If c o n d i t i o n s  1’ and 2 ’  hold , then  the upda te  which  A

most recently received from B must be d irectly based on

an old update generated by A and sent to B, and

furthermore , A’ s delay to X must have increased since

that old update was generated .

~..1

LI ’ . Let a and b be r o u t i n g  upda t e  messages genera ted  by some

pair of neighboring IMPs. Let t(a) and t(b) be the

times at wh ich a and b were generated , respectively. *

Then there is some length of time T’, whi ch is much

smaller than the T of proposition 4, such that :

if t(a)—t(b)>=T’ , a is not d irectly based on b
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Therefore , the following scheme will work:

Hold—down Scheme for Two—node Loops (HD2): Whenever a

node’s delay to a certain destinat ion increases , it pays no

attent ion to what its neighbors say about that destination until

an interval of length T’ elapses.

Since T’ is very much smaller than T, HD2 is not as

impractical as HD. But HD2 shares many of its properties with

HD. Like HD, HD2 prevents all two—node ioops . But it does it at

a cost of causing the IMPs to unnecessar ily ignore many rout ing

upda te  messages , the reby  slowing , r a the r  than  speeding , the

convergence  of the  basic  r o u t i n g  a l g o r i t h m  in m a n y  cases .

HD2 is not the scheme in use in the ARPANET. Rather , the

ARPANET uses a peculiar scheme which we will call “HD2—8” .

HD2—8: Whenever a node ’s delay to a certa in dest inat ion

increases by at least 8 un its since it last sent a rout ing upd ate

message to some neighbor , it pays no attent ion to what its

neighbors say about that destinat ion until an interval of length

T’ elapses.

It is clear that HD2—8 has the virtue of not causing the

IMPs to ignore rout ing updates as often as they will if HD2 is

used. But HD2—8 has a rather serious disadvantage —— not only
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does it fail to prevent some loops , but when loops do form , they

get loc ked up. (See Section 2). This would seem to rule it out

as a practical loop—suppression technique.

If loop— suppression were an end in itself , HD2 would be

preferable to EI2, since the former always prevents loops from

form ing, while the latter does not. However , if loop—suppression

is merely a means of speeding the conver gence of the basic

routing algorithm , E12 seem s preferable , since it never causes

routing update messages to be ignored unnecessarily.

5.3.2 Loop Suppression as Part of an Improved ARPANET Routing

Algor ithm

The main purpose of a loop—suppression scheme in the ARPANET

would be to prevent the occurrences of long—lived “ping— pong ” , or

2—node , loops. A look at the current ARPANET logical map shows

that three—node loops , four—no de loops , and five—node loops are

impossible , since the topological pre—conditions for them do not

ex ist. That is , there is in the ARPANET no set of three nodes

connecte d in a triangle , no set of four nodes connected in a

rectan gle , and no set of five nodes connected in a pentagon . - .
There are several sets of six nodes connected in a hexagon ,

