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Abstract

A periodic review replacement system is considered. The amount of

deterioration over successive periods form a sequence of i.i.d. random variables.

A replacement policy of the dyadic type is in effect whereby the used equipment

item is discarded iad itumediately replaced by a new identical equipment item

if at the end of a period the old equipment has service aged by an amount in

excess of S or has been in operation for exactly N periods whichever comes

first. Expressions for the joint distribution of the service age and the

chronological age and for the distribution of the total number of replacements Nt

are derived. The derivation of the distribution function of NC relies on the

solution to a system of linear Diophantine equations. Finally, using as

criterion the minimization of the total steady-state expected cokc per period,

consisting of a fixed replacement cost and a linear cost of operation, optimal

values of S and N are computed for a few numerical examples.
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1. Introduction

We consider a periodic review replacement system of a piece of equipment

item which ages while in operation. The amount of deterioration or service

aging {Di over successive equally spaced periods (i - 1, 2, ... ) form a

sequence of independent and identically distributed positive random variables

with know distribution function f(t) and p.d.f. *(C),O < < -. We assume

that a replacement policy of the dyadic type is in effect whereby aL the

end of each period the total amount of deterioration of the equipment item

since acquisition (service aging) is measured as well as the o..o numbar of

periods elapsed since such acquisition (chronological aging); the used

equipment item is discarded and immediately replaced by a new identical equip-

ment item if at the end of a period the old equipment has service aged by an

amount in excess of S or has been in operation for exactly N periods whichever

comes first. We shall denote this policy as an (S, N) policy.

Age replacement problems have been studied by several authors in the past

([1], [2], [4], [9), [11]),although these chiefly center around deterioration

and/or breakdown in continuous time. In discrete time maintenance models, the

approach has been mostly based on Markov decision theory [3], [61, [7]. In this

respect, the model considered in this paper departs from practice in that it

studies a two decision variable (dyadic) periodic review age replacement problem

using renewal theory.

Consider for example an equipment item which is operating intermittently

characterized by the fact that over equal time intervals the total service provided

varies depending upon the user's request for service. Two actors determine the

deterioration of the equipment item, namely, its actual usage and the time

- aj*a .1 . .....



elapsed since acquisition. The equipment may be a copier in a duplicating

office. Its usage over successive intervals of months is measured by the

total number of reproductions accumulated during the month. A maintenance

policy is then dictated simultaneously by the total number S of rvproductions

since last maintenance (approximated by a continuous variable) as well as the

time N elapsed since such maintenance. Another example is provided by a road

vehicle in which the usage is measured by the total number of miles registered

during successive unit time intervals. The age of the road vehicle is both a

function of the total number of miles registered as well as the time elapsed

since acquisition. The road vehicle is replaced whenever its usage exceeds a

given level S or whenever it has been in operation for a certain length of time

N whichever comes first.

We assume that at time origin, t - 0, the equipment item has just been

rpplaced and has service and chronological ages equal to zero. Following a

decision at beginning of period t, t - 1, 2, ... , let

N = total number of replacements in the time interval (0, t)

Yt M service age of equipment item, 0 < Yt < S

0t " chronological age of equipment item,

0 0t 1, ... , N - 1

In what follows w. shall consider the two stochastic processes

{(Yt' 0 ), t - 1, 2, ... } and {Nt, t - 1, 2, ... } and derive in particular expressions
t t

for the joint distribution function of Y and Ot and for the distribution function
of N t. Since the case when N - 1 is trivial, we restrict ourselves in the sequel

to the case when N > 2. In deriving the distribution function of Nt, the analysis

will rely on the solution to a system of linear Di(phantlne equations. Finall 4 , using

as criterion the minimization of the total steady state expected cost per period, con-

sisting of a fixed replacement cost and a linear cost of operation, optimal values of

S and N are computed for cases when {D i have gamma distributions.

2
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2. Distribution of the Waiting Time Till the kth Replacement.

