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ABSTRACT

Several efficient algorithms for inage recognition end segmentation

and a new computer architecture for image processing are proposed. The

algorithms are "syntactic" in that they perform structural or spatial

analysis rather than statistical analysis, and a "granmar" is Inferred

for describing the structures of patterns in an image. Depending on the

requirements of the problem, an appropriate grammatical approach Is used

by the syntactic algorithm.

A finite-state string grammar is applied to the image recognition of

highways, rivers, bridges, and cormiercial/irdustrial areas from LANDSAT

ir.iages. There are two major methods in the string grammar approach for

Image recognition; namely, the syntax-directed method and syntax-controlled

method. For the syntax-directed nethod, syntactic analysis is performed

by a template matching which is directed by the syntactic rules. For

the syntax-controlled method an automaton .which Is directly controlled

by the syntactic rules is used for the syntactic analysis.

A tree grammar is applied to the image segmentation of terrain and

tactical targets from LAUIDSAT and infrared Images respectively. The

tree grammar approach utilizes a tree automaton to extract the boundaries

of the honogeneous region segments of the Image. The homogeneity of the

region segment is obtained thruugh texture feature measurements of the

Image. __
" ~ ~~~~~ ~ ~ ~ T 7r -= .. ,-]| Hl



xii

The computer architecture proposed is a special purpose system in

that it can perform an inage processing task on several picture-points of

an~image at the same time, and thus takes advantage of the fact that

inage processing tasks usually exhibit "parallelism". This architecture

uses a distributed computing approach. Two major features are the re-

configurable capability, and the method of computer exploitation of task

parallelism. Finally, a parallel parsing scheme for tree granmar is used

to demonstrate the higher efficiency of the proposed computer architecture

than the conventional parsing scherie.
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CHAPTER I

INTRODUCT ION

Image segmentation is a computer technique that breaks an image into

different regions, each having homogeneous properties [83]. In image

analysis or scene analysis the desired result Is a computer-generated

description of the given image or scene. The computer-generated descrip-

tion refers to specific parts (regions or objects) in the image or scene,

Therefore, a first step is to divide the Image into these parts; that is,

to do image segmentation. Image segmentation is also an important stage

In sample classification [I], and Image compression [83].

An algorithm is a computational procedure showing the steps the

computer is asked to perform [113]. Algorithms involving statistical

operations are statistical algorithms. Algorithms which perform struc-

tural or spatial analysis in Image processing problems are called "syntactic'

algorithms because of the analogy between the structure of patterns and

the syntax of languages [2].

The "language" that provides the structural description of patterns

in terms of a set of pattern primitives and their composition operations

is called the "patterh-descrlption language." The rules governing the

composition of primitives into patterns are usually specified by the so

called "grammar" of the pattern description language. After each primni-

tive within the pattern Is identified, the recognition process Is

accompl ished by performing a syntactic analysis of the "sentence!"

-- . _ _ _ _ _-;__ _ _
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describing the given pattern to deternine whether or not It is syntacti-

cally (or grammatically) correct with respect to the specified grammar.

There are four types of grammars [2] according to form; namely, type 0

(unrestricted) grammars, type 1 (context-sensitive) grammars, type 2

(context-free) grammars, and type 3 (finite-state) grammars. "Finite

state" refers to the fact that these grammars have various control

states (a finite number of them). There are two types of finite state

grannars: string grammars and tree grammars 113]. If a finite state

grammar is used in the syntax analysis, the analysis is called a finite

state grammar approach. The selection of an appropriate grammar for

image processing usually depends on the requirements of the problem. A

syntactic algorithm for Image segmentation and two for image recognition

are presented in Chapters 3 and 4-.

An algorithm can be implemented by computer software (programs) or

hardware. If it is considered thac the potential usefulness of a specific

algorithm justifies the time and cost, specific hardware can be built to

perform the algorithm. That is, a special small computer can be built

to perform just that one task. With the ever Increasing Interest in, and

useful applications of Image processing, a consideration of building a

special purpose computer primarily for image processing Is justified.

tIage processing done on large computers takes a great deal of memory

space and is very time consuning. Thus, the cost of the computer time

Is high. So this cost has to be weighed against the cost of building a

special purpose computer.

Image processing tasks usually exhibit "parallelism." That Is,

hardware can be built to perform a task on several picture-points of an

image at the same time, i.e., In parallel. This makes image processing
0 !
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as the method of segmenting an inage. They involve region merging,

region dividing, or a combination of merging and dividing.

a. Region Merging

This has been done by five approaches: statistical, linguistic,

decision-theoretical, relaxation, and interpretation guided.

(1) The statistical approach to region merging has been developed
by Brice and Fennan [311]; Bajcsy [39]; Gupta and W1intz [40];

and Jarvis [114);

(ii) the linguistic approach has been investigated by Tsuji and

Fujiwara [41];

(iii) the decision-theoretical approach was developed by Yakimovsky
and Feldman [42);

(iv) the relaxation approach was developed by Rosenfeld, Humm el,
and Zucker [78]; and

(v) the interpretation guided approach has been investigated by
Tenenbaum and Barrow [79].

b. Region Dividing

This involves successively partitioning the image by certain criteria

and was first put forth by Robertson [44], and Klinger (453.

c. Combination

A combination of merging and dividing has been proposed by Horowitz

and Pavlidis [46,71].

3) "Edge" Detection Methods: These methods defipe as "edges" the

boundary between two different objects in a picture, (for example, the

"edge" between a human neck and a sweater neck) and consider these edges

as the boundaries of the segments of the image. There are several approache

as follows:
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a. Template. Hatching

This approach has been explored by Griffith [47,48); and Hueckel

[49,50];

b. Gradient Operator

This approach has been studied by Duda and Hart (57]; Rosenfeld [61];

Rosenfeld and Thurston [58,59]; Rosenfeld and Troy (68]; Rosenfeld and

Thomas [60]; Persoon [67]; Wechsler [112]; and Thompson [85];

c. Boundary-Search

This approach investigated by Rosenfeld [52]; and Kelley [53]; and

d. ine-Fitting

This approach developed by Hough [54]; Duda and Hart 155]; and

Pavlldis [56].

Most of the above techniques are statistical. flone of them are

based on the syntactic approach. Mone of them have explicitly used struc-

tural and contextual information. These statistical techniques suffer

from costly computer processing time. An Image often exhibits a

hierarchical structure. Therefore, image segmentation can be approached

by the syntactic method. A syntactic method based on the finite state

(string) grammar approach has been developed for image recognition in

Chapter 3. A syntactic method based on the tree grammar approach has

been developed for iamge segmentation in Chapter 4. It is desirable to

make syntactic algorithms useful in real-world applications. Thus, these

syntactic algorithms have all been tested on real-world data such as

satellite images, aerophotographic inkiges, and Infrared images. The ex-

perimental computer results show that these syntactic algorithms are

useful for image recognition and segmentation.

It1
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1.2 DESIGN FOR A SPECIAL COMPUTER ARCHITECTURE FOR IMAGE PROCESSING

Previous designs for special computer architecture for image

processing basically fall into two categories: bit-plane processing and

distributed processing.

a. Bit-Plane Processing

The bit-plane processing approach performs the arithmetic computa-

tion on image points which are stored in Boolean bit planes. The special-

purpose computers developed by this approach are the Illinois pattern

recognition computer (ILLIAC 111) [87,100], the Digital Parallel Processor

(DPP) (90,91], the Cellular Logic Image Processor (CLIP 4) [92], and the

Parallel Picture Processing Mlachine (PPM) [88,89].

b. Distributed Processing

In the distributed computing approach, the configuration of the

processors forms an architecture such that the computational load is shared

by these processors through software and/or hardware control. The special

purpose computers that have been built utilizing this approach are the

Flexible Processor by Control Data Corporation [97], Toshiba Picture

Processing System (TOSPICS) [93,116] by Toshiba Corporation, and STARAN

computer by Goodyear Aerospace Corporation [108,109].

A weakness of all the above special computers for image processing

is t.ýat the computer systems are not reconfigurable, that is, the computer

can only operate in one of the four modes: SISD (single instruction

stream single data stream), 1ISD (multiple Instruction stream single data

stream), SIMD (single Instruction stream multiple data stream), or MIMD

(multiple Instruction stream multiple data stream). Because of the great

variety of sensor types, and the many applications, Image processing

algorithms require that the computer system be reconfigurable. Therefore,



a desion for a special computer for image processing which is reconfigur-

able is proposed in Chapter 5.

1.3 RESEARCH SUHMARY

This research deals with three areas: syntactic pattern recognition;

information extraction and image understanding; and special computer

architecture for image processing.

In the area of syntar~tic pattern recognition, the finite-state

string grammar approach used for image recognition is presented in Chapter

3. Two syntactic methods have been developed. One is a syntax-directed

method and the other is a syntax-controlled method. The syntax-directed

method uses a set of templates as a recognizer. A deterministic finite-

state automaton is used as a recognizer In the syntax-controlled method.

An interactive grammatical inference procedure was devised for the syntax-

directed method. A k-tall finite-state grammatical inference procedure

[201, which is a procedure to minimize the number of states by equivalence

partitioning based on the length 1k" of the derivatives of the sample

patterns, is used In a fully computer automated procedure for the syntax

controlled method. A comparative study on the syntax-directed (conmmonly

known as template matching) and syntax-controlled methods were undertaken.

This led to a decision In favor of the syntax-controlled method. The

performances of the recognition by the different finite state gremnars,

which are inferred by the k-tail inference procedure with differcat

values of k, were studied. This revealed that the grammar inferred by a

high value of k is miore precise in characterizing the syntactic patterns

than that inferred by a low value of k, but the computer processing time

for the recognition by the corresponding finite state automaton increases.

These syntactic methods have been Implemented and applied to the



recognition of highways, rivers, bridges, and commercial/industrial areas

from satellite images. The finite-state string grammar has been shown to

be-able to characterize the structure of highways and rivers. The com-

puter results were accurate even though the resolution of the Input

image was low due to being collected by satellite at a very high altitude

(approximately 570 miles) [82].

In the area of information extraction and image understanding, the

objective of the research was to achieve a better understanding of image

structure and to use this knowledge to develop a technique fo, image

analysis and automatic information extraction. The results obtained from

applying syntactic pattern recognition to satellite images cf highways,

rivers, bridges, and commercIal/industrial areas are useful for image

analysis and relevant to military applications. The automated methods

of extracting such incormatlon as position coordinates and lengths of

bridges and centers and sizes of a coinerclal/industrial areas as pre-

sented in Chapter 3 provides a high level understanding of imagery by com-

puter automation. The syntactic image segmentation algorithm presented

In Chapter 4 incorporates textural discrimination and boundary structure

analysis. The tree grarimar approach is applied. A tree transformational

grammar and its inference procedure is introduced to reduce the noise and

irregularities in patterns. The syntactic image segmentation algorithm

was applied to tactical target detection from infrared Images.

In the area of special computer architecture for image processing,

several previously proposed special computers for image processing were

reviewed. The proposed special computer architecture in Chapter 5 was

designed using a distributed corputing approach. This computer !s con-

prised of a Parallel Processor (PP) and a Sequential Aritixietic
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Processor (SAP). There are two major features iiew to the field of special

computer architecture for Image processing. They are a reconfigurable

capability, and a special method of parallelism. These contribute a high

flexibility and a high performance capability for image processing to

the proposed computer architecture. The recons•igurable capability en-

ables the proposed computer to satisfy the large variety of applications

in image processing. This capability is obtained through the Control

Unit of Parallel Processor (CUPP) which reconfigures the paralle!

processor between the SItD mode and the HIJID mode. The parallelism of

the task is exploited by the parallel processor to obtain high speed

performance. At the same time the operations of the sequential arith-

metic processor are pipelined to the parallel procý.,sor under program

control in those tasks which can be decomposed into pipeline processing.

Therefore, the exploitation of parallelism results In parallelism and

pipelining simultaenously. Thus, the computer architecture achieves high

flexibility and performance.

* *
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CHAPTER 2

PREVIOUS WORK

2.1 PREVIOUS RESEARCH WORK IlI IHAGE SEGOENTATIOH

As mentioned In Chapter 1, previous research in the field of image

segmentation falls into three major categories; characteristics thres-

holding, reyion extraction, and edge detection.

2.1.1 Characteristics Threshoiding Methods

The whole field of Image processing has become possible because of

the development of the ability to "digitize" a picture or image; that

is, the picture is digitized into a matrix of n by m pixels (picture

elements). Then, each pixel is given a grey level value corresponding

to the amount of light it transmits. These grey levels lend themselves

to mathematical manipulation, and functions can be written involving

them. The f!rst task is to find characteristic functions of grey levels.

The second is to find a threshold in such a function that will make a

significant division in the type of pixels. There are two basic

approaches to thresholding the characteristic function of grey levels

for image segmentation; the statistical and the structural.

a. Statistical Approach

In this approach, a picture is divided into different regions by

thresholding the value of an appropriate local picture property. For

example, all physical objects have a constant reflectance over their
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surfaces. Therefore, an object of uniform grey level is considered to

be a homogeneous object. Zucker, Rosenfeld, and Davis [26] proposed

that a good method of segmenting a picture into regions of uniform grey

levels would be to examine the histogram of the grey levels in the

picture. Instead of measuring the grey level of each picture point, a

set of spot detectors having a range of sizes is used to provide local

property values upon which to base the segnentation. There. is one

problen in this technique; that is, that due to overlap of the spot

detector In the measurenent of each point, sometimes the histogram

valley, necessary to threshold the picture could not be found. So non-

maximum feature values were suppressed over an area corresponding to

the receptive field of each spot detector; that is, a spot value was

ignored if a larger value existed at some point in its receptive field.

The threshold for segmentation was selected as the oiwest point between

two peaks in the histogram. But there are only linited results on

bimodel cases in Zucker, Rosenfeld, and Davis's [261] paper. Further

complicated experiments, such as the nultimodel cases should be studied

in order to show the generality of this technique.

In some cases, where the black and white dots occur in both the

significant regions and In the background (e.g., In the cases where

the probability of occurrence of a black dot Is 0.6 In the significant

region and 0.4 in background), the method in 1261 will not work because

the threshold cannot be found. Davis, Rosenfeld, and Weszka [29]

applied local averaging of grey level values to every point of the

picture. Then the histogram was built by the average grey levels of

the picture. But the method will not work If the picture also contains

other adjacent regions In which the average grey levels are higher and I
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lower than that of the initial region. Weszka, Nagel, and Rosenfeld

£30] aF> led the Laplacian operator to determine points that lie on or

near the edges of objects to try to get around this problem. In work-

ing with a grey level histogram, the peaks are sometimes very unequal

In size and the valley is broad. Here, the thresholding is difficult.

Ohlander [68] used multiple sources of data and the threshold

operation based on histograms. Thus, there exists the option of

examining nine histograms from these sources to dt termine the most

sharply defined feature. Thresholding on limits provided by the

minima bounding the best peak In the histogram will furnish clusters

of points which are uniform for the given feature. Then these regions

are extracted. But, the number of sensory parameters and variety of

picture operations require, for this system, large amounts of storage

space and heavy expenditures of computational time. in this system,

the control of parameters is determined by human interaction. Even

with hunan interaction and 9 hours of CPU time, the heavy input and out-

put requirements increases the real time processing to 18 hours or more

to process a scene of 600x800 points on a PDP 10 computer. And as the

amount of noise in the Information becomes greater and greater, the

resolution of this system becomes less and less.

Carlton and Mitchell [86] used texture and grey level information

for image segmentation. This technique uses a texture measure that

counts the number of local extretaa in a window centered at each pixel.

This results in an Intermediate grey level picture representation of a

texture property. These intermediate pictures are used to derive

starting points In each region to be segmented. The segmentation is
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completed by assigning each pixel to a starting point using a distance

criteria. For this technique, there are several thresholds which must

be set to make It operate; nnmely, extrema size, window sizes, and

distance criteria. If the Input data is not quite honogeneous, the

optimal set of thresholds needs to be found.

Wall, Klinger and Castleman [27] and Wall [28] proposed five models

to represent objects in image analysis and their corresponding histograms.

The five models are the ideal object image function, the truncated

wedge function, the circular Gaussian function, the Gaussian through

function, and the Gaussian edge function. The ideal object image

function I(x,y) is a function having constant grey level IrM, inside an

arbitrary set, s, and zero outside. S is a simple, connected subset of

the region with a boundary of arbitrary shape. If (x,y)ES, l(x,y) = I1M;

if (x,y)0S, I(x,y) = 0. The truncated wedge function is a function

having constant grey level, !mi, and slope, b, from the constant value

of nrcy level to zero value of grey level. The circular Gaussian

function of object image is defined by

-(x-U (y-U212 ; (x,y22d
I ) I m)e=Xlin e

I(x,y) = 0 ; (x,y)od

(x-U x) 2 (y-U ) 2

wihere d = {(x,y)6R; X +" Z}, Ulx, Uy, a are arbitrary
2a 2a2 y

constants andZ> 'A. The Gaussian through function is defined by

2 2

I(x,y) Ime X() /20 (x,y)er

l(x,y) 0 ; (x,y)fr



14

where r {(xy)GR; ( -< y < U + (x-2 )

L.are arbitrary constants and Z-> 3a. The Gaussian edge function is

generated by placing one-half of a circular Gaussian image function on

each end of the Gaussian through function.

For the extension of grey level, Yachida and Tsuji [331 found

uniform color regions ty utilizing color information. So, color in-

formation is helpful in image segrientation.

b. Structural Approach

In the structural approach to characteristics thresholding, the

uniformity of complex Image properties such as size, shape, or arrange-

ment of subpatterns in a picture is examined.

Tsuji and Tomlta [32], and Tomita and Yachida (31] described a

method for dividing the input scene Into regions by thresholding the

histograms of the grey level values of several structural descriptors.

For the purpose of saving memory space and computing time, several

specific descriptors were selected. They are shape, size, position,

and density. The size descriptor specifies the area and perimeter of

each unit region. This position descriptor gives the two dimensional

coordinates of the center of gravity of the unit region. The shape

descriptor is selected in such a way that it gives rough information

about the shape and is not sensitive to sampling noise in the process

of digitizing the picture. A region A in a given set, s, has a density

descriptor, Os, whose value is the minimum distance from A to other

regions in s. The partitioning procedure works as following: first,

the picture descriptors are evaluated and their list is constructed.
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Second, the histograms of the values of the descriptors are computed

and a filtering technique smooths the small peaks that li.z close to

each other. Third, a supervisor selects the most promising descriptors

for classifying the regions Into groups. The most promising descriptors

are those descriptors whose histograms have deep valleys. The super-

visor puts the thresholds at the bottoms of the valleys. Fourth, the

density descriptors of the members of each group are evaluated. If

some members have density descriptors whose values are larger than a

predetermined threshold value, they are excluded from the groups as

isolated regions. Finally, a boundary test Is done to check whether

or not any regions In the group of isolated elements are located between

two regions or surrounded by a region. They are merged with the region

If only one region touches them. Thus, the structural analysis is

finished and the goal, partition of the picture, Is achieved.

2.1.2 Region Extraction Methods

These methods utilize extraction of regions to segment the pic-

ture. There are three approaches to region extraction: merging,

dividing, a combination of merging and dividing.

a. Region Merging.Approach

The region merging approach begins with a well forned partition
2

(e.g., the picture consists of n square pixels and the pixel is Ix! in

size), and processes It by merging adjacent elements together that are

found to be similar In certain characteristics. There are five types

of region merging: statistical, linguistic, decision-theoretic,

"airelaxation", and interpretation-guided.
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(I) Statistical Region Merging

Here, the merging criteria are based on certain statistical charac-

teristics. Brice and Fennema [34] use unit regions as basic data and

process them by successive merging of the unit region toward a final

image partition. Similar approaches used by Strong and Rosenfeld [351,

Harlow and Eisenbers [36], and Rodd [37]. Bajcsy [39] uses two types

of merging of logic sequences; from left to right, and from right to

left. Kettig [38] uses a similar method on multispectral remotely

sensed imagery data. His experimental results show that this approach

suffers from slow computer processing time. Gupta and Wintz [40] pro-

posed a merging sequence which expands horizontally and vertically by

absorbing more and more pixels until it reaches nature boundaries.

(ii) Linguistic Region Merging

Since most grammars are useful In analyzing a one dimensional

string, Tsuji and Fujiwara [41] proposed applying sequentially two

grammars of one dimensional strings for picture segmentation. The

picture primitives are line, curve, edge or undefined segments. The

system works as follows: the first stage of processing is the search

for line segments. Then a line fitter tries to connect the line seq-

ments. The horizontal grammar is constructed manually in that a hori-

zontal parser gives a label to each segment, and examines the horizontal

contexts in order to join several segments into a new longer segment.

The results are the set of picture sentences of horizontal scan. Based

on the concept of coupling, a set of grammar rules has been written as

vertical grammar. The vertical parser analyzes the vertical contexts

of symbols in picture segments and generates region sentences which

vow _ler-"
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give the characteristics of all surfaces in the picture. The final

step of vertical parsing is to combine one region with another. This

approach works fairly well on some artificial block type of images,

but fails in classifying scenes that have high lights, shadows, and

different textures.

(iII) Decision-Theoretic Region Merging

This approach applies Bayesian decision rule techniques and uses

problem-dependent information (semantics) to solve the picture segmen-

tation problem. Yakimovsky and Feldman [4}2] and Yakimovsky [43] present

a theoretical franework for a system which incorporates neighborhood

Information in a region analyzer. The two central Ideas are the use of

a utility function to measure the value of various alternatives, and an

optimality theorem. A disadvantage In the approach is the assumption

that the interpretation of a region depends only upon adjacent regions.

The choice of local measurements around each point is, of course, a

crucial factor but interpretation can sometimes depend on a region

quite far away. Also it seems that the computer's "learning" procedure

needs to be refined in this approach.

(iv) "Relaxation" Region Herging

Another approach to region merging is called the "relaxation"

process proposed by Rosenfeld, et al [78]. This process has been applied

to scene labeling, line enhancement (80], and template matching. The

relaxation process, also called iterative probabilistic process, first

estimates for each point: P, the probability, Pi. that it belongs to

each of the possible classes. Then the PI is increased if supporting

evidence is found for it or decreased where contradictory evidence is
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then it is classified as that class. In this approach, the estimated

initial probability, Pit for each point would effect the converging time

i~or iteraction. The computer processing time can be costly for this

method because of the large number of iteraction needed.

(v) Interpretation-Guided Region Merging

'renenbaum and Barrow (79] proposed the IGS (Interpretation Guided

Segmentation) approach to region merging. This technique relates human

knowledge to a certain set of rules and iteractively processes these

rules until it achieves a final segmentation result. Finding a set of

rules which effectively describes the knowledge of the scene is impor-

tant. Because the rules have to be iteractively processed, the computer

processing time is large.

b. Region Dividing Approach

The region dividing approach begins with dividing the picture into

several parts then subdividing each part until the partitioning satis-

fies certain stopping criteria. Robertson [44] designed his partition

algorithm on the assumption that a region contains a boundary. The

homogeneous property that he considers is the mean vector of brightness

functions of the multispectral remotely sensed image.

Iflinger [45] suggests a partition idea through the refinement of

objects Into four equal quadrants such as, northwest, northeast, south-

west, and southeast quadrants. He also [69] applies a regular decom-

position to divide the picture area Into successively smaller quadrants.

The concept of regular decomposition is, first to represent a digitized

picture consisting of spatial subsets of different sizes marked either

71! 7 -
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"informative for scene description" or "non-informative" and second, to

discard picture elements (pixels) that belong to "non-infornative" sub-

sets. Initially, the entire digitized picture is a quadrant. If

nothing informative is contained, such a quadrant may be entirely eli-

minated from the data structure. If a large amount of information is

found in the quadrant, the quadrant should be saved. If the decomposi-

tion algorithm fails to make a decision about a picture quadrant, it

is subdivided and each of the four quadrants is processed by the same

procedure. Thus, the regular decomposition is a process of searching

for picture areas where there Is "informative" data present. This

method is used to build computer-searchable data representation of an

image.

c. Combination of Merging and Dividing

This approach to region extraction starts from an arbitrary parti-

tion and dynamically determines when to merge or divide. Horowitz and

Pavlidis [46] used this idea In devising their image segmentation by a

directed split-and-merge procedure. They have also refined their

algorithm by applying a grouping algorithm which combines two adjacent

regions, provided these Initial regions satisfy a given property. It

eliminates small regions which are due to noise or to transitions

between large regions. For the purpose of identifying m.ultiple con-

nected regions corresponding to cut notes In the picture, Horowitz and

Pavlidis [70] used graph analysis to identify these regions. But the

a priori information of the given property that they use is the draw-

back to their algorithms.



