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ABSTRACT

Several efficient algorithms for image recognition and segmentation
and a new computer architecture for image processing are propased. The
algorithms are '"'syntactic! in that they perform structural or spatial
analysis rather than statistical analysis, and a "grammar' is inferred
for describing the structures of patterns in an image. Depending on the
requirements of the problem, an appropriate grammatical approach is used
by the syntactic algorithm,

A finite-state string grammar is applied to the image recognition of
highways, rivers, bridges, and commercial/industrial areas from LAMDSAT
images. There are two major methods in the string grammar approach for
image recognition; namely, the syntax-directed method and syntax-controlled
method. For the syntax-directed method, syntactic analysis is performed
by a template matching which is directed by the syntactic rules. For
the syntax-controlled method an automaton which Is directly controlled
by the syntactic rules is used for the syntactic analysis.

A tree grammar is applied to the image segmentation of terrain and
tactical targets from LANDSAT and infrared images respectively. The
tree grammar approach utilizes a tree automaton to extract the boundaries
of the hormogeneous region segments of the image. The homogeneity of the

region segment is obtained thruugh texture feature measurements of the

Image.

VF




The computer architecture proposed Is a special purpose system In
that it can perform an image processing task on several picture-points of
an.image at the same time, and thus takes advantage of the fact that
inage processing tasks usually exhibit "parallelism'. This architecture
uses a distributed computing approach. Two major features are the re-
configurable capability, and the method of computer exploitation of task
parallelism. Finally, a parallel parsing scheme for tree grammar is used
to demonstrate the higher efficiency of the proposed computer architecture

than the conventional parsing schene.




CHAPTER 1

INTRODUCTION

Image segmentation is a computer technique that breaks an image into
different regions, each having homogeneous properties [83]1. 1In image
analysis or scene analysis the desired result is a computer-generated
description of the given image or scene. The computer-generated descrip- z
tion refers to specific parts (regions or objects) in the image or scene,
Therefore, a first step is to divide the image into these parts; that is,
to do image segmentation. Image segmentation is also an important stage

in sample classification [1], and image compression [83].

I b g

An algorithm is a computational procedure showing the steps the
computer is asked to perform [113]. Algorithms involving statistical
operations are statistical algorithms. Algorithms which perform struc-
tural or spatial analysis in image processing problems are called "syntactic"
algorithms because of the analogy between the structure of patterns and
the syntax of languages [2].

The '"language' that provides the structural description of patterns

o I SRR BY Gy s M e e o

in terms of a set of pattern primitives and their composition operations
:, i§>called the ''pattern-description language," The rules governing the

composition of primitives into patterns are usually specified by the so
called ?grgmmgr“ of the pattern description language. After each primi~-

tive within the pattern is identifled, the récqgnitlon process is

accompl ished by performing a syntactic analysis of the "senteﬁce” .

| — —— e e m— -




describing the glven pattern to deternine whether or not it is syntacti-

cally (or grammatically) correct with respect to the specified grammar.
Th;re are four types of grammars [2] according to form; namely, type O
(unrestricted) grammars, type 1 (context-sensitive) grammars, type 2
(context-free) grammars, and type 3 (finite-state) grammars. "“Finite
state'" refers to the fact that these grammars have various control
states (a finite number of them). There are two types of finite state
grammars: string grammars and tree grammars [13]. If 2 finite state
grammar is used in the syntax analysis, the analysis is called a finite
state grammar approach. The selection of an appropriate grammar for
image processing usually depends on the requirements of the problem. A
syntactic algorithm for image segmentation and two for image recognition
are presented in Chapters 3 and 4,

An algorithm can be implemented by computer software {programs) or
hardware. If it is considered thac the potential usefulness of a specific
algorithm justifies the time and cost, specific hardware can be built to
perform the algorithm. That is, a special small computer c;n be huilt
to perform just that one task. Uith the ever increasing interest in, and
useful applications of image processing, a consideration of building a
special purpose computer primarily for image processing is justifléd.
Image processing done on large computers takes a great deal of memory
space and is very time consuning. Thus, the.cost of the computer time
is high. So this cost has to be weighed against the cost of building a
special purpose computer.

Image processin§ }asks ﬁsually exhibit Yparallelism.'” That is,
hardware can be built to perform a task on several picture-points of an

image at the sahe-ti&é, f.e., In parallel. This makes image processing
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as the method of segmenting an inage. They invoive region merging,

region dividing, or a combination of merging and dividing.

-~

a. Region Merging

This has been done by five approaches: statistical, linguistic,
decision-theoretical, relaxation, and interpretation guided.

(i) The statistical approach to region merging has been developed
by Brice and Fennan [34]; Bajcsy [39]; Gupta and Wintz [40];
and Jarvis [114];

(i1) the linguistic approach has been investigated by Tsuji and
Fujiwara [41];

~
-y
-t
-t

e

the decision-theoretical approach was developed by Yakimavsky
and Feldman [42);

(iv) the relaxation approach was developed by Rosenfeld, Hummel,
and Zucker [781; and

(v) the interpretation guided approach has been investigated by

Tenenbaum and Barrow [79].

b. Region Dividing

This involves successively partitioning the image by certain criteria
and was first put forth by Robertson [44], and Klinger [45].

c. Combination

A combination of merging and dividing has been proposed by Horowitz
and Pavlidis [46,71].

3) ‘"Edge" Detection Methods: These methods define as Yedges" the
boundary between two different objects in a picture, (for example, the
“edge" between a human neck and a sweater neck) and consider these edges

as the boundaries of the segments of the image. There are several approache

as follows:

(MR N b s s o 0
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a. Template Matching

This approach has been explored by Griffith [47,48]; and Hueckel
{49,50];

b. Gradient Operator

This approach has been studied by Duda and Hart [57]; Rosenfeld [611;
Rosenfeld and Thurston [58,59]; Rosenfeld and Troy [68]; Rosenfeld and

Thomas [60]; Persoon [67]; Wechster [112]; and Thompson [85];

c. Boundary-Search

This approach investigated by Rosenfeld [52]; and Kelley [53]; and
d. Line-Fitting

This approach developed by Hough [54]; Duda and Hart [55]; and
Pavlidis [56].

Host of the above techniques are statistical. Hone of them are
based on the syntactic approach. HNona of them have explicitly used struc-
tural and contextual information. These statistical techniques suffer
from costly computer processing time. An image often exhibits a
hierarchical structure. Therefore, image segmentation can be approached
by the syntactic method. A syntactic method based on the finite state
(string) grammar approach has been developed for image recognition in
Chapter 3. A syntactic method based on the tree grammar approach has
been developed for iamge segmentation in Chapter &. It is desirable to
make syntactic algorithms useful in real-world applications. Thus, these
syntactic algorithms have all been tested on real-world data such as
satellite images, aerophotographic images, and infrared images. The ex-
perinental computer results show that these syntactic algorithms are

useful for image recognition and segmentation.
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1.2 DESIGN FOR A SPECIAL COMPUTER ARCHITECTURE FOR IMAGE PROCESSING

Previous designs for special computer architecture for image
processing basically fall into two categories: bit-plane processing and
distributed processing.

a. Bit-Plane Processing

The bit-plane processing approach performs the arithmetic computa-
tion on imagé points which are stored in Boolean bit planes. The special-
purpose computers developed by this approach are the Illinois pattern
recognition computer (ILLIAC 111) [87,100], the Digital Parallel} Processor
(bpP) [90,91], the Cellular Logic Image Processor (CLIP &) [92], and the
Parallel Picture Processing NHachine (PPM) [38,89].

b, Distributed Processing

In the distributed computing approach, the configuration of the
processors forms an architecture such that the computational load is shared
by these processors through software and/or hardware control. The special
purpose computers that have been built utilizing this approach are the
Flexible Processor by Control Data Corporation [97], Toshiba Picture
Processing System (TOSPICS) [93,116] by Toshiba Corporation, and STARAN
computer by Goodyear Aerospace Corporation [108,103].

A weakness of all the above special computers for image processing
is trat the computer systems are not reconfigurable, that s, the computer
car only operate in one of the four modes: SiSD (single instruction
stream single data stream), MISD (multiple instrucéion stream single data
stream), SIMD (single Instruction stream multiple data stream), or MIMD
(multiple instruction stream multiple data stream). Because of the great
variety of sensor types, and the many applications, image processing

algorithms require that the computer system be reconfigurable. Therefore,
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a deslian for a special computer for image processing which is reconfigur-

able is proposed in Chapter 5.

1.3 RESEARCH SUMMARY

This research deals with three areas: syntactic pattern recognition;
information extraction and image understanding; and special computer
architecture for image processing.

In the area of syntartic pattern recognition, the finite-state
string grammar approach used for image recognition is presented in Chapter
3. Two syntactic methods have been developed. One is a syntax-directed
method and the other is a syntax-controlled method. The syntax-directed
method uses a set of templates as a recognizer. A deterministic finite-
state automaton is used as a recognizer in the syntax-controlled method.
An interactive grammatical inference procedure was devised for the syntax-~
directed method. A k-tail finite-state grammatical inference procedure
[201, which is a procedure to minimize the number of states by equivalence
partitioning based on the length 'k' of the derivatives of the sample
patterns, is used in a fully computer automated procedure for the syntax
controlied method. A comparative study on the syntax-directed (commonly
known as template matching) and syntax-controlied methods were undertaken.
This led to a decision in favor of the syntax-controlled method. The
performances of the recognition by the different finite state grammars,
which are inferred by the k-tail inference procedure with different
values of k, were studied. This revealed that the grammar inferred by a
high value of k is more precise in characterizing the syntactic patterns
than that inferred by a low value of k, but the computer processing time

for the recognition by the corresponding finite state automaton increases,

These syntactic methods have been implemented and applied to the




recognition of highways, rivers, bridges, and commercial/industrizl areas
from satellite images. The {inite~state string grammar has been shown to
be-able to characterize the structure of highways and rivers. The com-
puter results were accurate even though the resolution of the Input

image was low due to being collected by satellite at a very high altitude
(approximately 570 miles) [8z1.

In the area of information extraction and image understanding, the
objective of the research was to achieve a better understanding of image
structure and to use this knowledge to develop a technique for image
analysis and automatic information extraction. The results obtained from
applying syntactic pattern recognition to satellite images cf highways,
rivers, bridges, and commercial/industrial areas are useful for image
analysis and relevant to military applications. The automated methods
of extracting such information as position coordinates and lengths of
bridges and centers and sizes of a commercial/industrial areas as pre-
sented in Chapter 3 provides a high level understanding of imagery by com-
puter automation. The syntactic image segmentation algorithm presented
in Chapter b incorporates textural discrimination and boundary structure
analysis. The tree grammar approach is applied. A tree transformational
grammar and its inference procedure is intrcduced to reduce the noise and
irregularities in patterns, The syntactic image segmentation algorithm
was applied to tactical target detection firom infrared [mages.

In the area of special computer architecture for image processing,
several previously proposed special computers for image processing were
reviewed. The proposed special computer architecture in Chapter 5 was

designed using a distributed conputing approach. This computer Is con-
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prised of a Parallel Processor (PP) and a Sequential Aritimetic
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Processor {SAP), There are two major features new to the field of special
computer architecture for image processing. They are a reconfigurable
céﬁab?lity, and a speclal method of paraillelism. These contribute a high
flexibility and a high parformance capability for image processing to

the proposed computer architecture. The reconfigurable capability en-
ables the proposed computer tc satisfy the large variety of appiications
in image processing. This capability is cbtained through the Control
Unit of Parallel Processor (CUPP) which reconfigures the paralle!l
processor hetween the SIMD mode and the MIMD mode. The parallelism of
the task is exploited by the parallel processor to obtain high speed
performance. At the same time the operations of the sequential arith-
metic processor are pipelined to the parallel procsssor under program
control in those tasks which can be decomposed into pipeline processing.
Therefore, the exploitation of parallelism results in parallelism and
pipelining simultaenously. Thus, the computer architecture achieves high

flexibility and performance.
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CHAPTER 2

PREVIOUS WORK

2.1 PREVIOUS RESEARCH WORK Il IMAGE SEGMENTAT 0N

As mentioned in Chapter 1, previous research in the field of image
segmentation falls into three major categories; characteristics thres-

holding, reyion extraction, and edge detection.

2,).1 Characteristics Threshclding Methods

The whole field of image processing has become possible because of
the development of the ability to “"digitize' a picture or image; that
is, the picture is digitized into a matrix of n by m pixels {picture
elements). Then, each pixel is given a grey level! value corresponding
to the amount of light it transmits. These grey levels lend themselves
to mathematical manipulation, and functions can be written involving
them, The first task is to find characteristic functions of grey levels.
The second is to find a threshold in such a function that will make a
significant division in the type of pixels. There are two basic
approaches to thresholding the characteristic function of grey levels
for image seqgmentation; the statistical and the structural.

a. Statistical Approach

In this approach, a picture is divided into different regions by
thresholding the value of an appropriate local picture property. For

example, all physical objects have a ccnstant reflectance over their
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surfaces. Therefore, an object of unifarm grey level is considered to
be a homogeneous object. Zucker, Rosenfeld, and Davis [26] proposed
that a good method of segmenting a picture into regions of uniforn grey
levels would be to examine the histogram of the grey levels in the
picture. Instead of measuring the grey level of each picture point, a
set of spot detectors having a range of sizes is used to provide local
property values upon which to base the segmentation. There is one
problen in this technique; that is, that due to overlap of the spot
detector in the measurenent of each point, sometinmes the histogram
valley, necessary to threshold the picture could not be found. So non-
maximun feature values were suppressed over an area corresponding to
the receptive field of each spot detector; that is, a spot value was
fgnored if a larger value existed at some point in its receptive field.
The threshold for segmentation was selected as the lowest point between
two peaks in the histogram. But there are only linited results on
bimodel cases in Zucker, Rosenfeld, and Davis's [28] paper. Further
complicated experiments, such as the nultimodel cases should be studied

in order to show the generality of this technique.

In some cases, where the black and white dots occur in both the

significant regions and in the background {e.g., In the cases where

the probability of occurrence of a black dot s 0.6 in the significant
region and 0.4 in background), the method In {26] will not work because
the threshold cannot be found. Davis, Rosenfeld, and Weszka [29]
applied local averaging of grey level values to every point of the
picture. Then the histogram was built by the average grey levels of ;

the picture. But the method will not work if the plicture also contains

; other adjacent regions in which the average grey levels are higher and
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lower than that of the initial region. Weszka, Nagel, and Rosenfeld
[30] apv-ied the Laplacian operator to determine points that lie on or
near the edges of objects to try to get around this problem. In work-
ing with a grey level histogram, the peaks are sometimes very unequal
in size and the valley is broad., Here, the thresholding is difficdlt.
Ohlander [68] used multiple sources of data and the threshold

operation based on histograms. Thus, there exists the option of
examining nine histograms from these sources to de termine the most
sharply defined feature. Thresholding on limits provided by the
minima bounding the best peak in the histogram will furnish clusters
of points which are uniform for the given feature. Then these regions
are extracted., But, the number of sensory parameters and variety of
picture operations require, for this system; large amounts of storage
space and heavy expenditures of computational time. In this system,
the control of parameters is determined by human interaction. Even
with human interaction and 9 hours of CPU time, the heavy input and out-
put requirements increases the real time processing to 18 hours or more
to process a scene of 600x800 points on a PDP 10 computer. And as the
amount of noise in the information becomes greater and greater, the
resolution of thls system becomes less and less.

Carlton and Mitchell [86] used texture and grey level information
for image segmentation. This technique uses a texture measure that
counts the number of local extrewa in a window centered at each plixel.
This results in an intermediate grey level picture representation of a
texture property. These intermediate pictures are used to derive

starting points In each region to be segmented. The segmentation is
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completed by assigning each pixel to a starting point using a distance
criteria. For this technique, there are several thresholds which must
be set to make it operate; namely, extrema size, window sizes, and
distance criteria. If the input data is not quite homogeneous, the
optimal set of thresholds needs to be found.

Wall, Klinger and Castleman [27] and Wall [28] proposed five models
to represent objects in image analysis and their corresponding histograms.
The five models are the ideal object image function, the truncated
wedge function, the circular Gaussian function, the Gaussian through
function, and the Gaussian edge function. The ideal object image
function 1{x,y) is a function having constant grey level lm, inside an
arbitrary set, s, and zero outside. S is a simple, connected subset of
the regicn with a boundary of arbitrary shape. if (x,y)€S, I{x,y) = Im;
if (x,y)#S, 1(x,y) = 0. The truncated wedge function is a function
having constant grey level, lm’ and slope, b, from the constant value
of arcy ievel to zero value of grey level. The circular Gaussian

function of object image is defined by

~L0eu) 2ry-u) 17207 5 (x,y)ed

(x,y) = 1 e
1(x,y) =0 s (x,y)gd
2
(x-u,) 2 (Y‘Uy)
where d = {(x,y)€ER; 5+ 7 < 2}, U s Uy, o are arbltrary
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constants and Z> 5. The Gaussian through function is defined by
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L (X‘Ux) 2
where r = {(x,y)€R; (UY ~F<y< UY + 59, “;;1?"5 Z} v, Uy. ¢, and
(s 3

L.are arbitrary constants and Z> 30. The Gaussian edge function is
generated by placing one~half of a clrcular Gaussian image function on
each end of the Gaussian through function.

For the extension of grey level, Yachida and Tsuji [33] found
uniform color regions by utilizing color information. So, color in-
formation is helpful in image segmentation.

b. Structural Approach

In the structural approach to characteristics thresholding, the
uniformity of complex Image properties such as size, shape, or arrange-
ment of subpatterns in a picture is examined,

Tsuji and Tomita [32], and Tomita and Yachida [31] described a
method for dividing the input scene into regions by thresholding the
histograms of the grey level values of several structural descriptors.
For the purpose of saving memory space and computing time, several
specific descriptors were selected. They are shape, size, position,
and density. The size descriptor specifies the area and perimeter of
each unit region. This position descriptor gives the two dimensional
coordinates of the center of gravity of the unit region. The shape
descriptor is selected in such a way that it gives rough information
about the shape and is not sensitive to sampling noise in the process
of digitizing the picture. A region A in a given set, s, has a density
descriptor, Ds, whose value is the minimum distance from A to other
regions in s. The partitioning procedure works as following: first,

the picture descriptors are evaluated and their list is constructed.
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Second, the histograms of the values of the descriptors are computed

and a filtering technique smooths the small peaks that 1i: close to

each other. Third, a supervisor selects the most promlsing descriptors
for classifying the regions into groups. The most promising descriptors
are those descriptors whose histograms have deep valleys. The super-~
visor puts the thresholds a£ the bottoms of the valleys. Fourth, the
density descriptors of the members of each group are evaluated. |If

some members have density descriptors whose values are larger than a
predetermined threshold value, they are excluded from the groups as
isolated regions. Finally, a boundary test is done to check whether

or not any regions in the group of isolated elements are located between
two regions or surrounded‘by a region. They are merged with the region
if only one region touches them. Thus, the structural analysis is

finished and the goal, partition of the picture, Is achieved.

2.1.2 Region Extraction Methods

These methods utilize extraction of regions to segment the pic-
ture, There are three approaches to region extraction: merging,
dividing, a combination of merging and dividing.

a. Region Merging Approach

The region merging approach begins with a well formed partition
(e.g., the picture consists of n2 square pixels and the pixel is [xl in
size), and processes It by merging adjacent elements together that are
found to be similar in certain characteristics. There are five tgpes
of region merging: statistical, linguistic, decision-theoretic,

"relaxation', and interpretation-guided.
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(i) Statistical Region Merging

Here, the merging criteria are based on certain statistical charac-
teristics. Brice and Fennema [34] use unit reglons as basic data and
process them by successive merging of the unit reglion toward a final
image partition. Similar approaches used by Strong and Rosenfeld t35],
Harlow and Eisenbers [36], and Rodd [37]. Bajcsy [39] uses two types
of merging of logic sequences; from left to right, and from right to
left. Kettig [38] uses a similar method on multispectral remotely
sensed imagery data. His experimental results show that this appreach
suffers from slow computer processing time. Gupta and Wintz [4C] pro-
posed a merging sequence which expands horizontally and vertically by
absorbing more and more pixels until it reaches nature boundaries.

(ii) Linguistic Region Merging

Since most grammars are useful in analyzing a one dimensional
string, Tsuji and Fujiwara [41] proposed applying sequentially two
grammars of one dimensional strings for picture segmentation. The
picture primitives are line, curve, edge or undefined segments. The

system works as follows: the first stage of processing is the search

for line segments. Then a line fitter tries to connect the line seg-
ments. The horizontal grammar is constructed manually in that a hori-
zontal parser gives a label to each segment, and examines the horizontal
contexts in order to join several segments into a new longer segment.
The results are the set of picture sentences of horizontal scan. Based
on the concept of coupling, a set of grammar rules has been written as
vertical grammar. The vertical parser analyzes the vertical contexts

of symbols in picture segments and generates region sentences which
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give the characteristics of all surfaces in the picture. The final
step of vertical parsing is to combine one region with another. This
approach works fairly well on some artificial block type of images,
but fails in classifying scenes that have high lights, shadows, and
different textures. .

(1i1) Decision-Theoretic Region Merging

This approach applies Bayesian decision rule techniques and uses
problem-dependent information (semantics) to solve the picture segmen-
tation problem. Yakimovsky and Feldman [42] and Yakimovsky [43] present
a theoretical framework for a system which incorporates neighborhood
information in a region analyzer. The two central ideas are the use of
a utility function to measure the value of various alternatives, and an
optimality theorem. A disadvantage in the approach is the assumption
that the interpretation of a region depends only upon adjacent regions.
The choice of local measurements around each point is, of course, a
crucial factor but interpretation can sometimes depend on a region
quite far away. Also it seems that the computer's "learning' procedure
needs to be refined in this approach.

(iv) ‘Relaxation' Region Merging

Another approach to region merging is called the Yrelaxation"
process proposed by Rosenfeld, et al [78]. This process has been applied
to scene labeling, line enhancement [80], and template matching. The
relaxation process, also called iterative probabilistic process, first
estimates for each point, P, the probability, Pi’ that it belongs to
each of the possible classes. Then the Pi is increased if supporting

evidence is found for it or decreased where contradictory evidence is
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found. VWhen for a given point, P, only one class has a high probability,
then it is classified as that class. In this approach, the estimated
ipitial probability, Pi’ for each point would effect the converging time
vor iteraction. The computer processing time can be costly for this
method because of the large number of iteraction needed.

{v) Interpretation-Guided Region Merging

Tenenbaum and Barrow [79] proposed the IGS (Interpretation Guided
Segmentation) approach to region merging. This technique relates human
knowledge to a certain set of rules and iteractively processes these
rules until it achieves a final seg&entation result. Finding a set of
rules which effectively describes the knowledge of the scene is impor-
tant. Because the rules have to be iteractively processed, the computer

processing time is large.

b. Region Dividing Approach

The region dividing approach begins with dividing the picture into
several parts then subdividing each part until the partitioning satis-
fies certain stopping criteria. Robertson [kh] designed his partition
algorithm on the assumption that a region contains a boundary. The
homogeneous property that he considers is the mean vector of brightness
functions of the multispectral remotely sensed image.