though , so loops of’ six or more nodes are possible. However , the -
~~~

probability of a loop ’s occurring is inversely related to the - -
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di ameter of the loop , while the cost of a loop—suppression schem e

is di rectly relate d to the di ameter of the loops it can suppress.

Therefore , schemes capable of suppressing loops of six or mor e

nodes are probably not worth cons ider ing, which means that onl y

the suppression of ping— pong loops , is of any im portan ce in the

ARPANET .

Any alteration to the ARPANET routing algorithm which tends

to stabilize the estimates of delay will automatically help to

prev ent loops, since it will make spur ious rout ing chan ges , and

hence loops , less likely to occur . Similarly, an y a l t e r a t i o n

which causes new information to spread faster and mor e un iforml y

through the network will automati cally hel p to prevent loo ps,

since it will make it less likely that nodes disagree about the

delays to various destinations. Therefore , both the event—driven

updating and the improved delay estimates described in previous

sections would help to make loops less likely. However , it does

not seem likely that these improvements would totally obviate the

need for an explicit loop—suppression scheme . In the remainder

of thi s section , we describe two variants of the EI2 schem e, each

of wh ic h seem s im plement abl e in conjunct ion with the other

suggested improvements to the ARPANET routing algorithm .

1. In this variant , a separate routing update message must

be sent to each ne ighbor. Let I be the IMP wh ich is send in g the

1~ 
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update , and K the IMP to wh ich it is bein g sent. The set of

possible destinations can be divi ded into two di sjoint subsets ——
those for which K is the next hop after I, and those for whi ch K

is not the next hop after I. For destinations in the former

class , the update should speci fy infinite dela y , r a t her than  the

actual estimated delay. This will prevent K from routing to I

packets which would only be routed back to K.

2. In this variant , the same rout ing message is sent to

each neighbor . The sending IMP indicates , in addition to the

delay to each destination , the next hop on its path to that

destination . This can be done in three bits , providing that each

IMP has its neighbors ’ ne ighbor ta bles , and that the bit— coding

limitation on the number of neighbo -3 is acceptable. When the

receiving IMP notes that it is the next hop on the sending IMP’ s

path to some destinat ion , it acts as if the sendi ng IMP had

reported infinite delay to that destination . (Note that the

update me ssage in this second variant also contains all the

information needed to suppress three—node loops.)

While this loop—suppression scheme does not prevent all

ping—pong loops , it does ensure that any ping— pong loops which do

form will be very short—lived . This would be especially true if

it were implemented in conjunction with the other improvements

descri bed earlier in Sections 5.1 and 5.2.
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6. SHORTEST PATH FIRST ALGORITHM

6.1 Introduction

Many algor ithm s have been dev ised for finding the shortest

path through a network. A recent survey article [1] discusses

some of these algor ithm s and also references several other surve y

arti cles. The basic algorithm we shall consider is attributed to

Dijkstra [2]; because of its search rule , we call it the shortest

path first (SPF) algorithm . The following section first

describes this basic algorithm which is used to initially

generate the shortest path tree and then ex plains the im portant

additions we have developed for modifying the tree if’ network

chan ges occur . Section 6.3 presents some analytic results for

predicting SPF 
- 

r u n n in g t imes , an d some quant itative resu lts

obtained by runn ing the algor ithm in FORTRAN on TENEX , an d on t he

316 and Pluribus. Section 6.4 discusses some basic issues on how

updates (i.e., informat ion regarding line and node status) may be

handled. Section 6.5 compares the SPF algorithm with the present

algor ithm . The final section contains the conclusions from our

work with SPF .
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6.2 Shortest Path First Algorithm (SPF)

6.2.1 Basic Algorithm

The basic algor ithm for findi ng the shortest path tree from

a g iven source node is a way of buildi ng up the tree node by

node. That is , the tree in itially cons ists of just the source

node. Then the tree is augmented to contain the node that is

closest to the source and that is adjacent to a node already on

the tree . The process continues by repetition of this last step .

The tree is built up shortest—paths— first —— hence the nam e of

the algorithm . Eventually the furthest node from the source is

add ed to the tree , and the algorithm terminates. As a by—product

of the algor ithm , it is easy to produce an ARPANET— like routing

table. Figur e 6— 1 presents an exam ple shortest path tree for the

ARPANET , to aid in visualizing the operation of the algorithm .

In the ARPANET , each IMP woul d run the algor ithm with itself

as the source . In order to run the algorithm each node must

m aintain a data base representing the topology of the network. A

key component in the data ba se is the “length” of ev ery line in

the network (where “len gth” is not physical length , but rather J
some relevant metric such as delay)

We begin with a semi— formal description of the algorithm ,

followed by more verbose commentary. Let SOURCE be the node in
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which the algorithm is running . The algorithm ’s basic data

structure , LIST , is a variable—length list whose elements are

ordered triples. An ordered triple T is of the form <SON ,

FATHER , DISTANCE> , where SON and FATHER are nodes , and DISTAN CE

is a num ber. (We use the notat ion SON (T) in the obv ious way to

mean the first element of the triple T.) Each triple represents

a particular path from SOURCE to SON. The penultimate hop on

thi s path is FATHER , and the total “length” of this path is

DISTAN CE.

To initialize the algorithm , place <SOURCE ,SOUR CE ,0> on

LIST. The algorithm itself consists of the following steps :

1. Search LIST for the triple T with the smallest DISTANCE.

2. Remove T from LIST.

3 . Place SON (T) on the shortest path tree so that its

father on the tree is FATHER (T). [Exception : If SON(T)

= SOURCE , pl ace it in the tree as its root]

— V

LI. For each neighbor N of SON(T), do one of the following

steps:

a. If N is already in the shortest path tree , do

no th ing .
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b. If there is no triple T’ on LIST such that SON (T’)

N , then place the triple <N , SON(T), DISTANCE (T) +

LINE_LENGTH (SON (T), N )> on LIST.

c. If there is already a triple T’ on LIST such tha t

SON (T’) •N , an d if DISTANCE(T’) < DISTANCE (T) +

LINE_LENGTH (SON (T), N) , do nothing.

d. If there is already a triple T’ on LIST such that

SON (T’) = N , and if DISTANCE(T’) > DISTANCE(T) +

LINE_LENGTH (SON (T) N), then

i) Remove T’ from LIST

ii) Place the triple < N , SON(T) , DISTANCE (T) +

LINE_LENGTH (SON(T), N ) > on LIST

5. If LIST is non—empty, go to 1 . Otherwise , the algorithm

is finished .

Comm entar y

Remem ber that each tripl e really represents a path from

SOURCE to SON of length DISTANCE , where the next—to— last hop on

that path is FATHER. The structure LIST is initialized to

conta in the zero—length path from SOURCE to itself. At the first

iterat ion , this path is remove d from LIST, and SOURCE is placed
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on the tree . Then the single—hop paths from SOURCE to each of

its immediate neighbors are placed on LIST. At the second

iteration , the shortest of these paths (i.e., the path to the

closest immedi ate neighbor) is removed from LIST, and the closest

neighbor of SOURCE (call it N) is placed on the tree as a son of

SOURCE. Note that there cannot possibly be any shorter path to

N , s ince any such path  would have to have  as its f i r s t  hop a

neighbor which is not as close to SOURCE as N itself. Therefore ,

the shortest path to N has been found . At this point , there is a

possible path to each neighbor of N —— the two—hop path from

SOURCE via N to N’ s ne ighbors . Each of these paths is placed on

LIST. With further iterat ions , ever y path to each destinat ion

node is eventually encountered .

Note the way in wh ich the paths are generated : at ever y

it e ra t ion , the shortest path on the LIST is removed , and the LIST

is augmented (if at all) only by paths which are one—hop

extensions of that shortest path . It can be shown (see e.g.,

[1]) that all paths of length n will be encountere d before any

path of length > n is ever removed from LIST.

Natura lly, sin ce there  are m any  pos sible paths  to each

destination N , and only one of those paths can be the first

encountered. When a path to a node N is not the first

encountered , spec ial action must be taken .
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Two cases exist . N is in the tree or N is on the LIST. If

the no de N is a l re ad y in the tree , then some other pat h to N mus t

have been prev ious ly encountere d , place d on LIST , and remove d

from LIST . For that to be the case , the prev ious ly  encountere d

path must be shorter than the one presently encountered . Hence

the lat ter  pat h need not be fur ther  cons id ere d , and should just

be discarded and not placed on LIST. (See step LIa.)

Al ternat ive ly ,  the no de N may not be in the t ree yet , but a

previously encountered path may already be on the LIST . If the

path already on LIST is the shorter , it remains on LIST (step

4c). If not , it is removed from LIST and the lately encountered

path is p lace d on LI ST (ste p lid) .

When the LIST becomes empty, that means that al l  poss ib le

paths have been encountere d , and the shortest path to each node

found. At this point , the shortest pat.h tree has been completed .

6.2.2 Incremental Algorithm s

The m anner in wh ich incremental  chan ges are accom pl i she d is

of pr ime im portance be cause such changes mus t be han dl ed ra pid l y

in order for the algorithm to be viable. Re— calculation of the

ent ire tree is probably too tim e—consuming to be performed

whenev er a change in the status of some l ine or no de occurs , and

the re fo re , algorithm s to han dle the possible network changes have
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been developed . As wi l l  be shown in subsequen t  sec t ions , a g i v e n

inc rementa l chan ge to the netwo r k topol og y genera l l y a f f e cts the

routing to only a fraction of the nodes , causing only a minor

change to a node ’s shortest  pat h t ree . Occas ion ally , howev er , a

ma jor portion of the tree must be restructured ; thus it is

im port ant that when a ch an ge does a f fec t  the node its

calculations can be done efficiently. Of course , t here ma y be

si tuat ions where it is more ex pedi ent to per fo rm a com pre hens ive

calculation than to do an incremental calculation .

The paragraphs below provide a qualitative description of

the ste ps that have to be per forme d when eac h t yp e of incrementa l

change occurs. Then a single algorithm which consolidates all

these steps with the basic algorithm is presented .

Line Changes

Assum e tha t the shor test pat h t ree for t he source no d e pr ior

to the change is known . First consider the case where the

“length” of the line AB from node A to node B increases (e.g.. ,

the delay gets worse) . Clearly, if the line is not in the tree ,

nothing need be done. If the line is in the tree , then t he

distances to B and to all nodes whose route from the source is j
v ia B increase. Thus , the no des in t he su b t ree whose root is B

are candidates for changed routing. Conversely, routes to no des

not in t hi s su b t ree wi l l  not be a l te red . (
11
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The first two steps for handling an increase in distance

alon g a l ine are thus:

1) Identify nodes in B’ s su b t ree  an d upda te the ir di stan ces

from the source.

2) Try to find a shorter path to each subtree node S by

rout ing S via those of its neighbors which are not in