20

2.1.3 Edge Detection Methods

Another method for image segmentation is finding the boundaries

between regions in order to extract the homogeneous regions. There are

several approaches; such as, template matching, gradient operator,

boundary searching and line fitting.

a. Template Matching

Template matching can be done in a decision-theoretic way. The

decision problem is to compute the probability that a line representing

a real edge is centered in some long narrow area. Griffith [47,48,57]

discusses the optimal use of Intensity information to detect edges in a

block world. Hueckel [49] proposes a method by asking what edge elenent

will best fit the intensities in a given region. An extension of the

foregoing techniques to detect line and edge-line is presented in

Hueckel [501. This approach iscapableof telling the exact orientation

of the line segment.

b. Boundary Operator

The gradient boundary operator is defined as

ag 'I b-÷,
ox•X x ay X y

and Ivg(x,y) ! [P + T I)

If the picture is noisy, then smoothing techniques siould be employed

before applying the gradient operator according to [57]. Rosenfeld [61]

!ndlcates that when there is noise Incorporated into the smoothing pro-

cedure, the larger the size of the neighborhood, the less precisely is

the edge located. Procedures for detecting abrupt changes in average

grey level value in order to locate the edges, are presented In Rosen-

feld and Thurston [58,59]. Rosenfeld and Troy [66] and Rosenfeld and



21

"*Ihonas [60] apply this concept to detect the texture edges where the

two regions differ with respect to the average value of some local

properties. Recently, Persoon [67] devised a new gradient operator

algorithm for edge detection performing experiments on rib extraction

from chest x-ray pictures.

In March of 1977, Thompson [185] applied the modified Roberts cross

operator for textural boundary detection. The Roberts cross operator

is defined as R(i,j) = IP(i,j) - P(i+l,j+1,)j + IP(i+l,j) - P(i,j+])j.

In [85], the textural boundary operator is proposed as T =D(a,d) +

D(bc). D(a,d) is the computed texture dissimilarity between region a

and d. Regions a, b, c and d are the quadrants of northwest, northeast,

southwest, and southeast respectively. The adge finding method con-

sists of two stages. First, a map Is produced by applying the textural

boundary operator to selected points in an image. A second edge map

is then provided by smearing each point in the first map along the

direction of edge orientation.

c. Boundary Searching

This approach detects the boundary by means of applying an operator

to search the picture to locate the boundary between regions. One of

the techniques called "the contour following technique" is an applica-

tion of the idea that previous knowledge about the existence of an edge

from the operator might give us a good prediction of the location of

the next edge element [52]. In [53], the planning strategy was applied

to the contour following search. The technique of contour following

with planning strategy should be quite good, as It aqplies knowledge

from previous small areas. But it fails when the parts of the picture

are Independent and uncorrelated.
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d. Line Fitting

Hough [54] suggested the use of a set of parameters to fit a group

of, points with line segments. Duda and Hart [55] indicated that the use

of angle-radius rather than slope-intercept parameters will simplify the

computation in Hough's work. Pavlidis [56] proposed numerical functional

approximation to fit the boLndary. Several algorithms of boundary detec-

tion [62,63,64,65] are of this category. These techniques can contribute

to the segmentation of a picture. But, sometimes structure of the

boundary of a picture is complicated and the line fitting approach be-

comes inadequate.

2.2 PREVIOUS WORK IN SYNTACTIC PATTEMN RECOG1I1TIOfl

In syntactic pattern recognition, a "grammar' is used to characterize

a set of patterns. The syntactic method has the power of describing and

classifying patterns. For the description of a pattern, a pattern is

represented by a sentence in a language which is specified by a grammar

[2,51.. This language provides the structural description of patterns by

a set of pattern primitives and their relational rules. The recognition

of a pattern is accomplished by a syntax analysis according to the

grammar. A block diagram of a syntactic pattern recognition system is

shown in Figure 2.1. The upper part of the diagram is the recognition

part and the lower part is the analysis part. For the purpose of de-

scribing and recognizing the pictorial patterns, various two-dimensional

grammars called tree grammars, web grammars, and graph grammars have been

developed and applied to syntactic pattern recognition. A good survey of

the early work in the field of syntactic pattern recognition was written

by Fu [2]. More recent surveys are found in [4,5,6,12].
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Patr Preprocessing Primitive Syntax
(and Relation-- (or Structure)
Extraction Anatlysis

RECOGNITION
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Pattern Samples Primitive Grammaticalj
P Selection (or StructuralI Inference

Fig. 2.1 Block diagram of syntactic pattern recognition system

I
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Previous research work in this field falls into three major areas; namely;

grammatical inference, syntactic analysis, and applications.

2.2.1 Grammatical Inference

Fu and Booth wrote an intensive survey on grammatical inference in

[20]. The grammatical inference is part of the analysis for syntactic

pattern recognition shown in Figure 2.1. In order to realistically de-

scribe a class of patterns under study, the grammar used in syntactic

pattern recognition is hoped to be directly inferred from a set of sample

patterns. Figure 2.2 shows the general model of the grammatical inference

process j2). A source generates sentences or patterns of form x. = a, ,
'1

... , aI where the symbols'ai are elements from a finite set VT called
n

the set of terminal symbols. These sentences are assumed to possess some

unique structural features which are characterized by a grammar, G, which

can be used to model the source. All of the sentences which can be gen-

erated by the source are contained in the set L(G), the language generat-

ed by G, while all of the sentences which cannot be generated are contained

in the complement set L-G). An observer Is given a finite set s+ of sen-

tences which are from L(G) and another finite set s'of sentences from

•TGT. Using this information the observer infers the syntactic rates of
+

the unknown grammar G. The sentences which belong to s are defined by

the properties of G. These sentences from s are also input to the ob-

server. In section 2.3 of this chapter, more details on grammatical in-

ference algorithms are presented. A tree grammar Inference algorithm is

described, and an other grarmatical inference algorithl for a tree trans-

formational grammar is proposed.
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2.2.2 Syntactic Analysis

After a grammar is constructed to generate a language which would

describe the patterns under study, the next step is to design a recogniz-

er that will recognize the patterns according to the grammar. The recog-

nizer designed for a particular grammar will recognize only the patterns

in the class corresponding to this grammar. If the gramnar is finite,

the syntactic analysis is done by the finite state automata [2]. A

recent development in this area is error-correcting syntactic analysis

[16,19,22]. In some applications, a certain amount of uncertainty exists

in the process. In order to describe noisy and distorted patterns, the

use of transformational granmars, stochastic languages, and approximatio,

have been suggested [2,5,231. For the recognition of noisy and distorted

patterns, error-correcting syntactic analyzers have been proposed. Fung

and Fu [19,22] used the maximum likelihood decision criterion as decision

rule to resolve ambiguities for stochastic language. The basic approach

is to use the concept of transformations of strings. The error-correct-

ing parser first induces error transfornations into the original grammar

to give a covering grammar whose language is universal. To search fcr

the string that satisfies the decision rules, the parsing algorithm is a

conventional parser with a provision added for bookkeeping of the number

of transformations used. The probabilistic models and stochastic error-

correcting parsing techniques were applied to the recognition of noisy

patterns.

":TreeI" system approach was first introduced to syntactic pattern

recognition by Fu and Bhargava [13]. In [16], the error-correcting tree

automata was proposed. Unlike the string case, where only the relation

between symbols is left-right concatenation, a tree structure would
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become deformed by deletion or insertion errors. The structure-preserved

error-correcting tree automata takes only substitution errors into con-

sideration. A generalized error-correcting tree automaton consists of

five types of error transformations; namely, substitution, stretch,

branch, splits and deletion. The distance between two trees is the

least-cost sequence of error transformations needed to transform one

tree to the other. Tree distance is measurable between trees of different

structures. Based on the measurements, the error-correcting parser

accepts structurally distorted as well as node-mislabeled trees such that

their minimum distance corrections can be found [16].

For the purpose of increasing the flexibility of the syntactic

method, Fu and Lu [17] proposed a clustering procedure for syntactic pat-

terns. This procedure measures the distance between patterns and

establishes a similarity measure. A similarity measure between two syn-

tactic patterns Includes the similarities of both their structures and

primitives. A nearest-neighbor recognition rule is then applied with

the similarity measures and a clustering algorithm is proposed for

syntactic patterns. If the correct classifications of pattern samples

are known, the proposed nearest neighbor recognition rule can be applied

to determine the classification and structural description of an un-

known pattern. 1Jhen the correct classification of pattern samples is

unknown, a non-supervised procedure must be used. In this case, the

clustering procedure can still be applied. When using error-correcting

-drsers in cluster analysis, after the clustering result is obtained,

only a conventional non-error-correcting parser needs to be implemented

for recognition. The flexibility of the syntactic method is greatly

improved by this clustering procedure.

I
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2.2.3 Applications

Fu and Bhargava [21 applied the tree system approach to the analysis

of-Bubble Chamber films. The tree system approach utilizes a set of

grammars to describe and recognize the Bubble Chamber patterns. ltoayer

and Fu [11] app! *ed the t ree system approach which utilizes sets of

grammars to describe and recognize fingerprint patterns. The tree system

approach was also applied to LANDSAT data interpretation which analyzes

the processed results from statistical methods to inprove some of the

data interpretation of LANIDSAT images [151. Brayer and Fu [14] and Fu

[3,4] approached the LA14DSAT data interpretation through "webs grammar

analysis which utilizes web grammar to describe the contextual and

spatial information. A web grammar model was developed and used to im-

prove the accuracy of the classification and to find some new classes.

Pavlidis [23,961 applied the grammars, which are characterized by a set

of primitives corresponding to the case under study, to shape recogni-

tion. His applications are nunmeral and character recognition, and

industrial circuit board defect detection.

2.3 COIMMEINTS Oi TIHE PREVIOUS RESEARCH WORK

Compared with the techniques in the "characteristics" thresholding

approach, the grey level histogram provides global knowledge about the

segmentation of a picture. Concerning the computer processing time in-

volved In image segmentation, the grey level histogram thresholding

approach is quite fast because the mathematical operator manipulation is

riiuch simpler than gradient or Laplacian thresholding. But in the histogram

thresholding approach, where there are small regions, they show up In the

histogram as small peaks. Henc-., most of the time the histogram thres-
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holding approach fails to segment these regions of the image. Another

problem is the case in which two or more different objects have many

overlapping parts in the histogram; here again the approach fails to

segment the image. Therefore, techniques similar to the gradient opera-

tion, Laplacian operation or modified Laplacian operator have been developed

by thresholding some local property, and Ohlander [68] tried using nine

different types of sensory data for thresholding histograms. All these

approaches suffer from heavy expenditures due to slow computer processing

time. After this examination of the tresholding of histograms, we must

consider that it is not the best approach for image segrientation.

When structures of patterns or textures of the image are complex,

the characteristics thresholding method by structural approach is useful.

But, the discrimination between the elementary suhpatterns or grains of

the Image has to be assumed to be easily obtainable and this structural

approach needs much computer processing time.

The region extraction method is attractive in two major approaches;

the merging approach and the dividing approach. In comparing these two

approaches, if the region merging approach is used every time two regions

are merged together, the sample statistics can be calculated simply from

the staistics of those two regions and thus the processing time is not

so large. In the region dividing approach, every time a region is divided,

new statistics must be calculated again causing large processing time.

The combinatlpn of merging and dividing is considered a combinatory method,

but the computer processing time is still very large.

In the edge detection methods for image segmentation, if boundaries

between regions can be expressed by some definite form, then template

matching Is suggested. From these observations, there seems to be dif-
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ferent appropriate approaches for different types of images. That is,

It is difficult to find a general method for al! images. Some of these

techniques calculate second order statistics and some of them need planning

strategy. However, all of these techniques require a great deal of com-

puter processing time. In conclusion, we consider that there are problems

associated with all of the previous methods. Therefore in Chapter 4,

the syntactic image segmentation method is proposed. Before presenting

the image segmentation by tree grammar (high dimensional) in Chapter 4,

the image recognition by finite state string grammar (one dimensional)

will be presented in Chapter 3.

i'
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CHAPTER 3

IMAGE RECOGNITION BY A STRING GRAMMAR APPROACH

The syntactic approach to image recognition has three major parts

(Figure 3.1): Preprocessor, Syntactic Analyzer, and Postprocessor [10].

The preprocessor extracts "primitives" from an input image and transforms

the image to "language" sentences which are the inputs for the syntactic

analyzer. This process usually involves a transformation operation, a

threshold operation, and an averaging operation among others. The syn-

tactic analyzer processes the input image by a set of grammatical rules

Inferred by a grammatical inference algorithm. This procedure is in

order to accept those patterns which can be generated by the set of gram-

matical rules, and to reject all others. The postprocessor sequentially

executes several information (semantic) rules. Those objects which are

related, based on semantic information, are recognized from the image.

Depending on the structures of the objects of interest, as indicated in

Chapter 1, different types of grammatical rules are effective for de-

scribing and recognizing different objects. For example, any string-

like object (such as a road or a river) is recognized more efficiently

by a string grammar than a tree grammar. Whereas a tree grammar is

necessary for recognizing a complex picture. The advantages of the string

grammar- approach lie In its systematic grammatical inference procedure

and that the efficient syntactic analyzer, as finite state automata.
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Figure 3.1. Flowichart for an image recognition system.
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There are two major methods In the string gr~amnar approach for image

recognition; namely, the syntax-directed method and syntax-controlled

method.

The syntax-directed method involves the following steps: first, an

inference process is applied to a set of training imagery data to infer

a set of grammatical rules which in turn formalizes a syntactic model.

Second, based on this model, a set of template matching window patterns,

which are generated by this grammar, is implemented to analyze the test

images and to recognize the object of interest. Thus, the syntactic

analyzer is a template matching process which is directed by the syntac-

tic rules.

The syntax-controlled method is comprised of the following steps:

first, a grammatical inference procedure is applied to a set of training

Imagery data to infer a set of grammatical rules which in turn is used

to construct the recognizer or automaton. Then, this automaton is im-

plemented to analyze the test images and to recognize the object of

interest. Hence, the syntactic analyzer is an automaton which is direct-

ly controlled by the syntactic rules.

3.1. SYNTAX-DIRECTED METHOD FOR OBJECT RECOGnITIOfl

This research was motivated by the need for a metho which can fully

automate the recognition of such objects as highways, riv rs, bridges,

and commercial/industrial areas from satellite images suc as those of

LANDSAT. The statistical pattern recognition techniques w ich had been

developed prior to this work had not shown satisfactory res Its. For

example, the land-use classification of LAIIDSAT images has en studied

by Todd and Baumgardner using spectral analysis [841. It ha been shown
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that highways and other concrete areas, such as parking lots, could not

be distinguished from each other due to the fact that both have similar

spectral characteristics in spectral analysis. The utilization of the

syntactic method to describe spatial relationship among different ob-.

jects was suggested by Fu [3]. Some research was done on LANDSAT images

by Brayer and Fu [14]. They were able to program a computer to analyze

a city scene by constructing a hierarchical graph model which contains

spatial distributions of all classes in the scene. Web grammars were

used to describe spatial relationships between various objects in the

scene. Li and Fu [15] started with pointwise statistical classification

of LANDSAT images and then applied a tree system approach to the LANOSAT

data interpretation. Bajcsy and Tavakoli [81] designed a computer pro-

gram from the relational graph viewpoint to recognize objects from

satellite pictures. The research undertaken here applies to the recogni-

tion of certain specific objects in LANDSAT images. Th. syntax-directed

method utilizes a set of finite-state string gramnar rules to describe

and recognize the objects of interest.

3.1.1. Grammatical Inference Process

Based on knowledge of highway structures, several initial grammatical

rules were written. Then a training area was selected (which in this

case was Lafayette, Indiana) and a preprocessed training image was ob-

tained. The initial rules generated a set of pattern windows. The

training image was then matched to the set of generated pattern windows

to obtain the processed result. A highway map was used to evaluate the

processed result. For the highway structures which existed in the map

but not in the processed result, the gradatical rules to generate those

A
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matching patterns were added to the initial set of rules and the image

was then reprocessed. After several interactive steps the final set of

grammatical rules was obtained. The primitives for the grammar are

chosen as a, b, c, d, e, f, g, and h. These primitives are designed as

2 x 2 pixel blocks.

U at e +

Sb . fi

Sc- g÷

• d4 h I

For example, a window for an intersection of highways might be

This syntactic analyzer was the window operation, which processes the

image window by window. The movement of the window is to shift one

column or one row at a time. Then multibranch patterns can be represent-

ed by one-branch grammar rules. For example, the window pattern men-

tioned above can be analyzed as the following two window patterns:

- n -f-I

w .: -
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The one-branch grammar rules are as follows:

(I) SA A÷d3 A3dA A3 dA4 A4-÷cA 4 A44c
(2) S+cA1  AI+CAI A ICA2  A*2cA2 A2ýc

These rules are finite-state grammar rules [2, 110].

A junction of two highways is as follows

can be analyzed by two window patterns that are generated by one-branch

grammar rules. The two patterns are,
I LL

-I LI

Then the resultant grammar rules can be expressed in terms of finite-

state string grammar rules as follow. The grammar G is
G = (VN, VT, P, S)

VN = {S, A], A2 , A3, A4 , AS, A6 , AT, A8 , A9, A10}

VT = {a, b, c, d, e, f, g, hi

where P:

S-),c A -A A'->cA A -cA A -idA e j
S'cAI AI-cAl A1A1  2 2 2 2 A2  A2 eA2  A2'bA 2

S-fdA A -dA Am3-dA4  A4÷dA4  A4eA4  A44fA4  A4.cA 4

3~e 3-'e A 4e4 A
S'eA 5 A5÷A 5• AseA6  A6"+eA6  A6 +fA6  A6-,,JA6  A6"'dA6

S-fA7  A7 fA AAA 8 fA8  A84JA8  A8-+hA8  A8 4eA87 ff7

.I
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S~gA9  A94gA9  A.9 "•JA1 0  A,04gA1 0  A1oaA O A ÷fA! Ao-hAlO

A2c A 2d A2+e A2+b A4+d A,4+e A4÷f

A4 C A 6e A6÷+f A÷g A6÷d A6-cA6 A 6c

A8 ÷f A8 +g A8 +h A8 e A106g AId" A Oef f

AIO

3.1.2. Syntax-Directed Analysis

The syntax-directed method consists of two levels, namely, pre-

processing and syntax-directed grammatical analysis. The transformation

processor transforms the multispectral LANDSAT images into a single b5-

nary Image. The syntax-directed analyzer then analyzes the transn-:

Image based on a set of template matching patterns. Structures wt •.,n

are matched by this set of templates are accepted, otherwise they are

rejected. The details of the preprocessing and syntax-directed gram-

matical analysis are given below:

(I) Preprocessing

A. Thresholding Frocess: First the LANDSAT images were defited in

Euclidean n-dimensional space En. (The number n represents the number

of channels to be chosen). I pixel is described by an ordered n-tuple

(xI, x2 , ... , xn ). LANDSAT measurements from channel I and 2 are very

sensitive to concrete areas. A training area was chosen to establish

the thresholds of the spectral intensity of concrete areas in channel

1 and 2. Then a threshold, H, was obtained from the sum of two thres-

holds from these channels. Since channels 3 and 4 are infrared bands

[82], measurements from these two channels are sensitive to thermal

emitting objects. Watery areas are strictly non-thermal emitting
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objects. The negative reaction in the infrared bands causes contrast

and makes the extraction of watery areas from channels 3 and 4 easier.

The sarme procedure of threshold finding as that for concrete areas is

applied here to obtain threshold, R, for river recognition. The trans-

formation process works in such a way that if the sum of the spectral

intensities of the pixels in the same position in two channels is great-

er than the sum of the two thresholds from the training area (for

example, channels 1, 2, and threshold 11 for highway recognition, and

channels 3, 4, and threshold R for river recognition), the pixel is set

to I; otherwise, it is set to 0. (For river recognition, the one-zero

settings are reversed). Thus, the multispectral Images are transformed

to a single binary image.

It is true that both visible bands (channels I and 2 are sensitive

to the concrete spectra. But in real world images, the influence of

neighboring objects sometimes causes the deformation of the intenrity

of the object of Interest (such as a highway). But when there is only

one channel (image) available, the thresholding process can be designed

by setting t:,e threshold on that one Image. Experiments of this kind

were also conducted on other objects and it was shown that by using the

sum of the spectral intensities of two visible channels (for highways)

one obtains a more reliable result than that obtained by just setting a

threshold on one channel. From the experiments of highway recognition

on different LANDSAT images, it was shown that some highways are clear

in channel I and some in channel 2. A weighted sum of threshold-finding

could not be achieved but the results of summing the thresholds from the

two channels were satisfactory. Hence, the sum of the thresholds from

SIM
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the two channels was used as the threshold process in the experiments

which will be shown here and !n section 3.1.3.

- 13. Line Smoothing Process: After the thresholding process is com-

pleted, a line smoothing technique is applied to remove deformation and

re-establish continuity of the lines. For a given center pixel of a

3 x 3 window, the operation starts from the left upper corner pixel. if

It is one, the column is shifted. It is zero, the surrounding eight

pixels are checked. If there exists at least two "l s" which are not

adjacent to each other, then a "1" is set into the center position. The

operation continues until reaching the rightmost column of the digitized

image. Then, the operation is shifted one row down and starts from the

left most column with the same process until the last row of the digitized

imaqe is reached.

(2) Syntax-Directed Grammatical Analysis

Input: The transformed binary Image which is a Q(ij) memory array.

Output: The syntax-directed result.

.A1gorithm:

Step 1: Set G(Mt,i) to be an operation window (8 x 8 in size).

Ste_2: Load that part of the array Q(t,J) in which J = 1, 8;

I = 1, 8 on the operation window G(i(t,N).

,Ste~p3: Compare the operation window with the set of template

matching window pattersis (Figure 3.2) which were gener-

ated by string grammar, G. (Thirty four templates were

used in this analysis. The templates were obtained from

the inference process. In the inference process, new

"templates are added to the set of templates in each in-

teractive process. The number of templates used here

(34) is the number of templates in the final Interactive

process of the inference process. From the experimental
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Figure 3.2. A set of temnplate matching Wx window patterns.
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result, these 34 templates proved adequate for these

applications.) If the operation window belongs to any

one of the pattern In that set of patterns, the primi-

tive pattern in that window Is accepted, and stored in

the resulting memory array R(I,J). If it does not be-

long to that set of patterns, then go to stap 4.

Step 4: Shift one column to the right of Q(I,J) in step 3. Then

go to step 3 and continue until reaching the rightmost

column.

Step 5: Shift one row downward; go to step 3, until reaching the

last row of the digitized image. Syntactically correct

structures are recognized and stored in the resultant

memory array R(I,J).

Step 6: Output the result, R(I,J).

The flow chart for highway recognition by the syntax-directed method

is given In Appendix B. Since rivers have the same linear features as

highways, the inferred grammar for highways can also be used for rivers.

This assumption' Is justified by the results of the experiments on river

recognition. The flow chart for river recognition is also provided in

Appundix C.

Spectrally speaking, bridges and commercial/industrial areas have

similar characteristics to concrete parking lots and highways. This

means that the existing statistical techniques are inadequate for the

distinction of bridges from highways and for the recognition of commer-

cial/industrial areas as such. The syntactic object recognition tech-

nique uses the spatial relationship to distinguish highways from other

concrete areas by the syntax-directed method, and then uses semantic

information as a postprocessor to distinquish birdges and commercial/

Industrial areas from the recognized highways. for bridge recognition,
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first the irages are processed by the syntax-directed method for highways

and rivers. Then a logical "AND" operation is applied to the highway

results "H" and the river result "'R'" to obtain the bridge recognition re-

sult "D". This operation results In a "bridge" which is the intersection

of a "highway" and a "river". A flowchart of bridge recognition is'

given In Appendix D. The length of the recognized bridge can be calcu-

lated by the following algorithm:

Algorith, for calculation of bridge length and coordinates. (from LANDSAT

data)

Input: Recognized bridge result.

OMutput: The calculated length and coordinates of the bridge.

Algorithm:

(I) Calculate the number of horizontal rows which have at least

one brtuge pixel. The value is a.

(i0) Calculate the number of vertical column which have at least

one bridge pixel. The value is b.

(iII) if a -I, the length of the bridge, c, is b x 56 meters.
If b = 1, the length of the bridge, c, is a x 79 meters.

Otherwise go to (iv).

(iv) The length of the bridge, c, = 4(a x 79)2 + (b x 56)2.

The idea of this algorithm is to calculate the hypotenuse of a right tri-

angle, using the information that each pixel in a LANDSAT Image corres-

ponding to 79 meters in vertical length and 56 meters In horizontal length.

Step (iii) is the case In w-hich a bridge Is right on the horizontal row

or vertical column. The coordinates of the recognized bridge can also

he dstermined from the recognized bridge pixels, as the coordinates of

the pixels In the Image can be directly related to the global coordinates

of meridian ar. elevation.-
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For commercial/industrial area recognition, first the images ac'e

processed to obtain highways. The highway recognition result is then

deleted from all concrete areas by the Boolean "Exclusive OR" operation.