Klinger [45] suggests a partition idea through the refinement of
objects into four equal quadrants such as, nortiwest, northeast, south-
vest, and southeast quadrants. He also [69] applies a regular decom-
position to divide the picture area Into successively smaller quadrants.
The concept of regular decomposition is, first to represent a digitized

picture consisting of spatial subsets of different sizes marked either
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“informative for scene description" or 'non-Informative" and second, to
discard picture elements (pixels) that belong to "non~informative' sub-

sets. Initially, the entire digitized picture is a quadrant. If

nothing informative is contained, such a quadrant may be entirely eli-
minated from the data structure. If a large amount of information is
found in the quadrant, the quadrant should be saved. |f the decomposi-
tion algorithm fails to make a decision about a picture quadrant, it

is subdivided and each of the four quadrants is processed by the same
procedure. Thus, the regular decomposition is a process of searching
for picture areas where there is "informative' data present. This
method is used to build computer-searchable data representation of an

image.

c. Combination of Merging and Dividing

This approach to region extraction starts from an arbitrary parti-
tion and dynamically determines when to merge or divide. Horowitz and
Pavlidis [hG] used this idea in devising their image segmentacion by a
directed spiit-and-merge procedure. They have also refined their
algorithm by applying a grouping algorithm which combines two adjacent
regions, provided these initial regions satisfy a given property. It
eliminates small regions which are due to noise or to transitions

between large regions. For the purpose of Identifying multiple con-

nected regions corresponding to cut notes in the picture, Horowitz and
Pavlidis [70] used graph analysis to identify these regions. But the
. a priori information of the given property that they use is the draw-

back to their algorithms.
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2.1.3 Edge Detection Hethods

Another method for image segmentation is finding the boundaries
between regions in order to extract the homogeneous regions. There are

several approaches; such as, template matching, gradient operator,

boundary searching and line fitting.

a. Template Matching

Template matching can be done in a decision~theoretic way. The
decision problem is to compute the probability that a line representing
a real edge is centered in some iong narrow area. Griffith [47,48,57]
discusses the optimal use of intensity information to detect edges in a
block world. Hueckel [43] proposes a method by asking what edge elerment
will best fit the intensities in a given region. An extension of the
foregoing techniques to detect line and edge~line is presented in
Hueckel [50]. This approach is capableof telling the exact orientation
of the line segment.

b. Boundary Operator

The gradient boundary operator is defined as

* aq
vg(x,y) =-g%>\x-5—3-)\y

and [vglx,y) | = [GD* + 39472,

If the picture is noisy, then smoothing techniques snould be employed
before applying the gradient operator according to [57]1. Rosenfeld [61]
indicates that when there Is noise incorporated into the smoothing pro-
cedure, the larger the size of the neighborhood, the less precisely is
the edge located. Procedures for detecting abrupt changes in average
grey level value in order to locate the edges, are presented in Rosen-

feld and Thurston [58,59]. Rosenfeld and Troy [66] and Rosenfeld and

s .
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Thomas [60] apply this concept to detect the texture edges where the
two reglions differ with respect to the average value of some local
properties. Recently, Persoon [67] devised a new gradient operator
algorithm for edge detection performing experiments on rib extraction
from chest x-ray pictures.

In March of 1977, Thompson [85] applied the modified Roberts cross
operator for textural boundary detection. The Roberts cross operator
is defined as R(i,j) = [P(i,]) = P(i+1,j+1) | + |P(i+1,)) - P(i,j+1)].
In [85], the textural boundary operator is proposed as T = b(a,d) +
D{b,c). D{a,d) is the computed texture dissimilarity between region a
and d. Regions a, b, c and d are the quadrants of northwest, northeast,
southwest, and southeast respectively. The 2dge finding method con-
sists of two stages. First, a map is produced by applying the textural
boundary operator to selected points in an image. A second edge map
is then provided by smearing each point in the first map along the
direction of edge orientation.

c¢. Boundary Searching

This approach detects the boundary by means of applying an operator
to search the picture to locate the boundary between regions. Ore of
the techniques called "'the contour following technique" is an applica-
tion of the idea that previous knowledge about the existence of an edge
from the operator might give us a good prediction of the location of
the next edge element [52]. In [53], the planning strategy was applied
to the contour following search. The technique of contour following
vwith planning strategy should be quite good, as it aqplies knowledge
from previous small areas. But it fails when the parts of the picture

are independent and uncorrelated.
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d. Line Fitting

Hough [54] suggested the use of a set of parameters to fit a group
of. points with line segments. Duda and Hart [55] indicated that the use
of angle-radius rather than slope~intercept parameters will simplify the
computation in Hough's work., Pavlidis [56] proposed numerical func%ional
approximation to fit the boundary. Several algorithms of boundary detec-
tion [62,63,64,65] are of this category. These techniques can contribute
to the segmentation of a picture. But, sometimes structure of the
boundary of a picture is complicated and the line fitting approach be-

comes inadequate.

2.2 PREVIOUS WORK IN SYNTACTIC PATTErN RECOGNITION

in syntactic pattern recognition, a 'grammar'' is used to characterize
a set of patterns. The syntactic method has the power of describing and
classifying patterns. For the description of a pattern, a pattern is
represented by a sentence in a language which is specified by a grammar
[2,5]. This language provides the structural description of patterns by
a set of pattern primitives and thelr relational rules. The recognition
of a pattern is accomplished by a syntax analysis according to the
grammar. A block diagram of a syntactic pattern recognition system is
shown in Figure 2.1. The upper part of the diagram is the recognition
part and the lower part is the analysis part. For the purpose of de~
scribing and recognizing the pictorial patterns, various two-dimensional
grammars called tree grammars, web grammars, and graph grammars have been
developed and applied to syntactic pattern recognition. A good survey of
the early work in the field of syntactic pattern recognition was written

by Fu [2]. More recent surveys are found in [4,5,6,12].

a
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Fig. 2.1 Block diagram of syntactic pattern recognition system
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Previous research work in this field falls into three major areas; namely;

grammatical inference, syntactic analysis, and applications.

”
2.2.1 Grammatical Inference

Fu and Booth wrote an intensive survey on grammatical inference in
[20]. The grammatical inference is part of the analysis for syntactic
pattern recognition shown in Figure 2.1. In order to realistically de~
scribe a class of patterns under study, the grammar used in syntactic
pattern recognition is hoped to be directly inferred from a set of sample
patterns. Figure 2.2 shows the general mode! of the grammatical inference
process [2]. A source generates sentences or patterns of form X, = ail,
cess ain where the symbOIS'ai are elements from a finite set VT called
the set of terminal symbols. These sentences are assumed to possess some
unique structural features which are characterized by a grammar, G, which
can be used to model the source. All of the sentences which can be gen-
erated by the source are contained in the set L(G), the language generat-
ed by G, while all of the sentences which cannot be generated are contained
in the complement set L(G). An observer is given a finite set st of sen-
tences which are from L(G) and another finite set s of sentences from
L{6). Using this information the observer infers the syntactic rates of
the unknown grammar G. The sentences which belong to s+are definad by
the properties of G. These sentences from s are also input to the ob-
server. In section 2.3 of this chapter, more details on grammatical in-
ference algorithms are presented. A tree grammar inference algorithm is

described, and an other grarmatical inference algorithm for a tree trans-

formational grammar is proposed.
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Fig. 2.2 General model of grammatical inference process




2.2.2 Syntactic Analysis

After a grammar is constructed to generate a language which would
describe the patterns under study, the next step is to design a recogniz-
er that will recognize the patterns according to the grammar. The recog-
nizer designed for a particular grammar will recognize only the patierns
in the class corresponding to this grammar. If the grammar is finite,
the syntactic analysis is done by the finite state automata [2]. A
recent development in this area is error-correcting syntactic analysis
[16,19,22]. tn some applications, a certain amount of uncertainty exists
in the process. In order to describe noisy and distorted patterns, the
use of transformational grammars, stochastic languages, and approximation
have been suggested [2,5,23]. For the recognition of noisy and distorted
patterns, error-correcting syntactic analyzers have been proposed. Fung
and Fu [19,22] used the maximum likelihood decision criterion as decision
rule to resolve ambiguities for stochastic language. The basic approach
is to use the concept of transformations of strings. The error-correct-
ing parser first induces érror transformations into the original grammar
to give a covering grammar whose language is universal. To search for
the string that satisfies the decision rules, the parsing algorithm is a
conventional parser with a provision added for bookkeeping of the number
of transformations used. The probabilistic models and stochastic ervor-
correcting parsing techni&ues were applied to the recognition of noisy
patterns,

“Tr;e" system approach was first introduced to syntactic pattern
recognition by Fu and Bhargava [13]. In [16], the error-correcting tree
automata was proposed. Unlike the string case, where only the relation

between symbols is left-right concatenation, a tree structure would




o

27

become deformed by deletion or insertion errors. The structure-preserved
error-correcting tree automata takes only substitution errors fnto con-
sideration. A generalized error-correcting tree automaton consists of
five types of error transformations; namely, substitution, stretch,
branch, splits and deletion. The distance between two trees is the‘
least-cost sequence of error transformations needed to transform one

tree to the other. Tree distance is measurable between trees of different
structures. Based on the measurements, the error-correcting parser
accepts structurally distorted as well as node-mistabeled trees such that
their minimum distance corrections can be found [16].

For the purpose of increésing the flexibility of the syntactic
method, Fu and Lu [17] proposed a clustering procedure for syntactic pat-
terns. This procedure measures the distance between patterns and
establishes a similarity measure. A similarity measure between two syn-
tactic patterns includes the similarities of both their structures and
primitives. A nearest-neighbor recognition rule is then applied with
the similarity measures and a clustering algorithm is proposed for
syntactlic patterns. If the correct classifications of pattern samples
are known, the proposed nearest neighbor recognition rule can be applied
to determine the classification and structural description of an un-
known pattern. Yhen the correct classification of pattern samples is
unknown, a non-supervised procedure must be used. In this case, the
clustering procedure can still be applied. When using error-correcting
carsers in cluster analysis, after the clustering result is obtained,
only a conventional non-error-correcting parser needs to be implemented

for recognition. The flexibility of the syntactic method is greatly

improved by this clustering procedure.
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2.2.3 Applications

Fu and Bhargava [2] spplied the tree system approach to the analysis
of-Bubble Chamber films. The tree system approach utilizes a set of
grammars to describe and recognize the Bubble Chamber patterns. Hoayer
and Fu [11] applied the tree system approach which utilizes sets of
grammars to describe and recognize fingerprint patterns. The tree system
approach was also applied to LANDSAT data interpretation which analyzes
the processed results from statistical methods to inprove some of the
data interpretation of LANDSAT images [15]. Brayer and Fu [14] and Fu
[3,4] approached the LANDSAT data interpretation through "“web" grammar
analysis which utilizes web grammar to describe the contextual and
spatial information. A web grammar model was developed and used to im-
prove the accuracy of the classification and to find some new classes.
Pavlidis [23,96] applied the grammars, which are characterized by a set
of primitives corresponding to the case under study, to shape recogni-
tion. His applications are numeral and character recognition, and

industrial circuit board defect detection.,

2.3 COMMENTS Ot THE PREVIOUS RESEARCH WORK

Compared with the techniques in the ''characteristics" thresholding
approach, the grey level histogram provides global knowledge about the
segmentation of a picture. Concerning the computer processing time in-
volved in image segmentation, the grey level histogram thresholding
approach is quite fast because the mathematical operator manipulation is
much simpler than gradient or Laplacian thresholding. But in the histogram
thresholding approach, where there are small regions, they show up in the

histogram as small peaks. Henc., most of the time the histogram thres-
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holding approach fails to segment these regions of the image. Arother
problem is the case in which two or more different objects have many
overlapping parts in the histogram; here again the approach fails to
sé;ment the image. Therefore, techniques similar to the gradient opera-
tion, Laplacian operation or modified Laplacian operator have been developed
by thresholding some local property, and Chlander [68] tried using nine
different types of sensory data for thresholding histograms. All these
approaches suffer from heavy expenditures due to slow computer processing
time. After this examination of the tresholding of histograms, we must
consider that it is not the best approach for image segmentation.

\hen structures of patterns or textures of the image are complex,

the characteristics thresholding method by structural approach is useful.

But, the discriminaticn between the elementary subpatterns or grains of

the image has to be assumed to be easily obtéinable and this structural
approach needs much computer processing time.

The region extraction method is attractive in two major approaches;
the merging approach and the dividing approach. In comparing these two
approaches, if the region merging approach is used every time two regions
are merged together, the sample statistics can be calculated simply from
the staistics of those two regions and thus the processing time is not
so large. In the region dividing approach, every time a reglon is divided,
new statistics must be calculated again causing large processing time.

The combination of merging and dividing is considered a combinatory method,
but the computer processing time is still very large.

In the edge detection methods for image segmentation, if boundaries
between regions can be expressed by some definite form, then template

matching is suggested. From these observations, there seems to be dif-
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ferent appropriate approaches for different types of images. That is,

it is difficult to find a general method for al? images. Some of these

techniques calculate second order statistics and some of them need planning

strategy. However, all of these techniques require a great deal of com-

puter processing time. In conclusion, we cansider that there are problems

associated with all of the previous methods. Therefore in Chapter 4,

the syntactic image segmentation method is proposed. Before presenting

the image segmentation by tree grammar (high dimensional) in Chapter &,

the image recognition by finite state string grammar (one dimensional)

will be presented in Chapter 3.
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CHAPTER 3

IMAGE RECOGNITION BY A STRING GRAMMAR APPROACH

The syntactic approach to image recognition has three major parts
(Figure 3.1): Preprocessor, Syntactic Analyzer, and Postprocessor [10].
The preprocessor extracts '"primitives' from an input image and transforms
the image to ''language' sentences which are the inputs for the syntactic
analyzer. This process usually involves a transformation operation, a
threshold operation, and an averaging operation among others. The syn~
tactic analyzer processes the input image by a set of grammatical rules
inferred by a grammatical inference algorithm. This procedure is in
order to accept those patterns which can be generated by the set of gram-
matical rules, and to reject all others. The postprocessor sequentially
executes several information (semantic) rules. Those objects which are
related, based on semantic information, are recognized from the image. -
Depending on the structures of the objects of interest, as indicated in
Chapter 1, different types of grammatical rules are effective for de-
scribing and recognizing different objects. For example, any string-
like object {such as a road or a river) is recognized more efficiently
by a string grammar than a tree grammar. UWhereas a tree grammar is
necessary for recognizing a complex picture. The advantages of the string
grammar approach lie In its systematic grammatical inference procedure

and that the efficient syntactic analyzer, as finite state automata.




Ve

Input Image

Preprocessor
1. Preprocessing

2. Primitive
Extraction

F———=

amp Gt Gmtt wwp e ewme e o  Cmmb  ——

Sumple Patterns

Syntactic Analyzer

*——

| Grammatical Inference

L e

Postprocessor

|

|
l
l
|
[
l
|
|
|
l
|
l
|
J
|
|
L

Figure 3.1. Flowchart for an image recognition system.
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There are two major methods in the string grammar approach for image

recognition; namely, the syntax-directed method and syntax-controlled

method.

The syntax-directed method involves the following steps: first, an

inference process is applied to a set of training imagery data to infer

a set of grammatical rules which in turn formalizes a syntactic model.
Second, based on this riodel, a set of template matching window patterns,
which are generated by this grammar, is implemented to analyze the test
images and to recognize the object of interest. Thus, the syntactic
analyzer is a template matching process which is directed by the syntac-
tic rules.

The syntax-controlled method is comprised of the following steps:

first, a grammatical inference procedure is applied to a set of training
imagery data to infer a set of grammatical rules which in turn is used

to construct the recognizer or automaton. Then, this automaton is im-
plemented to analyze the test images and to recognize the object of
interest. Hence, the syntactic analyzer is an automaton which is direct~

ly controlled by the syntactic rules.

3.1. SYNTAX-DIRECTED METHOD FOR OBJECT RECOGN|ITION

This research was motivated by the need for a method which can fully
automate the recognition of such objects as highways, rivers, bridges, |
and commercial/industrial areas from satellite images such as those of
LANDSAT. The statistical pattern recognition techniques which had been

developed prior to this work had not shown satisfactory results. For

exanple, the land-use classification of LANDSAT images has been studied
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by Todd and Baumgardner using spectral analysis [84]. It has been shown
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that highways and other concrete areas, such as parking lots, could no&

be distinguished from zach other due to the fact that both have similar

spectral characteristics in spectral analysis. The utilization of the

syntactic method to describe spatial relationship among different oh~-

jects was suggested by Fu [3]. Some research was done on LANDSAT images
by Brayer and Fu [14]. They were able to program a computer to analyze
a city scene by constructing a hierarchical graph model which contains
spatial distributions of all classes in the scene. Web grammars were
used to describe spatial relationships between various objects in the
scene. Li and Fu [15] started with pointwise statistical classification
of LANDSAT images and then applied a tree system approach to the LANDSAT
data interpretation. Bajcsy and Tavakoli [81] designed a computer pro-
gram from the relational graph viewpoint to recognize objects from
satellite pictures. The research undertaken here applies to the recogni-
tion of certain specific objects in LANDSAT images. Th  syntax-directed
method utilizes a set of finite-state string gramnar rules to describe

and recognize the objects of interest.

3.1.1. Grammatical Inference Process

Based on knowledge of highway structures, several initial grammatical

rules were written. Then a training area was selected (which in this
case was Lafayette, Indiana) and a preprocessed training Image was ob-
tained. The initial rules generated a set of pattern windows, The
training image was then matched to the set of generated pattern windows
to obtain the processed result. A highway map was used to evaluate the
processed result. For the highway structures vhich existed in the map

but not in the processed result, the grawmatical rules to generate those
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matching patterns were added to the initial set of rules and the image

was then reprocessed. After several interactive steps the final set of

grammatical rules was obtained. The primitives for the grammar are

chosen as a, b, ¢, d, e, f, g, and h. These prinitives are designed as

2 x 2 pixel blocks.

B
o
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For example, a window for an intersection of highways might be

|

This syntactic analyzer was the window operation, which processes the
image window by window. The movement of the window is to shift one

column or one row at a time. Then multibranch patterns can be represent-

ed by one-branch grammar rules, For example, the window pattern men-

tioned above can be analyzed as the following two window patterns:
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The one-branch grammar rules are as follows:

- (2) S+ch, I\]->cAl A]—H.:A2 A2+cA2 A2—>c

These rules are finite-state grammar rules [2, 110].

A junction of two highways is as follows

can be analyzed by two window patterns that are generated by one-branch

grammar rules. The two patterns are,

—

Then the resultant grammar rules can be expressed in terms of finite-

state string grammar rules as follow.

G = (VN, VT’ P, S)

The grammar G is

N = {S’ A]: AZ’ A3s Al‘s Ass A69 A7’ AB! A ’ AIO}
VT = {a, b, ¢, d, e, f, g, h}

where P:
S-ch, Ayrehy A'l->cl\2 A,rch, A2—>dA2 I\z-veA2 A,+bA,
S—»dA3 /\3->dA3 A3-*dAl* A l’-vdA‘* A,;)eAl’ A,‘-bfA“ Ayrchy,
S+eA5 A 5—>eA 5 As—reAG Agrehg A6+fA6 A6->gA6 AgrdA,
S+fA

~J

7 A '*fA7 A7"’fA8 Aa'*fl\s A8'*9A8 A8'*hA8 Aa'*eAa

‘ s
b
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S'ghy ARy AgAo A ovgh A, -+ah Ay A A5 hA

9 9 10 10 0 1 10 I 10
Az»c A2+d A2+e A2+b A4+d Aq*e Aq+f
Al‘+c A6+e A6+f A6+g A6+d A6+CA6 A6+c
A8 +f A8 +qg A8-*h A8 +e Ajgr9 A10+a A10+f“
Alo+h

3.1.2. Syntax-Directed Analysis

The syntax-directed method consists of two levels, namely, pre-
processing and syntax~directed grammatical analysis. The transfarmation
processor transforms the multispectral LANDSAT images into a single bi-
nary Image. The syntax-directed analyzer then analyzes the transfacme:
image based on a set of template matching patterns. Structures w. :..n
are matched by this set of templates are accepted, otherwise they are
rejected. The details of the preprocessing and syntax-directed gram-
matical analysis are given below:

(1) Preprocessing

A. Thresholding Frocess: First the LANDSAT images were defined in

Euclidean n-dimensional space En. (The number n represents the number
of channels to be chosen). 1\ pixel is described by an ordered n-tuple
(xl, Xps eue xn). LANDSAT measurements from channel 1 and 2 are very
sensitive to concrete areas. A training area was chosen to establish
the thresholds of the spectral intensity of concrete areas in channel
1 and 2. Then a threshold, H, was obtained from the sum of two thres-
holds from these channels. Since channels 3 and 4 are infrared bands
[82], measurements from these two channels are sensitive to thermal

emitting objects. Watery areas are strictly non-thermal emltting
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objects. The negative reaction in the infrared bands causes contrast
and makes the extraction of watery areas from channels 3 and 4 easier.
Tﬁs sare procedure of threshold finding as that for concrete areas is
applled here to obtain threshold, R, for river recognition. The trans-
formation process works in such a way that if the sum of the spectral
intensities of the pixels in the same position in two chamnels is great-
er than the sum of the two thresholds from the training area (for
example, channels !, 2, and threshold H for highway recognition, and
channels 3, 4, and threshold R for river recognition), the pixel is set
to 1; otherwise, it is set to 0. (For river recognition, the one-zero
settings are reversed). Thus, the multispectral images are transformed
to a single blnary image.

It is true that both visible bands (channels 1 and 2 are sensitive
to the concrete spectra. But in real world images, the influence of
neighboring objects sometimes causes the deformation of the intenrity
of the object of Interest (such as a highway). But when thers is only
one channel (imagz) available, the thresholding process can be designed
by setting tie threchold on that one image. Experiments of this kind
were also conducted on other objects and it was shown that by using the
sum of the spectral intensities of two visible channels (for highways)
one obtains a more reliable result than that obtained by just setting a
threshold on one channel. From the experiments of highway recognition
on different LANDSAT images, it was shown that some highways are clear
in channel 1 and some in channel 2, A weighted sum of threshold-finding
could not be achieved but the results of summing the thresholds from the

two channels were satisfactory. Hence, the sum of the thresholds from
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the two channels was used as the threshold process in the experiments
which will be shown here and in section 3.1.3.

- B. Line Smoothing Process: After the thresholding process is com=

pleted, a line smoothing technique is applied to remove deformation and
re-establish continuity of the lines. For a given center pixel of ;
3 x 3 window, the operatiofi starts from the left upper corner pixel. if
It is one, the column is shifted. It is zero, the surrounding eight
pixels are checked. If there exists at least two "1's* which are not
adjacent to each other, then a "' is set into the center position. The
operation continues until reaching the rightmost column of the digitized

image. Then, the operation is shifted one row down and starts from the

left most column with the same process until the last row of the digitized

image is reached.

(2) Syntax-Directed Grammatical Analysis

Input: The transformed binary fmage which is a Q(i,j) memory array.

Output: The syntax-directed result.

Algorithm:
Step 1: Set G(M,N) to be an operation window (8 x 8 in size).

Step 2: load that part of the array Q(1,J) in which J =1, 8;
I =1, 8 on the operation window G{M,N).

Step 3: Compare the operation window with the set of template
matching window patterus (Figure 3.2) which were gener-
ated by string grammar, G. (Thirty four templates were
used in this analysis. The templates were obtained from
the inference process. In the inference process, new
templates are added to the set of templates in eack in-
teractive process. The number of templates used here
(34) is the number of templates in the final Interactive

process of the inference process. From the experimental
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resuit, these 34 templates proved adequate for these
applications.) If the operation window belongs to any
one of the pattern in that set of patterns, the primi-

s tive pattern in that window is accepted, and stored in
the resulting memory array R(1,J). If it dces not be-
long to that set of patterns, then go to step 4.

Step i: Shift one column to the right of Q(1,J) in step 3. Then
go to step 3 and continue until reaching the rightmost

column,

Step 5: Shift one row downward; go to step 3, until reaching the
last row of the digitized image. Syntactically correct
structures are recognized and stored in the resultant

memory array R(1,J).
Step 6: Output the result, R(I,J).