the subtree ; if such a path is found , put no de S on

LIST. (More precisely, put the triple representing S on

LIST. )

At the conc lus ion of these steps , LIST either will be empty or

wil l  conta in some subt ree no des for wh ich better (but not

necessar ily best) paths have been found. In order to find the

best paths to the nodes on LIST as well as to the other subtree

no des , a sl ight ly mo di f ied vers ion of the 5FF algor ithm descr ib ed

in the previous section can be called . The modification that is

necessary is step (14a) , wh ich skips nodes that are a l rea d y on the

tree . This procedure is correct when the tree is being generated

f rom scr atc h , s ince then the al gor ithm ensures that once a no de

i s p la ced on the t ree , the shortest  pat h to that no de has been

foun d . In the incremental  case , however , the chan ge In l ine or

node status sometimes necessitates that a node be relocated .
* 

This modification is included in the consolidated algorithm given

in the next section .
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Now assum e that the di st ance on the l ine from A to B

decreases. If this line is in the tree for a given source node ,

then c lear ly paths to the elements of the su bt ree which has B as

root wil l be unc hanged because the su b t ree no des were a l re ady at

m inimum distsnce , and hen ce the decrease d l ine lengt h wi l l  on ly

shorten their distances from the source. Moreover , any no de

whose d is tance from the source is less than or equal to B’ s new

distance from the source will not be re— positioned , s ince the

no de ’s pat h must rea ch B f irs t  in or der to t ake advanta ge of the

improved line . However , no des wh ich are  not in the sub t ree  an d

whi ch are far ther  f rom the sour ce than B m ay have a shor ter

distance via one of the subtree nodes.

The al gor ithm must thus f irs t  per fo rm the fol low ing ste ps:

1) Identify the nodes in the subtree and update their

distances from the source.

2) Try to find a shorter distance for each node K that is

not in the su bt ree but is an immed iate ne igh bor of a

su b t ree no de b y rout ing K v ia those of its ne ighbors

which are In the subtree ; if such a path is found , put

node K on LIST .

At the conc lus ion of these ste ps , LIST wi l l  conta in som e

(possibly zero) subtree neighbor nodes that have been re—routed .
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Neighbors  of these nodes  t h a t  are not in the sub t ree  are

candidates for improved routes also , and starting with the LIST

generated in step 2 above , the mo di f i e d ve rs ion of the SPF

al gor ithm can be use d to res t ru ctu re  the rest of the t r ee .

If the l ine f rom A to B im prove d , but was not or ig inal l y in

the shortest  path tree for a gi ven no de , then the algor it hm must

first see whether the node can take advantage of this

improvement . Since the distance from the source to node A cannot

be im prove d , the di stance to B us in g the l ine AB wi l l  be equal to

the distance to A plus the new distance along AB. If this

upd ate d d istance is grea ter  than or equal to the or igi na l

di st ance from the sour ce to no de B , then the im prove d l ine does

not help and no changes are made to the tree or to the routing

table. If , on the other han d , the updated distance is less than

the o r ig ina l  di stance , then the best route to B wil l  now use AB.

The f irs t  change to the shor te st pat h t ree is the re fo re  to

re loc ate B (an d hence its sub t ree ), attac hing it to no de A v ia

line AB. Now the situation is identical to that of the previous

para g rap h in wh ich the l ine from A to B was in the t ree in the

first place and its distance decreased .

No de Chan ges
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First consider the case where node B goes down . This

s i tuat ion is easy to han d le wi th a slight modi f i ca t ion of the

steps for line changes described above; namely , the no des that

mu st be re locate d are those conta ined in B ’ s su b t r ee .  Thi s can

be accomp li s hed exac t l y  as in the case for an increase in l ine

lengt h ex cept that B is exc lu ded f rom the sub t ree , since this

no de is now ino perat ive .

If , on the ot her han d , no de B has been down but now comes

up, t he proce d ure is f irs t  to f ind the best route to B itse l f and

then to f ind no des that have im prove d di stance b y ta king

advantage of the fact that B is now operative. Specificall y, the

first step is to find the shortest distance to B by examining

di re ct routes f rom eac h of B ’ s neighbors. Node B is then put on

LIST. Candidates for re—routing re all nodes whose distance

from the source is greater than B’ s di stance , an d the bas ic SPF

algorithm starting with LIST containing only B , can be use d to

restructure the tree .

6.2.3 Consolidated Routing Algorithm

The basic SPF algorithm and all of the incremental cases can

be consolidated into the algorithm given below.

0. If no tree exists , put the source no de on LIST , an d go

to ste p 7.

~1
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1. If the chan ge was to the status of node B set DELTA

inf in i t e , an d if B went down , then go to step LI , else go

to step 3.

2. If the change was to line AB , then per form one of the

fo l l ow ing  ste ps :

a. If AB is in the t ree , set DELTA equal to the change in

distance along AB.

b. If AB is not in the tree , set DELTA equal to the

di stan ce to no de A plus the di stance along AB m inus

the distance to B; if DELTA is greater than or equal

to 0, done .

3. Identify node B as a member of the subtree.

LI. Identify all of B’ s descen dents (both f irs t  generat ion

an d succee di ng generat ions ) as mem bers of the su b t r e e .

5. Increase the distances of all subtree members by DELTA.

6. For each subtree node S perform one of the following

ste ps :

a. If DELTA is positive , t r y  to f ind a shorter pat h to S

via each of S’s ne ighbors that is not in the subtree;

if such an improved path is found , put the triple

re presen~ting S on LIST.
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b. If DELTA is negative , try to find a shorter path to

ea ch of S’ s non— subtree neighbors by attempting to

route each neighbor via S; if such an Improved path

is found , put the triple for the neighbor node on

LI ST.

7. Search LIST for the triple T with the smallest DI~’TANC E .

8. Remove T from LIST.

a
9. Place SON(T) on the shortest ~~~~ ‘ ‘~~~~~~ so ~ -at vs

father on the tree is FAThEP (T). (Fx cv

If SON(T) = S O U R C E , place it jr ‘.- ‘ r~~~~ as l ’ s  r oot

10. For each neighbor N of SON(T) . ~o o~~ of t’. ‘ - 
-

ste ps :

a. If N is already in the sh- r ’ p~~’ p$~~ ~~~~~~~~~~ 1’

i)  If  Its distance from SOI~RCE a1o~~ ‘ P-c r .e ts

less than or equal -o Dt5T4~C’~~

L I N E  L E N G T H ( S O N ( T ) , N ) ,  do n t ~~t”~

ii) If its distance from SOURCE a1on~ the ‘ r ee i s

greater than DISTANCE (T) + LINE LENGTH (SON(T)

N), remove N from the tree and place <N , SON(T),

D I STANCE (T) + LINE LENGTH (SON (T), N )) (f l  LIST
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b . If there is no triple T’ on LIST such that SON (T’ ) =

N , then  place the  triple <N , SON(T), D I STA NCE (T) +

LINE _LENGTH (SON (T), N )> on LIST.

c. If the re  is a l r e a d y  a t r i p l e  T ’ on LIST such t h a t

SON (T’) = N , and if DISTANCE(T’) less than or equal

to D I S T A N C E ( T )  + LINE LENGTH (SON (T), N), do

n o t h i n g .

d . If the re  is a l r e a d y  a t r i p l e  T ’ on LIST such t h a t

SON (T’ ) = N , and- if DISTANCE(T’) > DISTANCE(T) +

LINE _LENGTH (SON ( T ) N ), then

1) Remove ‘I’ from LIST

ii) Place the triple < N , SON(T), DISTAN CE(T ) +

LINE _LENGTH (SON (T), N) > on LIST

11. If LIST is non— empty, go to 7. Otherwise , the algor ithm

i s f i n i s h e d .

I
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6.3 Analysis and Data

When a given node receives an update message indicating that

some li ne has got ten  worse , t he amount  of t ime it ta kes to r u n

the incremental SPF algorithm should be roughl y proportional to

the num ber of no des in t hat l ine ’s su bt ree of the gi v en no de ’s

shortest path tree. That is , it is roughly proportional to the

num ber of nodes to which the delay has gotten worse . When a

given no de rece ives an upd ate messa ge indic at ing that some li ne

has gotten better , the amount  of t ime it ta kes to r u n  t he

incremental SPF algorithm should be roughl y proportional to the

number of nodes in that line ’s subtree after the algorithm is

run . That i s , it is rou ghl y pro port ion al to the num ber of no des

to which the delay got better .

6.3.1 Average Subtree Size -

One important measure of the efficiency of the SPF algorithm

is its av.~rage running time . As indicated above , we ex pect that

this is closely related to subtree size . Appendix 2 provides a -

simple derivation for a remarkable result:

—— In any  t r ee , the aver age su b t ree s ize is equal to t he
avera ge path len gth f rom the root to al l  no des.

Figure 6—2 provides a summary of the proof of this statement for

t he ARPANET , in which the average path length is 5.5.
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Average Path Length

h: 1 E iA 1 d Depth
n—i A 1 : No. of Nodes at Depth i

Average Subtree Size

~ A~•~~ B,~ Averag e Subtree Size
im i . at Depth i

1 d d

n-1 E ! Aj
i~1 J=1

In Regular Graph (Conne ctivity C)

/ ( c _ i ) d \ 1s :h :d I d ’\ ( c —1 )  —1 /  c—2

F i g u r e  6—2 Ave ra ge  Subtree Size Equa l s  Average  Path Length
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Fur thermore , the f rac t ion of all the networ k l ines app ear ing

in a given shortest path tree is 1/c , where c is the num ber of

lines per no de.  Thus , if we denote aver age path lengt h as h , we -

have the usefu l resu lt :  —

—— The expected subtree size of a given line in any node ’s
shortest path tree is h/c .

Appendix 2 shows that this provides an upper bound on the running

t ime of the SPF a lgor it hm , an d give s some numer i cal v alues for

h/c as a function of network size .

Figure 6—3 shows the significance of these results for the

ARPANET. (The running time of 1 to 2 milliseconds is discussed

in more detail in section 6.3.3 below.)

6.3.2 Distribution of Subtree Sizes

In order to determine the distribution of subtree sizes for

all l ines in the ARPANET , we used the comprehensive SPF algorithm

to construct shortest path trees for all nodes in a network.

Then we simpl y counted the subtree size of each line . We tested

man y sets of l ine lengths and foun d no s ign i f ic ant di f f e rences  in

the average subtree size . For non—congested networks , the

aver age su bt ree s i ze is about 2 , an d the med ian su bt ree s ize is

about 2. A surprising 1/3 of all nodes are leaves (have no

descendants) . A total of 85% of all lines have subtrees which
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hi Genera l ARPA NET

# Nodes N 62
# Li nes L 75
Connectivi ty c :2 .L /N  2.5
Average Path Lengt h h 5.5
Averag e Subtre e Size 

-For Lines in Tree s - h 5.5

% of Lines in Tree 1/c 40 %
Av erage Subtree
Size Overall h /c 2.18

Expected Running h
Time For SPF k • — ~- 1-2ms

Figure 6—3 Performance of SPF Algorithm
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are smaller than 11 nodes . A total of 95% of all lines have

subtrees which are smaller than 21 nodes. These facts are

consistent with the theoretical predictions , indicating that very

few of the lines in the network ever have very large subtrees.

We also modeled a badly congested , or damaged , networ k and

found the average subtree size to be about 5, and the medi an to

be about 9. The incr emental SPF algor ithms will , on the average ,

take longer to run in a congested or damaged network than in a

non— congested network.

6.3.3 Measured Performance of SPF

In order to get an idea of’ the absolute amount of space and

time it takes to run the SPF algorithm , we programme d SPF in

FORTRAN (actually RATFOR , a structure d programming vers ion) on

TENEX. Then we coded the algorithm in assembly language for the

316 IMP and Pluribus (1 processor) IMP , using the TENEX version

as a model. We were pleased to find all three versions required

app rox imatel y the same amount of storage , as shown in Figure 6—4.

