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ABSTRACT

We obtain sufficient conditions for the global existence, uniqueness, and

continuous dependence of, solutions of the quasilinear Cauchy problem (in one

space dimension):

Y + aY (a(y))=g (0 < t < x e JR)

y(0,x) = Y0 (X), Yt(Ox) = Y1 (X) (x e 3R)

for smooth, small data y0 ' Y1, and g. In (*) subscripts denote partial

differentiation, a > 0 is a constant, a : IR -+R, g : [0,-) x pR +JR,

YO 0Yl : -V are given sufficiently amooth functions, and a e C2 (IR)

satisfies a(O) 0, a'(ý) > c > 0 (& e 3); the "genuinely nonlinear"

problem a"(E) • 0 is of primary interest. The results can be used to study

certain nonlinear Volterra functional differential equations arising in heait

flow and viscoelastic motion for "materials with memory". D D C
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SIGNIFICANCE AND EXPLANATION

This paper concerns the initial value problem for th.: one dimensional

quasilinear wave equation with dissipation

SYt + LYt - (a(Y ))x = g(t,x) (0 < t < W, -00 < x < •

y(0,x) = y0 (x), Yt(OX) = y(x) (-W < x < 0)

where the subscripts t, x denote partial differentiation, a > 0 is a fixed

constant, and the given real functions a, g' y0 ' yI are assumed to be

sufficiently smooth. If a(E) = c 2 E, -• < - < -, c a constant, equation (1)

is the linear wave equation with dissipation which can be solved explicitly

by elementary methods.

However, there are problems arising in such applications as fluid dynamics,

electrodynamics, elasticity, and others in which the linear problem a(') = c 2

does not adequately model the physical situation. If, for example,

a(Y) = c 2 + f(E), where f is a smooth function with f(O) = f'(0) = 0
(e.g. f(ý) = &2 ), (1) can no longer be solved explicitly; yet it is important

to obtain qualitative information about solutions. Before one can do this,
one must know what types of solutions exist and for how lonq. If a = 0, g - 0
in (1), it is known that solutions can develop singularities in the first
derivatives at a finite time t, even for arbitrarily smooth data y0 (x),

yl(X) (such solutions are called "shocks").

It is the purpose of this paper to obtain reasonable sufficient conditions
for the global existence and uniqueness of smooth solutions of (1) for a > 0.

Our result states that such solutions exist for 0 < t < , - < x < ,

provided the data functions y0 , y1, g are sufficiently smooth and small (in

a suitable norm); we also show that the solutions depend continuously on the

data. Consequently, shock solutions do not arise in our situation. As an

application we indicate briefly how our result can be used to discuss a
problem arising in nonlinear heat flow and viscoelasticity.

The method of proof is technical and involves an extension of a method
of T. Nishida who studied (1) with the forcing term g - 0; Nishida did not
consider the problem of the continuous dependence of the solution on the

data y0 f Y,, and g.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.



A FORCED QUASILINEAR WAVE EQUATION WITH DISSIPATION

J. A. Nohel, Madison, Wisconsin

1. Introduction. We study the global existence, uniqueness and continuous depen-

dence on data of smooth solutions of the initial va]le problen

' tt + aYt - (a(Yx))x g (0 < t < , x E 3R)

(1.2) y(O,x) - y 0 {x), Yt(O,x) - Y1 (x) (x e IR)

where the subscripts t, x denote partial differentiation, a > 0 is a fixed

constant, a : R -3R, g : [0,-) x 3R -JR and Y0o Y1  PR +P are given smooth

functions. We shall assume throughout that

(a) a e C2 (R), (0) - 0, o'y) > e > 0 ( e 3R; c > 0)

the case a"(&) 0 0 is of primary interest.

If a - 0, g E 0 it is known [4], [7] that solutions of the Cauchy problem

(1.1), (1.2) will in general develop singularities in the first derivatives even

for smooth data, and smooth solutions will not exist for large t. If a > 0,

g S 0 Nishida [10], has established the existence and uniqueness of global smooth

solutions of (1.1) for smooth and sufficiently small data (1.2) by a remarkably

simple method.

It is the purpose of this note to {i) extend Nishida's method to obtain the

global existence and uniqueness of smooth solutions of (1.1), (1.2) with g i 0,

and (ii) study the continuous dependence of solutions of (1.1), (1.2) on the data

Yoe Yl' g. The result {i) is implicit in a recent paper of MacCamy (5]; however,

his proof of the analogue of the important Lemaa 2.3 below is not entirely complete.

The result (ii) is new.

We remark that our results (i) and (ii) can be used to obtain a local existence

and uniqueness result for smooth solutions of the functional differential equation

(1.3) Ytt + ayt - (a(y))x - G(y) (0 < t < T, x e 3)

subject to the initial condition (1.2), for some T > 0. In (1.3) G is a given

mapping defined on a suitable function space, and G satisfies a Lipschitz type

condition. While limitations of space do not allow us to present this problem in

detail, we point out that if F(g) denotes the solution of (1.1), (1.2) on

[O,T] x IR, then a solution of (1.3), (1.2) is a fixed point of the composition

map K defined by K(y) - F(G(y)). Such a fixed point can be found with the aid

of our continuous dependence result for smooth solutions of (1.1), (1.2) for

sufficiently small data in a manner similar to the method we used with Crandall

Research sponsoreA by the United States Army under Grant No. DAAG29-77-G-0004 and
Contract No. DAAG29-75-C-0024 and the National Scienco Foundation under Grant No.