The flow chart for highway recognition by the syntax-directed method

is given In Appendix B. Since rivers have the same linear features as

highways, the inferred grammar for highways can also be used for rivers.
This assumption is justified by the results of the experiments on river
recognition. The flow chart for river recognition is also provided in
Appendix C,

Spectrally speaking, bridges and commercial/industrial areas have
similar characteristics to concrete parking lots and highways. This
means that the existing statistical techniques are inadequate for the
distinction of bridges from highways and for the recognition of commer-
cial/industrial areas as such. The syntactic objact recognition tech-
nique uses the spatial relationship to distinguish highways from other
concrete areas by the syntax-directed method, and then uses semantic
information as a postprocessor to distinqugsh birdges and commercial/

industrial areas from the recocnized highways. For bridge recognition,




first the images are processed by the syntax-directed method for highways
and rivers. Then a lcgical “AND" operation is applied to the highway
results YH" and the river result “R" to obtain the bridge recognition re-
sult "B". This operation results in a “bridge" which is the intersection
of a Yhighway'" and a "river". A flowchart of bridge recognition is’
given in Appendix D. The length of the recognized bridge can ke calcu-
Tated by the following algorithn:

Algorithn for calculation of bridge length and coordinates. (from LANDSAT

data)

Input: Recognized bridge result.
Qutput: The calculated length and coordinates of the bridge.

Algorithm:

(1) Calculate the number of horizontal rows which have at least
one briuge pixel. The value is a.

(it) Calculate the number of vertical column which have at least
one bridge pixel. The value is b,

(ii1) if a = 1, the lencth of the bridge, c, is b x 56 meters.
If b =1, the length of the bridge, c, is a x 79 meters.
Otheniise go to {iv).

(iv) The length of the hridge, ¢, = U&a P 79)2 + (b x 56)2.
The idea of thls algorithm is to calculate the hypotenuse of a right tri-
angle, using the information that each pixel In a LANDSAT image corres-
ponding to 79 meters invertical length and 56 meters in horizontal length.
Step (ifi) is the case In which a bridge Is right on the horizontal row
or vertical column. The coordinates of the recognized bridge can also
he determined from the recogrnlized bridge pixels, as the coordinates of

the pixels In the image can ba directly related to the global coordinates

of meridlan ard elevation.-
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For commercial/industrial area recognition, first the images are
processed to obtain highways. The highway recognition result is then
deleted from all concrete areas by the Boolean "Exclusive OR' operation.
Then for the four by four cells of the image after the "Exclusive OR'
operation, if over 60% of the pixels In the cell are concrete, this cell
area !s called commercial/industrial. This is because the commercial/
industrial area has a high density of concrete buildings and concrete
storage yard, The size of the recognized commercial/industrial area
and the coordinates of the center of this area can be calculated by the

following algorithm:

Algorithm for calculation of the area of a commercial/industrial area

and its center. (from LANDSAT data)

input: Commercial/industrial recognition result.

Output: The calculated area and the center of the commercial/
Industrial area.
Algorithm:
(i) calculate the number of commercial/industrial area pixels.

The value is n.

The area equals n * (0.079 x 0.056) square kilometers.

)
) For every commercial/industrial area pixel Ci(l,J) calculate

n n
(> Ii)/n. The value is P. Calculate ( I

Ji)/n. The
i=] j=1

value is q.

(iv) The center of the commercial/industrial area is the coordi-
nate {P,q).
The resclution of LANDSAT images is 79 x 56 meters per pixel. Hence, the
area of each pixel is (0.079 x 0.056) square kilometers. The center of

commerclial/industrial area is the coordinate which has the x coordinate
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as the mean of all the x coordinates of the commercial/industrial pixels
and the y cootdinate as the mean of all the y coordinates of the commer-
cial/industrial area pixels.
3.1.3. Computer Experinental Results on Recognition of Highway and River

from Satellite Images
The syntax-directed method was implemented by FORTRAN programming

on the IBM 360/67 computer at the Laboratory for Applications of Remote
Sensing (LARS;} at Purdue University.

(1) tliighway Recognition

Figure 3.3(a) is a LANDSAT image of the Indiamapolis, Indiana area.
The platform altitude at which the picture was taken is 306,200 feet and
there are 128 grey levels used in the digitized image [82]. Figure 3.3
(b) is the intermediate output after line smoothing in the transformation
process. The highway recognition result, by the syntax-directed method,
is shown in Figure 3.3(c). This area is a 96 x 96 pixel image which
shows the junction of Interstate highway 65 {(northwest to southeast) and
highway 465 (north to south) in the left upper part of Figure 3.3(d).
The exact location of F!gqre 3.3(a) is labeled on Figure 3.3(d) as the
square outlined. The experimental results indicate that the syntax-
directed method is rather successful.

Figure 3.h(a) is a LANDSAT image of the downtown area of Chicago,
I11inois. Figure 3.4k(b) is the highway recognition resuit from Figure
334(3) by the syntax-directed method. This area is the junction of the
Chicago Skyway and the Dan Pyan Expressway (highway 94) which is shown
in the downtown map of Chicago Figure 3.4(c). Lake Shore Drive is

also recognized, but as the resolution of the LANDSAT satellite sensor

Is only 79 x 56 meters per pixel, the recognition is not perfect,
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because wnenever the widths of highways are less than the resolution

values, the recognition will ‘be unfavorably affected. Figure 3.5(a) is
the LANDSAT image of Harvey, l1linois. The computer result of highway
recognition by the syntax-directed method is shown in Figure 3.5(k).
For comparison of the accuracy of the result, the city map of Harvey,
I1linois ic shown in Figure 3.5(c). The recognized highways are high~
way 80 (southwest to northeast), highway 57 (south to north) and state
road 50 (south to north). The “H" in Figures 3.3(c), 3.k(b), and 3.5(b)
stands for a highway pixel.

(2) River Recognition

For the purpose of showing that this method works also for river
recognition, a terrain area northeast of San Francisco, California was
processed by the syntax-directed method for river recognition. The
LANDSAT image is shown in Figure 3.6(a). The river recognition result
given in Figure 3.6(b), shows that the syntax-directed method sucessfully
recognized a winding river in that image. The size of this image is
also 96 x 96 pixels. The topographic map for the area is shown in Figure
3.6(c).

Figure 3.7(2) is a LANDSAT image of the Lafayette, Indiana area.

The river recognition result is shown in Figure 3.7(b). The "R'" in
Figure 3.7(b) stands for a river pixel. Figure 3.7(c) is a éity map of
Lafayette. The river recognition result shows the Wabash river through
the Lafayette area., The Wabash river divides the area into West
Lafayette and Lafayette. The lighter areas in the LANDSAT image are the
concrete areas and the darker areas are the watery areas. The bright

line from north to south in Figure 3.7(a) is highway 65, and the dark

line from northeast to southwest is the Wabash River.
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Figure 3.3(2).

Satellite image of northwest part of
Indlanapolis, Indiana.
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Map of rdowntown Chicago, |llinois.




Flgure 3.5(2). Satellite image of Harvey, lllinois.

ot St a0




Verod dorivet ¢

"oy

HHEEN
HHUHRAR
HR IR
HH b

"

' pre

1
R Hryere
[ITTN I S [ERUNREIRNY

§hapebennog o

[SUETICRL

e RN
HE e b ar e

"
e

"
CRERMLERY P
[ e asdanall
LT

-
[

it
it s N

"
.
VR RV

syntax-direct d method.

Figure 2.5(b). Highway recoanition result from Figure 3.5(a) by

i
3
H
£
H




o ;
55
- ‘A O ',@6) 4|63”
e 14 .
h 97 R, s ,
iue oo 2 comeais >N EICTOAK LAN A B I
foods. . 2 ! o ST Ravier s’
:“ g%’z’:’ 45J'wwx :§ '3 X2 OChicago ihe 2 Colle‘;.t S 57 o
A Pﬁlﬁg‘i_f"‘ AN Ridge” Sf,um i ¥ " 111th -
min Hi S (Garden, ag | . I 145in
149Cq/ I Worth 1 ;*0"E$>Muru'Me t g0
et 1o 54 azel 3k Park [ '/ & Y
;f:f, Swatiow TE N § fsipf on ol Calufet - (A
e, 1R e P th $ AN - {Wiretonfgory Jos ke mm‘"A
1 S s27ih
Trintty Christ ; e .
1318t £ {;‘;’ﬁm&ﬁ; t stand, | Jackson glvergﬂ‘e el W
orest” ! ] arver Park v
McGinni: g b
Sw'u”hns 43 % Crestwoo ”0/ bb‘:ﬂqv 10 5 U m;:,'z.n ’{.b:wa%—;‘ )
{Retune . & fubio v 058 \ 16 g M -Gy,
—1ad o \ 88 D S | Do} on S
:F‘Q d‘“ i Tinky 22l 83
1ancg iCrook 147h bo - 3
E Pafk [YS 1518t Woods "“' o h" 2 Mnlx “r'tu "‘
;""'”'_d"] - Oak.s o § 'S\ o % 39“: ( 5
10
. 100%h 6 - «] - i G 21 M 1.
I i arkham e \o (37 et
i T o 8 Osk 14 e t‘L ¥
& ronn Westhayen - Forest 111 187n 3 f,m X
Ofieriway J3 28 untry oy Y.
33 P ’F ¥ o ToRT M B
1718t . ' .?"
4 inl [ » oy T
5 ¥ ok A o F; i
LLC.u a % Homewo. 3o
183rd x — _— 2908
- = L Cy %] ) K F 1] a2
‘ . - 7 (s ¢ 20 34 Glenwgea §
12 o ' : H 1‘ Flossmaor Sowo:
» ﬂh“ ﬂ1 i I >3 ;‘o
> (%] nny, j / a‘)
APLMM (L a’tﬁgry § Vollre rest s fT&'&“é" \J
v/"""."g\; ! . r s 'Qg | onr
I sty EA
Fig. 3.5(a)
i Harve I1linois.
Figure 3.5(c). City map of s
5

h
)




Flgure 3.6(2).

Satellite Image of north part of
San Franclsco Bay area, California.

asf

"

;‘fﬁWﬂ'oﬂM”w s

!
"

T
.M

Wi

R T TR e e e e e

i

A S




Flgure

3.6(b).

A2
~

“
" e
e oo
L ALE] LR
HAKMALS dLRLRAKUD (w
R RAM A 0B d 0t
MR RNy
TRAVRRRARNRAND
U A RU NN AW
fedRRAVUN WS
Rrerrareen
AXRARPRP Y
ARRp 4N

e

rove
LG
AAR Aty @ st
PheARUN

[
N
*

mOgdd AWua

Rl da

'
RrepInane
ANAO Lt

ALl ot U E
ARusadniOqpdnmn »
perered
e
tn

River recognition result from Figure 3.6(a)
by syntax-d!rected method,

T TR




- - T e w et e s T MY - K
+ M . = . .
.
58
Fig. 3.6(a)
s e, n s
STATE OF o AL b uRNA Ay ™ A .
MESHESINTED BY Tne SMt e b e oma P
LR TON OF PUBLR WOMRS e i it ea s d N
— T -t e - .o TR
. A v R s ‘ 0
D N P : i e

- . N (e rey v
© Pres

TOLFNAX ‘)

RS o A e

WA ) 00

.y I\
' L e tine e e e —— s Lomd ..
=1 - s wm wm em vn WA wm e 3
el Y- P . h
o [ - & s
e ear o et e Sv————
m-vo\:num N'(l'
9140 0wy aerment s
Py
IMM'-N““Q*\“.W.’“
o e e a7 4 S § ot
T T e s
ol bl deadnadus) AP R e maTE LRI i
o s e e o b paaa v st 48 HONOBAL ..,.m RS A OO BAIT 08 WA TON O L 82 N i |
PRert it poyiiipraseurargisrepater vl |

Figure 3.6{(c). Topographic map of the same area of Figure 3.6 (a).

BRI a1 st s




Figure 3.7(a). Satellite image of Lafayette area, Indlana
(192 x 192 pixels).




Figure 3.7(b).
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River recognition result from Figure 3,7(a) by
syntax-directed method.
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3.1.4. Computer Experimental Results on Recognition of Bridges and Com-

mercial/lIndustrial Area from Satellite Images

(1) Bridge Recognition

Figure 3.8(a) is a topographic map of the lower part of Figure 3.3
(a); Indianapolis, Indiana. It shows in the left part of the map, that
there is a bridge over Eagle Creek Reservoir. The bridge recognition
result by the syntactic object recognition method given in Figure 3.8(b)
shows that the bridge was successfully recognized and that the length was
calculated to be 672 meters. In the left lower part of Figure 3.8(a) the
scale of the map is provided. The length shown in the map is about the
same as that found by the syntactic method. The coordinates of the
bridge can also be located by this method.

Another experiment was conducted in the Lafayette area pertaining
to bridge recognition. Referring back to Figure 3.7(c), it can be seen
that there is a bridge on Highway 1-65 over the Wabash River. The
LANDSAT image shown in Figure 3.9(a) processed by the syntax-directed
method for bridge recognition and the result is shown in Figure 3.9(b).
The recognized bridge is in the right lower part of the figure. Its
length was calculated to be 454.1 meters. fhe coordinates of the loca-
tion of the bridge are also given in Figure 3.9(b).

(2) Commercial/lndustrial Area Recognition

Experiments were conducted in several different areas. Figure 3.10
(a) is a LANDSAT image (96 x 96 pixels) taken on September 30, 1972 of a
section within the northwestern part of the Indianapolis area, which is
a little south of the image in Figure 3.3(a). Figure 3.10(b) is the
topographic map of the area. This map was made by the Department of

Natural Resources of the state of Indiana in 1967. In Figure 3.10(c) the
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intermediate output after preprocessing Is given. Figure 3.10(d) is the
highway recognition result. The intermediate output after the "Exclusive
OR" operation in postprocessing is given in Figure 3.10(e). Figure 3.10
(f) is the commercial/industrial area recognition rosult. Thfé:Qrga is’
identified as the Lafayette Square Shop, s> Center in Indianapolis. Figure
3.10(g) is the urban development information extraction result. H, R,

and C in Figure 3.10(g) represent highway, river, and commercial/
industrial pixels, respectively. Interstate highway 65 (upper right part)
goes into the city from the northwest. Highway 465 (from north to south)
surrounds the city and highway 74 (left fower part) goes into the city
from the west. The Lafayette Square Shopping Center is located in the
suburb and close to the highways. The commercial/industrial area is
automatically calculated to be 57.75 square kilometers. The center of

the commercial/industrial area is calculated to be in coordinate (66,62)
of the 96 x 96 image frame. This information was also automatically ex-
tracted by the method,

Comparing Figure 3.10(4) with the topographic map Figure 3.10(b) of
1967, we can observe the growth of the commercial area clearly on the
northern and eastern parts of the shopping center. This indicates that
the proposed method could be useful in topographic map making and up-
dating.

Several large images (192 x 192 pixels) were also processed by the
same technique. Figure 3.11(a) is the commercial/industrial area recog-
nition result from the image of Lafayette, Indiana (compare Figure 3.7
(a)). Figure 3.11(b) is the urban development information extraction
result. The recognized commercial/industrial areas in Figure 3.11(a) are

marked on the Lafayette map Figure 3.7(c). The comercial/industrial
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Figure 3.9(a). Savellite image of Lafayette area, Indiana.
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Figure 3.10(a).

Satellite image of northwest part of Indianapolis,
Indiana area (96 x 96 pixels).
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Figure 3.10(b). Topograynic map of same area as Figure 3.10(a).
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\
areas of the Anheuser-Busch corn refining plant, the Mational Homes Com-

pany, the Alcoa Aluminum Plant, the Vlest Lafayette Village and Levee
shcpping areas, the Woolco Shopping Center, and the Lafayette downtown

area are successfully recognized.

3.2, SYNTAX-CONTROLLED METHOD FOR ORJECT RECOGHITION .

The syntax-controlled method is a method which utilizes an automaton
(or a parser) as a recognizer (or a syntax analyzer) to recognize the
patterns of interest. The syntax~controlled method for image recognition
differs from the syntax-directed method in the grammatical inference pro-
cedure and the syntactic analysis. The grammatical inference procedure
for the syntax-controlled method is a fully computer automated finite-
state grammar inference procedure whereas for the syntax-direct¢ method,
the grammatical inference procedure is an interactive process. . n ./n~
tactic analyzer for the syntax-controlled method is a determini.*’?
finite-state automaton which will be described in section 3.2.2., whereas
for the syntax-directed method, the syntactic analys is a template-

matching process.

3.2.1. Grammatical Inference Procedure

in order to describe a class of patterns precisely, grammatical
rules are inferred from a set of sam, le patterns. A k-tail method [20]
which will be described in this section was implemented in this study.
The grammatical ,ules which describe a class of patterns are automatical-
ly inferred from a set of training sample patterns by the computer pro-
gram of the k-tail nethod. Before describing this technique, some

definitions need to be given [20,110].




Definition 1.

Definition 2.

Definition 3.

pefinition h.

Definition 5.
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The formal derivative of a set of strings, A, with
respect to the symbol a € VT is defined as DaA =
{x]ax € A}.

If A1y Byy oo a .y a,isa string then, Da]az,
ees @ 43 A= Dan(Dal, 3y eees 24 A).

ota
~

Let u = a;, ay, ..., ar-e VT and let A C L(G).
The k-tail of A with respect to u is defined
as (u, A, K) = {x|x€ DA, Ix} < K} where |x|
is the length of the string.

Let u, and uj be two distinct states of the
canonical derivative finite-state grammar GcD'
These two states are assaciated with the
derivatives DxiSt and ijSt reipective!y vhere

X, and Xj are sequences from V;. The tvo
states u; and u, are said to be k-tail
equivalent if, and only if, g(xi,St,K) =

g(xj,St,K).

A non-deterministic finite-state automaton is a

5-tuple M = (Q, I, 9, qg» F), where

(1) Q is a finite set of states;

(2) £ is a finite set of permissible input symbois;

(3) & is a mapping function from Q x X to p(Q)
which dictates the behavior of the finite-
state control, (8§ is sometimes called the

state trasition function);

k) q, inQ is the initial state of the finite-

state control; and

(5) FCQ is the set of fir states.

The inference procedure for the grammar which describes the highway

and river structures is a k-tail method. The algorithm for this method

is as follows:

s
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Algorithm of k-tail grammatical inference procedure for finite-state string

grammar.
input: Training sample patterns.
Output: Finite-state string grammatical rules.
Algorithm:
(i) Input training sample patterns and encode as the string of
prinitives a, b, ., d, e, f, g, and h.

(i1) Find first order derivatives of the set of all strings A
with respe-t to the primitive set a, b, ¢, d, e, f, g, and
ho (e.g., = = DA = {x|ax € A}, uy = DA, u, = DA, uy =
DCA, uy = DdA: uS = DeA’ ug = DfA. u7 = DgA, and ug = DhA'

(ii1) Find second order derivatives of the set of ail strings A
with respect to the primitlive set. (e.g., u9 = DaaA = Da
(DaA) = {x|aa: € A}.
u9 = DaaA, Yo = DabA’ Uy = DacA’ cesesy Uy = DahA'
Uyg = Dyos Uyg = Duphy uig = Dy Ay weey Uy = DA,
Y5 = DcaA’ Y26 = chA’ Y27 = DccA’ =ees U3y T DchA’
u33 = DdaA’ u3h = DdbA’ u35 = Dch' cees Uy = DdhA’
Uy = DeaA’ g = DehA’ u"3 = DecA, sees Upg DehA’
Uyg = Dehs gy = Dpphs Ugy = Dpchs wees uge = D
u57 = DgaA’ u58 = ngA, u59 = DgcA’ ey u6h = DghA’
Ugs = Dhal Yge = PP gy = Dpchs +=os gy = DA
(iv) Find third order derivatives of the set of all strings A,

with respect to the prinitive set a, b, ¢, d, ». f, g, and
h, (e.q., Uy = DA = D, (p_(0A)) = {x]|aabx € Al).

u73 = DaaaA’ u7l* = DaabA’ csbunry uao = D;]ahA’

e AR b 11 1 e 2




(v)

(vi)

(x)

ugy = Dapals Hgg = Doppfts «vees Ugg = D ppRs
Usgg = hgalr Useg T Dhapfseces Ugys = Doy

Find nth order derivatives of the set of all strings A,
with respect to the primitive set (N is the maximum Yength
of string).

Find canonical derivative finite-state grammar.

Sep = W Vo
VT is the primitive set, Vp = {a, b, ¢, d, e, f, g, h}

V., R, o)

Vy = {u‘, Uys Ugy eoes uSSh}
o = {u], Ups ooy u8}

The rule, R, is defined as follows: let Usy uj € VN

u; > a uj if, and only if, Daui = uj

u. + a if, and only if, X € Daui

(e.g., uni = g produces the grammatical rule u, » a u

i 9’

and Dbulo = u82 produces the grammatical rule Uio -+ bu82).

Find equivalence classes of states. Find the length of all
the u. where i =1 to 584,

Find 1-tail equivalence classes. If [ui[ > 1 and [uj[ > 1,

then u, = u,.
! J

Find 2-tail equivalence classes. If [uil >2and [yl > 2,
-en u, = uj. If Iuii < 2, then u, has no equiralence

classes.

Find (n-1)-cail equivalence classes. If [ui[ > (8-1) and

|uj| > (11-1), then uj = e If l“;l < (1-1) then u, has no

equivalence classes.

N 5 A E A
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(x1)

C.

(xif)

(xitr)

Find the derived grammar, G, = (V", Vo, P, S), from the
canonical derivative grammar, GCD’ and the minimized state

state set, u,, by the equivalence classes.

I’

The terminal set, VT’ is the same for G, and G._ .

D %)}
The non-terminal set, VN’ corresponds to the distinct

blocks of a partition of V, by the equivalence classes.

NC
S is the starting symbol ond corresponds to the block

which contains ¢.

A grammatical rule of P is Bi + aBj if, and only if, there

exists u,, u, € V. such that u, - a u,, u. € B., u. € B..
i J t J i t 3 3

N

A grammatical rule of P is Bi +a If, and only if, there

exists ui £ VH such that u, - a and u, €8

i i’

Find the derived grammars, G., based on the partitions of

D’
1-tail equivalence, 2-tail equivalence, and (N-1) tail

equivalence.

The obtained derived grammars, GD’ are the resultant finite-
state string grammatical rules corresponding to the different

values of k in the k-tail method.

This algorithm was implemented and applied to infer the highway

grammar,

Sample patterns are shown in Appendix E. The canonical deri-

vative finite-state grammatical rules are inferred as the intermediate

output of the finite-strate string grammar.

The canonical derivative

grammatical rules are as follows.

u3+c u27 u3+c u27 u3+c u27 u3+c u,g
u3+c u27 uh+c "36 uh+c u35 uh+d u36
uh+d u36 uk+c u35 uh+d u36 uh»d u36
u5+e u"5 u6+f ush uer9 u55 u6+f uSh

£ 2y A B A 7
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Y277¢ Y219 Uyg7C Q7% Mg Uy e
Uppd Ygzo  UYpa7d U277 U220 Uy,
b 374 Uyog  Uagg™Y U357€ Ua83  Upg3C
u36+d Usgy “292+d u36+c U)oy uzsl*c
u36+d Usgy u292+d Ugg?C Uyg u29]>c
u36+e u293 u293*9 uh5¢e u365 u365ﬁe
7T Yyzg “h3g”" “s479 Y5y Yi3979
Ug>f Uy Ui3g’ “si79 Y39 Yh3e”9
u5h+e uh37 U377 Uss™@ Upyy Uhh749
LI TY B Y A Ugof Ugpy  Uggpf
Ug379 Ugyy U519 Ue5>f Usig  U5pp”F
ues”f U510 Us107" U357 Y83 Y2837¢

After finding the equivalence classes of states Uiy the resultant
finite-state string grammar for highways is inferred automatically by

computer. The resultant grammar is as follows (when &k = 1 in the k-tail

method) :
=i = W Ve Py 9)
v, =15, A B0, E)
Vv = {a, b, C, d) 2y f: g, h}

P: S¢S S+dS S-e$S

S>FS $+gS S+cA

o), Wb bl it

iﬁa":‘ wmﬁmmw«ﬁmuuum sS4

———— e i e
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S-+dA S-»dB S—eC
S+fD S+gD S+fE
S-+gE A-c A+d
B-d Cre D>f
D>g E->f E»g

The finite-state string grammar for highways when k=2 in the k-tail

method is also inferred as follows:

Gz = s Vg P, 9)
v, = {s, A, B,C,D, E, F, G, H, 1, J, K, L, ¥, N}
VT = {a, b, c, d, e, f, g, h}

P:  SocA S+dB S~dD
S->cC S-»ef S+fF
S-+gG S=gl S+fH
A+cd AdJ B+dK
C+cd D->dJ D>cd
Drel Erel F>fM

FgM Frel G>ght

H>FN I-+gN I
dc Jod K+d
Lse Maf Mg
i f g

An excellent aspect of the k-tail method lies in the fact that the
value of k can vary depending on the case. The grammar inferred by k=2
is more precise than the grammar inferred by k=l in describing the high-
way structures. However, the computer processing time of grammatical

. % inference -for k=2 is ionger than the time of grammatical inference for
k=1. The CPU t}mq for grammatical inference of k=1 is 9 sccands. The

CPU time for grammatical inference of k=2 is 15 seconds on the IBM 360/

s P | ARG g (17 o i
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67 computer., The grammatical inference procedure of k=3 was also imple-
mented. The CPU time is 270% of that for k=1. Thus, the case of k=3 is
not suggested for highway grammar inference. Concerning the choice between
k=1 and k=2 for the highway grammar inference, several computer experi-
ments of highway recognition by these two sets of grammars were conducted.
The experiments and the suggested choice of k values will be presented

in the next section.