To determ ine runn ing times , we randomly assigned each line

in the ARPANET a length between 1 and 20. We ran the

com prehensive SPF algorithm to initialize the data structure in

each node . Then we used a random number g~nerator to generate , 
-

in sequence , 50 routing updates. That is , f.ie picked 50 lines at
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ran dom and successively gave each a new random length . Every

time we chan ged the length of a line , we changed it by at least

15%. Also , som e lines were brought down by being ass ign ed a

length which represented infinity. Each time we did this , we ran

the incremental SPF algorithm in all the nodes . We obtained the

follow ing two empirical results for TENEX (surprisingly similar

results hold for the 316 and Pluribus implementation ):

a. The average time per IMP to run the incremental SPF

algorithm was 2.2 milliseconds.

b . The average time per subtree element to run the

incremental SPF algorithm was 1.1 milliseconds. That

is , if , for a given node , a particular update affected

the di stanc e to N dest inat ion nodes , the algorithm would

take 1 .1N m illisecond s , on the avera ge , to run in that

node. (The standard deviation was 0.46.)

Since we know that average subtree size for a non—congested

network is about 2, these two results are in agreement. Note

that th is is only an average figure. Actual times vary from

u n d e r  1 m i ll isecon d to 140 milliseconds. We also ran the

algorithm 50 times on a similar network , exce pt that certain

lines were g iven “length” 80, to simulate a congested or damaged

network. The aver age time per IMP to run the incremental

algor ithm increase d sl ightl y , to 2.14 ms.
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One v aluabl e lesson we learne d in thi s invest iga tion is that

we can use the storag e and tim ing results from one im pl ement ation

of an IMP algorithm on TENEX , the 316 , or the Pluribus , to

pre di ct quite closely the perform an ce of that algor ithm on the

other machines .
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6.11 Updating Policies

In prev ious secti ons we note d som e of the deleter ious

effects of the present ARPANET periodic routing policy—— in

part icular , the speed of adaption to network chan ges , the

ex cessive average line bandwidth used by routing messages , and

the delay induced in data traffic. Section 5.1 describes an

alternative techn ique, event— driven updating , in the context of

the ARPANET routing algorithm . The advantages of ev ent—driven

updating clearly apply also to the SPF algor ithm , an d here  we

di scuss some of the issues involve d in develo pi ng such an

updating policy for a routin g algor ithm like SPF , wh ich re quires

an identical data base at all the nodes. The updating technique

we des ign must meet the follow ing cr iter ia:

Normal IMP fa ilure IMP recovery
Operat ions or part ition or part ition end

Eff ici enc y Low CPU and Fast notif icat ion
line overhea d at low overhea d

Reliability Sequencing of No loss of Complete information
mult ip le upd ates upd ates made availa ble

F ive quest ions , about update data , addressing and routing, error

contro l , topology changes , and program im plementat ion are

considered below. Some questions are answered; others remain

open for now ; the conclusions are summarized at the end of the

section .
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6.11.1 Data Contained in the Update Message

a. One line vs. all lines at that IMP?

Sending information about all the lines at the IMP has

severa l advantage s:

—— more efficiency under heavy loading/many changes

(less than a fa ctor of c more eff ici ency, where c

num ber of lines/node)

—— less ambiguity about the sequencing of multiple

upd ates (when a node re ceives an upda te about one

line at an IMP , it gets synchron i zed informat ion

about the s t a t u s  of the  other li nes)

—— fewer ser ial number s re quired : one per IMP , not on e

per line (note : the si ze of thi s number shoul d be

determined by some analysis ; we have not yet done

so)

—- simplicity of performing periodic re—broadcasts if

desirable.

—— all lines can be updated somewhat more frequently,

so accurate “event” detection and event—driven

updating is less crucial.

I
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—— the most recent update conta ins all nece ssar y

information ; an ack system which checks only the

last number received is adequate .

Sen di ng only one li ne ’s data perm its a restr iction of no more

than x updates/time period/line , but that seem s not to be an

important advantage.

b. One IMP’s data or several IMPs ’?

Certa inly, the abil ity to combine several update blocks

into a single network message is an im portant eff icien cy

measure. This would be useful at the end of a network

partition , when sev eral IMPs need to report informat ion

to each other .

c. How should lines be identified? How should topological

changes be updated? -

It seem s most rel iabl e , general , and certa inl y sim pl e

enough to identify each line by the numbers of the IMPs

at each end rather than by any artificial numbering.

This permits any topological change (e.g., mo dem wire )

to be effected easily.

d. What information is needed for analysis and debugging?

136
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—— SYNC time at or igi nation , to tell how long an update

t akes

—— Ser ial numbers on each upd ate block , to detect

m isse d up dates

e. What should the format be?

Ii
[
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SYNC TIME AT ORIGINATION I 0
HEADER FLAGS # OF BLKS

SOF1WARE CHECKSUM
THIS IMP NO. #NEI SERIAL NO.
NE! IMP 1 N :TOPOLOGY INFO

0/ UTIL DELAY (5ms units ) :TRAFFIC INFO
UPDAT E IMP 2 IBLOCK

IMP 3 I 
ITHIS IMP NO. ‘I- _t . — - — - - 1

POSSIBLY IMP 1 1

MOR E ‘ 4
BLOCKS IMP 2 

-
I -~

I.. j

Length(bits): Hardware framing 72
Sof tware  hea der 148
Each block 16 + 32* #NEIs

Some 1 Update , 2—line node = 200 bits LIms € 50 Kbps
exam ple 1 U pd ate , 3—line node = 232 bits 14.6 ms € 50 Kbps
updates 9 Updates , 3—line nodes 1128 bits 22.6 ms ~ 50 Kbps

Fig. 6—5 Routing Update Format
Figure 6—5 shows a suggested format . Note that there is
no address (no to: field) in the update ; this question
is considered in the next section .

6.14.2 Addressing and Routing Updates

There are two general types of approaches:
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a. “Broadcasting ” , in which the source addresses the update

explicitly to all nodes , and routes it to each node

along the best path . (This is discussed in ARS #23.)

Such a scheme requires N—i packet hops for the

broadcast , which is optimal .

b. “Flooding ” , in whi ch each node sen d s each new upd ate

(one it has not seen before : t he ser ial num ber is

larger than the last one received about that IMP) on all

its lines except the line on which the update was

received . This requires L—N+i packet hops (where L is

the number of lines in the net count ing each di re ction),

I 

since an update will flow on all lines except

“backwards ” on the N— i lines of the broadcast tree from

the source. If we define L=cN , wher e c=average

connectivity, then this number of updates is oN— (N—i) =

• (c—1)N +1 .

What can we say about these two methods , A an d B? Fir s t ,

let’ s consider efficiency. The most important consideration in

efficiency is line bandwidth; CPU bandwidth requirements can be

shown to be very small.

Method A: The message is b+N bits long, where b is the

num ber of bits in the body and N is the N—bit address. Thus the
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total number of bits on all lines is (b+N)(N—1). Therefore , the

total bit rate per line if each node updates every t seconds is

N(b+N)(N—1) (b+N)(N—1)

cNt ct

Method B: The mess age length is only b bits , thus the total

number of bits on all lines Is b((c—1)N+1). The total bit rate

per line is

bN((c— 1)N+i ) b((c—1)N+1 )

cNt ct

Method A is quadratic in N , which means for lar ge enough N

it will become more expensive than Method B. The crossover point

comes when

(b+N)(N-1) > b((c-1)N+1 )

The ex~~”t solution has a messy form; it can be approximated as

N > b(c—2 ) j
That is , when N > b(c—2), Method B is more efficient. This is

illustrated in Figure 6—6 below for b=200 bits , t=100 seconds.

For c= 2.5 (ARPANET ), crossover comes near 200*.5:100 nodes. For [
c= II , crossover is not until 1400 nodes. Note , however , that for

c= 2.5 both methods A and B require less than 100 bps (.2% of 50

Kbs) to update 80 nodes at a rate of once every 100 seconds. The

1 110
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100C 
— ~ ~ I I I I I I I I I I I I I I I I J~I~’~~’ I~~ /’l—

8 -  -

7-  -

6 -  -

5 —  -

4 -  -

3 -  -

2 -  -
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~~1o— -
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Fig. 6—6 Routing Overhead per Line (assuming 1 update/node/ iOO seconds)
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line overhead scales linearly with t , the upd ate rate , so other

strategies can be compared simpl y by relabelling the y axis. For

instance , if t=iO sec , then updating in the ARPANET (N—62 , c=25)

would require 750 bps (1.5% of 50 kbs).

Some interest ing points emerge from examinat ion of F igure 2:

—— Method B (flooding) is a straight line on log—log paper ,

with pra ctically no depen dence on c. This makes it

useful for long—range planning, since it is not

sensitive to network topology.

—— For a given number of nodes Method B grows less

eff icient as the net is more highly connecte d , wh ile

Method A grows more efficient.

—— Method s A and B are quite similar for ARPANET— size

networks (50—200 nodes) .

—— The magn itude of the updating overhea d is very low , even

for large nets.

Since flooding is more eff icient for large nets , an d is ve ry

eff icient in ab solute terms for small nets , it is the best

overall choice for efficiency. For the ARPANET , the two method s

have nearly identical efficiency. The choice between them should

be made on other grounds.

1142
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A second important advantage of flooding is that the IMP

sends the same me ssage on all its li nes , as opposed to creating

separate messages with different bit—vector addresses on the

dif.c
~erent lines . This may make it considerably simpler to

program the update mechanism , since there is no problem of

reserving buffers or dealing with the situation in which the IMP

has no more bu f f e r s  for ~pdate copies .

A final consideration which favors flooding is that it does

not depend on the correct operation of the routing algorithm .

This makes it a safer , more reliable system than broadcast. This

also covers the special case of sending updates on dead lines ,

which helps to speed the update process , and avoid various

unlikely error cases (e.g., one line at an IMP comes up at the

same tim e its other line goes down , so it misses an update) .

6.11.3 Rel iable Transmission of Updates

a. Should updates be acknowledged? How?

At first glance , it seems essential to ack updates to make

sure they get through , and this is useful for flooding:

If updates are acked at each hop, then with flooding
the upd ate wil l be re ce ive d at all nodes wh ich have a
path to the source at the time of the update .

I
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On the other hand , with broadcasting using an n—bit vector ,

transm ission is not reliable . Two exam ples are (1) a node which

rece ives an upd ate , acks it , and then fa ils , and (2) a section of

the network which is partitioned from the rest while an update is

flowing through it destined for the main body of the net . In

each case , an update will be lost .

Under broadcasting , acking updates at each ho p is not
suffic ient to ensure relia ble upd ating of all nodes
which have a path to the source at the time of the
upd ate .

If we decide to use a positive ack/retransmission system for

rout ing upd ates , then we have to build the r ight data and control

structur es in the IMP. Some possibilities are:
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Method Problem s

1. Use regular modem Need different channels for
logical channels and acks transmission on different lines .

What to do if no channels
are available.