Then for the four by four cells of the image after the "Exclusive OR"

operation, if over 60% of the pixels in the cell are concrete, this cell

area !s called commercial/industrial. This is because the commercial/

Ineustrial area has a high density of concrete buildings and concrete

storage yard. The size of the recognized commercial/industrial area

and the coordinates of the center of this area can be calculated by the

following algorithm:

Algorithm for calculation of the area of a commercial/industrial area

and its center. (from LANIDSAT data)

Input: Commercial/industrial recognition result.

Output: The calculated area and the center of the comimercial/

industrial area.

Algorithm:

(i) Calculate the number of commercial/industrial area pixels.

The value is n.

(0i) The area equals n * (0.079 x 0.056) square kilometers.

(iii) For every commercial/industrial area pixel Ci(I,J) calculate
n n

( I 11)/n. The value is P. Calculate ( Z JI)/n. The
i=1 i--1

value is q.

(iv) The center of the commercial/industrial area Is the coordi-

nate (P,q).

The resolution of LANDSAT images is 79 x 56 meters per pixel. Hence, the

area of each pixel Is (0.079 x 0.056) square kilometers. The center of

contercial/industrial area is the coordinate which has the x coordinate
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as the mean of all the x coordinates of the commercial/industrial pixels

and the y coordinate as the mean of all the y coordinates of the commer-

cial/industrial area pixels.

3.1.3. Computer Experinental Results on Recognition of Highway and River

from Satellite Imapes

The syntax-directed method was implementc"d by FORTRAN programming

on the IBM 360/67 computer at the Laboratory for Applications of Remote

Sensing (LARS) at Purdue University.

(1) Highway Recognition

Figure 3.3(a) is a LANDSAT irmage of the Indianapolis, Indiana area.

The platform altitude at which the picture was taken is 306,200 feet and

there are 128 grey levels used in the digitized image [82]. Figure 3.3

(b) is the intermediate output after line smoothing In the transformation

process. The highway recognition result, by the syntax-directed method,

is shown in Figure 3.3(c). This area is a 96 x 96 pixel image which

shows the junction of Interstate highway 65 (northwest to southeast) and

highway 465 (north to south) in the left upper part of Figure 3.3(d).

The exact location of Figure 3.3(a) Is labeled on Figure 3.3(d) as the

square outlined. The experimental results indicate that the syntax-

directed method is rather successful.

Figure 3. 4 (a) is a LANDSAT image of the downtown area of Chicago,

Illinois. Figure 3.4(b) is the highway recognition result from Figure

3. 4 (a) by the syntax-directed method. This area is the junction of the

Chicago Skyway and the Dan Ryan Expressway (highway 94) which is shown

in the downtown map of Chicago Figure 3.4(c). Lake Shore Drive is

also recognized, but as the resolution of the LANDSAT satellite sensor

Is only 79 x 56 meters per pixel, the recognition Is not perfect,

pg --.
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because whenever the widths of highways ere less than the resolution

values, the recognition will *be unfavorably affected. Figure 3.5(a) is

the LANDSAT image of Harvey, Illinois. The computer result of highway

recognition by the syntax-directed method is shown in Figure 3.5(b).

For comparison of the accuracy of the result, the city map of Harvey,

Illinois is shown in Figure 3.5(c). The recognized highways are high-

way 80 (southwest to northeast), highway 57 (south to north) and state

road 50 (south to north). The "II" in Figures 3.3(c), 3.4(b), and 3.5(b)

stands for a highway pixel.

(2) River Recognition

For the purpose of showing that this method works also for river

recognition, a terrain area northeast of San Francisco, California was

processed by the syntax-directed method for river recognition. The

LANDSAT image is shown in Figure 3.6(a). The river recognition result

given in Figure 3.6(b), shows that the syntax-directed method sucessfully

recognized a winding river in that image. The size of this image is

also 96 x 96 pixels. The topographic map for the area is shown in Figure

3.6(c).

Figure 3.7(a) Is a LANDSAT image of the Lafayette, Indiana area.

The river recognition result is shown in Figure 3.7(b). The "R" in

Figure 3.7(b) stands for a river pixel. Figure 3,7(c) is a city map of

Lafayette. The river recognition result shows the Wabash river through

the Lafayette area. The Wabash river divides the area into West

Lafayette and Lafayette. The I ighter areas in the LAtNDSAT image are the

concrete areas and the darker areas are the watery areas. The bright

line from north to south in Figure 3.7(a) is highway 65, and the dark

line from northeast to southwest is the Wabash River.
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Figure 3.3(a). Satellite image of northwest part of
Indianapolis, Indiana.
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Figure 3.4(a). Satellite Image of downtown Chicago, Illinois.
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Figure 3.5(a). Satellite image of Harvey, Illinois.
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Figure 3.6(a). Satellite Image of north part of
San Francisco Bay area, California.
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4-

Figure 3.7(a). Satellite image of Lafayette area, Indiana
(192 x 192 pixels).



Figure 3.7(b). River recognition result from Figure 3.7(a) by
syntax-d irected method.
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Figure 3.7(c). City nap of Lafayette, Indiana.
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3.1.4. Computer Experimental Resultson Recognition of Bridges and Com-

mercial/Industrial Area from Satellite Images

(1) Bridge Recognition

Figure 3.8(a) is a topographic map of the lower part of Figure 3.3

(a); Indianapolis, Indiana. It shows in the left part of the map, that

there is a bridge over Eagle Creek Reservoir. The bridge recognition

result by the syntactic object recognition method given in Figure 3.8(b)

shows that the bridge was successfully recognized and that the length was

calculated to be 672 meters. In the left lower part of Figure 3. 8 (a) the

scale of the map is provided. The length shown in the map is about the

same as that found by the syntactic method. The coordinates of the

bridge can also be located by this method.

Another experiment was conducted in the Lafayette area pertaining

to bridge recognition. Referring back to Figure 3.7(c), it can be seen

that there is a bridge on Highway 1-65 over the Wabash River. The

LAIIDSAT image shown in Figure 3.9(a) processed by the syntax-directed

method for bridge recognition and the result is shown in Figure 3.9(b).

The recognized bridge is in the right lower part of the figure. Its

length was calculated to be 4 54.1 meters. The coordinates of the loca-

tion of the bridge are also given in Figure 3.9(b).

(2) Commercial/Industrial Area Recognition

Experiments were conducted in several different areas. Figure 3.10

(a) is a LANDSAT' image (96 x 96 pixels) taken on September 30, 1972 of a

section within the northwestern part of the Indianapolis area, which is

a little south of the image in Figure 3.3(a). Figure 3.10(b) is the

topographic map of the area. This map was made by the Department of

Natural Resources of the state of Indiana in 1967. In Figure 3.10(c) the
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intermediate output after preprocessing is given. Figure 3.10(d) is the

highway recognition result. The intermediate output after the "Exclusive

OR" operation in postprocessing is given in Figure 3.10(e). Figure 3.10

(f) is the conmmercial/industrial area recognition result. This area Is

identified as the Lafayette Square Shoý., ! Center in Indianapolis. Figure

3.10(g) is the urban development information extraction result. HI, R,

and C in Figure 3.10(g) represent highway, river, and commercial/

industrial pixels, respectively. Interstate highway 65 (upper right part)

goes into the city from the northwest. Highway 465 (from north to south)

surrounds the city and highway 714 (left lower part) goes into the city

fron the west. The Lafayette Square Shopping Center is located in the

suburb and close to the highways. The commercial/industrial area is

automatically calculated to be 57.75 square kilometers. The center of

the commercial/industrial area is calculated to be in coordinate (66,68)

of the 96 x 96 image frame. This information was also automatically ex-

tracted by the method.

Comparing Figure 3.10(M ) with the topographic map Figure 3.10(b) of

1967, we can observe the growth of the commercial area clearly on the

northern and eastern parts of the shopping center. This indicates that

the proposed method could be useful in topographic map making and up-

dating.

Several large images (192 x 192 pixels) were also proi-essed by the

sane technique. Figure 3.11(a) is the commercial/industrial area recog-

nition result from the image of Lafayette, Indiana (compare Figure 3.7

(a)). Figure 3.11(b) is the urban development information extraction

result. The recognized commercial/industrial areas In Figure 3.11(a) are

marked on the Lafayette map Figure 3.7(c). The comnercial/industrial
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Figure 3.9(a). Satell'ite image of Lafayette area, Indiana.
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Figure 3.10(a). Satellite image of northwest part of Indianapolis,

Indiana area (96 x 96 pixels).

I



69

S t A l l O f I Nf l 1k A N A £ r! I tw r r . L ' U

Iv ,ANA% V .K IA~

1..£ " .
4' I R kf• J I'£ 9 9 -,i-

_... ,. - 1.. . .. 3._..,, . ,, ,, I ,.9

.. b ,,•l •. - .-l -"" , .. -,, '

0,Q

I , ,• -!" '• 
'.

i II.

S. I I
;7 0.

Figure 3.10(b). TopograIni¢ map of same area as Figure 3.10(a).
1}--

_ I



70

MMIi I61 ., 1

oil l I t l

I Hill11Hi

til I1
*6iI 111

Jill II

IIIIIII , 1

HI lilt

II II III|M Ill

I ll I lIIl ! ||1

II I

tI l 11 i1

IIIi 1I

I: IIIII , II
II I III

11II111 II !

I l l I I I I I l ha l h I l

,Jlll 311
IIIIIII1I1111

Fi ur 3 .1 (c) In eriiiiiiiitift rire ro es o

iIII uIe 31a11111III I I IlI! III
Ill II III I
II, II I ,
liI I 1 I I
II' II II1111 1 II11 II
'II IhIII111 11 11111 II

Ii'.111-1111111 11111111 II
II 11 II, I II Iill~lllll II

IIIIIIIIIIIIII IIIIIIIIIIIIIII
IIIIIIIIIII IIIIIIIIIIIIIIIIII

11IIIIII11 itl6 II111 iiiiiiiiiiiiiI
II 1 1III! . l l II I IIIIIIIII

II | II 66 I IIII IIIIII

II 61 11 I ~l Il~ l Il llll
II6 I I I I1 6 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

IIII *il lI I I I I I lI I I lI I l I I I I I I 1 1 1 1 1 1
III Ii*66~ I 111 11161 11111l16i1l1111lIIIII1 . 111 11 1 1 1 l I +l l l l~ l l 1 1 1 I I I

II I1 l IIll I lI II III III :I l l, l~ l III ua 1111
II6I1611III616611611 I1ll I I

II1'I l l 1 1l1 l l 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1I I I II1
I II1 61I1 1i i1 6 1111 6 1 I I I I I IlII I I I I I I I I I

I I II 11 lII II Ih l III IIIII IIIIIIIII II11 1itll 1

I l l III l I I I I I I I I
II 1111 111611e1111111 Il~lIIII ,I1 1

II It ii l'llili il 11111ll'lll , III I II
IIII II1t611 111 11111111 11 11111 111111 11

II I 11 116 6 1 1 1 1 1 61 1 1 1 I IIlI II I I I 11 1 1 1 1 1 I I I

Il al 6 6 I II I I I 6, I I Il l 11 111 I I I I I 1 |1 1 11 1 1 1
II6111III uIIIII III II II iiii l i llI

6662 6IIIII i 111111111 III l~lt 111l lll li
.I I iii I 11~1111111 1 l ~I IlI III IIIII I II

66 IIIIIII 1 1u6IIII uII I• 1 6 I llI I i l ll l
lll~ l lI61 11 III IIII I I 1 16111 I I I I I

6 1 6 1616 6 1 1 I 1 1I I I I I 1 I I I I I I l Il l I II I I I I II I
'III l 11 .,II1 1 1 .1 1 1 1 I I I I I I IIII II

1III6116 1 I I I I1 "11111 11111 II I 111111111 11 111| 11
11"111III I II II1.1 I I i I Il I I .IIII

iiiI i ii l~jji l . i111I1, II II 11 61111 111 611 I 1111 I1111111

Fgr3.(). treiate111 Iutp I after prpoeso
IIFigure3l10(a)



71

.... . .... . .... .... .

..... ........ .

... .........

Fig r 3..14. H h r ieg e ,, 3. °,.1.0(F i u e 3 1 ( )°~h a e o n t o n e u, n i u r .1 ( )



72

III

'I

III II If

I II

t IdI!

! 1 II III111
H lI "It111 I

I 1 I 11 1 II II IIIIIIIIII I
111IIIII I II

IIIII I I J
11111111

1111 JiI
SI II11111

I 1 IIIIIll I IIIIII 1 I II l I I I IjII
t11 I11111111 Ill~~

t II tIjIII II III*21111 I I IIII11 II

rgr 3.0() iilllllllllt oupu afe 1xlsveo mrt

lIIIIIIIoIIfIII 1 eI II211IIIIIIII III ! I I
II II 111 1112 II III II1111111I1111

S i IIIIIIIII II I I II1 1 I
11II21111 Ililill II I 1ill' I ' 1 11 1111 1111111 IIII1 I
111 111IIII IIII IIIIIII III I111I11 IIII 11111 III Il!

IIIIIIIII I III IlIlIIII II 2)
i111111 I 11I 11111 I 1 II11111'

li1111l11 1 II 1 I11I 111111
III 11III I1 I1 III IllIlI li I111 III I I11111II 1

II iiI~IlIIIII III 1111 I'ilII I 121 III I 1 II11111III LI IlIIIIIII II Ii 1112111l11 21SIIII III IIII I

hItl llllI ll 2 lll
i I 1 I I 1 1 1 1 1 i II IIllIIIIlIll I " I

lIIlllII11 1111
,i l l l l l~ l l l I I J I1 1I I

II 2111i1 11 II IIIII

Illtlllll Ill IIII
1 1 1 1111 21

I 112 I II I

IIIIII11
I Ul II II

Figure 3.10(e). i,•..er,~-ediate output after exclusive or operation
(EX0r.i of the postprocessor.



73

crc ((CC

CI .I fC ,

Iý ( U,(C( rCCI I

I I LCI I

I. CL ii I (- I I C
I U L, ItI I~ ((f Cl

IC C CII C,( (M IL.

q t L((C ctICC , rl fir

ill 1(11(111 CCCLCCC 4

I CLI C ,I

* CI I (ClCi.'
*CC I LCU cu.

"lIl CCIll~C.Clctr~~
L I t ( L' C I (1It Cl 11 I"Il

rC IIl. Cf I Cl (CIF CCCII C~
ttIIC CC f ((( (.(.cC .

((1(11CC r cII (rcCC C

'.'(CIICIICC
1 Ct

Figure 3.10(f). Commerc Cl CLC.CCCC C Cl arareontinreut



71j

• ' 4' , ,. 'I ,--

A4......'4....

* r'*lI* .( I€-,,

I ,. ( . (lI .'(4u1* .4 ( .4

•'- ,,* l lil -'-l 'I

* ., 4 4 i 1, ,
.;.. 4(.. . .1'" •

'.'...44.. 4'~~l l il4 i l'4.I4I4 .4l -l,[•( ll l

4..,*lII 4 III cIII ,II'I4 -

, . , . ,l**I 
4 .

• r .1r

• I i.iiI'...I. iiiii, * .il 4i 1(i 1

.. ........,1 Ii ..... i. ... .... .:

. . I..... 411 114.1 ..'' lllt f.I

ofFigure3?.10a)5



. .... .....e " ~ *; *~ AneA,' - I • I I

7F

iicvrý• t (tp.-P U)r

4,

AC,. .L Hetat• e plc.t

Figure 3.11(a). Commnercial/industrial area recognition
result from Figure 3.7(a).



76

Figure 3.11(b). Urban development Information extraction
result of Figure 3.7(a).

°', ,.A



77

areas of the Anheuser-Busch corn refining plant, 'the National Homes Com-

pany, the Alcoa Aluminum Plant, the West Lafayette Village and Levee

shopping areas, the Woolco Shopping Center, and the Lafayette downtown

area are successfully recognized.

3.2. SYNTAX-CONTROLLED 14ETHOD FOR OBJECT RECOGNITION

The syntax-controlled method is a method which utilizes an automaton

(or a parser) as a recognizer (or a syntax analyzer) to recognize the

patterns of interest. The syntax-controlled method for image recognition

differs from the syntax-directed method in the gramratical inference pro-

cedure and the syntactic analysis. The grammatical inference procedure

for the syntax-controlled method is a fully computer automated finite-

state grammar inference procedure whereas for the syntax-direct( nethod,

the gramnatical inference procedure is an Interactive process. , in-

tactic analyzer for the syntax-controlled method is a determini.-t

finite-state automaton which will be described in section 3.2.2., whereas

for the syntax-directed method, the syntactic analys is a template-

matching process.

3.2.1. Grammatical Inference Procedure

In orde," to describe a class of patterns precisely, grammatical

rules are inferred from a set of sam, le patterns. A k-tail method [20]

which will be described in this section was implemented in this study.

The grammatical 'ules which describe a class of patterns are automatical-

1y inferred from a set of training sample patterns by the computer pro-

gram of the k-tail method. Before describing this technique, some

definitions need to be given [20,110].
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Definition 1. The formal derivative of a set of strings, A, with

respect to the symbol a f VT is defined as DaA =

{xiax fAl.

Definition 2. If a,, a2 , ... , a 1n- an is a string then, Daa 2 ,

an-lan A = fln(Da a 2 , ... , an- A).

Definition 3. Let u = a ... , a rGV and letACL(G).
a~ ~ r T

The k-tail of A with respect to u is defined

as (u, A, K) {xIxe DuA, _xi< f K where lxi

is the length of the string.

Definition 4. Let u. and u. be two distinct states of theI J

canonical derivative finite-state grammar GcD*

These two states are associated with the

derivatives Dx.St and DjSt respectively whereI J.

x. and x. are sequences from VT. The twoI J

states u. and u. are said to be k-tail
I J

equivalent if, and only if, g(xi,St,K)

g (xj, VS, K').

Definition 5. A non-deterministic finite-state automaton is a

5-tuple M = (Q, Z, 6, qo0 F), where

(1) Q is a finite set of states;

(2) E is a finite set of permissible input symbols;

(3) 6 is a mapping function from Q x E to p(Q)

which dictates the behavior of the finite-

state control, (S is sometimes called the

state trasition function);

.(4) qo in Q Is the initial state of the finite-

state control; and

(5) F C Qo is the set of fir states.

The inference procedure for the grammar which describes the highway

and river structures is a k-tail method. The algorithm for this method

is as follows:
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Algorithm of k-tail grammatical inference procedure for finite-state string

grammar.

Input: Training sample patterns.

Output Finite-state string grammatical rules.

Algorithm:

(i) Input training sample patterns and encode as the string of

prinitives a, b, -, d, e, f, g, and h.

(ii) Find first order derivatives of the set of all strings A

with respe-t to the primitive set a, b, c, d, e, f, g, and

h. (e.g.,- =DaA = {xjaxf A, u DaA, u2 = DbA, u3-

DcA, u = Dd: u 5ADAu 6  fA, u7 = D=A, anduu= = DhA.
4 d 5 f 7 ad 8 h

(iii) Find second order derivatives of the set of ail strings A

with respect to the primitive set. (e.g., u9 = D A D aaa a

(Da A) = {xlaa.;E A).

u9 = aa A, u10 = DabA, u11 =Dac .... u = D AA,

u1 7  D ba A, u bb, u 19 = DbcA, -- , u2h D bhA,

u5=0 D , =D A...,u u 13 A

caA u26 DcbA u2 7  DccA 3 D chA,

u33 D da A, u 3 14 D dbA, u35 D dcA, - 40 D dhA,

u4 e D 2A, e =u 4eA, u=, U De A,
a, u D u4 3  ec 48 eh

u49 D DfaA, u50 = fbA, u51 D fcA, - 56 D fhA,

u5 7 =D gaA, u5 8  DgbA, u5 9 = DgcA, -, u 6 4 D ghA,

U6 5 =DhaA, u6 6 = DhbAV u67 DhcA, .. ,u72 =Dhh A.

(iv) Find third order derivatives of the set of all strings A,

with respect to the primitive set a, b, c, d.9 . fs g, and

h. (e.g., u7 4 = DaabA = Db(DaWaA)) = {xlaabx C A}).

u73 =DaaaA, u7 4  DbA, . u A,

73 aa 74 ab 8 'Ia
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U = DabA, u8 2 ' DabbA, .... , u5 8 = DabhA,

U 5 6 8  d hgaA u 569 D h2 b A,.., u5 7 5  D hghA,

DhhA, 577 DhhbA..., u584# hhh

(v) Find nth order derivatives of the set of all strings A,

with respect to the primitive set (N is the maximum length

of string).

(vi) Find canonical derivative finite-state grammar.

GCD = (VT, VNI, R, a)

VT is the primitive set, VT = {a, b, c, d, e, f, g, h)

VN = {U1, u2 , U3 , ..- V u584

a = {u1, u2 , 2 -.. u8 }

The rule, R, is defined as follows: let u., u. C VNj j 4

u. a u. if, and only if, D u. = u.S j a t j

u. + a if, and only if, X e D u.

(e.g., Daua = u9 produces the grammatical rule u, a u g ,

and DbUlo = u8 2 produces the graniatical rule u1o + bu 8 2 ).

(vii) Find equivalence classes of states. Find the length of all

the u. where I = 1 to 584.I

(viii) Find 1-tail equivalence classes. If lull > I and ju.[ > 1,

then u. = u..
I j

(iX) Find 2--tail equivalence classes. If Jui! > 2 and 1jl * > 2,

_ ,en u.i = u., If lu i< 2, then u, has no equitalence

classes.

(x) Find (n-1)-Laii equivalence classes. If Juil > (ni-l) and

lul > (1-1)), then u. u . If juil < (H-i) then u1 has no

equivalence classes.
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(xl) Find the derived grammar, GD = (Vfit VT, P, S), from the

canonical derivative grammar, GCD, and the minimized state

state set, u1, by the equivalence classes.

a. The terminal set, VT, is the same for GD and GCD.

b. The non-terminal set, VW, corresponds to the distinct

blocks of a partition of VC by the equivalence classes.

c. S is the starting symbol .,nd corresponds to the block

which contains o.

d. A grarwatical rule of P is B. + aB. if, and only if, thereI J
exists ui, uj £ VN such that u.i - a uj, u. 1 8., u. f£ B..

I j I j

e. A grammatical rule of P is B. -)a if, and only 7f, there

exists u i - V t such that u1 -- a and u. £ B1.

(xii) Find the derived grammars, GD, based on the partitions of

1-tail equivalence, 2-tall equivalence, and (H-I) tail

equivalence.

(xiii) The obtained derived grammars, G., are the resultant finite-

state string grammatical rules corresponding to the different

values of k in the k-tail method.

This algorithm was implemented and applied to infer the highway

grammar. Sample patterns are shown in Appendix E. The canonical deri-

vative finite-state grammatical rules are inferred as the intermediate

output of the finite-strate string grammar. The canonical derivative

grammatical rules are as follows.

3 u33c u2 7  u3c u2 7  u3 -c u2 8

u3)c u27 u4-+c ( 36  u4  u35 u4-d u 36

U1,-'d u3  u4+ u4)d u u-+d u
36 4-c u35 4 36 4 36

u5)e u4 5 u6÷f u 511 U6J u55 u6e u54
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u6Cf u54 u6-)-g u5 5  u6 ÷f u 54 u6f u 54

U77)- u 63 17+g U, 63 ui+f 1÷62. IL4 U6 3

u2 7÷ '2 1 9  U2, 9 -'. c u 2  u 219 U2 1 .-"'c

u2 7 ->d u2 2 0  U2 2 0 "+d u2 7-*d u2 2 0  U 220-d

U 3-. d U2 2 8  u 22 d- u35"-I u283 u2)83"+c

u36+d u292 12921d u36' u291 "291

u36d u292 u292'-d u36÷ u291 u291-•c

U36"e u293 u293' u45"+ u365 u365"'
-*4f U u, -J÷f

; u138  tu,. U54+g u33 u4 3 9 -q

u51 "f u4 38  u138 "f u '4÷g 439 U43'9-'q

u54e u437 u4371 U559 u447 U447-•'

u55-'g U447 U411749 u6 2 +f U5 0 2  u5 0 2 -'f

u6 3 7ug U5 11 1 "511' u6 3 7f U5 10  U5 10 -f

u6 3 ÷.f u510 u510-f u3 5 ÷C "283 U2 8 3 'C

After finding the equivalence classes of states ul, the resultant

finite-state string grammar for highways is inferred automatically by

computer. The resultant grammar is as follows (when k = I in the k-tail

method):

Ck= = (V14' VT, P, S)

V = {S, A, B, C, D, E}

VT {a, b, c, d, e, f, g, h}

P: S-)-cS S-dS S->eS

S*f S S-*gS S-4cA
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S+dA S-*dB S-•eC

S-fD S-ýgD S-*fE

S-.gE A-c A-*d

B+d C-+e D->f

D-g [-Ef E-g

The finite-state string grammar for highways when k=2 in the k-tail

method is also inferred as follows:

G = (V1, VT, P, S)

VI1 = {S, A, B, C, D, E, F, G, H, I, J, K, L, ti, NJ

VT = {a, b, c, d, e, f, g; h)

P: S-•cA S~dD S->dD

S)cC S-*eE S-fF

S-+gG S-4J I S>fH

A~cJ A*dJ B+dK

C-cJ IjD~dJ D-*cJ

D-*eL E-'eL F-fM

F4gM F~eL G-gli

H-fN I+gN l-411

J-c J-*d K-d

L - ) ýe 1 4 - 1f M -9
Nff I1÷g

An excellent aspect of the k-tail method lies in the fact that the

value of k can vary depending on the case. The gramnar inferred by k=2

is more precise than the gramnar inferred by k=I in describing the high-

way structures. However, the computer processing tine of grammatical

inference -for k=2 i; longer than the tine of grammatical inference for

k=1. The CPU time for gramnatical inference of k=I is 9 seconds. The

CPU tine for gremnatical inference of k=2 Is 15 seconds on the IBM 360/

!
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67 computer. The grammatical inference procedure of k=3 was also imple-

mented. The CPU time is 2700 of that for k=1. Thus, the case of k=3 is

not suggested for highway grammar inference. Concerning the choice between

k=l and k=2 for the highway grammar inference, several computer experi-

ments of highway recognition by these two sets of grarmars were conducted.

