ADAO53450

N N Al N O e e

B f == ===
Bolt Beranek and Newman Inc. @

Report No. 3803

ARPANET Routing Algorithm improvements
First Semiannual Technical Report
Dr. J.M. McQuillan, Dr. I. Richer, Dr. E.C. Rosen

April 1978

Prepared for:
Defense Advanced Research Projects Agency i"""
and J
Defense Communications Agency

5 T e 3 Al
R S T el AR e e § o D R S

: s

mi i

Q.

I«

/ \.a..l‘1

vk e

S
= DISTRIBUTION STATEMENT K]
cCD Approved for public release; x
— Distribution Unlirnited i
".'c': m RSN

oS —

Report No. 3803 Bolt Beranek and Newman Inc.

BBN Report No. 3803

ARPANET Routing Algorithm Improvements

First Semiannual Technical Report

April 1978

SPONSORED BY
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY AND
DEFENSE COMMUNICATIONS AGENCY (DOD)
MONITORED BY DSSW UNDER CONTRACT NO. MDA903-78-C-0129

ARPA Order No. 3491

Submitted to:

Director

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, VA 22209

Attention: Program Management
and to:

Defense Communications Engineering Center
1860 Wiehle Avenue
Reston, VA 22090

Attention: Dr. R.E. Lyons

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S.
Government.

DISTRIBUTION STATEMENT
Approved for public releasa- :

Distrihution Tnlimite |

S el NS WSS O ENE O TEENS O UEEE O TEDN O RN AN AN BN R R e e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)
REPORT DOCUMENTATION PAGE ' BEFORE COMPLETING FORM
. NU 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
g N - 3893

S. TYPE OF REPORT & PERIOD COVERED

4. TITLE (and Subtitle) Y .
Semiannual Fechnical Repartg

ARPANET Routing Algorithm Improvementsg 10/1/77 to 4/1/78 . |
6. PERFORMING ORG. REPORT NUMBER
3803
7. e e e } 8. cou‘rnAcT OR GRANT NUMBER(s,
3.4 fcquiltan, | /7 MDA903 -78-C-§12
I./Rlcher] ek
E.C 4Rosen s
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. P:gg"QA=OERLKEUSINTTNPURM°BJEE§T TASK
Bolt Beranek and Newman Inc?
50 Moulton Street, Cambridge, MA 02138 ARPA Order No. 3491
11. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency CZ’

1400 Wilson Blvd.

Arlington, VA 22209 L &
T4. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 1S. SECURITY CLASY™S

Defense Supply Service - Washington UNCLASSIFIED
Room 1D 245, The Pentagon
Washington, D.C. 20310 1Sa. ggg&.&&?@cnlon/’oowuonaomc

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMEN{ K

Approved for public release;
Distribution Unlimit

—— l

- DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If ditferent from
e rmi(NNy Cech T} /7. /V‘,A‘ v
7

IORT T e

e

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
computer networks, routing algorithms, ARPANET, protocols, congestion
control, shortest path problem, line up/down procedures, network delay,
\\ network measurement, logical addressing, multi-destination addressing

0, ABSTRACT (Continue on reverae side If necessary and identify by block number)
This report describes progress during the first six months of a contract
to make several improvements to ARPANET routing. Some principal con-
clusions are: Several problems have been discovered in the present
congestion control, line up/down procedures, and loop suppression
techniques through the use of a new real-time monitoring capability.
Solutions to most of these problems have been developed; operational
experience with these changes is presented. A new set of line up/down ——

=

DD , 3%, 1473 eoition oF 1 NOV 68 1s oBSOLETE UNCLASSIFIED continue --

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

s

g AL 4 &

UNCLASSIFIED

\ SECURITY CLASSIFICATION OF THIS PASEWhen Date Rosteced)

(20 --continued)

%procedures with much better performance was developed and analyzed
Extensive measurements of network delay were carried out; delays
fluctuate rapidly over a large range, making it difficult to devise
effective estimation techniques. The present routing algorithm is
itself a major contributor to network delay due to the computations
and update messages it requires. A set of improvements was designed
for the present routing algorithm to make it more efficient and
effective. However, a new algorithm, based on performing the entire
shortest path calculation at each node, incrementally for each net-
work change, appears to be a better choice for installation in
the ARPANET.\>Zhe new algorithm, SPF, has been programmed for the
IMP, and its performance agrees with analytical results. A mechanism
for multi- destlnatlon addressing in the ARPANET was designed and
analyzed.

. AGGESS1ON for

s White Section @7
bog Buff Section [
UNANNOUNCED 0
JUSTIFICATION

W e
DISTRIBUTION /AVAILABILITY CODES

[AVAIL aad/or SPEGIAL

4

SECURITY CLASSIFICATION OF THIS PAGE TRen Date Enterad)

v r—

Report No. 3803 Bolt Beranek and Newman Inc.

1Ee

2y

3.

TABLE OF CONTENTS
2 504 i e s A P e i MRRD P U R SOV

CURRENT STATUS OF ARPANET ROUTING . . 4« % « & « o s & o'« T
2.1 Summary of Previous Work on Routing and Congestion . . 7
2.2 'Line Up/Down Mismatehes . . & i ¢ s & o o o @ 5 % =« o 10
2.3 FLEoops in ARPANET ROMEENE . ¢ &+ o ¢ ¢ ¢ s o o s o « = @« 12

2.3.1 Routing to Singly-Connected IMPs 12

2.3.2 The Spread of Routing LOOPS .o « « e o o 5 o s » » 14

2.3.3 Loops Due to Different Updating Rates 22
2.4 Packet Delays in the ARPANET . . . ¢ ¢« ¢« ¢« &« ¢ « « « . 24
2.5 Snapshot Measurement Package « & . . WM

2:5.1 Introduction T ainat it o e i wgs el e e 8T

2.5.2 Measurement Routines ¢« . . ; A=t o« 43

2.5 3 ConNclSiions: <« sl dl ot e i o i e v s b as s a RS

LIHE OB/DOUN PRUTOEOL "« " < ¢ i » sl o v dean o8 % » o b
Sl akntroductlon e o ti U DT L e L e e e e v e e) D
32 Existing Countersiu SR il sl S vl wlwliy e e et 4 R0
33 GOALS o S A e S e s e e e e e a w e N
3«8 Line Up/DowWn GOBREerES o & o e eili . toe w s e % e P

35,7 Livte Down Counter . . « + &« s s ¢« « ¢« 5 = o« s & s « 5%

Jatoz: BN VP COUMBEE 0 e i s i d e e N e e e D
3.5 BREADY B0ate « + '+ ¢« ¢ ¢ v o 8 % 4 v 5 wn v o v & % v o O

3.6 ConelUSTons & . i a i e e e e e e e

DELAY MEASUREMENT
4.1 Better Measures of Network Delay . .
4.,1.1 Measuring Delay Directly .
4.,1.2 Estimating Delay Indirecgly e
4,2 Smoothing Algorithms
4.3 Choosing a Smoothing Algorithm

4.3.1 Results of Smoothing the Data . . .

4.4 Implementing Delay Measurement and Smoothing in

63

. 64
64

. 64

» « 66
. 69

v = T3
. T4

the IMP 85

POSSIBLE IMPROVEMENTS TO CURRENT ARPANET ROUTING ALGORITHM 86

5.1 Updating Polliey < o o & & e oo 0 W -

5.2 Improved Reachability Determination
5.2.1 Speed of Adaptation
5.2.2 Bandwidth Considerations

5.3 Improved Loop Suppression
5.3.1 Hold-Down vs.(Explicit Information
5.3.2 Loop Suppression as Part of an

Routing Algorithm . . . ¢« &« « o o

SHORTEST PATH FIRST ALGORITHM . .

6.7 Introduetion . i« « i v Wie woE e e woa

6.2 Shortest Path First Algorithm (SPF) . .
6.2:.1 Basitc RIgorithm v « & W s &« % s ¢ =

ii

Improved

« o« 86
o « 91
. 92
« 3
« = 97
wiw B

ARPANET
108

[Ee——

-

Report No. 3803 Bolt Beranek

6.2.2 Incremental Algorithms
6.2.3 Consolidated Routing Algorithm

6.3 Analysis and Data8 . « « o o « o o o 5 o 5
6.3.1 Average Subtree Size
6.3.2 Distribution of Subtree Sizes
6.3.3 Measured Performance of SPF

6.4 Updating Policies . . .
6.4.1 Data Contained in the Update Message? .
6.4.2 Addressing and Routing Updates
6.4.3 Reliable Transmission of Updates . . .

()]
.
=
.
J

Updates about Topology Changes . . .
6.4.5 Program Modules for Updating
6.5 Comparison of SPF to Current ARPANET Routing
6.6 Conclusiona . & o el cta e e e e
7. MESSAGE ADDRESSING MODES . .
Appendix 1 DATA GATHERING METHODOLOGY

Appendix 2 A COMPLEXITY BOUND FOR THE INCREMENTAL
SHORTEST PATH PROBLEM

iii

and Newman

Inc.

17
122
126
126
128
130
134
135
138
143
152
155
157
162
164
177

182

Report No. 3803 Bolt Beranek and Newman Inc.

1. OVERVIEW

This report covers work performed in the period October 15,
1977 through April 15, 1978 on the contract to study ARPANET
routing algorithm improvements. Our progress to date is reported

in six main sections which follow.

Some of the conclusions reached to date in the study are
summarized below for each of +these sections (figures in

parentheses denote the pertinent section number):
Analysis of Present ARPANET Performance (2)

-- The change made to the ARPANET causing it to drop
packets which have been unsuccessfully retransmitted 32
times has greatly reduced the number of network

disturbances (2.1).

-- There are significant problems with the present
protocols in that 1lines can be declared up in one

direction for long periods of time (2.2).

-- We have discovered several classes of routing failures
that cause packets to loop between two or more IMPs, and

have identified the causes of these problems (2.3).

Report No. 3803 Bolt Beranek and Newman Inc.

Line

We have performed extensive measurements of network
delay and discovered that it 1is extremely variable.
This indicates that routing algorithms which measure
instantaneous delay are inappropriate for the ARPANET.
Furthermore, periodic routing calculations and updates
in the ARPANET are contributing factors to the

variability in delay (2.4).

A new "snapshot" measurement package has been developed
as a tool for monitoring network performance, especially
at the time of some transient phenomena such as topology

changes, packet loops, etc. (2.5).

Up/Down Protocols (3)

A description of the existing 1line up/down procedures

and an explanation of observed problems is given (3.2).

A set of goals is suggested for handling 1lines with
acceptable quality and unacceptable quality in order to
insure that variations in line quality will not degrade

network performance (3.3).

A consecutive counter for bringing a 1line wup and the
criterion of missing 3 within the last n test messages
for bringing a line down are shown to be adequate for

the goals suggested (3.4).

-

. e—

(e

seempe e

Report No. 3803 Bolt Beranek and Newman Inc.

These procedures do not completely eliminate the
possibility of lines being declared up in one direction.
A new state will be added to the line up/down protocol

to remove a known cause of network congestion (3.5).

Measurement of Network Delay (4)

It is important to measure network delays directly
rather than to estimate them indirectly by other network

parameters (4.1).

We experimented with various means for smoothing the
measured delay values. An average over the last time
period 1is more appropriate than a median type of

smoothing algorithm (4.3).

There is a strong need for continued measurement of
delay and re-evaluation of smoothing functions after
implementing any new algorithm since the behavior of
network delay 1is strongly influenced by the type of

routing algorithm employed (4.4, 4.5).

Improvements to the Current ARPANET Routing Algorithm (5)

The ARPANET routing algorithm can be modified to wuse
event-driven updating which leads to significant
improvements in performance. However, there are still

some difficulties with this approach (5.1).

Report No. 3803 Bolt Beranek and Newman Inc.

The current routing algorithm determines reachability
very slowly and wuses too much bandwidth in doing so.
This can be improved somewhat but the basic problem
rests with using a path-based routing algorithm relying
on hop counts and timers to determine whether nodes are
reachable. Since this 1is an essential feature of any
ARPANET;like algorithm, we were led to consider other

types of procedures (5.2).

Hold-down can be replaced with a less heuristic form of
loop suppression. This could improve performance

without significantly increasing cost (5.3).

A New Routing Algorithm--Shortest Path First (6)

We have demonstrated that it is practical to implement a
separate and independent shortest path calculation in
each of the 1IMPs in the ARPANET as opposed to the

present distributed computation (6.1, 6.2).

Such an algorithm can be designed to be very efficient
in space and time, wusing as 1little as one or two
milliseconds of CPU time, on the average, to perform an
individual wupdate when the calculation 1is performed

incrementally (6.3).

Report No. 3803 Bolt Beranek and Newman Inc.

Message

Efficient and reliable wupdating procedures can be
developed so that an incremental shortest path algorithm

can be performed on an event-driven basis (6.4).

The incremental shortest path algorithm has significant
advantages over the present ARPANET algorithm in terms
of efficiency, reliability, loop freedom and speed of

adaptation (6.5).

We will continue to investigate the SPF algorithm as a
candidate for eventual installation into the ARPANET

(6.6).

Addressing Modes (7)

A multi-destination addressing technique is proposed for
significantly reducing the number of packet hops
required for transmission of a multi-destination message
compared to that required for separately-addressed

messages (7).

Installation of such a mechanism in the ARPANET will be
easier for group addressed messages than for messages

explicitly addressed to multiple destinations (7).

Multi-destination addressing and multiple homing of

hosts are mechanisms which will be installed in the

Report No. 3803 Bolt Beranek and Newman Inc.

ARPANET for datagram traffic but probably not for
virtual circuit traffic due to the complexities involved
in adapting the protocol to multiple sources and

destinations (7).

Report No. 3803 Bolt Beranek and Newman Inc.

2. CURRENT STATUS OF ARPANET ROUTING

This section describes the current status of routing and
related topics in the ARPANET. Section 2.1 is a brief summary of
the results of a two-month study of routing problems which BBN
performed for DCA in the summer of 1977 (see BBN Report 3641).
Sections 2.2 and 2.3 describe some problems which were noted
during that study, but not resolved at that time. Some of these
problems have been subsequently eliminated; others will be
eliminated in the next few months. Section 2.4 describes some of
the characteristics of store-and-forward delay in the ARPANET,
and discusses the ways in which these delays are related to
various characteristics of the current routing algorithm.
Section 2.5 describes a measurement package which we developed

especially for monitoring the performance of routing.

2.1 Summary of Previous Work on Routing and Congestion

In late 1976 and early 1977 the ARPANET was subject to a
number of disturbances which made it virtually unusable for short
periods of time. These disturbances often occurred several times
a week, 1leading to a serious degradation in the performance of
the network. By wusing the measurement package described in
Section 2.5, we were able to determine that the disturbances had

the following etiology. First, some IMP would become congested;

Report No. 3803 Bolt Beranek and Newman Inc.

that is, it was often forced to refuse packets from its neighbors
because it had no buffering available. Then the congestion would
spread, affecting a large portion of the network. Finally, many
IMPs would declare their lines to be down, causing the network to
partition. This caused many IMPs to break their connections to
each other. As a result, IMPs would discard packets destined for
the now unreachable IMPs, and this cleared up the congestion.

After several minutes, normal network operation was resumed.

Thus each disturbance had two components: the start of
congestion, and the spreading of that congestion. There are many
situations which may cause some IMP to be congested; two very
important causes were found to be 1line up/down mismatches
(discussed in Section 2.2) and routing loops (discussed in
Section 2.3). It is easy to see why routing 1loops <can cause
congestion. Packets caught in a loop are stuck in the network
for an arbitrarily long period of time, thereby wasting buffer
space and reducing the network capacity. Furthermore, if packets
are looping between a pair of IMPs, a sort of lock-up can occur,
with each IMP filled with packets for the other. This makes the

line between them useless.

The two major reasons for the spread of congestion are
related to (1) the performance of the routing algorithm, and (2)

the the IMP-IMP protocol. The problem with the routing algorithm

Report No. 3803 Bolt Beranek and Newman Inc.

is that it is both unable to prevent congestion from arising, and
unable to detect the presence of congestion once it exists.
These failings have to do largely (thougﬁ not exclusively) with
the algorithm's method of measuring delay by taking instantaneous
samples of the queue 1length. As 1is shown 1in Section 2.4,
instantaneous samples of the queue length are poorly correlated
with expected delay. In addition, the queue lengths have a
relatively small dynamic range, while delay does not. Section 4
discusses better ways of measuring the delay. However, even with
better delay measures, the routing algorithm would still react
poorly to congestion, since it is slow to react to any change in

the network. This issue is discussed further in Section 5.

The problem with the IMP-IMP protocol was that when an IMP
became congested and had no space to buffer any more packets, it
would refuse to acknowledge packets sent to it by its neighbors.
The neighbors would try to retransmit such packets wup to 600
times (over a period of 75 approximately seconds), after which
the line over which they were being transmitted would be declared
down. Unfortunately, these procedures only made the congestion
worse. Congestion arises when the demand for buffering resources
exceeds the buffer supply. When an IMP becomes congested its
neighbors would dedicate buffers to a single packet for up to 75

seconds, instead of the more wusual few milliseconds. This

Report No. 3803 Bolt Beranek and Newman Inc.

greatly increased the demand on buffering resources in the
neighbors, causing the congestion to spread to themn.
Furthermore, artificially declaring a good line to be unusable
only serves to further deplete network resources without

decreasing the demand on them.

Experimentation showed that the precise value of the
retransmission 1limit is not too significant--altering it does
change the characteristics of the disturbances, but does not
eliminate them. The only effective way we found to prevent the
spread of congestion was to reduce the demand on network
resources by discarding packets. Currently, the network will
discard any packet that is retransmited 32 times (over an
interval of 4 seconds). Over the last six months, experience has
shown this procedure to be successful in preventing the spread of

congestion.

2.2 Line Up/Down Mismatches

It is presently possible for two IMPs which are connected by
a particular 1line to disagree as to the state of the line, with
one of the IMPs declaring it up and the other declaring it down.
The presence of such a 1line wup/down mismatch can have an
extremely deleterious effect on network performance since the

IMP-IMP protocol does not operate properly on a mismatched line.

10

Report No. 3803 Bolt Beranek and Newman Inc.

The IMP which has decided that the line is up will continue to
transmit packets over it, but the other IMP does not return
acknowledgments for those packets. This can cause the packets to
be retransmited up to the maximum number of times, after which
they are discarded from the network. Thus mismatches are a major

source of network congestion and packet loss.

We have observed mismatches happening frequently (several
times a week) and lasting for periods as 1long as seven hours
(though several minutes is more typical). Network performance
would be significantly improved if mismatches were eliminated by
changing the 1line wup/down protocols to prevent one IMP from
declaring a line up when the adjacent IMP does not. Section 3

describes a method for achieving this goal.

1M

Report No. 3803 Bolt Beranek and Newman Inc.

2.3 Loops in ARPANET Routing

This section describes 1looping problems that have been
observed in the ARPANET. The problem described in Section 2.3.1
was resolved by a minor modification; the problems described in
Sections 2.3.2 and 2.3.3 cannot be eliminated without making

major changes to the routing algorithm (see Section 5).

2.3.1 Routing to Singly-Connected IMPs

We recently discovered a kind of routing loop which can
cause packets to be routed to singly-connected nodes by mistake.
Suppose there are two independent paths from IMP A to IMP X, and
that these paths are approximately equidistant in terms of delay.
Let B and C be the two neighbors of A which are the "next hops"
on these two paths, respectively. Let S be a third neighbor of A
which is not on a reasonable path from A to X. S may be a
singly-connected node, like the IMP at Hawaii, or it may have
other neighbors. What is important is that S's best path to X be

via A.

Now suppose that A is routing traffic to X via B. Let d be
the delay that A sees to X via B. Consider the following

sequence of events:

12

Report No.

3803 Bolt Beranek and Newman Inc.

At t0, A sends routing to S, reporting that the

delay to X is d.

At t1, A receives and processes routing from B. As
a result, A now sees a delay of d+5 to X (via B).
Since the increase in delay is only 5, A does not

hold down.

At t2, A receives and processes routing from C. As
a result, A now sees a delay of d+4 to X via C.
Since the delay via B is d+5, A switches paths, so

that traffic to X is now routed via C.

At t3, A receives and processes routing from C
again. (Note ¢that C 1is sending routing more
frequently than S is.) As a result, A now sees a
delay of d+10 to X via C. Since the increase in

delay is only 6, A does not hold down.

At tU4, A receives (finally) and processes routing
from S. Since the routing message from S is based
on the last routing message that A sent to S, back
when the delay to X was only d, A now sees delay to
X via S of d+8. Since the delay to X via C is d+10,
A switches paths, routing traffic to X via S. Since
S is, ex hypothesi, routing traffic to X via A, a

loop has formed.

13

Report No. 3803 Bolt Beranek and Newman Inc.

Between the time A sends routing to S, and the time it gets
routing back, the delay A sees to X has increased from d to d+10.
However, at the time A receives routing from S, the increase in

delay on its current best path (via C) has only increased by 6,

from d+4 to d+10. While the IMP accumulates increases in delay
for a period of two ticks, it only accumulates increases on its
current best path. When it switches paths, it simply throws away
all information about increases in delay on the previous path.
As shown above, This can cause it to fail to hold down when it

should, thereby permitting loops.

The solution is that an IMP should hold down when its delay
to a destination increases by 8 during a period of two ticks,
evén if that increase was partially along one path and partially
along another. This modification has been made, and this type of

loop has not been observed any more.
2.3.2 The Spread of Routing Loops

Another kind of routing failure has been noted in the
network. It begins when a pair of neighboring IMPs report that
packets to a particular destination are looping between them.
Shortly thereafter, other neighbors of this pair of IMPs report
looping packets to that same destination. Then neighbors of the

neighbors of the original pair of IMPs report looping packets to

14

Report No. 3803 Bolt Beranek and Newman Inc.

that same destination. Then neighbors of the neighbors of the
neighbors...etc. This phenomenon has been observed to spread
quite far, with as many as 34 different IMPs reporting looping
packets to the same destination. Eventually, routing stabilizes
and the reports cease. This phenomenon is explained below and

illustrated in Figures 2-1 and 2-2.