2. Invent a new set of Adds complexity to the IMP
logical channels for (packets on multiple queues , etc.)
routing , common to all lines.

3. Send all acks Slower reaction to a
periodically rather than lost update than usual
one at a time in separate messages. ack system .

One last possibility, though not an ack system , is:

11 . Send the update once only, Even slower error recovery,
and rely on a periodic though very reliable in
retransmission to ensure it the long run .
gets through.

Method 1 is not very workable , since there are problem s

associated with copying the update into several buffers for the

different outputs , setting up channels and queues in a

non—disruptive way, and dealing with the case of no available

channels.

For Method 2, the ack would look ver y similar to today ’s

packet acknowledgments , though there might be a need for more

than 8 ack channels if we want to make very sure there is no

blocking for lack ~f channels. The expected number of updates

per ack would be very small , since there are very few

updates/line/second with either broadcastin g or flooding:

I
I
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N—i 25
broadcasting : — — — ;  for ARPANET = — —  = 25 times routing update rate

ct t

(c— 1)N+i 35
flooding : ; for ARPANET —— = 35 times routing update rate

ct t

Thus , if routin g updates were generated once a minute on average

by each node , then an update message would flow over each line

every two seconds on average.

For Metho d 3, we could use the periodic Hello/IHY message

ex change to carry a one—bit odd/even bit for each node. This

would require an additional N bits per Hello/IHY message , rather

than a separate ack message for each update -. A drawback of this

scheme is that the sen der is “blocked” from sending another

update about some IMP until the previous one is acked .

We now compare these two possibilities in terms of the extra V

line overhead they require. In both cases , we will assum e a 
-

~~

136—bit Hello/lilY message is sent every 6110 ms , contributing 212

bps of overhead , and we are concerne d only with additional

overhea d beyo nd this: .1

I
:i
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Method 2 Metho d 3
Separate Acks Al l Acks in He llo

broadcasting 136 (N— i) N 
bps ——— bps

ct .614

flooding i36 ((c—i )N+1 ) 
bps

ct

This assumes separate acks are 136 bits long . We can solve

var ious equalities to show the following statements are true for

all va lues of N (all network sizes):

—— Separate acks with flooding use 50% more bandwidth than
separate acks with broadcasting.

—— All acks in the He llo are better than separate acks if
t , the routing update period , is small :

broadcasting : if t<311 secs , Method 3 is better .
flooding: if t<52 secs , Method 3 is better.

—— Any ack method will contr ibute signif icantly to line
overhea d , as much as doubling the routing overhead.

The amount of line over head use d by the two ack me thod s is

shown in Figure 6—7 , for both broadcasting and flooding in the

case of separate acks , for t= 1O secs , and t=100 seconds. (t is

the average time between routing updates generated by each node.)

The total overhea d associate d with rout ing is the sum of the

routing update , acknowledgment , an d Hello/IHY overheads. For the

cases under cons iderat ion , we have

V 
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Rout ing Ac k Hello Tot al

Broadcasting:
Separate Ack (200+N)(N—i ) 136(N—i ) 136 (336+N)(N—i) 136— — — 4 -—-

ct ct .611 ct .611

Ack in Hello (200+N)(N—1 ) N 136 (200+N)(N—i) i36+N
--- --— +

ct .614 .614 ct .614

Flooding:
Separate Ack 200 ((c—i)N+i ) 136((c—i)N+i ) 136 336((c—i)N+1 ) 136 

4 -—-
ct ct .614 ot .611

Ack in Hello 200((c—1)N+i ) N 136 200 ((c—i)N+i ) i36+N
-— +

ct .614 .614 ct .611

These four cases are compared in Figure 6—8 ,

for t:100 sec
— c=2.5

As an additional precaution , es pec ially durin g test an d

installat ion , we can use Method 11 to periodically re— flood the

net with the routing information from each source. For instance ,

we could set the periodic rate at 1/100 seconds , which would add

onl y 80 bps to each network line. (This can be accomplished by a

metho d like we use for cumstats to stagger the transmiss ions by

IMP num ber over the whole time interval. The interval can be 105

seconds:25.6 ms*l$096.)

114 9
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W ith any ack met hod , there is the chance of furt her

foul—u ps. With a separate ack scheme , the sen der must  kee p a

timer for each un—acked update , and resend it periodically. With

the ac ks carr ied in Hello messages , there is the chance that the

rece iv er will have just sent a Hello conta ining the ol d

serial number bit when it receives the new update , caus ing the

sen der to r~~ ransmit the update unnecessarily. The probability

of the update and an “old” ack crossing in mid— flight is

s = time to send upda te
s+r r = time to send Hello/ack

p p = period for sending Hellos (0.611 sec)

For typical ARPANET land lines s and r will be equal and sma ll :

queue ing delay 10 ms
transm iss ion delay 5 ms
spee d of light delay 5 ms
process ing latency 5 ms

TOTAL 25 ms for s or r
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Send Rece ive Receive
Sen der Update Old ack new ack 

x x ~—x 

Sen d Sen d
Rece iver Hello Hello 

x x x x x -

ol d new
ack ack
< > 

AP -

s+r 5O ms
Thus  8% spurious retransmissions. -

P 6IIO ms

Alternat ively, the IMP coul d kee p a clo ck for ea ch

destination which would ignore any Hello/acks within the last x

ticks (e.g., a two—bit counter of 25 ms ticks that is set to ii

at update time , and is then run down to 00 before any

retransmissions are attem pted). This would be necessary on

satell ite l ines , where the pro babil ity of retr ansm iss ion w ithout

the timer becomes close to 1. There the timer must be longer ,

e.g., 600 ms. -

6.11 .14 Updates about Topology Changes - r

a. When a single line comes up or goes down , it is reported -

by flooding the net with the corresponding update. -

b. When a single node goes down , it is reported as multiple .1

lines going down . It is too difficult to determine if a -r
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node has gone down in any “direct” manner . When a node

is detecte d to be unreacha ble , the ta ble entr y for t hat

no de shoul d be marke d with a “dead” bit indicating that

its line delay values are invalid . When it comes up

again , the bit can be cleared .

c. It is unnecessary to explicitly report a node coming

up; the fact that its lines come up is enough . On the

other han d , we might prefer to wa it for an upda te from

that no de to clear the “dead” bit.

d . When a node comes up, or when it r e t u r n s  f rom a

part it ione d state (in whi ch it was isolate d from several

other network nodes —— typically when its line(s) to the

networ k were down ) it must get a com plete upd ate of all

network rou ting informat ion , sin ce an in determ in ate

num ber of updates have taken place. Two possibilities

ex ist:

( 1 )  The two adjacent no des which were isolate d fr om ea ch

other sen d each other the ir ent ire rout ing ta b les

(delay information on all lines).

(2) The two adjacen t no des exc hange al l ta b le entr ies

for which the dead bit is off.
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The f irst is somewh at s impler to program , but uses more

line bandwidth than the second. If the table is

garbage—collected or compacted to remove entries for 
V

unrea cha ble no des , then the two methods are identical.

If com pact ion is not too d iff icult , it is probably the V

best method .

e. When a node receives such an update , possibly containing

informat ion on man y no des prev ious ly unreac hab le , it

treats it like a normal single—node update , and sen d s it

to its neighbor nodes by the flooding method . This 
V

works well for both sides when an IMP that was down

comes up ; it gets all the tables from its neighbor , and

the rest of the net gets its own s ing le ta ble entr y .

f. Several messages may be required to send all the routing

information to a node or nodes which were previously

isolated . (About 15 node tables can be packaged in each

packet.) Although it will not lead to optimal routing

during the transition , it seem s s im p lest for each no de

to process all the updates as they arrive , an d to start

sending traffic on those paths before receiving all the

other updates.

1 511

—--- - -V - ~~~~~~~~~~~~~~~~ — — - ~~~VVVV — ~~~~ —



I
Report No. 3803 Bolt Beranek and Newman Inc.

g. There is no need for an IMP Coming Up state or timer ,

since routing should flow as quickly as data packets.

h. There is no need for an IMP Going Down state or timer ,

since reachability is determined explicitly.

6.11.5 Pro gr am Modules for Updating

a. Re ce ive upd at e : Level

For each IMP—block in update: Modem In
If ser ial no. > present serial no:

Copy data into table
Mark which line(s) changed
Update one—bit serial no/ack

If some ser ial no. is new : Modem In
Queue update packet for output
on al l ot her line s

If some line changed: Fast Timeout
For each line that changed :

Run incremental SPF

b. Send update:

If update packet queued: Modem Out
Remove from queue , transm it
Set t imer to ignore acks for x secs?
Af ter transm i ss ion , call FLUSH to free packet

c. Generate update:

If any line ha s gone d own , com e up , or chan ged Slow T im eout
delay significantly, or if i OO secon d s ela pse d
sir.ce last update

Inc rement ser ia l num ber by 1
Copy all line data into update packet
an d queue for  out put

155

_ _ _  - --- - - V — V V~~~ --



Report No. 3803 Bolt Beranek and Newman Inc .

d . Rece ive ac ks in Hel lo:

For eac h IMP: Mo d em In
If re ce ive d ack not equa l to present ser ial no : or TA SK

co py IMP’ s data into upd ate buffer
If buffer is full , queue for output
on t hi s line

If upd ate buffer not em pty:
Queue for out put on th is line

e. Send acks in Hello:

Copy table of low—order bits of serial nos. Modem Out
into Hello

Based upon the discussion above , we can state t he fo llow ing

conclusions about event—driven updating policies for the SPF

algor ithm :

—— Flooding seem s preferable to broadcasting.

—— Putt ing acks in Hellos seem s a little better th an

separa te  acks , but t here is the pro bl em of what to do if

a new update arrives before the old one is acked .

—— We shoul d stu d y the behav ior of t he algor it hm un der

chang in g network topolo gy, to determ ine how fast it

works , how big the serial num ber shou ld be , etc.

156

- - .-r V - - - ---- — --~- -  - --



Report No. 3803 Bolt Beranek and Newman Inc.

6.5 Comparison of SPF to Current ARPANET Routing

The SPF al gor it hm is s im ilar to the current ARPANET rout ing

algorithm in everal ways. Both are single—path algorithm s, and

hence can never produce optimal routing. Also , the SPF algorithm

can generate the same sort of routing table as currently exists.

Therefore it woul d re qu ire no chan ges to the forwar di ng

procedure.

The most fun d am ent al di f feren ce bet ween t he two a lgor it hm s

has to do with the fact that SPF is line—based , where as ARPANET

routing is path—based. That is , the ARPANET routing algorithm

knows not hi n g of the  to pology of the networ k, and it does not

know the state of any lines other than the lines which are local

to t he IMP t he algor it hm is runn ing in. All the curren t

algorithm knows is the aggregate delay along various paths it

cons id ers (it knows onl y the next hop on each path , an d hence

cannot distinguish among paths for which the next hop is the

same.) SPF , on t he other hand , must know t he to polo gy , as well

as the state of each line in the network. This has an obvious

disadvantage —— SPF needs a larger data base , hen ce more memory.

However , SPF ha s man y advanta ges:

1 . Reachability. The ARPANET algorithm has to do

everyth ing tw ic e , on ce to f ind the least delay paths (for

I
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rout ing) and once to find the mm —hop paths (for reachability

considerations) . Even so , t he ARPANET is slow to dete ct

unreachable nodes. When a node crashes , no other no de c an

possi bly declare it unreacha ble unt il a per iod of ten sec on d s

elapses. In ten seconds , a lot of traffic for the unreachable

node can bu ild up on network queues , interfer ing with other

