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Abstract
A periodic review replacement system is considered. The amount of
deterioration over successive periods form a sequence of i.i.d. random variables.
A replacement policy of the dyadic type is in effect whereby the used equipment

item is discarded uad innediately replaced by a new identical equipment item

if at the end of a period the old equipment has service aged by an amount in
excess of § or has been in operation for exactly N periods whichever comes
_ firat. Expressions for the joint distribution of the service age and the

chronological age and for the distribution of the total number of replacements Nt

are derived. The derivation ot the distribution function of Nc relies on the

solution to a system of linear Diophantine equations. Finally, uaing as

oy criterion the minimization of the total steady-state expected co.t per period,
[
L
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B ' consisting of a fixed replacement cost and a linear cost of operation, optimal

f.' . values of 5 and N are computed for a few numerical examples.
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1., Introduction

We consider a periodic review replacement system of a plece of equipment
item which ages while in operation. The amount of deterioration or service
aging {Di} over successive equally spaced periods (i = 1, 2, ...) form a
sequence of independent and ildentically diatributed positive random variables
with know distribution function ¢#(§) and p.d.f. ¢(E),0 < £ < =, We assume

that a replacement policy of the dyadic type 1is in effect whereby ai the

end of each period the total amount of deteriloration of the equipment item

periods elapsed since such acquisition (chronological aging); the used

:ﬂgg since acquisition (service aging) is measured as well as the cv'." numbar of
[
'
!

E i equipment item is discarded and immediately replaced by a new identical equip-
f ment item if at the end of a period the old equipment has service aged by an

amount in excess of S or has been in operation for exactly N periods whichever

comes first. We shall denote thls policy as an (8, N) policy.

Age replacement problems have been studied by several authors in the past

({1}, (2], {41, (9], [11]), although these chiefly center around deterioration

e

and/or breakdown in continuous time, In discrete time maintenance models, the
o approach has been mostly based on Markov decision theory [3], [6], [7]. In this
, respect, the model considered in this paper departs from practice in that it

: { studles a two decision variable (dyadic) periodic review age replacement problem
' using renewal theory.

; ' Consider for example an equipment item which is operating intermittently

i : characterized by the fact that over equal time intervals the total service provided

F ‘ varies depending upon the user's request for service., 1Two 4ctors determine the

8
h

deterioration of the equipment item, namely, its actual usage and the time
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elapsed since acquisition. The equipment may be a copler in a duplicating
office. Its usage over successive intervals of months is measured by the
total number of reproductions accumulated during the month. A malntenance
policy is then dictated simultaneously by the total number S of reproductions
since last maintenance (approximated by a continuous variable) as well as the
time N elapsed slnce such maintenance. Another example 1s provided by a road
vehicle in which the usage is measured by the total number of miles registered
during successive unit time intervals. The age of the road vehicle is both a
function of the total number of miles registered as well as the time elapsed
since acquisition. The road vehicle is replaced whenever its usage exceeds a
given level S or whenever it has been in operation for a certain length of time
N whichever comes first.

We assume that at time origin, t = 0, the equipment item has just been
replaced and has service and chronological ages equal to zero., Following a
decision at beginning of period t, t = 1, 2, ,.,, let
N, = total number of replacaments in the time interval 0, t]

t

Yt = gervice age of equipment item, 0 5-Yt <8

Ot = chronological age of equipment item,
Ot"o,l, |o|’N_1
In what follows we shall consider the two stochastic proceaaes

(o,

for the joint distribution function of Yt and ot and for the distribution function

of Nt' Since the case when N = 1 is trivial, we restrict ourselves in the sequel

to the case when N > 2, In deriving the distribution func?ion of Nt' the analysis

will rely on the solution to a system of linear Dicphantine equations. Finally, using '
as criterion the minimization of the total steady state expected cost per period, con-

sisting of a fixed replacement cost and a linear cost of operation, optimal values of

§ and N are computed for cases when {Di} have gamma distributions.