Let A and B be a pair of neighboring IMPs. Let X be a third
IMP such that there is at least one path from A to X, and a
second path from B to X which is independent of the first, and
approximately equidistant in terms of delay. Whenever this 1is
the case, it is possible for packets to X to loop between A and
B. That is, it is possible that A will decide its best path to X
is via B, and B will decide its best path to X is via A. Let C
be A's neighbor on its path to X, and 1 D be B's neighbor on its
path to X (see Figure 2-1) and consider the following sequence of

events:

1. At tO0, A's delay to X via C is d, and B's delay to X via

D is d. A and B send routing to each other.

2. At t1, A and B get routing from C and D, respectively.
As a result, A now has a delay to X via C of d+5, and B
has a delay to X via D of d+5.

19

Report No. 3803 Bolt Beranek and Newman Inc.

3. At t2, A and B receive from each other the routing that
they sent to each other at t0. As a result, A now has a
delay to X via B of d+4. Since its delay to X via C is
d+5, A switches paths. Similarly, B now has a delay to
X via A of d+4. Since its delay to X via D is d+5, B
switches paths. At this point, a 1loop has formed

between A and B.

It 1is obvious that when such a loop forms, A and B will
enter hold-down as soon as they exchange routing. 1In fact, they
will re-enter hold-down every time they exchange routing, since
the delay each sees to X will increase by 8 with each routing
update. Since A and B are bound to exchange routing at least
once before the hold-down timer expires, and since they re-enter
hold-down whenever they exchange routing, they will never leave
hold-down. Or rather, they will never 1leave hold-down wunless
some special action 1is taken, And as long as the situation

persists, no packet will ever be able to get from A or B to X.

To prevent this situation from persisting, the following
strategy is presently used: If A receives a packet for X from B,
then since A's route is via B, A simply comes out of hold-down
prematurely. Of course, coming out of hold-down does not break
the 1loop. Whether the loop gets broken depends on which of A's

neighbors is the next to send it routing. There are two cases to

16

Report No. 3803 Bolt Beranek and Newman Inc.

consider: either A's next routing update comes from B, or else
it comes from some other neighbor of A (call it E). 1In the
former case, the loop is not broken, and A just goes back into
hold-down. The latter case has two sub-cases: either A switches
its path to X from B to E, or it does not. Only in the former
case (which is by no means the inevitable case) is the original

loop broken.

Let us suppose then that A switches its best path to X from
B to E, thereby breaking the loop between A and B. Now we have
two more cases to consider. Either E's path to X is via A, or it
is not. In the 1latter case, everything is fine. But in the
former case, there is more trouble. Now there is a loop between
A and E (see Figure 2-2) The same process could potentially be
repeated indefinitely until the phenomenon spreads to every IMP
in the network. Thus the phenomenon of looping packets to a
given destination can spread away from the 1location of the

original loop.

Clearly; the extent of the spread is directly proportional
to the number of IMPs which are directing their traffic to X
towards the area of the original 1loop. If there is a loop
between A and B, and every other IMP in the network is directing
its traffic for X to either A or B, then the phenomenon will

spread far; if no other IMP is directing its traffic for X to A

i

Report No. 3803 Bolt Beranek and Newman Inc.

or B, no spreading will occur. When a loop forms between A and
B, the delay that these two nodes see to X will be constantly
increasing. Therefore, most of the time when such a loop forms,
most traffic gets directed away from the loop, and the loop does
not spread. However, there are certain unusual conditions which
can cause many other nodes in the network to direct their traffic
towards the loop. For instance, suppose one or more of the lines
along a real path to the destination X go down. Then, for a
period of time, many nodes will see infinite delay to X.
However, the two nodes between whicrh there is a loop to X will
not see infinite delay. They will see only a constantly
increasing finite delay. This will cause many nodes to direct
their traffic for X toward the loop, and thus will cause the loop
to spread. Since this in turn causes many IMPs to come out of
hold-down prematurely, the ultimate effect is that the network is
forced to adjust to some "bad news"--an increase in
delay--without the benefit of hold-down. As is well-known, this

can take a long time.

This phenomenon has been observed frequertly in the network.
It usually starts in the Washington area, with +tue first 1loop
either between NBS and NSA or NBS and PENT or NBS and ABER. The
destination of the 1looping packets is wusually (though not

always). one or more of the European IMPs, and Europe is usually

18

Report No. 3803 Bolt Beranek and Newman Inc.

(though not always) unreachable while the phenomenon is

occurring.

While the current routing algorithm may be more prone to
forming loops than some other algorithms, it is doubtful that
there can be any routing algorithm which can be guaranteed to be
loop-free in actual operation. Thus some scheme for detecting

and breaking loops will always be needed.

T - -

Bolt Beranek and Newman Inc.

3803

Report No.

sdooT Bur3noy Jo uoTjBWIOS |-2 aun8T4

(L {0 juds)
J3Y}0 Yooz wouy

pawio4 doo] VY DIA‘L+P g DIA‘L+P 9AI903Y g PuD

d PuUD 5 wou}

pespaiou] ADjd9q@ Q@ DIA‘G+P O DIA‘G+P 9AI909Y g puD

aiojs Apoays

IN3IWNOD

@DoA‘p D DIA‘P puss g puo y

X<-8 AV13d X<V AV13d S31vadn SNILNOY
p AojeQ

20

Bolt Beranek and Newman Inc.

3803

Report No.

sdoo7 Butianoy Jo pesaudg ¢-¢ 24n81y

doojpul 4 pup g 4 PuD 3 woJ4}

doojoul 3 pupy J DIA‘Ol+P I DIAOl +P 9A1903Y g pub Y
umoqg PIoH

jyoaig g puo y

dooT] o u) J3y}0 Yyoo3 woiy

umoQg PIOH V DIA2|+P g DIA‘2| +P 9A|1303Yy g pun y
doo-jouigpuoy VYV DIA‘b4+P g DIA‘H+ P puss g puoy

'S
4

INIWNOD X8 ><|_uo X<V AVv13d S31vaddn 9NI1LNOY

¢ Aojag

O— 0
s LY

¢ AojaQ
wJio4 Ao sdoo] Buiyynoy MmaN
Alainjowald pajoujwia] s| umoqg PIOH ing
uayoig aily sdoo siyl juanaid o)
dn %9207 o} sdoo-] sasnb) umog PIOH

.l
o

Report No. 3803 Bolt Beranek and Newman Inc.

2.3.3 Loops Due to Different Updating Rates

Routing update messages are transmitted periodically by each
TMP However, the phasing among IMPs is essentially random. As
a result, the same information may travel much more rapidly along
one path than along another. This can result in a certain kind
of 1loop, as shown in Figure 2-3. Suppose that all IMPs are
sending traffic to IMP X along the routes indicated in the
figure. Suppose further that the line to IMP X goes down, and
that the information about the line failure travels much more
rapidly in the counter-clockwise direction than in the clockwise
direction. Then several of the nodes on the upper part of the
ring will have time to change their routing so that they send to

X via A, before A determines that it has no path to X.

Eventually, A will decide that it has no path, and will pass this
information around clockwise. This will cause the nodes closest
to A to realize they have no path to X. However, nodes farther
from A have now begun to route to X via A. It is as if the
correct information ("no path to X") 1is chasing the 1incorrect
("path to X wvia A") around in the clockwise direction, but is

never able to overtake it.

While loops of this sort are certainly possible, it 1is not
known how often they occur. No fully satisfactory way of

eliminating them has been devised.

22

Bolt Beranek and Newman Inc.

Report No. 3803

doo7 Butlqnoy ospou-I3INW ¥ §-¢ 2J4ng14

uol4pwioju|
joai1400u] Ag

pemo||04 uoljowJioju| @
§094409) ‘8sImyo0|)
a}p|naJ1) sajopdn

D $940]|1050 BunnOy (v pIA yynd) ajopdn

(Yiod ON)
A —a9jopdn
Vv DIA yjod .
9ADH SOpPON dwosS X : §
ainjio4 bBuiopdn —
& % o
(v DIA Yjod)
ajopdn

(X OF Yy4od ON) 34opdn mo|s

S D—0= ON

A Buignoy |ouiblaQ

(X 0} uiod oN) aiopdn §sod

o
(gV]

Report No. 3803 Bolt Beranek and Newman Inc.

2.4 Packet Delays in the ARPANET

One very important goal of the ARPANET routing algorithm is
to ensure that packets travel over paths which minimize network
delay. 1In order to determine the delay on a particular path, the
routing algorithm must in some way add up the delays which a
packet would experience on each "hop" of that path. This implies
that the routing algorithm must have some way of measuring the

delay at each hop. This aspect of the routing algorithm, though

" often neglected, 1is quite crucial, for no routing algorithm can

be more accurate than its delay measurement portion--an algorithm
with poor delay measurement facilities will perform poorly, no

matter how sophisticated its other features are.

With an eye towards evaluating and improving the ARPANET
routing algorithm's delay measurement facilities, we have been
gathering data from the net on the delay a packet experiences as
it passes through an IMP. (Our data gathering methodology is

described in Appendix 1.) This section reports on that data.

When we plotted store-and-forward delay and its various
components against time, we found that data gathered from
different 1IMPs at different times and under different conditions
were all similar in important respects. This leads us to believe

that our data 1is not atypical, and can be wused to draw

24

Report No. 3803 Bolt Beranek and Newman Inc.

conclusions about store-and-forward delays in the ARPANET
generally. Of course, only a small amount of the data we've
gathered can be reproduced here. 1In all of the plots reproduced
here, packet delay (in 10's of milliseconds) is on the y-axis,

and packet arrival time (in 10's of seconds) is on the x-axis.

Figures 2-4, 2-5, and 2-6 show the processing delay, modem
queueing delay, and transmission delay respectively for packets
on the line between ISI22 and ISI52. The most interesting thing
about the plots is the extreme, indeed extraordinary, variability
of the packet delays. This variability occurs in both the
processing delay and the modem queueing delay. 1In fact, the
extreme variability of the delays is the single most consistent
property of the data we have gathered--it is present in all
samples. This variability is not what one would expect a priori.
Rather, one might expect consistently high delay during periods
of high 1load, and consistently low delay under periods of low
load. So it is worthwhile to inquire into the reasons for the

variability.

One can never totally rule out the possibility that some
result is an artifact either of the data gathering or data
analysis techniques. One hypothesis we considered 1is the
following. "Packets may be high priority or 1low priority. % 3

high priority packets have consistently low delay, and if low

e

P ———— | e — e e T S—

Report No.

3803 Bolt Beranek and Newman Inc.
-g&.
e
i
- SL
s
8=
5
=
g
-8R
% :
f§§§;§;‘§
—_—
g
-
g
gff
= | 8
- O
(]
8
o
:
<
g
r T T L T T T -
1£9°3 Evl L viL G 982 "b (S8°2 62v L 200" -

J00°dL

qujaaﬁW)&&L

26

Normal Conditions

Processing Delay,

Figure 2-4

C—

Bolt Beranek and Newman Inc.

3803

Report No.

SUOT3TIpPUO) TewdoN ‘Aelag Buranand wapow

QLX) (O3S @1) IWIL
: QQQUH @QQN—M 8®.m_N QQQ.V_N

Q@Q.Q_N

000°91
|

([A
1

G=¢ @und14g

0008

200 v

;\%Z MW

|

68.;

¥

L58°2

T

982 ‘v

T
"8

_WZH(jLJ(jEJZQLX) zaeel

viL

T

vl 'L

T

1£45°8

29Il

27

e — e — -~ —

e

Report No.

3803

Bolt Beranek and Newman Inc.

0
oF

36.000

T

T
32. 000

TIME (1@ SEC) (X1

28. 000

j;v
24.000

=

20.000

16.000

T

12. 000

T

|
22°91

e A e

oy

o

ol L vil® ﬁ

308N _Lzmx) 75221

28

T
L5e'e

Figure 2-6 Transmission Delay

Report No. 3803 Bolt Beranek and Newman Inc.

priority packets have consistently high delay, and if both kinds
of packets are freely intermixed in the sample, then of course
the delay appears to be very variable. But that variability is
not real; it is a result of improper analysis." Of course, this
hypothesis could not explain the variability in the processing
delay, but only in the modem queueing delay. 1In order to test
this hypothesis we simply plotted the delay for high priority
packets separately from the delay for low priority packets. (See
Figures 2-7 and 2-8.) The extreme variability is present in both

plots, and hence the hypothesis is false.

There are several possible explanations for the variability.
The current way of doing routing may contribute variability to
both the processing delay and the modem queueing delay. The
processor may be interrupted as often as 32 times per second in
order to perform the rather lengthy routing computation (15-20
ms.). This can cause the processing delay for packets to vary.
Similarly, output on any given line may be interrupted as often
as 8 times per second in order to send a routing message, which
takes about 23 ms. This can cause the modem queueing delay for

packets to vary.

It 1is also possible that the variability is a natural
characteristic of the traffic pattern. Perhaps traffic enters

the IMP in bursts, so that queues fill up and then empty out

29

———— e ————————

Bolt Beranek and Newman Inc.

3803

Report No.

(TewdoN) s39foed A3TJ40TJd YBTIH 40

Yy (O3S @1) JWIL
000 " 9¢ &Q&.N_n
I

200 °'82
1

Q&Q.V_N

200 ‘22
|

Ae1aq Burtanand

22091

voo°cl
1 |

WapoK

200°8
1

L-¢ 24n314

=% 4

000"

98L L 009

T
&

3

T
£k 5

T
il

HO T HZGLX) 2522

vl

T

626°8

30

~ oy

Bolt Beranek and Newman Inc.

3803

Report No.

(TewJdON) s3aoed A3T140Tud MOT 403 AeTlag Buranand wepol g-2 84nB14

LX) (O3S @1) 3WIL ,
Q&Q.oﬂ QQ&.NW QQQ.mW Q&Q.ww QQQ.QW 200°91 oe0°Cl 000°8 200’
| 1 |

— il é g

..}—v

——
1
L

98L"

WSt

f

&8-S
S0LX) 2522n

T
vl L

MO

T

écs'e

vLLTOL

2a5°21

I— - e ——————

v ————— e

31

Report No. 3803 Bolt Beranek and Newman Inc.

before any new traffic arrives. Or it may be due to various
latencies due to the relative timings and priorities of the IMP
routines. Or it may have to do with wunforeseen (and unknown)
throughput restrictions imposed by the End-End protocol on the
IMP-IMP protocol. It may also be due to measuring every tenth

packet only, as described in Appendix 1.

In order to get some grasp on all this, we conducted the
third of the experiments described in Appendix 1, artificially
created heavy 1load with reduced frequency routing. If we see
less variability with reduced frequency routing than with routing
at the ordinary frequency, we may conclude that at least some of
the wvariability 1is due to the high frequency with which routing
computations are performed and routing updates sent. While the
data from this run implicate routing as a major source of the

trouble, they also suggest that it is not the sole source.

Figure 2-9 shows the processing delay during the experiment.
The artificially created heavy load is roughly from 250 seconds
to 550 seconds. During the periods when we were not artit.cially
creating load, the variability in the delay was much less than we
have seen previously. During the period of induced load, the
delay is more variable, but still less than what was originally
observed. Therefore, it seems that we can attribute at least

some of the variability in the processing delay to the high

3

Bolt Beranek and Newman Inc.

3803

Report No.

(3uswrtuadxy) Aerag Burssooo0uyg

(g@IX) (O3S 01) Il

000 "09 200 °SS 200" 000 'S 00’

ov 000 " SE 000 ‘ocC
=L 1

6-¢ {uangs1y

20002

e T e T e

1

009 °

98L° L

T
WS'E

T

LSE°S

T
Evl L

—E’G:)éiazmm £PoIT

T

626°8

viL D1

[

295°21L

33

e — v —————————

Report No. 3803 Bolt Beranek and Newman Inc.

frequency with which routing is performed. It is possible that
the remaining variability is also due to routing, which even at

its minimum rate is quite frequent.

Figure 2-10 shows the modem queueing delay of high priority
packets during the experiment. Figure 2-11 shows the 1length of
the high priority queue. Note that during the periods when we
were not inducing heavy load, the delay of the high priority
packets was consistently low, with only a few spikes, much fewer
than with ordinary routing. These spikes do not correlate- with
the queue 1length, hence they must be due to interference by
routing messages. The delay of high priority packets 1is more
variable during the period of induced load. This is expected,
however, since high priority packets would often have to wait if
an artificially generated 1low-priority full length packet was
already in transmission. These data furnish evidence that at
least some of the variability of the modem queueing delay is due
to the fact that packets often have to wait for roﬁ%ing messages

to be transmitted.

Figure 2-12 shows the modem queueing delay of the low
priority packets. Figure 2-13 shows the 1length of the 1low
priority queue. Note that even under induced load, the extreme
variability of the delay remains. Further, the delay 1is highly

correlated with variations in the queue length. Furthermore,

34

Bolt Beranek and Newman Inc.

3803

Report No.

(juswtuadxy) Aersg Bursnand wapop

OlL=¢ @4n314

1LS°E 9BL”

T
LSE°S

T
oL
QLX) £HpoWI
HO T H°

T
L

626°8

bLLOL

os°2L

35

e e s —

v —

—— m—————

Bolt Beranek and Newman Inc.

3803

Report No.

(3uswtuadxg) yazB8ua] anand A3TJ4oTdd YBIH ||l=-g 24n814

(g@IX) (OIS @1) HIL
§.% 000 'Sk Q00 ‘o QQQ\m_ﬂ 08.0__... QQQW_N

i

00t

000°S 200 "L 0002 000\
Od£b9‘"|
36

0009

000 L

Report No. 3803 Bolt Beranek and Newman Inc.

even though we have induced an extremely high 1load, the queue
length falls periodically to zero. We do not yet understand this
effect. No doubt the large amounts of processor bandwidth and
transmission time required even by reduced routing make some
contribution, but it seems clear that other factors are involved
also. Discovering the cause may require considerable

investigation.

Another interesting point revealed by Figures 2-12 and 2-13
is that instantaneous samples of the queue 1length show 1little
correlation with the actual delay. Since the current ARPANET
routing uses such an estimation technique, it is not
systematically adaptive with respect to changes in delay. Its
delay measurement facility is inadequate to the task of finding
the least-delay path. 1In fact, no instantaneous measure of delay
can be adequate for the purpose of predicting future delay, if
the delay is as variable as we have seen. Therefore, a good
routing algorithm will have to include an algorithm for smoothing

the delay data over time. This is discussed in more detail in

Section 4.

Perhaps the main thing to be learned from this data 1is the
important point that the routing algorithm itself may affect the
delays through each IMP in hard-to-foresee ways. As has Dbeen

pointed out, any routing algorithm must 1include a delay

37

Bolt Beranek and Newman Inc.

3803

Report No.

(Juswrdedxy) s39qoed A31uotdd Mo ‘Aerag Buisnand wapop

) (g@IX) (I3 O1) L
000 °'S% 80@.0 000 'SS 000 ‘'@ QQQ.m_v QQG.Q_V ga.m_n QOQ.Q.M

Zl=¢ 94n81y

000 °S2

000 '22

1
o

=

1LS°E

000"

9BL L

T

L5E°S

4

c:-LI‘OLX) Zpowl
MOF

&26°8

viLOL

521

38

Bolt Beranek and Newman Inc.

3803

Report No.

(juswtaadxy) yzs8ua] ananyd WIpPOl T[e30L

) (O3S o01) JUIL
QQQ.QW

(g@LX
QQ@.mW QQQ.&W 009 °'SS o&&.mw Qos.mw

000 °'SC

€1=-2 @2un8ry

&QQ.QW

QQQ.mW

000 ‘0z

Q00 "€ 200°2 2001 200"

) e

39

000°S 200 ‘v

209 °9

200" L

e e ——

Report No. 3803 Bolt Beranek and Newman Inc.

measurement facility, and the accuracy of the algorithm is
constrained by the accuracy of this facility. The current
algorithm, by contributing a great deal of variability to the
delay, makes it difficult to obtain any meaningful predictive
measure of delay. Furthermore, because of the way the current
routing algorithm influences delays, it is difficult to use data
gathered at present to predict the behavior of different routing
algorithms. This means that the task of gathering delay data

must continue after a new algorithm is implemented.

40

(AP

Report No. 3803 Bolt Beranek and Newman Inc.

2.5 Snapshot Measurement Package

2.5.1 Introduction

The snapshot measurement package, from now on called the
SNAP package or simply the package, is a set of routines that can
be 1loaded into an IMP to measure and report key variables and
events. It was designed to obtain data about the performance of
routing during periods of stress (congestion) and is expected to
be used in the analysis of new routing algorithms during the next

few years.

It is always difficult to obtain measurements in a network,
especially when congestion is present. For one thing, in order
to understand the cause of the congestion, we must gather
information about what was happening in the network immediately
prior to the formation of the congestion. Since we do not know
in advance when congestion will arise, some form of continual
measurement is necessary. Second, by its very nature, congestion
makes it undesirable to transmit measurement data at the time of
the event being recorded. The network is clogged and adding new
packets filled with measurement data would merely increase the
congestion and contaminate the results. Thus it is necessary for
the package to remember its data, waiting patiently until the
congestion subsides and the network is back to normal before

sending the data to a central collection point for analysis.

41

Report No. 3803 Bolt Beranek and Newman Inc.

The mechanism that was developed to meet these requirements
of continual generation and storage of data employs a ring of
measurement buffers. Routines were written to record the values
of key variables and queues in the IMP. The main routine runs at
a fixed interval, capturing the state of the machine, and
recording notable events that occurred during the previous
interval. Each time it runs, it fills the next buffer 1in the
ring with the data it has gathered. The buffer full of
measurement data is known as a snapshot. When the package
reaches the beginning of the ring, it overwrites the data already
in that buffer, data which by now is presumably too old to be of
interest. Thus, if the package has N recording buffers, it can

remember the state of the IMP for the last N intervals.

When the network 1is under stress, certain symptoms become
evident to the IMP: 1lines may go down, packets may be discarded
or rerouted. The occurrence of one of these events can be used
to halt the recording process, thereby freezing the last
snapshots taken. The package will stay in this state until the
data is collected and the package is reset. Events that freeze
the recording process are <called triggering events or simply

triggers.