3.2.2, Syntax-Controlled Analysis

The syntax-controlled method consists of two levels, namely, a
transformation process and the syntax-controlled analysis. 7he trans-
formation process of the syntax-controlled method is the same as that
for the syntax-directed method given in section 3.1.2. The syntax-
controlled analysic uses a deterministic finite-state automaton as a
recognizer to analyze the transformed image. Instead of comparing the
operation window G(M,N) with the set of template windows as in section
3.1.2, the window G(M,N) is analyzed by the finite-state automaton. The
algorithm is as follows:

Algorithm of highway recognition by syntax-controlled method.

tnput: LANDSAT images.
Qutput: Highway recognition result by syntax-controlled method.
Algorithm:

(i) Transformation Process: same as for syntax-directed method

as in section 3.1,2.

) (ii) Finite~state Automaton Analysis: computer automatically
constructs the finite-state automaton from the inferred
grammar, §

(i11) Construct the finite-state automaton H = {Z, Q, &, 9 F).
from the finite state grammar G = (VN’ Ve Py S) as follows [2]:

f’ 'wwm,
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(iv)

(v)
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a. I = VT s
b. Q= Vi U {7}
C. g, = s

d. If P contains the production S+A, then F = {S,T}.
Otherwise F = {T}.

e. |f Bra, B€ V", a€ VT is in P of grarmar G, then
6(B,a) =T.

f. If B~aC is in P of grammar G and C € VN’ a € V., then
§(B,a) = C and §(T,a) = @ for each a € V-
Construct the deterministic finite automaton M” from the

finite state automaton M as follows [2]:
M- = (%, Q°, 67, qo" F7) (0= (g, 0, §, 9> F))

a. The states (elements of Q) of M~ are all the subsets of
0.

“

b I =1
c. F” is the set of all states in }° containing a state of F.

d. qo' = [qol, a state of M* is denoted by [ql’ Ggs vee: qi]
€ Q° where Gy> Qg ++» G; € Q.

e. 6‘({q], ceny qi},a) = {Pl, PZ’ cess le if, and only if,

i
6({‘]]9 ey qi]’a) = Uk=

l 5(qk,a) = {P!’ Pz, sney Pj}.
Set G(M,li) to be an operztion window {8 x 8) and load the
array of the transformed image frcem Step (1}. &(M,N) equals

0(1,J) where 3 =1, 8; and | = 1, 8 for the first case.

Encode the patterns of the G(M,N) window into ibe string of

the primitives at, b~s, c», d\, e+, fr, g+, and h™ |

Send the string to the deterninistic finite-state automaton
H*, If the automaton accepts the string, then this pattern
is accepted. Therefore, proceed to the next step, otherwise

this pattern Is rejected., Proceed to the next step.




(viii)

(ix)

(x)
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Shift one column to the right of Q(1,J) in step (iti). Then

gc to step (v) and continue until reaching the rightmost
column.

Shift one row downward in step (v); go to step (v) until
reaching the last row of the digitized image. Syrtactically
correct strucfures are recognized and stored in the resultant
memory array R(l,J).

Output the result, R(1,J), which is the result of highway
recognition by the syntax-controlled methad.

For the highway grammar (k=1), the finite-state automaton is auto-

matically constructed by computer as follows:

Finite-state automaton for highway recognition MI = (£, Q, &, 99 F)

£={a,b,c,d, e, f, g, h}
Q =V, U {7}
9, = S

F= {T}

8: 68(S,c) =5
6(S,d}) =S
6(S,e) =S
8(s,f) =S
8(S,g) = 5§
5(S,c) = A
8(s,d) = A
§(s,d) =8
5(S,e) =¢C
5(s,f) =D
§(S,q) =D
§(s,f) = E

© 4 g o <2




of the grammar, k=1, is as follows:

Oﬁ

6(S,g) = F
6(A,c) =T
§(B,d) =T
§(A,d) =T
é(C,e) =T
6(D,f) =T
§(D,g) =T
S(E,f) =T
§(E,g) = T
6(T,a) = ¢
6(T,b) = ¢
§(T,c) = ¢
6(T,d) = ¢
§(T,e) = ¢
6(T,f) = ¢
6(T,9) = ¢
§(T,k) = ¢
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The corresponding deterministic finite-state automaton for the case

=(z
T

Q)

FJ

6'

i

1

!

Q, 6, q,, F)).

£={a’ b’ C’ d, e’ f’ g’ h}

H ;o (X', Q', 6’, qo" F')

v, U {T,¢]U {Is,Al,[s,A,8l,[s,c], [s,D,E], [S,A,T], [S,A,8,T],

[s,c,T1, IS,D,E,T1}

[s]

{T,[S,A,T], [S,A,B,T], [S,C,T], [S)D’E’T}}

: 6([s],c)

§([s],d)

il

]

{s,Al

[s,A,B]

5([S,c],g) = [S’D:E}

5([{s,n,E),c) = [s,Al




§([s],e) = [s,cC]

§([s],f) = Is,D,E]
8§([sl,q) = [s,D,E]
§({Al,c) = [T]
§([A],d) = [T]
§([el,d) = [T]
§([cl,e) = [7]
§([p],f) = [T]
§([pl,g) = [T]
§([E1,F) = [T]
6([E],g) = [T]
§(IT],c) = [¢]
§(I71,d) = [¢]
§([T1,e) = [o]
§([11,£) = [¢]
§(I11,9) = [g]

§([s,A),c) = [S,A,T]

6([s,nl,d) = [S,A,B,T]

6([s,Al,e) = [s,C]

6{([s,Al,f) = [s,0,E]
§(Is,Al,q) = [5,0,E]
s([s,A,Bl,c) = [S,A,T]
6([s,A,B],d) = [S,A,B,T]
§([s,A,Bl,e) = [s,C]
5([s,A,B],f) = [S,D,E]
6([s,A,B},q) = [S,D,E]

6([s,n,E],d) =
§([s,D,El,e) =
§([s,p,E]1,f) =
§([s,p,E],q)

6([s,A,Tl,c)

il

6([s,A,T1,d)

8([s,A,T],e)

§([s,A,T1,F)

il

6([s,A,T1,9) =
§([s,A,B,T1,c)
§([s,A,B,T],d)
&§([s,A,B,T],e)
6([s,A,B,T1,f)
§([s,A,B,71,9)
§([s,c,Tl,c) =
§([s,c,T1,d) =
§([s,c,T],e) =
8([s,c,71,f) =
8([s,c,Tl,q) =
§([s,0,E,T],c)
6([s,n,E,T],d)
8([s,p,E,T1,e)
§(ls,n,E,T1,f)
§([s,D,E,T],q)
§([T11,2) = [¢]
§(I11,b) = [4]

[s,A,B]
[s,c]
[s,0,E,T]
[s,0,E,T]
[s,A,T]
[s,A,B]
[s,cl
{s,D,E]
[s,D,El]

= [S,A,T]

[s,A,B,T]

fs,cl]

{s,p,El]

[s,D,E]

[s,A]

{s,A,B}
[s,c,T}
{s,b,E]
{s,0,E]
= [s,Al

[s,A,B]

= [s,C]
= [s,0,E,T]

= [s,D,E,T]

I i, s o 0>
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5([5,C},C) = [S’A} 6([T})h) = [¢]
§([s,cl,d) = [s,A,B] &8([s,c1,f) = [s,p,E]
- 6([59(:]78) = [S’C’T]

The finite-state automaton for highway recognition based on the in-

ferred grammar (k=2) is as follows: H2= (z, q, &, qy F).

t=1{a, b, c, d, e, f, g, h}
Q= VN U {1}

q()= S
F={T}

§ = 6(S,c) =A

8(s,d) =B
§(s.d) =D
§(S,c) =¢C
8(s,e) = E
8(S,f) = F
§(S,q9) =6
§(S,9) = J
§(s,f) =H
8{A,c) = J
5(A,d) = J
6(B,d) =K
6(C,c) =J
§(p,d) =J
§(D,c) =4
é(D,e) =L

1
-

5(C,e) =




The corresponding deterninistic finite-state automaton, W°, of the

above finite~state automaten from the inferred grarmar, (k=2), is as

fol lows:

§(F,f) = M
§(F,g) =M
§(F,e) = L
5(G,g) = M
8(H,f) =N
8(l,g) =N
§(1,F) =M
6(d,c) =T
§(J,d) =T
§(K,d) =T
s(L,e) =T
§(M,F) =T
§{M,g) =T
S(H,f) =T
6(i,g) =T
5(T,a) = ¢
6(T,b) = ¢
6(T,c) = ¢
§(T,d) = ¢
§(T,e) = ¢
8(T1,f) = ¢
6(T,g) = ¢
6(T,h) = ¢

"2’ = (X‘, Q’r 5‘, qo" F’) (HZ = (X, Q’ 6’ qO’ F)).
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L= {a’ b, ¢, d, e, fr G, h}

9

v, U {T,0}U {[a,cl,18,01,[F,n1,I6,11,[K, 41, [M,N]}

[s]

= [T]
: 6([s],c)

1

§(fs],d)
§([s1,e)
e([s1,f)

“(st.g)

!

1

]

“{f1,c) =

]

3(iAl,d)
§([B],d)
s(fcl,c)
§([pl,c) =
§([pl,d) =
§([pl,e)
8([E],e)
§([Fl,e)
§{IF1,f)
6([F],q) =
s(lel,g)
s ([H],f)
s([1],f)
§([1],9)
§([4],¢)
6([4],d) =

]

i3

i

i

i

|

%

|}

i}

U

u

[A,C]

(8,0] -

[E]
[F,H]
(6, 1]
(41
[J]
[K]
[J]
[J]
vl
(L]
(L]
[L]
tnl
(Ml
[M]
[n]
(1]
[Nl
[t
(7]

L

§([nl,g)
§{[n1,f}
§([N],q)
§([11,a)
§([1],b) =
§([Tl,¢)
§([11,d)
§([Tl,e) =
§([71,f) =
8([:1,0) =
6§([A,Cl,c)
§([A,c1,d)
§([8,p1,c)
s(I8,0],d)
§([8,D],e)
§ ([F,H1,e)
§([F,n},f)
& ([F,nl,0)
é(ic,11,f)
6([6,1],9)
8 ([K,d1,¢c)
8(IK,J1,d)

]

i

i

[l

[t]

[T]

[¢]

(]

[¢]

[¢]

[¢]

[3]

(9]

= [J]
= [J]
= [J]
= [K,J]
= [L]
= L]
= [M,N]
= [K]
= [n}
[M,N]
(7]
i1}

H

]

oA A o o | an
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6 ( [K] od) = [T] 6( [":N] ’f) = [T]
6([‘-]’3) = [T] 5([":"],9) = {T]
§([M1,7) = [T] §([71,h) = {¢]

The algorithm of highway recognition by the syntax-~controlled method was
implemented and the experiments were performed by the deterministic finite=
state automata M]’ and MZ’. A+ tllustrative example is given here to
describe the operations of t.is algoritim.

Example: An image window from a LANDSAT image (visible bands) is process-

ed by the transformatior nrocess and the trancformed window is shown as:

The window pattern is eacoded as the string dddd. The finite-state
automaton, Mz’, works as follows: the input string is analyzed from the
starting symbol [S]. The transition rule §([S]l,d) = [B,D] is chosen by
scanning the present <tates and inputs of all the transition rules of
MZ‘. Then a searching of the state [B,D] is performed on the present
state of the transition rules of %;”. The transition rule é([B,D],d) =
COIK, 41 s iocated and this ruie leads to the next state [K,J]. Thereafter,
the rule §{[X,d41.d) = [T] is applied to obtain the next state [T] and the
partial part (ddd) of the string (dddd) is recoynized. The rule §({T],d)
= [4] is successfully found in the set of transition rules of Mz’. Thus,
the string dddd is accepted by this automaton. The window pattera is
recognized, The pattern Is a highway which lies from northwest to south-

east. The recognized pattern is:

i %’%‘%ﬁmﬁhwrmwiu AT v w20y
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H

H

The experiments of highway recognition by the automaton Hl' and MZ'
were conducted on the same set of images. The experimental results from
the automaton, Hz’, are more accurate than those of H}’ but the CPU time
is slightly longer than that of the automaton, Hl'. Since the grammar
inferred by k=2 describes patterns more precisely than the grammar infer-
red by k=1, the slight difference in CPU time between these two automata,
ﬂ]' and Mz' is acceptable. For example, the CPU time for automatan, M“
on highway recognition of a 96 x 96 LANDSAT image is 20 seconds on the
IBM 360/67 computer., The automaton, Mz’, analyzing the same image takes
21 seconds on the same computer, Thus, the grammar, k=2, is suggested
as the better highway grammar. The grammars of the cases k=3 and k=4
are not suggested, because of the increase in computer processing time

to infer these grammars and the increase in CPU time for the image recog-

nition by the automata, M~ and Mk'.

3

3.2.3. Experimental Results on Highway and River Recognition from LANDSAT

Images
The computer experiments cn highways and rivers were conducted in
different areas. The highway recognition by the syntax-controlled method
on the image (Figure 3.3(a)) is given in Figure 3.12., The area of Figure
3.12 is the same as that marked on Figure 3.3(d). The computer result

shows that highways (-65 and 1-465 were successfully recognized. The

AU b S 34 o |
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Figure 3,12. Highway recogr.ition result by ihe syntax-
controlled method on Figure 3.3(a).
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River recognition result by syntax-
controlled method on Figure 3.3(a}.
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Flgure 3.15(a). Satellite image of downstown
Indianapolis, Indiana.
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image is 96 x 95 in size. The CPU time for highway recognition by the
syntax-directed method on the same image took 27 seconds compared with
thg 21 seconds here. The river recognition was performed on the same
image shown in Figure 3.3(a). The results of river recognition by this
syntax~controlled method is shown in Figure 3.13. The CPU processing

time for this method is 12 seconds by the automaton M,” (k=2 case) on the

2

96 x 96 image compared with 20 seconds for the syntax~-directed method.
3.2.4. Experimental Results on Bridge and Commercial/industrial Area
Recognition from LANDSAT Images

Figure 3.1% shows the bridge reccgnition result by the syntax-
controlled method. The recognizer is automaton Mz’ (k=2 case). The
length is automatically calculated as 672 meters which §s the same re-
sult as that obtained by the syntax-directed method. The CPU time for
bridge recognition by the syntax-controlled method is 39 seconds, whereas
the syntax-directed method requires a longer CPU time, 42 seconds. The
commercial/industrial area recognition was performed by the syntax~
controlled method on an image of the downtown area of Indianapolis,
Indiana, Figure 3.15(a). The result is shown in Figure 3.15(b). The
size and center of the downtown area wviere automatically calculated from
the 96 x 96 image frame. The computer processing time of the syntax-
controlled method for this experiment was 43 seccnds. The downtown map
of Indianapolisis provided in Figure 3.15(d). The urban development

information extraction is shown in Figure 3.15{c).

3.3. COMPARISON OF THE SYNTAX-DIRECTED AND SYNTAX-CONTROLLED METHODS

As has been stated earlier, the syntax-directed and syntax-controlled

methods were implemented and experiments on highway, river, bridge, and
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commercial/industrial area recognition were conducted on the IBM 360/67
computer in the Laboratory of Applications for Remote Sensing (LARS).

The LOGICAL programming technique was used in both methods. Comparative
studies were also carried out without LOGICAL programming. The one using
logical programming saved 307 of the CPU time used by the other. Con-
cerning computer memory sapce, there is another advantage to LOGICAL
programming in that every pixel of the transformed image takes only one
byte for storage. (Usually each pixel takes 4 bytes for storage of in-
teger). Therefore, it was found irn this experiment that the use of LOGICAL
programming saved approximately 75% of the memory space required by the
program requiring four bytes per pixel.

As stated above the CPU time for the syntax-directed method for high-
way recognition from a 96 x 96 image takes approximately 27 seconds. The
CPU time for the syntax-directed method for river, birdge, and commercial/
industrial area recognition from 96 x 96 images takes 20, 42, and 46
seconds, respectively. The syntax-controlled method was implemented by
the same programming techniques as those used for the syntax-directed
method. The CPU time for this second method for highway, river, bridge,
and commercial/industrial area recognition from the 96 x 96 image were
20, 12, 38, and 41 seconds, respectively (for an automaton corresponding
tc a grammar by the k=1 inference procedure). For an automaton corres-
ponding to the grammar by the k=2 inference procedure, the CPU time for
highway, river, bridge, and commercial/industrial area recognition of
the same images were 21, 12, 33 and 43 seconds, respectively. The com-
parative performances of the syntax-directed and syntax-controlled
methods are listed in Table 3.1. It can be seen that the syntax-controlled

method processes the same image for all the tasks faster than the syntax-
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Table 3.

. CFUY time performance comparison of syntax-
directed and syntax-controiled methods.

Task Cormercial/
- Highway River Bridge Industrial
Me thod
Syntax-Directe# 27 sec. 20 sec. h2 cec. k6 cec.
Syntax- 20 sec. 12 sec. 38 sec. hl sec.
Controlied
k=1
Syntax- 21 sec. 12 sec. 39 sec. 43 sec.
Controlled
k=2
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directed method. As for the accuracy, the syntax directed and syntax-
controlled methods have the same level of high accuracy in the experi-
ments.

In general, the syntax-directed methods, commonly known as the
template-matching method, has the advantage of faster software development
time because the implementation is less complicated than for the syntax-
controlled method., However, the disadvantage of the syntax-directed
method is that the recognition depends on a set of limited template
patterns. Once the pattern does not match correctly with one of the
templates, then the pattern is rejected. The only way to increase the
recognition capability is by adding more templates in the set of tem~
plate windows. These added templates increase the need for computer
storage and the CPU time for each matching operation. The syntax-
controlled method has the advantage of fast ccmputer processing time for
progran execution cnce the more complicated programming is completed
which means a saving of CPU time in processing the image every time
compared with that of the syntax-directed method. Another advantage of
the syntax-controlled method of finite-state string grammar is that the
gramatical inference can be fully computer automated. Thus, the
grammar is more realistic and precise in describing the patterns than
is the gramnar for syntax-directed method. The CPU time for the gram-
matical inference of a highway grammar is 9 seconds for the case of
k=1 and 15 seconds for the case of k=2 in the k~tail inference method
of the syntax-controlled method, as compared vith the gramnatical in-
ference procedure for the syntax-directed method in which, because the

procedure is an interactive process, the CPU time is about 60 seconds.
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In conclusion, the syntax-controlled method for highway, river,

bridge, and commercial/industrial area recognition from LANDSAT images is
an ‘effective technique for image recognition. The results from such
applications can contribute to urban development planning, and to mili-

tary reconnaissance.
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CHAPTER 4

IMAGE SEGHENTATION USING A TREE GRANMAR APPFROACH
The svntactic method for irage secmentation was developed by a tree

grammar apprcach. The reasons that a tree grammar approach is proposed

for imege segmentation are; first, tree languages are very descriptive

and second, the trse grammar analysiz offnrs a natural high-dimensional

generalizaticn of strings. Since the boundary patterns of an image are
usually two dimensional and tree grammar is more converient for describing
high-dimensional ohjects than a string arammar, the tree grammar is used
to describe the boundaries of the homogeneéas segments of an image. In
addition, the high recognitioncapabllity of tree automaton, corresponding
to the tree grammar, and the hierarchical nature of scenes rake the tree
grammar approach very attractive for image segmentation.

A syntactic approach to image segmentation was investigated which
fnvolves two levels of processing. The first level, referred to as pre-
processing and prinitive extraction, consists of two steps (1) texture
region prinitive extraction, and (2) boundary primitive extraction. The
second level, which is the syntactic analysis, requires tree grammar
inference to describe the boundaries of hcnogeneous regions. A block
diagran of the system for image scgrmentation is shown in Figure h.1.

The procass of tree grammar analysis utilizes the corresponding tree
autonaton from the inferred tree grammar to process the primitive extract-

ed Image. Then this image 1s segmented.
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L, 1 SYNTACTIC IMAGE SEGMENTATION ALGORITHM (SISA)

Several approaches to the use of texture information in image

analysis have recently been developed [72,73].

have ¢. erally been applied to terrain classification following segmen-

tation and not to the segmentation problem itself. In our'approach to

image segmentation, the texture information and boundary structures are

analyzed to obtain the Image seqgmentation result. The input to the

system is the digitized image. The texture region primitive extraction

performs the texture analysis and extracts the texture region primitive.
Then, the boundary primitive extraction extracts the boundary primitives

from the result of the texture region primitive extraction. The result

from the boundary primitive extraction is then modeled by the tree
grammar which is inferred by the tree grammar's grammatical inference

procedure. Each part of the image segmentation system is discussed in

detail beiow.
.1.1 Inference of Tree Grammars

The concept of tree grammar analysis is herein described by defining

and studying tree gramwars and trec automata [2],

A pattern grammar G is a four tuple G = (VN, Vo P S} where
V” is a set of non-terminals or subpatterns.
VT is a set of terminals or pattern prinitives.

Se V" is the start symbol, and

P is a set of syntax rules or productions in the form of a -+ f.

- & I3 i u E

ac (VU V) vy (v, U VL), pely, U V)

V' is the set of all possible sequences of symbols in V including
the enpty sequence A.

However, these techniques

A NG R
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By applying productions in P successively, starting from S, the
strings or sentences of terminals generated by the production in P are
©
the language g nerated by the grammar G, L(G).
I

Definition 2:

Let N+ be the set of strictly positive integers. S

Let U be the universa! tree domain (the free semigroup with identity
+
element '"(0" generated by N and a binary operation *'-%') [2,95].

Definitica 3:

A ranked alphabet is a pair <Z,r> where £ is a finite set of symtols

+
and y: T > N=N U{0}. For aer, r{a) is called the rank of a.

Definition L:

A tree over I (i.e., over <I,r>) is a function a : D + ¥ such that
D Is a tree domain and rfa(a)] = max{ila * i ¢ D}. The domain of a
tree, a, is denoted by D(a). Let T, be the set of all trees over I.

Definition 5:

Let a be a tree and a be a member of D(a), ala, a subtree of a at a
is defined as ala = {(b,x)]|(a*b,x) e al}.

Definitlon &:

A regular tree grammar Gt over <VT,r> is a grammar ct=(v, v, P, S)
satisfying the following conditions:
(1) <v,r*> is a finite ranked alphabet such that Ve € V and r'[VT =

r, VT and V - VT = VN are the same as in Definition 1.
(i1) P is a finite set of productions of the form ¢ > ¢ where
¢,¥ E Tv (Tv is a set of trees over <V,r*>).

(i11) S is a finite subset of TV.

Iy ‘WMWWMNMIWWWWWAMhmeW s
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.Definition 7

A tree gramnar G, = (v, r, P, S) is expansive if and only if each

~ production in P is of the form

X -»
[}

/ N ‘ '

l LR X r

e‘ adlv\ oo =\- ad -. i '
where x . an RSP » X € VN( v VT) are non-terminal symbols
Theorem 1: For each regular tree grammar, Gt’ one can effectively con-
struct an equivalent expansive grarmar Gt', that is, L(Gt') =

Lic,) [2].