Let {T }, j 1 1, 2, ... represent the sequence of interarrival times between

replacements. {T} is an ordinary renewal process over discrete times [8). i

The distribution function of T is given by

P{T <_0 O0

P{T<n} - P{Dl+ D2 +... + D >S} 2)-- 1-n ,Ii

0 i (n) (S) , n -l, 2, .. N 1 i

P{Tj <N} N)

where we define

(n) x (0)
S C(x) = /o 0(n x1)( " u) -d¢(i) , n 1 1, a, 1 1) (2)

Let f (n) be the probability mass function of the interarrival time T . S,
TJ

It immediately follows from (1) that

0 (n-1) (s) - (n)(S) n 1 1, 2, ... ,N 1f () (3)
T = (n-1) (S) n N

0 otherwise

and

E[T (

r-N- 1 (4)
= + (

r-l

Also, the probability generating function of Tj, GT, (u), may be evaluated:

GT (u) u f T (n) lul i (5)

n-N-i
u- (1-u) [ u1  (n S)

3



thLet Wk be the waiting time till the k replacement k - 1, 2, ..... The

probbpility mass function of Wk is clearly
(k)(

f t M - t (6)
Wk Tj

where * denotes the usual convolution operation. Thus, the probability gener-

ating function of Wk, %(U) is
" ~N-1

n- (in) k
(u) - fu - (I - u) u ( (S)l, k 1 1, 2, ... (7)

k n-1

from which the distribution function of Wk can be derived.

3. Joint Distribution Function of Y and 0
t t

Let for t - 1, 2,...

Mt a probability of a replacement being made at beginning of time t.

Y t (y, O)dy - probability that at beginning of time t, the service age of the

equipment item Lies between y and y + dy and its chronological

age is exactly 8, 0 < y < S and 0 , 2, ... , N -1.

Thus,

Mt P(Yt M 0; Et - 01 (8)

"k P{Wk . t} I • f*(k) (t),I t- 1, 2,
k-i kol T

Also, for 0 < y < S and 0 - 1, 2, .... N - 1

T t (y, O)dy - P{y < Yt 5_y + dy; Ot - 8) (9)

P(Y < Yt <-y + dyIWk = t a '. P {Wk t - }

k-l

• d ,(Y)(y) f* (kt-6e) , t - 1, 2,
k-i j

Some well known results in renewal theory [8] can be obtained from relations

(3) to (9) by considering the special case when N equals to .

4
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4. Limiting Distribution of Y, 8) :,

It is easily verified that

M lm Mt (10)
t4W " 1 Nlr(s)j

r-l

To determine '(y, O)dy J irm Vt(y, O)dy, where 0 < y < S and

8 - 1, 2, ... , N - 1, define the generating function

G(u) = (y, e)dy IUI __
tol t

Using (9) we obtain

(u) U u ~ d O(e) (Y) f* (k) (t -9)
to1 k-i1

UO[d (0) (yll 1
u d1-OGT (u) 1]

Then,

T(y, G)dy * lim (1 - u)u (d 4( )(y)][ 1 0T -

d~ ... (u)")i

..d, 0(e) (Y).

- (0d(y) ,0 < y < S, 0 =, 2, ... N - 1 (11)N-1 '"1+ N-i (r)(s)

rwl
Limiting distribution under an (S, -) policy follows immediately from (10)

and (11). It is also possible to determine from (10) and (11) the marginal dis-

tribution of service age at beginning of period and end of period.

5. The Distribution of Nt, t - 1, 2,

Let G (z, t) be the probability generating function of N i.e.,

"N',,.1
51



(z, t) - z r p{Nt= r) , 1 1 (12)NCt r-O0

Also, let G(z, w) be the generating function of G, (z, t) with respect to

G(z, w)-u-i wt G~ (z, t) , lvi < 1 (13)
t-i t

Then, [8]
-GTz (w)

G(z, w) - - w)[l - z •T(w)] (14)

and, using (5), we obtain

N-IlW

C(z, w) a [I + N P (n)(s)) [ { C GT (w)} m)(15)

n-l MU0 J

5.1 Inversi.n of G(z, w)

In order to determine P(Nt * r) , r - 0, 1, 2, ... , we first invert
t

G(z, w) with respect to w and the resultant expression with respect to z.

For notational convenience, let

(n)
b - (•(S) n - 1, 2, ... (16)

bol

Then (5) becomes

N-NG~~j(U)~ - i i 7.u(biI bi + L~NI (7

and (15) becomes
b0 N-i z G

G(z, w) -[b + W " z G (w)) (18)
0 n-l n moo T

To derive the coefficient of wt in G(z, w), t - 1, 2, ... , it is necessary to

develop a systematic procedure for determining the coefficient of wt in the

multinomial expansion of an expression of the form (a w2 + - + a U
of xprssin ( 1w + 2 N"

where the ai, 1 1, .. ,, N, are known constants, u is any positive integer,

6
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and T 1, 2, ... , u N.