Sometimes several important events may occur in rapid

succession. It 1is desirable to have data about each of these

42

Report No. 3803 Bolt Beranek and Newman Inc.

events, yet it may not be possible to reset the package between
them. Therefore, the snapshot mechanism has multiple sets of
data buffers, each one capable of recording information about one
trigger. When the trigger fires, the snapshots in the present
set of buffers are frozen and recording is started in a new set
of buffers. This process continues until all sets of buffers are
used. Since each set of buffers records thg;events leading up to
one trigger, the number of sets is usually referred to as the
number of triggers. Thus a particular implementation of the
package might have three triggers of two snapshots each--the
snapshot immediately preceding the triggering event and the
snapshot immediately following it. Our experience has been that
the right combination of triggers and snapshots depends upon the

particular phenomenon being studied.
2.5.2 Measurement Routines

There are four components of the.measurement package: the
SNAP 1loop, the marking routines, the triggers and a patch to the
IMP program. The main one, the SNAP loop, is called by the IMP's
slow timeout routine and fills a snapshot buffer with data that
it computes itself or with data which has been recorded by the
marking routines. It also manages the snapshot buffers,
recognizing triggers and freezing a set of snapshots. The

marking routines are small pieces of code that set flags or

43

Report No. 3803 Bolt Beranek and Newman Inc.

increment counters to indicate the occurrence of a particular
event during the previous interval. Each piece is hooked into
the IMP program at the point where an action that is to be
recorded is initiated or discovered. The trigger routines are
much 1like the marking routines in that they are short pieces of
code that are hooked into the IMP program at points where events
are recognized. However, rather than merely marking the
occurrence of an event, a trigger routine sets the trigger flag
so the current set of snapshots are frozen after the next SNAP

run.

The SNAP routine is called at the end of every slow timeout
run (i.e., once every 640 ms.). It first checks to see if it has
an& measurement buffers remaining, and if not, .it returns
immediately. Next, SNAP checks to see whether it 1is time to
record another snapshot. Currently, SNAP only records data every
fifth time it is called (i.e., once every 3.2 seconds). If it is
not yet time for the next sample, control is returned to the IMP,.
Dtherwise, the data gathering process begins. Various time
measures are computed first. Next, an attempt is made to account

for all the IMP's buffers. Following this, SNAP scans each 1line

and records various data about its state.

The final action of the SNAP code is to check whether any

triggering events happened during the 1last interval. 1F . aoN,

uy

Sy —————r —

Report No. 3803 Bolt Beranek and Newman Inc.

SNAP returns control to the IMP. If a triggering event has
occurred, the data is frozen so that it can be collected. With
the new data properly recorded and frozen, the SNAP routine

returns to the IMP.

The marking routines record asynchronous events for the SNAP
routine, thereby enabling it to see whether some event has
occurred since it 1last ran. (Note that the events marked here
are not necessarily triggering events.) The trigger routines
monitor events which are indicative of some sort of disturbance
or malfunction; the purpose of the ¢trigger 1is to freeze the
latest set of snapshots. The occurrence of a triggering event
causes a message to appear on the NCC log, thereby alerting the
network controllers to collect the snapshots. Many network
problems, especially those which involve routing, involve
interactions between IMPs. Therefore, the package has a
mechanism to induce triggers in two IMPs at approximately the

same time by sending a special packet to the adjacent IMP.

2.5.3 Conclusions

The SNAP package has already proved its usefulness, and we
expect to continue the evolution of this flexible, real-time data
gathering mechanism. One clear conclusion is that a modular

approach has been very helpful here, since the events being

45

——y ——— S — o | — —— ——— e — e

Report No. 3803 Bolt Beranek and Newman Inc.

monitored and the data being gathered are subject to the

continual change as analysis and development proceed.

3. LINE UP/DOWN PROTOCOL

3.1 Introduction

As noted in Section 2, we have observed a number of line
mismatches, some of them 1lasting for considerable 1lengths of
time. Therefore, some analysis of the present line-up counter
was carried out. This analysis 1indicated some rather severe
weaknesses, and in the course of considering alternatives, it
became clear that the line-down counter could also be improved.
This section first outlines present line up/down counters and the
difficulties 1inherent in these procedures. Then some general
goals are described and a new solution is proposed that will meet
the stated goals. This solution involves the use of new counters

and the addition of a new state to the line up/down protocol.

3.2 Existing Counters

Currently, lines exchange Hellos and I Heard You's (IHYs).
The former are 1long packets (approzimately 1100 bits), whereas
the latter are short (approximately 150 bits). Depending upon
line wutilization, an IMP sends one to five Hellos per tick (640

msec). The IMP will get an IHY if (1) at least one Hello gets

u6

e gt — - - e SRS —

Report No. 3803 Bolt Beranek and Newman Inc.

through without error, and, (2) the 1IHY is received without
error. A line is brought down if an IMP misses 7THYs in five
consecutive ticks. After some dead time (10 ticks) to insure
that the other side of the 1line 1is brought down, an wup/down
counter is wused to determine when to bring the line up. The
up/down counter is initialized to C = -60 and then follows the
algorithm:

if (-60<C<0) then
if (get IHY during interval) g:en (C<- C+1)else(C<- C-1);

if (-240<C< -60)then
if (get IHY during interval) then (C<- -60)else(C<- C-1);

Finally, 1if C reaches -240, the line hardware is reset and C is

reset to -60.
There are several drawbacks to the present scheme:

1. Poor 1lines are brought down too slowly. Lf the
probability p of missing an IHY is 0.2, then the
expected time to bring the line down (i.e., to miss five
successive IHYs) is approximately 40 minutes. In fact,
even a very poor line with p = 0.4, will remain up for

an average of 1.7 minutes.

2. Poor lines are brought up too quickly. Clearly, if the

probability of missing an IHY is less than 0.5, then the

47

Report No. 3803 Bolt Beranek and Newman Inc.

up/down counter will tend to count up toward zero. For
example, if p = 0.2, then the expected increment to the
counter is 0.6 during each tick, and the line will, on

the average, come up in about 100 ticks (1 minute).

Line mismatches can occur. The different lengths of the
Hello and IHY lead to an asymmetry that can cause 1line
mismatches if communications in one direction on a line
are not as reliable as communications in the opposite
direction. Consider the following situation: Line AB
and its associated hardware carries traffic from node A
to node B; line BA carries traffic in the reverse
direction. Assume that line AB is perfect (no errors
occur), but that 1line BA introduces errors such that
Hellos are received in error with probability 0.5, but
IHYs, about 1/6 the size, are damaged with probability
0.1. This would correspond for example to random bit
errors occurring with probability 0.0006. Then, shortly
after both 1lines are brought down, 1line AB will be
brought up again, but BA will remain down for a very
long period. Analogous situations can result in

shorter, but still undesirable mismatches.

48

T~ —— — e ————— ——

Report No. 3803 Bolt Beranek and Newman Inc.

Figure 3-1 is a graphic illustration of the 1last point. The
horizontal and vertical axes correspond to random bit errors, but
the same principle applies if these axes were labeled in terms of
packet errors. The different regions in the figure correspond to
different durations of 1line mismatches. For example, if both
lines have error probabilities less than 0.0001, then both sides
will come wup within about 10 ticks of each other. On the other
hand, if the error probability of each 1line 1is approximately
.0003, then both 1lines will tend to come up, but they will be

mismatched for 50 or more ticks.

3.3 Goals

An ideal set of 1line up/down procedures would instantly
bring a line down when it becomes bad and would immediately bring
a line wup again when it is restored to good health. Obviously,
such ideal goals cannot be met in practice. The table below
summarizes the 1ideal goals and the sort of goals that we can
realistically expect to achieve. Ideally we would 1like to
specify very sharp transitions between the up and down states.
The particular "realistic" entries in the table can, of course,
be modified, but the idea is (1) to bring poor lines down quickly
and keep them down longer than the period over which a line is
usually bad; and (2) to rarely bring a good 1line down but to

bring a good line up with reasonable speed.

49

o ———— e — —————— e e e e —————

Report No. 3803 Bolt Beranek and Newman Inc.

Line Quality

Nominal Poor
Bringing ideal: never ideal: instantly
Line Down realistic: realistic:

less than once/week within about 10 sec.

Bringing ideal: instantly ideal: never
Line Up realistic: realistic:
within about 1 min. less than once/hour

The problem now is to quantify the terms "nominal line" and
"poor line". It is best to divorce our criteria from 1line
characteristics and instead ¢to relate them to desired network
performance characteristics, via the packet error rate. For
example, as the packet error rate increases, delay increases and
throughput decreases. 1In addition, an increasing fraction of
control messages are also lost, further degrading performance.
Since the packets in the network are of different sizes, it is
difficult to specify a single packet error rate that
characterizes a poor line. A reasonable criterion is therefore
to define a nominal and a poor 1line in terms of the errors
experienced by the packets used in the 1line wup/down protocol

itself.

With event-driven updating, routing messages alone cannot be

used in the up/down protocol. 1Instead, a special purpose packet

50

Report No. 3803 Bolt Beranek and Newman Inc.

> 50 TICKS APART
By e e e i e n
WITHIN ~ 10-50 TIcks |
1074 :
—————— 1 I
WITHIN ~ 10 : |
TICKS | :
l [\\
| I ONE suos\é
| | \ upP \\‘/
ICfs 1 | | \\\\ <
1073 1074 1073

Figure 3-1 Line Mismatch Regions

51

Report No. 3803 Bolt Beranek and Newman Inc.

must be exchanged periodically to allow nodes to determine 1line
status, and these packets should be small in order to reduce the
impacts on line bandwidth and queueing delays. Since these
packets will be considerably smaller than the maximum packet
size, and since packet error rate increases with packet size, we
must be fairly conservative in specifying poor and nominal lines
in terms of the error rates of these packets. Furthermore, we
may choose to implement a two-way strategy on the line up/down
packets; that is, we might define correct reception of a 1line
packet at node A only if (1) A receives a line packet from its
neighbor B during a given interval, and (2) B's packet indicates
that B had correctly received a packet from A during the previous
interval. A two-way strategy allows closer synchronization of

two ends of a line at a slight increase in complexity.

For illustrative purposes below we will occasionally use the
values p = 0.1 and p = 0.001 as the packet error probabilities of
poor and of nominal lines respectively. The specific values used
in the final design will of course be chosen carefully and on the

basis of the entire routing strategy that we develop.
3.4 Line Up/Down Counters

The type of counter we shall consider will be called a "k

out of n counter" and, for convenience, will be denoted by (k,n).

52

Report No. 3803 Bolt Beranek and Newman Inc.

This "counter" 1is said to trigger if within any block of n or
fewer intervals, k events occur. For a line going down, an event
would be missing a packet, and thus the 1line would be brought
down if k packets were missed in n or fewer intervals. For a
line coming up, the appropriate event is receiving k packets in n
intervals. The (k,n) counter is a fairly general type of counter

and is one that can be implemented in a straightforward manner.

Another possibility would be to use a counter that counted
+1 if a certain event occurred and -A if the event did not occur.
Such a generalized up/down counter would ¢trigger if some
threshold T were crossed. This counter is also easy to implement
and it 1is roughly equivalent to the (k,n) counter in the sense
that we can choose values of A and T that give performance
similar to that of a particular (k,n) counter. A minor drawback
of this generalized up/down counter is that it has a 1longer
memory than the (k,n) counter. That is, the up/down counter can
tend to creep in one direction and therefore might not ¢truly
reflect the most recent history of the line. On the other hand,
the (k,n) counter has a memory of exactly n intervals. For this

reason we shall consider only the (k,n) counter.

The performance parameter of particular interest is the
expected number of intervals until the counter triggers. With a

little thought, it becomes apparent that this type of counter can

53

Report No. 3803 Bolt Beranek and Newman Inc.

be expressed in the form of some standard queueing theory
problems, namely,
-- A single server queue with Poisson arrivals and constant
server time equal to n units; what is the expected time
until the queue reaches a length of k?
-- k servers with Poisson arrivals and constant server time
n; what is the probability that the next arrival will
be blocked (i.e., cannot be served immediately)?
Although these queueing theory problems can be stated simply, it
turns out that they are examples of some classic unsolved
problems. The difficulty 1lies 1in the constant server time.
Thus, we cannot expect to obtain a general solution to the (k,n)
counter. Nevertheless, we have obtained a few useful analytic

results for some specific counters of interest. If additional

results were necessary, simple simulations were conducted.
3.4.1 Line Down Counter

Obviously, we cannot base the line down procedure on missing
a single packet since such an event occurs often enough that a
line would then be brought down too frequently. We shall
therefore consider the next simplest counter, a (2,n) counter,
and determine whether such a counter is adequate for bringing a

line down.

Define
p = Pr [line packet missed during intervall
q = 1-p

54

Report No. 3803 Bolt Beranek and Newman Inc.

E(N) = expected number of intervals for event (line
UP or line DOWN)
Then, it can be shown that for a (2,n) counter

2-q (3-1)

p(1-q ")
For small p, the above expression reduces to

1 P<< (3-2)
E,(N) ~ P (n-1)

This relation can be derived intuitively, since the probability
that a second packet is missed in one of the (n-1) intervals
following a missed packet, is approximately p(n-1). Hence, the
expected interval wuntil the occurrence of the event "miss
2-out-of-n" is (1/p)*(1/p(n-1)). This equation shows that even
if n can be chosen as small as 10, and if p = 0.0003 <(optimistic
for a nominal 1line), then E2(N)<106, or about one week if each
interval is one tick €640 msec). In other words, a (2,n) counter

will bring good lines down too often.

We shall therefore consider a (3,n) counter. First, some
simple calculations are given to justify the suitability of this
counter. An intuitive argument similar to the one used above,
yields the expected number of intervals for bringing a line down

if p<<1:

55

T e R — e —

Report No. 3803 Bolt Beranek and Newman Inc.

E.(N) ~ £3-3)
3 ‘“93(621)(n-2)

If p<10-3, then n<46 ensures that E3(N)>106. Another quantity of
interest is the probability that a line will go down within, say,
the first m<n intervals after the line becomes bad. Since three
packets must be missed, the line will be brought down in exactly
k intervals if the k-th packet is missed and if two of the first
(k=1) packets are also missed. Hence
o A e 3 k=2
Pr [DOWN within m intervals] = k Py (3-4)
k=2 -

This expression shows, for example, that if p = 0.1 and n>20,
then with probability 0.32 the line will be brought down within
20 intervals; similarly, if n>40, the line will be brought down

within 40 intervals with probability 0.79.

More detailed analysis of the (3,n) counter is quite
difficult, and therefore simulations were performed in order to
obtain specific quantitative data. The solid curves in Figure
3-2 show simulation results for E3(N) as a function of p for
several values of n; the curve for infinite n is based wupon the
theoretical result, E3(N)=3/p; and the dashed curve represents
a(2,5) counter, as given by Eq. (3-1). If the design points are

p=0.1 and p=0.001, then the (3,40) counter just meets the

56

Report No. 3803 Bolt Beranek and Newman Inc.

criterion of bringing a good line down on average of only once
per week. However, the measured standard deviation of the number
of ticks to bring a line down is quite large, approximately equal
to the mean. A more conservative approach is therefore to use a
smaller value of n in order to reduce the 1likelihood of an
undesirable sequence of events, such as bringing a particular
good line down several times in one week. The only penalty in
this approach 1is a slight increase in the time to bring a bad

line down. the following table illustrates such a trade-off:

E3(N)
n=40 n=20
p=0.1 32 41
p=0.001 1.5x10% 6.0x10°

Thus, for these parameters, a one-third increase in E3(N) at
p=0.1 corresponds to a four-fold increase at p=0.001. Note also
that a (3,n) counter responds faster to very bad lines (p=1) than

the existing counter.

57

e

Report No.

3803

Bolt Beranek and Newman Inc.

107

10¢

108

S

E(N) FOR LINE DOWN
o)
[

102

T 1

(2,5) COUNTER

I |

10t 0.1

Figure 3-2

Pr [PACKET ERROR]

Simulation results, shown as solid curves, for (3,n) counters

58

T i Ao— —p—

Report No. 3803 Bolt Beranek and Newman Inc.

3.4.2 Line Up Counter

First consider an (n,n) counter (i.e., a consecutive
counter.) The expected number of intervals until the occurrence
of a success-run of length n can be expressed in closed form, and

is given by

q
E (N) = -—eeom- (3-5)

Here a "success" is receiving a packet correctly (probability q).
Equation (3-5) is plotted in Figure 3-3 for En(N)<1O3. In order
to ensure that with p=0.1, E(N)>5600 (once/hour with 640 msec
intervals). we must choose n>61, If, for example, n=61, then
with p=10-3, E(N)<63. Thus, there is a reasonable range of n

that will satisfy our goals for the line up counter.

It is also possible to use an (n-1,n) counter to meet these
goals. However, it is clear from the goal for bringing up poor
lines that such a counter must have a 1larger n than an (n,n)
counter. Since the time to bring a good line up will thus be
increased, and since there are no concomitant benefits, the (n,n)

counter is preferable.

59

Report No. 3803 Bolt Beranek and Newman Inc.

10° I
Ideal—
- <
100} n=60 __— -
z
i n=20
o210 4
n=5
1 '
1073 1072 e 1

p=Pr [Packet Error]

Figure 3-3
Performance of consecutive line up counter

60

e g e e e

Report No. 3803 Bolt Beranek and Newman Inc.

3.5 READY State

Although the use of improved counters can significantly
reduce the 1likelihood of a 1line mismatch, they cannot easily
eliminate mismatches entirely. Therefore, a new state--the READY
state--is being added to the 1line-coming-up protocol. Rather
than always being either UP or DOWN, a line will be either UP,

DOWN, or READY. The new state can be defined by its transitions:

1. A line makes the transition from DOWN to READY when its

line up counter triggers.

2. A line makes the transition from READY to DOWN under the
same conditiors as it makes the transition from UP to

DOWN.

3. A line makes the transition from READY to UP when it
receives a packet indicating that the IMP on the other
end of the line has declared the 1line to be non-DOWN
(i.e. either READY or UP). Furthermore, when a line
makes this transition, a special packet 1is sent to
notify the neighbor that the 1line has been declared
non-DOWN. This ensures that the neighbor will have a
chance to bring the line up before receiving any data

packets.

61

. — e W — - —— - e m——— ——

Report No. 3803 Bolt Beranek and Newman Inc.

Except for the transitions in 2) and 3) above, a line in the

READY state is treated as if it were DOWN.

The proposed protocol modification will prevent sub-standard
lines from coming up in one direction only. For normal lines, it
may lengthen slightly the time it takes for the line to come up.
However, whereas it is important to keep poor lines from coming

up in one direction, there is no important reason to bring a good

line up in the shortest possible time.

Report No. 3803 Bolt Beranek and Newman Inc.

3.6 Conclusions

The principal results of this section are that
1. A (3,n) counter should be used to bring a line down.
2. A consecutive counter should be used to bring a line up.

3. A READY State can be used to eliminate line mismatches.

Equations (3-3) - (3-5) and Figures 3-2 - 3-4 can be used in the
final design, after the sizes, contents, and desired error rates
for the packets used in the 1line procedures have been

established.

In addition to wusing a 1line-down counter, it may be
desirable for each IMP to measure the error rate of real traffic,
bringing the line down if the rate exceeds some threshold. Such
a procedure would ensure that poor lines are brought down even if
for some reason the line protocol packets tend to be received

correctly.

63

Report No. 3803 Bolt Beranek and Newman Inc.

4. DELAY MEASUREMENT

4.1 Better Measures of Network Delay

A crucial issue in the design of any routing algorithm is
the design of a facility to provide meaningful measures of delay.

Two particular issues are:

1. Making the measurements accurate
2. Making the measurements predictive (i.e., good
estimates)

The key question is: how should the IMP estimate delay?

There are two possibilities:
1. Measure the actual delay experienced by packets

2. Measure the factors determining this delay (line speed,
packet length, 1line wutilization, etc.) and estimate

delay
4.,1.1 Measuring Delay Directly

The measurement of end-to-end delay is complicated by the
fact that two IMPs cannot readily keep time synchronized between
them. An alternative, therefore, is for each IMP to measure

delay by time stamping packets on reception and, just before

64

Report No. 3803 Bolt Beranek and Newman Inc.

transmission, to calculate how long the packet had remained in to
that IMP. The next IMP could add in the speed of light delay and
the transmission delay to this delay before repeating the same
process. Thus, total transmit delay can be accumulated. An
8-bit field could be added to the packet header to accumulate
delay from O to 6.5 seconds in wunits of 25 milliseconds.

Speed-of-1light delay between IMPs can be measured by:

1. Saving the time at which a null packet with a given

identifier is sent out;

2. Waiting until that null is acked, and computing the time

interval;

3. Subtracting any other delays, such as transmission delay
for the null and its ack, and dividing the remainder by

2;

4, Re-performing steps 1-3 enough times (once a minute? 5
minutes?) to arrive at a minimum value representing the

speed of light delay.

Alternatively, we could assume 5 milliseconds for land lines and
275 milliseconds for satellites, and we would be reasonably

close.

65

S ——— . —— —— o apm———— e R

Report No. 3803 Bolt Beranek and Newman Inc.

A more realistic approach to computing total path delay in
the context of a routing algorithm for the ARPANET would be for
each IMP to compute one-hop delays to each adjacent IMP, and to
use those as inputs for the routing update process. The routing
computation would take these values and deliver total path
delays. An IMP can compute its own delay to send a packet to an

adjacent IMP without assistance from the adjacent IMP as follows:

-- Just before transmission, calculate how long the packet
has remained in the IMP (by time stamping, as noted

above).

-- Add in the speed-of-light delay to the neighbor (as

above).

-- Add in the transmission delay to the neighbor, derived

by a table lookup based on packet length and line speed.

This approach has the advantages of not requiring additions to

the packet header or inter-IMP control traffic.

4.1.2 Estimating Delay Indirectly

Delay from one IMP to another can be calculated from the

equation

66

Report No. 3803 Bolt Beranek and Newman Inc,

Delay = (Speed of Light Delay) + (Processing Delay) +

(Avérage Packet Length) X (Line Utilization)
(Circuit Bandwidth) (1 - Line Utilization)

assuming an M/M/1 queue. The first two terms can be estimated
directly; the last term requires more careful estimation, and
also the possibility of multiplies and divides, which the IMP

does not do very well. A simple approximation would be to:

1. Assume we know circuit bandwidth to be one of a small

number of possibilities (9.6 Kbs, 50 Kbs, 230.4 Kbs).

2. Assume we know average packet length (it is about 250
bits for the net as a whole over the last several

years).

3. Measure line utilization to within 10%.

Then one can construct a table like this:

67

Report No. 3803 Bolt Beranek and Newman Inc.