’ Ot)’ t=1, 2, ...} and {Nt' t=1, 2, ...} and derive in particular expressions
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W}J; W' B 3
2, Distribution of the Waiting Time Till the kth Replacement, : i

[ .
Let {TJ}’ j=1, 2, ... represent the sequence of interarrival times between \‘
' replacements. {TJ} is an ordinary renewal process over discrete times [8]. gf
>, i
e The distribution function of Tj- is given by j
.t‘\l‘ ‘ '_‘
5 P{T, <0} =0 i3
. J i
: “‘.. - e ¥ !
o P{Tj <n} = P{D,+ 0D, + +D > s}
B 1 ¥
I ~1-6¢™) , nwe1,2,..,N-1 S }f‘
1
y P{Tj SN} =1 ; \
1 14
- where we define ‘é 1
\ 3
Che X o . ‘. i
. oW = fo 0O Dix - w avw L n=1,2, 0P =D ) :
| i
" Let f,r (n) be the probability mass function of the interarrival time TJ’ "} ‘»,5
§ 3 iR
It immediately follows from (1) that }*j
| _ '
' . o(n 1)(8) - °(n)(s) n= 1’ 2’ ..,.N -1 i i
. fp, ™ = | (n-1) ) 1
k| ¢ (s) n=N i %

¢
W ° otherwise 1
f 4 X
and : }
™ i
E[T,] = £ 0
‘ (1] _zn.rj(n) %
[} Al ‘J )1
[
i {
3 !
r=N-1 (4) b
- 1+ 7 o)
. ' rel { ]
Also, theprobability generating function of Tj’ G,r (u), may be evaluated! : j
J L
. . o i
Gy () =Ju £, (n) lu| <1 (5) ?:‘1
R bl 3 | :;
X
n=N-1 4
mu- (1~u ) ot O(n) (s) ‘.‘j
1=l 3.
g
|
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Let W, be the waiting time till the kth replacement k = 1, 2, .... The

k
probability mass function of Wk is clearly

* (k)
£, (t) = f () (6)
wk Tj

where * denotes the usual convolution operation. Thus, the probability gener-
ating function of Wk. Gw#(u) is

N-1
G ) = - G-w [ o™ sy1k, k.1, 2, ., 3
n-

from which the distribution function of wk can be derived.

3. Joint Distribution Function of Yt and Ot

Let for t = 1, 2, ...
Mt = probability of a replacement being made at beginning of time t.
Wt(y, 8)dy = probability that at beginning of time t, the service age of the
equipment item lies between y and y + dy and its chronological

age is exactly 6, 0 <y <S8 and 6 =1, 2, ..., N= 1,

Thus,
M, = P[Yt = 0; 0, = 0} (8)
-y PW, =t} = Y f,: (k)(t),t-l, 2, e
k=1 kel 3

Also, for 0 <y <Sand 6 =1, 2, ..., N=-1

¥ (y, O)dy » Ply <Y <y +dy; 0 = 8} (9)

t

D Ply<¥, <y+dylW =t-0} P =t-o)
k=1

7 a ey i P ,ew1, 2, ...
kel 3

Some well known results in renewal theory [8] can be obtained from relations

(3) to (9) by considering the apecial case when N equals to =,

[N

st .
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4. Limiting Distribution of Wt(y, 8)

It is easily verified that

1 1
M= linM_ = - (10)
t E[T,] N-1
e 7 147 6@
r=1

To determine ¥(y, 6)dy = lim Wt(y. 6)dy, where 0 <y < 8 and
oo

=1, 2, ..., N=1, define the generating function

Glu) = § utvt(y. 8)dy lul <1
tml

Using (9) we obtain

G = § uf T a @y f; ®) (e - 0)
=l k=l f

- ue[d 0(9)(y)] Pizal—z;y - 1]
T
J
Then,

¥(y, 8)dy = 11m (1 = wulrd ¢ mI[
url
d o0

E[TJ]

1
l—GTj(u) - 1]

d 0(0)(y)

N-1
1+ o () (s)
rm]

y 0<y=<8, 06=1,2, ..., N-1 (11)

Limiting distribution under an (S, =) policy follows immediately from (10)
and (11). It is also possible to determine from (10) and (11) the marginal dis-
tribution of service age at beginning of period and end of period.

