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ABSTRACT

This paper presents a characterization of the solutions of a special
quadratic program. This characterization is then used in the development

of an efficient algorithm for this class of problems.
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I. INTRODUCTION

Consider the following quadratic program,

min % x°Dx - a’x (1)
s.t. ijj =c (2)
0<x<b 3)

where D is a positive diagonal matrix and b is a nonnegative vector.
Quadratic programs of this type arise when one applies a resource-directive
1 decomposition procedure using subgradient optimization to solve multicom-

modity network flow problems, (see [1,2,3]). The basic approach is to

: distribute the arc capacity among the commodities and then solve a set of

| single commodity problems. This solution is feasible for the multicommodity
problem. If in addition this solution is within €7 (where the user selects
€) of a lower bound, then the procedure terminates. Otherwise, a subgradient
is used to determine a new proposed allocation. Generally the proposed allo-
cation is not feasible (i.e. exceeds the original arc capacity). When this
occurs, one must project this proposed allocation back onto the set of
feasible allocations. This projection involves solving a quadratic program
of the form (1) - (3) for each arc whose proposed allocation exceeds the
arc capacity. Since the subgradient procedure has been found to be at
least twice as fast as competing algorithms for this class of problems (see

[1]) there is great motivation for developing a fast algorithm for (1) - (3).

Held, Wolfe, and Crowder [2] present an algorithm for solving (1) - (3)

| when D is an identity matrix and (3) is replaced by x > 0. The objectives

of this exposition are (i) to extend the theory of [2] to the more general

-




program (1) - (3) and (ii) to present an efficient algorithm for (1) - (3)

based on this theory.
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II. CHARACTERIZATION OF SOLUTIONS

Let us rewrite (1) - (3) in a slightly different form as follows:

1

min 3 xDx - a'x (4)
s.t. ijj -c=0 \) (5)
Xy - b.‘l <0 (“j) (6)
~x 50 (vj), : €))

where A, u,, and \rj are the Kuhn-Tucker multipliers associated with the

]
three types of constraints. The Kuhn-Tucker conditions for (4) - (7) may

be stated as follows:

djxj - a:l + u:| - vj + A =0, (for ali 3) (8)
uj(xj - bj) = 0, (for all j) 9)
vaJ = 0, (for all j) (10)
uysvy > 0, (for all j) (11)

plus (5), (6), and (7),

where d j is the jth diagonal element of D. Consider the following solution

as a function of A.

N
a, - A
x,(\) = MAX MIN(—-L—-—-,b> 0
dj 3 )
u, (1) = MAX { A > ey
J aj- -djb*’ 0}
v.(A) = MAX {\ - a,, 0O}.

J J /
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(11).

Proposition 1.
The solution given by (12) satisfies (9).

Proof. Case 1: aj - A - djbj <0 => uj =0 => uj(xj - bj) =0
a, = A
Case 2: aj -2 - djbj.i 0 => —13;——_3 bj => xj = bj => uj(xj - bj) = 0.

This completes the proof of proposition 1.

Proposition 2.

The solution given by (12) satisfies (10).

a, - A
aj-A<o->—-1d——<o=>xj=o=>

For any selection of A, the above solution clearly satisfies (6), (7), and

We now show that this solution will also satisfy (8), (9), and (10).

Proof. Case 1: v.x., = 0.
e 5 digl
Case 2: aj - A'g_o => vj =0 => vjxj = 0.
This completes the proof of proposition 2.
Proposition 3.
The solution given by (12) satisfies (8).
: i Au ) e T
Proof: Case 1: —jaz——_i bj => x:l = bj. aj - A - djbj > 0, and aj - A 50
-A=d,b, >0 => = - A =4d,b,.
r U R St ey 1°3
aj -=A>0= v3 = 0. Thus djxj - aJ + uj - vj + A
=d,b, - + - A=d,b, =0+ A =0.
331 % 9 173




= b R,

a, - A R R N Y
Case2:0<—ig-—<b ->x-—j—,a-—>\-db <0, and a, - A > 0.
e o j k| 3 d:l k| 13 |

aj—X-djbj<0->uj-0.

aj-)\>0=>vj=0. Thusdjxj-aj+uj-vj+l

a
=d <—J——>-aj+0-0+)\=0.

d
A

a, - A
Case3:—Jd——<0=>x-0 and a, - A < 0.
e T 3 3

aj_-)\50->a-k-db <0 and v, =A-a,.

3 1 h| 3

aj-l—djbj50->uj-0. Thusdjxj-aj+uj-vj+>\

=0-a,+0-(A-a

5 ) + A =0.

3

This completes the proof of proposition 3.

Hence to solve (1) - (3) one need only find the appropriate A such that (S) '

is satisfied.

a, = A
Let g(A) = I,x, (A\) = £, MAX{MIN(—L—, b, ), O
373 3 dj o]

* *
Then we must find A such that g(A ) = c. Note that since d.‘l > 0 and bj >0,

(1) may be expressed as follows:

=




S

7 b » A<a, -d.b

h| =) -
a, = A
::j(k)-{—‘l——'_,lj » 8y~ dyb, <X <a,
L Qrasy X > aj.

Clearly each xj(k) is piece-wise linear and monotone nonincreasing. Since
the sum of such functions preserves this property, g(A) is piece-wise linear

and monotone nonincreasing. A typical g is illustrated in Figure 1.

Figure 1 About Here
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III. ALGORITHM

Suppose there are n x,(A), then the breakpoints for the piece-wise

3

linear function g()A) occur at the 2n points aj - djbj and aj for 4 =" . .50
Let Yi» cves Yoo denote these breakpoints where Ty f_yz S v € Yon* Then

for X < yl, g(A) = Zjb and for A 2~y2n’ g(A) = 0. Hence (1) - (3) has a

3

feasible solution if and only if 0 < c f-zjbj‘

*
We now present an algorithm for obtaining the value A , such that
* *
g(A ) = ¢c. The procedure consists of a binary search to bracket A

between two breakpoints followed by a linear interpolation.
ALGORITHM FOR A*

0. Initialization
If ¢ > Zjbj or ¢ < 0, terminate with no feasible solution; otherwise, set

£ «1, v~ 2n,

L « zjbj and R « 0.

1. Test For Bracketing ]
If r - 2 =1, go to 4; otherwise, set m + [(L + r)/Z]I, where [k]I is i

the greatest integer < k.

2. Compute New Value ;
a, =y i
Set C + I, MAX (MIN ( 1—2, , 0}, ,
h| dj h| ;
3. Update

*
If C = ¢, terminate with A < Yo

If C>c, set £« m, L« C, and go to 1.

If C<c, set r+m R+« C, and go to 1. f




4. Interpolate
Terminate with

(yr = y2)°(c - L)
(R - L)

g
}'2"’
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8D = x )+ x, ()

4 8()

Figure 1. Illustration of g(A) (a1 =5,d

=1,b, =3, 8, =4,d =2,b,=4)
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