From the Multinomial Theorem, the coefficient of w is given by

11n n2 n
11 '2 19

SI a1  a 2  .."aN (19)SI ;PlIn2 I. n I

where the suimration is taken over all non-negative integers, na, i 1, 2, ... , N

such that

n + n2 + + n.N U (20)

n + 2n2 + .. + NnN T (21)

If no set of ni, 1 1, 2, ... , N exists satisfying (20), (21) then the

coefficient is equal to zero.

5.2 On the Solution of a System of Two Linear Diophantine Equations

(20), (21) represent a system of two linear Diophantine equations in N

non-negative integral unknowns. It has been shown, [5), that any eyatem of

m linear Diophantine equations can be transformed into a iingle equation and a

set of inequalities. For otI, special structure, the following interesting theorem

is obtained by applying the so-called 'Rule of Virgins' (method of eliminating

one unknown at a time) [iq•.

Theorem: The system of two linear Diophantine equations in N ( 1 1) non-negative J
integral unknowns

nI + n2 + + nN - u (20)

nl + 2n2 + + NnN T (21)

where u and T are positive integers, has a solution if and only if U < T K 11 N.

If it has a solution, then all possible solutions of (20), (21) are generated

by all possible solutions of

7



c1 + c 2 + + +CNl U T + (N 1) [T/N] (22)

and

[ u/N] - u < _ _N 2 < " < c2 < c < [r/N] (23)

where the ci, i - 1, 2, ... , N - 1 are integera (unrestricted in sign) and

[T/N] is the greatest integer < TIN; and the ni, . 1 1, 2, ... , N, are

given by

n- U- U T/N] + CN.l (24)

nN~ cj - c+1 , 10 I 2, .. N N- 2~N-j -c-c

Further, if the original system of equations has no solution, then there is

no solution to (22), (23), so that the two systems are equivalent.

Proof: It is easily verified that if T < v or if T > u N, then there is no

solution to the system of two linear Diophantine equations. Also, if

u <_~ < N, it is clear that the coefficient of w in (alw + a2 w2 + see + a5 N)U

is given by (19) (this coefficient being not necessarily non-zero); so that

there is at least one solution to (20), (21).

To prove the second part of the theorem, assume that there exist

ni, 1 1, 2, ... , N satisfying (20), (21). Then from (21) we have,

N-1
nN- / IN-( in )IN

N-1
N-I

[T/N] - ( . ni + N[T/N] -t)N

Now let
N-1

cI ( ini + N[TIN] - -)/N (25)
i-i i

Clearly, c 1 is an integer, and nN being non-negative, c 1  [T/N]. Also,

nN [T/N] c- (26)

8

-A . c..B



Again, from (25), we have,

N-2
St- cl ( ini c + N[T/N] - r)/(N-1)

N-2
Letting c2  ( ini - c1 + N[(/N] - T)/(N-1), we get

i-1

nNl 1  cl - c2

Clearly, c2 is an integer, c 2 < c1

Proceeding in this fashion, we obtain

n(N~j) - c .c j - 1, 2, #tog N-2 (27)

N-j J-1
where cj in- ci + N[/NJ -T)/(N-j + 1) j 2, 3, ... , N- 1 (28)

-i i-i

and C_ ' c 1 1  j - 2, 3, ... , N- 1

Letting j - N - 1 in (28), we obtain

N-i
n1 - c ci+ c-i-N[r/N]+ T (29)

i-i

From (20), (26), (27) and (29), we have,

N-I
Sci - u - T + (N - 1) [/IN]

iinl

so that, from (29),

ni - [T/N] + cN_

and since n, )_0, [TN] - U <N

Thus, starting from (20)., (21) we have obtained (22), (23) and (24). Finally,

it can be easily shown that any solution to (22), (23) yields a solution to

(20), (21) given by (24), so that the two systems are equivalent.

Q.E.D.

9

•1":!: ;r':,", : ,: " •! ':• ::i:• - z• :l"-';: • : '"• • :•.':i -•, • ',, :•' '•" .. ...... '"" | i . .. • :i•• h z" n :: , .. . " ..... •,•' l'i i~i '. .i .' .. .. '. .. .' . .•



To illustrate the use of the theorem we solve

n + n + n N 5
1 2 3

n + 2n + 3n 3 
8

Here, N " 3, t- 5, T - 8 and IT/NJ - (8/3] ) 2

From (22), (23),

C1 + a 5- 2- 2- 1

1 2I
subject to -3 < c2 C I< 2

which yields as solutions, (c 1 - 2, c2 - -1} and {c1 " 1, c 2 - 0W.