The experiments and the suggested choice of k values will be presented

in the next section.

3.2.2. Syntax-Controlled Analysis

The syntax-controlled method consists of two levels, namely, a

transformation process and the syntax-controlled analysis. The trans-

formation process of the syntax-controlled method is the same as that

for the syntax-directed method given in section 3.1.2. The syntax-

controlled analysis uses a deterministic finite-state automaton as a

recognizer to analyze the transformed image. Instead of comparing the

operation window G(M.1I) with the set of template windows as in section

3.1.2, the window G(14,N) is analyzed by the finite-state automaton. The

algorithm is as follows:

Algorithm of highway reLognition by syntax-controlled method.

Input: LANDSAT images.

Output: Highway recognition result by syntax-controlled method.

Algorithm:

(i) Transformation Process: same as for syntax-directed method
as in section 3.1.2.

(ii) Finite-state Automaton Analysis: computer automatically

constructs the finite-state automaton from the Inferred

grammar.

(ill) Construct the finite-state automaton Ki = (Es Q, 6, qo, F).

from the finite state grammar G (VN, VT, P, S) as follows [2]:'

TI
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a. Z=VT

b. Q =VN U {T}

c. qo S

d. If P contains the production S-÷, then F = {ST}.

Otherwise F = {T).

e. If B-Ea, B-6 V, a C VT is in P of grammar G, then

6(B,a) = T.

f. If B--aC is in P of grarrmiar G and C E VN, a C VT, then

6(B,a) C and 6(T,a) = 0 for each a £ VT'

(iv) Construct the deterministic finite automaton M' from the

finite state automaton I1 as follows [21:

M" = (ZA, QA, 6A, qc 0 ', F') (1 = (Z, Q IS, q 0 )

a. The states (elements of Q') of M' are alt the subsets of

Q.

b. Z'= •

c. F' is the set of all states in Q( containing a state of F.

d. qo0 = [q0 , a state of M" is denoted by [ql" q2 ' ... L qi]

£ Q' where q,, q 2 ' .... qi E Q.

e. 6'([qI, ... , q1],a) = [PIS P2 ' .6" P.] if, and only if,

a)= U I=1 6(qk'a) = (Pl" P2 " ... I P* }

(v) Set G(i,nl) to be an operatiun window (8 x 8) and load the

array of the transformed image from Step (1). G(M,N) equals

Q(I,J) where J = 1, 8; and I = 1, 8 for the first case.

(vi) Encode the patterns of the G(Ml,H) window into i.e string of

the primitives at, b, c4., d\, e+, fe, g9-, and h'o

(vii) Send the string to the deterministic finite-state automaton

MO', If the automaton accepts the string, then this pattern

is accepted. Therefore, proceed to the next step, otherwise

this pattern is rejected. Proceed to the next step.
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(viii) Shift one column to the right of Q(lJ) in step (iii). Then
gc to step (v) and continue until reaching the rightmost

co I umn.

(ix) Shift one row downward in step (v); go to step (v) until

reaching the last row of the digitized image. Syntactically

correct structures are recognized and stored in the resultant

memory array R(IJ).

(x) Output the result, R(I,J), which is the result of highway

recognition by the syntax-controlled method.

For the highway grarmmar (k=l), the finite-state automaton is auto-

matically constructed by computer as follows:

Finite-state automaton for highway recognition I= (E, Q, 6, qo, F)

{a, b, c, d, e, f, g$ h}

Q = vN U {T}

qo= S

F {T)

a: .5(S,c) = S

S(S,d) = S

S(Se) = S

S(S,f) = S

6(Sg) = S

a(Sc) = A

S(S,d) = A

a(S,d) = B

6(S,e) = C

a(S,f) = D

6(S,g) = D

a(s,f) E

i
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6 (S,g) =E

6 (A, c) T

6 (BAd T

6 (A, d) =T

6 (C,e) T

6 (D,f) =T

6 (D,g) = T

6(E,f) = T

6 (E,g) = T

6 (T, a)

6 (T, b)

6 (T, c)=

6 (T, d)=

6 (T,e)=

6 (T, f )

6 T, g)

6 (T, h)=

The corresponding deterministic finite-stIate automaton for the case

of the grammar, k=], is as follows: M W, 0Q', 6-, q 0 ý, FA)

01~ (E, Q, 6, go , F)).

E'= Z {ao b. c. d. e. f, g, hl

Q*= vU {T,OIU {[S,A],[S,A,13],[S,CJ,(S,D,E],[S,A,T],[S,A.13,T],
[S,C,T], [S,D,E,T]1

qo.= [Is

FA= {T,[S,A,TJI [S,A,B,'fJ, [S,C,T], [S,D,E,TI)

6SA 6([Slc= SASU,C],q) [S,D,E]

6([S],d) =[S,A,B] 6([s,D,El~c) [S,A1
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6([SI,e) =[S,CI 6([S,D,E],d) =[S,A,B]

6(S~)= [S,D,EI 6([S,,D,E],e) = [S,Cl

S(S~)= [S,D,EI 6([S,D,E],f) = [S,D,EJT]

6([AI,c) = [T] 6((S.D,E],g) = [S,D,E,T]

6([AJ,d) = [T] 6([S,A,TJ,c) =[S,A,T]

6([BI,d) = [T] 6([S,A.T],d) = [S,A,B]

6([CI,e) =[TI W(SPAPTI,e) =(S,C]

6U[DI,f) = [T] 6U[sVA,Tb~f) =[SS,D,E]

6([DI,g) [ TI 6([SVA,Tb~g) = [S,D,El

S([EI,f) =[T] t6([S,A,BT],c) = [S,A,T]

6([E],g) = [T] 6([s,A,B,TI,d) = [S,A,B,TI

6([T],c) = [ýl 6([S,A,B,Tl~e) [S,C]

6([TI,d) = [fl 6([S,A,B,Tl~f) =[S,D,E]

6([Tb~e) = [fl 6 ([sA,B,Tl~g) =[S,D,E]

6([I~) [I ([S,C,,Tbc) = [S,A]

45(TJg) ~I6([SVC,Tb~d) = [S,A,BI

6(SAb) [S,A,T] 6([S.,C,TJ,e) = (S,C,TI

6([S,AI,d) = [S,A,B,T] 6([sCTl~f) = [S,D,E]

6([S,AI,e) =- [S,C] 6([S,C,T],g) = [S,O,E]

6([S,AI,f) =[S,D,EI S([S,D,E,T],c) = [S,A]

S([S,AI,g) =[S.D,EI 6([S,D,E,T],d) =(S,A,13]

6([S,A,BI,c) = [S,A,T] t5([S,DETb~e) = [S,C]

6 ([S,A, B I,d) = [S,A,B,T] 6([sD,E,Tb~f) = [S,O,E,T]

6 ([IS,A, B I,e) = [S,CI 6(fS*DVEPT],g) = [S,D,E,T)

S(IS,A,B],f) = [S,D,E] 6U[T]a) = [$1

6([S,A,BI,g) =[S,D,E] 6([T]3b) = [+1



89

6(Isel,c) = [S,A] S(T = ,[0]

6([S,C],d) = [S,A,B] S([SC1,f) = [SO,E]

6([S,C],e) = [S,C,T]

The finite-state automaton for highway recognition based on the in-

ferred grammar (k=2) is as follows: IW= (z, Q, 6, qo" F).4. 0

,E= (a, b, c, d, e, f, g, h)

Q = V1 U {T}

qo= S

F = {T}

6 = 6(S,c) A

6(S,d) B

S(Sd) = D

S(S,c) = C

6(se) E

S(S,f) = F

6(S,g) = G

6(S,g) = J

6(S,f) = II

6(A,c) =J

6(A,d) = J

6(B,d) = K

6(C,c) = J

S(D,d) = J

6(D,c) = J

6(D,e) = L

6(E,e) = L
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6 (F,g) = 14

6 (F,e) = L

6(Gg) = H

6(H,f) = N

6(I~g) = N
6 g H

6(W,fC) =T
6(J,c) = T

6 (Jd) = T

6 (K,d) = T

6(L,e) T

6 (1.f) = T

6 (Mg) T

61,f) = T

6 (1,g) T

6(T,a) =

6(T,b) =

6 (T,c) =

6 (T,d) =

6(T,e) =

6 (T,f) =

6 (T,g) =

6(T,h) =

The corresponding deterninistic finite-state automaton, R', of the

above finite-state automaten from the inferred grarimar, (k=2), Is as

follows: 112 = (W, Q', 6', qo0 . F (M2 = (Z 4, qov F)).



=~~{ab, c, d. e. f. gj, h!

V U {T,ý)U {[A,CI,(13,D],[F,IIJG,l],[K,J],(ti,NII

6' S((Sbc) = (A,C] 6(Di],g) [~ T]

6I d)= (B, D) 6 ( (N) f) [T]

6IS]S, e) = El 6 (If] g) IT]

6([S],f) =[F,H] 6((T]~a) W 4

,,, s!g) (G,f1] 6((T] b) = 01

".('i ,C) 6 [J (T],c) [03

3 k A1, d) [ J] 6([T] d) (4

( B d K] a(ET],e) ]

sUc],c) (j] 6([T] f) (4

a((D], C) [] 6 ([..1,g) (3

6 (D] d) = J] 6([AC I c) = [A]

6([D] e) =(L 6((A,C I d)=[J

6((E],e) =(LI 5 ([B,D],c) = [A

6([F] e) = II] i([B,Db d) = [K,J]

6 rLFJ f) =(11] 6 ([B,DI,e) = [L]

=(M) 6 ([F,HIle) [ LI

6([G],) [M)6(F~b) MN

6((],) (ij6( IG,1],f) Ili]

6(lg N] 6 ( G, I]Ig) (t4,tI

6([j] c.) [T] 6 ([K,JI c) [ TI

6 ([J],d) [ T] 6([K.J] vd) =[11
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6([K],d) = [T] 6([H,NI,f) = [T]

6([L],e) =T] 6([M,-Tg) = [T]

S([Mb1,f) = ITE] 6(r],h) =(f

The algorithm of highway recognition by the syntax-controlled method was

implemented and the experiment: were performed by the deterministic finite-

state automata tHI and 142o. A" Illustrative example Is given here to

describe the operations of tC is algorithm.

Example: An image window from' a LANDSAT image (visible bands) is process-

ed by the transformatlor -,rocess and the transformed window is shown as:

The window pattern is enicoded as the string dddd. The finite-state

automaton, M2", 2orks as follows: the input string is analyzed from the

starting symbol IS]. The transition rule 6([S],d) - [B,D] is chosen by

scanning the present ctates and inputs of all the transition rules of

Then a searching of the state [D,0] is performed on the present

state of the transition rules of The transition rule 6([BD],d)

[K,J] is located and this ruie leads to the next state [K,J]. Thereafter,

the rule 6([KJ].d) = (T] is applied to obtan'the next state [T] and the

partial part (ddd) of the string (dddd) is recognized. The rule S([T],d)

= [•] is successfully found in the set of transition rules of M 2% Thus,

the string dddd is accepted by this automaton. The window pattern is

recognized. The pattern Is a highway which lies from northwest to south.-

east. The recognized pattern is:
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H
H

H
H

H H

The experiments of highway recognition by the automaton HC and M2 .

were conducted on the same set of images. The experimental results from

the automaton, H2.., are more accurate than those of M.. but the CPU time

Is slightly longer than that of the automaton, 1f. Since the grammar

inferred by k=2 describes patterns more precisely than the grammar infer-

red by k=l, the slight difference in CPU time between these two automata,

KI and M 2  is acceptable. For example, the CPU time for automaton, Mi,

on highway recognition of a 96 x 96 LANDSAT image is 20 seconds on the

IBM 360/67 computer. The automaton, M,', analyzing the same image takes

21 seconds on the same computer. Thus, the. grammar, k=2, is suggested

as the better highway grammar. The grammars of the cases k=3 and k=4

are not suggested, because of the increase in computer processing time

to infer these grammars and the increase in CPU time for the image recog-

nition by the automata, It and MI .

3.2.3. Experimental Results on Highway and River Recognition from LANDSAT

Images

The computer experiments cn highways and rivers were conducted in

different areas. The highway recognition by the syntax-controlled method

on the image (Figure 3.3(a)) is given in Figure 3.12. The area of Figure

3.12 is the same as that marked on Figure 3.3(d). The computer result

shows that highways 1-65 and I-4i65 were successfully recognized. The

I
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Figure 3.13. River recognition result by syntax-
controlled method on Figure 3.3(a).
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controlled method on Figure 3.3(a).
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Figure 3.15(a). Satellite Image of downstown
Indianapolis, Indiana.
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image is 96 x 96 in size. The CPU time for highway recognition by the

syntax-directed method on the same image took 27 seconds compared with

the 21 seconds here. The river recognition was performed on the same

image shown in Figure 3.3(a). The results of river recognition by this

syntax-controlled method is shown in Figure 3.13. The CPU processing

time for this method is 12 seconds by the automaton M 2H (k=2 case) -,n the

96 x 96 image compared with 20 seconds for the syntax-directed method.

3.2.4. Experimental Results on Bridge and Commerctl1/Industrial Area

Recognition from LAIIDSAT Images

Figure 3.14 shows the bridge recognition result by the syntax-

controlled method. The recognizer is automaton M2 (k=2 case). The

length is automatically calculated as 672 meters which is the same re-

sult as that obtained by the syntax-directed method. The CPU time for

bridge recognition by the syntax-controlled method is 39 seconds, whereas

the syntax-directed method requires a longer CPU time, 42 seconds. The

commercial/industrial area recognition was performed by the syntax-

controlled method on an image of the downtown area of Indianapolis,

Indiana, Figure 3.15(a). The result is shown in Figure 3.15(b). The

size and center of the downtown area were automatically calculated from

the 96 x 96 image frame. The computer processing time of the syntax-

controlled method for this experiment was 43 seconds. The downtown map

of Ind!anapolisis provided in Figure 3.15(d). The urban development

information extraction is shown in Figure 3.15(c).

3.3. COMPARISON OF THE SYNTAX-DIRECTED AND SY14TAX-CONTROLLED METHODS

As has been stated earlier, the syntax-directed and syntax-controlled

methods were implemented and experiments on highway, river, bridge, and

4
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commercial/industrial area recognition were conducted on the IBM 360/67

computer in the Laboratory of Applications for Remote Sensing (LARS).

The LOGICAL programming technique was used in both methods. Comparative

studies were also carried out without LOGICAL programming. The one using

logical programming saved 30' of the CPU time used by the other. Con-

cerning computer memory sapce, there Is another advantage to LOGICAL

prograrmming in that every pixel of the transformed image takes only one

byte for storage. (Usually each pixel takes 4 bytes for storage of in-

teger). Therefore, it was found in this experiment that the use of LOGICAL

programming saved approximately 75,0 of the memory space required by the

program requiring four bytes per pixel.

As stated above the CPU time for the syntax-directed method for high-

way recognition from a 96 x 96 image takes approximately 27 seconds. The

CPU time for the syntax-directed method for river, birdge, and commercial/

Industrial area recognition from 96 x 96 images takes 20, 42, and 46

seconds, respectively. The syntax-controlled method was implemented by

the same programming techniques as those used for the syntax-directed

method. The CPU time for this second method for highway, river, bridge,

and commercial/industrial area recognition from the 96 x 96 image were

20, 12, 38, and 41 seconds, respectively (for an automaton corresponding

tc a grammar by the k=l inference procedure). For an automaton corres-

ponding to the grammar by the k=2 inference procedure, the CPU time for

highway, river, bridge, and commercial/industrial area recognition of

the same images were 21, 12, 39 and 43 seconds, respectively. The com-

parative performances of the syntax-directed and syntax-controlled

methods are listed in Table 3.1. It can be seen that the syntax-controlled

method processes the same image for all the tasks faster than the syntax-

I,
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Table 3.1ý CfU timne perfornance comparison of syntax-
directed and syntax-control led methods.

"Conmerc ia I
"Ta-k Highwiay River Bridge Industrial

lire thod _________ _________ _________ _________

Syntax-Directed 27 sec. 20 sec. 42 sec, 46 sec.

Syntax- 20 sec. 12 sec. 38 sec. 41 sec.
Control led

k=I

Syntax- 21 sec. 12 sec. 39 sec. 43 sec.Control led

k=2

C2
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directed method. As for the accuracy, the syntax directed and syntax-

controlled methods have the same level of high accuracy In the experi-

ments.

. In general, the syntax-directed methods, commonly known as the

template-matching method, has the advantage of faster software development

time because the implementation is less complicated than for the syntax-

controlled method. However, the disadvantage of the syntax-directed

method is that the recognition depends on a set of limited template

patterns. Once the pattern does not m•atch correctly with one of the

templates, then the pattern is rejected. The only way to increase the

recognition capability is by adding more templates in the set of tem-

plate windows. These added templates Increase the need for computer

storage and the CPU time for each matching operation. The syntax-

controlled method has the advantage of fast computer processing time for

program execution once the more complicated programming is completed

which means a saving of CPU time in processing the image every time

compared with that of the syntax-directed method. Another advantage of

the syntax-controlled method of finite-state string grammar is that the

gramnatical inference can be fully computer automated. Thus, the

grammar is more realistic and precise in describing the patterns than

is the gramnar for syntax-directed method. The CPU time for the gram-

matical inference of a highway grammar Is 9 seconds for the case of

k=l and 15 seconds for the case of k=2 in the k-tail inference method

of the syntax-controlled method, as compared with the gramnatical in-

ference procedure for the syntax-directed method in which, because the

procedure is an interactive process, the CPU time Is about 60 seconds.
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In conclusion, the syntax-controlled method for highway, river,

bridge, and commercial/industrial area recognition from LAIDSAT images is

an'effective technique for Image recognition. The results from such.

applications can contribute to urban development planning, and to rnih-

tary reconnaissance.

0 -
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CHiAPTER 4

IMAGE SEGtMENTATIOrN USI11G A TREE GRAMIMAR APPROACH

The syntactic method for inage ser-nentation was developed by a tree

grammar approach. The reasons that a tree grammar approach is proposed

for Image segmentation are; first, tree languages are very descriptive

and second, the tree grammar analysl.3 offers a natural high-almenslonal

generalization of strings. Since the boundary patterns of an image are

usually two dimensional and tree grammar is more convenient for describing

high-dimensional objects than s string grammar, the tree grammar Is used

to describe the boundaries of the honogeneous segments of an image. In

addition, the high recognitioncapabllity of tree autoniaton, corresponding

to the tree grammar, and the hierarchical nature of scenes rrake the tree

grammar approach very attractive for image segmentation.

A syntactic approach to imarle segmentation was investigated which

Involves two levels of processing. The first level, referred to as pre-

processing and primitive extraction, consists of two steps (I) texture

region prinitive extraction, and (2) boundary primitive extraction. The

second level, which is the syntactic analysis, requires tree grammar

inference to describe the boundaries of hcnogeneous regions. A block

diagran of the systeri for image segnentation is shown in Figure 4.1.

The process of tree grammar analysis utilizes the corresponding tree

automaton from the inferred tree grammar to process the primitive extract-

ed Image. Then this image Is segmented.

• • • • = • • = • • •
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Input Image

l~exture Region Priniltive EXtraction

Sanpie Patterns

Eoundary Primitive Extraction I 4

Tree Gramm..ar Analyses .kra.rSnatical Inference' I I

L |

Segmentation Result

Figure It.]. Block diagran of the system for image segrmentation.
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4.1 SYNTACTIC IMAGE SEGMENTATIOff ALGORITHM (SISA)

Several approaches to the use of texture information in image

analysis have recently been developed (72,73]. However, these techniques

have c. erally been applied to terrain classification following segmen-

tation and not to the segmentation problem itself. In our approach to

image segnentation, the texture information and boundary structures are

analyzed to obtain the image segmentation result. The input to the

system is tile digitized iraage. The texture region primitive extraction

performs the texture analysis arid extracts the texture region primitive.

Then, the houndary primitive extraction extracts the boundary primitives

from the result of the texture region primitive extraction. The result

from the boundary primitive extraction is then modeled by the tree

gramrmar which is inferred by the tree grarmlarss grammatical inference

procedure. Each part of the image segmentation system is discussed in

detail heiow.

4.1.1 Inference of Tree Grarmmars

The concept of tree grammar analysis is herein described by defining

and studying tree graniiars and trtz automata (2].

Definition 1:

A pattern graammar G is a four tuple G = (V14, V/T, P, S) where

Vtl is a set of non-terminals or subpatterns.

VT is a set of terminals or pattern primitives.

SC V is the start symbol, and

P is a set of syntax rules or productions in the form of %-'.

ac(V 1 U VT)-V N (V11 U VT) * 11c(Vl U VT)

V is the set of all possible, sequences of symbols ii V Including
the e;.pty sequence A.

i i
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By applying productions in P successively, starting from S, the

strings or sentences of terminals generated by the production in P are
4,

the language g nerated by the grammar G, L(G).

Definition 2:

Let N+ be the set of strictly positive integers.

Let U be the univerza, tree domain (the free semigroup with identity

elenent "0" generated by N+ and a binary operation -"-) [2,05].

Definiticn 3:

A ranked alphabet is a pair <Er> where Z is a finite set of symbols

and y: E -÷ N = +q U (01. For acE, r(a) is called the rank of a.

Definition I..

.A tree over Z (i.e., over <Zr>) is a function a : D - E Z such that

D is a tree domain and r[a(a)] = max{ija * i e DI. The domain of a

tree, a, is denoted by D(a). Let T . be the set of all trees over Z.

Definition 5:

Let a be a tree and a be a member of D(a), ala, a subtree of a at a

is defined as ala= {(bx)la-b'X):a}.

Definitioi, 6:

A regular tree grammar Gt over <VT, r> is a gran.wiar Gt=(V, r-, P, S)

satisfying the following conditions:

(i) <V,r"> Is a Finite ranked alphabet such that VT C V and rAlVT =

r, VT and V - VT = VN are the same as in Definition I.

(ii) P is a finite set of productions of the form 4 o * where

'C Tv (Tv is a set of trees over <V,ro>).

(iMI) S is a finite subset of Tv-

I

I
I

I



110

.Refinition 7

A tree gramnar Gt = (V, r,,P, S) is expansive if and only if each

. production in P is of the form

X - x
0

X, ... X r

where x c VT and XVl X, o., Xr C V N(V-VT) are non-terninal symbols.

Theore 1i: For each regular tree gramnar, Gt, one can effectively con-

struct an equivalent expansive granmar Gt , that is, L(Gt

L(Gt) [2].

Definition 8

A tree &utomaton over Z is a (k+2)-tuple

Mt = (Q, fls "'' fk' F)

where (i) Q is a finite set of states; (ii) for each I I < I < k,r(ai1) r (07 -_ --

fi is a relation on Q 1  x Q, a e , that is f Q - Q;.

and (iII) F a Q is a set of final states.

Definition 9

The response relation P of a tree automaton 1tt is defined as (i) if

o C Z 9 p(a) = X (X belongs to final state set F of the tree auto-

maton) if and only if f4 = X, that is, p(s) = f .; (ii) if o

n > 0, p(a, Xo, ... , Xn) = X (X, ... , XnP1 are non-terminals).

If and only if there exists X0, ... , X n_ such that f (X.
X ) X.

Definition 10

T(Mt) (a c TI there exists X• F such that p(ci) X) is called

the set of trees accepted by 1It.



Theorem 2: For every regular tree granmmar, Ut, one can effectively con-

struct a tree automaton Ht Jsuch that T(it) = L(Gt) [2].