Utilization 9.6 Kbs 50 Kbs 230.4 Kbs

10% 1

20% 3 1

30% 5 1

40% 9 2

50% 13 3 1
60% 20 4 1
T70% 30 6 1
80% 52 10 2
90% 17 23 5

Delay (milliseconds)

This table reduces all the multiplies and divides to a simple

lookup based on line speed and utilization.

The shortcoming of this approach is that it does not permit
the IMPs to include the effect of different packet 1lengths for
data flowing over different network lines. Delays could vary
from half as big to four times larger, depending on the actual
distribution. Furthermore, the assumption of an M/M/1 queue is
not completely accurate, so the equation itself introduces

inaccuracies.

To summarize, it seems that the indirect calculation of
network delays is difficult to do with the required accuracy,
especially considering the 1limitations of the IMP as a number

cruncher.

68

-

Report No. 3803 Bolt Beranek and Newman Inc.

4.2 Smoothing Algorithms

How should the IMP derive a believable estimate of delay
from a number of noisy, fluctuating samples? Expressed
differently, how can the IMP determine when delay has changed by
a significant amount (say 10%) which should be communicated to
other IMPs to determine if new routes should be used? There 1is
substantial technical 1literature on the subject of smoothing
algorithms, also known as "filters" in signal-processing jargon.

Some well-known smoothers are:

-- a low pass filter, a linear smoother which operates to
remove high frequency components; e.g., an average of

the last n samples.

-- a high pass filter, a similar smoother which removes the
low frequency components (including the mean) - not

useful for us.

-- a nonlinear filter, which is capable of preserving sharp
discontinuities in the data (unlike the 1linear

smoothers), while still filtering out noise.

Recently, researchers have suggested the use of a running

median rather than a running mean. In certain applications, the

median of the last n points, say 5 or so, is a very good method

69

Report No. 3803 Bolt Beranek and Newman Inc.

for smoothing out most noise and for following major
discontinuities in the delay values (recognizing new delay
levels). The paper "Applications of a Nonlinear Smoothing
Algorithm to Speech Processing," by Lawrence R. Rabiner, Marvin
R. Sambur, and Carolyn E. Schmidt, IEEE Transactions on
Acoustics, Speech, and Signal Processing, December 1975, makes
use of a running median of 5 points followed by a liner smoother
of 3 points with weights 1/4, 1/2, 1/4. The second filter acts
to further reduce the effect of small-amplitude high-frequency
noise. The excerpt below details these points.

_ "Fig. 6 [4-1] shows a comparison between several
alternative smoothing algorithms for an artificially
created test input sequence. Fig. 6(a) shows the input
sequence, and Fig. 6(b)-(d) show the outputs of a
linear smoother (a 19-point finite impulse response
(FIR) low-pass filter), a combination of median and
linear smoother (a running 5 median and a 3-point
Hanning window), and a median of 5 smoother,
respectively. The smearing effects of the 1linear
smoother at each input discontinuity are clearly in
evidence 1in this figure, whereas the median smoother
alone essentially preserves the data exactly. The
combination of median and linear smoothing is seen to
provide a good compromise between the median and linear
smoothers in this example. Fig. 7 [4-2] shows the
effects of adding broad-band noise to the input of Fig.
6. In this case, the median smoother is inadequate for
filtering out the broad-band noise on the input,
thereby producing a rough output sequence, as shown in
Fig. 7(d). The linear smoother does an excellent job
of filtering out the noise, as expected, and the output
shown in Fig. 7(b) is almost identical to the output in
Fig. 6(b) when there was no additive noise. Finally,
the combination smoother 1is seen to again be a good
compromise between the linear and the median smoothers.
As seen in Fig. T(e), the noise is smoothed a great
deal, and the discontinuities in the input are fairly
well preserved.

70

Report No. 3803 Bolt Beranek and Newman Inc.

"In summary, a smoothing algorithm consisting of a
combination of running medians and 1linear smoothing
appears to be a reasonable candidate for smoothing
noisy sequences with discontinuities.”

=4 A i | i | 1 A1 1 1 1
0 2 30 40 5no (] 70 80 %0 WO
Fig. 4-1 Examples of several smoothed outputs for a simple

test input.

LINEAR
SMOOTHER

(v)

COMBINATION
M

-~

MEDIAN
SMOOTHER

/S T [N, WA SSS— S WSS S T—— —
c ©° 20 30 “© 0 &0 ° e %0 100
L]

Fig. 4-2 Effects of additive noise on several smoothers

71

Report No. 3803 Bolt Beranek and Newman Inc.

Computationally, such methods are quite efficient. Finding
a running mean or median caﬁ be accomplished by maintaining a
circular buffer of the n points along with a fill pointer. The
mean can be calculated incrementally by subtracting the
(weighted) value of the old point before overwriting it in the
buffer, and adding in the (weighted) value of the new point. A
running median can be computed by maintaining a heap structure,

or a heap of pointers to the circular buffer.

72

Report No. 3803 Bolt Beranek and Newman Inc.

4.3 Choosing a Smoothing Algorithm

The choice of a smoothing algorithm depends on two things:
the properties of the raw data (i.e., packet delays), and the
properties we want the smoothed data to have (e.g.,
predictiveness, responsiveness to certain sorts of changes in
delay but not to others, etc.). As reported in Section 2, we
have gathered data on the packet delays in the ARPANET. We have
tested several smoothing algorithms by running them on this data.

Our results and conclusions are reported in Section 4.3.1.

We must, however, enter a very important caveat about the
results. As pointed out in Section 2, it seems that the
characteristics of the raw data which we have gathered are
extremely dependent on various characteristics of the current
routing algorithm. If we implement a new routing algorithm whose
line bandwidth and CPU bandwidth are much less than that of the
current algorithm, the characteristics of the raw data may change
a great deal. This may invalidate our choice of smoothing
algorithm if our choice is based on data which we can gather at
present. On the other hand, we can hardly base our choice on
data which cannot be gathered until the future. As a result, we
cannot expect that our initial choice of smoothing algorithm will
be ideal for any new routing algorithm. When the new algorithm
is implemented, we will have to continue to take measurements and

test smoothers, so as to be able to refine our initial choice.

73

Heport No., 48074 Bolt Beranek and Newman Inc.

4,3.1 Hesults of Smoothing the Data

The purpose of smoothing the delay data 18 to get a measure
which is somewhat predictive of future delay. Changes 1in the
smoothed data should track major changes In the raw data falrly
well, while being insensitive to minor changes which can be
attributed to noise, There are a virtually unlimited number of
possible asmoothing algorithms which can be used, either
individually, or in combination, It 18 impossible to fully test
every concelvable smoother. After a good dsal of initial trial
and error experimentation, we settled on teating the following

two amoothing teochniques:

a) Median Hmoothing. The rationale of median amoothing 1ia
discusged in Heotion N,», It 18 extremely sennitive to major
digcontinuitien in the data, but insensitive to nolae, The exact

algorithm we tesnted 18 the followling:

i) Firat, take a running medlan of & of the raw delay

valuen,

11) Hecond, quantize (round) the reasultant point to the

nearent, Y ma,

111) Third, take a running median of 7 of the quantized

pointa, (We added thias atep when it turned out that

0’ “

e ——

Report No. 3803 Bolt Beranek and Newman Inc.

the result of applying steps L), and ii) was

insufficiently smooth.)

b) Block-average smoothing. The output from this smoother

is simply the result of quantizing to the nearest 5 ms. the
average of the first ten sampled points, followed by the average
of sampled points 11-20, followed by the average of sampled
points 21-30, etc. We chose a block average rather than a
running average because we felt that the former would be more
sensitive to discontinuities than the latter. We chose to
average over a fixed number of packets rather than over a fixed
time interval because we thought that our sampling frequency was
too 1low to yield representative results for fixed-interval

averaging.

We applied the two smoothers to the sum of the processing
delay and modem queueing delay of each sampled packet. Some
typical results are plotted in Figures 4-3 through 4-8. Figure
4-3 shows the sum of the processing delay and modem queueing
delay for data from the line between ISI22 and ISI52. Figure 4-U
shows the result of applying the median smoother to that data,
and Figure 4-5, the result of applying the average smoother.
Figures U4-6, 4-7, and U4-8 are the corresponding plots for data
obtained from the 1line between MIT6 and MITU44 during an

experiment with artificially induced heavy load (multi-packet

15

Report No. 3803

Bolt Beranek and Newman Inec,

messages) with reduced frequency of routing, Note that the
median smoother produces one output point for every input point,
In order to construct comparable plots with the averaging
smoother, we have drawn the output as a constant during each
measurement period; i.e., each averaged output 1is repeated ten

times, once for each input point,

As can be seen from the plots, the average generally results
inb smoother output than the median does. Both the average and
the median do a fairly good job of tracking the changes in delay,
rising when delay rises, goihg down when delay goes down,
Sometimes, however, the average will rise when the median goes
down, or vice versa. It is these differences in the behavior of

the two smoothers which we must evaluate in trying to decide

between them.

The differences seem to be due to the following. A property
of the median is that it eliminates individual poiﬁts which
differ greatly from the poinrts which surround them in the sample.
However, it does not eliminate small clusters of points which
differ only slightly from the points surrounding them 1in the
sample.. For example, if most sampled points are around 10 ms.,
the median w111 eliminate an isolated point which has the value,
say, 100 ms. It will not eliminate a cluster of 3 points which

have the value 5 ms. The avefage,_on the other hand, has just

A e b s i e e <

S e g

e

Bolt Beranek and Newman Inc.

3803

Report No,

L GOIX) IS @1) 3l
.

TR S s e A 5 T e o S50t e P

(TewioON) wﬂmﬂwm Bursnand pue Aelag Butssaoouy

0 "9L 229" 2L oen'8e oM "2 o0 e2 Q9. e 2i
1 . | 1 !

¢-tr 9unByy

T

———

.

T

{582

T

8z v

I
)

—IHGL\I‘?(CFWX) 25221

vl

!
Trl g

T
K3

LLS

% 1

77

3803

Report No.

Q-xv OLw oL) nF_:,

et g d

(TewdoN) BulyjzoowS UBTIpPaj

mN

1

209 ‘b2
I

o0 a2
1

291
1

h-h 94n31g

20021
|

B g e

B b b e e

P .

290 b

Bolt Beranek and Newman Ine,

I/L _

1

e o m— ~— P
00 *
1
o
S
o
.V
N
N
L. &3
4]
(]
~

SIRIOVAN:

vls

Cvl 2

78 1

Bolt Beranek and Newman Inc.

3803

Report No.

o ¢
P |

LX)
7 200 9L

(TewaoN) BurBedaAy 3o0Tld peazijuen)d

(035 @1) FWIL
* 2,.,

200 ‘82
|

220 'v2
I

%%
1

e

st
1

S-f @4ngtyg

R°2\ 2003
i

200"t
!

e

)

T
e

vil

L

T

cvi

7",
>
o

()/\\f| 201X) 242

1

Bolt Beranek and Newman Inc.

3803

Report No.

(TejuamrJdadxy) sAerad Buranand pue Leyag Buiseadoudd

(I1X) (O3S 0\1) 1L
1 1 1

St
1

9- 24n814

220 02|
1

v

i

TV 2
P
£

jBGN;((j‘;bu) ?:9{"!

-———y -
o521\

e
20051

e

205 ¢\

80

Bolt Beranek and Newman Inc.

3803

Report No.

202 0%
1

220°55
= i

(Tejuawtaadxy) Buryjzoowsg ueIpan

(g@lX) (O3S @1) SWIL
200" 022 'Sy QQO.Q-v §wLH §Qbﬂ (2. =4
1 1 1

L=f1 ®84n814

200 "oz 220°S!
1 1

oo 0!
1

]

#

—— -

205 ¢

-y -

qm =

20572\

c— e e
200 °S1

—

205°¢L\

SuOLLFOle Epow

81

Bolt Beranek and Newman Inc.

3803

Report No.

C gOLX
oer 09 22255 Q&Q%.. 200 Sy 200 "oy 290 ST 220 "or e "s2
o 1 1 1 sl 1 1 1

(Tejuawtuaadx3l) BurBedaAy Ho01g Ppaztiuend 8- 24nB14

) (D35 O1) Il
‘St 2000

J

—_—

Somienind : T

3

P — = T

5 21 o AL
ONVE“™

20051

@257 L)

82

PR

- e

Report No. 3803 Bolt Beranek and Newman Inc.

the opposite properties. It will be greatly affected by a single
point with the value 100 ms., but much less affected by 3 points
with the value 5 ms. The cases where our median and average

smoothers seem to disagree can be attributed to these properties.

We believe that where the average and median smoothers

disagree, the average is preferable, for the following reasons:

a) A single point which 1is extremely anomalous in the
sample may not be so anomalous in the data. It may be that where
we see one 100 ms. point in the sampled data, there are three or
four of them in the real data. 1If this is the case, then we want
to count that point, as the average does, not eliminate it, as
the median does. (Note, however, that the reason may be biased
by the 1limitations of our data gathering methodology, see

Appendix 1.)

b) A small cluster of slightly anomalous points should not
result in the generation of a routing update. Thus a function
like the average, which is not sensitive to such clusters, is
better than a function like the median, which is. Of course, we
need not report a change to the network just because our smoother
detects it, but we might as well try to get a smoother which does

not react to changes which we would not want to report anyway.

83

Report No. 3803 Bolt Beranek and Newman Inc.

c) While the median is better than the average in filtering
out certain kinds of noise, it is not clear that we can identify

any of our data as noise.

d) It is true that the average is unlikely to react as fast

as the median in detecting major discontinuities. But,

i) A comparison of Figures 4-7 and 4-8 shows that the
average can also detect discontinuities reasonably

well.

ii) The sort of major discontinuities which may be
important to detect quickly does not seem to occur very
often. We have seen them in our data only under

artificially induced 1load.

We therefore intend to implement a block average smoother
initially. However, if 1t should turn out that the
characteristics of delay change a 1lot when the new routing

algorithm is implemented, we may need to re-evaluate this choice.

84

Report No. 3803 Bolt Beranek and Newman Inc.

4.4 Implementing Delay Measurement and Smoothing in the IMP

The delay measurement portion of a new routing algorithm
should be implemented in four separate modules: a sampling
module, a smoothing module, a comparing module, and a reporting
module. The sampler would be responsible for sampling the delay
values of packets being transmitted on a particular line. The
output of the sampler would be input to the smoother, which would
implement an algorithm such as the ones discussed in Section 4.3.
The output of the smoother would be input to the comparer. The
comparer will compare the smoother's latest output with previous
ones, and decide whether to generate a routing update message.
The actual generation and transmission of a routing update would

be the responsibility of the reporting module.

There are still many unresolved questions about the
algorithms to be wused by each of these modules, and there are
many experiments which must be done 1in order to answer these
questions. We believe that we have reached the limits of what we
can learn wusing our present means of gathering data. The only
way to gather the additional data needed to answer our remaining
questions 1is to implement these four modules and run them in the
IMPs. 1Initially, we will use the modules only for generating
data, wunder a variety of normal and/or experimentally created
conditions. Eventually, the modules will become an essential

part of a new routing algorithm.

85

Report No. 3803 Bolt Beranek and Newman Inc.

5. POSSIBLE IMPROVEMENTS TO CURRENT ARPANET ROUTING ALGORITHM

This section examines three possible improvements to the

current ARPANET routing algorithm:

-- event-driven updating

-- improved reachability determination

(faster and more efficient)

-- improved loop suppression
We were able to develop improved techniques 1in each of these
aspects of the routing algorithm. However, some problems still
remain, and we were led to consider a completely new routing

algorithm (SPF, described in Section 6 below) which does not

suffer from these deficiencies.

5.1 Updating Policy

An alternative to the current use of periodic routing
updates in the ARPANET is to use event-driven routing updates.
If this technique is applied to the present ARPANET algorithm, a
node would transmit routing messages to its neighbors only if its
routing table changes or if its delay to some destination changes
by some pre-specified amount. Such a change can come about
either because the delay on one or more of the node's own lines
changes or because of a routing message received from a neighbor.
With event-driven wupdates it may still be necessary to transmit
routing messages periodically, but the frequency of these

messages will be quite low.

86

Report No. 3803 Bolt Beranek and Newman Inc.

The principal motivation for using event-driven updating is
that routing should adapt very quickly to changes. Furthermore,
since a given routing change often affects only a fraction of the
nodes in the network, and since the frequency with which changes
occur might under normal circumstances be relatively low, we can
anticipate that the average line and node bandwidths required by
this technique would both be 1lower than that of the present
algorithm. Finally, the size of the routing message itself could
possibly be reduced since information only on the changed routes

need be circulated.

At present there are two potential problems that we see with
such event-driven updating. First, when a significant routing
change occurs, there may be some appreciable settling time before
new and stable routes are obtained. During this settling time,
many nodes are exchanging information which is only partially
up-to-date. The exchange of routing messages cannot end until
all nodes have all the latest information, and this can require
that many routing messages be exchanged. 1In other words, the
necessary peak 1line and node bandwidths required may be
excessive; at any rate, the peak/average ratio will be very high.
A possible solution to this problem is to set a minimum updating
period for each node, with no more than one wupdate per period.

Clearly, if this period is chosen to be 2/3 of a second, then the

87

e —— e S— - L ——— e — e ———

Report No. 3803 Bolt Beranek and Newman Inc.

adaptation time would be similar to that of the present algorithm
(ignoring hold-down). A very short period would permit rapid
adaptation but could cause the previously mentioned excessive use
of bandwidth. Some thought is required to determine whether such
an updating period is beneficial, and if so, the value of the
period that yields a good compromise between speed of adaptation

and elimination of unnecessary and unreliable updates.

A second problem with event-driven updates is somewhat more
involved and requires more detailed explanation. Assume first
that on the basis of a routing update, node A's delay to node B
decreases significantly. Then, whether or not A was formerly
using this route to B, A will now wuse the improved route and
since 1its delay table changes, A will forward updates to its
neighbors. Now assume that A receives information that indicates
that the delay to B via line L is larger than A's present delay
vo B. If A's present route to B is not via L, then A simply
discards the message. If, however, A is using L, then A must
update its table and forward the change to its neighbors; but A
has no information on alternate routes, and, therefore, it must
still route messages to B via L, even though the delay along this
path may be excessive and better paths might exist. Thus, the
basic event-driven updating allows information on routing
problems to propagate quickly, but it does not provide a

mechanism to alleviate these problems.

88

Report No. 3803 Bolt Beranek and Newman Inc.

We visualize two possible solutions to this problem. As one
alternative, each node could maintain information on a
second-best route to each destination. With this approach

additional storage is required at each node, but no additional
line bandwidth is needed, since this information is contained in
the routing messages that are normally exchanged. However, there
may be some difficulties associated with maintaining two sets of
up-to-date routing and delay tables and with ensuring that the

delay along the second-best path is not also affected.

A more desirable alternative 1is for a node to request
updates from 1its neighbors. 1In the above example in which the
delay to B increases, node A would request updates from all its
neighbors except the one on line L. In fact, A could incorporate
this request 1in the routing wupdates it transmits to those
neighbors. The overall scheme might thus function as follows.
As above, we assume that node A receives an update on its route
to node B via line L.

1. If the delay to B decreased, then A updates its tables
and forwards the message on its other lines but does not
request an update from these neighbors.

2. If the delay to B increased, then if A was using line L,
it updates its tables, forwards the information on it:
other lines, and requests updates from these neighbors

3. If, along with the routing update for 1line L, node

receives an wupdate request, then A updates its tat
and services the request unless the wupdate caused

Report No. 3803 Bolt Beranek and Newman Inc.

delay via L to increase. 1In this case A ignores the

update request.
Step 3 above insures that unreliable information will not be
exchanged between neighboring nodes. The technique works by
propagating information on increased delays outward along with
update requests and by having these requests ignored until the
increased delay no longer affects a node; this node then sends
information on a superior path. Of course, before the proposed
technique is adopted, considerable thought must be devoted to

insuring that loops do not form.

90

- B UV —

Report No. 3803 Bolt Beranek and Newman Inc.

5.2 Improved Reachability Determination

The present - ARPANET routing algorithm determines
reachability by means of the following heuristic: whenever the
hop-count to a certain destination becomes "infinite" (i.e. 32)
and remains infinite for 10 seconds, the destination is declared
unreachable. Because the ARPANET routing algorithm does not
maintain information about individual network lines, and because
it cannot distinguish among paths which have the same "next hop",
there is probably no way it can determine reachability other than
by using some such heuristic. That is, the algorithm is not
capable of providing more information about a particular
destination than whether or not there is a path to it, and if so,
what the hop-count and delay along that path are. Therefore,
there is little that can be done to determine that an IMP 1is
unreachable other than to note that there is no path to it, and
that there has not been any path to it for a certain time
interval. As a result, the only way to improve the reachability
aspect of the ARPANET routing algorithm is to improve the

performance of the heuristic.

There are two obvious problems with the present performance
of the reachability heuristic: It does not work quickly enough
and it uses an excessive amount of line bandwidth. These points

are discussed in the sections below.

91

Report No. 3803 Bolt Beranek and Newman Inc.

5.2.1 Speed of Adaptation

No IMP can be declared unreachable until 10 seconds after it
actually becomes unreachable. This means that there is a period
of at 1least 10 seconds during which the network does not know
what to do with packets for an unreachable destination. During
this period, the network 1is forced to buffer those packets in
store-and-forward space. Since the network does not have enough
store-and-forward capacity for such buffering, the result is that
packets have to be discarded, and the packets which get discarded

may not even be packets for the IMP which is unreachable.

The optimal length of the time interval during which packets
for possibly wunreachable IMPs must be buffered depends on the
speed at which the network can find a second path to a
destination when the original path to that destination is lost.
If the time interval 1is too small, IMPs will be spuriously
declared unreachable, resulting in packet loss; if the interval
is too large, packets are also lost. We have data which show
that an interval of 4 seconds would be too short. However, since
packets can be discarded from the subnet after being buffered in
store-and-forward space for 4 seconds, any interval that exceeds

4 seconds is too long.

92

Report No. 3803 Bolt Beranek and Newman Inc.

If the ARPANET routing algorithm were modified to use the
event-driven updating scheme described in the previous section,
the time interval to discover an alternate path would of course
become much shorter. Hence the reachability determination would
automatically be improved, since the time interval could be
reduced from 10 seconds to (hopefully) less than 4. However, it
is difficult to say a priori what the interval would have to be

with event-driven updating.

