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I. INTRODUCTION

We consider in this paper the derivation of governing equations
for fluid flows through ducts. Such flows are important elements in
many mechanical systems. Most fluid mechanics textbooks present,
therefore, a simple derivation of the governing equations, which
reduces the general three-dimensional equations to a set of equation!
for one-dimensional flow. Experience has shown that these equations
are adequate for many applications. Probably because of this success
researchers sometimes tend to disregard the limits of applicability
of the one-dimensional flow equations. In order to derive governing
equations for more complicated flows they duplicate the steps used for
simple duct flows. The resulting equations are not always adequate,
e.g., in case of certain non-steady flows. Some textbooks discuss
limitations of the usual tube flow equations. Often, however, the
discussion is rather general, or limited to examples and exercise
problems, and easily overlooked by casual readers. In this paper we
will concentrate on the limitations. We will keep the discussions
simple by considering in detail only a one-phase flow in a straight
duct with a constant cross-section. The discussion of the example will
provide a methodical approach to the derivation of flow equations for
more general cases.

The starting point of our discussion is the set of general three-
dimensional flow equations. In order to make this paper self-contained,
we list the equations in Section 2. In Section 3 we specialize the
equations for the case of a duct flow using a standard procedure, which
is found in textbooks. In order to establish limits for the validity
of the specialized equations, we carry out in Section 4 a more careful
derivation of the duct flow equations. This derivation provides quan-
titative information about the errors which are introduced by the special-
ization of the equations. A comparison of the derivations and results
of Sections 3 and 4 reveals that in standard derivations of the equations
some non-zero terms are neglected. In Section 5 two examples are pre-
sented: a steady flow and an approximation to an interior ballistics
flow. Quantitative estimates are given for some usually neglected terms
in the governing equations. Section 6 contains some conclusions which
can be dramn from the discussions of the equttions.

2. BASIC GOVERNING EQUATIONS

We consider flows which satisfy conservation laws for mass, momen-
tum and energy. Governing equations for such flows are derived and

S . .$
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discussed, e.g., by Tsien in Reference 1 and Batchelor in Reference 2.
In this section we summarize the equations in order to ma'.; this paper
self-contained. We use, in general, the same notation as Tsien, includ-
ing the convention about the summation over equal indexes.

First we will consider the equations in integral form. In these
equations the volume integrals are for an arbitrary control volume V,
which need not be simply connected. We assume, however, for simplicity
that its surface S has everywhere an outward pointing normal nj. The
conservation of mass can then be expressed by the equation

t f p dV + jpujn dS = 0 (2.1)

The momentum equations are

fpudV + JpukujnjdS + fx k dV = I F dV. (2.2)

The specific kinetic energy of the fluid is

2 ujuj. (23)

Combining eqs. (2.l ind (2.2) we obtain for the kinetic energy the
equation

f a k dV i .p k u.n.dS 2u2- - dV = Yu FdV (2.4)

f3 j 'jaxj J

1H.S. Tsien, "The Equations of Gas Dynamics," in Fundamentals of Gas
Dynamics, edited by H.W, Enmons, Princeton University Press, Y958.

2G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University
Press, 1967.
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The first law of thermodynamics is

a~n dVau

dV+ p e u n dS+p -dV= - dV + dV. (2.5)
_ f 43xj

By adding eqs. (2.4) and (2.5) we obtain an equation for the specific
total internal energy e + k:

p(e + k)dV+ fp(e +.k)ujn.dS., p ujnjdS.-f(Q _D dV+ ( + ujFj)dV.

(2.6)

The last integral in eq. (2.6) is the contribution of external and
viscous forces to the changes of the total internal energy. Its first
part, f(dV, is the contribution of viscous forces to the internal energy
e. The integrand , i.e., the heat dissipation function, can be ex-
pressed in terms of the viscous stress tensor Tjk:

auk

= T ax (2.7)

We assume that the viscous stress tensor is related by Stokes for-
mula to the strain rate tensor ekj (Reference 1, page 13, Reference 3,
page 132)

T 21 ckj + (P-, I) 6 kji (2.8)Tkj k ji

This definition is not restricted to constant viscosities p and p', i.e.,
to homogenous fluids. However, it restricts the considerations to iso-
tropic fluids. The viscosities v and p' must be positive or zero.

3G. Hamnel, Mechanik der Kontinua. R.G. Teubner, Stuttgart, 1956.
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The strain rate tensor ckj is defined by (Reference 2, page 80)

1 a 2 k + au. (2.9)
kj 2 k

Substituting (2.8) and (2.9) into eq. (2.7) we obtain the following
expressions for k:

r= 2ji kj'kj + (6'- ) kjii'kj=

211 {Ctrace + (11 - p) {E}2 trace=

I auk  au. 2 2 ) uk 2

3k

Eq. (2.10) shows that the heat dissipation function Dis always positive
for a stress tensor of the form (2.8).

The term fu-F.dV in eq. (2.6) is the contribution of viscous and
body forces to the changes of the kinetic energy k. The force (per unit
volume) F. is a sum of body forces pXj and viscous fornrces Tj. The latter
can be expressed in terms of the viscous stress tensor Tkj. We thus
have the equation

F = pX + T. = pX. + j (2.11)
Sj J ax k

Combining eqs. (2.7) and (2.11) we obtain

+ u.F. D , ujT. + pu.X. = (2.12)

S3- (u. .k) + Pu.Xj
ax k JJ 1)i

8



In this form we have subdivided the contributions of forces to the
changes of the total internal energy into contributions by viscous and
by body forces. The corresponding volume integral in eq. (2.6) is

fJ( + u.F.)dV f + u.T. + pu.X.) dV =

f Tfku nkdS XfuX dV (2.13)

We note that the surface integral in eq. (2.13) contributes to the inter-
nal as well as to the kinetic energy of the flow. It represents the
viscous forces acting on the surface of the control volume. The volume
integral over the body forces contributes to the kinetic energy only.

The governing equations (2.1), (2.2) and (2.4) through (2.6) can
also be expressed in differential form as follows

at ax
+ . .( u)=o (2.14)

a a + a P = F
@ @ P : k ,(2.15)

(p uk) +. (p uku.)+ axxk  k
a (p k) + a (p k u )+ u = U.F. (2.16)
a tU jax. j

j 3
a au. aqj

(pi- (p e u.) +p _L (2.17)

T" ax -_x x.3 1 .

ate+k) + a [p(e+k)u. + aI. + (D + U.F (2.18)a.(p u. ax-.-~ uF
I3

Eq. (2.16) is a consequence of eqs. (2.14) and (2.15), because k is
defined by eq. (2.3). Also, eq. (2.18) is the sum of eqs. "2.16) and
(2.17). We have, therefore. only five independent differential equa-
tions for the six quantities p, uk, p, and e. To complete the system
of equations we need another equation, which is provided by the equa-
tions of state for the fluid under consideration. We assume that such
an equation is available, e.g., in the form

e(e,p,p) = 0 , (2.19)

Z 9



and that eq. (2.19) can be solved explicitly for either of the argu-
ments. For example, in case of an ideal gas with constant specific
heats eq. (2.18) is

£_ (y-l)e = 0 . (2.20)
p

For the discussions in the rest of this paper we will not make use of
eq. (2.19) or (2.20). The assumption of the existence of such an equa-
tion is made here only to close the set of governing equations.