traffic flows and causing network disturbances . This

reacha bility problem is a feature of any path—based routing

algorithm . When one or more lines go down , t he IMPs can

determ ine that they have los t the ir pa t hs to sev era l

destinations , but they have no w ay of determ in ing the cause of

their losing these paths. Rather , the IMPs o perate on the

assum pt ion that if they lose a path to an IMP wh ich is not

unreacha ble , a new path will appear within some max imum period of

time (chosen in the ARPANET as ten seconds). Therefore , if no

new path app ears in that t ime , they assume the IMP is

unreacha ble.

The SPF algor ithm , on the other han d , makes it easy to

determ ine rea cha bi l ity, and without the use of any heuristics.

With t he SPF algor i thm , the IMPs must know the state of each l ine

in the network. It follows that they know of each IMP whether it

is reachable or not . This information is available as part of

the regular rout ing algorithm , an d would be available in much

less than ten seconds.
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2. Loops. Unless a routing algorithm ensures that all IMPs

run their routing calculations off the sam e data base , it is

possible that loops will form . That is not to say that the SPF

algorithm produces loops within a given node ’s ro ut ing ta b le ——
the SPF algorithm is guaranteed to produce a loop—free shortest

path tree in every node. However , if d if ferent no des di s ag ree

about the state of some li ne , they may well produce conflicting

trees , thereby causing packets to loop. However , t he fac t  t hat

an algor it hm perm its trans ient loo ps is on ly a very m inor po int

against it. A loop is just a certain sort of sub—optimal traffic

f low , an d is inherent ly no more harmful than any other sort of

sub— optimal traffic flow. Loops present a special problem only

if they last for unusually long period s of time , or if they slow

the convergence of the algorithm .

A ) The ARPANET routing algorithm with hold—down permits

loops to form an d t hen pers ist forever , effect ively mak ing

certa in no des spur iously unreac hab le from certa in areas of the

network. To prevent th i s , a special check has been added to the

network to detect these loops and break them . The SPF algorithm ,

however , would never permit loops to last for more than an

extr emely short period . Updates on line status could be sent

aroun d the network very qu ickl y , so that t here coul d be onl y a

very short per iod of t ime when no des di sagree about the status of
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a particular line. Hence , loops should be short—lived , an d not

particularly harm ful . (Of course , t hi s assumes t hat line status

does not os ci llate rap id ly. Hysteres is in the line proto col

prevents rapid oscillation between the up and down states. And

the fact that the updates will be average values over some time

interval with bias factor as necessary should prevent successive

updates from oscillating.)

B) The conver gence of the ARPANET rout ing algor ithm is

slowed down considerably when loops form . The reason for this is

that the presence of loops contaminates the update procedure.

On ce a loo p forms , many IMPs will be generating routing update

messages containing false information . These in turn cause other

IMPs to generate upda tes w it h false informat ion , and the

al gor i thm w ill not st abi lize unt il all the false informat ion is

purged . With the 5FF algorithm however , the presen ce of loo ps

would have no effect on the conveyance of the algorithm . Since

upd ates conta in informat ion about lines , rather than paths , the

presen ce of loo ps coul d not contam inate the upd ate process at

all . Therefore , the loops would not be very harmful .

3. Amount of Work. The ARPANET routing algorithm runs at a

particular frequency whether it has anything to do or not.

Further , the amount of t ime it takes to run is completely

independent of whether or not any routing changes need to be
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ma de. The SPF algorithm , on t he ot her hand , uses event—driven

upd ates , so that it runs only when there is some work for it to

do. Further , the amount of t ime it t akes to run is di re ctl y

proportional to the amount of work it has to do. If it is

necessar y to make a lot of rout ing changes , the SPF al gor it hm

will take longer to run t han the current ARPANET al gorithms. But

in the much more likely ca se t hat t here are only a few ro ut ing

c han ges to make , the SPF algorithm runs very quickly.

We note in c los ing that the ARPANET al gor it hm coul d be

modified to calculate reachability based on delay , no t to use

ho ps , and to do event—driven updating , as described in Section 5.

However , the SPF algor ithm benefits more from these techniques

than the ARPANET algorithm does.

1~
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6.6 Conclusions

The princ ipal conc lus ions from our in it ial invest iga t ion of

SPF are:

1. A shortest path algorithm which runs independently in 
V

each IMP is a practical alternative for ARPANET routing .

2. An incremental version of such an algorithm has very

attract ive chara cter ist ics , perm itt ing eff ic ient

o perat ion whi le fac i litat ing ra pid res pons e to netw or k

changes.

3. The time required to generate the shortest path tree

from scratch is not excessive (approximately 30—50

msec )

11. The average time required to update the tree for a

network change is small (1—2 msec) . This tim e is

approximately proportional to h/c , where h is average

path length and ~ is the average number of lines per

node. -

5. The worst— case time to update the tree for a single

change is less than the time required to re—generate the

tree -.
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6. The memor y requirements for the algorithm and for the

asso ciate d data structure are rou ghly 1100 wor ds an d 280

wor d s , respectively.

7. Programming SPF on TENEX first , an d then re—coding for

the 316 and Pluribus was a useful approach.

Furt hermore , runn ing times and memory requirements for

3FF showed close agreement among all 3 machines ,

suggesting that future results from one implementation

can be used to predict performance on the others .

8. Efficient and reliable updating methods can be

im pl emente d for transm itt ing da t a about chan ges on any

line to all nodes.

9. SFF has significant advantages over the present ARPANET

algorithm , an d furt her work shou ld be carr ied out

towar ds its eventual installation in the ARPANET .
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7. MESSAGE ADDRESSING MODES

Th is se ct ion di scusses the us e of enhan ced mo des of messa ge

addressing in the ARPANET. The basic mode of operation of many

computer networks to day is that the su bscri ber presents a message

to the network with a physical address corresponding to the

dest inat ion su b scr iber ’s number. Three other possibilities have

been considered for the ARPANET: logical addressing , in which

one of sever al physical addresses is denoted by a single logical

address , mult i—destination addressing , in which a list of

physical and logical addresses is provided , and group addressing,

in which a single address denotes a group of logical and physical

add resses.

Logical addressing is closely related to the issues of

mult ip le hom ing of sub scr iber s to networ k ports an d t he us e of

on e net wor k port for the connect ion of severa l di st inct

subscribers. In other words , a general network addressing

stru c ture shou ld perm it many phys ical add resses to corres pon d to

a s ing le log ical add ress an d one phys ical add ress to corres pon d

to many logical addresses. The translation of logical addresses

to phys ical add resses is an im portant problem and can be han d le d

differently in virtual circuit networks and in datagram networks.

In a v irtual circuit network the address can be translated once

per connect ion at the source , permitting all packets in a given
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v irtual circuit to flow to a particular physical address. On the

ot her han d , in a datagram network the address of each message can

be translated separately at the source node or at each

interme di ate no de in the network. Pac kets can f low to any

physical address.

The problem of failur e recovery in a logical addressing and

mult i—homing environment is a complicated one . Failure recovery

proce dures can be s pecif ied in wh ich all poss ib le netwo r k status

informat ion concern ing t he v irtual conne ct ion (or data gr am flow )

is communicated to the subscriber . However , there are cert ai n to

be situations in which the network cannot provide a subscriber

with complete information concerning the extent of the failure.

Mult i—destination addressing and group addressing is most

eas i ly accom plishe d for data g ram networks s ince (1) it is not

necessary to se t up mult ip le conne ct ions for a part icular

transm ission , an d (2) com pl ica ted error control an d flow control

strategies nee ded w ith mult ip le messa ge num bers , acknowle dgments

and allocations do not flow over the sam e multi—destination

circu it. For a datagram with many addresses the problem is

simpl y to route t he data gram correct ly an d eff ic iently t o t he

destinations.
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The effic iency of a multi—destination or group addressing

system depends critically on the routing algorithm used . One

useful metr ic for determ ining the eff ic ienc y of a

mult i—destination system is the number of pac ket ho ps re qu ire d to

transm it a given packet to all the destinations. A routing

al gor ithm wh ich m inim izes the num ber of packet ho ps nee ded for

mult i—destination transmissions can be constructed on the basis

of a standard minimum hop routing algorithm for single

destination packets. In addition to this algorithm , it is

necessary to provide a multi—destination address in the header of

the packet . When the packet arrives at an intermediate node , the

node simpl y creates as many copies of the packet as there are

d ifferent routes in the minimum hop routing table for the

different destinations in the header . Each time multiple copies

of a packet  are crea ted at a no de , each copy is assigned the

appropriate subset of the destinations for which that path is the

m inimum hop path . In this way a broadcast of a given packet to

all n— i other nodes in the network can be accomplished with only

n— i packet hops , wh ich is optimal. (Note that other single—path

rout ing algor i thm s such as a min imum dela y routing pro cedure are

also o pt imal for a b roa dcast to all other no des , though not for a

message addressed to fewer subscribers.)
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The rout ing strate gy we pro pose wor ks as follows :

a. The address of a packet is an n—bit vector with bit I
equal to 1 indicating that the packet should be sent to
IMP I.

b. The routing table in each IMP can be represented as 1
n— bit vector per line in which a one—bit on line L for
destination I ind icates that line L is the best route to
IMP I.

c. The routing decision can be carried out by each IMP
rece iv ing a messa ge w ith a particular add ress
subtracting its own address bit from the n—bit address
vector an d then perform ing a calculat ion to determ ine
the add resses for the one or more packets wh ich are to
be sent out to the IMP ’s other lines. For each of the
ot her lines L t he new add ress equa ls t he AND of t he
incoming address and the n—bit route vector for that
line. A packet should be sent out on line L if the
result ing add ress is not all zero .

We next analyze the perform ance im provement ga ine d b y

mult i—address messages , me asured in packet—hops : the number of

hops traversed by each packet summed over all packets

transm itted . The following definitions will be useful :

n Num ber of no des in net
a Num ber of add resses

p(a) Number of packet hops
h Average path len gt h
c Avera ge no de conne ct ivi t y
d “Depth” of SPF tree (see ARS #23)

For se para tely add resse d pac kets , it requires h’a packet—hops on

an average to transmit a packets. For multi—address , p(a) is a

more compl icate d function :

167