5.2.2 Bandwidth Considerations

Every routing update message contains a hop-count, as well
as a delay for each destination. The hop-count, which is used
only to determine reachability, adds 5 bits per destination to
each update. Since the hop-counts change very rarely (relative
to the update frequency), this wastes a great deal of 1line
bandwidth. Thus, it would be useful to remove the hop-counts
from the routing update messages. If the hop-counts are removed
from the routing update messages, there are two ways to determine

reachability:

a) An IMP may be declared unreachable when the delay
(rather than the hop-count) to it becomes infinite and
remains infinite over a certain time interval. This way
of determining reachability dispenses with the

hop-counts entirely.

93

Report No. 3803 Bolt Beranek and Newman Inc.

b) Hop-counts may be contained in "reachability update
messages" which are separate from the routing update
messages. Reachability updates would be event-driven,
sent only when there 1is a change in the hop-count to
some destination. These updates would be generated very

rarely.

The method of dispensing with hop-counts entirely was at one
time considered by the ARPANET designers, and rejected. Their
reason for rejecting it was valid at the time, but may not be as
applicable with hold down or other loop-suppression (see Section
5.3 below) and event-driven updating as part of the routing

algorithm. Their reasoning was as follows:

Let IMPs A, B, C, D, and E be connected in a
chain, and suppose C crashes. Then C's neighbors,
B and D, will immediately set their delays to C to
be infinite. But if B and D now get updates from
their respective neighbors A and E, which indicate
(because their information is outdated) that they
have finite delays to C, B and D will assume that
they too have finite delays to C. Thus the
infinite delays are purged from the network. Of

course, if C 1is really unreachable, further

updates will eventually cause the delay from all

94

|

Report No. 3803 Bolt Beranek and Newman Inc.

other IMPs to get larger and 1larger, eventually
reaching its maximum value. But since the maximum
value of delay is so 1large, this will take an
excessively long time. So 1long as the maximum
value of hops 1is much smaller than the maximum
value of delay, using hop-counts results in a much

quicker determination of reachability.

However, if there is event-driven updating and 1loop-suppression,
there will be less outdated information in the network, and much
of it will be ignored anyway. Therefore, once the delay to a
certain destination 1is set to infinity, the probability is high
that it will remain at infinity, unless an alternate path really
does exist. However, the probability is not 100%, since routing
updates about the same event can reach an IMP from different
directions at different times (as detailed in BBN Report 3641).
Therefore, there are some cases where the reachability
determination will be unacceptably slow if it is based on delay
counting up to infinity. Furthermore, when such cases do occur,
they will cause an excessive number of routing update messages to

be generated.

An event-driven routing algorithm with 1loop-suppression
would need hop-counts much less frequently than the unmodified

algorithm. However, hop counts are safer to use for reachability

95

A e O ——— — —.

Report No. 3803 Bolt Beranek and Newman Inc.

determinations than are delay values. The question that must be
resolved is whether the additional cost involved in using
hop-counts 1is justified on the basis of the additional amount of

safety they provide.

96

Report No. 3803 Bolt Beranek and Newman Inc.

5.3 Improved Loop Suppression

One important way of improving the ARPANET routing algorithm
would be to replace the current means of loop-suppression
(hold-down) with a more effective one. In this section, an
alternative method of 1loop-suppression 1is proposed. Section
5.3.1 compares it to hold-down from a theoretical point of view.

Section 5.3.2 discusses implementation considerations.
5.3.1 Hold-Down vs. Explicit Information

Hold-down (HD) is a set of procedures added several years
ago to the basic ARPANET routing algorithm. 1Its purpose is to
suppress the formation of path loops, and thereby to decrease the
time it takes for the network to adapt to changes in topology or
line-loading. HD will be compared throughout this section with a
different 1loop-suppression scheme which we term the "Explicit
Information" scheme (EI). We consider first the issue of
suppressing 1loops of arbitrary 1length. Later we consider the

issue of suppressing only loops of two nodes ("ping-pong loops").

Suppose IMP A has a non-looping path to some destination IMP
X. In order for a 1looping path ¢to form, the following two

conditions must hold:

97

Report No. 3803 Bolt Beranek and Newman Inc.

1. A receives a routing update from one of 1its neighbors
(say, from B) according to which the delay from A to X

via B is less than A's current delay to X.

2. A is included in B's path to X. (If a network path is
represented as an ordered sequence of IMPs whose first
element is the source, whose 1last element 1is the
destination, and 1is such that any contiguous pair of
IMPs in the sequence are topological neighbors, then we
say that an IMP is included in a path if it appears in
the sequence which represents the path. A looping path
is a sequence in which some IMP is included more than

once.)

If condition 1 does not hold, a 1looping path is not formed,
because A does not switch paths. If condition 2 does not hold, A
may switch paths, but the new path will not have a loop. Note
that in the basic ARPANET routing algorithm, conditions 1 and 2
are not only necessary for loop-formation, but are sufficient for
it One way of suppressing loops then 1is to detect the
co-occurrence of conditions 1 and 2, and to take appropriate

action on that basis. A very simple scheme is the following:

Explicit Information Scheme (EI): When a node sends a

routing update message to a neighbor, it specifies the path to

98

S —— —y—

Report No. 3803 Bolt Beranek and Newman Inc.

each destination. When a node processes a routing update from a
neighbor, it checks to see whether it 1is 1included in the
neighbor's path ¢to a destination. If so, it acts as if the

neighbor had reported infinite delay to that destination.

Of course, EI could hardly be implemented in a real network.
It is not practical to have the routing update messages contain
the entire path from a node to all others. It is mentioned here
only because it is a simple, "brute-force" method of
loop-suppression which can be interestingly contrasted with HD.
It is clear that EI prevents many loops from forming, since an
IMP will never switch to a path which has infinite delay.
However, EI does not prevent all loops. Suppose that B has a
path to X which does not include A. It is possible that B sends
a routing update to A, and immediately afterwards switches to a
path which does include A. 1In this case, it is possible that A
is included in B's path to X at the time A processes the routing
update from B, although it was not so included at the time B sent
the routing wupdate to A. That is, EI cannot ensure that A will
always know whether condition 2 holds at the time A's routing
calculation 1is being done. Thus EI does allow some loops to
form. However, EI does ensure that any loop which forms will be
quickly broken, and a non-looping path quickly established to

replace it. For, once a loop does form, EI causes the IMPs to see

99

——— e o o e e S—

Report No. 3803 Bolt Beranek and Newman Inc.

infinite delay on +the 1looping path. This will cause a

non-looping path to be preferred as soon as one can be found.

To sum up: EI works by enabling the IMPs to detect
conditions which are sufficient for the formation of 1loops. In
many cases, the information can be used to prevent loops from
forming. In other cases, the information can be wused to
eliminate 1loops, and to ensure that they are replaced with
non-looping paths. EI's major disadvantage is that a pair of
neighboring IMPs must work together to determine whether
conditions sufficient for 1loop formation are present. This

requires very large routing update messages.

Hold-down is an attempt to suppress 1loops by utilizing
purely local information, thereby avoiding El's major
disadvantage. To understand how it works, we need the notion of
one routing update message being based on another. If A and B
are neighboring IMPs, and a and b are routing update messages

generated by A and B respectively, then a is directly based on b

with respect to destination D if and only if b is the most recent
update from B which A processed before generating a, and a
reports the delay to D for a path whose next hop after A 1is B.
If P and Q are any two IMPs, not necessarily neighbors, and p and
q are routing update messages generated by P and Q respectively,

then p is based on q with respect to destination D if and only if

100

T A e o ——

e

Report No. 3803 Bolt Beranek and Newman Inc.

either p is directly based on q with respect to D, or there is a
third routing update message r such that p is directly based on r

with respect to D, and r is based on q with respect to D.

With this notion, we <can present the following two
propositions (again, let A and B be neighbors, and let X be some

destination IMP):

3. If conditions 1 and 2 hold, then the update which A most
recently received from B must be based on an old update
generated by A and sent to B, and furthermore, A's delay
to X must have increased since that o0ld wupdate was

generated.

4. Let p and q be routing update messages generated by some
pair of 1IMPs, not necessarily neighbors. Let t(p) and
t(q) be the times at which p and q were generated
respectively. Then there is some length of time T such

that:

if t(p) - t(q) >= T, then p is not based on q

Proposition 3 is fairly obvious. B could not ever switch to a
path which includes A, except as a result of receiving an update
from A, or else receiving from another neighbor an update which

is based wupon an update received from A. And B could not see a

101

o e —— e — - et e —— e — —

Report No. 3803 Bolt Beranek and Newman Inc.

smaller delay on a path including A than is seen by A itself,
unless A's delay has increased since it generated the update on
which B's information is based. Proposition 4 simply states that
the information contained in any given routing update has only a
finite 1life-span in the network, which is less than the value T.
These two propositions suggest a purely 1local scheme for

loop-suppression:

Hold-down scheme (HD): Whenever a node's delay to a
particular destination increases, it pays no attention to what
its neighbors say about that destination until an interval of

length T elapses.

If propositions 3 and 4 are true, HD ensures that whenever a
routing.update message is received such that conditions 1 and 2
hold, the wupdate will be ignored. That is, HD ensures that the
only updates which are processed are those for which conditions 1
and 2 do not hold. Since conditions 1 and 2 are necessary for
the formation of loops, HD ensures that no loops are formed. In
fact, HD is more effective 1in preventing 1loops than 1is EI.
Whereas EI allows some loops to form temporarily, HD never'allows
a loop to form. EI works by detecting sufficient conditions for
the formation of loops. Despite the large overhead incurred in
detecting these conditions, it is not always able to detect them

soon enough to prevent a loop from forming (although it does

102

Vo

Report No. 3803 Bolt Beranek and Newman Inc.

detect them soon enough to be able to to break loops quickly).
HD, on the other hand, works by detecting conditions which are
necessary for the formation of loops. It is always able to detect
these conditions in time to prevent the formation of loops, and
it detects them by wusing purely 1local information, thereby

incurring low overhead.

Nevertheless, HD has some serious disadvantages. For one
thing, in a network the size of the ARPANET, the value of T is on
the order of minutes. This means that whenever the delay between
A and X increases, the network will be very slow to adapt. Since
the purpose of a 1loop suppression scheme 1is to speed up

adaptation, not slow it down, HD may be self-defeating.

Another disadvantage stems from the fact that although
propositions 3 and 4 are true, their converses are false. The
conditions which HD detects may be necessary for the formation of
loops, but they are not sufficient. This means that although HD.
causes the IMPs to ignore updates for which conditions 1 and 2
hold, it also causes them to ignore, unnecessarily, some updates
for which conditions 1 and 2 do not hold. 1In fact, for all that
has been said so far, it could well be the case that most of the
updates which HD causes the IMPs to ignore are updates which, if
processed, would not result in loops. If this were the case,

then HD's major effect would be to slow adaptation time, rather

103

o m—————— et S — e S ———————

Report No. 3803 Bolt Beranek and Newman Inc.

than to speed it wup. So HD's utility depends on the putative
fact that most of the updates it causes to be ignored would
result in 1loops 1if they were processed. That is, HD's utility
depends on the assumption that the conditions it detects, which
are necessary for loop formation, are also highly correlated with
conditions which are sufficient for loop formation. This means
that HD is a heuristic, probabilistic procedure, whose true

utility cannot be determined a priori.

While neither EI nor HD appears to be a practical way of
suppressing loops, they are perhaps too ambitious in that they
seek to suppress loops of all lengths. It must be noted however
that without any loop suppression technique, long loops are much
less 1likely to form than are short loops. Since each hop in a
path adds appreciably to the total delay on that path, paths with
long loops will generally show a much higher delay than paths
with short 1loops, or no loops at all. Therefore, the longer a
loop is, the less likely it is that conditions 1 and 2 can be
satisfied simultaneously, hence the less likely it is that the
loop can actually form. This means that a scheme which only
suppresses, say, two-node "ping-pong" 1loops, may be nearly as
effective at suppressing 1loops as a scheme which tries to
suppress all 1loops. Both EI and HD can be easily modified to

attempt to suppress only "ping-pong" loops.

104

Report No. 3803 Bolt Beranek and Newman Inc.

To modify EI, we need only note that in order to suppress
loops which are n nodes 1long, it is only necessary to inform
one's neighbor of the next n-1 hops in one's path. Therefore,

the following scheme suffices.

Explicit Information Scheme for 2-node loops (EI2): When a

node sends a routing update message to a neighbor, it specifies,
for each destination whether that neighbor is the next hop on its
path to that destination. When processing a routing update
message from a neighbor, it checks to see if it 1is that
neighbor's next hop to any destination. If so, it acts as if

that neighbor had reported infinite delay to that destination.

EI2 is a more practical scheme than is EI. Lf It 1S
allowable to send different routing messages to different
neighbors, then EI2 can be implemented with no additional
bandwidth at all; if the same routing message must be sent to all
neighbors, the cost is still low: only n bits per destination
per routing update, where n is one more than the greatest integer
of the base 2 logarithm of the number of neighbors an IMP may
have. These two means of implementation are discussed in Section
5.3.2. Otherwise, EI2 is just like EI - it cannot always prevent
loops, but it quickly eliminates loops which do form. And it
never causes a routing update message to be ignored

unnecessarily.

105

Report No. 3803 Bolt Beranek and Newman Inc.

To see how to modify HD so as to prevent only two-node
loops, we note that in order for a two-node loop to form between

IMPs A and B for destination X, the following two conditions must

hold:
1'. A receives a routing update from B according to which
the delay from A to X via B is less than A's current
delay to X.
2'. A is the next hop on B's path to X.
Furthermore,

3'. If conditions 1' and 2' hold, then the update which A
most recently received from B must be directly based on
an old update generated by A and sent to B, and
furthermore, A's delay to X must have increased since

that old update was generated.

4'., Let a and b be routing update messages generated by some
pair of neighboring IMPs. Let t(a) and ¢t(b) be the
times at which a and b were generated, respectively.
Then there is some length of time T', which 1is much

smaller than the T of proposition 4, such that:

if t(a)-t(b)>=T', a is not directly based on b

106

T A —— ——

-- G T WP .. AP PPy

Report No. 3803 Bolt Beranek and Newman Inc.

Therefore, the following scheme will work:

Hold-down Scheme for Two-node Loops (HD2): Whenever a

node's delay to a certain destination increases, it pays no
attention to what its neighbors say about that destination until

an interval of length T' elapses.

Since T' is very much smaller than T, HD2 1is not as
impractical as HD. But HD2 shares many of its properties with
HD. Like HD, HD2 prevents all two-node loops. But it does it at
a cost of causing the IMPs to unnecessarily ignore many routing
update messages, thereby slowing, rather than speeding, the

convergence of the basic routing algorithm in many cases.

HD2 is not the scheme in use in the ARPANET. Rather, the

ARPANET uses a peculiar scheme which we will call "HD2-8".

HD2-8: Whenever a node's delay to a certain destination
increases by at least 8 units since it last sent a routing update
message to some neighbor, it pays no attention to what its
neighbors say about that destination until an interval of length

T' elapses.

It is clear that HD2-8 has the virtue of not causing the
IMPs to ignore routing updates as often as they will if HD2 is

used. But HD2-8 has a rather serious disadvantage -- not only

107

Report No. 3803 Bolt Beranek and Newman Inc.

does it fail to prevent some loops, but when loops do form, they
get locked up. (See Section 2). This would seem to rule it out

as a practical loop-suppression technique.

If loop-suppression were an end in itself, HD2 would be
preferable to EI2, since the former always prevents 1loops from
forming, while the latter does not. However, if loop-suppression
is merely a means of speeding the convergence of the basic
routing algorithm, EI2 seems preferable, since it never causes

routing update messages to be ignored unnecessarily.

53 .2 Loop Suppression as Part of an Improved ARPANET Routing

Algorithm

The main purpose of a loop-suppression scheme in the ARPANET
would be to prevent the occurrences of long-lived "ping-pong", or
2-node, loops. A look at the current ARPANET logical map shows
that three-node 1loops, four-node loops, and five-node loops are
impossible, since the topological pre-conditions for them do not
exist. That 1is, there is in the ARPANET no set of three nodes
connected in a triangle, no set of four nodes connected in a
rectangle, and no set of five nodes connected in a pentagon.
There are several sets of six nodes connected in a hexagon,
though, so loops of six or more nodes are possible. However, the

probability of a 1loop's occurring is inversely related to the

108

- - e H— e i s e —e—

e B BN

Report No. 3803 Bolt Beranek and Newman Inc.

diameter of the loop, while the cost of a loop-suppression scheme
is directly related to the diameter of the loops it can suppress.
Therefore, schemes capable of suppressing loops of six or more
nodes are probably not worth considering, which means that only
the suppression of ping-pong loops, is of any importance in the

ARPANET.

Any alteration to the ARPANET routing algorithm which tends
to stabilize the estimates of delay will automatically help to
prevent 1loops, since it will make spurious routing changes, and
hence loops, less likely to occur. Similarly, any alteration
which causes new information to spread faster and more uniformly
through the network will automatically help to prevent 1loops,
since it will make it less likely that nodes disagree about the
delays to various destinations. Therefore, both the event-driven
updating and the improved delay estimates described in previous
sections would help to make loops less likely. However, it does
not seem likely that these improvements would totally obviate the
need for an explicit loop-suppression scheme. 1In the remainder
of this section, we describe two variants of the EI2 scheme, each
of which seems implementable in conjunction with the other

suggested improvements to the ARPANET routing algorithm.

1. In this variant, a separate routing update message must

be sent to each neighbor. Let I be the IMP which is sending the

109

Report No. 3803 Bolt Beranek and Newman Inc.

update, and K the IMP to which it is being sent. The set of
possible destinations can be divided into two disjoint subsets --
those for which K is the next hop after I, and those for which K
is not the next hop after I. For destinations in the former
class, the update should specify infinite delay, rather than the
actual estimated delay. This will prevent K from routing to I

packets which would only be routed back to K.

2 In this variant, the same routing message is sent to
each neighbor. The sending IMP indicates, in addition ¢to the
delay to each destination, the next hop on its path to that
destination. This can be done in three bits, providing that each
IMP has its neighbors' neighbor tables, and that the bit-coding
limitation on the number of neighbo~s is acceptable. When the
receiving IMP notes that it is the next hop on the sending IMP's
path to some destination, it acts as if the sending IMP had
reported infinite delay to that destination. (Note that the
update message in this second variant also contains all the

information needed to suppress three-node loops.)

While this loop-suppression scheme does not prevent all
ping-pong loops, it does ensure that any ping-pong loops which do
form will be very short-lived. This would be especially true if
it were implemented in conjunction with the other improvements

described earlier in Sections 5.1 and 5.2.

110

. A . — —

" NS e

Report No. 3803 Bolt Beranek and Newman Inc.

6. SHORTEST PATH FIRST ALGORITHM
6.1 Introduction

Many algorithms have been devised for finding the shortest
path through a network. A recent survey article [1] discusses
some of these algorithms and also references several other survey
articles. The basic algorithm we shall consider is attributed to
Dijkstra [2]; because of its search rule, we call it the shortest
path first (SPF) algorithm. The following section first
describes this basic algorithm which is wused to initially
generate the shortest path tree and then explains the important
additions we have developed for mod;fying the tree if network
changes occur, Section 6.3 presents some analytic results for
predicting SPF running times, and some quantitative results
obtained by running the algorithm in FORTRAN on TENEX, and on the
316 and Pluribus. Section 6.4 discusses some basic issues on how
updates (i.e., information regarding line and node status) may be
handled. Section 6.5 compares the SPF algorithm with the present
algorithm. The final section contains the conclusions from our

work with SPF.

Report No. 3803 Bolt Beranek and Newman Inc.

6.2 Shortest Path First Algorithm (SPF)

6.2.1 Basic Algorithm

The basic algorithm for finding the shortest path tree from
a given source node 1is a way of building up the tree node by
node. That is, the tree initially consists of just the source
node. Then the tree 1is augmented to contain the node that is
closest to the source and that is adjacent to a node already on
the tree. The process continues by repetition of this last step.
The tree 1is built up shortest-paths-first -- hence the name of
the algorithm. Eventually the furthest node from the source is
added to the tree, and the algorithm terminates. As a by-product
of the algorithm, it is easy to produce an ARPANET-like routing
table. Figure 6-1 presents an example shortest path tree for the

ARPANET, to aid in visualizing the operation of the algorithm.

In the ARPANET, each IMP would run the algorithm with itself
as the source. 1In order to run the algorithm each node must
maintain a data base representing the topology of the network. A
key component in the data base is the "length" of every line in
the network (where "length" is not physical 1length, but rather

some relevant metric such as delay).

We begin with a semi-formal description of the algorithm,

followed by more verbose commentary. Let SOURCE be the node in

112

Bolt Beranek and Newman Inc.

3803

Report No.

994l yzed 3se934oys ordwexy |-9 8Jn8r4

¥
8 92 v

09 0. g6 i

| \ / _ |

2b 8¢ 82 I 2l €2

| / \ / | |
oy 0z Ji 2 2 \._N
a4 o 2 bl

sApjag wopuby

seulq G
S8pON 29
13INVdNY
L Sb 9¢ 9l
| N\ |/
e 226 1S 12
} NS LB 4
e i 2 I8 =
gl ol
|
¢_m /n¢\ 62 v 8
W R
\\\nn Jv nﬂ
6 86 ¢

Report No. 3803 Bolt Beranek and Newman Inc.

which the algorithm 1is running. The algorithm's basic data
structure, LIST, is a variable-length 1list whose elements are
ordered triples. An ordered ¢triple T is of the form <SON,
FATHER, DISTANCE>, where SON and FATHER are nodes, and DISTANCE
is a number. (We use the notation SON(T) in the obvious way to
mean the first element of the triple T.) Each triple represents
a particular path from SOURCE to SON. The penultimate hop on
this path is FATHER, and the total "length" of this path is

DISTANCE.

To 1initialize the algorithm, place <SOURCE,SOURCE,0> on

LIST. The algorithm itself consists of the following steps:
1. Search LIST for the triple T with the smallest DISTANCE.
2. Remove T from LIST.

3. Place SON(T) on the shortest path tree so that its
father on the tree is FATHER(T). [Exception: If SON(T)

= SOURCE, place it in the tree as its root]

4., For each neighbor N of SON(T), do one of the following

steps:

a. If N is already in the shortest path tree, do

nothing.