Definition §

A tree automaton over I is a (k+2)-tuple
= (Q, f]’ see,y f Y F)

where (1) Q is a finite set of states; (ii) for each i, 1 <
rlo,) (o ¥
fi is a relation on Q x Q, o,e L, that is f' :Q T+

o <k’

“e

and (iii) F =Q is a set of final states.

Definition 9

The response relation P of a tree automaton "t is defined as (i) if
oe L, p(o) = X (X belongs to final state set F of the tree auto-
maton) if and only if f0 = X, that is, p(o) = fo; (it) ifoe L,

n >0, plo, Xyr sees Xn_‘) = X (Xo, -=-s X__} @re non-terminals).
if and only if there exists Xo, ceny Xé_‘ such that fo (Xo, cees

Xn"l) = Xe

pDefinition 10

T(Ht) = {a ¢ T, | there exists X € F such that p(a) = X} is called

the set of trees accepted by "t'




1

Theorem 2: For every regular tree grarmar, Gt’ one can effectively con- |

struct a tree automaton Ht;'such that T(Nt) = L(Gt) [21.

s
The construction procedure is summarized as follows:

(i) Obtain an expansive tree grammar 6, = (v, r, P°, S) for
the given regular tree grammar Gt = (v, r, P, S) over

alphabet VT.

(i) The equivalent (nondeterministic) tree autonaton is
M, = (Q, fls wees £, F) where @ = B Xy eess X 32F

fx(X], coss Xn) = Xo if Xo + x Xl, eees X is inP”, x ¢ VT’

Xp» eees X €0, and fx(xx) =X if X >xisinP’. xc¢ Vos

Xy» +ees X €:Q, F is the set of final state. F = {Xxlx €

V, and fx(Xx) = X3
An illustrative example is provided here to show the procedure of con-
structing the tree automaton., The tree grammar is Gt = (Y, r, P, s),

where V = {S, 4, a, b, A, B}, & is the starting node or root of the tree,

Vi = {a, b, 4}, r(a) = {2,0}, r(b) = {0}, r(4) = {2}, and P:

s> 4§ A+ a
7\ / \
A B A B

A> a B+ b

The procedure of construction for tree automaton is as follows:
(1) Obtain an expansive tree grammar Gt’ = (v’, r, P, S).
Since Gt is an expansive tree grammar, thus Gt’ = Gt =
(v, r, P, S) for this example grarmar.

(ii) The tree automaton is M = (qQ, ‘*, fa’ fb’ F). The q, f*, fa’

fb’ and F are constructed as follows. Since the grammar

gy
: WWMMM B Bt § hbette oe o
“ e




rule is § »

d
7\

th lation is obtai a =q .
, the relation is obtained as f§(qA’qB) qg

A B

The relation fa(qA,qB) = qy is obtained fronm grammar rule

P+ a
7\
A B

. The relation fa(qa) = q, is obtained from grammar
rule A >~ a, and fb(qb) = qg Is obtained from grammar rule
B+b

. The tree automaton is thus constructed as Mt =

{qs, pr Gps Gy qb}, the relation f's are f$, fa, f , and

b
the final state set F = {qa,qb}.

in order to model a language more realistically or to describe a
class of patterns sore precisely, it is expected that the grammar used
can be directly inferred from a set of sample sentences or a set of
sample patterns. This subject of 'learning" a grammar based on a set of

sample sentences is called gramnatical inference. A tree grammar infer-

ence procedure is briefly revieved 1201 belrw:

(1) Represent cach sample tree @, as {t}

A

vthere any of the subirees tl’tz""'tn’ .

consists of repetitive substructures.

(i) Starting from the root, determine subtrees with depth one for
each sample tree o5 excluding the subtrees having repetitive sub-
structures.

(iii) Attach non~terminal symbols to nodes and construct an expansive
tree grammar Gi for @, .

{(iv) The inferred tree grammar for the complete sample set will then be

G S . a4 TR
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n3

t
The purpose of the inferred tree grammar is to describe tiie boundaries

G, = UG
I
of the image segments. The priritives for those patterns are:
s
]
a I e L
b/f/

d\h\

and the window size is chosen as an 8x8 array of pixels. The positive
samples are those patterns starting from a primitive followed by, at most,
three branches. The negative samples are those patterns in which there

is no boundary line or those having singular primitives or pixels. The
sample patterns are listed in Appendix A. Applying the tree grammatical
inference procedure [20], a set of tree grammars is inferred to describe
the boundary structures. An illustrative erample is given here to show
the grammatical inference procedure of a tree grammar. For example, the

sample patterns are given as follows.
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The grammatical inference procedure viorks as frllows: (The flow chart of
the tree grammar igfgrenceﬂprgcpdure Is proviuzd {n Appendix G).

Step l. Represent sample trees hi amnd «, 3s,

Q. c . 2 d

1’ ‘ uz. PN
C C e
/\ I}
C e c e
I |
(o e C e

1

e

]

e

The subtrees of a and , are t], tz, and ts for o and t

1

t,% and tS for @,.
t, = ¢ t,” = d
1 i 1 / \
C [od e
t = c t.” = ¢
2 N\ 2 i
C e [ o
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e e
i
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Step 1. Determine subtrees viith depth one.
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Step 3. Attach nonterminal symbols to nodes and construct an ex-
pansive tree grammar G, for ) and G, for a,. (§ starting
symbol)

Gy S -+ 4 32:".5+$
| |
A] A2
Ay > ¢ A.»>d
b 2 /N
A‘ A‘ A2
A, > ¢
A
A A
A2 * T
Ay
A‘ +c
Az > e

Step 4. The inferred grammar is G, which is the union set of the
grammar set Gl and 62 of Step 3.

The tree grammar is obtained from the grammatical inference procedure. The
tree grammar Gt Is as follows,

s v v
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r(e)

r(4)
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Gt = (V, r, P, S)

(S, 45 Ay Ay Agy Ay A, Ay Ay a,byc,d,e, g h)

{1,0} r(b) = {1,0} r(c) = {2,1,0} r(d) = {3,2,1,0}

i

{3,2,1,0} r(f) = {2,1,0} r(g) = {2,1,0} r(n) = {1,0}
{2,1}

1l

{+ a,«b, > ¢, xd, e, .f, <g,%h, #}

and gramnar rules P:

2 A Ag Ay A,
A -
\ 2 /C\
Ay Ay Ay
A, » d
\ 2 7\
) A A,
A =
A, AY A,
A > f
2 7\
Ay Ay A A; A,
Ag
AL » d A, >
37 37
A
3 A3 3
A > A, + ¢ A, > h
] SN
A A 3
3 Ay 3 3
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A transformational gramnar is a set of grammatical rules for trans-
forming a pattern from one forn to another [2,211. A line smoothing tech-
nique can be desidned by a transformational grammar. Here we introduce
the tree transformationa. grammar for the line smoothing technique. The
concept of the syntactic line smoothing technique is as follows: [r-
regularities are usually caused by the digitizer, noisy patterns, and so
forth. These are In forms such as the zig-zagging of the line patiarns.
The tree transformational grammar evaluates the contextual information of
the patterns. |If the context of the pattern satisfies the transformational

grammar, thai pattern is transformed into a smoother pattern. By this -

syntactic line smoothing technique, the zig-zagging of lines is smoothed.
Actually, tree transformational grammar Is a universal method for line
smoothing of any pictorial data.

The process grammatical inference scheme for tree transformational
grammar is as follows:

(1) Represent each non-smooth pattern as

>

. - sw

I* e

e
~ ) - +
/‘_--—d

/£)
L2\

where t‘ and t, are the predecessor and successor subtrees of

-+

the t . subtree.
pi

s
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(2) Based on the relationship of t1s Fae and tu., interchange t .

with a smoother pattern tpo then obtain tree transformational
@

P grammar Gi for tu‘, as:
! I '
il ity
[ ™ - - 4!

(3) The inferred tree transformational grammar for the complete

sample set will then be Gt =y G

{ i
For example:
non-smooth pattern (6x8) § [T,
¢ i,
I
< se
L PR
-
12
1
smoothed pattern (6x6) § ¢
4 N
d .
e
le
|

The grammatical inference scheme for tree transformational grammar works
as follows.

Step 1. Represent non-snicoth pattern as
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Step 2., The swoother pattern t_, of t is

tsf =

O = 3,

and the t, and t_ of the smoother pattern are the same as

2
for the non-smooth pattern.

Step 3. The Inferrcd transformational grammar G‘ is

Dae Vo D D wmne {He

/\
C e

The tree transformational grammar Gt is the union of the
grammar G‘.
For the syntactic line smoothing technique in section 4.1.3, a tree trans-

formational grammar is inferred to reduce irregularities and smooth the

H

patterns. The grammar is as follows:

N 4 $ 2) 4§ $ 3) 4 {

i ! { f ' l
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The graphizal interpretation of the transformational grammar is given under

each rule in terms of non-smooth and smoothed patterns.
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§,1.,2 Texture Reqlon Primitive Extraction

The texture region primitive extraction takes the digitized image
as input and perform texture analysis to obtain the texture region
primitives. This process consists of the sub-processes histogram
equalization, variability texture measurement, and texture region primi-
tive assignment.

1) Histogram Equaliration: The image of interest, P(x,y), is

stored as an H x M array in the computer merory. Each element of this
set has a grey level value given by the intensity function z(x,y). A
histogram of an irmage is defined as follows [33]: Given an image f, let
Pf(z) denote the relative frequency with which grey level z occurs in f,
for all z in the g-ey level range Iz], zk] of f. The graph of Pf(z) as
a function of z, normalized so that [k Pf(z)dz is equal to the area of
z
f is called the histogram of f. The h:stogram equalization technique

[72] requantizes the grey levels to k” levels which have Zis Zyy eeey zk’

as the values of the requantiz.cion interval points, with the values of

A AR w0 0 30
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z, and 2, - equal to the minimum and maximum values of z respectively.
The histogram equalization technique reassigns values of grey levels to
the picture pixels. This technique assigns an equal number of plicture
pi;els to each interval of the grey level Z) j Thus, the number of
grey levels of the original digitized Image (usually 256 or 128 grey
levels) is reduced to a reasonably smaller number (e.g., 16 or 8 grey
levels). Even if, for example, two images of the same scene had dif-
ferent digitized values due to the fact that they were digitized on
different machines under different amounts of brightness, the histogram
equalization technique would assign values to pixels according to their
relative values to each other, and, thus, the histogram equalization

results of these two images of the same scene would be the same.

2) Vvariability Texture Heasurement. Texture information is ex-

tracted from the spatial relationship of the grey levels of pixels in

the image. The joint probability density of the pairs of grey levels
that occur at pairs of points with distance d is calculated. [If there
are k grey levels, the array is a k x k matrix P(i,j), called a co~
occurrence matrix [73]. Then a variability texture feature is calculated
to measure the spatial relationship of the grey levels of an image.
Havalick [72] suggested twelve texture feature measurements for terrain
classification. Here, we use a method of texture analysis for image
segmentation. The variability texture feature is the modified entropy

(f%-d)-) Tog (f—%Lj-)—). The

texture feature [72]. (entropy =-C
i

Lo 08

logarithm portion (lor(—illi—é) of the entropy texture feature is
modified to log ( )) R is the normallization constant of the

matric P{1,J). K is the range factor to expand the range of the values

WA 52 gt 1+ o
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of the texture measurements, The variability texture is thus defined

as [72]:

VARIABILITY =~ & (f-%'-l-)-)l(log (ﬂ%d—)-) ', K>1
i

z

v J
In the previous research work in texture analysis for terra{n classifi-
cation [72,73], there is no indication which texture feature is the best
for terrain classification. Therefore, the variability texture feature
and some other texture features such as second order moment, contrast,
and correlation are measured on the same image [72]. From our experi-
ments on images of several areas in Indiana, the variability texture
measurerient ¢haracterizes the major land-use classes as agricultural,
wooded, old residential, new residential, and watery arecas. Thus, the
variability texture measurement is used for image segmentation. The

use of more than one texture feature (in addition to variability texture)
could be useful to image segmentation. The reason that only one texture
feature is used, Is that the computer processing time increases as more
texture features are calculated. The preprocessed and primitive ex-
traction result is to be processed by syntactic analysis. #Hence, one
texture feature, variability, is used in the preprocessing and primitive
extracticn. Figure 4.2 is an illustration of the variability texture
measurenents of an 11 x 1) Image window. The distance is one for the
horizontal, vertical, left diagonal, and right diagonal co-occurrence
matrices. The variability texture is calculated on each of the four
matrices, separately, Tl: average value of these four measurements is

taken as the texture measurement of the center (hxhk pixels) of that

image window,

o oo A
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In segmenting a large image, the vindow size used for texture measure-
ment §s 11x11 pixels. The variability texture feature is measured from
the 11x11 window and the value of this measurement fs the texture value
of the center 4xh cell., This technique was devised because it is quite
possible for a textural area to be smaller than the window size, or that
the boundary between different textural areas lies in the operation
window. In this proposed technique, such a problen is taken care of as
ve locate the boundaries by shifting the 11x11 operation window I pixels
at a time. Thus, the potential boundaries could be preserved and the
spatial relationship can stii! be extracted because the window size
(11x11) has not been reduced. Several other sizes of operation window
such as 9x9, 10x10, 12x12 and 13x13 were also tried. The texture
measurenents from the smaller windows sometimes falled to give the sane
good results as did those from the 11x11 window. The reason for this is
that the measurements from smaller window did not yield enough global
information of the Image data to allow the extraction of the proper
texture measurenents. The results from the texture measurements of
larger windows were sinilar to those of the 11x11 window. The compara-
tive computational time for these measurements by different windows is
that the time for a ©x9 window is about 5% less than that for the lixll1,
and the tinme for the 13x13 is about 103 more. From this study of
texture measurements with respect to window sizes, the lixll window was
used for the texture measurements in our experiments of the LANDSAT
images.

3) Texture Reglon Primitive Assignment, After obtaining the texture

values for hxh unit cells, the histogram of the texture values in the

texture donain is thresholded and then assign texture codes to the
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segments. The histogram is made by shifting the 11x11 window 11 pixels
at a time, because only the global distributions of the texture values
are of interest here. The feasibility of variability texture measure-
ments and this technique can be shown as follows: Figure 4.3 is the
histogram result of variability texture measurements on a 385x198 pixels
LANDSAT image of an Indiana area. Figure k.4 is the histogram res:it of
angular second moment (Angular second moment = Lz {P(i,j)}z). Figure

.5 is the histogram result of texture measu*eme&té of contrast (Contrast =
Ng-1 2 Ng Ng

©

£ n“{z I P(i,j)}). Figure h.6 is the histogram result of texture
i=1 j=1
li-jl=n

measurenents of correlation. (Correlation = (£ £ (i-j)P(i,j) - wxuy)/ox
i

gy, uX, jy, ox and oy are the means and standard deviations of Px and Py).
From the histogram of the texture neasurements, the lixh cells are

grouped to different texture regions.

4.,1.3 Boundary Primitive Extraction
Following the texture reglon prinitive extraction Is the boundary
primitive extraction consisting of horizontal processing, vertical pre-

cessing, logic Integration, and syntactic line smoothing.

1) Horizontal Processing. The Horizontal Processing processes
the "“texture region primitive extracted image'" row-wise to locate the
potential horizontal boundary segments. The operation procedure is as
follows: let 0(1,J) be the picture function at location (1,Jd).

Step 1. Start with Q(1,J) as reference.

Step 2. Compare Q(1,J) with Q(i,J+1). If the distance is smaller

than a specified value, a “'zero" is set on Q(1,d) and

o(t,d+1). Then Q(1,J) and Q(1,J42) are compared. If the

+
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distance is greater than or equal to the specified value.
A “one" is set for Q(),J+2) as a potential boundary primi-
tive. Then the same process is applied with Q(},J+3) as
the reference,

Step 3. \lhen this process is operated to the rightmost of the‘row,
the Q(t+1, J) is the reference and Step 2 is applied until
all the rows are processed,

The idea of this process is to treat the image matrix as independent

rows, After this process the potential vertical boundaries of the image

are detected. The reason for comparing Q(1,J) and Q(1,J+2) (when

Q(1,J+1)=0) in Step 2, is because the reference must be kept in the same

operation. If instead of comparing Q(1,J) and Q(1,J+2), Q(1,4+1) and

q(1,J+2) are compared. The reference is shifted, thus none of the

boundary primitives will be detected.

2} Vertical Processing. The Vertical Processing is similar to the

Horizontal once exmept that it processes the inage column-wise to locate

the potential horivontal boundary segrments.

3) Logic Integration. The result of horizontal processing is de-
finad as H and the result of vertical processing is defined as V. The

Logic Integration is a boolean ''0OR' function of H and V and It is de-

fined as R(H,V).

H Vv R(H,V)

0 0 0
0 i 1
1 0 i

N
A BB BIGN € 10140 1
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The software program is implenented to compare H(I,J) and V(1,J) to
obtain the logic integration result,

After the process of logic integration, the potential boundaries of
the picture are detected. The deformation of the boundaries is to be
removed by the line smoothing technique which is a syntactic process of
transformational grammar.

L) Syntactic Line Smoothing., A tree transformational grammar is

designed to reduce irregularities and smooth the patterns. The set of
tree transformstional grammar for syntactic 'lfne smoothing is inferred
by the inference scheme in section 4,1.1. In implenenting the tree
transformation, first, the image window is encoded into the tree language
which describe the boundaries in that window. The output of the logic
integration is the binary image window. The encoding procedure checks
the window row by row to find the first pixel with non-zero value as the
starting point ($). Then, a search for surrounding non-zero points is
followed. The non-zero points are cncoded as the primitives. These
primitives are the 2x2 blocks, a ¢, b, c », dN, e ¥, f»~, g «, and

h ¢ which were graphically shown in section &4.1.1. If only one branch
is found from thz starting point, then a pointer is used to link the
connecting primitive of this branch with the starting primitive. If

two branches are found, then two nointers are used to link the encoded
prinitive of each branch respectively. The same encoding procedure is
applied to each branch to obtain the tree structure of the primitives

in the inage window. This tree structure is thus the tree language for
the tree grammar analysis. For exgmp!e, for an input widnow from logic

integration process as
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In processing the tree representation of the input pattern by the tree

transtormation gravmar, the rule (1)

$ $

| l
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| |

e > d
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Cc e

will prcduce the transformed pattern and its data representation is as
follows.
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In order to apply the tree transformation grammar to smooth the pattern,
the pattern primitives around the pattern primitive of interest have to
be checked. In a 6x6 window, there are eight primitive windows (2x2)
around the center primitive window of interest. Thus, there is enough
information for deciding whether the proper smcothing rule will be ;pplied
to smooth the pattern or not. Therefore, in processing an image, the
syntactic line smcothing process is performed on a 6x6 window. The
vindow is shifted k pixels at a time to repeat the process. There are
alvays 2 pixels overlapping on each process, thus the irregularities
between two neighioring windows will also be processed by this line
smoothing technique. \lhen the window operation reaches the edge of the
image, it moves downward four pixels and starts from the leftmost point
of the image to repeat the same process, until the whole image is pro-

cessed by this syntactic line smoothing technique.

h1.b Tree Grarmar Analysis

The recogniticn by tree grammar analysis is performed by the tree
autcmaton corresporiding to the tree grammar. The result of boundary
primitive extractlon is encoded window Ly window as tree structure by
the encoding procedure described ia section £.1.3, If the input tree
structure can be derived by the transition rules of tree automaton to the
final states, then this tree is accepted by the trce automaton. If the
irput tree structure cannot be derived to the final states by the tree
autematen, then the input structure js rejected,

By continually performing this procedure on'each image window, the
boundary structures of the image are analyzed and the syntactically
correct boundaries of image segments are obtained, Hereby, the image

segmentation result is achieved,
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Tree Gramnar Analysis Algorithm

Anput: Boundary Primitive Excraction Kesult, Binary Image, P{1,Jj.
~ Output: Image Segmentation Resuit.
Algorithm:

1. Construct the tree automaton from the inferred tree grammar
of the bourdaryv structures. The prccedure of tree autonaten
construction has been described in section 4.1.1,

2. Initialize the array P{i,J) as the operation window {8x8).
Load the data of image segment M(1,J) where J = 1,8 and
| = 1,8 onto the operation window P(1,d4).

3. Encode the array P(l1,J) into a tree structure as described
in the section on syntactic line smoothing.

k., Each transition rule of tree automaton is storad in computer
as a2 linear arrav. For example, fﬁ(q-l) = q is stored as a
1x3 array called TA{l,J), then TA(1,1) = ag (present state),
TA(1,2) = $ (input state), and TA(1,3) = ay (next state).
The input is stored as a linked tree data structure. The
root (§$) of the tree is the input syrbol and the initiail

state (present state) is ag» thus, a next state is obtained

by searching for the transition rule, from the array TA(!,J},

with the present state q and input symbol $. The recognition

of each branch of the input tree is similar tao that of a
finite state automaton. If all the branches of the Input
tree can achieve the final states by applying the transition
rules of the tree automaton, then the input tree is accepted.
1f there is one or more branches which cannot achieve the

final branches vhich cannot achleve the final states by
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checking all the transition rules of the tree automaton,

then this input tree Is rejected. The syatacticaliy correct

boundary patterns are thus accepted as the image segmentation

result.

5. Shift tour columns to the right of H(l,d). Then go to Step
3 until the shifting operation reaches the rightmost column.

Go to Step 6.

Shift four rows down, g0 toc Step 3 until reaching the last

row of the image M{1,d). Then the image M(1,J) is analyzed

by the tree automaton and the syntactically correct boun-
daries are accepted as the image segmentation result. The
flow chart of the algorithm is given in Appendix H.
For example, using the grammar inferred in the example of grammati-

cal inference in section 4.1.1, the tree grammar ct is as follows:

Gt = (V, r, P, S)

V={A;, A, S, $, ¢, d, e, f}
v, = {4, »c, ¥ d, ve, ¥Ff,}

r(s) = {1}, r(c) = {0,1,2}, r(d) = {2}, rle) = {0,1},
ri{f) = (7,1}

P: s> 4 s+ ¢
| |
Ay A,
A‘ > c AZ g d
7\ 7/ \A
Ay By Ay A,
A] > ? A2 + e
A
Az e T él + ¢
Ay

S ot vonr iy e ok b s e =

<"

[L 7T PR
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As described in section 4.1.1, a tree automaton can be constructed
corresponding to the tree grammar of this example. The tree automaton
is thus constructed as Mt’ Mt = {0, fc, fe’ £ f*’ F), vhere @ =
{qc, Qus 9ps G9s qs}, F=1{q. q,i, and f: {The detailed steps of tree

automaton construction are given in Appendix ).

(1) fé(q]) =q

¥

(3) f fa),a,) = q,

) fylapa,) = a,
(5) f_(q}) = q
(6) fe(qz) = q2
(7) fc(qc) = q
@) f,(a,)

]

had
%h

éi *Jﬁf' ;
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After constructing the tree automaton, the recognition of an input tree
can be performed by the tree automaton. The recognition of the input
tree of this example Is as follows: the root of the input tree is §.
The first transition rule of the automaton is applied to obtain the next
state q,. The second level of the Input tree is d. The transition rule,
which has d as input and q; as present state, cannot be found. Thus,
the seccnd transition rule should be used to obtain the next state q,

in the recognition of the first level of the input tree. The second
level of the input tree is d. The transition rule with present state
q, and input d, which is transition rule (L), produces the next state
pair (q],qz). The third level of the input tree is branchus c and e.
With present state a and input symbol ¢, the transition rule (5) pro-
duces the next state 9y The fourth level of the input tree is c. The
transition rule (5) 1s applied again to produce the next state 9. The
final ievel of the input trece is c. The transition rule (7) is applied
to achieve the final state e The branch, d, of the third level of

the input tree is recognized by transition rules (6), (6), and (8) for
the fourth, fifth and final level of the input tree to achieve the

final state. Thus, all the branches of the input tree achieve final

states, then the tree is accepted by the tree automaton.