5. The Distribution of Nt’ tw1, 2, 4.

Let GN (z, t) be the probability generating function of Nt, i.e.,
t

e
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[e-]

Gy (z, £) = ] 2" PN, =1}, 2] =1 (12)
t r=0

Also, let G(z, w) be the generating function of G, (z, t) with respect to

Ny
t , i.e.,

Gz, w) = J W Gy (z, t) y wl <1 (13)
% twl t
- Then, [8]
: f] 1l - GTj (w) i‘
3 ?‘s' €z, W) = T -z G ) (14) 1

3 :
= i
xY §
" ; and, using (5), we obtain i
N A 7
Gz, w) = [L+ [ W o'™(e)) [ ] {6, (w} ™) (15)
t n=1 m=0 ]

X 5.1 Inversion of G(z, w)

In order to determine P{Nt wr}] , r=0,1, 2, ..., we first invert
G(z, w) with respect to w and the resultant expression with respect to z.

b For notational convenience, let

i

b = 8™y nm=1,2,... (16)

b, =1

0

p
o Then (5) becomes {
: N-1

- . 1 _ N

\ ch(u) [121 uilby g = bl Fwby (171 t
g and (15) becomes

E‘ N-1 w

- Gz, w) = by + [ w10 [ 2"(6, 1} ™ (18)

i nwl - m=0 h|

- To derive the coefficient of wt in G(z, w), t =1, 2, ..., it 18 necessary to

develop a systematic procedure for determining the coefficient of w' in the
v
multinomial expansion of an expression of the form (alw + a2w2 4+ oo anN) .

where the Ri’ 1 =1, ..., N, are known constants, v 1s any positive integer,

'
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and 1t =1, 2, ..., U N,

From the Multinomial Theorem, the coefficient of w' is given by

vl a a

2
3 1% ey (19)
nl!nz! e nN!

where the summation i1s taken over all non~negative integers, n i=1,2, ..., N

such that

n, +ny ke kg = (20)

n, + 2n, + eec + Nng =T (21)

1f no set of a, 1 =1, 2, ,.., N exists satisfying (20), (21) then the

coefficient is equal to zero.

5.2 On the Solution of a System of Two Linear Diophantine Equations

(20), (21) represent a system of two linear Diophantine equations in N
non-negative integral unknowns. It has been shown, [5], that any system of
m linear Diophantine equations can be transformed into a single equatior and a
set of inequalities., For ovr special structure, the following interesting theorem
is obtained by applying the so-called 'Rule of Virgins' (method of eliminating
one unkuown at a time) [14.
Theorem: The system of two linear Diophantine equations in N ( » 1) non~negative
integral unknowns

ng Fn, +oere+ng = (20)

N

n, + 2n2 + eee + NnN -7 (21)

where v and T are positive integers, has a solution if and only 1f v <t < u N.
If it has a solution, then all possible solutions of (20), (21) are generated

by all possible sclutions of

j
4
1
{
bl
|

i
i I 2




TR TR S

= y-14+ (N=-1) [t/N] : . (22)
and

[t/N] = v <ec S et el < [t/N] (23)

N1 = §-2 = 2 =

where the Cys i=1,2, ..., N~= 1 are integera (unrestricted in sign) and
[1/N] is the greatest integer < T/N; and the s i=1, 2, «r+s N, are
given by

= v - [t/N] + ¢ (24)

™ N-1

"N-3 T % T S v ™1, 2, .o, N=2

ny = [t/N] - ¢

Further, if the original system of equations has no solutioun, then there is
no solution to (22), (23), so that the two systems are equivalent.
Proof: It is easlly verified that 1f v < v or if t > U N, then there 1s no
solution to the system of two linear Diophantine equations. Also, if
u<T <UuN, it is clear that the coefficient of w' in (alw + azwz + see & uﬁwn)u
1s given by (19) (this coefficient being not necessarily non-zero); so that
there is at least one solution to (20), (21).