The corresponding solutions to the original system are from (24):

{n1 -2, n2 3, n- 0) and (nI - 3, n2  1, n3 - 1j

It should be noted here that the computational effort required to solve

the transformed system is no greater than that for the original system. In

fact, in many instances, especially when the number of solutions is not large,

the transformed system is easier to solve, being more amenable to an enumerative

scheme. Thus, although the theorem presented is interesting in itself, it alao

possesses some utility.

5.3 An Expression for P{Nt - r} t - 1, 2, ... ; r - 0, 1, 2, ...

Let I .r be the number of solutions to the system of linear Diophantine

equations (20), (21). Let {(in, i = 1, 2, ... , N) be the j th solution,

1, 2, ... , UT if I ,T> 0. Define

1l 2n2 nj

'I al -.... . .



Then, from (19), the coefficient of wT in (alw + w2 + ... awNU is given by

Iii ,

ut I A (31)
J-1 uJ

If I 0, othe above expression is defined to be zero.
V'T

Let

a, -b bi , 1, 2, ... 6 N - 1 (32)

aN"bN.1

Then (17) becom(

GT1 2 N(3
GT(u) = lu + &2u2 + o.+ aNuN3)

and hence it follows from (31) that the coefficient of Wt, t - 1, 2, ... in

k
[GT (w)] , k - 1, 2, ... , is given by

tk,t
kI I Ak,t,j (34)

i"1

From (18), it is easily seen that when 1 < N < t, the coefficient of wt in

G(z, w) is given by

t b-q z *k (Coefficient of wq in [GT (w)])k (35)

q-t-N+l kil

and for all values of N greater than t, the coefficient of wt is given by

k q
b + I b z (Coefficient of wq in [GT (w)]kI (36)

q-i t-q k-i

Thus, from (34), (35), (36), we get

St k kq[ r P(Nt - r} - • bt~ ~ k!z A.k 'q
z P(N r)bi I, 1 < N <_ t (37)

I0 t-q kI jI 'k,q,j, -(7r-mO q-t-N+l k-l j 1

and

11
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Sz~ P(Nt r) b + Ibk1 zc ~Alqpj 8 t (38)

r-0 q=1] k-1 jinl

will distinguish between two cases, one where I < N < t and the other where

N >t

Case 1 1 N t

From (37), we have

P(Nt 0)-0 (39)

P{N * r) 0 a r *t + I, t + 2, #

Ir,q
P{Nt -r)-ri b I A~,~ 1 1, 2, teat t

Case 2 N> t

From (38), ve have

P(Nt 1110)-b t(40)

P(N OF r) 0 ,r -t + 1, t + 2,

t 1r,q
P{N -r) r bt~ A r -1, 2, eta, t

tqmr j NJ r q,j

It is clear from (40) that the distribution of the number of raplacements

in a time interval (0, t] is the same for all values of N greater than t. In

this case, while solving the Diophantine equations (20), (21) with r and q as

parameters instead of %) and T, We can conveniently set N - t + I. in order to have

a minimum number of unknowns, although any value of N >t would yield the same

[ final probability given by (40).

5.4 ASample-Calculation For t a 10. N-3

Note: bn as usual denotes 0 (n) (S), and the results are true for any distribution