3. APPROXIMATE GOVERNING EQUATIONS FOR DUCT FLOWS

In this section we derive approximate governing equations for duct
flows, The dominant component of such flows is usually in the axial
diretion. Also, in many cases only the dependence of flow properties
mi the axial coordinate is of practical interest. Duct flows are there-
fore usually treated by one-dimensional equations which are derived
from the general flow equations of Section 2.

A standard procedure for the lerivation of these equations is to
consider a control volume which consists of a length Az of the duct.
The integral forms of the governing equations are applied to this
control volume and corresponding differential equations obtained by
letting Az approach zero. This method is used, e.g., in References 4
and 5, and we will follow these references closely.

Another possible approach is to start with governing equations for
one-dimensional flow, i.e., a flow which depends on only one coordinate
and which has a velocity component in the direction of that coordinate
only. Three dimensional effects, e.g., from the wall friction, are then
added to the equations by ad hoc procedtires. We will not pursue this
approach here because the former approach can be generalized more
easily.

4A. H. Sapiro, The Dynamics and Thermodynamics of Compressible Fluid
o Vol. I and II, Roland Press Company, New York, 1954.

5L. Crocco, "On*-Dimensional Treatment of Steady Gas Dynamics" in
Fundamentals of Gas Dynamics II edited by H.W. Emmons, Princeton
University Press, 1958.
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Let z be the axial coordinate and let for simplicity the cross-
sectional area A of the duct be constant. The continuity equation (2.1)
is then for the control volume

Z+Az zA

- A dz + ,A =0 (3.1)
z z

The bars on P and u in eq. (3.1) indicate that we are dealing with
average density and velocity, respectively. We apply now the mean value
theorem to the first term in eq. (3.1) and use a Taylor series expansion
for the second term. The result is

{p () A}. A(z Az ( ) = O(Az 2) (3.2)
at az

where z _ z _ z + Az. Letting Az in eq. (3.2) approach zero we obtain the
continuity equation

a5 + 30 5) (3.3)
t 3z

The momentum balance equation is considered in the z-direction only.
First we obtain as above from eq. (2.2)

a { ( ) G(i) A}.Az + Az'A ' (  ) + Az.A .-P F.A.Az + 0(Az 2 ) (3.4)
az az

The momentum equation for the average flow properties is obtained from
eq. (3.4) by letting Az approach zero. The result is

a 2 .~. -(3.5)T- U) + T.z ( 2) + az

I1f ':



The force per unit volume, T, can be expressed as a sum of two compo-
nents in analogy to eq. (2.11). The momentum equation is then

a +) (T 2 ) + 2f =
~ +~-a i) az~~X~ 36

The quantity T in eq. (3.6) is obtained from the resultant of the viscous
boundary forces on the surface of the control volume. For simple tubes
T can be expressed in terms of the pipe friction coefficient or, by exper-
imental correlations, in terms of the surface roughness and perimeter of
the tube. The term p X usually represents the gravity force component iTI
the axial direction of the tube.

A combination of eqs. (3.3) and (3.6) yields

a = U + UT (3.7)a"-t (i" T U2) + "z T U3 ) +  az

Eq. (3.7) can be considered as an equation for the kinetic energy, if
the latter is approximated by

1 u(3.8)

However, eq. (3.7) is a mathematical consequence of the continuity and
momentum equations, i.e., eqs. (3.3) and (3.6), and is independent of
any assumptions about the kinetic energy.

Next we consider the energy balarce. Following general practice
(see, e.g., Reference 4) we start with the eq. (2.6) instead of using
the first law of thermodynamics, i.e., eq. (2.5). For the control vol-
ume we obtain first

{5.(5+K).A)i.z + Az.A z +
8t

- - + ~ U.F).A.Az + 0( z2) .(3.9)

12 I
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At the limit Az 0 eq. (3.9) yields the energy equation

S"+) + U (9) +

+ + 1 (3.10)
az

The equation of state, such as eq. (2.19), contains usually the
intera energy 1T, and not the total internal energy + . Therefore,
eq. (3.10) is modified to eliminate k. To this end it is assumed that
the approximation (3.8) holds, and eq. (3.7) is subtracted from eq.
(3.10). The result is

T (5 6) + P U 6) + pL =  " - z

Eq. (3.11) is, of course, the first law of thermodynamics and could have
been obtained directly from eq. (2.5) without any assumptions about the
kinetic energy.

In order to use eqs. (3.3), (3.7), and (3.11) for computations we
need among other data estimates for the forces p X and T and for the heat
iissipation function 4. The latter is often expressed in terms of T by
the following arguments. (See, e.g., Reference 4, page 39 ff. and
972 ff.)

The last integral on the right hand side of the energy equation
(2.6) is according to eq. (2.13)

f O+ u F )dV = ijkUjn kdS + f P u.X.dV . (3.12)

The surface integral in eq. (3.12) represents the work rate of viscous
forces acting on the surface S of the control volume. We subdivide this
surface into material boundaries (e.g., duct walls) and flow-through
surfaces So. The work done on material boundaries is called shaft work.
The work by viscous forces on the flow-through boundaries is called
shear work. Let the corresponding work rates be Wshaft and Wo, respec-
tively. In these terms eq. (3.12) is

W I + U F)dV W shft+ + f P u X rV (3.13)

13



The integral Wo over the open boundaries is usually assumed to be negli-
gible. For example, in case of a tube flow it is argued that integration
over the core flow region contributes very little to the integral because
Tjk is small in that region. Integration over the boundary layer region
also contributes little because the velocity uj is small in the boundary
layer. Hence Wo must be small.

If we carry out the derivation of eq. (3.10) using the relation
(3.13) we obtain

- [ (+k]+ - n(+)+ U ]=Q @ + Wshf + Wo +  U (3.14)

Combining eqs. (3.14), (3.7), and (3.8) we obtain as the first law of
thermodynamics instead of eq. (3.11) the equation

+ 2T a- + gshaft + 
- F . (3.1S)

In this equation the heat dissipation function is approximated by

Wsat+ W 0- U . (3.16)

At the material boundaries the velocity of the fluid is equal to the
velocity of the boundary. Therefore, Wshaft is non-zero only if the
boundaries are moving. If the tube does not contain moving boundaries
and T. is neglected, then eq. (3.16) becomes

= -U T'1 7)

which is the usual approximation of for tube flows (Reference 4,
page 972 ff.)

In case of two-phase flows, e.g. particles submerged into the fluid,
Wshaft is assumed to be the work of drag forces. Let the average par-
ticle velocity be Uparticle and the drag force be Tdrag. Then

wT
shaft particle drag (3.18)

14
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The resultant T of the viscous forces is in this case the sum of par-
ticle drag and wall friction forces

T = Ta + (3.19)
drag wall

The equation for ', becomes then

S I(Uparticle drag - wall (3.20)

This equation is sometimes modified by an ad hoc factor, see Reference 6,
page 81.

In summary, either eq. (3.17), or eq. (3.20) provides a convenient
estimate for D i.e., for the right-hand side of the energy equation
(3.15). Estimates of Twall and Td are also needed to express the

terms on the right-hand sides of t e momentum equation (3.6). it appears
from the derivation that no further estimates of flow properties are
needed under quite general conditions.