The construction procedure is sunnmarized as follows:

(I) Obtain an expansive tree grammar Gt" = (V', r, Vt, S) for

the given regular tree grammar Gt = (V, r, P, S) over

alphabet VT'

(Ii) The equivalent (nondeternlnistic) tree autonaton is

fit = (Q' fit ' f k ' F) where Q = (Xo, X1 , ... , Xn}) F

f x(X, *.., Xn) = X if X x Xl, ... , Xn is in P', x e VT,

Xi9 *got Xn c Q, and f x(X ) X if Xo - x is in V'. x C VT,

X ,I *.° Xn ;c'Q, F is the set of final state. F = {XJxXE
V Tand f OX ) = X L
Tn xx o"

An illustrative example is provided here to show the procedure of con-
. (

structing the tree automaton. The tree grarimar is Gt = (V, r, P, S),

where V = {S, 4, a, b, A, B), 4* is the starting node or root of the tree,

VT - (a, b, 41, r(a) = (2,0), r(b) = (01, r(4) = (21, and P:

S-• 4 A' a

A 0 A B

A÷ a B. b

The procedure of construction for tree automaton Is as follows:

(I) Obtain an expansive tree grammaar Gt( = (V', r, PV, S).

Since Gt is an expansive tree grarwr, thus Gtd = Gt=

(V, r, P, S) for this exanple gramar.

(0i) The tree automaton is M (Qf it, fa' fb' F). The Q, f4, f ;

f and F are constructed as follows. Since the grammar

bIL
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rule is S - , the relation is obtained as f =
/'\

A D

The relation fa(qA qB) = qA Is obtained fron grammar rule

p a , The relation fa(q) a qA is obtained from gramnar
/ \

A B

rule A a, and fb(qb) = qB Is obtained from grammar rule

B - b. The tree automaton is thus constructed as It =
t

qs q A y qBp qat qb}1 the relation f's are f i f afV and

the final state set F = {qatqbI

in order to nodel a language more realistically or to describe a

class of patterns more precisely, it is expected that the grammar used

can be directly inferred from a set of sample sentences or a set of

sample patterns. This subject of "learning" a grammar based on a set of

sample sentences is called gramr.matical inference. A tree grammar infer-

ence procedure is briefly r,-,iied .201 bel,'w-

(i) Represent each sample tree as

I4
where any of the subtrees tl,t 2 ... ,tn,

consists of repetitive substructures.

(iH) Starting from the root, determine subtrees with depth one for

each sample tree a1, excluding the subtrees having repetitive sub-

"structures.

(iii) Attach non-terminal symbols to nodes and construct an expansive

tree grammar G. for a..

(iv) The inferred tree grammar for the complete sample set will then be
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Gt = U G

I
The purpose of the inferred tree grammar is to describe tie boundaries

of the image segments. The prirtitives for those patterns are:

a ef

~ C g~

d h

and the window size Is chosen as an 8 x8 array of pixels. The positive

samples are those patterns starting from a primttive followed by, at most,

three branches. The negative samples are those patterns in which there

Is no boundary line or those having singular primitives or pixels. The

sample patterns are listed in Appendix A. Applying the tree grammatical

inference procedure [20], a set of tree grammars is inferred to describe

the boundary structures. An illustrative exam.ple is given here to show

the grammatical inference procedure of a tree grammar. For example, the

sample patterns are given as follows.

II= b ¢-4

a .. .*- . . . - z

C o

T
ici

y S I

v . • I
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The gramnatical inference procedure works as fellows: (The flow chart of
the tree granmnar inference, procedure Is provid ln Appendix G).

Step 1. Represent 5ample trees aild ( a2 as,
1

a c a 2 : d
I / Ic c e

Se I e

c e c e

e

C

The subtrees of a and a2 are t 1 , t 2 , and t for at and t,

t, and t A for a 2 °

t1 = c t! = d

C c e

t2 c = c/\ 2

c e c

C

t3 e t3 e
3 3 3
e e
I Ie C

e

Step 2. Determine subtrees %,,;th depth one.

Ss,= c t si = d

c C e

I
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=C t5 *
t s2 / \ s2.. cl

c e C

t e t eS3 s3 I
e e

Step 3. Attach nonterminal symbols to nodes and construct an ex-

pansive tree grammar GI for a, and G2 for a c Q starting

symbol)

G I S +G 2 s

A IA1  A2

A1 c A 2÷d

A1  AI A2

A, ÷c

A1 A2

A2  e

A2

AI C

A2 e

Step 4. The inferred gramrmar is Gt which is the union set of the

grammar set G and G of Step 3.

The tree grammar is obtained from the grammatical inference procedure. The

tree grammar Gt is as follows.
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Gt = (V, r, P, S)

where V IS, 4, Al, A2 , A3 , A4 , Ar, A6, A7, a,b,c,d,e,f,g,h}

r(a) = 01,01 r(b) = 0,01 r(c) 12,1,01 r(d) = {3,2,1,O}

r(e) = {3,2,1,0} r(f) = {2,1,0} r(g) {2,1,0} r(h) {Io}

r(4) = {2,1}

VT = {+ a, rb -x c,'>d, + e, f g h,

and graimar rules P:

A A2 A1  A6  A2  A7

A -• e A - c2 /
AI A2  A1  A2

A -• c A ÷ d
A" \ A A\

A1 A2  A1  A2

A f A -2 g

AI A 2 A] A2

A - d A ÷ f
/ i '.\ / \

A3 A4 A5 AI A2

A1 -÷ e

A3 A4 A5

A 3 b A -) d A 3 eI I I
A3  A3 A3

A.& ÷ f A -*g A c A - h3I 3 3*
A 3 A A

3
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A4 b A 4 d A4 e A4 4.

A4  A4 A4 A4

A 4 f A4 9 g 4 c A 4 hI I I I

A4  All A4 A4

A 5 b A 5 d A5 - e A eI I I I
A5  A5 A5 A4

Ar5 f A5 + A5 c A5 + h

Ar A5  A5 A5

A6 + e 6 A e A7 + c A7 4 cA e I !
A6  A A7 A

A A + c A + f A + b

A1  A A1  A 2

A2 + c A2 + d A2 + A2 fI I I I
A2  A2 A2 A2

A "' e A + c A1 4 f Al b

A A2A -) d A - g A.2 f

A 3 b A3 + d A3 + e

A 3 f A3 + g A 3 c A.3 h

A4 b Al + d A4 + e

A4 ÷ f 4 g A c A4 h

A5 ÷ b A5 + d A5 ÷ e



A5 4 f A5 g5 A5 h

A6 -" e A 7 c A1l a

i7

A transformational granriar is a set of grair.iatical rules for trans-

forming a pattern from one forri to another [2,21]. A line smoothing tech-

nique can be designed by a transformational grammar. Here we introduce

the tree transformationa, grammar for the line smoothing technique. The

concept of the syntactic line smoothing technique is as follows: Ir-

regularities are usually caused by the digitizer, noisy patterns, and so

forth, These are In forms such as the zig-zagging of the line patterns.

The tree transformational gramnrar evaluates the contextual information of

the patterns. If the context of the pattern satisfies the transformational

grammar, that pattern is transformed into a smoother pattern. By this

syntactic line smoothing technique, the zig-zagging of lines is smoothed.

Actually, tree transformational grammar is a universal method for line

smoothing of any pictorial data.

The process grammatical inference scheme for tree transformational

grammar is as follows:

(1) Represent each non-smooth pattern as

4. 1

/2\

where t 1 and t 2 are the predecessor and successor subtrees of

the t subtree.

" ~I
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(2) Based on the relationship of ti, t 2 % and t interchange t.

with a smoother pattern t then obtain tree transformational,, si,

grammar G.a for t 1 , as:

It it \

L t2

(3) The inferred tree transformational grammar for the complete

sample set will then be Gt U Gt i

For example:

non-smooth pattern (6x6) • .. ,

.C•

smoothed pattern (6x6) -

The grammatical Inference scheme for tree transformational grammar works

as follows.

Step 1. Represent non-smooth pattern as
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4 tl =

St C

e e
S~C

I I
e e

/\d t 2  e
C =

c a

Step 2., The smoother pattern t. of t. is

t I
d

and the t1 and t 2 of the smoother pattern are the same as

for the non-smooth pattern.

Step 3. The lnferrcd transformational gram.mar GI is

4 4
c d! I
e d

C C C

e

c e

The tree transformational grammar G is the union of the
t

gratrinar G1.

For the syntactic line smoothing technique in section 4.1.3, a tree trans-

fornational grar•iar is Inferred to reduce irregularities and smooth the

patterns. The grammar is as follows:

) 4 4 ~~2) 44 3
I I I I II

c d c d c dI I I I I ;
e d e c e cI eI 4

G c e C eca C e c
e ec a e C

c e

.+. .: . ... _. + , _ -: . . . .. ...



121

The graphizal interpretation of the transformational grammar is given under

each rule in terms of Pon-smooth and smoothed patterns.

445) 4 46) j

c d c d c ,d

I .I I ii I
e ce c ec

c c a c c C a
I\I i

c a c a

7) 448) 4$9) $
g f g f 9f

e f e g eg
I i/1 I/ \

g g e a age 9

e ag9e g e

g e

10) 44 1) $4 12) 4
q f f9f

e + + e 9

a e g a
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13) $ $ 14) 4 $ 15) 4i I I I t
e d e d e d
I tI I I I
C I c e C e

-)4 I + t i "+ /

e e c e g e c e e cI I'I\.\
C qe c e c

./

e c

16) 4 4 17) 4 4 18) 4
fI
e d e d e dr t I
C + e C e C - e

S/ \I I I t
e q c e e e g

g c e g

19) 44 2)44 21) 4
I I I I I a

e f e f e fIII I I

g 9 f g + e 9 . eI /XI /I\ I /
e e g e gec e g e

e /'Sg qec g e

o: i9

gI
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22) 4 4 23) $ 4 24) 2 4
'I I I I !

f e f e f
1I ! I a I

g ÷ e g 9 e g + e

ce e e c

c e c

25) 4 26) 4 27) $I I 1 I

c d c d g f
I I a

e d e d e
I/ ,I IXl x

c g e c c e g e c
! I ,

e e e

g e c e e c

283) 4 2-9) 4430) $4
I I I I !
g d e d e d

I II Ie d c d c dI/ I i

g c g e C 8 e a e

e

g c a a e

AR
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31) J 32) j

e f e f
I I I I
g fg 4 f

e g a e a e
g a a L;

4.1.2 Texture Reqri-n Prim•tlve Extraction

The texture region primitive extraction takes the digitized image

as input and perform texture analysis to obtain the texture region

primitives. This process consists of the sub-processes histogram

equalization, variability texture measurement, a,-d texture region primi-

tive assignment.

I) Histogram Equalization: The image of interest, P(x,y), Is

stored as an 11 x II array in the computer menory. Each element of this

set has a grey level value given by the intens!ty function z(x,y). A

histogram of an inage is defined as follows [83]: Given an image f, let

Pf(z) denote the relative frequency with which grey level z occurs in f,

for all z in the S.'ey level range [zI, Zk] of f. The graph of Pf(z) as

a function of z, normalized so that fzk Pf(z)dz is equal to the area of
zI

f is called the histogram of f. The histogram equalization technique

[723 requantizes the grey levels to k' levels which have z,, z2 , ... , z k

as the values of the requantiz.cion interval points, with the values of

TVI27i i
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Z, and zkV equal to the minimum and maximum values of zI respectively.

The histogram equalization technique reassigns values of grey levels to

the picture pixels. This technique assigns an equal number of picture

pixels to each interval of the grey level Zki*. Thus, the number of

grey levels of the original digitized image (usually 256 or 128 grey

levels) is reduced to a reasonably smaller number (e.g., 16 or 8 grey

levels). Even if, for example, two images of the same scene had dif-

ferent digitized values due to the fact that they were digitized on

different machines under different amounts of brightness, the histogram

equalization technique would assign values to pixels according to their

relative values to each other, and, thus, the histogram equalization

results of these two Images of the same scene would be the same.

2) Variability Texture'tieasurenent. Texture Wnformatlon is ex-

tracted from the spatial relationship of the grey levels of pixels in

the image. The joint probability density of the pairs of grey levels

that occur at pairs of points with distance d is calculated. If there

are k grey levels, the array is a k x k matrix P(i,j), called a co-

occurrence matrix [73]. Then a variability texture feature is calculated

to measure the spatial relationship of the grey levels of an Image.

Havalick (72] suggested twelve texture feature measurements for terrain

classification. Here, ste use a method of texture analysis for image

segmentation. The variability texture feature is the modified entropy

texture feature (72]. (entropy =-z z (f log (P(%J)) TheSj

logarithm portion (log( PR )) of the entropy textlre feature is

modified to log .(ij)) R is the normalization constant of the

R

matric P(I,J). K( is the range factor to expand the range of the values
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of the texture measurements. The variability texture Is thus defined

as 172]:

VARIABILITY E.- Z (. log %%, K > I
I j R R

In the previous research work in texture analysis for terrain classifi-

cation [72,73], there is no indication which texture feature is the best

for terrain classification. Therefore, the variability texture feature

and some other texture features such as second order moment, contrast,

and correlation are measured on the same image [72]. From our experi-

ments on images of several areas in Indiana, the variability texture

measurenent Characterizes the major land-use classes as agricultural,

wooded, old residential, new residential, and watery areas. Thus, the

variability texture measurement is used for image segmentation. The

use of more than one texture feature (in addition to variability texture)

could be useful to image segmentation. The reason that only one texture

feature is used, is that the computer processing time increases as more

texture features are calculated. The preprocessed and primitive ex-

traction result is to be processed by syntactic analys;b. Hence, one

texture feature, variability, is used in the preprocessing and primitive

extraction. Figure 4.2 is aii illustration of the variability texture

measurements of an 11 x 11 Image window. The distance is one for the

horizontal, vertical, left diagonal, and right diagonal co-occurrence

rmatrices. The variability texture Is calculated on each of the four

matrices, separately. TI-. average value of these four measurements is

taken as the texture measurement of the center (hAx pixels) of that

image window.

-23
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R888888F3•88,,
F888b888I3A$
866,88888 7b8
888888'3645i3
587a8886444
18755441311
38744431111
35883532111
22484311211
25258822211
34445855592

CO-OCCURRENCE MATRIX PH

18 4 4 1 0 0 f 1
4 6 1 1 4 0 0 1
4 1 0 3 4 0 0 2
1 1 3 14 3 2 1 2
0 4 4 3 A 0 1 5
0 0 0 2 0 2 n 4
0 0 0 1 1 0 ri 6
1 1 2 2 5 4 6 72

CO-OCURRENCE MATRIX PV

20 6 3 2 2 1 0 I
6 4 2 2 5 0 0 0
3 2 4 5 1 0 o 2
2 2 5 4 6 0 1 5
2 5 1 6 0 0 0 7

'1 0 0 0 0 2 0 5
0 0 0 1 0 0 4 3-
0 0 2 5 7 5 3 66

CO-OCURRENCE MATRIX PLO

16 4 2 3 1 0 0 2
4 4 3 2 4 0 0 0
2 3 2 3 1 1 11 1
3 2 3 2 7 1 1 5
1 4 1 7 2 0 2 3
0 0 1 1 0 0 0 6
0 0 0 1 2 0 1) 5
2 0 1 5 3 6 S 60

CO-OCURRENCE MATRIX PRD

14 5 3 2 2 0 o 2
5 4 0 1 3 0 0 3
3 0 2 3 ? 0 0 4
2 1 3 4 6 2 0 6
2 3 2 6 0 0 ? 5
0 0 0 2 0 0 1 5
0 0 0 0 2 1 4) 5
2 3 4 6 5 5 5 5S

VARIABILITY TEXTURE PH = 7i.ocoq

VARIABILITY TEXTURE PV = A1.lR6?

VARIABILITY TEXTURE PLD= Ao5939

VARIABILITY TEXTURE PRO= 89.6409

VARIABILITY TEXTURE MEASU4EMENT 82.10R0

Figure 11.2. An illustrative examiple of variability texture measurement
on an lixil image window.
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In segmenting a large Image, the win'dow size used for texture measure-

ment is lIxNl pixels. The variability texture feature is measured from

the lixil window and the value of this measurement Is the texture value

of the center 4x4 cell. This technique was devised because it is quite

possible for a textural area to be smaller than the window size, or that

the boundary between different textural areas lies in the operation

window, in this proposed technique, such a problen is taken care of as

we locate the boundaries by shifting the llxll operation window 4 pixels

at a time. Thus, the potential boundaries could be preserved and the

spatial relationship can stlil be extracted because the window size

(llxll) has not been reduced. Several other sizes of operation window

such as 9x9, lOxlO, 12x12 and 13x13 were also tried. The texture

measurenents from the smaller windows sometimes failed to give the same

good results as did those from the llxll windcow. The reason for this is

that the measurements from smaller window did not yield enough global

information of the Image data to allow the extractior; of the proper

texture measurements. The results from the texture measurements of

larger windows were similar to those of the Ilxll window. The compara-

tive computational time for these neasurements by different windows is

that the time for a 9x9 window is about 5% less than that for the lixil,

and the tine for the 13xl13 is about 10% more. From this study of

texture measurements w~lth respect to window sizes, the lixil window was

used for the texture measurements in our experiments of the LANDSAT

images.

3) Texture Region Primitive Assignment., After obtaining the texture

values for 4xAI unit cells, the histogram of the texture values in the

texture donain is thresholded and then assign texture codes to the
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segments. The histogram is made by shifting the lIxl1 window 11 pixels

at a time, because only the global distributions of the texture values

are of interest here. The feasibility of variability texture measure-

ments and this technique can be shown as follows: Figure 4.3 is the

histogram result of variability texture measurements on a 38 5x19 8 pixels

LANDSAT image of an Indiana area. Figure 4.4 is the histogram res':it of

angular second moment (Angular second moment = 2. 1. {P(i,j) 2). Figureij

4.5 is the histogram resul t of texture measu-ements of contrast (Contrast =

2 Ng Ng
Vl n { Z P(ij)}). Figure 4.6 is the histogram result of texture

n=O i=1 j=1

li-ij=n

measurenents of correlation. (Correlation = (E Z (i-j)P(ij) - pxliy)/ox
ij

uy, Vx, py, ax and ay are the means and standard deviations of Px and Py).

From the histogram of the texture measurements, the 4txA cells are

grouped to different texture regions.

4.1.3 Boundary Primitive Extraction

Following the texture region primitive extraction is the boundary

primitive extraction consisting of horizontal processing, vertical pro-

cessirng, logic integration, and syntactic line smoothing.

I) Horizontal Processing. The Horizontal Processing processes

the "texture region primitive extracted image" row-wise to locate the

potential horizontal boundary segments. The operation procedure is as

follows: let Q(I,J) be the picture function at location (I,J).

Step I. Start with Q(I,J) as reference.

Step 2. Compare Q(I,J) with Q(I,J+l). if the distance is smaller

than a specified value, a "zero" is set on Q((,J) and

Q(IJ+l). Then Q(I,J) and Q(I,J+2) are compared. If the

A
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distance is greater than or equal to the specified value.

A "one" is set for Q(I,J+2) as a potential boundary primi-

e tive. Then the same process is applied with Q(I,J+3) as

the reference.

Step 3. Wlhen this process is operated to the rightmost of the row,

the Q(1+1, J) is the reference and Step 2 is applied until

all the rows are processed.

The idea of this process is to treat the image matrix as independent

rows. After this process the potential vertical boundaries of the image

are detected. The reason for comparing Q(I,J) and Q(IJ+2) (when

Q(I,J+i)=O) in Step Z, is because the reference must be kept In the sane

operation. If instead of comparing Q(I,J) and Q(I(,+2), Q(I,d+I) and

Q(I,J+2) are compared. The reference Is shifted. thus none of the

boundary primitives will be detected.

2) Vertical Processing. The Vertical Processing is similar to the

tlorizontal once ex-ept that it processes the inage column-wise to locate

the potential horiz'ontal boundary segments.

3) Logic Integration. The result of horizontal processing is de-

fined as H and the result of vertical processing is defined as V. The

Logic Integration is a boolean "OR" function of HI and V and It is de-

fined as RM,V).

H V R(I1,V)

0 0 0

o I

0
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The software program is implenented to co-pare H(I,J) and V(IJ) to

obtain the logic integration result.

After the process of logic integration, the potential boundaries of

the picture are detected. The deformation of the boundaries is to be

removed by the line smoothing technique which is a syntactic process of

transformational grammar.

l1) Syntactic Line Smoothing. A tree transformational grammar is

designed to reduce irregularities and smooth the patterns. The set of

tree transformational grammnar for syntactic 'lIne smoothing is inferred

by the inference scheme in section 4.1.1. In implenenting the tree

transformation, first, the image window is encoded into the tree language

which describe the boundaries in that window. The output of the logic

integration is the binary Image window. The encoding procedure checks

the window row by row to find the first pixel with non-zero value as the

starting point (0). Then, a search for surrounding non-zero points is

followed. The non-zero points are encoded as the prirmltives. These

prit.fitives are the 2x2 blocks, a t, b', c -, d\, e , fr, g ÷-, and

h t, which were graphically shown in section 4.1.1. If only one branch

is found from the- starting point, then a pointer is used to link the

connecting primitive of this branch with the starting primitive. If

two branches are found, then two pointers are used to link the encoded

prinitive of each branch respectively. The same encoding procedure is

applied to each branch to obtain the tree structure of the primitives

In the irage window. This tree structure is thus the tree languagqe for

the tree gram.nar analysis. For example, for an input widnow from logic

integration process as
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the encoded prilitives of the input wjjdow is

S-'- -----

e

e
CC

e

The tree representation is

!

c e

e C

IC

II



137

In processinc, the. tree representation of the input pattern by the tree

transformatinin grauirnar, the rule (1)

t: d

cc e

c e

will prcduce the transfcormed pattern and its data representation Is as

follows.
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In order to apply the tree transformation grammar to smooth the pattern,

the pattern primitives around the pattern primitive of interest have to

bechecked. In a 6x6 window, there are eight primitive windows (2x2)

around the center primitive wirndow of interest. Thus, there is enough

information for deciding whether the proper smoothing rule will be applied

to smooth the pattern or not. Therefore, in processing an image, the

syntactic line smoothing process is performed on a 6x6 window. The

window is shifted 4 pixels at a time to repeat the process. There are

always 2 pixels overlapping on each process, thus the irregularitie,

between two neighboring windows will also be processed by this line

smoothing technique. WJhen the window operation reaches the edge of the

image, it moves downward four pixels and starts from the leftmost point

of the Image to repeat the sane process, until the whole image is pro-

cessed by this syntactic line smoothing technique.

1t.1.4 Tree Gra-nar Analysis

The recognlticn by tree gramnar analys.s is performed by the tree

automaton corresponding to the tree grammar. The result of boundary

primitive extraction is encoded window LZy window as tree structure by

the encoding procedure described in section 4.1.3. If the input tree

structure can be derived by the transition rules of tree automaton to the

final states, then this tree is accepted by the troe automaton. If the

input tree structure cannot be derived to the finai states by the tree

automaton, then the Input structure is rejected,

By continually performing this procedure on each image window, the

bounda.ry structures of the image are aaaly.=ed apd thfe syntactically

correct boundaries of image segments are obtained. Hereby, the Image

segmentation result is achieved.
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Tree Gramnar Analysis Algorithm

Input: Boundary Primitive Extraction Result, Binary Image, PI,J).

O. u Out: Image Segmentation Result.

Algorithm:

1. Construct the tree autormaton from the inferred tree granmar

of the boundary structures; The prccedure of tree autonaton

construction has been described in section 4.1.1.

2. Initialize the array P(I,J) as the operation window (8x8 ).

Load the data of image segment 1l(1,J) where J - 1,8 and

I = 1,8 onto the operation window P(I,J).

3. Encode the array P(i,J) Into a tree structure as described

in the section on syntactic line smooth'ng.

4. Each transition rule of tree autonaton is stored in computer

as a linear array. For example, f4 (qt)= qs is stored as a

1x3 array called TA(I,J), then TA(1,!) = q5 (present state),

TA(l,2) = • (input state), and TA(1,3) cq- (next state).

The input is stored as a linked tree data structure. The

root (Q) of the tree is the ii~put synbol and the initial

state (present state) is qs, thus, a next state is obtained

by searching for the transition rule, from the array TA(I,J),

with the present state a and input symbol 1. The recognition

of each branch of the input tree Is similar to that of a

finite state automaton. If all the branches of the Inpat

tree can achieve the final states by applying the transition

rules of the tree autonaton, then the input tree is accepted.

If there is one or more branches which cannot achieve the

final branches tihich cannot achleve the final states by
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checking all the transition rules of the tree automaton,
then this input tree is rejected. The syintacticaliy correct

boundary patterns are thus accepted as the image segmentation

result.

5. Sh;ft four columns to the right of H(I,J). Then go to Step

3 until the shifting operation reaches the rightnost column.

Go to Step 6.

6. Shift four rows down, Po to Step 3 until reaching the last

row of the i.age ft(IJ). Then the inage M(I,J) is analyzed

by the tree autonaton and the syntactically correct boun-

daries are accepted a3 the image segmentation result. The

flow chart of the algorithm is given in Appendix iH.