O(C), 0 < t<and any S

12



P{Nt " r} - 0 , r - 0, 1, 2

P{Nt - r} - 0 , r - 1.1, 12,

P(N - 3) - 3b3(b 1 -b 2 ) + blb3

24
P(Nt 4) - b 2 (6(1-b)2 b 2 + 12(l - b )(b 1 - b2 ) b 2 + (b1 - b 2 ) ]

2 3
+ b1[12(l - b )(b 1 -b b + 4(b 2 ) b2

3 2(b 22
[4(l - b1  + 6(b - b 2 ) b21

p(t ,5) b [20(l - b ) (b1 - b 2 ) b 2 + 10(1 - b 1 ) (b 1 - +4

+ b 1 (10(1 - b ) 3 b2 + 30(1 - b1)2 (b 1 - b2 )2 b 2 +

5(.- b )(b+ b2)4 1+ [30(1 - )2 (b 22) b2
0(1 b1 )(b 1  b2 )3 b2) (b1 - b 2 ) 2 2

3 5
20(lb1-b)(b 1-b 2) b 2 + (b 1-b2) 1

5 4 2
P(Nt - 6) , b2 16(1 - b) b 2 + 15(1 - b) (b 1 - b 2 )] +

bl[30(1 - bl) 4 (b1 - b 2 )b 2 + 20(1 - b ) 3 (b 1 - b2 ) 3 ] +

42 13 -2 2 2  +2

[15(1- b1 )4 b 2 + 60(1 - b)3 (b b )2 b2 +

12 14

15(1- b1 )2 (b 1 - b2 ) 4

6 6
P{N - 7) - b2 (7(1 - b1 ) (b 1 - b 2 )] + b1 (7(1 - b1 ) b2 +

21(-b) 5 b -b 2] + (42(1- b) (b -b b

35(1 - b1) 4 (b 1 - b2 )3]

P{Nt 8 - b2 1 - b] 8 + b [8(1 - b)7 (b 1 - b2 )J +

[8(1 - 1)7 b) 2 + 48( -b 1 ) 6 (b - b2 ) 2

P{Nt - 9) b (1 - b 3.)
9 ] + [9(1 - b ) 8 (b 1 - b 2 )]

13
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V 10P{Nt - 10) - (1 - b1)

5.5 The Mean Value of the Number of Replacements in a time Interval (0, tj_

The formal expressions obtained from (39) are

Case 1: N < t

I

ttt r~q

E(Nt] = rP{Nt r} - r 2(r- 1)! r) 2 Z A (41)r- " r-1 q-t-N+1 t- J-1

Came 2: N > t

t t 2t r.q

ral r-l qr q

6. An Economic Replacement Model

In this section we consider the problem of minimizing the total

steady-state expected cost per period, which is the sum of the steady-state

expected costs per period of replacement and operation. In formulating

this colt objective function, S and N appear a" the decision variables and

optimal values of these will be obtained. It will be assumed that we have

a fixed recurring cost of replacement per period and a linear expected oper-

ating cost per period. The analysis will be made for the came where the

service asging per period, D1 (i - 1, 2, ... ), has a gamma distribution. That

for the negative exponential distribution will be derived as a special case.

To this end, we introduce the following notation:

L(y, 0) - conditional expected operating cost per period given that at

the beginning of each period the equipment item has chronologial

age 0, (6 w 1, 2, *.., N - 1) and service age y (0 4 y < S)

L(O, 0) m conditional expected operating cost per period given that the

equipment item has just been replaced.

K a fixed cost of replacement

14



Nrce

R(S, N) - steady-state expected cost of replacement per period

O(S, N) - steady-state expected cost of operation per period

•i'•.' (S, N) "steady-state total expected cost per period

a R(S, N) + O(S, N)

The results (10) avid (11) obtained in Section 4 for the steady-state

probability of a replacement being made, H, and for the limiting distribution

of (¥t, 0 t); t - 1, 2, ... ) will now be used here in formulating the cost

objective function, F(S, N).

We have, from (10)

R(S, N) . KM + NL(o, 0)

a- + -L(0. 0) (43)
0=N-1

1+ E (e) (S)
0-(

and from (11)

0(s, N) * L(y, 0) Y(y. O)dy (44)
001 4(0

S

L(y, 8) **(O)(y)dy
owl J 0

0-1OiN-l
+
owl

where ý*(O)(y) denotes as usual the 0-fold convolution of the density

function 0(y) corresponding to the distribution function $(y).

From (43) and (44), we have,

S-N-1
K + L(O, 0) + L(y, 8) #*(O)(y)dy

,(S, N) - 0-1 Jo (45)
1 -N-1 r ()

1 0-1 Jo

15



Assume a linear conditional expected operating cost in y and 0, and let

L(y, 0) - A + By + C6 , 0 < y < S; 8 - 1, 2, ... , N - 1 (46)

L(O. 0) - A (47)

Let the saervice aging per period have a gamma distribution with

parameters r and A i.e. let

0 -< ( y . 0

4(y) -(48)
((),y- e-)y 0 < y <4

-r(r) ..