- 
~~~~~ -c.rr - - . - - ~~- V -- -



Report No. 3803 Bolt Beranek and Newman Inc.

Cha in of R ing of Fully General
no d es _ no d es conne c te d net net

p (l) n+1 n+1 (n odd) 1 h = d — 1
3 c 2  - .

p (2) 2 n+1 
— 

(n—3)(n+1) 2 2h — ?
- 121n—2) 

- -

p (n—2) n—2 + n— 2 n—2 + n— 3 n—2 n—2 +?
n n— i

p (n—1) n—i n—i n— i n— i ~

A little thought shows that p(a) < h* a for all a , and
p(a) > a for all a.

Furt hermore , p (a+b) < p(a) + p (b); p(a) is concave downward .

Figures 7—1 and 7—2 below show some investigations we made

to determine the behavior of p(a) for the ARPANET . The best fit

we have for p(a) is approximately:

p(a) = ha — (h~ 1)a’log~~ 1 (a)

That is , the percentage improvement of multi—address over

separate addresses is given (approximately) by

(h_i)a *log~~ 1 (a)

‘I
- i
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Figure 7—i Multi—Address Packets: Number of Packet Hops
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In Gener al For ARPANET

a=1 0 a=1 0
a= n— i 1 h — i  a=8 140% (from 1111 to 26)

2 h

a=n— i h— i a= 6i 81% (from 336 to 6i)
h

% Im provemen t

For t he ARPANET ,

num ber of no des n = 62
connectivity c 2.5

• “depth” d = 6.36
pat h len gth h = sub tree s i ze s = 5 .5
trees/ar c = n— i = 25.2

c

Thus , in a network with a path length of 5, the greatest

im provemen t  in num ber of packet hops , 80%, occurs  when add ress ing

all other nodes in the network. When addressing a number of

dest in at ions equ al to the squ are root of the num ber of no des in

t he netwo r k, half of this relative improvement , or about 110% is

* obta ined. We have calcul ated for the ARPANET t hat add ress ing a s

few as 5 to 10 dest inations in t he same pac ket resu lts in a
- - 

savings of 25% to 50% of the packet hops required with

separately—addressed packets.

The issues of formatt ing p ackets an d messages w ith lo gical

ad dresses and multi—destination addresses deserve some

consideration . Group addressing is simpler to impl ement in the
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network since it requires a relatively small change to the 

subscriber software. On the other hand, multi-destination 

addressing is more flexible and useful to the subscribers but 

requlr~s a fairly major ch3nge in the subscriber-to-network 

format. Careful ~LL~ntl~n must also be given to t~~ in~eraction 

between logi0al addressing and group addressing, since group 

addressing in general should permit reference to logical ~~ well 

as physical addresses. If a group address refers to several 

logical addresses as well as physical addresses, then the 

translation of logical to physical addresses must take place at 

the source node. Figures 7-3, 7-4, and 7-5 present the packet 

form2ts we propose for multi-address and group address packets in 

the ARPANET. 

There are considerable advantages to installing the enhanced 

messgge addressing modes discussed in this paper. Logical 

addressing provides for considerable operational flexibility and 

reliability. The use of multi-destination and group addressing 

has been shown to lead to significant r~duction in network 

traffic, even for the case of .relatively few destj_nations per 

message. One of the important conclusions from this work is that 

datagram networks which facilitate the use of logical addressing 

and multi-destination addressing may have some important 

advantages over virtual circuit networks. These advantag~s have 

not yet ~een fully considered by the network design community. 
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Appen d ix i DATA GATHERING METHODOLOGY

Our basic technique for gathering data was to use the IMP’s

packet—trace package. For every rith packet which arrives at a

g iven IMP , where n is a set.table parameter , packet—trace

generates a trace block , which contains certain information about

the packet. Periodically, the IMP gathers together all the trace

blocks , stuffs them into a packet , and sends the packet to a

specified collection point. This enables us to gather

informat ion about a sam ple of the packets wh ich pass through a

given IMP.

The trace block conta ins the follow ing informat ion about the

packet it corres ponds to:

a. The time the packet arrived in the IMP.

b. The time the packet was queued for transmission .

c. The time the first bit of the packet was transmitted .

d. The source and destination of the packet.

e. The output line (or host , as the case may be) on which
the packet was transmitted .

f. The priority of the packet.

g. The number of data words in the packet .

h. The number of packets which are ahead of the given
packet on the modem transmission queue . (This is not
part of the standard trace package——it had to be patched
in.)
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To com pute the pro cess ing delay (delay due to queue ing for the

processor as well as to the process ing itself ) , we subtracted a

from b . The modem queueing delay is obtained by subtract ing b

from c. The transmission delay is a function of g. The

propagation delay is a constant for a given line . Thus the trace

blocks contain enough information to enable us to compute each of

the four com ponents of delay.

Ther e are , however , certain important limitations to this

methodology. These limitations have to do with sampling

f re quen cy ,  sam pl ing con tent , timin g cons iderat ions , and the

natur al variability in the traffic itself. -

a. Sam pling Frequency. We originally attempted to time

every 5th packet through an IMP. We found , however , that we were

unable to collect the resu ltant trace output on TENEX , perhaps

because of TENEX throughput limitations. When we attem pted to

trace every i Oth packet , we had no collect ion pro blems , so we

gathered all our data at the frequency of every 10th packet. The - -

less fre quently the data is sam pled , the more likely it is that

certain chara cter istics of the data are merely artifacts of the

sam pling technique. Our data must always be evaluated with this
--

fact in mind.