For example, using the gramnar inferred in the example of gramnati-

cal Inference in section 4.1.1, the tree grammar Ct is as follows:

Gt .(V, r, P, S)

V {Alp A2 , I, P c, d, e, f)

VT -•c, -a d, +e, ief,}

r(s) (1), r(c) = {0,1,2}, r(d) = {21, r(e) = {0,11,
r(f) = {0,11

P: s-' S~
i I

Al A2

A1-"- c A2-' d

A1  A2  A1 A

A -•- c A2~ "
1

Ai

S~I
A-e AAC

A2



The Input pattern is encoded as

The input tree structure is

IIn

S .. .? ...... . .j

I.. .. '- I ,

As described in section 4.1.1, a tree automaton can be constructed

corresponding to the tree granm1ar of this example. The tree automaton

is thus constructed as Mt, tit = (., fc. f e' fd' f ' F), where Q =

{q- q' 1' q9, q(}, F = {qc, q,', and f: (The detailed steps of tree

automaton construction are given in Appendix 1).

(1) f (q1 ) = q,

(2) f4 (q2) = qs

(3) fc(ql,q2) = ql
f4 fd(qi ,q2) =.q 2

(5) fc(qil) q,

(6) fe((2) q2

(7) fc(qc) c (

f fe (qe) q q2

I-A
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After constructing the tree automaton, the recognition of an input tree

can be performed by the tree automaton. The recognltTon of the input

tree of this example is as follows: the root of the input tree is i.

The first transition rule of the automaton Is applied to obtain the next

state q,. The second level of the Input tree is d. The transition rule,

which has d as input and q, as present state, cannot be found. Thus,

the second transition rule should be used to obtain the next state q2

in the recognition of the first level of the input tree. The second

level of the itiput tree is d. The transition rule with present state

q2 and input d, which is transition rule (4), produces the next state

pair (q 1 ,q 2 ). The third level of the input tree is branchus c and e.

With present state q, and input symbol c, the transition rule (5) pro-

duces the next state q,. The fourth level of the input tree is c. The

transition rule (5) Is applied again to produce the next state q1I The

final ievel of the input tree is c. The transition rule (7) is applied

to achieve the final state q., The branch, d, of the third level of

the input tree is recognized by transition rules (6), (6), and (8) for

the fourth, fifth and final level of the input tree to achieve the

final state. Thus, all the branches of the input tree achieve final

states, then the tree is accepted by the tree automaton.

4.2 COMIPUTER EXPERIIIENTAL RESULTS OF IIIAGE
SEGMENTATIONJ FROMl LANDSAT IMAGES

The proposed syntactic method for image segmentation was implemented

on the IB3 360/67 computer at the Laboratory for Applications of Remote

Sensing (LARS). The experiments were conducted on various. LANDSAT and

Infrared inages.
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Applying the grammatical inference procedure of tree grammar in

section 4.1.1, a tree grammar was inferred to describe the boundaries of

image segments. This grammar, as stated in section 4.1.1, was applied

to the image segmentation of LANIDSAT Images. The tree automaton cor-

responding to the tree grammar is constructed as i t - (Q1 fa fbV

tt

f C ' f~ %d' f e' ff l , f ,F . Wiher

f (q1,q2) = qs f4 (q7) qs f 4 (q 6 ) = q

Ie

f=(q'2 q 2 fc (q1 7q 2 ) = fe(q,'q 2) = q2

ff(qlvq2 ) = q. f (qlq 2 ) = q2 fd(qelqs) = q

fef (q3lqq5) = ql ff(qi'q 2 ) = q2 fd(q 3) 9 q5

fe(q3 ) = q3 ff(q3 ) = q3  f 9 3) = q3

fd(q 4) = q4 fe(q 4 ) = fa(q4) =

f (q 3) = q 3  fh(q 3 ) = q3  fb(q 4 ) q 4

ff(q 4 ) = q4 f (q4) - q4 fc(q4) qj,

fh(qj1) = q4 fb(q 5) = q5 fd(q 5 ) q5

fe(q5) = q5 fe(qjý) = qi ff(q 5 ) q5

fg (q 5) = 15 fC(q5) = q5 fh(q 5 ) q5

e(q5) (I f (q) = q6 fc(q7 q

f C(ql) q q7 f e(ql) =q, f c(qi I ql



ff(q) q f(q 2 ) q2  f' q

fd(q2= q2  f 9 (q2 )'= q2  ff(q2 ) 9z
f() =(q3  e f(q) =q ff(qf) q

fg (qg) = q fc(qc) q (q)

fg9 (qg9) = q2 f f (qf) = q 2 flb{(q b) - q 3

f d(q d) = q3 f e(q e = q 3 f f(qf ) - q 3

fg9(qg9) = c14 f d(q d) q 4 %('q.) q 4t

ff(qf) = q4  f (q ) =q fc(qc) = q 4

fh (q h = q 4 fb(qb =q 5  fd(qd) q 5

f e(qe = q5  ff(qf) =q 5  f 9 (q9 ) = q 5

fc(qc) q5 fh(qh) q5  fe(qe) q6

fc (qc q7 fa (qa= q4 fe(qe q

C c 7 a a 4 eie) I

fb(qb) = 4 fc (q C q3 fh(qhq q3

Fgtire 4.7 ia o LAflDSAT image of BluowingLon, i-diana (88x88 in

size). Figure 4.8(a) Is the intermediate result after the texture

region printitive extraction of the proposed inage segmentation method.

The syntactic image segmentation algorithm achieved the segmentation of

the picture in Figure 4.7. The r-ult is shown in Figure 4.8(b). For

the purpose of knowing the g'ound truth of this satellite Image, this

area has been classified by a maximum-likelihood point-by-point classi-

fier. This classification result is shown in Figure 4.9 in which A

stands for agricultural, T for forest, X for old residential, Y for

new residential, and W for watery areas. The computer processing time

of the syntactic method is only 55 seconds. But the classificaiton

technique takes 240 seconds of CPU time.
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Consider now the performance of the syntactic image segmentation

algorithm. For example, the left upper corner (line 1-4, columns 12-24)

of' Figure 1.9, the ground truth of the image Figure 4.7, Is a small area

of forest area. This area is well segmented by the proposed method as

a homogeneous region shown in the corresponding coordinates in Figure

4.8(b). One good thing about this algorithm is that in the segmentation

result, the boundaries of the inage are always closed. A closed boun-

dary of image segments contributes to the future recognition of either

the shape or the characteristic pattern of that segnent.

11.3 COMiPUTER EXPERIMtENTAL RESULTS OF IMAGE SEGM¶ENTATION
FROI FUR (FORWARD LOOKUIG INlFRARED) IWAGES

The first step of an object detection problem Is actually an image

segmentation problem. The object of interest must be first extracted

fron the scene. In the human visual system, the object is detected by

the human eye through the characteristic contents and/or the shape

of the object. The syntactic image segmentation algorithn described in

section 4.1 tends to simulate the human visual system for object deter-

tion. The texture analysis of the preprocessing extracts the characteris-

tic contents of the image. The syntactic analysis examines the boundary

of the object. The syntactic image segmentation algorithrm is also

adaptable to object detection from FLIR images. %then the image Ts rich

In texture, the syntactic method for image segmentation described in

section 4..1 can be applied to object detection. tMien the image is not

rich in texture, the texture feature reasurement of the preprocessing

part of the syntactic method is changed to a mean vector measurement.

The syntactic analysis Is unchanged.

- - -V
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Figure 4.7. Satellite Image of Indiana areas
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Figure 4,9. Point-by-poInt classification result of Figure 4.7.
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If several objects have the same texture contents, but different

shapes, then the object of interest is primarily distinguished from the

other objects by the !'econd process. In this case the first process

contributes to the extraction of those objects from their background.

The syntactic analysis process examines the boundaries of these objects

and accepts those objects with the boundaries which can be generated by

the grammar.

If several objects have the same shapes, but different texture con-

tents, the first process in the syntactic method extracts the texture

contents of the objects. If the contents are the same as those of the

object of interest, then the syntactic analysis examines the boundary of

the object. If the syntactic analysis has a successful parsing, then the

object of interest Is still distinguished fror.n other objects in the

image scene.

This method can also be applied to tactical target detection from

infrared images of battleground scenes. The technique used here is the

same as that which has been described in section 4.1 basically.

4.3.1 Data AcqtAisition System of Infrared Images

The infrared Images were obtained from Honeywell Systems and Re-

search Center [11E] under a consulting contract. The Honeywell Corpora-

tion obtained the FLIR imagery using Navy P2.-V aircraft at the Naval Air

Test Center in Patuxent qivwr, tMaryland, and a Honeywell 18 detector

serial scan FLIR sensor. The P2-V is outfitted as an electro-optical

test bed allowing the collection and recording of taped imagery of various

kinds. The infrared Images were obtained in June of 1974 and were of

nilltary vehicles at Camp A P Hill in southern Hlaryland. Altitudes during

the flight were about 3,000 feet.
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The proposed technique of image segmentation has also been tested

on a different data set of infrared Images which were collected by the

Ilight Vision Laboratory. Figure 4 .10(a), 4.13(a), 4 .1 4 (a) and 4.15(a)

are the test images from Honeywell and Figures 41.I(a), 4 .12(a), 4.16(a),

4.17(a), and 4.18(a) are the test images from the Night Vision Laboratory.

4.3.2 Experimental Results

Since infrared images are thermal images, the characteristics of

these images are different than those of the LANDSAT images. Also, the

objects of interest in the object detection from infrared irages are

tactical targets, larger onei and .mell ones, such as military vehicles.

qaslecaily, the algorithm for the experiments on infrared images is the

sc;,e as the algorithm described in section 4.1. The differences are

the window size for the texture measurements and a different tree grammar

to describe the boundaries of military vehicles. Experiments on different

window sizes for texture measurements were carried out. A window size of

Wx8 provided the best segmentation result In the data set used. Smaller

window sizes tended to give segmentation results of the local property,

and larger windows took more CPIU time while providing no better results.

Therefore, the window size used for texture measurements in our experi-

ments on infrared images was 8x 8.

The texture region primitive extraction and boundary primitive ex-

rac-tion were the same here as those in section 4.1. The tree grammar

for describing the boundary structures of military vehicles is inferred

by applying the tree grammar Inference procedure in section 4.1.1 to the

sample patterns of the boundary structures of military vehicles (Appendix

F). The resultant tree grammar is Gt-

I
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where,

V = {S, $ A,, A2 , A t A4 , A5, a, b, c, d, e, f, g, hl

r({) = {2,1,0}, r(a) = {,01, r(b) -(1,01}, r(c) flO,},
r(d) {1,O1, r(e) ={-,01, r(f) -{1,01, r(g) - (1,01, r(h) 01,01

rule P:

s-4 s +

A1  A 4 A5

AI e A - c A +d A ÷ f A

A] A1  A1  A A

AI ÷e A1 +d A1 +d A b A h

A A2  A A A223 2

A, a A4 ÷e A. c A +÷ A 4 f
J, 5 5

A3  All AS A5 A5
A c A e A c A 'd A f

A4

A! g A2 +b A2 ÷h A a A e2 2 3

A5 ÷C A5 ÷d A5 ÷f A4 4C

Since the shapes of the objects of interest, military vehicles, in

the Image segmentation of FLIR inages are simple, most of the granmnar

rules happen to be string (regular) gramnar rules.

The tree automaton corresponding to the tree gram.uar Gt Is tit.

fit =(, fa' fb' fc' fd' fe' ffP fgI fh' fit F)

where
Q ={ql 'l,'q3'q4,q5pq apq b'pqcpqdtq eoqf'qg'Pqh qs}

F {q at lht qcp q dh q e' qfp q g 1qh

fi(ql) = ff(qc5 ) = q5
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f (q 4Pq5 q q5 f c(q41) =q4,

fe (qI) =q I fe (qe= q |
ee e cI

f c(ql= qd fC() - qI

ff(ql) = Il ff(qf) = I

ff(q)2 q, fg(qf) q2

fd(q) = ql f (q)h q

fe(q3) =q f a(q) = q2

fd(q3) = q2  fe (qa) = qfbh(q 2) :q2 fec(qeC) 54

fh(q 2 ) =q 2  f (q f = 5

fa(q 3 ) =q 3  fd(qd) q5

fh~q4) = q4ff(qf) =="q 5

fc(q 5 ) =q 5  c() q4

fd (q5)= q15

Figure 4.10(a) is an Infrared image of a tactical target scene.

The size of the image is 88 x8 8 . The altitude of the infrared sensor

from the ground was about 3,000 feet. The windco size used for textdre

measurerents was 8 x8 . The syntactic analysis was performed by the tree

automaton, corresponding the tree grammar for describing the boundaries

of military vehicles including tanks, trucks, and armed personnel

carriers. The proposed syntactic method successfully segments the In-

frared image Into target and background. The Image segmentation result
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is sho•mn in Figure 4.10(b). The symbol T represents the boundary of

the tactical target. (This image scene is a side view of a track heading

east.) The cc,:-,putatlon time for lmaae see'mentation of Figure 6.11(a) -

Figure 4.18(a) Is about 50 seconds on the IBM 360167 computer. Several

experiments or! texture analysis of the distinction between background

and targets are conducted. Figure 10(c) Is a segment of Figure 4.10(a).

(Column 21-28, row 61-68 corresponding to the frame 88 x88 of Figure 4.10

(a)). The texture region prinitive neasurement result is in Figure 4.10

(d) which is a segment of background scene. Figure 4 .10(e) is a segment

(Column 53-60, row 61-68) of Figure 4.10(a). The texture region primi-

tive measurement result is in Figure 4.10(f). The results of the

similar experiments on Figure 4 .11(a) are provided from Figure 4.11(c)

to Figure 4.11(f).

Figure 4.11 (a) is an infrared image which Is a side view of a tank.

The proposed syntactic method was applied to this image. The tactical

target was successfully segmented. The segmentation result of Figure

4 .11(a) is given in Figure 4.11(b). The sizes of the images from 4.1i(a)

to 4.18(a) are all 88x88. Figure 4 .12(a) Is an infrared image of a

vehicle, and the result of Its syntactic image segrentation is shown in

Figure 4.12(b). Figure 4.13(a) is a top view of a vehicle. The target

was successfully segmented even though it is a noisy image of low reso-

lution. The result Is in Figure 4.13(b). The image segmentation results

from Figures 4.14(a), 4.15(a), and 4.16(a) by the proposed syntactic

algorithm are given in Figures 4.14(b), 4.15(b), and 4.16(b) respectively.

Experiments involving segmenting snall targets were also conducted by

t i
h4
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Figure 4 .1O(a). Infrared Image of a tactical target scene.

Figure 4.10(b). Image segmentation result by the syntactic method
on Figure 4.10(a).

i
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Figure 4.10(d). Texture region
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Figure '4.10(e). Image segment
8 x8 of the target area of Figure 1 11 11 11 11 11 11 i
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Figure 4.10(f). Texture region
pririltive measurenent result of
Figure 4.10(e).
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Figure 4.11(a). Infrared Image of a tactical target scene.

Figure 4.11(bý. Image segmentation result by the syntactic method
on Figure 4 .11(a).
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Figure 4.12(a). Infrared Image of a tactical target scene.

Figure 4.12Mb. Image segmentation result by the syntactic method
on Figure 4t.12(a).

'p. -
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Figure 4.13(a). Infrared Image of P tactical target scene.

Figure 4.13(b). Image sejmentation result by the syntactic method
on Figure 4.13(a).
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Figure I4.14(a). Infrared Image of a tacLical target scene.

,'igure 4.14i(b). Image segmentation result by the syntactic nethod
of) Figure 4.14(a).
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Figure 4.15(a). infrared Image of a tactical target scene.

........... ''',.

Figure 4,.15(b). Image segmentation result by the syntactic method
on Figure 4.15(a).
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Figure 4.16(a). Infrared image of a tactical target scene.

Flqure 4.16(h). Image segmentation result by the syntactic method
on Figure 4.1 6 (a).
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Figure 4t.17(a). Infrared image of a'tactical target scene.

Figure 4o.17(b). Image segmentation result by the syntactic method
on Figure 4.17(a).
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Figure 4 .18(a). Infrared Image of a tactical target scene.

Figure 4..18(b). Image segmentation result by the syntactic method
on Figure 4.181h).

-- low
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the proposed syntactic elgorithm by processing the Infrared Images of

Figures 4.17(a) and 4 .18(a). The Image segmentation results achieved

are shown in Figures Ii.17(b) and 4.18(b).

Comparing the segmentation result in Figure 4.10(b) with the test

Image Figure 4 .l0(a), the object of interest, a truck, is well segmented.

This experiment examplifles the performance of the proposed method. The

boundary contour of the object of Interest in Figure 4 ,`(b) can be used

for shape recognition. In the experiment of image secreatation on Figure

4.1 (a) , a good segmentation result of the te!,t image Is also achieved.

The objects of interest in Figure 4.10(a) and 4.11(a) are the targets

which are larger than most of the targets In Figure 11.12-Figure 4.19.

Thu,;, the image segmeltation results have enough boundary information

of the targets for the future recognition purpose. ,•ecause of the

low resolution of the images in Figures 4 .12(a), 4i.13(a), 4 .111(a)

4.!5(a), 4.17(a), and 4.18(a), thetypes of the targets carnot be told

even by human. It Is hard to distinguish them by the segnentation

result ei-ther bhut those targets are Still segmented. The noises

usually are caused by heat diffusion of the object and the sensitivity

of the infrared sensor and these noises sometime effect the segmentation

result. in general, th.e syntacrlc image segrw-ntation algorithm still

well segments the image into tarjet and background. This contrlbute• to

the information e::tractlon from Infrared images.

4.4 SLI'IMARY

This chapter presents a syntactic method for image segmentation. It

is a syntax-control led methcd which utilizes a tree automaton to extract

the boundaries of the homogeneous region se3ments of an Image. The

I
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homogeneity of the, segments is measured by texture measurements described

In section 4.1.2.

Sit has been shown from both simulation and experimentation that the

proposed syntactic method segments small textural areas as well as -

larger ones. Thus, this method contributes to the automation of image

understanding. As described In section 4.1, the best window size of the

texture feature measurement for the proposed method needs to be determined

through experiments using different windows on a test data set. Some

texture analysis technique, such as "yntactic texture modeling and dis-

crlmination [117], could be exploited to further refine the texture

region primitive extraction of the proposed algorithm.
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CIIAPTEx 5

DESIGN FOR A SPECIAL COMIPUTER ARCHITECTURE FOR IlIAGE PROCESSIING

Image processing by computer enconpasses a wide variety of tech-

niques and mathematical tools. In most image processing, large computers

have been employed. Unfortunately, the cost is high. As pointed out in

the introduction, image processing tasks usually involve an extremely

large volume of data, much of which can be operated on in parallel.

Therefore, it is important to study special computer architectures for

Image processing. During the last two decades the field of image pro-

cessing has grown up rapidly. New techniques, algorithms, and applica-

tions have been developed, but there is still a need for improved hard-

ware. A spec!al computer architecture is presented here as a

proposal for inpreving the state-of-the-art i- imanic processing and, al-

to cut costs. Designing this computer architecture was a challenging

problem, as the desire was to build a conputer that would have the fol-

lowing f-itures:

1) The computer was to allow efficient image processing at high

speed utilizing interactive computation, making possible

large data evaluation.

2) The computer w*as to preserve the general purpose aspects of a

general purpose compu:er for image processing.

3) The computer was to be cost effective in order to allow in-

dustrial realization.
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The framework of this proposed computer architecture consists of a

task management processor, a parallel processor, and a sequential arith-

metic processor. The task management processor Is a set of software

system programs serving as an operating system. The parallel processor

is proposed because of the parallel nature of the operations involved

in image processing. Parallel machines are considered to be particularly

suitable for image processing by Thurber and Wald [102]. The parallel

processor of the proposed computer architecture consists of an array of

microprocessors which allow parallel processing capability. This parallel

processor is a homogeneous system in which all processors are alike and

are general purpose units. The homogeneous parallel processor lends

itself quite readily to extendability as such systems are usually modular-

ly constructed. With modular parallel processing, the system's memory,

processor, and input/output nodules may be enlarged as processing re-

quirement% .acrease; thereby avoiding replaceno.ait of the entire parallel

processing system. The modular parallel processor also provides very

high reliability since, with several Identical nodules of each types,

the systen can withstand failures in several modules and still operate.

This arrangement also increases efficiency and through-put since all of

the processors could be operating simultaneously. The sequential arith-

metic processor is a microprogramned controlled processor which performs

the sequential arithme*ics and also controls the input/output devices.

The details of these processors will be set forth in section 5.2. It

will be shown that the design goals were achieved through the proposed

conputer architetcture.
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5.1 PREVIOUS WORK AND COMIMENTS

As mentioned In Chapter 1, previous work in the field of special

purpose computer architecture for image processing basically falls into

two categories: bit-plane processing and di3tributed processing. The

bit-plane processing approach performs the arithmetic computation on the

Image points which are stored in Boolean bit-plane. For example, if the

image has eight grey levels, then the image points are stored in three

Boolean planes. The bit-plane processing approach tends to have a large

number of processors which perform Boolean operations. The distributed

computing approach utilizes processors which have powerful computation

capability. These processors are designated by microprogram or hardware

to execute certain specific tasks. This configuration forms a

distributed computing architecture. In this section we will briefly

illustrate each special purpose computer, concentrating on the special

features of each computer for image processing.

The Illinois Pattern Recognition Computer, ILLIAC II1, [87,100] was

designed for automatic scanning and analysis of massive amounts of

relatively homogeneous visual data, in particular, bubble chamber

negatives. The computation is performed by three units, the pattern

articulation unit, the taxicrinic unit, and the arithmetic unit. The

pattern articulation unit perforns local preprocessing on the digitized

raster, such as track thirning, gap filling, line element recognition,

etc. The logic desing of the digital computer has been otpimized for

the idealization of the input irage to a line drawing. Hlodes represent-

Ing end points, bends, points of intersection are labeled in parallel by

appropriate programs. The abstract graph describing the interconnection
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of labeled nodes Is then extracted as a list structure, which comprises

the normal output of the processing element (stalactite). The pattern

articulation unit consists of an iterative array of 1024 identical sta-

lactites (32x32). A schematic diagram of the stalactite is shown in

Figure 5.1. The iterative array of the stalactite can be connected in,

either rectangularly or hexagonally, at the programmer's option. Each

stalactite can accept an input from any of the eight neighboring sta-

lactites, SO, Si, ... , and S7 shown in Figure 5.1 (rectangular) or six

neighboring stalactites (hexagonal) in the plane and from Itself, M

shown in Figure 5.1. The input signals are logically "OR"ed, optionally

complemented, and stored in one (or more) of the nine planes. Comnuni-

cation with the supplementary planes in the core buffer is through the

"S1111" plane, which serves as the buffer register of this memory. For

output, the output of any selected set of planes can be logically "AND"ed

and passed on to neighboring stalactites. With a special signal, the

stalactite allows an input signal to pass through it directly, without

Interim storage. it is this feature which allows path-building within

the machine. The set of 32x32 stalactites processes the pixels of a

32x32 pixel image window simultaneously. The whole image Is to be

processed by one image window (32x32) after another sequentially by the

set of 32x32 stalactites. The taxicrinic unit assembles the graphs,

which are outputs of the pattern articulation unit, into coherent list

structures and categorizes these graphs to complete the visual recogni-

tion function. The arithmetic unit is designed for executing mathematlcal

analysis, such as stereoreconstruction, statistical summarization, etc.

Involved in processing pictorial data. The block diagram of ILLIAC IlI

is Illustrated In Figure 5.2.

i
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Fiqure 5.1. Schematic diagram of stalactite of pattern
articulation unit In ILLIAC III computer.
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Figure 5.2. Block diagram of Illinoi pattern
recognition computer ILLIAC Iil.
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One special feature of ILLIAC III for image processing is the use of

an auxiliary memory. The auxiliary memory is used for the processing of

images frame to frame, and for retaining internediate partial results.

The necessity of storing intermediate results of the iterative array

stems directly from the manner of executing homogeneous logic transforma-

tions in the processor. The conplexity of the iterative array can be

greatly simplified if various digital filtering operations can be per-

formed serially storing the intermediate results (32x32 = 1024I bit words).

For example, local track segment orientation can be designated as being

predominantly horizontal, vertical, left-diagonal, or right-diagonal ir,

four serial tests, whereas simultaneous identification requires apprcxi-

mately four tim.es as much hardware [87]. Unfortunately, ILLIAC III has

never been completely built.

The use of an auxiliary memory for image processing has been imple-

mented in several computer facilities for pattern recognition research.

One example is the Purdue Univdrsity Advanced Automation Research Labora-

tory [101]. This lzboratory is organized around a DEC PDP ll/4• digital

computer with 32K core memory and 96 K fast secondary memory [1071, two

disk drives, a magnetic tape drive, two cassette tape drives, a line

printer, ar.d a CRT r.onitor. The system block diagram is shown in

Figure 5.3. The computer is not a special purpose computer, but the

auxiliary memory is a special feature for image processing. The auxiliary

memory was developed for Image processing this laboratory, mainly be-

cause of the limited addressing range of the 16-bit minicomputer.