4,2 COMPUTER EXPERIMENTAL RESULTS OF IMAGE
SEGHENTATION FROM LANDSAT IMAGES

The proposed syntactic method for image segrmentation was implemented

on the IBM 360/67 computer at the Laboratory for Applications of Remote

Sensing (LARS). The experiments were conducted on various LANDSAT and

infrared inages.




143

Applying the grammatical inference procedure of tree grammar in
section 4,1.1, a tree grammar was inferred to describe the boundaries of
image segments. This grammar, as stated in section 4.1.1, was applied
to the image segmentation of LANDSAT images. The tree automaton cor-
responding to the tree grammar is constructed as Mt. Mt = (a, fa’ fb’
fc, fd’ fe, ff’ fg’ fh, f*” F). Nhel"e
Q = {qysdys 3,9,055950759,59,59.958,20¢59.,9; 14}

F= {qa’ qb’ qc» qu qes qf’ qg’ qh}

fi(q,,qz) = q, f#(q,) = q fé(qs) = q,
fg(qz) = q ;é(q7) = q, f (qp9,) = q
folapay) =g, felapsay) = q falapsa,) = a,
felapa,) = q fg(q1,q2) = q, falagsqea.) = g
Folagsqypag) = q fela;,a,) = q, fd(q3) = a5
fe(q3) = 45 ff(q3) = a5 fg(q3) =4,
falay) = q flay) =q, f (qy) = q,
folag) =ag flaz) = ag f (q) = qy
felay) = q fg(qh)/= ay, flq) = q,
fh(qh) = q fb(qs) = a5 fd(qs) = 9
flag) = ag folay) = q felag) = o5
fg(qs) = qg fc(qs) = q fh(qs) = qg

f lag) = a5 f.lq)) = g fla)) = q

f la)) = g, fq)) = q f lq)) = q

o T
\A,;l,“..‘u?w”'““ '
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fela)) =q, fola,) = q, f.q,) =q,
f d(qz) =q, fg(qz)"= a, ff(qz) = q,
fb/(q3) = 4, f.la.) = q felag) = q
f la) = q, f.(q) = q, filay) =q,
fg(qg) = q, felag) = a, flq) = a3
fylay) = a3 f la,) = a5 felap) = A3
fg(qg) = q fd(qd) = q fe(qe) =q,
felag) = q, fg(qg) = fl) =aq
fla,) = q, f(a,) = A5 filay) = a5
fola,) = ag folag) = qf fg(qg) = qg
fla) = qg folay) = ac fq) =q
fc(qc) = q fla) =q, fla) =q
f () = q f.la) = ag frla) = Qs

Figure .7 is a2 LANDSAT image of Bluomingion, indiana (88x38 in
size). Figure 4,8(2) Is the intermediate result after the texture
region primitive extraction of the proposed image segmentation method.
The syntactic image segmentation algorithm achieved the segmentation of
the picture in Figure 4.7, The re<ult is shown in Flgure 4.8(b). For
the purpose of knowing the ground truth of this satellite Image, this
area has been classified by 4 maximum-1ikelihood point-by-point classi-
filer. This classification result is shown in Figure 4.9 in which A
stands for agricultural, T for forest, X for old residential, Y for
new residential, and W for watery areas. The computer processing time
of the syntactic method is only 55 seconds. But the classification

technlque takes 240 seconds of CPU time,
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Consider now the performance of the syntactic i@age_sggmentat!on

algorithm. For example, the left upper corner (line 1=k, columns 12-24)
of Figure 4.9, the ground truth of the image Figure 4.7, is a small area
of forest area. This area is well segmented by the proposed method as

a homogeneous region showh in the corresponding coordinates in Figure
4,8(b). One good thing about this algorithm is that in the segmentation
result, the boundaries of the inage are always closed. A closed boun-
dary of image segments contributes to the future recognition of either

the shape or the characteristic pattern of that segnent.

L,3 COMPUTER EXPERINENTAL RESULTS OF IMAGE SEGMENTATION
FRON FLIR {FORWARD LOOKING INFRARED) IHAGES

The first step of an object detection problem Is actually an image
segmentation problem. The object of interest must be first extracted
from the scene. {n the human visual system, the object is detected by
the human eye through the characteristic contents and/or the shape
of the object. The syntactic image segmentation algarithm described in
section 4.1 tends to sinulate the human visual system for object detec-
tion. The texture analysis of the preprocessing extracts the characteris-
tic contents of the image. The syntactic analysis examines the boundary
of the object. The syntactic image segmentation algorithm is also
adaptable to object detection from FLIR images. Vhen the image is rich
in texture, the syntactic method for image segmentation described in
section L.1 can be applied to object detection. VUhen the image is not
rich in texture, the texture feature measurement of the preprocessing

part of the syntactic method is changed to a mean vector measurement.

The syntactic analysis Is unchanged,
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Figure 4,7, Satellite Image of Indiana area.
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Figure 4.8(b)
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igure 4.9, Point-by-point classification result of Figure

h.7o




If several objects have the same texture contents, but different

shapes, then the object of interest is primarily distinguished from the
other objects by the cecond process. In this case the first process
contributes to the extraction of those objects from their background.
The syntactic analysis process examines the boundaries of these objeéts
and accepts those objects with the boundaries which can be generated by
the grammar.

If several objects have the same shapes, but different texture con-
tents, the first process in the syntactic method extracts the texture
contents of the objects. If the contents are the same as those of the
object of interest, then the syniactic analysis examines the boundary of
the object. If the syntactic analysis has a successful parsing, then the
object of interest is still distinguished from other cbjects in the
image scene.

This method can also be applied to tactical target detection fraom
infrared images of battleground scenes., The technique used here is the

same as that which has been described In section 4,1 basically,

h,3.1 Data Acquisition System of Infrared Images

The infrared images were obtained from loneywell Systems and Re-
search Center [11€] under a consulting contract. The Honeywell Corpora-
tion obtained the FLIR imagery using Navy Pz-V aircraft at the Naval Air
Test Center in Patuxent River, Haryland, and a Honeywe!l 18 detector
serial scan FLIR sensor, The P2-V is outfitted as an electro-optical
test bed allowing the collection and recording of taped imagery of various
kinds, The infrared images were obtained in June of 13974 and were of
nilitary vehicles at Camp A P Hill In southern Maryland. Altitudes during

the flight were about 3,000 feet.
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The proposed technique of Iimage segmentation has also been tested
on a different data set of infrarsd images which were collected by the
light Vision Laboratory. Figure 4.10(a), 4.13(a), 4.14(a) and L.15{a)
are the test images from Honeywell and Figures 4.11(a), 4.12(a), 4.16(a),

4.,17(a), and 4.18(a) are the test images from the Night Vision Laboratory.

L.3.2 Experimental Results

Since infrared images are thermal images, the characteristics of
these images are different than those of the LANDSAT images. Also, the
objects of interest in the object detection from infrared images are
tactical targets, larger one; and smell ones, such as military vehicles. -
Basically, the algorithm for the experiments on infrared images is the
sciie as the algorithm described in section 4,1, The differences are
the window size for the texture measurements and a different tree grammar
to describe the boundaries of military vehicles. Experiments on different
window sizes for texture measurements were carried out. A window size of
8x8 provided the best segmentation result In the data set used. Smaller
window sizes tended to give segmentation results of the local property,
and larger windows took more CPU time while providing no better results.
Therefore, the window size used for texture measurements in our experi-
ments on infrared images was 0x8,

The texture region primitive extraction and boundary primitive ex-
-raction were the same here as those in section 4.1, The tree grammar
for describing the boundary siructures of milltary vehicles is inferrcd
by applying the tree grammar inference procedure in section 4.1.1 to the

sample patterns of the boundary structures of military vehicles (Appendix

F). The resultant tree grammar is G :




Gt = (V, r, P, S)

vhere

V=S, 4, Ay Ry, Agy Ay, Age 3 by €, d, €, f, g, h}

27

r{$) = {2,1,0}, r(a) = {1,0}, r(b) = {1,0}, ric) = {1,0},
r(d} = {1,0}; r(e) = {1,0}, r(f) = 1,0}, rlg) = {1,0}, r(h) = {1,0}

rule P:
s+ 4 s > 4
| A
A] AI, l\S
A, > e A, +c A, +d A+ F AL+ g
] l ‘ l ] ‘ l { ' !
A] A, Al A] Al
A] > ? AI -+ ? A] > ? A' + ? Al -> ?
A2 A2 A3 A2 Az
A, A, > A.>c A.+d A
3 ? b ? 5 5 l 5~ f
A A
As I Ag 5 As
Ah > T AI * e A] +c A‘ +d Al > f
Ah
I\l »> g A2 + b A2 + h A3 +a Ah -~ e
A5 - C A5 -+ d A5 »> § Ah +C

Since the shapes of the objects of interest, military vehicles, in
the image segmentation of FLIR images are simple, most of the grammar
rules happen to be string (regular) gramnar rules.

The tree automaton corresponding to the tree grammar Gt is "t'

”t = (0.’ fa, fb! f ? fd) feb ffp fga fh’ f*; F)

C
where

Q = {a),9,50529,59509,59 29194295292 Ty 295 3
F= {qa: G0 Ger 942 qe’ Ger qg' qh}

fi(q,) = G ff(qs) = qg




fé(qk,qs) = q f.la) =q,
f la) = q flq,) = q
f la)) = q f la) = q
falay) = q falag) =
fela)) = q felag) = q
falay) =g folag) =g,
folay) = qy fplay) = a,
f,(a,) = q fola) = a,
Falag) = q fala) =ag
fyla,) = a, fla) = q,
f(a,) = q, f.lq ) = dg
fla5) = a, Falag) = ag
£ la,) = q, felag) = ag
f.lag) = q, fla) =q,
Falag) = qg

Figure 4.10(a) is an infrared image of a tactical target scene.
The size of the image is 88x88. The altitude of the infrared sensor
from the ground was about 3,000 feet, The window size used for texture
measurerients was 9x8. The syntactic analysis was performed by the tree
automaton, corresponding the tree grarmmar for describing the boundaries
of military vehicles including tanks, trucks, and armed personnel
carriers. The proposed syntactic method successfu'ly segments the in-

frared image into target and background. The image segmentation result
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is shoun in Figure 4.10(b), The symbol T represents the boundary of
the tactical target. (This image scene is a side view of a truck heading
east,) The ccnputation time for Image sesmentatfon of Flgure %.19(a) ~
Figure 4,18(aj Is about 50 seconds on the {BM 360167 computer. Several
experiments on texture analysls of the distinction between background
and targets are conducted. Figure 10(c) is a segment of Figure 4.,10(a).
(Columr 21-28, row 61~68 corresponding to the frame 88x88 of Figure 4.10
(a)). The texture region primitive necasurement result is in Figure 4.10
(d) which is a segment of background scene. Figure 4.10(e) is a segment
(Column 53-60, row 61-58) of Figure 4.10(a). The texture region primi~-
tive measurement result is in Figure 4.10(f). The results of the

similar experiments on Figure 4.1%(a) are provided from Figure 4.11(c)

to Figure h,11(f).

Figure h.11(a) is an .infrared image which Is a side view of a tank.
The proposed syntactic method was applied to this image. The tactical
target was successfully segmented. The segmentation result of Figure
h.11(a) is given in Figure 4.11(b). The sizes of the images from %.1i{a)
to 4.18(a) are all 88x88. Figure 4.12(a) is an infrared image of a
vehicle, and the result of its syntactic image segrentation is shown in
Figure 4.12(b). Figure %.13(a) is a top view of a vehicle. The target
was successfully segmented even though it is a noisy image of low reso-
lution. The result is in Figure 4#.13(b). The image segmentation results
from Figures 4,14(a), 4.15(a), and h.16(a) by the proposed syntactic
algorithm are given in Figures 4.14(b), 4.15(b), and 4.16(b} respectively.

Experiments involving segmenting small targets were also conducted by
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Figure 4,10(a). Infrared image of a tactical target scene.

Figure 4,10(b). Image segmentation result by the syntactic method
on Figure h4.10(a).
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Ficure 4.10(c). Image segment
848 of the background of Figure
k. 10(a).

Figure h.10(e). Image segment
8x8 of the target area of Figure
4.10(a).
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Figure 4.10(d). Texture region
primitive measurement result of
Figure h.10(c).
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Figure h.10(f).

Texture region

prinitive measurenent result of
Figure 4.10(e).
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Figure 4.11(a).

infrared image of a tactical target scene.

Flgﬁre 4.11{b}, Image segmentation result by the
on Figure 4.11(a).

syntactic method
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Figure &,11(c). Image segment
3x8 of the background of fiqure
h.n(a).

Figure 4,11(e). Image segment
8x8 of the target area of Figure
h.11(a).
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Figure 4,11(d). Texture region
primitive measurement result of
Figure 4.11(e).
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Figure 4.11(f), Texture region
primitive measurenent result of
Figul’e I*oll (e) -
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Figure 4,12(a). Infrared image of a tactical target scene.

Fiqure 4.12(b).

Image segmentation result by the syntactic method
on Figure 4.12(a).
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Figure 4.13(a). Infrared image of a tactical target scene.

{ Figure 4.13(b). Iniage segmentation result by the syntactic method
- on Figure 4.13(a).
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Figure 4.14(a). Infrared image of a taciical target scene.

Figure 4, t4(b),

Image segmentation result by the syntactic method
on Figure h.14{a).
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Figure 4.15(a). Infrared image of a tactlcal target scene.
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Figure h.15(b). imege segmentationresult by the syntactic method
on Figure 4.15(a).
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Figure h.16(a). Infrared image of a tactical target scene.

Figure h,16(b), Image segmentation result by the syntactic method
on Figure 4,16(a).
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Figure 4.17(a),

164

infrared image of a’tactical target scene,

Figure h.17(b). Image segmentation result by the syntactic method

on Figure 4,17(a).
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Figure 4.18(a). Infrared image of a tactical target scene.
§

Figure 4,18(b). Image segmentation result by the syntactic method
on Figure 4.18/h),
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the proposed syntactic elgorithm by processing the infrared images of

Figures 4.17(a) and 4.18(a). The Image segmentation results achieved

are shown in Figures h.17(b) and 4.18(b).

Comparing the segmentation result in Figure 4.10(b) with the test
image Figure 4.10(a), the object of interest, a truck, is well segmented.
This experiment examplifies the performance of the proposed method. The

boundary contour of the object of interest in Figure 4 :.i{b) can be used

for shape recognition. In the experiment of image secmentation on Figure

4,11(a), a good segmentation result of the te:t image Is also achieved.
The objects of interest in Figure %4.10(a) and 4.11(a) are the targets

which are larger than most of the targets In Figure %4.12-Figure 4.19.
Thus, the image segmertation results have enough boundary information
of the targets for the future recognition purpose. %ecause of the
Jowr resolution of the images in Figures 4.12(a), 4.13(a), &4.1%(a)
§,15(a), 4.17(a), and 4.18(a), the types of the targets carnot be told
even by human. It is hard ta distinguish them by the segmentation \
result either , but those targets are still segmented. The noises \
usually are causcd by heat diffusion of the object and the sensitivity \
of the infrared sensor and these noises sometime effect thc segmentation . \
result. In general, the syntacric image segmentation algorithm still

well segments the image into tarjet and background. This contributes to

|
the information entraction from Infrared images.

L.k SUMMARY
This chapter presents a syntactic method for image segmentation. It
Is a syntax-controiled method which utilizes a tree automaton to extract

the boundaries of the homogencous region segments of an image. The
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homogeneity of the segments is measured by texture measurements described
in section 4.1,2, "

7 It has been shown from both simulation and experimentation that the

proposed syntactic method segments small textural areas as well as -

larger ones. Thus, this method contributes to the automation of image

understanding. As described In section 4.1, the best window size of the

texture feature measurement for the proposed method needs to be determined

through experiments using different windows on a test data set. Some

texture analysis technique, such as syntactic texture modeling and dis-
erimination [117], could be exploited to further refine the texture

reqion primitive extraction of the proposed algorithm,
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CHAPTEX &

DESIGN FOR A SPECIAL COMPUTER ARCHITECTURE FOR IMAGE PROCESS (NG
Image processing by computer encompasses a wide variety of tech~
niques and mathematical tools. In most image processing, large computers
have been cmployed. Unfortunately, the cost is high. As pointed out in
the introduction, image processing tasks usually involve an extremely
large volume of data, much of which can be operated on in parallel.
Therefore, it is important to study special computer architectures for
image processing. During the last two decades the field of image pro-
cessing has grown up rapidly., New techniques, algerithms, and applica-
tions have been developed, bhut there is still a need for improved hard-
ware. A special computer architecture is presented here as a
nroposal for inpreving the state-of-the-art in imasc processing and alsu
to cut costs. Designing this computer architecture was a challenging
problem, as the desire was to build a computer that would have the fol-
lowing features:
1) The computer was to allow efficient image processing at high
speed utilizing interactive computation, making possible
large data evaluation.
2) The computer was to preserve the general purpose aspects of a
general purpose compucer for imagc pracessing.

3) The computer was to be cost effective in order to allow in-~

dustrial realization.
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The framework of this proposed computer architecture consists of a
task management processor, a parallel pracessor, and a sequential arith-
metic processor. The task management processor Is a set of software
syster programs serving as an operating system. The parallel processor
is proposed because of the parallel nature of the operations Involved
in image processing. Parallel machines are considered to be particularly
suitable for image processing by Thurber and Wald [102]. The parallel
processor of the proposed computer architecture consists of an array of
microprocessors which allow parallel processing capability. This parallel
processor is a homogeneous system in which all processors are alike and
are general purpose units, The homogeneous parallel processor lends
itself quite readily to extendability as such systems are usually modular-
ly constructed, Vith modular parallel processing, the system's memory,
processor, and inp&t/output nodules may be enlarged as processing re-

quirement: acrease; thereby avoiding replacem.at of the entire parallel

processing system. The modular parallel processor also provides very
high reliability since, with several identical modules of each types,
the system can withstand failures in several modules and still operate.
This arrangement also increases efficiency and through-put since altl of
the processors could be operating simultaneously. The sequential arith-
metic processor is a microprogrammed controlled processor which performs
the sequential arithme*ics and also controls the input/output devices.
The details of these processors will be set forth in section 5.2, It

will be shown that the design goals were achieved through the proposed

computer architccture.
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5.1 PREVIOUS HORK AND_COMMENTS

As mentioned In Chapter 1, previous work in the field of special
purpose computer architecture for image processing basically falls into
two categories: bit-plane processing and distributed processlng. The
bit-plane processing approach performs the arithmetic computatian o; the
image points which are stored in Boolean bit-plane. For example, if the
image has eight grey levels, then the image points are stored in three
Boolean planes. The bit-planc processing approach tends to have a large
number of processors which perform Boolean operations. The distributed
computing apprcach utilizes processors which have powerful computation
capability. These processors are designated by micropregram or hardvare
to execute certain specific tasks. This confiqguration forms a
distributed computing architecture. In this section we will briefly
illustrate each special purpose computer, concentrating on the special
features of each computer for image processing.

The I1linois Pattern Recognition Computer, ILLIAC I11, [87,100] was
desiagned for automatic scanning and analysis of massive amounts of
relatively homogeneous visual data, in particular, bubble chamber
negatives. The computation is performed by three units, the pattern
articulation unit, the taxicrinic unit, and the arithmetic unit, The
pattern articulation unit perforns local preprocessing on the digitized
raster, such as track thirving, gap filling, line element recognition,
etc. The logic desing of the digital computer has been otpimnized for

the idealization of the input image to a line drawing. Hodes represent-
ing end points, bends, points of intersection are labeled in parallel by

appropriate programs. The abstract graph describing the interconnection
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of labeled nodes is then extracted as a list structure, vhich comprises
the normal output of the processing element (stalactite). The pattern
articulation unit consists of an iterative array of 102k identical sta-
lactites (32x32). A schematlic diagram of the stalactite is shown in
Figure 5.1. The iterative array of the stalactite can be connected in,
elther rectangularly or hexagonally, at the programmer's option. Each
stalactite can accept an input from any of the eight neighboring sta-
lactites, S0, S, ..., and S7 shown in Figure 5.1 (rectangular) or six
neighboring stalactites (hexagonal) in the plane and from Itself, M
shown in Figure 5.1. The input signals are logically "CR"ed, optionally
complemented, and stored in one (or more) of the nine planes. Communi-
cation with the supplementary planes in the core buffer is through the
" plane, which serves as the buffer register of this memory. For
output, the output of any selected set of planes can be logically "'AND'ed
and passed on to neighboring stalactites. With a special signal, the
stalactite allows an input signal to pass through it directly, without
interim storage. It is this feature which allows path-~building within
the machine. The set of 32x32 stalactites processes the pixels of a
32x32 pixe! image window simultaneously. The whole image s to be
processed by one image window (32x32) after another sequentially by the
set of 32x32 stalactites. The taxicrinic unit assembles the graphs,
which are outputs of the pattern articulation unit, into coherent list
structures and categorizes these graphs to complete the visual recogni-
tion function. The arithmetic unit is designed for executing mathematical
analysls, such as stereoreconstruction, statistical summarization, etc.
lnvolved.in processing pictorial data. The block diagram of ILLIAC 111

is 1llustrated in Figure 5.2,
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One special feature of ILLIAC 111 for image processing is the use of
an auxiliary memory. The auxiliary memory is used for the processing of
images frame to frame, and for retaining intermediate partial results.
The necessity of storing intermediate results of the Iterative array
stems directly from the manner of executing homogeneous logic transforma-
tions in the processor. The complexity of the iterative array can be
greatly simplified if various digital filtering opcrations can be per-
formed serially stcring the intermediate results {32x32 = 1024 bit words).
For example, local track segment orientation can be designated as being

predoninantly horizontal, vertical, left-diagonal, or right-diagonal in

four serial tests, whereas simultaneous identification requires apprexi-
mately four times as much hardware [87]. Unfortunately, ILLIAC 11} has
never been completely built,

The use of an auxiliary merory for image processing has been imple-
mented in several computer facilities for pattern recognition research.
One example is the Purdue University Advanced Automation Kesearch Labora-
tory [101]. This laboratory is organized around a DEC PDP 11/45 digital
computer with 32K core memory and 96 X fast secondary memory [107], two

disk drives, a magnetic tape drive, two cassette tape drives, a line

printer, ard a CRT monitor. The system block diagram is shown in

Figure 5.3. The computer is not a special purpose computer, but the
auxiliary memory is a special feature for image processing. The auxiliary
memory was developed for image processing *his laboratory, mainly be-
cause of the limited addressing range of the 16~bit minicomputer.
Therefore, the limited addressible memory is difficult to use for im-
plementing large programs. A merory controller has been built which can

2
access up to 23“ bytes of memory, which now controls 64K 16-bit words
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of core memory [107]. The controller is interfaced to the PDP :1/45
unibus through using three i6-bit registers. Two registers form an
effective addrass of 32 bits, and the third register contains the duta
to be written into the memory or the data read from memory. Once the
adcress is loaded into the two registers, data can be written inte or read
from memory in less thun one nicrosecond. Since large arrays of data
can be addressed without 1/C 1o the disks, execution times improve.
Also, computer programs become simpler since no sophisticated disk-core
swapping softwvare is needed. An experiment on rib identification in
chest x-ray inages was prcgrained once without using the auxiliary memory
and once using this memory. On the average, the execution time improved
« factor of five. Other software shows comparable execution time [101].
Digital Parallel Preccessors (BPP's) [£9,90,91], using cellular legic,
are real-time machines in which the action resulting from a program
statement is simultaneous on all the points of the array. The action
may be symmetrical or directicnal and the tesselations of various types,
the most comror being the square and the hexagonal ones. An example nf
this kind of machine is the parallel cellular logic image processor,
CLIP3 {91]. The CLIP] is comprised of an array of 192 cells arranged in
a bloek of dimensions 16 cells {vertically) by 12 cells (horizontally).
The array interconnection pattern can be either square or hexagonal. The
reouired architecture is determined by one bit in each instruction vord
and is theicfore under the control of the programner. The biock diagram
of the ce!l logic of CLIP2 is shown in Figure 5.4. The Boolean processor
can perforn, under program control, tvo independent Boolean functions
from its two inputs A and P, D is one output and can be regarded as the

processed pattern bit corresponding to the cell. The other output, N,
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fans out to the adjacent cells, The N inputs from neighboring cells (GI’
6,5 +.., and G8) are summed (X) and compared with a threshold (f). The
programmer Is allowed, for each PROCESS instruciion, to select several
Inputs to be put into the summing unit and he can also choose the thres-
hold value. The sumned and thresholded output, T, is then "ORYed wfth
the second pattzvn input to form the input, P, to the Boolean processor.
D outputs are addressed intc 1y one of 14 single bits of store; buffers
A and B are loaded from addr:ssed lecation in the same store. The CLIP3
was actually built.