To prove the second part of the theorem, assume that there exist

ng, 1=1,2, «s.y, N satisfying (20), (21). Then from (21) we have,

N-Z-l /
n, = /N - ( in,) /N
N P
N=-1
= [x/N) - (] dny + N[t/N) = O/N
1=1
Now let
N-1
¢, = (I dng + N[t/N] - ©)/N (25)
im]

Clearly, ¢, is an integer, and n being non-negative, ¢, < [t/N]. Also,

ne ™ {t/N] ~ ¢ (26)

A e
o U . o .
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Again, from (25), we have,

N-2
=cy - (121 :I.n:L - g + N[1/N] - 1)/(N-1)

-1

N-2 y
Letting ¢, = ( Z in, - ¢ + N{t/N] - 1)/(N-1), we get g
i=1

"1 56" % '

Clearly, <, is an integer, ¢, 2 ¢

Proceeding in this fashion, we obtain

n(N_j) - cj - cj+1 j - l| 2. ."f N_z (27)
N-3 i=1
where c, = ( 2 ini - z Ci + N[T/N] - T)/(N"j + l) j - 2 ’ 3. “oe g N =- 1 (28)
I am 1=
- 1
{.\ ‘ ' and Cj i cj-l j - 2, 3’ tesy N had 1 .

K . Letting J = N = 1 in (28), we obtain

N-1
ng ™ J e ¥ oy - NI/l #T (29)
im]

I T . P 2y

From (20), (26), (27) and (29), we have,

)

‘g ; N~1

. ¢ mu- T+ (N -~ 1) [t/N]
\g : =]l

| .

) so that, from (29),

.’ nl =Y - [T/N] + CN_l

and since n, > 0, [x/N] -v e

N-1
Thus, starting from (20), (21) we have obtained (22), (23) and (24). Finally,

it can be easily shown that any solution to (22), (23) yields a solution to

(20), (21) given by (24), so that the two aystcms are equivalent.

Q.E.DQ
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To illustrate the use of the theorem we solve

nl + n2 + n3 -5

nl + 2n2 + 3n3 = 8

Here, N=3, umw5, t=28and [t/N] = [8/3] =2
From (22), (23),

¢y + c, = 5-2=-2m=]

subject to -3 < ¢, < ¢y < 2

rom

which ylelds as solutions, {cl =2, c, " =1} and {c1 -1, c, = 0},

The correaponding solutions to the original system are frem (24):
{nl -2, n, = 3, n, = 0} and {nl -3, n, = 1, n, ~ 1}

It should be noted here that the computational effort required to solve
the transformed system is no greater than that for the original system.. In
fact, in many instances, -especially when the number of svlutions is not luarge,
the transformed system is easier to solve, being more amenable to an enumerative
scheme. Thus, although the theorem presented is interesting in itself, it alaso
possesses gome utility.

5.3 An Expression for P{Nt =r}tw=wl1l,2, .o, 3 E=0,1, 2, ...

Let IU , be the number of solutions to the system of linear Diophantine
»

aquations (20), (21), Let {n,,, i1 =1, 2, ..., N} be the jth solution,

1)
=1, 2, «osy Iu,t’ 1f Iu,r > 0, Define

n

1 %2 n

Au,r.j " nlj! an' see nNJ

M2 L ™

a

..
-t
v

o

1 [ j - 1. 2, 100y IU,T U’T

(30)

oz
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p
é;“ Then, from (19), the coefficient of w' in (alw + azwz + eoo .ﬁwN>u is given by
e
3 Iu,T
b 1 A 1
K\ )\J" v jEI UDTIJ (3 )
%@l | :
;%ﬁ If Iu - 0, the above expression is defined to be zero.
1. ' ’
S Let
2 8 by =b s i=1,2 .0, N1 (32)
S
T
S‘\] a5 " bN—l
ﬁgﬁ | Then (17) becomes
(i 2 N
1?. GTj(u) = a,u + a,u b oees 4 agu (33)
ol
T and hence it follows from (31) that the cosfficient of wc. t=1,2, ... in
b
P [GT (w)]k. k=1, 2, ..., i8 given by
, 3 |
i {
E '. ' Ik.t |
L o 5 a a0