Therefore, the limited addressible memory Is difficult to use for im-

plementing large programs. A memory controller has been built which can

32
access up to 2 bytes of memtory, which nbw controls 64.K 16-bit words
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Figure 5.3. Block diagramn of computer system in Aclvaoi~cd
Automation Research Laboratory.



176

of core memory [107]. The controller is interfaced to the PDP '1/45

unibus through using three i6-bit registers. Two registers for~m an

effective address of 32 bits, and the third register contains t-ie data

to be written into the memory or the data read fron memory. Once the

address is loaded Into the two registers, data can be written into or read

fror. memory in less thin one nicrosccond. Since large arrays of data

can be addressed withou~t I/!0 -o the disks, execution times improve.

Also, computer programs become tirmplcr since no sophisticated disk-core

swapping softiware is needed. An experiment on rib identification in

chest x-ray images was prcgramned once without using the auxiliary memory

and once using this memory. On the average, the execution time improved

a factor of five. Other software shows comparable execution timee [101].

Digital Parallel Processors (DPP's) [89,90,91], using cellular logic,

are real-tlme machines in which the action result;ng from a program

statement is simultaneous on all the points of the array. The action

may be symmetrical or directicnal and the tesselations of various types,

the most comnon being the square and the hexagonal ones. An example nf

this kind of machine is the parallel cellular logic image processor,

CLIP3 [91. The CLIP' is comprised of an array of 192 cells arranged in

a block of dimensions 16 cells (vertically) by 12 cells (horizontally).

The array interconnection pattern can be either square or hexagonal. The

required architecture is determined by one bit in each instruction viord

and is theiefore under the control of the programmer. The block diagram

of the cel logic of CLIP" Is shown in Figure 5.4. The Boolean processor

can perforr, under program control, two independent Boolean functions

from its two inputs A and P. D is one output and can be regarded as the

processed pattern bit corresponding to the cell. The other output, 11,
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fans out to the adjacent cells. The N inputs from neighboring cells (Gi,

G2..., and G8 ) are summed (M) and compared with a threshold (f). The

programmer is allowed, for each PROCESS instruction, to select several

inputs to be put into the summing unit and he can also choose the thres-

hold value. The sumned and thresholded output, T, is then "OR1'ed with

the second pat*:rn input to form the input, Po to the Boolean processor.

D outputs are addressed into iy one of V' single bits of store; buffers

A ind B are loaded fron addr.,ssed location in the same store. The CLIP3

was actually built.

One drawback of both the ILLIAC III and CLIP3 is that the "edges"

caused by moving image windows, (in ILLIAC III 32x32 windows and 16x12

window in CLIP3) are not taken care of by the conputer. The computing

power of the CLIP3 is obviously limited because of the fixed small

number of (Boolean operator) cells. (16xl2 = 192 cells)

In order to process larger images, CLIP3 has been interfaced to a

television camera through the hardwired scanning unit. This Is called a

hybrid CLIP3 array [92] which is shown schematically In Figure 5.5. This

unit scans the 192 cell CLIP3 array across the 96 by 96 cell data-field

and provides edge stores to handle the propagation signals which cross

between adjacent sectors. The coriplete system is interfaced to a PDP

11/10 cormputer which serves to extend the available data and instruction

storage and also provides program editing and assembling facilities.

CLIPA [92] is the Large Scale Integrated circuit (LSI) version of

CLIP3 with sane small changes in the cell design. The CLIP4 uses tI-MOS

(1: type !ietal Oxide Silicon) LSI to incorporate eighf, processor cells In

a four .,y two block onto one chip. The block diagram of CLIpt cell logic

Is shown in Figure 5.6. The "D" store has been Increased from the 8 bits
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of CLIP3 to 32 bits which allow the processing of 32 grey levels. The

Interconnecting threshold gate has been replaced by an "OR" gate. . A

few extra gates and an additional buffer store have been included to

provide automatic carry-in arithmetic operations.

Comparing the performance of CLIP3 and CLIP4, the processing speed

of the CLIP14 cell is slower than that of CLIP3 by at least a factor of

five. A single operation which required a pair of instructions (LOAD

and PROCESS) in CLIP3, taking 2 psec, is expected to require about 10 Its

in CLIP4. Propagation from cell to cell took 0.1 its in CLIP3 and may

take 1 ps in CLIP4 [92). However, the processing speed of the overall

system of the CLIPA is improved by the larger array of processors of

CLIP/1 (96x96 cells). The CLIpIA has not been completely built up to now.

The Parallel P'cture Processing Machine (PPM) [88] is a special

processor which is connected to And controlled by a conventional computer.

The block diagram of PPM is shown in Figure 5.7(a). The PPM consists of

the following principal parts: the processing unit, a set of nine

general purpose picture registers, and a control unit. The picture

registers which are shown in Figure 5.7(b) comprise nine shift registers

capable of storing a picture. The main parts of the processing unit are

the neighborhood matching logic (1I4L), shown in Figure 5.7(c) the l ine

buffers (l.13s) and neighborhood counting register (N1CR) and coordinate

register (COR). The derand for LO's stems fron the fact that when a

picture is stored in a picture register, only one picture point at a

tine Is accessible. To be able to perform the local neighborhood

operations, all nine neighborhood units must be accessed simultaneously.

Therefore, two LB's a , .. ded. ltote that the speed improvement is J

accomplished mainly at the expense of IHML. The control unit is
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conventional in all respects except for the writable memory %here the

templates of an operation to be performed are stored. The parallel pic-

ture processor in [88] has been linked with an ordinary tTnicomputer as

part of the computation facilities of the PICAP picture processing labora-

tory at the University of Linkoping, Sweden. The block diagram of the

system is shown in Figure 5.7(d). The function of the minicomputer Is

twofold: (1) it controls the other devices and (2) it performs all

nonpictorial data processing. PICAP which is a modified version of PPMI

is dedicated to the several tasks of the picture processing, such as

fingerprint coding and malaria parasite detection. An important modifi-

cation of PICAP has been the addition of a set of registers for the

collection of measurements. The most important task of the picture pro-

cessor is to produce measurements of application-dependent features.

That is, to reduce the often enormous amount of information in an image

to a set of feature measurements that can be handled by a conventional

computer. The syntactic method for fingerprint classification can only

be handled by the conventional computer In the PICAP computer of Kruse

[99]. The fact that they cannot perform syntactic analysis is a drawback

of the PP11's (or PICAP's).

Using the approach of distributed computation for designin§ a

special purpose computer for image processing, the Control Data Corpora-

tion designed the Flexible Processor [97]. The Flexible Processor was

developed for a large digital change detection system for concurrent

processing of four channels of side-looking radar imagery. The Flexible

Processor is a microprogrammable processor and uses random access memory

up to 1024 wurds of 48 bits each for mlcroprogran control. One special

feature of the Flexible Processor is its data transn!ssion which Is



shown in Figure 5.8. Four separate balanced party-line transmission

channels are available. Each 32-bit channel can initiate and receive

register-buffered transfers. A scanning system allows several Flexible

Processors on a party-line to conmiunicate with each other and with peri-

pheral devices. For output transmission, a 32-bit output channel is

provided which interfaces on balanced lines. A dual internal data bus

system is used to match data transfer speed to the speed of arithmetic

logic. The arithmetic unit consists of an arithmetic logic unit, hard-

ware network for conditional microinstruction execution, array hardware

multiplier, specialized logic for square root and divide, and hardw~are

priority interrupt mechanism.

Another special computer for image processing, utilizing the distri-

buted computing approach, was developed by Toshiba Company called Toshiba

Image Processing System TOSPICS (93,116). The TOSPICS in an interactive

image processing system which is a disk-based system and each operation

is performed by the command input through a teletypewriter. The software

system for the image processing system consists of the permanent and non-

permanent resident system programs, the picture processors, the block

common area, and a package of image processing programs. The system

diagram of TOSPICS is shown in Figure 5.9. The special features of

TOSPICS for image processing are that the image menory is coamonly used

in order to reduce the amount of data transmission and the parallel

picture processor is constructed to perforn certain programs at high

speed. The parallel picture processor performs the program of spatial

filtering at a speed of I pixel/I psec. The 1/0 devices of TOSPICS in-

clude a unique high precision flying spot scanner by a Double Deflection

• 9
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Tube (DDT) with !h096x4O96 resolvable points and 32,000x32,000 add;essable

points.

Comparing the systems of Flexible Processors and TOSPICS, the basic

Ideas of parali• Urocessing for image processing by the distributed

computin, approach are the same for these two systens. The difference

between these two computer systems is the ways of utilizing processing

elements. The TOSPICS uses the miniconputer, TOS.AC-4|OC, as an Image

processor and a pa.alilel picture processor is attached to it. The

. iral',l pintare processor ',. used for certain programs, such as spatial

ýiiter-nc, ;n*ý--.-,. transfe:mations, histogram calculation, and density

conve;sio '0 i3]. The computer system of Flexible Processors uses the

Flexible Processors as the proce;sii- elements. Each Flexible Processor

is assigned for one task and several Flexible Processors are organized as

the computer system.

The STARAN [108] computer is a parallel processing computer built

by Goodyear Aerospace Company in 1972. STARA1 was not designed as a

special prupose computer for image processing. But this computer was

utilized for the task of resampling in the field of image processing in

1977 [1091. The STARAN parallel processor is a single instruction stream

multiple data stream (SIrm) processor. The previously reviewed conputers,

such as, ILLIAC Iii, CLIPI*, PICAP, and TOSPICS are SIMD processor. The

Flexible Processor is SISD processor. The single most important element

of STARAII is the associative array, which provides content addressability

and parallel instruction execution capabilities. Most STARA?4 computing

Is done within a word of associative array meiry. An associative array

ovird is normally divided into fields of varying lengths by the programmer

to suit the requirements of specific programs. The values of these

I
I
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fiells then can be added, subtracted, multiplied, and divided within the

word. The STARAN can perform the same operations as a seauential processor

but with the added capability of performirig these operat!ons simultaneous-

ly on literally thousands of words in the associative processor arrays.

A :,_ic STARAN configuration contains an associative array. However, up

to 32 associative arrays can be include1 in a single STARAN system. The

block diagram of the STARAN computer s shown in Figure 5.10. The

sequential controller provides off-line capabilities for assembling and

debugging STARAI programs and c';i .'l of STARAN error processing,

diagnostic, and maintenance programs. Buffered 1/0 is available for

tying different types of peripherals into the STARAN control memory.

Also BI/O can be used to transfer blocks of data and/or programs between

the STARAN control memory and host memory. The external function (EXF)

logic facilitates coordination between the different elements of STARAN

for special functions and simplifies housekeeping, maintenance, and

test functions. By issuing external function codes to the EXF logic,

elenents of STARAN can control and interrogate the status of other

ele•rents. In general, the STARAl computer is powerful compared with the

Flexible Processor and TOSPICS tiKmever, only several image processing

tasks (such as resampling) have been carried out on this computer.

Therefore, the effective utilization of STAR.JI for all types of image

processing is still an open question.

Consider the attributes of the bit-plane processing approach and

the distributed computing approach. The bit-plane approach mostly uses

Boolean operators as processors. Boolean operators work only on binary

images which are not comnon In the real world. One way to get around

this is to use several binary picture planes to represent the grey scale
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values of picture points. But, the complex software and additional

memory requirement cause another problem and this problem limits the

processing power of the processor. One of the drawbacks of the bit-plane

processing approach is that the processing power of the processor way

not be adequate for some of the ricre sophlsticeeted image processing

techniques. For example, Kruse [99J has shown that the parallel Picture

Processing Ilachine PPM (now called PICAP) [883 to be applicable only to

the preprocessing part of fingerprint classification and as stated above

syntactic techniques have to be performed by the conventional computer

in the PICAP system. Thus, the ability of the bit-plane approach to

perform highly sophisticated, but important, techniques is, at this time,

unsure. The capability of real-time processing of the bit-plane pro-

cessing computers such as CLIP3, CLIP4, and PPM will be very difficult

to ascertain until more complicated techniques applied to real world

pictures vwih more grey levels such as 128 or 256, have been implemented

by these computers.

After studying the feasibilities of the bit-plane processing and

distributed computing approaches to the real world image processing

task, we feel that the distributed computing approach is better

considering the present state-of-the-art with respect to both software

and hardware. In Mlarch 1977, Stone [106) indicated that the distributed

computing approach is one of the future trends for general computer

architecture. ills reraark supports our judgment on the distributed com-

puting epproach for special computer architecture for image processing.

A major drawback of previous computers designed by distributed computing

approach is that the system's processors are not reconfigurable. The

vast varieties of sensor types, applications, and image processing

2I
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techniques, require that the image processing system (especially the

y parallel processor) be reconfigurable. Therefore, a generalized computer

architecture which is reconfigurable under software control is proposed

in the next section of this chapter for the many applications of image

processing. Not only is the concept of reconfigurable ability new as

special purpose computer architecture for image processing, but also

the methods of exploitation of parallelism is net.,. In the proposed

computer architecture parallelism within the task is exploited by the

parallel processor. In the meantime the operations of the sequential

arithmetic processor are pipelined with the parallel processor under

programner control in certain tasks which can be decomposed into pipe-

lined processing. Therefore, parallelism and pipelining are exploited

at the sare time in the prcposed computer architecture. The parallelism

[1041] used is the multiprocessing approach which subdivides each out-

coming job among many identically constructed mechanisras. The pipe-

lining, or overlap (105) processing is another multiprocessing approach

which is to develop a collection of specialized mechanisms capable oF

working simultaneously to form a gernral purpose organization. The

processing time of the image processing task by the proposed computer

architecture will be sped up by a factor which is comparable to the

anount of parallelism and pipeiining existing in the image processing

task of interest.

5.2 PHYSICAL ORGANIZATION ANiD CONTROL FLOW' OF TIlE
PROPOSED COMPUTER ARCHITECTURE

The proposed Computer Architecture for Image Processing Is called

CAIP and Is to be deslgned using the most recent semiconductor technology.

The physical organization an4 control flow are described in next sub-

sections.
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5.2.1 Physical Organization of the Proposed Computer Architecture

The physical organization of this special computer architecture for

Image processing (CAIP) comprises the task manaqement processor, the

control units, the parallel processor, the sequential arithmetic pro-

cessor, and the memory organization.

1) Task Mtanagement Processor (TtIP) is a set of software programs

which allocate the jobs to the parallel processor (PP) or Sequential

Arithmetic Processor (SAP). The set of software programs include a

task control program, a job control program, an input/output program,

and the language translation program. The task control program provides

the logical interface between the hardware and the remainder of the soft-

ware systen and is responsible for the allocation of jobs to the parallel

processor and sequential arithmetic processor. Each task has a tag which

Is designated by the programmer for the identification of parallel pro-

cessing or sequential processing. One part of the task control program

Is called the tag examination program which examines the tags on tasks

and allocates the tasks to the proper processor. Following the tag

examination, the initiation program, which is another part of the task

control program, initiates the parallel processor or the sequential

arithmetic processor. In general, the task control program performs

scheduling, supervision, interruption handling, execution supervision,

and clock supervision. The job control program provides a logical inter-

face between a task and a job or between a task and the system operator.

The job control program analyzes the job stream, looks at system re-

sources, processes job execution and termination, and comriunicates

between the system operator and the Individual job program. The 1/0

conltrol program provides an interface between the processing programs
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and the 1/0 devices. The I/0 control program performs 1/0 supervision,

access routine processing, and I/0 device initiation. The language

translator program translates the computer language Into machine codes

and compiles the program to be executed.

2) The Cortrol Units (CU's) consist of two sets of software pro-

grams. One control unit (CUPP) Is for the parallel .:-ocessor, and the

other (CUSA) is for the sequential arithmetic processor. The CUPP and

CUSA are different from conventional processors, in that they are soFt-

ware progra'is which control the operation of the parallel processor and

the sequential arithmetic processor respectively. The CUPP is a control

program twhich initiates two different sets of software operating systems,

one for SID mode and the other for tHID mode. The two sets of software

operating systems drive the parallel processor individually upon the

comrmand of CUPP. The reconfiguration from SIMI) mode to tHIM mode or

t1lMD mode to S11D mode Is performed by loading the operating system

corresponding to the desired mode. Nlext, the operating system is

assigned to the parallel processor (PP) by the control program of CUPP.

Hence, the parallel processor operates in either SIMID or t1MlD modes

under the respective operating systems. Through this arrangenent, the

CUPP reconfigurates the computer architecture from SItMD to itIttD or MitD

to SIIID. This reconfigurable capability enables this computer architec-

ture to satisfy the large variety of applications of ir:lage processing.

The operating system of MItID mode includes scheduling routines, dynamic

allocating routines, and dispatching routines. The scheduling routines

schedule each job depending on job priority and facility requirements.

The dynamic allocating routines take jobs set up by the scheduling rou-

tines and partition the set of processors according to the need of each

= -t
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job. The dispatching routine dispatches the processors when the job

terminates or some higher priority task requires processors. The operat-

Ing system for the SIHD mode is on the master control unit. All the

processors of the parallel processor (PP) are controlled by this master

control unit and thereby an Instruction is executed simultaneously on

all the processors. The control unit of the sequential arithmetic

processor (CUSA) controls the sequential arithmetic processor which is

a microprogran-controlled bipolar processor. The control units are

shown in Figure 5.11. Note that Figures 5.11, 5.12, 5.13, and 5.14 form

a graphical illustration of this computer architecture (CAIP) by linking

the corresponding synbols a, 3, y, and a in the figures.

3) The Parallel Processor (PP) is an array of microprocessors. For

the parallel processor, N microprocessors are connected in an array

fashion. The array organization is suitable for Image processing

[102]. The fiumber N Is determined from the tradeoff considera-

tions between performance and cost. The optimal number, Nl, varies with

the task. Hence, H can only be determined at the time of implementation,

In the framework shown in Figure 5.12, a set of 64 microprocessors is

used to give an idea of the dimension of the problem. The control unit

(CUPP) controls this set of microprocessors in SIMID or HtIttM modes. This

control unit enables the parallel processor (PP) to have a higher degree

of flexibility and processing power. The SttiD mode utilizes a single

master control unit which drives the multiple processing units (micro-

processors), all of which either execute or ignore the current instruc-

tion. This Sl1D mode is especially useful for the cases in which there

exists (1) a large amount of independent data, (2) no restrictions

preventing them from being processed in parallel, (3) a requirement for

S~I
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high throughput, and (4) a pos'sibility of exploiting the associative

addressing selection technique. Thus, SIHD mode is suitable for the

local task, which executes the same instruction on each picture element

within an image window. The iiIID mode utilizes iH processors and 11

memories where each processor follows an independent instruction stream.

The parallel processor (PP) is connected by crossbar switches to an

Interleaved memory system which divides the ordinary memory into iodules

and the consecutive data are stored in different nodules. The inter-

leaved meriory system is used because the bandwidth is greater than a

conventional memory system . The interleaved. memory system is more

appropriate for parallel processing than a conventional system, in

which data can only be accessed one at a time [0.11. The cost of cross-

bar switches is high, since every processor can cormunicate with the

other processors and mcmory modules. Depending on the Image processing

tasks specified by the user, the interconnection among processors and

nemory nodules needed for these tasks can be studied, the alternatives

for the crossbar switches might he selected.

4) The Sequential Arithmetic Processor (SAP) is a microprogram-

controlled processor. Mini and micro-computers are not used here

because user mlcroprogrammable capability and bipolar processor are not

furnished by usual mini or micro-computers. The Sequential Arithmetic

Processor (SAP) Is a bipolar processor which is a processor built by

bipolar semiconductor technology and usually has the bit slicing

capability. The bipolar microprogrammable processor permits the de-

signer to define his own Instruction set and the associated h.ardware

architecture to achieve special capabilities, such as, variable word

I
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length capability or to perform an application with the highest

efficiency. The bipolar processor expands the CPU word length by cas-

cading the needed number of bit-slice microprocessor components. This

variable word length capability of SAP makes it more general and power-

ful than other microprocessors. Along with this processor, a mir-o-

program memory is needed to store the microprograms of certain programs

frequently in use. For the microprograms of inage processing tech-

niques, no instruction fetching is required because of the coding of

the microprogram. The microprogram capability saves processing time

according to the ratio of instruction fetch time to total execution

time. The Sequential Arithmetic Processor is shown in Figure 5.13.

5) The Menory Hierarchy Organization is the memory system for SAP.

The picture is stored on a magnetic disk memory which Is fiore economical

than core memory, hut memory access time is long. The memory access time

of the bipolar menory is faster by a factor of 100 than disk menory [111].

Therefore, a semiconductor bipolar memory is connected to the disk memory

as workinq memory space and buffer. The hierarchy organization is as

followes: the picture area which is to be processed is loaded onto the

bipolar memory from the disk memory, then the processor gets the data

(picture points) from the bipolar Periory thus allowing extremely fast

memory access time. In order to avoid being delayed by the loading

time fron disk to bipolar mer, ory, a Bipolar Menory Buffer (1tiB), is

used. Wlhile the processor is reading the data into the bipolar working

nemory sapce, the next picture area is loaded on the Bipolar Memory

Buffer (OMB). Thus, this memory preloading makes the data always ready

in the fast-access bipolar menory. This menory hierarchy organization
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is illustrated in Figure 5.14. This memory hierarchy organization is

different from the memory of TOSPICS [116] and the inage core memory of

the 11/115 [1071. The approach of the design of the memory system of

TOSPICS (1163 was to employ a large memory storage to reduce the memory

loading time. The approach In designing the secondary core memory of

the PDP 11/45 [107] used primarily for image storage, was to utilize

this secondary storage as a buffer memory as in the auxiliary memory

concept of the ILLIAC III [100]. l!owever, the secondary core menory of

the PDP 11/45 is not randomly accessible. Each time an Image datum is

needed the user's program has to request that datum to be loaded to the

inage core nemory. The proposed memory hierarchy loads a large block of

data onto the Bipolar Buffer Miemory as Image processing necessitates

operations on large blocks of data, this ability of the CAIP through its

31111 provides a marked advantage for image processing. Once the large

block of data has been loaded onto the bipolar memory, any individual

data point can be randomly accessed and individual loading from primary

to secondary storage is not needed. Thus, the user's software becomes

simpler by virtue of this proposed nemory hierarchy organization. The

bipolar memory is used here because the bipolar memory is the memory

device with the fast fetch-time in present technology [111]. The dis-

advantages of using bipolar memory are the higher cost and power needed

than the core memory.

5.2.2 Control Flow of the Proposed Computer Architecture

The control flow for the proposed computer architecture, CAIP, Is

shown in Figure 5.15. The Task Mlanagement Processor (THIP) allocates Jobs

to the parallel processor (PP) or the sequential arithmetic processor
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!'SAP) by means of the tag examination routine. The user's program pro-

vides a flag to the parallel processor which indicates whether the task

is local or global. The locality tester examines the flag and initiates

the SIUID or HIMD mode. The SIMID mode is appropriate for local tasks. In

this mode a single instruction is executed simultaneously on the image

points. The local task means that the instruction is executed on

individual data ý,Tthin an image wiridow, such as calculating tI,, histogram

of an Image window. For global task, the MIMD mode Is employed. The

global task means that part of the task is performing one kind of opera-

tion and other part of the task is performing another kind of operation.

For exarmple, in the task of evaluating textured and nontextured areas,

some processors perform second order statistical texture analysis on

certain window and some processors perform first order mean vector

analysis on the corresponding windows. The global task conprises of

two different natures of subtasks. The outputs from the Sequential

Arithmetic Processor (SAP) communicate with the parallel processor.

Therefore, the SAP may support the PP and vice versa. Parallelism of

task is exploited by the parallel processor (PP) to obtain high speed

performance. In the meantime, the operations of the Sequential Arith-

metic Processor (SAP) are pipelined to the parallel processor under

program control in certain tasks which can be decomposed into pipelined

processing. Therefore, the control flow of this architecture exhibits

both parallelism and pipelining. This arrangement has not been in-

corporated into any of the existing systems discussed In section 5.1.

Sinice two types of multiprocessIng, parallel processing and pipeline

processing, are exploited simultaneously, this contributes to high

speed performance in the proposed computer architecture.
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5.3 AIIALYSIS

5.3.1 Performance and Cost-Effectiveness Tradeoffs

The Parallel P.ocessor (PP) of the proposed computer architecture

r~nisists of an array of microprocessors which are the Drocessing elements.

In deterninir, the optimal number, HI, of microprocessors for the parallel

Processor (PP), a systematic procedure is needed. Such a procedure follows:

In designing the parallel processor, as the number of processing elements

(microprocessors) increases, the nunher of data points processed by each

processor decreases and processing speed increases, but the scheduling

overhead also increases. Therefore, the processing speed inprovenent

reaches a saturation point at a certain number of proc, ssing elements.