Some limitations of the approximation (3.17) become obvious if we
consider non-steady fluctuating flows. In such flows it is possible
that the signs of T and u are temporarily equal. In these cases Wo
cannot be neglected, because otherwise we would have a negative heat
dissipation function. Thus it seems appropriate to ask how accurate is
the energy equation (3.15). Our derivation does not provide any clues
to an answer to this question. We will therefore rederive the duct flow
equations more carefully in the next section, keeping track of all approx-
imations involvdd.

4. PRECISE GOVERNING EQUATIONS FOR DUCT FLOWS

In this section we will derive complete one-dimensional governing
equations for flows through constant area ducts, including formulas for
quantities which were neglected in Section 3. We will then discuss the
differences between the complete equations and those of the previous

6G.B. Wallis, One-Dimensional To-Phae Flow McGraw-Hill Co, New York,
1969.

'
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section, indicating where the previous derivation of the equations is
insufficient,

One-dimensional duct flow equations are relations between average
flow properties. The equations depend therefore, among other things, on
the definitions of the averages. For steady duct flows certain averages
and corresponding governing equations have been discussed by Crocco in
Reference S. Because the averages defined by Crocco cannot be used for
non-steady flows, our analysis will be different. The results of our
analysis can be applied to steady as well as non-steady flows.

First we consider the continuity equation (2.1). For a control
volume which consists of a length of Ax3 of the duct, eq. (2.1) is

x 3Ax x3 Ax3

~j (IS dsdx3 + P it ds 0 (4.1)

x3 A A I 3
The integrals fpds and fpu3ds are functions of x3 . We expand these

functions in Taylor series, intechange the order of integration over x3
and differentiation with respect to t in the first term of eq. (4.1),
and apply the mean value theorem to that term. The result is

AX3 [L p ds] + Ax3 [ - p u3ds = O(Ax32) (4.2)
A x3+e3 A x 3

with 0 < 0 < 1.

At the limit Ax3 - 0 eq. (4.2) yields

a f p ds + a I p u3ds = 0 . (4.3)
at-A 3A

We now define for each cross-section x3 = const. an average fluid
density p by

I f p ds (4.4)
A

AA

16
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and an average fluid velocity u by

- = A p u ds (4.5)
A 5 3

The continuity eq. (4.3) can then be expressed in terms of the average
density and velocity as

- a = 0. (4.6)
at ax 3

Eq. (4.6) is identical to the continuity equation (3.3). However,
we have now established that the continuity equation is of this form
only if the average quantities P and u are defined by eqs. (4.4) and
(4.5), respectively. Thus, if we chose an alternate definition of the
average velocity, e.g., the simple spatial average

u f u3ds , (4.7)
A

then the corresponding continuity equation would be

at3T . (4.8)

The right-hand side of eq. (4.8) is non-zero in general.

The momentum equation (2.2) yields for a duct flow in analogy to
eq. (4.3)

f f p uds + . - f p 3ds + / 22- ds= f Fkds " (4.9)
A 3 A A k A

If the flow is axially symmetric, then for k = 1 and k = 2 all terms
in eq. (4.9) are identically zero. In cases of non-axisymmetric flows
all three momentum equations are needed to describe the flow, e.g., in
the case of a non-vertical tube in a gravity field. We will consider

4

17
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for simplicity only the momentum equation in the axial x -direction,
thus restricting the analysis to axisymmetric flows. Eq. (4.9) thus
becomes

3 f p u3ds + a f puds + I s f F3ds (4.10)
A 3A A 3 A

Eq. (4.10) contains two new; flow variables for which averages have to
be defined. We chose the following definitions:

1-fp ds (4.11)
AA

and

3  f F ds (4.12)
3 A A (412

Expressing the momentum equation (4.10) in terms of average quantities
we then obtain

B 2 + = C (4.13)
a ax( + ax3  m

33

with c U2 .f l (P u2d1
m ax3  -AJ3]

A

2 L(4.14)=P U' puds -f p ds f p u~d

a% 2 3 3~AA A 1

Comparing the momentum equation (4.13) with the corresponding
eq. (3.5), we see that the latter equation is in error. The reason for
this error is that eq. (3.4) should have contained the term AZ.Cm.A. Eq.
(4.14) shows that this term is non-zero in general. The expression in
square brackets in eq. (4.14) is negative or zero according to Schwarz's
inequality. It is zero if and only if u3 = const. across the duct,
Hence the correction term Cm is zero only in case of a slug flow or if
the term is independent of x3 . The latter is the case for steady incom-
pressible flows through constant area ducts. In all more interesting
cases Cm is non-zero and its magnitude should be estimated to justify
the neglect of Cm, or Cm should be included in the momentum equation.

18 ti



The average force per unit volume, F3 , is defined by eq. (4.12).
For later reference we note that according to equation (2.11) F3 is a
sum of body forces and viscous forces. We define the corresponding
averages by

= A ds (4.15)
3 A xk

A

and

1 f X ds (4.16)g3 :A A - 3d

With these definitions we have

F3 = TX 3 + T3 (4.17)

We now consider the first law of thermodynamics, eq. (2.5). First
we obtain for the duct flow in analogy to eq. (4.9)

T" e ds + e u3ds+ p auk ds : (Q -- k) ds ds. (4.18)
taxj J a k ax k

A A A A A

In order to express this equation in terms of averages we define

I A f p e ds (4.19)

A

(dsA . T (k ds (4.20)
A A kj ax.

A A

and

H : k ds .(4.21)E aqxk
A

19
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With these definitions eq. (4.18) becomes

a a M
- (5 E) + ( Z U) + p C + (4.22)

aax3 ax3el 2

where

au I uC p - ds (4.23)
el axk

A

and

a (P ) 1- (.4
C 2 = a kax3 j p e u3ds (4.24)

A

The nature of the correction terms Cel and Ce2 is similar to that of the
correction term C1 in the momentum equation. They are zero for slug flow
and should be estimated in other cases. If we compare eq. (4.22) with
the corresponding eq. (3.11), we see that the latter is in error. The
reason for the error is an oversight of a term AZ(Cel + Ce2 ). A which
should have been introduced in eq. (3.9). The correction terms enter
the equations because a product of function averages is in general not
equal to the average of the product of the functions. Or, differently
expressed, multiplications of functions and averaging of functions are
not commutative operations.

We mentioned in Section 3 that $ is usually approximated by -u F3.
It was also shown that such an approximation is based on the assumption
that a term Wo can be neglected. We will now investigate the approxima-
tion more carefully. By the definition (4.20) we have

I u ds=
A

a x (kj d A" uk ax.
A 

A

S - ds - UkTkds (4.25) j
A A
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The first term on the right-hand side of eq. (4.25) we recognize as
Vo l i.e., the average of the gradient of the work rate of viscous
forces on the cross section A. The second term may be approximated
by -u T3 . The final formula for is then

3 + 0, (4.26)

where

-- 1 9 f Tkukd s  (4.27)
o A x3 A

and

C' uT3 -U UkTkds (4.28)

3 AA

Combining eqs. (4.26) and (4.22), we obtain for the energy equation
(first law of thermodynamics) the expression

a a ui+ - (P e u) + P !L H - U T + C + C + W7 + C (4.29)
Tax3 3 3 el e2 0

The first two correction terms, Cel and C, appear in eq. (4.29)
because of the averaging of some terms. Te last two correction terms,
WO and C€, are due to the approximation of c by-u T3.