" From (18), it is easily seen that when 1 < N < t, the coefficient of wt in |

G(z, w) is given by i
t q

- ) zk {Coefficient of wd in [G,r (w)]k} (35) |

qut=N+1 9 gm 3 : ;

and for all values of N greater than t, the coefficlent of wt is given by

o A T T T e T e e

t
LI ) b E 2% (Coefficient of w9 in [GTJ(W)]k} (36)

qel 79w

Thus, from (34), (35), (36), we get

I
; © t k,q
1 r k 14
R - - 1l ¢ <
rzo z PN, = r} q-t§N+1 L & k! z _121 Aoauds Nzt (37)

and




ST

I
t k,q
k
§ 2t PN, = r} = b, + ] b kl =z 321 Mgy, Nt (38)

r=0 q=l t9 ye1
To derive an expression for P{Nt wr}), t=1,2, ..., =0, 1, 2, .c., e
will distinguish between two casee, one where 1 < N < t and the other where
N>t

Case 1 1 <N %t

From (37), we have

P{N, = 0} =0 (39)

P{Nt mrlmQ , rmg+1, t+2, ..,

¢ } % IE:Q
P{N_ = r} = p! b_ A ,!'-1. 2' sesy t
¢ que=N+1 B9 gay  Frdd

Cage 2 N > t
From (38), we have

P{Nt =0} w b, (40)
P{Nt-r}-o ,rmt4+l,t+2, ...

I

} t r,q
PN =rlwrl ] b A
N = b= qzr t-q jzl X,q.]

sy w1, 2, sy t

It is clear from (40) that the distribution of the number of raeplacemants
in a time interval (0, t] is the same for all values of N greater thaﬁ t. In
this case, while solving the Diophantine equations (20), (21) with r and q as
parameters instead of v and T, we can conveniently set N = t + 1 in order to have
a minimum number of unknowns, although any value of N > t would yield the same

final probability given by (40).

5.4 A Sample Calculation For t = 10, N = 3

Note: b as usual denotes 0(“)(8). and the results are true for any distribution

®(E), 0 < E < = and any §




ik dain

P(N =r} =

P(N = r} =
P(N = 3} =

P(N_= 4} =

P(N =5} m

Pth =6} =

P{Nt -7}m

P{Nt = 8} =

P{N = 9} =

+ i i '
Bl et

0 s, T=0,1, 2

0 ,r=11, 12, ...

b3

3
3b2(b1 - bz) + bl 2

2 .2 2 4
b2(6(1—b1) b2 + 12(1 - bl)(bl - bz) b2 + (b1 - b2) |

2 3
+ b1[12(1 - bl)(b1 - bz) b2 + A(b1 - bz) b2] *

3 2.2

k] 2 3
b2[20(1 - bl) (b1 - b2) b2 + 10(1 - bl) (b1 - bz) ] +

3 2 2 2
+ b1[10(1 - bl) bz + 30(1 - bl) (b1 - bz) b2 +

4 2 2
sl - bl)(bl - bz) ] + [30(1 - bl) (b1 - bz) bz +

3

20(1 = by)(by = by)° by + (b = b))

5 4 2
b2[6(1 = b7 b, + 15(1 = by) (b1 - bz) ] +

4 3 3
b1[30(1 - bl) (b1 - bz)b2 + 20(1 ~ bl) (b1 - bz) ]+

4.2

3 2
[15(1 - bl) b2 + 60(1 ~ bl) (b1 - bz) b2 +

2 4
15(1 = b)" (b = b,y) ]

6 6
b, {7¢1 = b))% (b = BT + b, (7(1 = b)° b, +
5 2 5
2001 - b))% (b, = )% + [62(1- b))% (b, - B,) b, +
3501 = b))% b, = b7
b.[1-b18+b,[8(1-b)" (b, -b,)] +
2 1 1 Y by - by

7 6 2
(8(2 - bl) b2 + 48(1 - bl) (bl - b2) |
9 8
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. .10} e f1 - w310
$iy P(N, = 10} = (1 - b))