I
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b . Sampling content. The first time we looked at the trace

data , we not iced that packets which originated from local hosts

had processing delays approaching a quarter of a second . Since

tandem packets had much smaller pro cess ing delays , we concluded

that most of the delay ex per ienced by the host packets was due to

end— end considerations. As we were only interested in measuring

the delay due to store—and— forward considerations , we were for ced

to exc lude from our sam ple all packets wh ich or iginate d from

local hosts. We could not prevent trace blocks from being

generated for such packets——rather , we had to ignore those trace

blocks. In addition to being arbitrary , this further red uced our

effect ive sampling frequency.

c. Timing considerations. The time stamps in the trace

block are taken from the iOO—micro second clock. This clock wraps

around every 6.6 seconds. This is not a serious problem in

determ ining the delays ex per ience d by a part ic ular packet since

it may be safe ly assumed that no packet stays on any queue for

more than 6.6 seconds. The wrap—around is a problem though in

tr ying to determ ine the relat ive arr iv al times of di fferent

packets. For the purpose of plotting delay vs. time , we assumed

that the clock never wra pped aroun d more than once between the

creation of success ive trace blocks. This assumption may or may

not be true in all cases.
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d. Vaiability in traffic. User—created traffic is

extremely var iable , and when com par ing di fferent measurements , we

have no way of controlling for it. We gathered data under three

different conditions—— ordinary traffic , artificially created

heavy load , and artificially created heavy load with reduced—rate

routing.

a. Ordinary traffic. We gathered data from four

IMPs——LIN C , ACCAT , 1SI22 , and MIT6. Data from MIT6 was gathered

on two separate occas ions , one of which was the same day that

data was gathered from the other three IMPs. In all cases , we

traced every tenth packet for a period of about 10 minutes.

b. Artificially created heavy load. We traced every 10th

packet in MIT6 for a period of about 15 minutes. Five minutes

into the run we turne d on WPAFB’ s mess age generator , having it

send single packet messages to MITJ4LI at the maximum frequency.

We turned the message generator off after five minutes . We did

this twice , once with minimum size packets and one with maximum

size packets.

c. Artificially created heavy load with reduced—rate

routing . We repeated the previous experiment with the following

d ifferences:

it

T I
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i. WPAFB , MIT6 , and MIT4I4 were patched to always send

routing at the minimum frequency (once per slow tick) .

MIT6 ’ s third neighbor , CCA , was not patched , and

presum ably cont inued to sen d routing at the constant

Plur ibus frequency of twice per slow tick.

ii. Instead of using minimum size single packet messages for

one of the runs , we used maximum size e i g h t — p a c k e t

messages.

I
1•
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APPENDIX 2. A COMPLEXITY BOUND FOR THE INCREMENTAL SHORTEST PATH

PROBLEM

Summary . The avera ge number of nodes in the subtree of a

given line in a tree is equal to the average path len gth from the

root to any node. This number divided by the average number of

lines per node re presents an upp er boun d on the ex pected num ber

of route chan ges neces sary at each node when recom puting shortest

path s to all other nodes after the distance value for one line is

chan ged .

A2— 1 Introduction

We will cons ider  a network with N nodes and L ii nes, eac h

l ine having a non—negative distance. Lines are considered to be

directed arc s and each pair of adjacent nodes is connected by one

line in each direction. We are concerned with the calculation of

shor tes t pa ths  f rom a source  node to all other  no d es , gi ven that

the distance of one line in one direction has changed . To this

end , we will assume that the shortest path tree from the source

nod e to all other nod es has been prev iousl y computed , an d that

incremental changes only are required .
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A2—2 Path Length and Subtree Size

Consi der the shortest path tree at the sot”ce node. We

begin  wi th some d e f i n i t i o n s  and a r e su l t  w h i c h  h o l d s  fo r  a n y

tree :

Def inition: The path length hi, to node i is the

number of interme d iate lines on the path from

the source to node i in the tree .

Def inition: A node j is a descendant of a node i if

the shortest path from the sour ce to j

inclu d es shortest path from the sour ce to j .

(This implies h~ > h1).

Definition: The subtree size , s
~~
, of nod e I is the

V num ber of nodes which are descendants of

nod e I , including nocie I.

let 

h --- 

~~~ 

h 1 avera ge path length in the tree

s ——— Si 
average (proper) subtree size

N — i  in the tree
i=1
I/sour ce

I—
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Theorem 1. In any tree , s=h

Proo f: Note that h . is the number of subtrees in which

node i appears. Therefore

= h 1 = h

Q . E . D.

Thi s sur pr ising result can be shown In other ways includi ng

the follow ing :

let a1 = the num b er of nod es with path len gth I

d = the maximum path length in the tree

b1 = the avera ge subtre e size of all nodes

with path length 1;

~~~~~~~~~~~~~~
1 

~~~
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Then we have that

h =

= b~ (a 1
)

= _ — —  
~~~~~~~~

i= 1  j j

= h Q . E . D .

A2—3 . The Incremental Shortest Path Problem

We nex t examine the effect on the shortest path tree of

chan ges to the network. Let

L
c = average node degree in the network ; c = —

N

Defin ition: A network chan ge re fers to the add ition

or dele ti on of a sin g le ne two r k l ine or

to the change of the di stance value

associated with some line .
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Defin ition: A routing chan ge for node I is re quired

when , as a result of a network chan ge ,

shortest d istance route from the source to

node i changes.

.1
Theorem 2. When a line is deleted , the expecte d

num ber of routing changes per source node

is equal to h/c.

The probability that a given line is in the shortest path tree at

a given source is equal to the number of lines In the tree

divided by the number of network lines which can be in the tree :

N— i 1

eN—c c

If the deleted line from node x to node y was In the tree , then

node y and its subtree all require routing changes. This Is , on

avera ge , a group of h nodes. If the deleted line is not In the

tree , no routing changes are needed . Therefore , the ex pecte d

num ber of routing changes is given by

1 c— i h
h — + 0 ——- : —  Q.E.D.

C C C

Finally, we can general ize the result of Theorem 2 by considering

all types of network change.
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We make the following assumptions:

1. The distance of all line s is the same , which mInImIzes h

for the startIng network.

2. Only single network changes from the starting network

are considered.

3. All network changes are equally lIkely; both the lIne

affected and the size of the change are chosen randomly.

Theorem 3: The expected number of routIng changes

per source node is bounded by h/c for

any network change.

Proof: There are four cases to consIder: the

addItion or deletion of a line , and the

Increase or decrease of the distance of

a line . Let r1 (I ,j) = number of routing

changes required at a source node when the

distance of lIne 1 changes from I to j.

ii
Let K = maximum distance/lIne (assume distancesL are integers)

m = distance value used for a deleted line;
m > K ( L )

r
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Then we can write

expected number of routIng changes for
line deletion

L K

— — r1(i,m)

R 1 = h/c by Theorem 2

= expected number of routing changes for line
addition - I

L K

= 
~~ ~ ~ 

r1(m ,i)

R3 = expected number of routing changes for a
d i s t ance  Inc rease  — ‘

r3
= _

~~~~~~
_ E _ _ _

E
r 1(I , I + x )  I

1=1 i=1 x=1 J
= expected numbers of routing changes for a

distance decrease

I
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To prove the theorem we must show

<

R3 < R 1

<

For any given network change , r1(i ,i+x) > r1(i+x ,I), since all

nodes which are affected by the Increase in distance to i+x will

also be affected by an equal decrease back to I, except for those

which have an e q u a l — d i s t a n c e  path and do not requi re  a second

rou t ing  change . Therefore ,

I - r 1(m , i)  < r 1( 1 , m) , and thus

R 2 < R 1

For any given network change and any va lue  of y > 0 , r 1(i , 1+ x+y )

> r 1( 1 , i+ x ) .  This  is , the bigger  the network change , the more

rou t ing  changes that  are requi red . Therefore ,

--- E r1(i , I+x )  < r 1( i ,m ) ;  and thus

R 3 < R 1
Sim i l a r l y ,  we can show

R4 < R2
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A2—1~. Numeri cal Values

It is relatively simple to develop a lower bound for the

value of h in a r egu la r  ne twork  (equa l  degree c for all nodes ) .

The lower boun d is obtained when the shortest path tree is full

and balanced . In the terminology used in Theorem 1 , a1 = c , a2 = -

c(c—1), and in general

a1 = c (c— 1)~~~’

d c((c_1)d_ 1 )
Then , N— i = E a 

1=1 c—2

(c_l) d i 
-

~~~

There fo re , h = d 
( c — i )  — 1 c—2

Numerical valu es for h/c are plotted in Figure 1 for c = 2.3, and

~~~. These curves show that the expected number of routing changes -

per no de per rout ing chan ge rema Ins  very  small , In the ran ge of 1 -

to 5 , even for networks with 10 ,000 nodes. [

ii

ii
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A2—5. Conclusions

We have shown some surprisingly simple relationships between 
-

avera ge path len g th an d the num ber of rout in g chan ges re qu ired 
-

after a network chan ge , given that an incremental shortest path -

algorithm is employed . Such an algorithm has important

advantages with respect to its complexity:

—— The r u n n i n g t ime depen ds on h an d c , which are basic -

design parameters  tha t  are easy to measu re .

— — The t ime per node grows very  slowl y with the num ber of
nodes , and Is relatively insensitive to node degree .

Therefore , an Incremental algorithm which computes new shortest

paths only for those nodes affected by each network change may be

desirable for certain applications.

I
i i
ii
ii
ii
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