One drawback of both the ILLIAC 111 and CLIP3 is that the *'edges'
caused by moving image windows, (in ILLIAC 111 32x32 windows and 16x12
window in CLIP3) are not taken care of by the computer. The computing
power of the CLIP3 is obviously limited because cf the fixed small
number of (Boolean operator) cells. (16x12 = 192 cells)

In order to process larger images, CLIP3 has been interfaced to a

television camera through the hardwired scanning unit. This Is called a

hybrid CLIP3 array [92] which is shown schematically in Figure 5.5. This
urit scans the 192 cell CLIP3 array across the 96 by 96 cell data-field
and provides edge stores to handle the propagation signalsvhich cross
between adjacent sectors. The complete system is interfaced to a PDP
11/10 conmputer vhich serves to extend the available data and instruction
storage and also provides program editing and assembling facilities.
CLIPh [92] is the Large Scale Integrated circuit (LS!) version of
CLIP3 with sone small changes in the cell design. The CLIP4 uses N-MOS
(I: type ‘'ietal Oxide Silicon) LS! to incorporate eight processor cells in
a four Ly two block onto one chip. The block diagiram of CLIPL cell logic

Is shown in Figure 5.6, The "D' store has been Increascd from the 8 bits
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of CLIP3 to 32 bits which allow the processing of 32 grey levels. The
interconnecting threshold gate has been replaced by an "0R" gate, - A" -
few extra gates and an additional buffer store have been included to
provide automatic carry-in arithmetic ouperations.

Comparing the performance of (LIP3 and CLIP4, the processing s;eed
of the CLIP) cell is slower than that of CLIP3 by at least a factor of
five. A single operation which required a pair of instructions (LOAD
and PROCESS) ir CLIP3, taking 2 psec, is expected to require about 10 us
in CLIP4, Propagation from cell to cell tock 0.1 us in CLIP3 and ray
take 1 us in CLIPh [92]. liowever, the processing spced of the overall
system of the CLIP) is improved by the larger array of processors of
CLIPL (96x96 cells). The CLIPH has not heen completely built up to now.

The Parallel Pcture Processing Machine (PPM) [38] is a special
processor which is connected toand controlled by a conventional computer.
The block diagram of PPM is shown in Figure 5.7(a). The PPM consists of
the following principal parts: the processing unit, a set of nine
general purpose picture registers, and a control unit. The picture
registers which are shown in Figure 5.7(b) comprisc nine shift registers
capable of storing 2 picture. The main parts of the processing unit are
the neighborhood natching logic (MML), shown in Figure 5.7(c), the line
buffers (LB's) and neighborhood counting register (NCR) and coordinate
register (COR). The demand for LB's stems fron the fact that when a
picture is stored in a picture register, only one picture point at a
time is accessible. To be able to perfora the local neightorhood
operations, all nine nelghborhood units must be accessed simultaneously,

Therefore, two LB's a .- .ded, Mote that the speed improvement {s

accomplished mainly at the expense of NML. The control unit is
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conventional in all respects except for the writable memory where the
templates of an operation to be performed are stored. The parallel pic-
ture processor In [83] has been linked with an ordinary r.inicomputer as
part of the computation facilities of the PICAP pictute processing labora-
tory at the University of Linkoping, Sweden., The block diagram of the
system is shown in Figure 5.7(d). The function of the minicomputer Is
twofold: (1) it controls the other devices and (2} it performs ali
nonpictorial data processing. PICAP which is a modified version of PPM
is dedicated to the several tasks of the picture processing, such as
fingerprint coding and malaria parasite detection. An important modifi-
cation of PICAP has teen the addition of a set of registers for the
collection of measurements. The most important task of the picture pro-
cessor is to produce measurements of application-dependent features.

That is, to reduce the often enormous amount of information in an image
tec a set of feature measurements that can be handled by a conventional
computer. The syntactic method for fingerprint classification can only
be handled by the conventional computer in the PICAP computer of Kruse
[99]. The fact that they cannot perform syntactic analysis is a drawback
of the PPl's (or PICAP's).

Using the approach of distributed computation for designing a
special purpose computer for image processing, the Control Data Corpora-
tion designed the Flexible Processor [97]. The Flexible Processor was
developed for a large digital change detection system for concurrent
processing of four channels of side~looking radar Imagery. The Flexible
Processor is a microprogrammable processor and uses random access memory
up to 1024 words of 48 bits each for microprogranm control. One speciai

feature of the Flexible Processor is its data transmission which is
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shown in Figure 5.8, Four separate balanced party-line transmission
channels are available. Each 32-bit channel can initiate and recefve
register-buffered transfers. A scanning system allows several Flexible
Processors on a party~line to commuricate with each other and with peri-
pheral devices. For output transmission, a 32~bit output channel is
provided which interfaces on balanced lines. A dual internal data bus
system is used to match data transfer speed to the speed of arithmetic
logic. The arithmetic unit consists of an arithmetic logic unit, hard-
ware network for conditional microinstruction execution, array hardware
multiplier, specialized logic for square root and divide, and hardvare
priority interrupt mechanism,

Another special computer for image processing, utilizing the distri-
buted computing approach, was developed by Toshiba Company called Toshiba
Image Processing System TOSPICS [93,116]. The TOSPICS in an interactive
image processing system which is a disk~based system and each operation
is performed by the command input through a teletypewriter. The software
systen for the image processing system consists of the permanent and non-
permanent resident system programs, the picture processors, the block
comrmon area, and a package of image processing programs. The system
diagram of TOSPICS is shown in Flgure 5.9. The special features of
TOSPICS for image processing are that the image memory is commonly used
in order to reduce the amount of data transmission and the parallel
picture processor is constructed to perforn certain programs at high
speed. The parallel picture processor performs the program of spatiatl
filtering at a speed of 1 pixel/l usec. The 1/0 devices of TOSPICS in-

clude a unique high precision flying spot scanner by a Double Deflection
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Tube (DDT) with 1096x4096 resolvable points and 32,000x32,000 addiessable
polnts.

Comparing the systems of Flexible Processors and TOSP3CS, the basic
ideas of parall:: srocessing for image processing by the distributed
computin: approach are the same for these two systems. The difference
between these two computer systems is the ways of utilizing processing
elemenrts, The TOSPICS uses the minicomputer, TOSBAC-%0C, as an image
rrocessor and a pacallel picture processcr {s attached to it. The
s raft2l pictuare processor .. used for certain programs, such as spatial
friter.ng. aviiro transformations, histogram calculation, and density
conversic 't 4y3]. The computer system of Flexible Processors uses the
Fiexible Processors as the processing elements. Each Flexible Processor
is assigned for one task and several Flexible Processors are organized as
the computer system.

The STARAN [108] computer is a parallel processing computer built
by Goodyear Aerospace Company in 1972. STARAN was not designed as a
special prupose computer for image processing. But this computer was
utilized for the task of resampling in the field of image processing in
1977 [109]. The STARAN parallel processor is a single instruction stream
multiple data stream (SiND) processor. The previously reviewed corputers,
such as, ILLIAC {1y, CLIPL, PICAP, and TOSPICS are SIMND progessor. The
Flexible Processor Is SISD processor. The single most important element
of STARAN is the assocliative array, which provides content addressability
and parallel instruction execution capabilities. Most STARAN computing
is done within a word of associative array memory. An associative array
vord is normally divided into fields of varying lengths by the programrer

to suit the requirements of specific programs. The values of these
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fiells then can be added, subtracted, multiplied, and divided within the
word. The STARAN can perform the same operations as a seauential processor
buﬁ with the added capability of performing these operations simultaneous-
ly on literally thousands of words in the associative processor arrays.
A Lasic STARAN configuration contains an associative array. However, up
to 32 associative arrays can be includ:! in a single STARAN system. The
block diagram of the STARAN computer ‘s shown in Figure 5.10. The
sequential controller provides off-linc capabilities for assembling and
debugyging STARAN programs and cot . *~1 of STARAN error processing,
diagnostic, and meintenance programs. Buffered 1/0 is available for
tylng different types of peripherals into the STARAN control memory.
Also B1/0 can be used to transfer blocks of data and/or programs between
the STARAN control memory and host memory. The external fuaction (EXF)
logic facilitates coordination between the different elements of STARAN
for special functions and simplifies housckeeping, maintenance, and

test functions. By issuing external function codes to the EXF logic,
elements of STARAN can control and interrogate the status of other
elenents. In general, the STARAN computer is powerful compared with the
Flexible Processor and TOSPICS  Huwever, only several image processing
tasks (such as resampling) have been carried out on this computer.
Therefore, the effective utilization of STAR:MN for all types of image
processing is still an open question.

Consider the attributes of the bit-plane processing approach and
the distributed computing approach. The bit-plane approach mostly uses
Boolecan operators as processors. Boolean operators work only on binary
images which are not common In the real world. One way to get around

this is to use several binary picture planes to represent the grey scale
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values of picture points. But, the complex software and additional
memory requirement cause another probiem and this problem limits the
processing pcwer of the processor. One of the drawbacks of the bit-plane
processing approach is that the processing power of the processor may

not be adequate for some of the ncre sophistic:ted image proccssing'
techniques. For example, Kruse [99] has shown that the parallel Picture
Processing Hachine PPH {now called PICAP) [88] to be applicable only to
the preprocessing part of fingerprint classification and as stated above
syntactic techniques have to be performed by the conventional computer

in the PICAP system. Thus, the ability of the bit-plane approach to
perform highly sophisticated, but important, techniques is, at this time,
unsure. The capability of real-time processing of the bit-plane pro-
cessing computers such as CLIP3, CLIPh, and PPM will be very difficult

to ascertain until more complicated techrniques applied to real world
pictures with more grey levels such as 128 or 256, have been implemented
by these computers.

After studying the feasibilities of the tit-plane processing and
distributed computing approaches to the real world image processing
task, we feel that the distributed computing approach is better
considering the present state-of~-the-art with respect to both software
and hardware. In March 1977, Stone [106] indicated that the distributed
computing approach is one of the future trends for general computer
architecture. His remark supports our judgment on the distributed com-
puting approach for special computer architecture for image processing.
A major drawback of previous computers designed by distributed computing
approach is that the system's processors are not reconfigurable. The

vast varieties of sensor types, applications, and image processing
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techniques, require that the image processing system (especially the
L parallel processor) be reconfigurable. Therefore, a generalized computer
architecture which is reconfigurable under software control is proposed
in the next section of this chapter for the many applications of image
processing. Mot only is the concept of reconfigurable ability new és
special purpose computer architecture for image processing, but also
the methods of exploitation of parallelism is new. In the proposed
computer architecture parallelism within the task is exploited by the
parallel processor. In the meantime the operations of the sequential
arithmetic processor are pipelined with the parallel processor under
programner control in certain tasks which can be decomposed into pipe-
lined processing. Therefore, parallelism and pipelining are exploited
at the same time in the prcposed computer architecture., The parallelism
[104] used is the nmultiprocessing approach which subdivides each out-
coming job among many identically constructed mechanisns. The pipe-
lining, or overlap [105] processing is another multiprocessing approach
which is to develop a collection of specialized mechanisms capable of
working simultaneously to form a gernecral purpose organization. The
processing time of the image processing task by the proposed computer
architecture will be sped up by a factor which is comparable t; the
aount of parallelism and pipeiining existing in the image pracessing

task of interest.

5.2 PHYSICAL ORGAMIZATION AHD COMTROL FLOVW OF THE
PROPOSED COMPUTER ARCHITECTURE

The proposed Computer Architecture for image Processing Is called

CAIb and Is to be'déslgned using the most recent semiconductor technology.

The physical organization and contrel flow are described in next sub-

secticns.
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5.2.1 Physical Organization of the Proposed Computer Architecture
The physical organization of this special computer architecture for_
Image processing (CAIP) comprises the task management processor, the
f
control units, the paraliel processor, the sequential arithmetic pro-~

cessor, and the memory organization.

1) Task Management Processor (THP) is a set of software programs

which allocate the jobs to the parallel processor {(PP) or Sequential
Arithmetic Processor (SAP). The set of software programs include a

task control program, a job control program, an input/output program,

and the language translation program. The task control program provides
the logical interface between the hardware and the remeinder of the soft-
vare systen and is responsible for the allocation of job;uia the parallel
processor and sequential arithmetic processor. Each task has a tag which
Is designated by the programmer for the identification of parallel pro-
cessing or sequential processing. One part of the task control program
is called the tag examination program which examines the tags on tasks
and allocates the tasks to the proper processor. Following the tag
examination, the initiation program, which is another part of the task
control program, initiates the parallel processor or the sequential
arithmetic processor. In general, the task contrcl program performs
scheduling, supervision, interruption handling, execution supervision,
and clock supervision. The job control program provides a logical inter-
face between a task and a job or between a task and the system operator.
The job control program analyzes the job strcam, looks at system re-
sources, processes job execution and termination, and communicates
betvicen the system operator and the individual job program. The 1/0

control program provides an interface between the processing programs
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and the 1/0 devices. The 1/0 control program performs 1/0 supervision,
access rout,ne processing, and 1/0 device initiation. The language
translator program translates the computer language Into machine codes
and compiles the program to be executed.

2) The Control Units (CU's) consist of two sets of software pro-

grams. One control unit (CUPP) is for the parallel ,-ocessor, and the
other (CUSA) is for the sequential arithmetic pirccessor. The CUPP and
CUSA are different from conventional processots, in that they are soft-
ware programs which control the operation of the parallel processor and
the sequential arithmetic processor respectively. The CUPP is a control
prograrm which initiates two different sets of software operating systems,
one for SIMD mude and the other for MIND mode. The two sets of software
operating systems drive the parallel processor individually upon the
cormand of CUPP. The reconfiguration from SIMD mode to MIMD mode or
MIMD rode to SIMD mode is performed by loading the operating svstem
corresponding to the desired mode. Hext, the operating system is
assigned to the parallel processor (PP) by the control program of CUPP.
Hence, the parallel processor operates in either SIMD or MIMD modes
under the respective operating systems. Through this arrangement, the
CUPP reconfigurates the computer architecture from SIMD to NIMD or MIMD
to SIND. This reconfigurable capability enables this computer architec-
ture to satisfy the large variety of applications of image processing.
The operating system of MIMD mode includes scheduling routines, dynamic
allocating routines, and dispatching routines. Thec scheduling routines
schedule each job depending on job priority and facility requirements.
The dynamic allocating routines take jobs set up by the scheduling rou-

tines and partition the set of processors according to the need of eact
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job. The dispatching routine dispatches the processors when the job
terminates or some higher oriority task requires processors. The operat~
ing system for the SIMD mode¢ is on the master control unit. A!l the
processors of the parallel processor (PP) are controlled by this master
control unit and thereby an instruction is executed simultaneously én

all the processors. The control unit of the sequential arithmetic
processor (CUSA) controls the sequential arithmetic processor which is

a microprogran-controlled bipolar processor. The control units are

shown in Figure 5.11. Hote that Figures 5.11, 5.12, 5.13, and 5.1% form
a graphical illustration of this computer architecture (CAIP) by linking

the corresponding symbols «, 8, v, and ¢ in the figures.

3) The Parallel Processer (PP) is an array of microprocessors., For

the parallel processor, N microprocessors are connected in an array
fashion. The array orgén!zatlon Is suitable for image processing

[102]. The number N is determined from the tradeoff considera-

tions between performance and cost. The optimal number, M, varies with
the task, Hence, N can only be determined at the time of implementation.
in the framework shown in Figure 5.12, a set of G microprocessors is
used to give an idea of the dimension of the problem. The control unit
(CUPP) controls this set of microprocessors in SIND or HIHD modes. This
control unit cnables the parallel processor (PP} to have a higher degree
of flexibility and processing power. The SIMD mode utilizes a siagle
master control unit which drives the multiple processing units (miciro-
processors), all of which either execute or ignore the current instruc-
tion. This SIND mode is especially useful for the cases in which there
exists (1) a large amount of independent dafa, (2) no restrictions

preventing them from being processed inpara!!el.(3) a requirement for
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high throughput, and (4) a possibility of exploiting the associative
addressing selection technique. Thus, SIMD mode is suitable for the
local task, which executes the same instruction on each picture element

4

within an image window. The MIHD mode utilizes N processors and N

memories where each processor follows an independent instruction stream.

The parallel processor (PP) is connected by crossbar switches te an

interleaved memory system which divides the ordinary merory into nodules

and the consecutive data are stored in different nodules. The inter-
leaved menory system is used because the bandwidth is greater than a
conventional memory system . -The Interleaved memory system is more
appropriate for parallel processing than a conventional system, in

which data can only be accessed cne at a time [94]. The cost of cross-

bar switches is high, since every processor can communicate with the
other processors and mcrmory modules. Depending on the image processing
tasks specified by the user, the interconnection among processors and
nermory nodules needed for these tasks can he studied, the alternatives
for the crossbar switches might ke selected.

B) The Sequential Arithmetic Processor (SAP) is a microprogran-

controlled processor. Mini and micro-computers are not used here
because user microprogrammable capability and bipolar processor are not
furnished by usual mini or micro-computers. The Sequential Arithmetic
Processor (SAP) is a bipolar processor which is a processor built by
bipolar semiconductor technology and usually has the bit slicing
capability. The bipolar micruprogrammable processor permits the de-
signer to define his own Instruction set and the associated hardware

architecture to achieve special capabilities, such as, variable word
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length capability or to perform an application with the highest
efficlency. The bipolar processor expands the CPU word length by cas~
cading the needed number of bit-slice microprocessor components. This
variable word length capability of SAP makes it more general and power-
ful than other microprocessors. Along with this processor, a micyo-
program memory is needed to store the microprograms of certain programs
frequently In use. For the microprograms of ifnage processing tech-
niques, no instruction fetching Is required because of the coding of
the microprogram. The microprogram capability saves processing time
according to the ratio of instruction fetch time to total execution

time. The Sequential Arithmetic Processor is shown in Figure 5.13.

5) The Memory Hierarchy Organization is the rmemory system for SAP.

The picture is stored on a magnetic disk merory which is riore econonical
than core memory, but nerory access time Is long. The memory access time
of the bipolar merory is faster by a factor of 100 than disk memory [111].
Therefore, a semiconductor bipolar memory is connected to the disk memory
as working menory space and buffer. The hierarchy organization is as
follows: the picture arza which is to be processed is loaded onto the
bipolar riemory from the disk memory, then the processor gets the data
(picture points) from the bipolar remory thus allowing extrenely fast
memory access time. In order to avoid being delayed by the loading

tire from disk to bipolar memory, a Bipolar Merory Buffer (BMB), is

used. Vhile the processor Is reading the data into the bipolar working
memory sapce, the next plcture area is loaded on the Bipolar Memory
Buffer (BMB). Thus, this memory preloading makes the data always ready

in the fast-access bipolar menory. This memory hierarchy aorganization
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is illustrated in Figure 5.14. This memory hierarchy organization is
different from the memory of TOSPICS [116] and the inage core memory of
the 11/45 [107]. The approach of the design of the memory system of
TosPICS [116] was to employ a large mermory storage to reduce the memory
loading time. The approach in designing the secondary core memory of
the PDP 11745 [107] used primarily for image storage, was to utilize

this secondary storage as & buffer memory as in the auxiliary memory

concept of the ILLIAC 111 [100]. However, the secondary core merory of
the PDP 11/45 is not randomly accessible. Each time an Image datum is
needed the user's program has to request that datum to be loaded to the
itnage core nemory. The proposed memory hierarchy loads a large block of
data onto the Bipolar Buffer Nemory as image processing necessitates
operations on large blocks of data, this ability of the CAIP through its
BHB provides a marked advantage for image processing. Once the large
hlock of data has been loaded onto the bipclar memory, any individual
data point can be randomly accessed and individual loading from primary
to secondary storage is not needed. Thus, the user's software becomes
simpler by virtue of this proposaed memory hierarchy organization. The
bipolar memory is used here because the bipolar memory is the memory
device with the fast fetch-time in present technology [lllj. The dis-
advantages of using bipolar memory are the higher cost and power needed

than the core merory.

5.2.2 Control Flow of the Proposed Computer Architecture
The contrcl flow for the proposed computer architecture, CAIP, is
shown in Figure 5.15. The Task Management Processor (THP) allocates jobs

to the parallel processor (PP) or the sequential arithmetic processor
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'SAP) by means of the tag examination routine. The user's program pro-
vides a flag to the parallel processor which indicates whether the task

{s local or global. The locality tester examines the fiag and initiates

the SIHD or MIMD mode. The SIMD mode is appropriate for local tasks. In

this mode a single instruction is executed simultaneously on the image

points. The local task means that the instruction is executed on

individual data within an image window, such as calculating thz histogram
of an image window. For global task, the MIMD mode is employed. The
global task means that part of the task is performing one kind of opera-
tion and other part of\the task is performing another kind of operation.
For example, in the task of evaluating textured and nontextured areas,
some processors perform second order statistical texture analysis on
certain window and some processors perform first order mean vector
analysis on the corresponding windows. The global task comprises of

two different natures of subtésks. The outputs from the Sequential
Arithmetic Processor (SAP) communicate with the parallel processor.
Therefore, the SAP may support the PP and vice versa. Parallelism of
task is exploited by the parallel processor (PP) to obtain high speed
performance. In the meantime, the operations of the Sequential Arith-
metic Processor (SAP) are pipelined to the parallel processor under
program control in certain tasks vhich can be decomposed into pipelined
processing. Therefore, the control flow of this architecture exhibits
both parallelism and pipelining. This arrangement has not been in-
corporated into any of the existing systems discussed in section 5.1,
Since two types of multiprocessing, parallel processing and pipeline
processing, are exploited simultaneously, this contributes to high

speed performance in the proposed computer architectura.
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5.3 ANALYSIS
5.3.1 Performance and Cost~Effectiveness Tradeoffs
The Parallel Processor (PP) of the propused computer architecture
consists of an array of microprocessors which are the processing elements.

In determinir. the optimal number, M, of microprocessors for the parallel

Processor (PP}, a systematic procedure is needed. Such a procedure follows:
in designing the parallel processor, as the number of processing elements
{microprocessors) increases, the nupher of data points processed by each
processor decreases and processing speed increases, but the scheduling
overhead also increases. Therefore, the processing speed inprovenent
reaches a saturation point at a certain pumber of procs ssing elements.

So it seens that the number of processing elements corresponding to the
saturation point would be a good choice. However, the answer is not

that simple, as cost-effectiveness is an important factor in the
feasibility of a computer architecture. Thus, the costs, such as hard-
ware an¢ software costs of the parallel p-ocessor (PP), need to be
considered, Hardware cost usually involves the hardware purchased and

the cost of physical construction of the system. Software cost refers ito

developrment of the operating svstens and software supports The best

choice of optinal number of processing elements is obtained by evaluating

the performance inprovenent and cost increment on different imagz pro-
cessing tasks. The optimal number directly depends on the specifications

which are given by the user. Llet us use the following hypathetical

POEARE |

example for illustration, if the processors' cost increases with the inerease
in the number of processing eclements (microprocessors), and the software

cost Increases more rapidly than the processors' cost as the pumber of pro- :

cessing elements Increases, the performance curve becomes saturated at
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80 processors for task A, and 70 for task B shown in Figure 5.16. N

should be in between 70 and 80, The .processors' cost increases mors or less
ltgearly with the numver of processors (if fewer than 100 processors are
bought). But, as stated above, the software cost increases more rapidly

than the processors' cost, |f the software cost increases sharply at 60

processors, as in Figure 5,17, the optimal number of processors, con-
sidering cost and performance trade-off, is between 60 and 80, Depending
on the specifications of the user, if the concern is more for performance
than cost, then a number near 80 is chosen. [f the user is more concerned
about cost, then a number near 60 should be cliosen.