So it seers that the number of processing elements corresponding to the

saturation point would be a good choice. However, the answer is not

that simple, as cost-effectiveness is an important factor In the

feasibility of a computer architecture. Thus, the costs, such as hard-

ware and software costs of the parallel p-ocessor (PP), need to be

considered. Hlardwavre cost usually involves the hardwrare purchased and

the cost of ptiysical construction of the system. Sottware cost relers to

development of the operating svstems and software supports The best

choice of optimal number of processing elements is obtained by evaluating

the performance iriprovenent and cost increment on different inage pro-

cessing tasks. The optimal number directly depends on the specifications

which are given by the user. l.et us use the following hypothetical

example for illustration, if the processors' cost increases with the Increase

in the number of processing elements (microprocessors), and the software

cost Increases more rapidly than the processors' cost as the number of pro-

cessing elements Increases, the performance curve becomes saturated at



80 processors for task A, and 70 for task B shown in Figure 5.16. H

should be in between 70 and 80. The.processors' cost increases morr, or less

linearly with the numuer of processors (if fewer than 100 processors are

bought). But, as stated above, the software cost increases more rapidly

than the processors' cost. If the software cost increases sharply at 60

processors, as in Figure 5.17, the optimal number of processors, con-

sidering cost and performance trade-off, is between 60 and 80. Depending

on the specifications of the user, if the concern is more for performance

than cost, then a number near 80 is chosen. If the user is more concerned

about cost, then a number near 60 should be chosen.

5.3.2 Implementation of Statistical Methods

As discussed in Chapter 2 during recent years, a number of image

processing algorithms have been developed 12,83]. In this section,

some Image processing techniques are discussed in terrms of the proposed

computer archl:ecture, CAIP, to exemplify the operations of the special

computer for image processing.

Statistical texLure analysis has beetn an important topic in the

field of image processing [9,72,73). The texture analysis technique in

Chapter 4 consists of histogram equalization, and texture feature

measurement. In applying the proposed computer architecture, CAIP, to

such a texture analysis technique, the task of texture analysis is

assigned a tag P (which stands for parallel processor task) by the user's

program. (Tag S stands for sequential arithmetic processor task). The

subtasks of texture analysis, such as histogran equalization and texture

feature measruenent, are designated by the flags Si (which denotes the

SI4D mode for the task), and MI (which denotes the HlIMD mode for the

; (
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task). Assuming the size of the image is MxM. The texture analysis

task is allocated to the parallel processor (PP) of the CAIP by the tag

examination routine of the Task Management Processor (TMP). The Control

Unit of the Parallel Processor (CUPP) finds the flag, SI, for histogram

equalization and loads the operating system of the SIMD mode. Each

processor of the N microprocessors then calculates the histogram of an

Ii x M picture window. The outputs of the i1 processors are then put

rN h
together to obtain the equalization result of the final histogram. The

CUPP keeps the parallel processor (PP) in the SIMD mode after examining

the flag SI of the texture feature measurement task. For example, if the

8 8x8 8 picture discussed in Chapter 4i is to be processed, each processor

will process the co-occurrence matrix of the window of llxll pixels.

The variability texture feature measurement is calculated by each pro-

cessor as the texture value for the center cell (4x4) of that window.

The mapping of the array of processors to the image points is shifted

four pixels and repeats the texture feature neasurement task. When

this shift reaches the right edge of image, the mapping is shifted four

pixels downward and the process is repeated from the left-most column

of the irnage. This process continues until the texture values of all

the picture points are obtained.

5.3.3 Syntactic M~ethods and Parallel Processing

As has been pointed out previously, syntactic methods for image

processing have increased in Importance for certain applications. Pre-

vious special computers such as the PPII and the PICAP are unable to

process syntactic methods by parallel processing [99]. However, the

i
: I

I
I
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proposed CAIP furnishes the capability of parallel processing of syntac-

tic algorithm. In using the parallel processor for syntactic methods,

parallel parsing schemes are most desirable as they can utilize the

capability of the parallel processor. Unfortunately, the research in

parallel parsing scheries Is very limited. In this section, we introduce

the parallel parsing of tree languages and explore the parallel parsing

of the parallel context-free languages (1031.

1. Tree Languages and Parallel Processing

The Parallel Processor (PP) of the proposed computer architecture

for image processing can he applied to tree grarmar parsing. The

parallel parsing procedure of a tree grammar is described below. The

task of tree grammar parsing is designated by a flag P and tag SI by the

user's program for the effective utilization of the facilities. Through

the control unit of the computer architecture, the parallel processor is

put into the SlIiD mode for the task of tree granraar parsing. If a pro-

duction rule of the tree grammar which is applied to parse the language

has k branches, then each of these k branches has a nonterrainal. Each

processor ot the Parallel Processor (PP) is assigned by the user to

parse one nonterminal. This procedure is applied to consecutive parsing

of the language until a final parsing result is achieved. If the

parsing is successful, then the language (pattern) is accepted. If the

parse fails, then the language (pattern) is rejected.

For example, the tree grammar Is Gt = (V, r, P, S), where V = [S, a,

b, $, A, B), VT ={-*a, +b, $1, r(a) {2, 1, 0), r(b) ({2, 1, 0), r(S)

2 and P: [2]

I
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rule 1: rule 2: rule 3:

S $ A a B b

A B A B A 1D

rule I: rule 5: rule 6:

A - a B - b A-a
I I

b a

This grammar generates such patterns as

(I) $

a b

b a

(2) $

a b
, /\ ,"*\

I a b a b
SI ; '\I

ba b a
I I I

-b a

In order to perform parallel parsing of the tree language, processors

need to be assigned. First, the depth "d" of the tree is defined as

the number of the levels of the tree. The depth of the tree in (1) is

2 (d=2) and the depth of the tree in (2) is It (d=4). The maximum number

of branches for all the tree grarmiar rules is easily obtained by check-

ing the values of r in the gramnar Gt = (V, r, P, S) and this number is

called n. The relationship between n and r is that m Is the maximum of

the values of the r's. The number of needed processors in the parallel

processor (PP) is (d)m. This procedure is performed for the.worst case
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protection concept which allows the maximum number of branching In each

level of the tree parsing. if the number (d)m is greater than the number

of processors of the parallel processor (PP), there are two solutions:

one is the static priority procedure, and the other is the dynamic

priority procedure. The static priority procedure has a fixed priority

rule for assigning the available processors to the proper subtasks. The

fixed priority rule for the parallel tree parsing scheme is to assign

the k left-most branches the equal priority in each parsing stage. The

number, k, is the number of available processors of the parallel

processor (PP) for each parsing stage. At parsing stage one, the k left-

most branches are parsed first, based on the highest priority rule. At

parsing stage two, the k left-most branches (nonterninals) of stage two

then have the highest priority to be parsed. Thus, the k available

processors are assigned to parse these nonterminals.

in the dynamic priority procedure, a dynamic priority rule has to

be established at each stage of parsing in order to determine which sub-

tasks have the highest priority. For example, the k left-most priority

could be assigned first, then the 1, right-most priority assigned next

at the request of the user. However, in parsing the tree languages, all

the individual branches (nonterminals) have to be parsed to get the nodes

(terminals), therefore, the static priority procedure is better. The

dynamic priority procedure would only he used in special cases, such as

the case in which only a partial parsing result is of interest.

Using the example given above to illustrate the proposed parallel

parsing scheme for tree languages and to compare the parsing result with

conventional parsing scheme for tree languages, If the depth of the tree
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to be parsed is, at most, four - the maximum number of processors needed

2is easily calculated to he (11) 16. In the parallel parsing of the

input tree a,

$

a b
/\ /\

a b a bax I / \ I
a a b a

b a

The task is allocated to the parallel processor (PP) by the P flag found

by tile Task Management Processor (TMP) and the parallel processor (PP)

is placed In the SIMD mode by CUPP. The procedure is graphically illu-

strated in Figure 5 .18. At the parsing of depth one, one processor

parses the language by the rule 1. At the parsing of depth two, tNo

processors are assigned. The number of processors needed for the parsing

of depth k is automatically determined by the number of branches obtained

form the parsing of depth k-i. The nunber of branches obtained from

depth one in our example is two. Thus, two processors are needed, one

for the parsing of the branch starting from nonterninal A and the other

for the parsing of the branch starting from nonterminal B. Granmmar

rules 2 and 3 are simultaneously applied by the two processors to parse

tie two branches of the tree a starting from A and B respectively. At

the parsing of depth three, four processors are needed. Two processors

simultaneously parse the branches of A and B which are the result of

parsing rule 2 ;n the depth two. The parsing rules for these two pro-

cessors are rules 4 and 3, respectively, to nonterminal A and B. The

I
II
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other two processors simultarneously apply rules 6 and 5 to parse t6e

branches of A and 0, which are the result of parsing by rule 3 in the

depth two. At the parsing of depth four, since there are only two non-

terminals A and B left from the parsing of depth three, two processors

are assinged to simultaneously parse the branches A and B by rules 4 and

5 respectively. Thus, the parallel parsing is completed and the tree is

accepted. The parsing of the same tree language by the conventional

sequential parsing scheme is shown in Figure 5.19. At each parsing

stage, only one nonterminal can be parsed by the parser. At parsing

stage one, grammar rule I is applied. Rule 2 Is applied at parsing

stage two. Then the rules 4,3,4,5,3,6, and 5 are applied to parsing

stages 3,4,5,6,7,3, and 9 respectively. Nine parsing stages are needed

for the parsing of the same tree as shown in Figure 5.19. It can be seen

in Figure 5.18 that only four parsing stages were needed for parallel

tree parsing scheme. Thus, in this example there is a saving of over

50% in parsing stages, and, therefore, a corresponding saving in time by

utilizing this parallel parsing scheme on the proposed computer.

2. Parallel Context-Free Language and Parallel ProcessIng

The parallel context-free language was defined by Siromoney and

Krithivason in [1031. The definition of a parallel context-free language

Is a language generated by a context-free grammar in which the manner

of applying the grammar rules is restricted as follows: if a nonterminal

occurs more than once in a sentential form, then every occurrence of

the nonterminal is replaced at the same time by the samn rule.

The parallel processor (PP) of the proposed computer architecture

for image processing (CAIP) performs the parsing of a parallel context-

free language in the SI1t1 mode. From the definition of a parallel

______________________ _-___________... .___________________
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Parsing Stage 1

A B

Parsing Stage 2 $
/\

a b

A B A B

Parsing Stage 3 4
/\

a b

a b a b
I /\ I
bA B a

Parsing Stage 4
/

a

a /b

ba b

aJ b
b a

(Final Result) P

a b

a b a b

b a

Figure 5.l8. Parallel tree parsing procedure.
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Parsing Stage I Parsing Stage 7

A B b b/\ /\
a b A 8

Pdarsitg Stage 2 /
b a b

a B
b a

A D
Parsing Stage 8 •

Parsing Stage 3 P Sg

/\ a b

a B /\ /\
/ \. a ba B

a B \
I b a b
b I

b a

Parsing Stage 4
/ \ Parsing Stage 9

a B (Final Result) /
a b

a ba b
b A B I /\ I

b a b a
I j

Parsing Stage 5 / b a

a B

a b

b a B

b'

Parsing Stage 6

a B

a b1 / \
b a b

b a

Figure 5.19. Conventional tree parsing procedure.
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context-free language, the number of needed processors of the parallel

processor is equal to the maximum number of occurrences of a nonterminal

in all sentential forms, A processor is assigned under programmer con-

trol to each nonterminal when it occurs simultaneously with the same

nonterminal in the derivation. These processors perform the parsing of

same grammar rules on these nonterminals.

For example, the task of parsing a parallel context-free language is

assigned the flag P and tag Si which initiate the SII1D mode for the task.

The parallel context-free ianguage is L(G) = {a 2 nIn > 01 [103]. The

parallel context-free gramr.r is G = (V, 1, P, S) where V = {S, a),

I = {a), and P = (S -- SS, S -) al. If the languages to be parsed are aa

and aaaa. The naximum number of occurrences of nonterminals in all

sentential forms is four which comes from aaaa (nonterninal ssss). Thus,

the number of needed processors is four. At the first stage of parsing

of the language aaaa, one processor is assigned to parse the language and

the grarirlatical rule is S -÷ SS. At the second stage of parsing, t%.

processors apply the same rule S -- SS on the tNo nonterninals I'S" and

the parsing result is SSSS. At the third stage of parsing, four pro-

cessors apply the same rule S -> a on all the four nonterminals "S".

Hence, the parsing result is aaaa. This language cannot be passed

sequentially as the language is defined to he parsed only parallell'i.

The sentence aaaa of this example is parsed by the parallel context-

free grammar G. Thus, the sentence is accepted as a member of L(G).

In the preprocessing part of the tree grarrtar approach in Chapter

4, the task of horizontal and vertical processing is assigned a flag MI

%vhich denotes the MIM.D mode for the task. The horizontal and vertical

rr

N !=
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processing task is thus allocated to the parallel processor (PP) of the

CAIP by the tag examination routine of the Task Management Processor

(TriP). The control unit of the parallel processor (PP) loads the

operating system of the tHIMD mode after finding the Mll flag of the task.

The parallel processor has N processors. Half of the set of Ni pro,.essors

is designated to execute the horizontal processing and the other half of

that set of processors executes the vertical processing. The different

instructions are executed on nultiple picture data at the same time by

the parallel processor (PP). In this example, the computer architecture

CAIP utilizes the multiple instruction stream multiple data stream (MIMD)

mode to achieve high system throughput for this task.

5.4 SUINIARY AND REM1ARKS

A computer architecture for image processing (CAlF) has been pro-

posed. This computer architecture is designed by the distributed

computing approach. This computer is comprised of a parallel processor

(PP) and a sequential arithmetic processor (SAP). The flexibility and

high perfornance of this computer architecture are contributed to by two

major features which are the reconfiguration capability, described in

section 5.2.1, and the method of computer exploitation of task parallel-

ism, stated in section 5.2.2. This computer architecture for image

processing is proposed to use microprocessors as the processing elements.

The advantage of using a microprocessor array is that the cost of mnicro-

processors is much lower than that of conventional processors. The dis-

advantage is that the processing power of microprocessors is less than

that of conventional processors, especially in addressing capability.

For example, the most popular microprocessors INTEL 8080 and MOTOROLA

6800 do not have associate addressing or microprogramming abilities.
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For special image processing computers, some processing powers of con-

ventional processors, such as associative addressing, are not essential

[102]. The approach of designing a general purpose computer by micro-

processors has been controversial. But, in designing a special purpose

computer for image processing, microprocessors have their advantages.

Furthermore, the advance in semiconductor technology is toward the

development of microprocessors with higher processing power. The recent

developments in the microprocessors servies IIITEL 3000, MOTOROLA M2900,

and Texas Instruments 71S481 have provided microprogramming capability

to microprocessors.

WIith the fast growth of image processing and its applications, the

need for a special image processing machine such as the proposed computer,

CAIIP, should certainly be appreciated.

i
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CHAPTER 6

COI•CLUSIONS AMD SUGGESTIONS FOR FURTHER IWORK

6.1 SUMHIARY ANID CON4CLUSIONS

In this study, we have presented the finite-state string gramiar

approach for image recognition, a tree grammar approach for image seg-

mentation, and a special computer architecture for image processing.

The system for image recognition was presented in Chapter 3. This

system consists of preprocessor, syntactic analyzer, and postprocessor

(1181. Two methods were presented; namely, syntax-directed [7] and

syntax-controlled methods. The finite-state string grammar was applied

to the recognition of highways and rivers from LAUIDSAT images. For the

syntax-controlled method, the finite-state string grammar was automati-

cally inferred by the k-tail finite-state grammatical inference proce-

dure. From the experiments, the finite-state string grammar which is

inferred by the k=2 case in the grammatical inference procedure was

found to be the most suitable of those Investigated for highway and

river recognition. Some further applications of the syntactic method

were bridge and comm..ercial/industrial area recognition. The method ex-

tracted the structural and contextual information from the images to

recognize the objects cf interest. The locations and lengths of bridges,

as well as the centers and sizes of con.nercial/industrial areas were

extracted by the appropriate algorithms described In Chapter 3.

i
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In Chapter 4, a syntactic method for Image segmentation was presented.

This method is a tree graimnar approach which utilizes a tree automaton to

extract the boundaries of the homogeneous region segments of an image.

The homogeneity of the region segment was obtained through the texture

feature measurements of the inage. The experiments were conducted on

different images obtained from satellite, and Infrared sensors. The

results of syntactic image segmentation compare favorably with those of

statistical classification techniques.

In Chapter 5, a cor:mputer arclitecture for image processing was

proposed. This computer architecture was designed by the distributed

computing approach. This computer consists of a parallel processor and

a sequential arithmetic processor. Two major features which are new to

the field of special purpose computer architectures for image processing

contributed to the flexibility and high performance of this architecture.

These features are the reconfigurable capability, described in section

5.2.1, and the method of computer exploitation of task parallelism,

given in section 5.2.2.

In conclusion, the syntax-controlled method for image recognition

was found to be more powerful than the syntax-directed method, commonly

known as template matching. Firstly, the computer processing of the

recognition process for the syntax-controlled method is faster than that

of the synta;i-directed method. Secondly, the recognition by the syntax-

controlled method is based on an automaton (or parser) which is much

more powerful and flexible than recognition by matching tie templates in

the syntax-directed method. Also the recognition power of the syntax-

directed method is limited by lhe number of templates. The advantage

of the syntax-directed method is its fast software developmett time
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which means the time of developing and Implementing such a method is

fast and less complicated than the syntax-controlled method. However,

once the software of the syntax-controlled method is developed, the

syntax-controlled method saves program execution time In performing the

task every time.

The selection of an appropriate grammatical approach for recognition

usually depends on the problem requirements [2]. The string grarmar is

most suitable in describing a string-like pattern, such as, highways and

rivers. Thus, the string grammar approach, which uses a finite-state

automaton as syntactic analyzer, is applied for the image recognition in

Chapter 3.

For the problems In Chapter 14, the patterns of interest are the

boundaries of the image segments. These boundary patterns are high

dimensional. The tree grammar is more convenient in describing high

dimensional objects than string grammar, therefore, a tree grammar was used.

The tree grammar offers a natural high dimensional generalization of strings

and the tree automaton has a high analytical capability In recognizing

patterns. Thus, the tree grammar approach, which utilizes a tree auto-

maton as syntactic analyzer, is applied for image segmentation in Chapter

4.

We believe that the syntactic algorithms for image recognition and

segmentation developed in Chapter 3 and 4 provide a better way to under-

stand image structure and to extract Image information than these have

previously been done. These syntactic algorithms can be used for

military reconnaissance, industrial automation, and medical diagnosis.

In addition, the fast growth of image processing and its impact

on ipdustrial, biomedical, and military applications, has created a need
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for a special image processing computer such as that proposed In Chapter

5, namely, the computer, CA!P.

6.2 SUGGESTIONIS FOR FURTHER IIORK

Syntactic algorithms and special computer architectures for image

processing are very important areas of research. There are still many

open problems that are worth investigating.

The finite-state string gramrnar and the tree grammar approaches

need to be further developed for more and varied applicaLions. Other

grammatical approaches, such as a context-free grarmmar (2] and a parallel

context-free grar.nar [1031 need investigation for their applications to

image processing. Parallel parsing schemes for finite-state, context-

free, and context-sensitive grannars need to be studied. And the

special computer described in Chapter 5 needs to be physically construct-

ed according to the proposed computer architecture in Chapter 5, and put

into operation.
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Real world digitized
satellite images I

((visble..bands, channel 1 and 2)1

Use the found THRESHOLD H in
the inference process to
threshold the images to binary Transformation
image. process

greater than or equal to THRESHOLD I 1
less than THRESHOLD ÷ 0

... Line smoothing process

String grammar analyzer to-accept the
patterns which are generated by string
grammar and reject other patterns.

String grammar

analysis

Highway recognition resulta

syntax-di rected method/
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THE FLOW CHART OF RIVER RECOGIIITION VIA

THE SYWtTAX-DIRECTED METHOD
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Real world digitized
satellite Images

(infrared bands, channel 3 and 4)1 .1l
Use the found THRESHOLD R in the inference
process for "water-like area" to threshold Transfomrtion
the images to binary image. process

greater than or equal to the THRESHOLD-- 0
less than the THRESHOLD ÷ 1

Line smoothing process

String grammar analyzer to accept the patterns
which are generated by the string grammar,and
reject other patterns String grammar

analysis

River recognition result via the
syntax-directed method.
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Real world satellite Images

The flow chart of highway The flow chart of riverrecognition by the recognition by the
syntax-directed method syn.tax-directed method

[implementation of se-mantic rules

Calculate the number of horizontal rows having

bridge points, the number to be "a"

Calculate the number of vertical columns havin

bridge points, the number to be "b"

The length of e

h nc o or iThe length ot', •-(a X 79)2 + (b 56)1 es •__ ytibridge is ci

SLocate the coordinate

of bridge

Bridge recognition result
via the re

syntax-di rected methhood wi th
semantic process ,
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SAMPLE PATTERflS FOR I!JFFRENCE OF TREE

GRAMMAR FOR MILITARY VEHICLE
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APPENlDIX G

THE FLOW CHART OF TREE GRAMMAR INFERENCE PROCEDURE

IN



1,1

,I/input samipleI

pattern i

CALI. FII.CODE
Encode the pattern into primitives
a, b, c, d, e, f, g, and h, and use
pointers to form the linked tree
data structure

Check the values which are pointed bý
the pointer of the tree. Group the
encoded tree into subtrees with re-
petitive substructures (some values).t

Take the root of each subtree and the
succeeding value linked by the pointer.
Delete rest of the tree.

J

Start from the root of the input tree,
replace the values which are linked by
the values corresponding to the non-
terminals. Then the gramnar rule is
inferred and stored in computer as a
linear array.

AI subtrees are
checked?~yes

no

n: no. of snl
yes
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'Boundary Primitiv

Extraction Result
flnxn picture

S~j=l

CALL EIICODE
Encode the pattern into linked tree
structures TREE(I I,JJ) with the

primitives a, b, c, d, e, f, g, and h..

L=IConstruct tree automaton TA(L,Mt)

(TE(RE(1JI) 1))L=L

-=poitnter numbe~r
-•...•/ yes

Check next state
TAV=TA (L ,3)

I-N

ind transition ru

--- T (LL,= I

Yes

-tS
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En f onc? N

Reject ~ TA(LL,)=6F

Rejec (LL I) C
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Example Grammar from section 4.1.1.

Gt = (V, r, P, S)

SV - {Alt A 2v St it c9 d, e, f)

VT {, -c, -., d, +e, x f

r({) (1} r(c) ='{0,1,2} r(d) ({2}

r(e) = {0,1) r(f) {0,11

S I

A1  A2

A1 -- c A 2 -,. d

A1 A2  A, A2

A c A 2 e

I
A1

Al -" e A1 C.
I1

A2

The detailed steps of tree automaton construction are as follows: the

tree autormaton is 1t, lit = (Q, fc' fe fd' fi F), where Q = {qc" qe qlq

q2 ' qsI and F = {qc qe}.

Grammar Rule of Grammar Transition Rule of Automaton

S fl(ql) =-

A

s f- (q2 ) =q
A 2
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A ÷ c fc(qIq2) = q ,

A1 A2

A1AIA

A2  e f C, (q)A

A2 e f (q2 C!q
I e2 2

A2

A2 e ee(qeq) 2

A1  -I C fc (qe q I

Thus the tree automaton is constructed as M tHt = (0-, f c fe' f d f 4 F),

where Q =% c qe, q] , q2P qs), F {qc qe and f:

(1) f4(ql) = qs (5) fc(qi) = q

(2) f4(q2) = q, (6) fe(q 2 ) q2

(3) fc(qlq 2 ) = ql (7) fe(qe) = 2

(4) fd(qlpq 2 ) = q2  (8) fc(qc) q

L.J ........ .,- -=_• .,,t•-•- : : --M
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major methods in the string grammar approach for image recognition; namely, the syntax-
directed method ans syntax-controlled method. For the syntax directed method, syntactic
analysis is performed by a template matching which is directed by the syntactic rules.
For the syntax - controlled method Ln automaton which is directly controlled by the
syntactic rules is used for the syntactic analysis..

A tree grammar is applied to the image segmentation of terrain and tactical
targets from LANDSAT and infrared images respectively. The tree grammar approach
utilizes a tree automaton to extract the boundaries of the homogeneous region segments cf
the image. The homogeneity of the region segment is obtained through texture measuremerts
of the image.

The computer architecture proposed is a special purpose system in that it can
perform an image processing task on several picture-poihts of an image at the same time
and thus takes advantage of the fact that image processing tasks usually exhibit
parallelism"l. This architecture uses a distributed computing approach. Two majorfeatures are the reconfigurable capab'lity, and the method of computer exploitation of
task parallelism. •Finally, a parallel parsing scheme for tree grammar is used todemonstrate the hi•hr efficienicy of the proposed computer architecture than the con-ventional parsing scheme.
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