The equation for the kinetic energy can be treated formally in
the same manner as the equation for the internal energy. One can intro-
duce error terms, corresponding to Cel and Ce2, either in the kinetic
energy equation or in the equation for the total internal energy.
Since typically only the equation for internal energy is needed for
computations, the other equations are not formally derived.

In summary, we have shown that the one-dimensional governing
equations for average flow properties in duct flows are not the same as

equations for locally one-dimensional flows. If the medium is compressible
then the additional terms in the governing equations vanish only for slug
flow. For other flows the magnitudes of the terms should be estimated for
each case to check their significance. Formulas given in this section may
be used fbr that purpose.
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If the duct is axially symmetric, it is more convenient to use
cylindrical coordinates than the cartesian coordinates of this section.
We give therefore in Appendix A all pertinent formulas in cylindrical
coordinates.

5. EXAMPLES OF TUBE FLOWS

5.1 Incompressible Steady Flow Through Cylindrical Tubes

In the case of an incompressible steady duct flow the flow velocity
is constant along the duct and dependent on the radial coordinate r only.
Also, only the axial coordinate u of the velocity is non-zero. There-
fore, of all the correction terms given in Appendix A, only C can be
non-zero in this case. It is given by eq. (A.35), which reduces to

R

C4 = U T L uL (r T ) dr .(5.1.1)
z R 2  a r rz

0

The shearing stress Trz(r) is in the present case a linear function
of r. This is a conseqtence of the second momentum equation (A.13)
which reduces to

Ip L L (r T(5.12)
az r Dr rz

The left-hand side of el,. (5.1.2) is constant. Therefore, Trz must be
linear in r:

Trz(r) = t(R) (

Substituting eq. (5.1.3).into eq. (5.1.1), we obtain

4 (R)
Co T - Rz u r dr=

0

z rz . (5.1.4)
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The average shear stres Tz is, according to eqs. (A.17) and (A.21),

z R2 o r r z) dr = 2Tr(R) (5.1.5)

Substituting eq. (5.1.5) into eq. (5.1.4) we see that the correction
term C is zero.

Hence the average flow equations are exact for incompressible
steady flows through circular tubes. This is essentially a consequence
of eq. (S.1.3) and the result is valid for either turbulent or laminar
flows. Also, we have not made use of Stokes equations for the stress
tensor, nor made any assumptions about the viscosity of the fluid.

5.2 Lagrange's Interior Ballistics Flow

As an example for non-steady tube flows we consider Lagrange's
approximation to interior ballistics flow (Reference 7). The approxi-
mation is obtained by postulating that the average 4xial velocity u
of the gas in a gun tube is at any time a linear function of the axial
distance z, i.e.,

z
n~~)=Z~--- pt (5.2.1)

where zp(t) and = dzn/dt are the location and velocity of the pro-
jectile, respecti ely. 'We assume that the local velocity can have axial
as well as radial components which may depend on z, t, and on the radial
coordinate r.

Some consequences of the assumption (5.2.1) are discussed in the
Appendix B. In summary, the discussion shows that this assumption,
complemented with a second Lagrange's assumption

z P(0)
= Po z (t) (5.2.2)

7J. Corner, Theory of the Interior Ballistics of Guns, John Wiley and
Sons, New York, 1950.
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ks consistent "':",,the average continuity oquation (4.6) for the flow.
One call also assume that the local velocity vector has the form

* = (5.2.3)
V(z,t).h(r) •

For any reasonable functions u(z,t) and f(r) one can determine corres-
ponding funtioais v(zt) and h(r) such that the local continuity equa-
tion is satisfied. (The necessary formulas are given in Appendix B.)
However, a flow characterized by eqs. (5.2.1) through (5.2.3) in general
does not satisfy the local momentum equations i" constant viscosities
are assumed. IHence !.agrange's approximation, (5.2.1) and (5.2.2), and
a local velocity field of the type (5.2.3) can be consistent only for
inhomogeneous media, i.e. , media with variable viscosity.

Because an exact solution of the viscous tube flow equations is
not available, we cannot obtain exact values for al', correction terms.
However, the correction term in the momentum equation is independent
of the viscosities and can he computed exactly for any flow profile.
in contrast, the correction terms in the energy equation can be computed
only it additional information is available about the stress tensor and
the internal energy profile. These terms we will estimate by computing
their values for constant viscosities and for a number of "reasonable"
flow profiles. We expect by such calculations to obtain at least order-
of-magnitude estimates of the correction terms.

Particularly we will consider flow profiles of two types. First
we will assume a flow field which is described by

t = (t)in+2
zp(t) n i

and (5.2.4)

u~rt)t 1R1_ r

This flow field has a Hagen-Poiseulle profile for n = 2. For larger
values of n it approximates turbulent flow profiles or profiles with
thin boundary layers.

As a second example we will consider a flow profile which approx-
imates the universal profile for steady turbulen tube flow.
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The flow field defined by eq. (5.2.4) satisfies the local continu-
ity equation, if the density is given by eq. (5.2.2). We note the inter-
esting fact that local continuity requires the radial flow component to
be directed toward the center of the tube. This is due to the higher
mass flow rate at the center and due to the assumed increase of the
average axial velocity u(z,t) with z.

The correction term Cm of the momentum equation is given for our

flow by eq. (B.48)

R
Cm = - f 2 r dr}-.(Pu2) (5.2.5)

0

Substituting

f(r) =(R) (5.2.6)

into eq. (5.2.5), we obtain

C a j(j2). (5.2.7)
m n+l az

The momentum equation is therefore in terms of the average axial velocity

U)1 U2 ) + az=T.(5.2.8)
at -+ ( 7) a 2 a z z

Eq. (5.2.8) shows that in the case of a Hagen-Poiseuille profile the
momentum transport term in the momentum equation should be increascd by
about 33%. Even for a rather flat profile with, say, n = 10 the correc-
tion term is 9% in this example.

The first correction term Cel of the energy equation is zero in
our example because the density p is independent of r and z. (Soe
Appendix B for a discussion of this term.)

25

I

L_-



The second correcticn term Ce2 of the energy equation is (see eq.
(B.54))

R
2C e2 a[2j T (l f) e rdr}=

Sp Lz z (1-f) e r dr . (5.2.9)

In order to compute this term we would need to make an assumption about
the internal energy function e. For the present discussion we will not
make any assumptions and leave eq. (5.2.9) unchanged.