5.3.2 Implementation of Statistical Methods

As discussed in Chapter 2 during recent years, a number of image
processing algorithms have been developed [2,83]. In this section,
some image processing techniques are discussed in terns of the proposed
computer architecture, CA{P, to exemplify the operations of the special
computer for image processing.

Statistical texture anailysis has been an important topic in the
field of image processing [9,72,73]. The texture analysis technique in
Chapter b consists of histogram equalization, and texture feature
measurement. In applying the proposed computer architecture, CAIP, to
such a texture analysis technique, the task of texture analysis is
assigned a tag P (which stands for parallel processor task) by the user's
program. (Tag S stands for sequential arithmetic processor task). The
subtasks of texture analysis, such as histogran equalization and texture
feature measruement, are designated by the flags Sl {which denotes the

SIMD mode for the task), and M1 (which denotes the MIMD mode for the

b —— o a0 > D

%
H
i
H

B
.
2
i
i
H
2
£
H
Ed

S

3




206

*10859%04d jo Jaqunu
JO S3uUSWadduj SHSIDA JusWOAOJLdwW] DouBWIOlIDd °*gl*g 94n5ld

$105532044 jo J3quny (3 ol G9 (114 O ot iT4 ot
-t } 4 } 4 + 4 - 4 0

0l

L.l c:

Vv 4ses

g vjse; -f 09

4+ 6L

JUDWIADLJL |

Swiy
‘ BUISSOIDUY




N N AR e e 4 b f e

*s40553504d J0 Jajunu SNSJISA UO|JLW[ISI S0 */{°G dunbid

5108535044 jJO Jaquni

<t— ab 6 0 .w c.N o*w c"m o“: c”m o“ 2 o"— 0
7
= /
; / = |
7 7/
/7
/ 4 ¢
/
\\
) e / T ¢ ]
L o nw
/ b
i / 1
/ \\ i
/ /
/ \\ L 9
3509 ,5105859204d .||\ \.\ \\ |
/ + L
3502 24BM3J0S _ / :
[ !
3502 |30} ————v” (31un 7
31502)

/ Y sas00

]
i

BTV




208

task). Assuming the size of the image is MxM. The texture analysis
task is allocated to the parallel processor (PP) of the CAIP by the tag
exgminatlon routine of the Task Management Processor (TMP). The Control
Unit of the Parallel Processor (CUPP) finds the flag, SI, for histogram
equalization and loads the operating system of the SIMD mode. Each

processor of the N microprocessors then calculates the histogram of an

~ﬁ-x A picture window. The outputs of the Il processors are then put

MW

together to obtain the equalization result of the final histogram. The
CUPP keeps the parallel processor (PP) in the SIMD mode after examining
the flag S! of the texture feature measurement task. For example, if the
88x88 picture discussed in Chapter 4 is to be processed, each processor
will process the co-occurrence matrix of the window of llixIl pixels.
The variability texture feature measurement is calculated by each pro-
cessor as the texture value for the center cell (hxk) of that window.
The mapping of the array of processors to the image points Ts shifted
four pixels and repeats the texture feature measurement task. Uhen
this shift reaches the right edge of image, the mapping is shifted four
pizels downward and the process is repeated from the left-most column
of the image. This process continues until the texture values of all

the picture points are obtained.

5.3.3 Syntactic Methods and Parallel Processing

As has been pointed out previously, syntactic methods for image
process ing have Increased in importance for certain applications. Pre~
- vious special computers such as the PPN and the PICAP are unable to

process syntactic methods by parallel processing [99]. However, the

ey sl e
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proposed CAIP furnishes the capability of parallel processing of syntac-
tic algorithm. In using the parallel procéssor for syntactic methods,
paratlel parsing schemeg are most desirable as they can utilize the
capability of the parallel processor. Unfortunately, the research in
parallel parsing schemes is very limited. In this section, we introduce
the parallel parsirng of tree languages and explore the parallel parsing

of the parallel context-free languages {103].

1. Tree Languages and Parallel Processing

The Parallel Processor (PP) of the proposed computer architecture
for image processing can be applied to tree grammar parsing. The
parallel parsing procedure of a tree grammar is described below. The
task of tree grammar parsing is designated by a flag P and tag Si by the
user's program for the effective utilization of the facilities. Through
the control unit of the computer architecture, the parallel processor is
put into the SIMD mode for the task of tree grammar parsing. If a pro-
duction rule of the tree grammar which is applied to parse the language

has k branches, then each of these k branches has a nontermninal. Each

processcr or the Parallel Processor (PP) is assigned by the user to
parse one nonterminal, This procedure is applied to consecutive parsing
of the language until a final parsing result is achieved. If the
parsing is successful, then the language (pattern) is accepted. If the
parse fails, then the language (pattern) is rejected.

For exanple, the tree grammar Is Gt = (v, r, P, S), where V = {S, a,
b, $, A, B}Y, Vo ={»a, #b, $}, r(a) = {2, 1, 0}, r(b) = {2, 1, O}, ¢($) =

2 and P: [2]
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rule 6;

A + a B »+ b A + a
! l
b a
This grammar generates such patterns as
S 3
{
i ! a b
l | oo
——— b a
(2) $
f ¥ 7N
T a b
. 7\ AN\
L 1 a b a
T i RN |
: ba b a
i | I
g T b a

in order to perform parallel parsing of the tree language, processors
need tc be assigned. First, the depth ''d" of the tree is defined as

the number of the levels of the trce. The depth of the tree in (1) is

2 (d=2) and the depth of the tree in (2) is h (d=k). The maximum number
of branches for all the tree grammar rules is easily obtained by check~-
ing the values of r in the grammar G = (v, r, P, S) and this number is
called n. The relationship between m and r is that m is the maximum of

the values of the r's. The number of needed processors in the parallel

processor (PP) is (d)m. This procedure is performed for the worst case
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protection concept which allows the maximum number of branching In each
level of the tree parsing. If the number (d)™ is greater than the number
of processors of the parallel brocessor (PP), there are two solutions:
one is the static priority procedure, and the other is the dynamic
priority procedure. The static priority procedure has a fixed priority
rule for assigning the available processors to the proper subtasks. The
fixed priority rule for the parallel tree parsing scheme is to assign

the k left-most branches the equal priority in each parsing stage. The

number, k, is the number of available processors of the parallel

processor (PP) for each parsing stage. At parsing stage one, the k left-
most hranches are parsed first, based on the highest priority rule. At
parsing stage two, the k left-most branches (nonterminals) of stage two
then have the highest priority to be parsed. Thus, the k available
processors are assigned to parse these nonterminals.

In the dynamic priority procedure, a dynamic priority rule has to
be established at each stage of parsing in order to determine which sub-
tasks have the highest priority. For example, the k left-most priority
could be assigned first, then the k right-most priority assigned next
at the request of the user. However, in parsing the tree languages, all
the individual branches (nonterminals) have to be parsed to get the nodes
(terminals), therefore, the static priority procedure is better. The
dynanmic priority procedure would only he used in special cases, such as
the case in which only a partial parsing result is of interest,

Using the example given above to illustrate the proposed parallel
parsing scheme for tree languages and to compare the parsing result with

conventional parsina scheme for tree languages, if the depth of the tree
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to be parsed is, at most, four - the maximum number of processors needed
is easily calculated to be (‘0)2 = 16. In the parallel parsing of the

input tree «,
e

The task is allocated to the parallel processor (PP) by the P flag found

by the Task Management Processor (TMP) and the parallel processor (PP)

is placed in the SIMD mode by CUPP. The procedure is graphically illu~
strated in Figure 5.18. At the parsing of depth one, one processor
parses the language by the rule 1. At the parsing of depth two, two
processors are assignéd. The number of processors needed for the parsing
of depth k is automatically détermined by the number of branches obtained
form the parsing of depth k-~1. The number of branches obtained from
depth one in our example is two. Thus, two processors are needed, one
for the parsing of the branch starting from nonterminal A and the other
for the parsing of the branch starting from nonterminal B. Grammar

rules 2 and 3 are simultaneously applied by the two processors to parse
the two branches of the tree a starting from A and B respectively. At
the parsing of depth three, four processors are needed. Two processors
simultaneously parse the branches of A and B which are the result of

parsina rule 2 in the depth two. The parsing rules for these two pro-

cessors are rules 4 and 3, respectively, to nonterminal A and B. The
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other two processors simultaneously apply rules 6 and 5 to parse the
branches of A and B, which are the result of parsﬁng by rule 3 in the
depth two. At the parsing of depth four, since there are only two non-
té:minals A and B left from the parsing of depth three, two processors
are assinged to simultaneously parse the branches A and B by rules 4 and
5 respectively. Thus, the parallel parsing is completed and the tree is
accepted. The parsing of the same tree language by the conventional
sequential parsing scheme is shovin in Figure 5.19. At each parsing
stage, only one nonterminal can be parsed by the parser. At parsing

stage one, grammar rule 1 is applied. Rule 2 is applied at parsing

stage two. Then the rules 4,3,4,5,3,6, and 5 are applied to parsing

stages 3,%4,5,6,7,3, and 9 respectively. Nine parsing stages are needed
for the parsing of the same tree as shown in Figure 5.19. It can be seen
in Figure 5.18 that only four parsing stages were ﬁeeded for parallel
tree parsing scheme. Thus, in this example there is a saving of over

503 in parsing stages, and, therefore, a corresponding saving in time by
utilizing this parallel parsing scheme on the proposed computer.

2. Parallel Context-Free Language and Parallel Processing

The parallel context-free language was defined by Siromoney and
Krithivason in [103]. The definition of a parallel context-free language
is a language generated by a context-free grammar in which the manner
of applying the grammar rules is restricted as follows: if a nonterminal
occurs more than once in a sentential form, then every occurrence of
the nonterminal is replaced at the same time by the same rule.

The parallel processor (PP) of the proposed computer architecture
for image processing (CAIP) performs the parsing of a parallel context-

free language in the SIMD mode. From the definition of a parallel
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Figure 5.18, Parallel tree parsing procedure,
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context-{ree language, the number of needed processors of the parallel
processor is equal to the maximum number of occurrences of a nonterminal
in all sentential forms. A processor is assigned under programmer con-
tr;I to each nonterminal when it occurs simultaneously with the same
nonterminal in the derivation. These processors perform the parsing of
same grammar rules on these nonterminals.

For example, the task of parsing a parallel context-free language is
assigned the flag P and tag S! which initiate the SIND mode for the task.
The parallel context-free ianguage is L(G) = {aznln > 0} [103]. The
parallel context-free gramar is 6= (v, 1, P, S) where V¥ = {S, a},

i = {a), and P = {S ~ S5, S » al. |If the languages to be parsed arc aa
and aaaa. The naximum number of occurrences of nonterminals in all
sentential forms is four which comes from aaaa (nonterminal ssss). Thus,
the number of needed processors is four. At the first stage of parsing
of the language aaaa, one processcr is assigned to parse the language and
the gramnatical rule is § = SS. At the second stage of parsing, two
processors apply the same rule 5 + 5S on the two nonterminals ¥'S' and

the parsing result is SS§SS, At the third stage of parsing, four pro-
cessors apply the same rule S + a on all the four nonterminals '"'S¥,
Hence, the parsing result is aaaa. This language cannot be passed
sequentially as the language is defined to be parsed only parallelly.

The sentence aaaa of this example is parsed by the parallel context-

free grammar G. Thus, the sentence is accepted as a member of L(G).

In the preprocessing part of the tree grammar approach in Chapter

L, the tash of horizontal and vertical processing is assigned a flag Ml

which denotes the MIMD mode for the tash. The horizontal and vertical
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processing task is thus allocated to the parallel processor (PP) of the
CAIP by the tag examination routine of the Task Management Processor
(THP). The control unit of the parallel procescor {PP) loads the
operating system of the MIMD mode after finding the Ml flag of the task.
The parallel processor has N processors. Half of the set of N prowessors
is designated to execute the horizontal processing and the other half of
that set of processors executes the vertical processing. The different
instructions are executed on nulitiple picture data at the same time by
the parallel processor (PP). In this example, the computer architecture
CAIP utilizes the multiple instruction stream multiple data stream (MIMD)

mode to achieve high system throughput for this task.

5.4 SUMMARY AND RENMARKS

A computer architecture for image processing {(CAIF) has been pro-

posed. This computer architecture is designed by the distributed

computing approach. This computer is comprised of a parallel processor
(PP) and a sequential arithmetic processor (SAP). The flexibility and
high performance of this computer architecture are contributed to by two
major features which are the reconfiguration capability, described in
section 5.2.1, and the method of computer exploitation of task parallel-
ism, stated in section 5.2.2, This computer architecture for image
processing is proposed to use microprocessors as the processing elements.
The advantage of using a microprocessor array is that the cost of micro-
processors is rmuch lower than that of conventional processors. The dis-
advantage is that the processing power of microprocessors is less than
that of conventional processors, especially in addressing capability.
For example, the most popular microprocessors INTEL 8080 and MOTOROLA

6800 do not have associate addressing or microprogramming abilities.
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For special image processing computers, some processing powers of con-
ventional processors, such as associative addressing, are not essentlal
[102]. The approach of designing a general purpose computer by micro-
processors has been controversial. But, in designing a special purpose
computer for image processing, mtcroprocessors have their advantages.
Furthermore, the advance in semiconductor technology is toward the
development of microprocessors with higher processing power. The recent
developments in the microprocessors servies IHTEL 3000, HOTOROLA M2900,

and Texas Instruments 7hSh81 have provided microprogramming capability

to microprocessors.

\lith the fast growth of image processing and its applications, the
need for a special image processing machine such as the proposed computer,

CAlP, should certainly be appreciated,
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CHAPTER 6

COHCLUSIONS AND SUGGESTIONS FOR FURTHER VORK

6.1 SUMHARY AND CONCLUSIONS

In this study, we have presented the finite-statc string grammar
approach for image recognition, a tree grammar approach for image seg-
mentation, and a special computer architecture for image processing.

The system for image recognition was presented in Chapter 3. This
system consists of preprocessor, syntactic analyzer, and postprocessor
[118]. Two methods were presented; namely, syntax-directed [7] and
syntax-controlled methods. The finite-state string grammar was applied
to the recognition of highways and rivers from LANDSAT images. For the
syntax-controlled method, the finite-state string grammar was automati-
cally inferred by the k-tail finite-state grammatical inference proce-
dure. From the experiments, the finite-state string grammar which is
inferred by the k=2 case in the grammatical inference procedure was
found to be the most suitable of those investigated for higlway and
river recognition, Some further applications of the syntactic method
vere kridge and commercial/industrial area recognition. The method ex-
tracted the structural and contextual information from the images to
recognize the objects of interest., The locations and lengths of bridges,
as well as the centers and sizes of commercial/industrial areas were

extracted by the appropriate algorithms described In Chapter 3.
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In Chapter 4, a syntactic method for image segmentatlon was presented,
This method is a tree grammar approach which utilizes a tree automaton to
extract the boundaries of the homogeneous region segments of an image.
The homogeneity of the region segment was obtained through the texture
feature measurenents of the inage. The experiments were conducted on
different images obtained from satellite, and Infrared sensors. The
results of syntactic image segmentation compare favorably with thosc of
statistical classification techniques.

in Chapter 5, a corputer architecture for image processing was
proposed. This computer architecture was designed by the distributed
computing approach. This computer consists of a parallel processor and
a sequential arithmetic processor. Two major Teatures which are new to
the field of special putpose computer architectures for image processing
contributed to the flexibility and high performance of this architecture.
These features are the reconfigurable capability, described in section
5.2.1, and the method of computer exploitation of task parallelism,
given in section 5.2.2.

In conclusion, the syntax-controlled method for image recognition
was found to be more powerful than the syntax-directed method, commonly
known as template matching. Firstly, the computer processing of the
recognition process for the syntax-controlled method is faster than that
of the synta£~dlrected method. Secondly, the recognition by the syntax-
controlled method is based on an automaton (or parser) which is much
more poverful and flexible than recognition by matching the templates in
the syntax-directed method. Also the recognition power of the syntax-
directed method is limited by “he number of templates, The advantage

of the syntax-directed method is its fast software development time
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which means the time of developing and Implementing such a method is
fast and less complicated than the syntax-controlled method. Hawever,
once the software of the syntax-controlled method is developed, the

syntax-controlled method saves program execution time In performing the

task every time.

The selection of an appropriate grammatical approach for recognition
usually depends on the problen requirements [2]. The string grarmar is
most suitable in describing a string-like pattern, such as, highways and
rivers. Thus, the string grammar approach, vthich uses a finite-state
automaton as syntactic analyzer, is applied for the image recognition in
Chapter 3.

For the problems tn Chapter L, the patterns of interest are the

boundaries of the image segments. These boundary patterns are high

dimensional. The tree grammar is more convenient in describing high
dimensional objects than string grammar, therefore, a treec grammar was used.
The tree grammar offers a natural high dimensional generalization of strings
and the tree automaton has a high analytical capability in recognizing
patterns. Thus, the tree grammar approach, which utilizes a tree auvto-~
maton as syntactic analyzer, is applied for image segmentation in Chapter
b,

We believe that the syntactic algorithms for image recognition and
seqgnentation developed in Chapter 3 and &4 provide a better way to under-
stand image structure and to extract image information than these have
previously heen done, These ;yntactic algorithms can be used for
military reconnaissance, industrial automation, and nedical diagnosis.

In addition, the fast growth of image processing and its impact

on industrlal, biomedical, and military applications, has created a need
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for a speclal image processing computer such as that proposed In Chapter

5, namely, the computer, CA!P,

. 6.2 SUGGEST!0NS FOR FURTHER WORK

Syntactic algorithms and special computer architectures for image
processing are very imporgant areas of research. There are still many
open problems that are worth investigating.

The finite-state string grammar and the tree grammar approaches
need to be further developed for more and varied applications. Other
grammatical approaches, such as a context-free grammar [2] and a parallel
context~free gramnar [103] need investigation for their applicatisns to
image processing. Parallel parsing schemes for finite-state, context-
free, and context-sensitive grammars need to be studied. And the
special computer described in Chapter 5 needs to be physically construct-

ed according to the proposed computer architecture in Chapter 5, and put

into operation.
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THE FLOW CHART OF HIGHUAY RECOGHITION VIA

THE SYNTAX~DIRECTED METHOD
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- Real world digitized
satellite images
{visible bands, channel 1 and 2)

Y

Use the found THRESHOLD H in
the inference process to

threshold the images to binary
Image.

greater than or equal to THRESHOLD -+ 1
less than THRESHOLD + O

Transformation
process

4

Line smoothing process

v

String grammar analyzer to-accept the
patterns which are generated by string
grammar and reject other patterns.

String grammar

1

Highway recognition result
via the
syntax-directed method

analyslis
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THE FLOW CHART OF RIVER RECOGHITION viA

THE SYNTAX-DIRECTED METHOD
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Real world digitized
satellite images

(infrared bands, channel 3 and 4)

Use the found THRESHOLD R in the inference

process for '"water-like area' to threshold Transformation
the images to binary image. process
greater than or equal to the THRESHOLD - O
less than the THRESHOLD »> 1
Line smoothing process
A 4 1r
. . ) 3
String grammar analyzer to accept the patterns
which are generated by the string grammar,anti

reject other patterns

‘»

River recognition result via the
syntax-directed method,

String grammar
analysis
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THE FLOW CHART OF BRIDGE DETECTION VIA THE SYNTAX-

DIRECTED METHOD VITH SEMANTIC PROCESS
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(Real world satellite lmagei)

3

The flow chart of highway The flow chart of river
recognition by the recognition by the
syntax-directed method syntax-directed method

Implementation of sémantic rules

.

Calculate the number of horizontal rows having
bridge points, the number to be 'a"

‘I

Calculate the number of vertical columns having

. bridge points, the number to be 'b'
|

t

The length of bridge
Is "C"

> ¢ =/ax79)? + (bx56)2 L‘

The length of]
bridge is ¢
c =ba56

1

locate the coordinate
of bridge

4

Bridge recognition result

via the
syntax~directed method with
semantic process
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TRATNING SAMPLES FOR HIGHWAY GRAMMAR
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APPENDIX F
SAMPLE PATTERNS FOR INFERENCE OF TREE
GRAMMAR FOR MILITARY VEHICLE
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APPENDIX G

THE FLOW CHART OF TREE GRAMMAR INFERENCE PROCEDURE
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{ Main ’

-

Input sample
pattern i

CAL! ®HCODE

Encode the pattern into primitives
a, b, ¢, d, e, f, g, and h, and use
pointers to form the linked tree
data structure

4

Check the values which are pointed by
the pointer of the tree. Group the
encoded tree into subtrees with re-
petitive substructures (some values).

_1

Take the root of each subtree and the
succeeding value linked by the pointer.
Delete rest of the tree.

N

Start from the root of the input tree,
replace the values which are linked by
the values corresponding to the non-
terminals., Then the grammar rule is
inferred and stored in computzr as a
linear arrav.

R
e o

\
ne All subtrees are >

checked?
yes

" ﬂl\>

n: no, of sample

yes

Output
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THE FLOV CHART OF TREE GRAMMAR AMALYSIS
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/Boundary Primi tivj

Extraction Result
nxn picture

CALL ENCODE

Encode the pattern into linked tree
structures TREE(11,JJ) with the
primitives a, b, ¢, d, e, f, g, and h.

Construct tree automaton TA(L,M)

A(L,2) = input symbol Ho

(TREE (TREE(11,JJ+k), 1))
\\\\\\\k\f\zéinter number

yes

 L=L+]

Check next state
TAV=TA(L,3)

ind transition ru
~—— for next level | LL=LbL+]

:
:
| T~ JA(LL, 1) =TAve-
é © aj Yes @




J=jHh

End of branch?
TA(LL,3)=

Final state?
TA(LL,1) € F?
F=final state set?

4

i=1+h

J

Syntactically correc
Boundary Pattern

.

No qb

MR A RN b B3 i sson e




APPENDIX |

THE EXAMPLE OF TREE AUTOMATOM CONSTRUCTION

RN AL M0 0 it b




246

Example Grammar from section L.1.1,
¢, =¥, r, P, 8)

- V={A],A S, *0 c, d, e, f}

2?
V= {4, 0c, nd, te, xf}
r(4) = 1Y rlc) = {0,1,2}  r(d) = {2}

r(e) = {0,1} r(f) = {0,1}
P =
S » 4 S » 4
| {
A Ay
A+ C A, > d
/ /' \
A Ay A A
Al > T A2 +> e
A
R, > f Ay > e
Ry

The detailed steps of tree automaton construction are as follows: the
tree autonaton is Mes My = (q, f» fe’ fd’ f*, F), where Q = {qc, G s 9y

959 qs} and F = {qc,qe}.

Grammar Rule of Grammar Transition Rule of Automaton
S - :;' f (Q]) =q
s
i $
r\]
S - 5‘ fi(qz) = q
A
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Al -+ /C\\ fc(ql’qz) ql
/‘\] /\2
P A, > /d\ fd(q‘,qz) 9,
AL Ay
Ay 1 fla) = q
A
/\2 > T fe(qz) = qZ
Ay
£ —
Ay > e fola,) = a,
Ay fc(qe) = q

Thus the tree automaton is constructed as Mt’ M= (qQ, fc’ Fos fd’ f&’ F),

vhere Q = {qc, qes q}’ q2’ qs}’ F = {qcvqe} and f:

(1) fi(q,) = q (5) f.(a)) =q
(2) fi(qz) = q (6) f (a,) =a,
(3) £ (a},q,) = q, (7) fla) =aq,
(4) £ (a),q,) = q, 8 fla) =q
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