', 5.5 The Mean Value of the Number of Replacements in a time Interval (0, t]

> The formal expressions obtained from (39) are
a : Case 1: N<t
)
W
o
{‘:v‘; t t 2 t I,q
- BN = ] rP{N =r}e | (-1t ] beeq L. Arq,y U
4 rel : r=1 qet-N+1 79 ya1 T
a5
& Casa 2: N> ¢
.Arll.
: F oo § oy B
* E[N] = rP{N = r} = r“(r - 1)! b, A (42)
b LS r=l N RLIT Y
. 6. An Economic Replacement Model
F_i In this section we consider the problem of minimizing the total

5 - : staady-state expectad cost per period, which is the sum of the steady-state
% N expacted costs par pariod of replacement and operation. In formulating

) this cost objective function, S and N appear as the decision variables and

optimal values of these will be obtained. It will be assumed that we have

a fixed recurring cost of replacement per period and a linear expected oper-

; '. ating cost per psriocd. The analysis will be made for the case where the

: ; service aging per period, Di (1 =1, 2, ...), has a gamms distribution. That

\ | for the negative exponential distribution will be derived as a special case.

To this end, we introduce the following notation:

L(y, 6) = conditional expected operating cost per perlod given that at
the beginning of each period the equipment item has chronologial
age 6, (6 =1, 2, ..., N = 1) and service agey (0 <y < 8)

L(0, 0) = conditional expected operating cost per period given that the
equipment item has just been replaced.

K =« fixed cost of replacement

14
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R(S, N) = steady-state expected cost of replacement per period
0(S, N) = steady-state expected cost of operation per period
F(S, N) = steady-state total expected cost per period
= R(8, N) + 0(S, N)
The results (10) and (11) obtained in Section 4 for the steady-state
probability of a replacement being made, M, and for the limiting distribution

of «Y;. Ot); t =1, 2, ...} will now be used here in formulating the cost
objective function, F(S, N).

We have, from (10)
R(S, N) = KM + ML(O, 0)

K+ L0, O
« Bt 0) )
14+ oza NOT

and from (11)

OwN-1 rs

o8, N) = ] L(y, 8) ¥(y, 0)dy (44)
o=l 40

]

6"N-1
L(y, 0) ¢*(°)<y)dy
gml ‘0

0=N-1
1+ ) ¥

o=l

vhere o*(e)(y) denotes as usual the 6-fold convolution of the density
function ¢(y) corresponding to the distribution function $(y).

From (43) snd (44), we have,

"
@=N-1
K+ L, 0)+ ) } L(y, ©) 0*(9)(y)dy
¥, N) = 8=1 ——h° (45)
0mN-1 [ 0
L+ ) o )<y)dy'

fwl 1o




Assume a linear conditional expected operating cost in y and 6, and let

L(y, ) =A+By+C ,0<y<8; 6=1,2, .../, N=1 (46)
L(0, 0) » A 47

Let the service aging per period have a gamma d%acribution with

parametars r and A i.e., let

0 =© <y <0
$(y) = o . (48)
N e o< y < w
I'(r)
.Then,
0 “= ¢y <0
0"(9)
(y) = (49)
()gl')“‘-1 TRAR y<mw -
r(x9)
x . -
Defining v(m, x) to ba the incomplete gamma function ) ot 1 de,
0
wa have,
8 *(e) . -
0t Y = g vre, A8) (o)
and, from (46), after some manipulations,
S 8
o K0 O " (yyay - o APy e " (y)ay (51)

red =28
- ‘ﬂ_:w [(A +-}+ co) y(rH, A8) - ,:._L_L______AS - &)

From (43), (47), (50) and {51), we have,

mN~1 ré A8
1 B B (A8) e
K+A+ 9.2.1 Teeay [(A +3+0O) v(ro, A8) - 5 =5 ]
F(S, N) » eiﬂ-l ) )
1+ y(x6, A8
el T(r6)
(52)
16
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'4ﬁ When the parameter r is an integer, then

- w =S i
N1 x(ré, A8) _ Z e___._i_!(ﬁ). = P(ro; AS) (53)