Then,

(y) -(49)

,,rO-l -X 0y do~
M~e) tx-ta-

Defining y(a, x) to be the incomplete gamma function e t dt,
JO

we have,

Jo (y)dy rre) y(re, S) (50)

and, from (46). after some manipulation.,

L(y, e) **()(y)dy (A + by + CS) **(M)(y)dy (51)
JO JO

1 B B (AS)r e-s
"[(A + -+ CO) y(r, AS) - I -AS

r re) rO

From (45), (47), (50) and (51), we have,

I+A + 1 B B ( A S ) 'r ° - A S
K + A + r(r-- [(A + + CO) y(rO, A•s) - A re

F(S, N) " 0"1
1 + y(re, AS)

(52)

16



When the parameter r is an integer, then

Go -XS i
jl .r AS)� - 1.e - P(r6; AS) (53)

r(rO) il

where P(r6; AS) is defined to be the complementary cumulative

Poisson with parameter A S.

In the special cas* when r - 1, we have a negative exponential distri,-

bution, and (52) becomes, after some algebra,

F(S, N) (K + A + AS(A + C) + +C)2

[ASA + (L 2  (4 + C)] P(N - 2; AS) + [(N - 1) A- XSC) P(N - 1; AS)

+I [(a + C) . P(N; AS)) / U1 + AS - ýS P(N - 2; AS)A 2

+ (Nl" 1) P(N"1; AS) ,N > 2

6.1 Computational Results

Owing to the complexity of expressions (52) and (54) for the total steady-

state expected cost per period it in analytically difficult to obtain optimal

values of N and S that minimize F(S, N), this difficulty being further com-

* pounded by the fact that one decision variable is discrete and the other

continuous. In what follows several computational results are presented and

discussed.

In Figures 1 and 2 the total steady state expected cost per period is

* plotted against discrete N for various fixed values of S (or alternatively, AS).

The resulting graphs have however been made continuous for convenience. The

parameter r of the gamma distribution (48) is taken to be 1 and 3, respectively,

so that Figure 1 actually represents the case when the service aging per period

has a negative exponential distribution. In both graphs the values of the

17
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. 1-3, B i
other input parameters are as follows: A -10 , K - 5000, A 51, B/ 1.

and C - 300.

For the negative exponential distribution the optimal value. of N and AS

I'." are found to be 6 and 17.0, respectively, whereas for the case, r - 3,

(Fig. 2), these values are 6 and 35.0.

In general the patterns in Figures 1 and 2 exhibit a decreasing tendency,

followed by an increasing one, this in turn giving way to a level stretch.

For fixed AS, as the limit on the chronological age is raised, the equipment

item tends to be replaced after a longer period of time and hence the expected

cost of replacement decreases while the expected cost of operation increases

with N. Once N is raised beyond a certain "high" value (this "high" being

relative to the value of AS), however, it no longer dictates the replacement

policy. It is the "lower" barrier of S that does so. Therefore, increasing

N does not affect the expected costs of replacement and operation beyond this

point. The behaviour of the graphs is now readily understandable from the

fact that the total steady-state expected cost is nothing but the summation

"of the expected costs of replacement and operation.

For very low values of AS, N is irrelevant to the decision-making and the

level stretch dominates early in the game. As AS is raised further, the increas-

ing and decreasing portions of the graph both begin to make themselves felt.

For very high values of AS, the curves converge, because now AS becomes irrele-

vant and N dominates the decision-making.

When r is increased from 1 in Fig. to 3 in Fig. 2 the optimal values

of N remains unchanged at 6 whereas that of AS increases from 17.0 to 35.0,

This is explained by the fact that increasing r increases the expected value

of the service age, given a certain chronological age 6 at the beginning of a

period.

In both cases when N is kept at its optimal value of 6, and AS is increased

18



beyond its own optimal value of 17.0 or 35.0, the total. steady-state expected

cost per period remains unchanged because AS becomes "high" relative to this

value of N and N dictates the replacement policy. Hence, it would be tech-

nically correct to say of Fig. 1, for example, that the optimum value of AS

is greater than or equal to 17.0.

Both Figures 1 and 2 were plotted against N for various values of XS.

It is easy to see, however, that the behaviour of the graphs would be essen-

tially the same if the plots were instead made against AS for fixed values of

N.

Varying the other input parameters would naturally affect the optimum

values of N and S. If the value of C is lowered, for instance, to 30, (Fig. 3)

I the decreasing portion of the graph dominates, and the optimal values of N and

AS are found to be as high as 18 and 30.0, respectively. It is obviously

more economical to run the equipment for a longer period of time rather than

incur a relatively exorbitant cost of replacement.

19
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