The average heat dissipation function $, which appears on the right
hand-side of the energy equation can be computed by the formulas (B.56)
and (B.57). The result of the computation is

= 2,U2 1 (n+)2  - P (5.2.10)R2  n n+l 3

The equation for the average internal energy (first law of thermo-
dynamics) is in our case

+ ) a at S. .l)i
at + L fl) + p = 21 + + Ce2

Substituting eqs. (5.2.9) and (5.2.10) into eq. (5.2.11), we obtain

F R
P a 6 'a - r 12 1f)at - - (l-f) e rd + p .-.

at 2 T R 2 (

RV

In eq. (5.2.12) we have included the correction term Ce2 into the
energy flux term on the left hand side. It is readily apparent from the
form of the term that the correction is zero, if the specific internal
energy e is independent of r.
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In the heat dissipation function on the right-hand side of eq.
(5.2.12) the term with the factor (R/z) 2 can generally be neglected,
because (R/z) 2 is of the order 10- . (R/z is large in the vicinity of the
breech, where the one-dimensional approximation should not be used any-
way.) The other term in the square brackets is usually replaced by
-u Tz. If this is done, then two additional correction terms should be
included in the equation. The general formulas for these terms are
given by eqs. (B.61) and (B.62). They are in our case

2 ' 2  (R) 2

pP).= ii [ +2~2 2h + 2f1 rdr + -O =

0

( D 2 * [2 1 2 LS + 11 (5.2.13)= • n+---l 3' -

and
R

+ - 2  2 2 + + z2f'  r dr =
( R22  [Rh' 22h+Z rd

0

ut,) 2 (nl 2  2

u Z+ 2~1 -2 1 (n+2)" (5.2.14U + 2 + 2p u -(. 214

The first term u Tz in eq. (S.2.14) is according to eq. (B.63)

U 1 2P2 'T f,(R) - 211 U2 (n+2) 2 2 (n+2). (5.2.15)Tz R 2R •,p '

Comparing eqs. (5.2.13) and (5.2.15),_we see that the term Wo is
indeed small relative to the magnitude of u Tz. In Section 3 such a
ratio of magnitudes was anticipated based on plausibility arguments.

The total correction is the sum of C and Wo. Combining eqs.
(5.2.13) through (5.2.15) we obtain for the sum

Sz - 3 (n+l)(n+2) 4(n+4 (5.2.16)
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The right-hand side of the energy equation (5.2.12) is thus

IT+ -= 0TZ

+ C€ + W = H - T (1-a) (5.2.17)

where a is a relative correction which is to be applied to u Tz. It is
given by

n-2 (?) 22 n+4 +' 3 n+ (.18n-2 2(5.2.18)

a(n+l)(n+2) k 4n-4)

The sIcond term in this fomula can in general be neglected, because
(R/z) is of the ordrr 10- . The first term is zero only for n = 2,
i.e., for a Hagen-Poiseuille flow profile. In this case the shear
stress is a linear function of r, which causes certain correction terms
to vanish, as shown in Section 5.1. For a flat flow profile with, say,
n = 10, the relative correction is a = 0.4. Clearly such a 40% approx-
imation error will be seldom tolerable. Hence for flat flow profiles
and constant viscosities the approximation of by -U Tz is not realis-
tic for calculations in interior ballistics.

The flow profile which is defined by eq. (S.2.4) does not have
the characteristic form of a fully developed turbulent flow profile for
any n. We may therefore ask whether the correction terms are possibly
smaller for such a profile. In order to investigate this question we
approximate the universal turbulent profile (see, e.g., Reference 8,
page 512) by defining

f(r) = 0.456 1 I) +2SI)(.2.19)

The corresponding function h(r) is

h(r) =-0.456 -5 [1 -(IR ] 17 R{ o j. (..0

8H. Sohlichting, Boundary Layer Theory, McGraw-Hill, New York

(4th Edition), 1960.
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The correction term Cm of the momentum equation can now be
computed using eq. (5.2.5). The result is

a
cm o. 090 L ( 2). (5.2.21)

In analogy to eq. (5.2.8) we conclude from eq. (5.2.21) that the
momentum flux term in the momentum equation should be increased by 9%
in the present case.

Assuming as before constant viscosities, we obtain for the average
heat dissipation function

_21 I 1

=2 1i - 7.840 + (16.99 P + p") (5.2.22)

For the product -u we obtain

- = - 2v U2 1 f'(R) = 211 U2 I. 14.364 (5.2.23)z R2 R2 4. .

The right-hand side of the energy equation (5.2.12) is therefore

+ = - - 0.454 + (Z)2 0.059 + 0.588 (5.2.24)

The error which is introduced by replacing ( by -u Tz is about 45% of
IuTz.. As in the previously treated case, such errors will be seldom
tolerable.

We may conclude from these examples that the magnitudes of correction
terms are essentially the same for flow profiles described by eq.(5.2.4)
as for profiles described by eqs. (5.2.19) and (5.2.20). Using conven-
tional tube flow equatinns, e.g. from Reference 4, for interior ballis-
tics calculations, one introduces errors in the momentum and energy
equations which are of the order of 9-50% of several of the terms.
The examples indicate that an investigation of magnitudes of the
correction terms is necessary whenever average flow equations are used
to describe non-steady tube flows.

i
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6. CONCLUSIONS

Tube flow governing equations for average properties differ from
one-dimensional flow equations. The differences are caused by the fact
that averaging of functions and multiplication of functions are not
commutative operations. The magnitudes of the differences depend on the
particular problem. If the unsteady tube flow is of a type which is
encountered in interior ballistics, then several terms in the equations
can be in error by up to 50%.

One consequence of the various correction terms in the equations is
that the continuity and momentum equations cannot be combined to yield
a simple equation for the average axial velocity component. Instead,
the original equation for the average axial momentum component is the
simplest form. Correspondingly, the energy equation should be formulated
for the internal energy per unit volume instead of using the spscific
internal energy.

The popular approximation of the heat dissipation function by the
product of average velocity and average shear stress is appropriate only
in the simplest cases, e.g., for steady flows or flows with a Hagen-
Poiseuille velocity profile. In other cases the approximation can be
off by up to 50%. In cases of more complicated flows even the sign of
the approximation can be wrong. Hence the approximation should not be
used unless one can demonstrate its validity in the particular case of
application.

Formulas for the correction terms in the governing equations can
be derived for other than simple tube flows following the outline of
this paper. The derivations which are presented in some engineering text-
books neglect important first-order terms. The apparent success of the
inaccurate equations for the treatment of tube flows is probably due to
the fact that the neglected terms are small or vanish for steady flows,
for which most comparisons between calculation and experiments are made.
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APPENDIX A

FORMULAS IN CYLINDRICAL COORDINATES

In Section 2 through 4 a convenient cartesian tensor notation was
used to derive all formulas. If the results are to be used for axially
symmetric tube flows, then it is more convenient to use cylindrical
coordinates. In this appendix we express the important formulas in
these coordinates.

Stokes equation for the stress tensor of an isotropic fluid can be
expressed in coordinate independent form as follows (Reference 3, page
132; Reference 2, page 144)

2
T = 2p e + (p' - div) di u*.I , (A.1)

where r is the stress tensor, c is the strain rate tensor, u* is the
velocity vector of the fluid, and I is the unit tensor. The viscosities
v and pl' in eq. (A.1) need not be constant, i.e., the fluid under
consideration need not be homogeneous. However, p as well as p' must
be positive or zero.

Next we compute the work rate of the viscous forces acting within
an arbitrary volume. To this end we compute the inner product of the
viscous forces V.T with the velocity vector u* and integrate over the
volume. The result can be expressed as follows:

f (u* • (V-r)) dV = j (u* • (-r-n)) dS - f(d" . (A.2)

ln eq. (A.2) n is a unit vector, orthogonal to the surface of the volume
V and pointing inward, and cbis the heat dissipation function defined by

=2{TC) = 2p {c2) + 01, 2 div u* (c) (A.3)

trace trace 3 trace

Because div u* ={ trace' eq. (A.3) can be also expressed as follows:

4)= 2p fe2} + (11' - ) {C} 2  (A.4)
3 2 {P}trace +3( -. traceU
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Eq. (A.4) corresponds to eq. (2.10) in cartesian coordinates. Eq.
(A.2) corresponds to eq. (2.13) in cases where the body forces Xj
are absent.