114

Report No. 3803 Bolt Beranek and Newman Inc.

b. If there is no triple T' on LIST such that SON(T') =
N, then place the triple <N, SON(T), DISTANCE(T) +

LINE LENGTH (SON(T), N)> on LIST.

c. If there is already a triple T' on LIST such that
SON(T') = N, and if DISTANCE(T') < DISTANCE(T) +
LINE LENGTH (SON(T), N), do nothing.

d. If there is already a triple T' on LIST such that
SON(T') = N, and if DISTANCE(T') > DISTANCE(T) +
LINE LENGTH (SON(T) N), then

i) Remove T' from LIST

ii) Place the triple < N, SON(T), DISTANCE(T) +

LINE_LENGTH (SON(T), N) > on LIST

5. If LIST is non-empty, go to 1. Otherwise, the algorithm

is finished.
Commentary

Remember that each ¢triple really represents a path from
SOURCE to SON of length DISTANCE, where the next-to-last hop on
that path is FATHER. The structure LIST 1is initialized to
contain the zero-length path from SOURCE to itself. At the first

iteration, this path is removed from LIST, and SOURCE 1is placed

1L

4 B - — J— - -

Report No. 3803 Bolt Beranek and Newman Inc.
on the tree. Then the single-hop paths from SOURCE to each of
its immediate neighbors are placed on LIST. At the second
iteration, the shortest of these paths (i.e., the path to the
closest immediate neighbor) is removed from LIST, and the closest
neighbor of SOURCE (call it N) is placed on the tree as a son of
SOURCE. Note that there cannot possibly be any shorter path to
N, since any such path would have to have as its first hop a
neighbor which is not as close to SOURCE as N itself. Therefore,
the shortest path to N has been found. At this point, there is a
possible path to each neighbor of N -- the two-hop path from
SOURCE via N to N's neighbors. Each of these paths is placed on
LIST. With further iterations, every path to each destination

node is eventually encountered.

Note the way in which the paths are generated: at every
iteration, the shortest path on the LIST is removed, and the LIST
is augmented (if at all) only by paths which are one-hop
extensions of that shortest path. It can be shown (see e.g.,
[1]) that all paths of length n will be encountered before any

path of length > n is ever removed from LIST.

Naturally, since there are many possible paths ¢to each
destination N, and only one of those paths can be the first
encountered. When a path to a node N is not the first

encountered, special action must be taken.

116

- T At e —

Report No. 3803 Bolt Beranek and Newman Inc.

Two cases exist. N is in the tree or N is on the LIST. 1If
the node N is already in the tree, then some other path to N must
have been previously encountered, placed on LIST, and removed
from LIST. For that to be the case, the previously encountered
path must be shorter than the one presently encountered. Hence
the latter path need not be further considered, and should just

be discarded and not placed on LIST. (See step l4a.)

Alternatively, the node N may not be_in the tree yet, but a
previously encountered path may already be on the LIST. If the
path already on LIST is the shorter, it remains on LIST (step
be). If not, it is removed from LIST and the lately encountered

path is placed on LIST (step 4d).

When the LIST becomes empty, that means that all possible
paths have been encountered, and the shortest path to each node

found. At this point, the shortest path tree has been completed.
6.2.2 Incremental Algorithms

The manner in which incremental changes are accomplished is
of prime importance because such changes must be handled rapidly
in order for the algorithm to be viable. Re-calculation of the
entire tree 1is probably too time-consuming to be performed
whenever a change in the status of some line or node occurs, and

therefore, algorithms to handle the possible network changes have

17

Report No. 3803 Bolt Beranek and Newman Inc.

been developed. As will be shown in subsequent sections, a given
incremental change to the network topology generally affects the
routing to only a fraction of the nodes, causing only a minor
change to a node's shortest path tree. Occasionally, however, a
major portion of the tree must be restructured; thus it is
important that when a change does _affect the node its
calculations can be done efficiently. Of course, there may be
situations where it is more expedient to perform a comprehensive

calculation than to do an incremental calculation.

The paragraphs below provide a qualitative description of
the steps that have to be performed when each type of iﬁcremental
change occurs. Then a single algorithm which consolidates all

these steps with the basic algorithm is presented.

Line Changes

Assume that the shortest path tree for the source node prior
to the change is known. First consider the <case where the
"length" of the 1line AB from node A to node B increases (e.g.,
the delay gets worse). Clearly, if the line is not in the tree,
nothing need be done. If the 1line is in the tree, then the
distances to B and to all nodes whose route from the source is
via B increase. Thus, the nodes in the subtree whose root is B
are candidates for changed routing. Conversely, routes to nodes

not in this subtree will not be altered.

118

N e Sp————

—

Report No. 3803 Bolt Beranek and Newman Inc.

The first two steps for handling an increase in distance

along a line are thus:

1) 1Identify nodes in B's subtree and update their distances

from the source.

2) Try to find a shorter path to each subtree node S by
routing S via those of its neighbors which are not in
the subtree; if such a path is found, put node S on
LIST. (More precisely, put the triple representing S on
EIST)

At the conclusion of these steps, LIST either will be empty or
will contain some subtree nodes for which better (but not
necessarily best) paths have been found. 1In order to find the
best paths to the nodes on LIST as well as to the other subtree
nodes, a slightly modified version of the SPF algorithm described
in the previous section can be called. The modification that is
necessary is step (4a), which skips nodes that are already on the
tree. This procedure is correct when the tree is being generated
from scratch, since then the algorithm ensures that once a node
is placed on the tree, the shortest path to that node has been
found. In the incremental case, however, the change in 1line or
node status sometimes necessitates that a node be relocated.
This modification is included in the consolidated algorithm given

in the next section.

119

Report No. 3803 Bolt Beranek and Newman Inc.

Now assume that the distance on the 1line from A to B
decreases. If this line is in the tree for a given source node,
then clearly paths to the elements of the subtree which has B as
root will be unchanged because the subtree nodes were already at
minimum distance, and hence the decreased line length will only
shorten their distances from the source. Moreover, any node
whose distance from the source is less than or equal to B's new
distance from the source will not be re-positioned, since the
node's path must reach B first in order to take advantage of the
improved 1line. However, nodes which are not in the subtree and
which are farther from the source than B may have a shorter

distance via one of the subtree nodes.

The algorithm must thus first perform the following steps:

1) 1Identify the nodes in the subtree and update their

distances from the source.

2) Try to find a shorter distance for each node K that is
not in the subtree but is an immediate neighbor of a
subtree node by routing K via those of 1its neighbors
which are 1in the subtree; if such a path is found, put

node K on LIST. \

At the conclusion of these steps, LIST will contain some

(possibly zero) subtree neighbor nodes that have been re-routed.

120

Report No. 3803 Bolt Beranek and Newman Inc.

Neighbors of these nodes that are not in the subtree are
candidates for improved routes also, and starting with the LIST
generated in step 2 above, the modified version of the SPF

algorithm can be used to restructure the rest of the tree.

If the line from A to B improved, but was not originally in
the shortest path tree for a given node, then the algorithm must
first see whether the node can take advantage of this
improvement. Since the distance from the source to node A cannot
be improved, the distance to B using the line AB will be equal to
the distance to A plus the new distance along AB. If this
updated distance is greater than or equal to the original
distance from the source to node B, then the improved 1line does
not help and no changes are made to the tree or to the routing
table. If, on the other hand, the updated distance is less than
the original distance, then the best route to B will now use AB.
The first change to the shortest path tree 1is therefore to
relocate B (and hence its subtree), attaching it to node A via
line AB. Now the situation is identical to that of the previous
paragraph in which the line from A to B was in the tree in the

first place and its distance decreased.

Node Changes

121

A o it —— e ————— i ——————— -

Report No. 3803 Bolt Beranek and Newman Inc.

First consider the: case where node B goes down. This
situation 1is easy to handle with a slight modification of the
steps for line changes described above; namely, the nodes that
must be relocated are those contained in B's subtree. This can
be accomplished exactly as in the case for an increase in 1line
length except that B 1is excluded from the subtree, since this

node is now inoperative.

If, on the other hand, node B has been down but now comes
up, the procedure is first to find the best route to B itself and
then to find nodes that have 1improved distance by taking
advantage of the fact that B is now operative. Specifically, the
first step is to find the shortest distance to B by examining
direct routes from each of B's neighbors. Node B is then put on
LIST. Candidates for re-routing -re all nodes whose distance
from the source is greater than B's distance, and the basic SPF
algorithm starting with LIST containing only B, can be wused to

restructure the tree.
6.2.3 Consolidated Routing Algorithm

The basic SPF algorithm and all of the incremental cases can

be consolidated into the algorithm given below.

0. If no tree exists, put the source node on LIST, and go

to step 7.

e

Report No. 3803 Bolt Beranek and Newman Inc.

1. If the change was to the status of node B set DELTA
infinite, and if B went down, then go to step 4, else go

to step 3.

2. If the change was to line AB, then perform one of the

following steps:

a. If AB is in the tree, set DELTA equal to the change in

distance along AB.

b. If AB is not in the tree, set DELTA equal to the
distance to node A plus the distance along AB minus
the distance to B; if DELTA is greater than or equal

to 0, done.
3. 1Identify node B as a member of the subtree.

4, 1Identify all of B's descendents (both first generation

and succeeding generations) as members of the subtree.
5. Increase the distances of all subtree members by DELTA.

6. For each subtree node S perform one of the following

steps:

a. If DELTA is positive, try to find a shorter path to S
via each of S's neighbors that is not in the subtree;
if su¢h an improved path is found, put the triple

representing S on LIST.

123

Report No. 3803 Bolt Beranek and Newman Inc.

10.

If DELTA is negative, try to find a shorter path to
each of S's non-subtree neighbors by attempting to
route each neighbor via S; if such an improved path
is found, put the triple for the neighbor node on
LIST.

Search LIST for the triple T with the smallest DISTANCE.
Remove T from LIST.

.
Place SON(T) on the shortest path tree so that its
father on the tree is FATHER(T). [Exception

If SON(T) = SOURCE, place it in the tree as its r

For each neighbor N of SON(T), do one of the ! wing
steps:
a. If N is already in the shortest path tree

i) If its distance from SOURCE along the tree 1is
less than or equal to DISTANCE(T .

LINE_LENGTH(SON(T), N), do nothing

ii) If its distance from SOURCE along the tree is
greater than DISTANCE(T) + LINE LENGTH(SON(T),
N), remove N from the tree and place <N, SON(T),
DISTANCE(T) + LINE_LENGTH(SON(T), N)> on LIST

124

Report No.

11.

3803 Bolt Beranek and Newman Inc.

If there is no triple T' on LIST such that SON(T') =
N, then place the triple <N, SON(T), DISTANCE(T) +
LINE _LENGTH (SON(T), N)> on LIST.

If there is already a triple T' on LIST such that
SON(T') = N, and if DISTANCE(T') less than or equal
to DISTANCE(T) + LINE LENGTH (SON(T), N, do

nothing.

If there is already a triple T' on LIST such that
SON(T') = N, and- if DISTANCE(T') > DISTANCE(T) +

LINE_LENGTH (SON(T) N), then
i) Remove T' from LIST

ii) Place the triple < N, SON(T), DISTANCE(T) +

LINE_LENGTH (SON(T), N) > on LIST

If LIST is non-empty, go to 7. Otherwise, the algorithm

is finished.

125

© m————— —

Report No. 3803 Bolt Beranek and Newman Inc.

6.3 Analysis and Data

When a given node receives an update message indicating that
some line has gotten worse, the amount of time it takes to run
the incremental SPF algorithm should be roughly proportional to
the number of nodes in that line's subtree of the given node's
shortest path tree. That is, it is roughly proportional to the
number of nodes to which the delay has gotten worse. When a
given node receives an update message indicating that some 1line
has gotten Dbetter, the amount of time it takes to run the
incremental SPF algorithm should be roughly proportional to the
number of nodes in that line's subtree after the algorithm is
run. That is, it is roughly proportional to the number of nodes

to which the delay got better.
6.3.1 Average Subtree Size

One important measure of the efficiency of the SPF algorithm
is 1its average running time. As indicated above, we expect that
this is closely related to subtree size. Appendix 2 provides a
simple derivation for a remarkable result:

-- In any tree, the average subtree size is equal to the

average path length from the root to all nodes.
Figure 6-2 provides a summary of the proof of this statement for

the ARPANET, in which the average path length is 5.5.

126

Report No. 3803 Bolt Beranek and Newman Inc.

Average Path Length

]

h=s —

n-1

iA; d = Depth
1 A; = No. of Nodes at Depth i

Ma

Average Subtree Size

y d - -
. .}: A;-B; B; = Average Subtree Size
i=l ‘ at Depth i
L $5a
* n-1 i=1 lg' J
= h

In Regular Graph (Connectivity C)

154
s=h=d((°‘))_ 1

(c=1)9- c-2

Figure 6-2 Average Subtree Size Equals Average Path Length

127

T A o e o S — - C————

Report No. 3803 Bolt Beranek and Newman Inc.

Furthermore, the fraction of all the network lines appearing
in a given shortest path tree is 1/c, where ¢ is the number of
lines per node. Thus, if we denote average path length as h, we
have the useful result:

-- The expected subtree size of a given line in any node's

shortest path tree is h/c.
Appendix 2 shows that this provides an upper bound on the running
time of the SPF algorithm, and gives some numerical values for

h/c as a function of network size.

Figure 6-3 shows the significance of these results for the
ARPANET. (The running time of 1 to 2 milliseconds is discussed

in more detail in section 6.3.3 below.)

6.3.2 Distribution of Subtree Sizes

In order to determine the distribution of subtree sizes for
all lines in the ARPANET, we used the comprehensive SPF algorithm
to construct shortest path trees for all nodes in a network.
Then we simply counted the subtree size of each line. We tested
many sets of line lengths and found no significant differences in
the average subtree size. For non-congested networks, the
average subtree size is about 2, and the median subtree size 1is
about 2. A surprising 1/3 of all nodes are leaves (have no

descendants). A total of 85% of all lines have subtrees which

128

S ————— _— -— - e e eeg—

Report No. 3803 Bolt Beranek and Newman Inc.

In General
Nodes N
Lines L
Connectivity c=2'L/N
Average Path Length h
Average Subtree Size
For Lines in Tree &
% of Lines in Tree 1/¢
oy b g SRR
Expected Running K e 3
Time For SPF c

Figure 6-3 Performance of SPF Algorithm

129

ARPANET

62

75
e

5.5

2.5

40 %

2.18

1-2 ms

Report No. 3803 Bolt Beranek and Newman Inc.

are smaller than 11 nodes. A total of 95% of all lines have
subtrees which are smaller than 21 nodes. These facts are
consistent with the theoretical predictions, indicating that very

few of the lines in the network ever have very large subtrees.

We also modeled a badly congested, or damaged, network and
found the average subtree size to be about 5, and the median to
be about 9. The incremental SPF algorithms will, on the average,
take 1longer to run in a congested or damaged network than in a

non-congested network.
6.3.3 Measured Performance of SPF

In order to get an idea of the absolute amount of space and
time it takes to run the SPF algorithm, we programmed SPF in
FORTRAN (actﬁally RATFOR, a structured programming version) on
TENEX. Then we coded the algorithm in assembly language for the
316 IMP and Pluribus (1 processor) IMP, using the 'TENEX version
as a mod§1. We were pleased to find all three versions required

approximately the same amount of storage, as shown in Figure 6-4.

To determine running times, we randomly assigned each 1line
in the ARPANET a 1length between 1 and 20. We ran the
comprehensive SPF algorithm to initialize the data structure in
each node. Then we used a random number génerator to generate,

in sequence, 50 routing updates. That is, we picked 50 lines at

130

Report No. 3803 Bolt Beranek and Newman Inc.

random and successively gave each a new random length. Every
time we changed the length of a line, we changed it by at 1least
15%. Also, some 1lines were brought down by being assigned a
length which represented infinity. Each time we did this, we ran
the incremental SPF algorithm in all the nodes. We obtained the
following two empirical results for TENEX (surprisingly similar

results hold for the 316 and Pluribus implementation):

a. The average time per IMP to run the incremental SPF

algorithm was 2.2 milliseconds.

b. The average time per subtree element ¢to run the
incremental SPF algorithm was 1.1 milliseconds. That
is, if, for a given node, a particular wupdate affected
the distance to N destination nodes, the algorithm would
take 1.1N milliseconds, on the average, to run in that

node. (The standard deviation was 0.46.)

Since we know that average subtree size for a non-congested
network 1is about 2, these two results are in agreement. Note
that this is only an average figure. Actual times vary from
under 1 millisecond to 40 milliseconds. We also ran the
élgorithm 50 times on a similar network, except that certain
lines were given "length" 80, to simulate a congested or damaged
network. The average ¢time per IMP to run the incremental

algorithm increased slightly, to 2.4 ms.

131

Bolt Beranek and Newman Inc.

3803

Report No.

4dS Butwweualdouad

woJdj s3INsay

-9 24n814

2é o | 2’é v
cv L¢ vd |pta] /XOW
'l 90 l o] ZUlN
(siolL OG) sajopdn
06 o¢ r4°) oAY
€S 6¢ 6S XOW
VA 4 e lv UlN
994] 9j9|dwo)
[sw) swi/ burwuny
6et L.E 1748 jojoL
80l G8 8L d31n0y
99 (0] L9 HOYV3S
ecl Oll 8¢cl 334134
el €9 0L ONILY
lE eb 44 Tviy
ee 12 62 NIV : 3|NpON
(Spiom) 8218
Alquassy Alquassy uD4}404
SPIOM 4!9-9] | SPIOM 4!8-9[| SPIOM H8-9¢
9I¢ H sngiyNd X3N31

132

Report No. 3803 Bolt Beranek and Newman Inc.

One valuable lesson we learned in this investigation is that
we can use the storage and timing results from orne implementation
of an IMP algorithm on TENEX, the 316, or the Pluribus, to
predict quite closely the performance of that algorithm on the

other machines.

133

Report No. 3803 Bolt Beranek and Newman Inc.

6.4 Updating Policies

In previous sections we noted some of the deleterious
effects of the present ARPANET periodic routing policy--in
particular, the speed of adaption to network changes, the
excessive average line bandwidth used by routing messages, and
the delay induced 1in data traffic. Section 5.1 describes an
alternative technique, event-driven updating, in the context of
the ARPANET routing algorithm. The advantages of event-driven
updating clearly apply also to the SPF algorithm, and here we
discuss some of the 1issues 1involved in developing such an
updating policy for a routing algorithm like SPF, which requires
an 1identical data base at all the nodes. The updating technique

we design must meet the following criteria:

Normal IMP failure IMP recovery
Operations or partition or partition end
Efficiency Low CPU and Fast notification
line overhead at low overhead
Reliability Sequencing of Nc loss of Complete information
multiple updates updates made available

Five questions, about update data, addressing and routing, error
control, topology changes, and program implementation are
considered below. Some questions are answered; others remain
open for now; the conclusions are summarized at the end of the

section.

134

Report No.

6.4.1

3803 Bolt Beranek and Newman Inc.

Data Contained in the Update Message

One line vs. all lines at that IMP?

Sending information about all the lines at the 1IMP has

several advantages:

more efficiency under heavy 1loading/many changes
(less than a factor of ¢ more efficiency, where c =

number of lines/node).

less ambiguity about the sequencing of multiple
updates (when a node receives an update about one
line at an IMP, it gets synchronized information

about the status of the other lines).

fewer serial numbers required: one per IMP, not one
per line (note: the size of this number should be
determined by some analysis; we have not yet done

so) .

simplicity of performing periodic re-broadcasts if

desirable.

all lines can be updated somewhat more frequently,
so accurate "event" detection and event-driven

updating is less crucial.

135

Report No. 3803 Bolt Beranek and Newman Inc.

-- the most recent wupdate contains all necessary
information; an ack system which checks only the

last number received is adequate.

Sending only one line's data permits a restriction of no more
than x wupdates/time period/line, but that seems not to be an

important advantage.

b. One IMP's data or several IMPs'?

Certainly, the ability to combine several update blocks
into a single network message is an important efficiency
measure. This would be useful at the end of a network
partition, when several IMPs need to report information

to each other.

¢. How should lines be identified? How should topological

changes be updated?

It seems most reliable, general, and certainly simple
enough to identify each line by the numbers of the IMPs
at each end rather than by any artificial numbering.
This permits any topological change (e.g., modem wire)

to be effected easily.

d. What information is needed for analysis and debugging?

136

Report No. 3803 Bolt Beranek and Newman Inc.

SYNC time at origination, to tell how long an update
takes

-- Serial numbers on each wupdate block, to detect

missed updates

e. What should the format be?

137

v e — — —

Report No. 3803 Bolt Beranek and Newman Inc.

SYNC TIME AT ORIGINATION 0
HEADER FLAGS /| # oF BLks
SOFTWARE CHECKSUM

(THIS IMP NO. #NEI | SERIAL NO.

! NEI IMP 1 Steo | Yot /)= TopoLosY INFO
i T %t DELAY (5ms units) |=TRAFFIC INFO
R P D,

Wi (
\ Vi |

(i THIS IMP NO. : 5 -
: L O o b s S S o e e 4
POSSIBLY } | IMP 1 |
MORE ¢&=—ccca s e oo s ;
BLOCKS |1 IMP 2 ‘ i
e e e e, - —————— -
o e MR oy i Pty ¢ g
Length(bits): Hardware framing 72
Software header 48
Each block 16 + 32% #NEIs
Some 1 Update, 2-1line node = 200 bits 4ms @ 50 Kbps
example 1 Update, 3-line node = 232 bits 4.6 ms @ 50 Kbps
updates 9 Updates, 3-line nodes = 1128 bits 22.6 ms @ 50 Kbps

Fig. 6-5 Routing Update Format
Figure 6-5 shows a suggested format. Note that there is
no address (no to: field) in the update; this question
is considered in the next section.

6.4.2 Addressing and Routing Updates

There are two general types of approaches:

138

Report No. 3803 Bolt Beranek and Newman Inc.

a. "Broadcasting", in which the source addresses the update
explicitly to all nodes, and routes it to each node
along the best path. (This is discussed in ARS #23.)
Such a scheme requires N-1 packet hops for the

broadcast, which is optimal.

b. "Flooding", in which each node sends each new update
(one it has not seen before: the serial number is
larger than the last one received about that IMP) on all
its lines except the 1line on which the wupdate was
received. This requires L-N+1 packet hops (where L is
the number of lines in the net counting each direction),
since an update will flow on all lines except
"backwards" on the N-1 lines of the broadcast tree from
the source. If we define L=cN, where czaverage
connectivity, then this number of updates is cN- (N-1) =

(c=1)N +1.