H?“ r(rd) i=ro

where P(r0; AS) is defined to be the complementary cumulative

Poisson. with parameter ) S,

" In the special case when r = 1, we have a negative exponential distri-

bution, and (52) becomes, after some algebra,

2
F(SoN)'{K+A+AS(A+c)+.le_(_§.+C)_ (54)

2
[ASA +-Q-§l— G+ 61 P(N = 25 A8) + [(N - 1) A = ASC] P(N - 1; AS)
b |, HG+ 0 B=D.WI oy ag)) /(1 4+ 28 - 48 BN - 23 29)

| + (N=1) P(N-1; A8}  ,N>2
l 6.1 Computational Results

Owing to the complexity of expressions (52) and (54) for the total steady-
d ; state expected cost par period it is analytically difficult to obtain optimal
fg.; values of N and 8 that minimize F(S, N), this difficulty being further com-
| pounded by the fact that one decision variable is discrete and the other
g continuous. In what follows saeveral computational results are presented and
'3 discussed,
In Figures 1 and 2 the total steady state expected cost per period is
j% : Plotted against discrete N for varjous fixed values of S (op alternatively, AS).
| The resulting graphs have however been made continuous for convenience. The
parameter r of the gamma distribution (48) is taken to be 1 and 3, respectively,
80 that Figure 1 actually represents the case when the getrvice aging per period

M has a negative exponential distribution. In both graphs the values of the

17




B, =1,

ﬂ@* other input parameters are as follows: A = 10-3, K = 5000, A = 51, A

and C = 300.

For the negative exponential distribution the optimal values of N and AS
are found to be 6 and 17.0, respeg?ively, whereas for the case, r = 3,
(Fig. 2), these values are 6 and 35.0.

In general the patterns in Figures 1 and 2 exhibit a decreasing tendency,

followad by an increasing one, this in turn giving way to a level stretch.

For fixed A8, as the limit on the chronological age is raised, the equipment

item tends to be replaced after a longer period of time and hence the expected

cost of replacement decreases while the expected cost of operation increases

with N. Once N is raised beyond a certain "high" value (this '"high" being

R ralative to the value of AS), however, it no longer dictates the replacement
policy. It is the "lower" barrier of S that does so. Therefore, increasing

K N does not affect the expected costs of replacement and operation beyond this

- | point. The behaviour of the graphs is now readily understandable from the

% fact that the total steady-state expected cost is notling but the summation

E ; of the expected costs of replacement and operation.

E For vary low valuss of AS, N is irrelevant to the decision-making and the

level stretch dominates early in the game. As AS 1s raised further, the increas-

ing and decreasing portions of the graph both begin to make themselves felt.

For very high values of AS, the curves converge, because now AS becomes irrele~
vant and N dominates the decision-making.
: When r is increased from 1 in Fig. 1l to 3 in Fig. 2 the optimal values
v of N remains unchanged at 6 whereas that of AS increases from17.0to 35.0,
‘ | This is axplained by the fact that increasing r increases the expected value
of the service age, given a certaln chronological age & at the beginning of a
period.

In both cases when N 1s kept at its optimal value of 6, and AS is increased

18
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dF beyond its own optimal value of 170 or 35.0, the total steady-state expected
cost per period remains unchanged because AS becomes "high'" velative to this
value of N and N dictates the replacement policy. Hence, it would be tech-

nically correct to say of Fig. 1, for example, that the optimum value of AS

is greater than or equal to 17.0.

%"C Both Figures 1 and 2 were plotted against N for various values of AS.
It is easy to see, however, that the behaviour of the graphs would be essen-
: tially the same if the plots were instead made against A8 for fixed values of
& .

pw”i Varying the other input parameters would naturally affect the optimum

i : values of N and 8. If the value of C ls lowered, for instance, to 30, (Fig. 3)
E : ' the decreasing portion of the graph dominates, and the optimal valuea of N and
E . . i A8 are found to be as high as 18 and 30.0, respectively. It is obviously

o more economical to run the equipment for a longer period of time rather than

incur a relatively exorbitant cost of replacement.
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