We now express the various quantities appearing in the equations
using cylindrical coordinates. Let the coordinates be r, * and z.
Components of vectors and tensors we denote by attaching corresponding
indexes to the quantities. Thus, the velocity vector u* is

u*= (U, u, U) (A.5)

rz

The strain rate tensor e has the following components (Reference 2,
Page 602)

Bu 1 au au
= r c, = 1r -r £zz

r = (rjr u +-ri- -
(A.6)

e[aUr + uz]

rz L Z r

*z 2 [a aZ

The vector V.T has the components Tr, T and Tz, representing the vis-

cous forces acting in the three coordinate directions. The components
are

IT rr I r + IT r z + 1

(V.T) =T -7 +n 3~ - -(T -T
r r -r 3z r rr - 4)

= ar r B az r ro

@rz 1 z @z ,
(V.T) z T + + -T li. + 1 T (A.7)z ar r az r trz
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We specialize these equations for the case of an axisymmetric flow
without swirl through a circular tube. The flow is then independent
of the coordinate , and the *-component of the velocity, u , is
zero. In order to simplify the notation we denote the non-zero
velocity components as follows:

u = u(t,z,r) (A.8)

u = v(t,z,r)

Let R be the radius of the tube. The average density is then defined
by

z) L f p(t,z,r) r dr (A.9)
Ro

The average axial velocity is

2 R
Ri(tz) = 2 f c(c,z,r) t(t,z,r) r dr (A.10)

R2T(tz) n

The local continuity equation is

ap+ 1 (r p v) + a (A.11)-t- r " - (p u) = 0 .(.1

at r ar 3

The corresponding equation for the averages is

at a C fi) 0 . (A.12)
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The local balance of momentum is expressed by the following two differ-
ential equations:

a(p v) + a r +a u v)Tr
at v)+ ( p r v2) + L (p u v) + 3P

at r r az ar T
(A.13)

a(PU) + LL (p r u v) + a ( p u2 ) + T

at ra3r az az

The third momentum equation is staisfied identically because of our
symmetry assumptions. The right-hand sides of eqs. (A.13) depend on
the strain rate tensor e by eq. (A.7) and (A.1). In our case the strain
rate tensor has the following components:

av 1 au
rr ar * r zz az

Cr= 0 ,' z = 0 , (A.14)

i i[v au jrz 2 +5r

The divergence of the velocity vector is

di u* {e e + C.div u* = trace = rr + zz

1la
r r (r v) + au (A.S)
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The viscous stress tensor T has the components

T 2 a- + (p' - "v) div u*,

r =0 ,r4

(A.16)

T 211 L V + ' 2 ) div u*
00 r 3

T = 0,

U 2
T = 2, au + p' - i) div u*

The right-hand side of the local momentum equations; (A.13) is

aT

(r rz 1
(V.T) =T =- (rr T + aTZ

r rr ar rr z r*
(A.17)

8T1 (r + zz
(V. T) z = Tz - -- (rz) r -- +
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Substituting (A.16) into (A.17), we obtain

Tr = r I-V 2 Y- a P I - i 1j) div u + L Lv + '

Fr TOav aul a z 1u 2 d

T -= r1 L [+p [1 2H (+' L 14) div (A.18)

The momentum equation for the averages is

30Q+ L (5 U) + 2L = T' + Cm

at az 2 z z m (A.19)

where the average pressure p is defined by

2R

= f p(t,z,r) r dr (A.20)
Ro0

and the average viscous force Tz by

RT 7 = T (t,z,r) r dr .(A.21)

The correction term Cm in eq. (A.19) is

R
c L 2 - Pu 2 r . (A.22)Cm a= R'- 2

0
The equation for the local internal energy is

at e L (r p e v) + - (p e u) + p L (r v) =q- div q +

(A.23)
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The heat dissipation function 'is given by eq. (A.4). Sub-
stituting the strain rate tensor components from eq. (A.6) into
(A.4), we obtain

2PN 2 + I +a tu
az 30 1 ) r

+ - R a (r v) + • (A.24)

The energy equation for the average internal energy is

S(5 9)+ + 15 L + + C1 + C (A.25)

where

R
R2 1 P e r dr , (A.26)

R0

=R2 f (Q - div q) r dr , (A.27)

2 R
= O f r dr , (A.28)

R0

R

=1 P' 2- [p r +i(r vu dr (A.29)

0

and

R
C2 0 -( U 9) -2-j - (p u e) r dr .(A. 30).

0
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The term -u Tz is often used instead of'$ in eq. (A.25). In that case

the equation becomes

+ L B - + c c + C . (A.31)
at az az z el "e2 +o

The additional correction terms WO and C@ are

-2R

1 R f div(T u*) r dr (A.32)

and

* f (V'T) r dr (A.33)
Ro0

In eq. (A.32) we have

rr rz
TIl* 0

\- ----

and

div(t u*) L - r (Trv + ul1 + L a V
r arL rr ~rz J z T rzV +TUj

Therefore

R

W = L [Tz- v + zz ] r dr =

0
R

R L[ (2v + + 2p u 2 u div u r dr , (A.34)

0

wher, div u* is given by (A.15).
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Mhe integrand in (A.33) can be obtained from eq. (A.17). Carrying
out the substitutions, we obtain for the second correction term

R

CO = u T 2 f (v T + u T z) r dr =z Ro r z

.21 r r) aZ r

= u Lz R2 (r T + 3Tj 3  r dr (A.35)a1 r r az {A.31

The separate expressions for CG and Wo might be of interest for the
discussion of approximations. Usually C is neglected completely and
W is assumed te be small by plausibility arguments. The total correc-
tion, which is caused by replacement of (D by -u Tz, is the sum of Wo and
C . The sum is, of course,

TV0 + co = + =0 ~Z

2L +' j~ (~ 1+ (.6

+ (I' - ji) (div u*) r dr a

Eq. (A.36) may be more advantageous for actual calculations than (A.34)
and (A.35) because it does not contain derivatives of the viscosities.
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APPENDIX B

LAGRANGE'S APPROXIMATION TO INTERIOR BALLISTICS FLOW

It is plausible to assume that in a gun tube the average axial vel-
ocity u(z,t) of each cross-section is a linear function of the distance
z from the breech of the weapon. Let zD(t) be the location of the pro-
jectile and up(t) = dzp/dt be it.s velocity. The above-mentioned
Lagrange's approximation is then

U(z,t) z u (t)(B.)Z p(t) up~

In the classical Lagrange's approximation (B.1) is supplemented with
the assumption that the gas density in the tube is a function of time
only.

In this appendix we shall investigate some consequences of these
assumptions. Particularly we are interested in finding if there is a
three-dimensional viscous tube flow which satisfies Lagrange's assumptions.

First we will consider flows in which the gas density is a separable
function of z, t, and the radial coordinate r:

p(r,z,t) = g(r) • P(z) • K(t) (B.2)

Later we will specialize our considerations to the classical Lagrange's
appront-tion, where P(z) and g(r) are constants.