What can we say about these two methods, A and B? First,
let's consider efficiency. The most important consideration in
efficiency 1is 1line bandwidth; CPU bandwidth requirements can be

shown to be very small.

Method A: The message is b+N bits 1long, where b 1is the

number of bits in the body and N is the N-bit address. Thus the

139

Report No. 3803 Bolt Beranek and Newman Inc.

total number of bits on all lines is (b+N)(N-1). Therefore, the
total bit rate per line if each node updates every t seconds is

N(b+N) (N-1) (b+N) (N-1)

Method B: The message length is only b bits, thus the total
number of bits on all lines is b((c-1)N+1). The total bit rate
per line is

bN((c=1)N+1) b((c=1)N+1)

Method A is quadratic in N, which means for large enough N
it will become more expensive than Method B. The crossover point

comes when

(b+N)(N-1) > b((c=-1)N+1)

The exezct solution has a messy form; it can be approximated as

N > b(e=2)

That 1is, when N > b(c-2), Method B is more efficient. This is
illustrated in Figure 6-6 below for b=200 bits, t=100 seconds.
For c¢=2.5 (ARPANET), crossover comes near 200% .5=100 nodes. For
c=l4, crossover is not until 400 nodes. Note, however, that for
c=2.5 both methods A and B require less than 100 bps (.2% of 50

Kbs) to update 80 nodes at a rate of once every 100 seconds. The

140

Report No. 3803

Bolt Beranek and Newman Inc.

1000 T T T T TTIrI7T T T T TTIrl T T \s"’5y'-
8 0 I
i \\\\\\ 1
41 &‘ ; .
.0.0'
] i]
4L/ d
- /'\‘s‘
g% d’§§§}'
w 100F ,o" \\\ E
Z 8r £/ \\\ -
= g" & <§§' g
- B ’,o \\\ s
gf ar d" {g} E
a , £/ B
" | FLOODING ,/ \\\\\\ BROADCASTING
b ,o" \\\ =
o 10 4 {s} .
5 7F o"" \\\\\\ -
6} o’ i
s} /Y 'Qg, :
: ~c=4 ""O"\\\\\\\\ F
- y \\
t=2.5 \\\ c=4
1ol — A
1.0 2 3 4 567 910 2 3 4 567 9100 2 3 4 567 9|000
NUMBER OF NODES
Fig. 6-6 Routing Overhead per Line (assuming 1 update/node/100 seconds)

141

Report No. 3803 Bolt Beranek and Newman Inc.

line overhead scales linearly with t, the update rate, so other
strategies can be compared simply by relabelling the y axis. For
instance, if t=10 sec, then updating in the ARPANET (N-62, c=25)
would require 750 bps (1.5% of 50 kbs).

Some interesting points emerge from examination of Figure 2:

-- Method B (flooding) is a straight line on log-log paper,
with practically no dependence on c. This makes it
useful for long-range planning, since it is not

sensitive to network topology.

-- For a given number of nodes Method B grows 1less
efficient as the net 1is more highly connected, while

Method A grows more efficient.

-- Methods A and B are quite similar for ARPANET-size

networks (50-200 nodes).

-- The magnitude of the updating overhead is very low, even

for large nets.

Since flooding is more efficient for large nets, and is very
efficient in absolute terms for small nets, it is the best
overall choice for efficiency. For the ARPANET, the two methods
have nearly identical efficiency. The choice between them should

be made on other grounds.

142

e P — e . e

Report No. 3803 Bolt Beranek and Newman Inc.

A second important advantage of flooding is that the IMP
sends the same message on all its lines, as opposed to creating
separate messages with different bit-vector addresses on the
dififerent lines. This may make it considerably simpler to
program the wupdate mechanism, since there is no problem of
reserving buffers or dealing with the situation in which the IMP

has no more buffers for update copies.

A final consideration which favors flooding is that it does
not depend on the correct operétion of the routing algorithm.
This makes it a safer, more reliable system than broadcast. This
also covers the special case of sending updates on dead lines,
which helps to speed the update process, and avoid various
unlikely error cases (e.g., one line at an IMP comes up at the

same time its other line goes down, so it misses an update).
6.4.3 Reliable Transmission of Updates
a. Should updates be acknowledged? How?

At first glance, it}seems essential to ack updates to make
sure they get through, and this is useful for flooding:
If updates are acked at each hop, then with flooding

the update will be received at all nodes which have a
path to the source at the time of the update.

143

Report No. 3803 Bolt Beranek and Newman Inc.

On the other hand, with broadcasting wusing an n-bit vector,
transmission is not reliable. Two examples are (1) a node which
receives an update, acks it, and then fails, and (2) a section of
the network which is partitioned from the rest while an update is
flowing through it destined for the main body of the net. 1In
each case, an update will be lost.
Under broadcasting, acking updates at each hop 1is not
sufficient to ensure reliable updating of all nodes
which have a path to the source at the time of the
update.
If we decide to use a positive ack/retransmission system for

routing updates, then we have to build the right data and control

structures in the IMP. Some possibilities are:

144

T —————— - e e —— —

Report No. 3803 Bolt Beranek and Newman Inc.

Method Problems
1. Use regular modem Need different channels for
logical channels and acks transmission on different lines.

What to do if no channels
are available.

2. Invent a new set of Adds complexity to the IMP
logical channels for (packets on multiple queues, etc.)
routing, common to all lines.

3. Send all acks Slower reaction to a
periodically rather than lost update than usual

one at a time in separate messages. ack system.

One last possibility, though not an ack system, is:

4, Send the update once only, Even slower error recovery,
and rely on a periodic though very reliable in
retransmission to ensure it the long run.

gets through.

Method 1 is not very workable, since there are problems
associated with copying the update into several buffers for the
different outputs, setting up channels and queues in a
non-disruptive way, and dealing with the case of no available

channels.

For Method 2, the ack would look very similar to today's
packet acknowledgments, though there might be a need for more
than 8 ack channels if we want to make very sure there is no
blocking for lack of channels. The expected number of wupdates
per ack would be very small, since there are very few

updates/line/second with either broadcasting or flooding:

145

Report No. 3803 Bolt Beranek and Newman Inc.

N-1 25
broadcasting: ---; for ARPANET = -- = 25 times routing update rate
ct t
(c=1)N+1 35
flooding: e-ecece-a-- ; for ARPANET = -- = 35 times routing update rate
ct t

Thus, 1if routing updates were generated once a minute on average
by each node, then an update message would flow over each 1line

every two seconds on average.

For Method 3, we could use the periodic Hello/IHY message
exchange to carry a one-bit odd/even bit for each node. This
would require an additional N bits per Hello/IHY message, rather
than a separate ack message for each update. A drawback of this
scheme 1is that the sender is "blocked" from sending another

update about some IMP until the previous one is acked.

We now compare these two possibilities in terms of the extra
line overhead they require. 1In both cases, we will assume a
136-bit Hello/IHY message is sent every 640 ms, contributing 212
bps of overhead, and we are concerned only with additional

overhead beyond this:

146

Report No. 3803 Bolt Beranek and Newman Inc.

Method 2 Method 3
Separate Acks All Acks in Hello
broadcasting 136(N-1) N
________ bps --- bps
ct .64
flooding 136 ((c=1)N+1)
------------- bps
ct

This assumes separate acks are 136 bits long. We can solve
various equalities to show the following statements are true for
all values of N (all network sizes):
-- Separate acks with flooding use 50% more bandwidth than
separate acks with broadcasting.

-- All acks in the Hello are better than separate acks if
t, the routing update period, is small:

broadcasting: if t<34 secs, Method 3 is better.
flooding: 1if t<52 secs, Method 3 is better.

-- Any ack method will contribute significantly ¢to 1line
overhead, as much as doubling the routing overhead.

The amount of line overhead used by the two ack methods is

shown in Figure 6-7, for both broadcasting and flooding in the

case of separate acks, for t=10 secs, and t=100 seconds. (t is

the average time between routing updates generated by each node.)

The total overhead associated with routing is the sum of the
routing update, acknowledgment, and Hello/IHY overheads. For the

cases under consideration, we have

147

e ——— g e —— —r ————————————————— e ——— i e —————

Report No. 3803 Bolt Beranek and Newman Inc.
1002:‘ T T TTTTT] | QN B
T
6
5
41—
3l
= il
(72
Q.
0
w 100— -
Z2 oF 3
= a —
& 5£)
a 4 5
w 3l =
-
<
€ 2 g
7’
X
o
< 10— =
aE -l
- -
i -
5 1= ‘ merd
4} -
3l]
b4 —— BROADCASTING SEPARATE ACKS| _
2 ~=-=-= FLOODING SEPARATE ACKS
c=2.5 €=4 | —— ALL ACKS IN HELLO MESSAGE
1.0 | 4] L1111 T W T
1.0 2 3 4 5678K) 2 3 4 567%00 2 3 4 567%000

NUMBER OF NODES

Figure 6-7 Acknowledgment Overhead Per Line

148

Report No. 3803 Bolt Beranek and Newman Inc.
Routing Ack Hello Total
Broadcasting:
Separate Ack (200+N)(N=-1) 136 (N-1) 136 (336+N)(N=1) 136
____________________ - - - ————— -
ct ct .64 ct .64
Ack in Hello (200+N) (N=1) N 136 (200+N) (N=1) 136+N
ct .64 .64 ct .64
Flooding:
Separate Ack 200((e=1)N+1) 136((c-1)N+1) 136 336((c=1)N+1) 136
__________________________ - B Ll L i W p——
ct ct .64 ct .64
Ack in Hello 200((c=1)N+1) N 136 200((c=1)N+1) 136+N
_____________ - - - - - —————— e =
ct .6U .64 ct .64
These four cases are compared in Figure 6-8,
for £=100 sec
¢c=2.5
As an additional precaution, especially during test and

installation, we can use Method 4 to periodically re-flood the

net with the routing information from each source. For instance,
we could set the periodic rate at 1/100 seconds, which would add
only 80 bps to each network line. (This can be accomplished by a

method 1like we use for cumstats to stagger the transmissions by

IMP number over the whole time interval. The interval can be 105

seconds=25.6 ms*4096.)

149

Report No.

3803

Bolt Beranek and Newman Inc.

]Qoog: e rrom 1 T TT11rn] M
7-‘ rg
] =
5
41— /—J
o+ Z
(72
Q.
N
w1000 — -
Z 7 =
A "
(s 4 5 -
g af :
5 y
<
a 2+ —
w
2
Bk =
z_ ACK IN HELLO/BROADCASTING .
:" ACK IN HELLO/FLOODING &
. (3) SEPARATE ACK/BROADCASTING]
(4) SEPARATE ACK/FLOODING
2 -
10 o— R R bikindidul ikl fedidd b
1.0 2 3 4 567810 2 3 4 5678100 2 3 4 5678]000

NUMBER OF NODES

Figure 6-8 Total Overhead Per Line

150

Report No. 3803 Bolt Beranek and Newman Inc.

With any ack method, there 1is the chance of further
foul-ups. With a separate ack scheme, the sender must keep a
timer for each un-acked update, and resend it periodically. With
the acks carried in Hello messages, there is the chance that the
receiver will have just sent a Hello containing the old
serial number bit when it receives the new wupdate, causing the
sender to re:ransmit the update unnecessarily. The probability

of the update and an "old" ack crossing in mid-flight is

s = time to send update
S+r r = time to send Hello/ack
p p = period for sending Hellos (0.64 sec)

For typical ARPANET land lines s and r will be equal and small:

queueing delay 10 ms
transmission delay 5 ms
speed of light delay 5 ms
processing latency 5 ms
TOTAL 25 ms for s orr

157

e A O o et R e g e AT e . et s R e e = —

Report No. 3803 Bolt Beranek and Newman Inc.
Send Receive Receive
Sender Update 0ld ack new ack
------------- D G T PRI T e
{emme =S4 r====d
Send Send
Receiver Hello Hello
-------- D e et C T TSR T EEPEIRPRPR) (S S ——
old new
ack ack
{ommeeem >
P
S+r 50 ms
Thus === = =====-- = 8% spurious retransmissions.
P 640 ms

Alternatively, the IMP could keep a clock for each
destination which would ignore any Hello/acks within the 1last x
ticks (e.g., a two-bit counter of 25 ms tiéks that is set to 11
at update time, and 1is then run down ¢to 00 before any
retransmissions are attempted). This would be necessary on
satellite lines, where the probability of retransmission without
the timer becomes close to 1. There the timer must be longer,

e.g., 600 ms.

6.4.4 Updates about Topology Changes

a. When a single line comes up or goes down, it is reported

by flooding the net with the corresponding update.

b. When a single node goes down, it is reported as multiple

lines going down. It is too difficult to determine if a

15¢

VA ———

Report No. 3803 Bolt Beranek and Newman Inc.

node has gone down in any "direct" manner. When a node
is detected to be unreachable, the table entry for that
node should be marked with a "dead" bit indicating that
its 1line delay values are invalid. When it comes up

again, the bit can be cleared.

It is wunnecessary to explicitly report a node coming
up; the fact that its lines come up is enough. On the
other hand, we might prefer to wait for an update from

that node to clear the "dead" bit.

When a node comes up, or when it returns from a
partitioned state (in which it was isolated from several
other network nodes -- typically when its line(s) to the
network were down) it must get a complete update of all
network routing information, since an indeterminate
number of updates have taken place. Two possibilities

exist:

(1) The two adjacent nodes which were isolated from each
other send each other their entire routing tables

(delay information on all lines).

(2) The two adjacent nodes exchange all table entries

for which the dead bit is off.

153

Report No. 3803 Bolt Beranek and Newman Inc.

The first is somewhat simpler to program, but uses more
line Dbandwidth than the second. If the table is
garbage-collected or compacted to remove entries for
unreachable nodes, then the two methods are identical.
If compaction 1is not too difficult, it is probably the

best method.

When a node receives such an update, possibly containing
information on many nodes previously unreachable, it
treats it like a normal single-node update, and sends it
to 1its neighbor nodes by the flooding method. This
works well for both sides when an IMP that was down
comes up; it gets all the tables from its neighbor, and

the rest of the net gets its own single table entry.

Several messages may be required to send all the routing
information to a node or nodes which were previously
isolated. (About 15 node tables can be packaged in each
packet.) Although it will not lead to optimal kouting
during the transition, it seems simplest for each node
to process all the updates as they arrive, and to start
sending traffic on those paths before receiving all the

other updates.

154

gt g et

Report No. 3803 Bolt Beranek and Newman Inc.

g. There is no need for an IMP Coming Up state or timer,

since routing should flow as quickly as data packets.

h. There is no need for an IMP Going Down state or timer,

since reachability is determined explicitly.
6.4.5 Program Modules for Updating

a. Receive update: Level

For each IMP-block in update: Modem In
If serial no. > present serial no:
Copy data into table
Mark which line(s) changed
Update one-bit serial no/ack

If some serial no. is new: Modem In
Queue update packet for output
on all other lines

If some line changed: Fast Timeout
For each line that changed:
Run incremental SPF

b. Send update:

If update packet queued: Modem Out
Remove from queue, transmit
Set timer to ignore acks for x secs?
After transmission, call FLUSH to free packet

c. Generate update:

If any line has gone down, come up, or changed Slow Timeout
delay significantly, or if 100 seconds elapsed
since last update

Increment serial number by 1

Copy all line data into update packet

and queue for output

199

Report No. 3803 Bolt Beranek and Newman Inc.

d. Receive acks in Hello:

For each IMP: Modem In
If received ack not equal to present serial no: or TASK
copy IMP's data into update buffer
If buffer is full, queue for output
on this line
If update buffer not empty:
Queue for output on this line

e. Send acks in Hello:

Copy table of low-order bits of serial nos. Modem Out
into Hello

Based upon the discussion above, we can state the following
conclusions about event-driven updating policies for the SPF

algorithm:

-- Flooding seems preferable to broadcasting.

-- Putting acks in Hellos seems a 1little better than
separate acks, but there is the problem of what to do if

a new update arrives before the o0ld one is acked.

-- We should study the behavior of the algorithm wunder
changing network topology, to determine how fast it

works, how big the serial number should be, etc.

156

Report No. 3803 Bolt Beranek and Newman Inc.

6.5 Comparison of SPF to Current ARPANET Routing

The SPF algorithm is similar to the current ARPANET routing
algorithm in . everal ways. Both are single-path algorithms, and
hence can never produce optimal routing. Also, the SPF algorithm
can generate the same sort of routing table as currently exists.
Therefore it would require no changes to the forwarding

procedure.

The most fundamental difference between the two algorithms
has to do with the fact that SPF is line-based, whereas ARPANET
routing is path-based. That is, the ARPANET routing algorithm
knows nothing of the topology of the network, and it does not
know the state of any lines other than the lines which are 1local
to the IMP the algorithm is running in. All the current
algorithm knows is the aggregate delay along various paths it
considers (it knows only the next hop on each path, and hence
cannot distinguish among paths for which the next hop 1is the
same.) SPF, on the other hand, must know the topology, as well
as the state of each line in the network. This has an obvious
disadvantage -- SPF needs a larger data base, hence more memory.

However, SPF has many advantages:

T Reachability. The ARPANET algorithm has to do

everything twice, once to find the 1least delay paths (for

157

Report No. 3803 Bolt Beranek and Newman Inc.

routing) and once to find the min-hop paths (for reachability
considerations). Even so, the ARPANET is slow to detect
unreachable nodes. When a node crashes, no other node can
possibly declare it wunreachable wuntil a period of ten seconds
elapses. In ten seconds, a lot of traffic for the unreachable
node can build wup on network queues, interfering with other
traffic flows and causing network disturbances. This
reachability problem is a feature of any path-based routing
algorithm. When one or more 1lines go down, the IMPs can
determine that they have lost their paths to several
destinations, but they have no way of determining the cause of
their 1losing these paths. Rather, the 1IMPs operate on the
assumption that if they lose a path to an IMP which 1is not
unreachable, a new path will appear within some maximum period of
time (chosen 1in the ARPANET as ten seconds). Therefore, if no
new path appears in that time, they assume the IMP is

unreachable.

The SPF algorithm, on the other hand, makes it easy to
determine reachability, and without the use of any heuristics.
With the SPF algorithm, the IMPs must know the state of each line
in the network. It follows that they know of each IMP whether it
is reachable or not. This information is available as part of
the regular routing algorithm, and would be available in much

less than ten seconds.

158

o

Report No. 3803 Bolt Beranek and Newman Inc.

2. Loops. \Unless a routing algorithm ensures that all IMPs
run their routing calculations off the same data base, it is
possible that loops will form. That is not to say that the SPF
algorithm produces loops within a given node's routing table --
the SPF algorithm is guaranteed to produce a 1loop-free shortest
path tree in every node. However, if different nodes disagree
about the state of some line, they may well produce conflicting
trees, thereby causing packets to loop. However, the fact that
an algorithm permits transient loops is only a very minor point
against it. A loop is just a certain sort of sub-optimal traffic
flow, and 1is inherently no more harmful than any other sort of
sub-optimal traffic flow. Loops present a special problem only
if they last for unusually long periods of time, or if they slow

the convergence of the algorithm.

A) The ARPANET routing algorithm with hold-down permits
loops to form and then persist forever, effectively making
certain nodes spuriously unreachable from certain areas of the
network. To prevent this, a special check has been added to the
network to detect these loops and break them. The SPF algorithm,
however, would never permit 1loops to 1last for more than an
extremely short period. Updates on line status could be sent
around the network very quickly, so that there could be only a

very short period of time when nodes disagree about the status of

159

Report No. 3803 Bolt Beranek and Newman Inc.

a particular 1line. Hence, loops should be short-lived, and not
particularly harmful. (Of course, this assumes that line status
does not oscillate rapidly. Hysteresis in the line protocol
prevents rapid oscillation between the up and down states. And
the fact that the updates will be average values over some time
interval with bias factor as necessary should prevent successive

updates from oscillating.)

B) The convergence of the ARPANET routing algorithm is
slowed down considerably when loops form. The reason for this is
that the presence of loops contaminates the wupdate procedure.
Once a 1loop forms, many IMPs will be generating routing update
messages containing false information. These in turn cause other
IMPs to generate wupdates with false information, and the
algorithm will not stabilize until all the false information is
purged. With the SPF algorithm however, the presence of 1loops
would have no effect on the conveyance of the algorithm. Since
updates contain information about lines, rather than paths, the
presence of 1loops could not contaminate the update process at

all. Therefore, the loops would not be very harmful.

3. Amount of Work. The ARPANET routing algorithm runs at a

particular frequency whether it has anything ¢to do or not.
Further, the amount of ‘time it takes to run is completely

independent of whether or not any routing changes need to be

160

i

o —— e —

Report No. 3803 Bolt Beranek and Newman Inc.

made. The SPF algorithm, on the other hand, uses event-driven
updates, so that it runs only when there is some work for it to
do. Further, the amount of time it takes to run is directly
proportional to the amount of work it has to do. I it s
necessary to make a 1lot of routing changes, the SPF algorithm
will take longer to run than the current ARPANET algorithms. But
in the much more likely case that there are only a few routing

changes to make, the SPF algorithm runs very quickly.

We note 1in closing that the ARPANET algorithm could be
modified to calculate reachability based on delay, not to use
hops, and to do event-driven updating, as described in Section 5.
However, the SPF algorithm benefits more from these techniques

than the ARPANET algorithm does.

161

Report No. 3803 Bolt Beranek and Newman Inc.

6.6 Conclusions

The principal conclusions from our initial investigation of

SPF are:

1.

A shortest path algorithm which runs independently 1in

each IMP is a practical alternative for ARPANET routing.

An incremental version of such an algorithm has verv
attractive characteristics, permitting efficient
operation while facilitating rapid response to network

changes.

The time required to generate the shortest path tree
from scratch is not excessive (approximately 30-50

msec) .

The average time required to update the tree for a
network change is small (1-2 msec). This time is
approximately proportional to h/c, where h 1is average
path 1length and ¢ is the average number of lines per

node.

The worst-case time to update the tree for a single
change is less than the time required to re-generate the

tree.

162

Report No. 3803 Bolt Beranek and Newman Inc.

The memory requirements for the algorithm and for the
associated data structure are roughly 400 words and 280

words, respectively.