We assume that g(r) is non-dimensional and normalized by

2R
2_f g(r) r dr =1 . (B.3)
R o

The product of the other two functions in eq. (B.2) Ls then the average
density

B(z,t) P(z) K(t) = 2 f p(rz,t) r dr (B.4)

R oi
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In eq. (B.1) the variables z and t are already separated. We assume
that the dependence of u on r can be separated also, such that

u(r,z,t) = f(r) •f(z,t) . (B.S)

It was shown in Section 4 that a reasonable definition of the av6r-
age axial velocity u in terms of the local velocity u is

Ruf = 1_ . 2__I u pr dr .(B.6)
P R 2 0

With this definition of u we have the following relation between the
nondimensional functions f(r) and g(r):

R
R2 f f(r) g(r) r dr = 1 . (B.7)Ro

The funtions U(z,t) and p(z,t) satisfy the continuity equation (4.6),
i.e.,

+ L(5 n) = 0o (B.8)at az

Substituting the product P.K for p into eq. (B.8) and the expression
(B.1) for u we obtain

u (,)d Cz P (z) 0 (B.9)
P(z) • K'(t) + K(t) z d 0Z

p

This equation has solutions of the form

P 0 °  (m+l) z o(B.1I0)z o

(p p

with arbitrary m. In eq. (B.10) po is the average density of the gas
in the tube at time t =0. For m = 0 we obtain the classical Lagrange's

[
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solution. More generally tie may assume p to be, e.g., of the form

PO [ M z p(o) (.1
A0 m+ Ap mt)

with arbitrary m, Ao and Am. For physical reasons m > 0, Ao > 0 and
Am > -Ao.

Next we investigate the radial velocity component v(r,z,t). The
local continuity equation is

.Pt Ira ( r p v) + - (p w) + 2- ( p u) =0 (B.12)
at r ar r 30a (.2

where w is the angular velocity component. Let w = 0 (no swirl) and

v = V(z,t) • h(r) (B.13)

Eq. (B.12) can then be expressed by

-. g(r) + r d (r) h (r) + g(r) f(r) L [ ] [5 0 . (B.14)

Eliminating 3p/at from eq. (B.14) with the aid of eq. (B.8), we obtain

[-l+f(r)]g (r) z - id L[r g(r) h(r)] = 0 .

This equation is satisfied by the functions

V(z,t) :R a z (B.16)

and

r
h(r) f (l-f) g r dr . (B.17)r g 0,
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Eqs. (B.13), (B.16), and (B.17) give the local radial velocity
v(r,z,t,) for any flow profile specified by 5, U, g, and f. Clearly,
the factor h(r) is not normalized in the same manner as f(r). There-
fore, V(z,t) is not an "average" radial velocity. If p is given by
eq. (B.11), then

m
+ (rn+l) A

Ao0m (t)
V(z,t) = z z(t) (B.18)

A + / ' (Z t A P
0Ao P ( m

It is interesting to note that v is not zero for z = 0 and z = Zp. This
is an indication that the assumption (B.5) about separation of variables
for the axial velocity is not valid in the vicinities of the breech and
,-he projectile. These regions we will therefore exclude from our consid-

erations.

In summary we have found a flow field in a cylindrical tube which
satisfies the local continuity equation and Lagrange's assumption (B.1).
The flow field is described by the following functions

z=z (t) u p (t) • f(r)

p = p(z,t) - g(r) (B.19)

v = V(z,t) • h(r)

If one specifies u, then p is given by eq. (B.11) and v is given by
eq. (B.18). The dependence of the flow field on r can be specified by
two functions, g(r) and f(r), from which h(r) is then computed by eq.
(B.17). The function g(r) has to be positive for 0 < r < R and normal-
ized by eq. (B.3). We assume also that g'(0) = 0. The Tunction f(r)
has to satisfy the conditions

f' (o) =0

andI
( (B.20)

f(R) =0.
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It is normalized by eq. (B.7). Hence we have a total of three condi-
tions which restrict the choice of f'(r).

Instead of specifying f(r) we may also specify h(r). The function
f(r) is then given by

r -R [r g(i) h(r)]' (B.21)f~) 1 r g(r) 0

The function h(r) has to satisfy the following four conditions

h(O) = 0

h"(0) =0 , (B.22)

h(R) = 0

h'(R) = I/R

The flow field also has to satisfy the momentum equations. The
analysis of these equations is more complicated because it involves, in
addition to the velocity and density functions, the pressure function
p(r,z,t) and the viscosities V and U', which in general are variable.
We have tried to restrict our considerations to the special case with
constant viscosities and classical Lagrange's approximation (i.e.,
g(r) 1 1). We have found that the flow field, as defined by eq. (B.19),
does not satisfy the momentum equations in this special case. The for-
mulas for correction terms, which we shall derive at the end of this
appendix, are therefore to be considered as approximations only.

If g(r) 1, then the flow field is given by

u = l(z,t)f(r = z zP (t) f(r) , (B.23)
z~ u_ (t)

v R'U h(r-) R h(r) -R f (1-f) r dr , (B.24)

Rj37),r zr

z (o)
P = (t) = -t ' (B.25)
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Note that according to eq. (B.24) the radial velocity component v is
independent of z for the classical Lagrange's approximation.

The divergence of the velocity u* of this flow is (see eq. (A.15))

div u* = a(rv) + _u = 2= up(t) (B.26)

r ar az az z t) '

The components of the forces caused by the viscous stress tensor are
given by eq. (A.18). In our case, assuming constant viscosities, we
obtain for the r-component

1 1 aU ,
Tr = 2pV I [(r h')' - -h] + f

u
= [-2p f' + u f'] E-= - R f I (B.27)

zp

The z-component of the force is

I u
T = - p U [r f']' = 4 z-kl [r f']' . (B.28)
z rz rP

The local momentum equations are according to eqs. (A.13) and (B.12)

P i- + PV ii + Pu + a Tr , (B.29)
a r az ar r

au au au TzP T" pv. +pu Z' 3 Z  . (B. 3;0)

For a flow field described by eqs. (B.23) through (B.24) eq. (B.29) is

pRL u2C) 3 h+pR 2  iP h h' + pr =  -p- f '  (B.31)
Pdtj+P 8) h r -
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Differentiating eq. (B.31) with respect to z, we obtain

a2p = 0 (B.32)
3r z

The function p(r,z,t) is therefore of the form

p(r,z,t) = p1(r,t) + p2 (zt) . (B.33)

Eq. (B.31) might be used to determine the function pI(r,t) if the other
terms in the equation are given.

Eq. (B.30) is in the present case, i.e., for the flow described by
eqs. (B.23) through (B.25)

d u \ u/\2 2 2  ap2  u
Pz f ) 1 + pR pI z h f'I Pz f + =iz r (r fI') (B.34)

or

z d /1_1 h~ 2)  +z 1P
Pf -k- -  I (R) f' h+ u z 3P " (r f')' = 0 . (B.35)

From eq. (B.35) we can conclude that the expressioi. (Dp2/dz)/z is inde-
pendent of z. The various terms in this equation are products of func-
tions of r and t and the equation has the form

gl(t)fl(r) + g2 (t)f2 (r) + g3(t) + f3(r) = 0 . (B.36)

Such an equation can be satisfied identically only if either all gi(t)

are constant or all fi (r) are constant. The case with all fi(r) = const.

corresponds to a slug flow in which we are not int.rested. Assuming the
time functions gi(t) to be constant, we obtain first

u
g2(t) = p A

p
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or

Pop ( 0) dtz A . (B. 37)
P

Eq. (B.37) can be integrated to yield

Z1(t) = Z At/p (B.38)
P r o-t/

The corresponding velocity of the projectile is

u (t) = z (o) A (B.39)
pP Po (1-At/p 0)

2

The density as a function of time is

z
p(t) = A-R= p -A t (B.40)

The first time function in eq. (B.35) is then

() z d _)2 -A 1

gu(t) = t () = ro (A A = A (B.41)

Let the value of the third time function be B. We obtain then

aP 2 .zU =B A 1 z
a B=  z PoB z - = A B P - z(t) (B.42)
zz P PO 0 1-At/ o (0) "p

Eq. (B.35) takes now the form

A(f+f2+R h f') + B - Cr f')' = 0 (B.43)

s,
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The functions f(r) and h(r) are related by eq. (B.21). We can there-
fore express (B.43) in terms of h(r) only. We also multiply the equa-
tion by R2/p. The result is

A* R (r h)' +( (r h) - R h (r h) +

r LL (r h) + B= 0 (B.44)

with the constants

,* R Rup
A = -A =• R (B.45)

zp

and

R R2  R 2 ) z
B =-B = . _2. (B.46)

3z u z

The first factor in eq. (B.45) is a Reynolds number of the projec-
tile. It is typically of the order 106. The first factor in eq. (B.46)
for B* is a Poiseuille number of the flow. Its magnitude is of the
order 104. The function h(r) has to satisfy the differential equation
(B.44) and the four boundary conditions (B.22). Since eq. (B.44) is of
third order only, the function h(r) will in general not satisfy all
boundary fonditions. We conclude, therefore, that Lagrange's approxi-
mation is not consistent with a flow field which can be described by
separation of variables, eqs. (B.23) through (B.25).

In Section 5.2 we have nevertheless used this flow field to obtain
estimates of correction terms becauze we were not able to find an exact
three-dimensional solution of Navier-Stokes equations which is also
consistent with Lagrange's approximation.

Next we compute the various correction terms for the average flow
equations using the formulas of Appendix A and the flow described by
eq. (B.19).
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The correction term Cm of the momentum equation is given by eq.
(A.22):

R

Cm L{ t2 _2 L Pu 2 r drJ (B.47)

Substituting the expressions (B.23) and (B.25) for u and p respectively
into eq. (B.47), we obtain

R

C u 2- P ..2 2 f2(r) r dr}Cm 3 'z 7

0

R

L f 2 r d L- (5 U2) (B.48)

0

Eq. jB.48) is of course valid for any functions u = u (z,t) f(r) and
p = p(z,t). In Lagrange's case p is independent of z, and u is linear
in z. We obtain in this case

f2 r dr 2z (t) uB.49)
Cm= (B.49)

0

The energy equation has several correction terms. First we consid-
er the term Cel, given by eq. (A.29):

R1

Ge p [- L + ~F (r vJ dr .(B.50)

Cel = Tz" R 2 a+

0

We substituti the flow field formulas (B.19) into this equation and
obtain

R

Cel 1 lu L f - + V (r h) p dr =

0
R

az 2rE (r h) 8- (r h)'Ip d
zR2  gLz jr pa9

0
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This expression can be transformed by partial integration and some
algebra into

R R
C' - (rh) p dr a (rh), p dr. (B.52)
el T R V R az

0 0

Eq. (B.52) shows that the correction term Cel is zero in the-following

cases:

(a) g E 1 and ap = 0, i.e., the classical Lagrange's case;
3p

(b) g - and L = 0, i.e., p and p independent of r;
3r

(c) h - 0, or f B 1, i.e., slug flow.

The second correction term of the energy equation, C.2, depends on

the local internal energy. According to eq. (A.30),

R

C2 = -- u e - - u e r dr .(B.53)
aO

e2 az R

If the flow field is given by eq. (B.19), then

R R
C2 T P- u R p  e r dr R2 L uer d =
C 2 R

R
L g (1-f) e r d . (B.54)

This correction term vanishes if the internal energy e is independent
of the radial coordinate r.

The remaining correction terms, Wo and C , in the energy equation
are caused by the replacement of the heat dissipation function t by the
product -u Tz . The heat dissipation function D is according to -q.
(A.24)

=2Jf +2h'2 1 2 h+V 2h 2 + 2

az r 7  h y 2

2h' Z (B.SS)
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For the flow field described by eqs. (B.23) through (B.25) we obtain

2 2ji [h + ( +h 2 + Iz2 -2 (B.56)

The average is by definition

RL= - f Dr dr. (B.57)

The correction term Wo is according to eq. (A.34)

R ~~f2  +2 fl l ]2 I aUf'V h + 2p z 3l 2+('-]U -z z

0

0

S u )2  R (fh + ( - 2 f r dr (B.58)

0

The correction term CD--is given by eq. (A.35). In the present case
with constant viscosities we obtain by substituting eqs. (B.27) and
(B.28) into eq. (A.35)

0

R

= z  " [ f' z2f '  2 r dr . (B.59)

0

By partial integration and using eq. (B.21) we can show that

R R*
f R h f'r dr (R24,2+I r)2h dr . (B.60)

00
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Making use of eq. (B.60) we can express the correction terms as
follows:

2u 2 2 R 2 2 2 2

= h + ( + 2p f r dr + (1P 01,

0

(B.61)and

R2h' + 2 + V z2f12] r dr (B.62)

0

The first term in eq. (B.62) is according to eq. (B.28)

_2 2 R z2  2 1 f
a = u..2 2 -f (r f')' dr = 2p f(R) . (B.63)

The correction termsJy0 and C, vanish for a slug flow. However,
for such a flow u Tz and ' are also zero,

5:5
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LIST OF SYMBOLS

Cel Correction term in energy equation (J.s-lm-3)
Definition by eq. (4.23)

Ce2 Correction term in energy equation (Js-lIm-3)
Definition by eq. (4.24)

Cm Correction term in momeitum equation (N/m3).
Definition by eq. (4.14)

C Correction term in energy equation (Js-lm-3)
Definition by eq. (4.28)

e Specific internal energy (J/kg)

F Force per volume (N/m3)

H Heat source and heat flux terms in the energy
equation (j.s- m-3 )

k Specific kinetic energy (J/kg)

n Unit normal vector

p Pressure (Pa)

q Heat flux per yolume (JS'-lm- )

Q Heat source per volme (J.s' m- )

r Radial coordinate (m)

R Radius of tube (m)

t Time (s)

I Viscous force per volume (N/m3)

u Velocity (m/s). (Axial velocity of a tube flow)

v Velocity (m/s). (Radial velocity of a tube flow)

• " o Correction term in energy equation (Js-lm -3 )
Definition by eq. (4.27)

x Cartesian coordinate (m)

X Specific body force (N/kg)
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LIST OF SYMBOLS (Cont'd)

Strain rate tensor (s-1 ). Definition by eq. (2.9)
and (A.6)

p Ordinary dynamic viscosity (Pa-s)

Dilatational dynamic viscosity (Pa-s)

P Density (kg/m3)

T Viscous stress tensor (Pa)

Heat dissipation function (J-s-lm
-3

Definition by eq. (2.10)
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