Programming SPF on TENEX first, and then re-coding for
the 316 and Pluribus was a useful approach.
Furthermore, running times and memory requirements for
SPF showed close agreement among all 3 machines,
suggesting that future results from one implementation

can be used to predict performance on the others.

Efficient and reliable updating methods can be
implemented for transmitting data about changes on any

line to all nodes.

SPF has significant advantages over the present ARPANET
algorithm, and further work should be carried out

towards its eventual installation in the ARPANET.

163

S ——————— R T e ——————— N —————

Report No. 3803 Bolt Beranek and Newman Inc.

7. MESSAGE ADDRESSING MODES

This section discusses the use of enhanced modes of message
addressing in the ARPANET. The basic mode of operation of many
computer networks today is that the subscriber presents a message
to the network with a physical address corresponding to the
destination subscriber's number. Three other possibilities have
been considered for the ARPANET: 1logical addressing, in which
one of several physical addresses is denoted by a single logical
address, multi-destination addressing, in which a 1list of
physical and logical addresses is provided, and group addressing,
in which a single address denotes a group of logical and physical

addresses.

Logical addressing 1is closely related to the issues of
multiple homing of subscribers to network ports and the wuse of
one network port for the connection of several distinct
subscribers. In other words, a general network addressing
structure should permit many physical addresses to correspond to
a single logical address and one physical address to correspond
to many logical addresses. The translation of logical addresses
to physical addresses is an important problem and can be handled
differently in virtual circuit networks and in datagram networks.
In a virtual circuit network the address can be translated once

per connection at the source, permitting all packets in a given

164

s ST e

Report No. 3803 Bolt Beranek and Newman Inc.

virtual circuit to flow to a particular physical address. On tﬁe
other hand, in a datagram network the address of each message can
be translated separately at the source node or at each
intermediate node in the network. Packets can flow to any

physical address.

The problem of failure recovery in a logical addressing and
multi-homing environment is a complicated one. Failure recovery
procedures can be specified in which all possible network status
information concerning the virtual connection (or datagram flow)
is communicated to the subscriber. However, there are certain to
be situations in which the network cannot provide a subscriber

with complete information concerning the extent of the failure.

Multi-destination addressing and group addressing is most
easily accomplished for datagram networks since (1) it 1is not
necessary to set wup multiple connections for a particular
transmission, and (2) complicated error control and flow control
strategies needed with multiple message numbers, acknowledgments
and allocations do not flow over the same multi-destination
circuit. For a datagram with many addresses the problem is
simply to route the datagram correctly and efficiently to the

destinations.

165

-

Report No. 3803 Bolt Beranek and Newman Inc.

The efficiency of a multi-destination or group addressing
system depends critically on the routing algorithm wused. One
useful metric for determining the efficiency of a
multi-destination system is the number of packet hops required to
transmit a given packet to all the destinations. A routing
algorithm which minimizes the number of packet hops needed for
multi-destination transmissions can be constructed on the basis
of a standard minimum hop routing algorithm for single
destination packets. In addition to this algorithm, it is
necessary to provide a multi-destination address in the header of
the packet. When the packet arrives at an intermediate node, the
node simply creates as many copies of the packet as there are
different routes in the minimum hop routing table for the
different destinations in the header. Each time multiple copies
of a packet are created at a node, each copy 1is assigned the
appropriate subset of the destinations for which that path is the
minimum hop path. 1In this way a broadcast of a given packet to
all n-1 other nodes in the network can be accomplished with only
n-1 packet hops, which is optimal. (Note that other single-path
routing algorithms such as a minimum delay routing procedure are
also optimal for a broadcast to all other nodes, though not for a

message addressed to fewer subscribers.)

166

Report No. 3803 Bolt Beranek and Newman Inc.

The routing strategy we propose works as follows:

a. The address of a packet is an n-bit vector with bit T
equal to 1 indicating that the packet should be sent to
IMP I.

b. The routing table in each IMP can be represented as 1
n-bit vector per line in which a one-bit on line L for
destination I indicates that line L is the best route to
IMP I.

c. The routing decision can be carried out by each IMP
receiving a message with a particular address
subtracting its own address bit from the n-bit address
vector and then performing a calculation to determine
the addresses for the one or more packets which are to
be sent out to the IMP's other lines. For each of the
other lines L the new address equals the AND of the
incoming address and the n-bit route vector for that
line. A packet should be sent out on 1line L if the
resulting address is not all zero.

We next analyze the performance improvement gained by
multi-address messages, measured in packet-hops: the number of
hops traversed by each packet summed over all packets
transmitted. The following definitions will be useful:

n Number of nodes in net
a Number of addresses
p(a) Number of packet hops
h Average path length
c Average node connectivity
d "Depth" of SPF tree (see ARS #23)
For separately addressed packets, it requires h*a packet-hops on

an average to transmit a packets. For multi-address, p(a) is a

more complicated function:

167

Report No. 3803 Bolt Beranek and Newman Inc.

Chain of Ring of Fully General
nodes nodes connected net net
p(1) n+1 n+1 (n odd) 1 h=4d-1
3 = c=-2
p(2) 2 n+1 _ (n=3)(n+1) 2 2h =?
I - 72(n-2)
p(n=2) n-2 + n-2 n-2 + n-3 n-2 n-2 +?
n n-1
p(n=-1) n-1 n-1 n-1 n-1 7

A little thought shows that p(a) < h*a for all a, and
p(a) > a for all a.

Furthermore, p(a+b) < p(a) + p(b); p(a) is concave downward.

Figures 7-1 and 7-2 below show some investigations we made
to determine the behavior of p(a) for the ARPANET. The best fit

we have for p(a) is approximately:
p(a) = ha - (h-1)a*logn_1(a)

That 1is, the percentage improvement of multi-address over

separate addresses is given (approximately) by

(h-1)a*logn_1(a)

168

Report No. 3803 Bolt Beranek and Newman Inc.

100 T

90

SEPARATELY
ADDRESSED
PACKETS

80

70

NUMBER OF
PACKET-HOPS S°

MULTI -
ADCRESS
PACKETS

40
30

20

0 | | | i l 1

0 10 20 30 40 50 60
NUMBER OF ADDRESSES

Figure 7-1 Multi-Address Packets: Number of Packet Hops

169

70

Report No. 3803 Bolt Beranek and Newman Inc.

100 T I 5 T T
o0 -
80 —
70 —
% 60 -
IMPROVEMENT
OF MULTI-ADDRESS 50 e
OVER SEPARATELY
ADDRESSED
PACKETS 40 —
. 30 —
20 -
10 -
0 " | [| ' | | |

0 10 eV 30 99 350 60 70
NUMBER OF ADDRESSES

Figure 7-2 Multi-Address Packets: Percentage Improvement

170

a P ————————————t gt e ——e e
—

— S S

Report No. 3803 Bolt Beranek and Newman Inc.

In General For ARPANET

a=1 0 a=1 0

az n-1 1 h-1 a=8 40% (from 44 to 26)
2 h

a=n-1 h-1 a=61 81% (from 336 to 61)

h

% Improvement
For the ARPANET,
number of nodes n = 62
connectivity ¢ = 2.5
"depth" d = 6.36
path length h = subtree size s = 5.5
trees/arc = n-1 = 25.2

c

Thus, in a network with a path 1length of 5, the greatest
improvement in number of packet hops, 80%, occurs when addressing
all other nodes in the network. When addressing a number of
destinations equal to the square root of the number of nodes in
the network, half of this relative improvement, or about U40% is
obtained. We have calculated for the ARPANET that addressing as
few as 5 to 10 destinations in the same packet results in a
savings of 25% to ©50% of the packet hops required with

separately-addressed packets.

The issues of formatting packets and messages with 1logical
addresses and multi-destination addresses deserve some

consideration. Group addressing is simpler to implement in the

171

Report No. 3803 Bolt Beranck and Newman Inec.

network since it requires a relatively small change to the
subscriber software, On the other hand, multi-destination
addressing 1is more flexible and useful to the subscribers but
requires a fairly major change 1in the subscriber~to-network
format. Careful aitiention must also be given to tha {nteraction
between logical addressing and group addressing, since group
addressing in general should permit reference to logical as well
as physical addresses. If a group address refers to several
logical addresses as well as physical addresses, then the
translation of logical to physical addresses must take place at
the source node,. Figures 7-3, 7-U4, and 7-5 present the packet
formats we propose for multi-address and group address packets in

the ARPANET.

There are considerable advantages to installing the enhanced
message addressing modes discussed in this paper. Logical
addressing provides for considerable operational flexibility and
reliability. The use of multi-destination and group addressing
has been shown to lead to significant reduction in network
traffic, even for the case of _relatively few destinations per
message. One of the important coneclusions from this wofk is that
datagram networks which facilitate the use of logical addressing
and multi-destination addressing may have some important
advantages over virtual circuit networks. These advantages have

not yet been fully considered by the network design community,

172

e S BRI e AT i i

sqewdoy 334oed quasadd £-) aJ4ndil

m 1IND SS3D0V
_
i 4 wve b > viva >
al 39¥SS3N al 39VSSIN o
diNI 'LS3a ~ dWI 1s3a
1LND SS300V | 3dAL 3OVSSIW
'SON LSOH ‘ON 39VSS3W
2 dWI 308N0S | dWl I0HMNOS
g 4 8 S SQUOM € 48S SGHOM €
Mw ¢ SaAl O IAdAl

Bolt Beranek and Newman Inc.

3803

Report No.

jewdo 39)oed ssadppy dnoun =, 24n814

1LND SS30JV

ONILNOY [«—duw| 83in0g Ag dnjeg

rd v.iva P4
jowiod ¢ adA})
(o]} .-O;_cc_mw mvw_t’meLhAU ® memwmmﬁ=U4‘
o{og sado|dsig lig-N
ssaJppy bBuiynoy tig-N e dl 39VSS3IN
‘ON dNOY9

(seIqol SSa4pPY

1LNO SS300V

SDH 994n0S Yd203)

— -
1SOH 324NOS

jui dnoug jo

dWl 324NO0S

dnjas sSnoIAald SalInbay e

48S SQYOM €

{SOH 32inog Ag dnjesg

Bolt Beranek and Newman Inc.

3803

Report No.

jewdoq 33930ed SSOJPPY-T3TNW G- 24nB14g

jowio4 dnoig o} 7 vivda yd

IDO}jusp| 9SIMIBYI0

DjnQg
?9op|dsi(q sassaJppy e

$9SS34ppY |1V
saljddng }sOH 92i4n0S e

SISOH — $S84ppy
|ouol}IppY
Yoo3 10j Siig 8 o

1LND SS300V

¥ LSOH | € 1SOH

2 LSOH | L LSOH /

SS34aav JSOH 8%4nog

ONILNOY P

119-N \
SS34AAV dNOY9

SV d3Av3H
JNVS

Ag dnjes

Report No. 3803

REFERENCES
(1] D.B:
(2] E.M.

Bolt Beranek and Newman Inc.

Johnson, "Efficient Algorithms for Shortest Paths
in Sparse Networks," J. ACM, Vol. 24, pp. 1-13;

~ January 1977.

Dijkstra, "A Note on Two Problems in Connection
with Graphs," Numer. Math, Vol. 1, pp. 269- 271;
1959.

176

Report No. 3803 Bolt Beranek and Newman Inc.

Appendix 1 DATA GATHERING METHODOLOGY

Our basic technique for gathering data was to use the 1IMP's
packet-trace package. For every nth packet which arrives at a
given 1IMP, where n 1is a settable parameter, packet-trace

generates a trace block, which contains certain information about

the packet. Periodically, the IMP gathers together all the trace
blocks, stuffs them into a packet, and sends the packet to a
specified collection point. This enables us to gather
information about a sample of the packets which pass through a

given IMP.

The trace block contains the following information about the

packet it corresponds to:

a. The time the packet arrived in the IMP.

b. The time the packet was queued for transmission.

c. The time the first bit of the packet was transmitted.
d. The source and destination of the packet.

e. The output line (or host, as the case may be) on which
the packet was transmitted.

f. The priority of the packet.

g. The number of data words in the packet.

h. The number of packets which are ahead of the given
packet on the modem transmission queue. (This is not

part of the standard trace package--it had to be patched
250

177

Report No. 3803 Bolt Beranek and Newman Inc.

To compute the processing delay (delay due to queueing for the
processor as well as to the processing itself), we subtracted a
from b. The modem queueing delay is obtained by subtracting b
from c. The transmission delay is a function of g. The
propagation delay is a constant for a given line. Thus the trace
blocks contain enough information to enable us to compute each of

the four components of delay.

There are, however, certain important 1limitations to this
methodology. These limitations have to do with sampling
frequency, sampling content, timing considerations, and the

natural variability in the traffic itself.

a. Sampling Frequency. We originally attempted to time

every 5th packet through an IMP. We found, however, that we were
unable to collect the resultant trace output on TENEX, perhaps
because of TENEX throughput limitations. When we attempted to
trace every 10th packet, we had no collection problems, so we
gathered all our data at the frequency of every 10th packet. The
less frequently the data is sampled, the more likely it is that
certain characteristics of the data are merely artifacts of the
sampling technique. Our data must always be evaluated with this

fact in mind.

178

Report No. 3803 Bolt Beranek and Newman Inc.

b. Sampling content. The first time we looked at the trace

data, we noticed that packets which originated from 1local hosts
had processing delays approaching a quarter of a second. Since
tandem packets had much smaller processing delays, we concluded
that most of the delay experienced by the host packets was due to
end-end considerations. As we were only interested in measuring
the delay due to store-and-forward considerations, we were forced
to exclude from our sample all packets which originated from
local hosts. We could not prevent trace blocks from being
generated for such packets--rather, we had to ignore those trace
blocks. In addition to being arbitrary, this further reduced our

effective sampling frequency.

(o Timing considerations. The time stamps in the trace

block are taken from the 100-microsecond clock. This clock wraps
around every 6.6 seconds. This is not a serious problem in
determining the delays experienced by a particular packet since
it may be safely assumed that no packet stays on any queue for
more than 6.6 seconds. The wrap-around is a problem though in
trying to determine the relative arrival times of different
packets. For the purpose of plotting delay vs. time; we assumed
that the clock never wrapped around more than once between the
creation of successive trace blocks. This assumption may or may

not be true in all cases.

179

Report No. 3803 Bolt Beranek and Newman Inc.

d. Vaiability in traffic. User-created traffic is

extremely variable, and when comparing different measurements, we
have no way of controlling for it. We gathered data under three
different conditions--ordinary traffic, artificially created
heavy load, and artificially created heavy load with reduced-rate

routing.

a. Ordinary traffic. We gathered data from four

IMPs--LINC, ACCAT, ISI22, and MIT6. Data from MIT6 was gathered
on two separate occasions, one of which was the same day that
data was gathered from the other three IMPs. In all cases, we

traced every tenth packet for a period of about 10 minutes.

b. Artificially created heavy load. We traced every 10th

packet in MIT6 for a period of about 15 minutes. Five minutes
into the run we turned on WPAFB's message generator, having it
send single packet messages to MIT44 at the maximum frequency.
We turned the message generator off after five minutes. We did
this twice, once with minimum size packets and one with maximum

size packets.

cl Artificially created heavy 1load with reduced-rate

routing. We repeated the previous experiment with the following

differences:

180

Report No. 3803 Bolt Beranek and Newman Inc.

ii.

WPAFB, MIT6, and MIT44 were patched to always send
routing at the minimum frequency (once per slow tick).
MIT6's third neighbor, CCA, was not patched, and
presumably continued to send routing at the constant

Pluribus frequency of twice per slow tick.

Instead of using minimum size single packet messages for

one of the runs, we used maximum size eight-packet

messages.

181

Report No. 3803 Bolt Beranek and Newman Inc.

APPENDIX 2. A COMPLEXITY BOUND FOR THE INCREMENTAL SHORTEST PATH
PROBLEM

Summary. The average number of nodes in the subtree of a
given line in a tree is equal to the average path length from the
root to any node. This number divided by the average number of
lines per node represents an upper bound on the expected number
of route changes necessary at each node when recomputing shortest
paths to all other nodes after the distance value for one line is

changed.

A2-1 Introduction

We will consider a network with N nodes and L 1lines, each
line having a non-negative distance. Lines are considered to be
directed arcs and each pair of adjacent nodes is connected by one
line in each direction. We are concerned with the calculation of
shortest paths from a source node to all other nodes, given that
the distance of one line in one direction has changed. To this
end, we will assume that the shortest path tree from the source
node to all other nodes has been previously computed, and that

incremental changes only are required.

182

Report No. 3803

Bolt Beranek and Newman Inc.

A2-2 Path Length and Subtree Size

Consider the shortest path tree at the source node. We

begin with some

tree:

Definition:

Definition:

Definition:

let

s]

definitions and a result which holds for any

The path length hi’ to node i is the
number of intermediate lines on the path from

the source to node i in the tree.

A node j is a descendant of a node i if
the shortest path from the source to j
includes shortest path from the source to j.

(This implies hj 2 hp.

The subtree size, Si of node i is the

number of nodes which are descendants of

node i, including node i.

N
1
h = === :E: hi average path length in the tree
N=-1
i=1
N
1
S = === }E: sS4 average (proper) subtree size
N=1 in the tree
i=1
i/ source

183

Report No. 3803 Bolt Beranek and Newman Inc.

Theorem 1. In any tree, s=h

Proof: Note that hi is the number of subtrees in which

node i appears. Therefore

n
1
S = === ke R=h
N :E: 1
=]

QELD

This surprising result can be shown in other ways including

the following:

let a; = the number of nodes with path length i
d = the maximum path length in the tree
b, = the average subtree size of all nodes

with path length i;

d
1
bi = ;— E aj
T

:

j=1i

184

Report No. 3803 Bolt Beranek and Newman Inc.

Then we have that

A2-3. The Incremental Shortest Path Problem

We next examine the effect on the shortest path free of

changes to the network. Let

¢ = average node degree in the network; ¢ =

=1

Definition: A network change refers to the addition

or deletion of a single network line or
to the change of the distance value

associated with some line.

185

Report No. 3803 Bolt Beranek and Newman Inc.

Definition: A routing change for node i is required

when, as a result of a network change,
shortest distance route from the source to

node i changes.

Theorem 2. When a line is deleted, the expected
number of routing changes per source node

is equal to h/c.

The probability that a given line is in the shortest path tree at
a given source 1is equal to the number of lines in the tree

divided by the number of network lines which can be in the tree:

If the deleted line from node x to node y was in the tree, then
node y and its subtree all require routing changes. This is, on
average, a group of h nodes. If the deleted line is not in the
tree, no routing changes are needed. Therefore, the expected

number of routing changes is given by

1 c-1 h
h =440 === = = Q.E.D.
c c c

Finally, we can generalize the result of Theorem 2 by considering

all types of network change.

186

e B

Report No. 3803 Bolt Beranek and Newman Inc.

We make the following assumptions:

1. The distance of all lines is the same, which minimizes h

for the starting network.

2. Only single network changes from the starting network

are considered.

3. All network changes are equally likely; both the 1line

affected and the size of the change are chosen randomly.

Theorem 3: The expected number of routing changes
per source node is bounded by h/c for

any network change.

Proof: There are four cases to consider: the
addition or deletion of a line, and the
increase or decrease of the distance of
a line. Let r; (i,j) = number of routing
changes required at a source node when the

distance of line 1 changes from i to j.

Let K = maximum distance/line (assume distances
are integers)

m = distance value used for a deleted line;
m > K(L)

187

Report No. 3803 Bolt Beranek and Newman Inc.

Then we can write

R expected number of routing changes for

line deletion

L K
1 1
R, = = E - z r,(i,m)
1 L K i
Je=i1 i=1

R, = h/c by Theorem 2

1

R2 = expected number of routing changes for line
addition

K

L
E :E: ; :E: rl(m,i)

1=1 i=1

n
]

R3 = expected number of routing changes for a
distance increase

L K K=-1 1
1 1 1 i
ry e - - Z -—— E rl(i,i+x)
L K K-i
1=1 1=1 x=1 [

Ru = expected numbers of routing changes for a
distance decrease

188

Report No. 3803 Bolt Beranek and Newman Inc.

To prove the theorem we must show

=
n
!
-

< R
R, < R

For any given network change, rl(i,i+x) > rl(i+x,i), since all
nodes which are affected by the increase in distance to i+x will
also be affected by an equal decrease back to i, except for those
which have an equal-distance. path and do not require a second

routing change. Therefore,

ry(m,i) < rl(i,m), and thus

For any given network change and any value of y > 0, rl(i, i+x+y)
2> rl(i,i+x). This is, the bigger the network change, the more
routing changes that are required. Therefore,
K-i
1
-— E rl(i,i+x) < rl(i,m); and thus

K-i
x=1

189

e DU

Report No. 3803 Bolt Beranek and Newman Inc.

A2-4, Numerical Values

It 1is relatively simple to develop a lower bound for the
value of h in a2 regular network (equal degree ¢ for all nodes).
The lower bound is obtained when the shortest path tree is full
and balanced. In the terminology used in Theorem 1, a., = ¢, a, =

1
c(ec-1), and in general

3 i-1
a; = c(e=~1)

e((e=1)9-1)

Numerical values for h/c are plotted in Figure 1 for ¢ = 2.3, and
4. These curves show that the expected number of routing changes
per node per routing change remains very small, in the range of 1

to 5, even for networks with 10,000 nodes.

190

.

Bolt Beranek and Newman Inc.

3803

Report No.

0000l

9/Yy JOJ punog JaMO7

N

L=2y¥ 24n31y

-1 ©®
= ad
L L4
-0

I

LU

| 1 o

|

i

OOOlg,9¢6 v ¢ 2
T T T 1

OOlg, 96 v ¢ 2 Olg,9¢
| UL |

| T T T

| Y |

l

ITTERR N

1
O®r0oe m

L

O®cvcoem

LL Ll 1l

O®~voe »

o7y

191

Report No. 3803 Bolt Beranek and Newman Inc.

A2-5. Conclusions

We have shown some surprisingly simple relationships between
average path length and the number of routing changes required
after a network change, given that an incremental shortest path
algorithm is employed. Such an algorithm has important
advantages with respect to its complexity:

-- The running time depends on h and ¢, which are basic

design parameters that are easy to measure.

-- The time per node grows very slowly with the number of

nodes, and is relatively insensitive to node degree.
Therefore, an incremental algorithm which computes new shortest
paths only for those nodes affected by each network change may be

desirable for certain applications.

192

e —