( MSC75-21868.
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in (1 to solve a functional diffecrential equation in which, however, the under-

lying problem was an evolution equation of parabolic, rather than hyperbolic

type. The details will be presented in a forthcoming joint paper withi C. Dafermos.

The Cauchy problem (1.3), (1.2) has arisen in certain applications in heat

flow and viscoelastic motion for "materials with memory" studied by MacCamy [5],

(6); the functional G has the form

t
(1.4) G(y)(t,x) - Y't,x) + Oy(t,x) + f b(t-T)y(T,x)dT

0

where T is a real smooth function on [0,-) x R such that

sup P?(t,x) I e L(0,-) () L7(0,-), sup rx (t.x)i LO,) ,
xE]R x]R

B 0 is a constant, and b C L1 (0,-;3R), the value of G at (t,x) depends

on the restriction of y(.,x) to [0,tl. In (5], [6) the interest is in the

existence of global smooth solutions of the Cauchy problem (1.3), (1.4), (1.2);

this is carried out by combining Nishida's method with certain delicate a priori

estimates obtained by energy methods. However, the proof in [51, [61 appears to

us to be incomplete, because the local existence problem for (1.3), (1.4), (1.2),

which can be handled by the method outlined above, is essentially Ignored.

In Section 2 we obtain the desired results for a ediagonalw strictly hyperbolic

systen of first order equations equivalent to (1.1). (1.2)s the results for (1.1),

(1.2) follow as an easy corollary and these are stated in Section 3. We acknow-

ledge useful discussions with M. C. Crandall, C. Dafermos, and R. J. DiPerna during

the preparation of this paper.

Finally, we mention related work of Katxtmaa 181, (91 received after the

completion of this paper; the author generalizes Nishida's results for (1.1), (1.2)

with g - 0 from one space dimension to quasillnear hyperbolic equations in

several space dimensions, and he obtains global existence of weak solutions and

results concerning their decay (Nishida's method does not apply in this case).

2. Equivalent Systems and Preliminary Results. We assime that a in (1.1)

satisfies assumptions (a). In addition. assuie that g, and the initial func-

tions y0, yI in (1.1), (1.2) satisfy:

(g) go gX e C(O..) X it,. q(t) 0 sup 1g(t.x) I L,-) n 1 (0,.-)

91 (t) - sup IgX(ttx)I 1, L7(O,.) V
xv I

(I) YO  B CR), y2 1  O1(R),

where em denotes the set of real functions with continuoes and bounded deriva-

tiven up to anA including order m.

Following Nishida [101 we reduce the Cauchy problem (1.1). (1.2) to the

equiv.,ilci sytutem (2.3) below. Putting y x v and yt - w In (2.1). (1.2)

-2-



yields the equivalent Cauchy problem

V0t - w - O, wt - '(v)v x + aw - g (0 < t < , x e P)

S v(O~x) - W(0X) W y I (x) (x E I)

The eigenvalues of the matrix of (2.1)

are A - rW -.'o(vl by assumptions (a), X and i are real and dis-

tinct so that (2.1) is a strictly hyperbolic problem in the region

(C(v.w) : v f It, w e 3R). To diagonalize (2.1) introduce the Riemann invariants

v
(2.2) 1 -w + +(v), 8 - w - #(v), #(v) - f ra d

0

by (a) the mapping (vw) - (rs) defined by (2.2) is one to one from PR x IR

onto 3R x 3R. A simple calculation shows that (2.1) is equivalent to the Cauchy

problem for the diagonal, strictly hyperbolic system

r + Ar + a (r+s) - g
x 2 (0 < t < =x C R)

(2.3) st + usx + C (r+s) = g

r(O,x) - ro(X0 , s(O,x) s0 (x) (X e m)

where by (2.2) A - X (r-s), u - u(r-s) e C'I(), and where by (2.1)

(2.4) r 0 (X) W y (X) + *(yW(x)), s 0 (x) - yl(X) - C(y;(x)) (x e 1R)

by assumptions (a) and I, the initial data ro, so e 1 OR) . It is also seen

that if r, a is a smooth (01) soliltion of the problem (2.3) for

(t,x) e 0 C ([0,-) x 3R), then y, detvrmined by the relations yt - w(r,s),

yx 2 v(r,s) (where v, w are uniquely determined by (2.2)), will be a smooth

(a ) solution of the Cauchy problem (1.1), (1.2) and conversely; we shall there-

fore deduce our results for (1.1), (1.2) from (2.3).

The following local result for (2.3) is known [2; Sec. 8), [3, Theorem VI]:

Lemma 2.1. Lot r0, so e CI(R), let assumptions (a) hold, and assume that

9, g x t 0 0 for (t,x) e [0,TJ x 3R, where T > 0. Then there exists a number
0 < TI < T such that the'Cauchy problem (2.3) has a unique smooth solution

r, s • (I10,T1] x R)
The objective of the next two lemmas is to obtain apriori estimates on r, s,

*x, ex (and hence by (2.3) on rt, t ), independent of T, which enable us to

continue the local 01 -solution in t by a standard mothod.

Lemma 2.2. Let the assumptions of Lemma 2.1 hold. In addition, assume that

g(t) sup Ig(tx) I e L o10).) DOfine the a e)rori constant M30 , 0 1y

"M r +o s 2 - g(CrdC, ro su ro)l, so - sup I,-0 0 0 xe 1r xx, 3R

-3-K



For as long as the 8 -solution r, s of (2.3) oxints one has

(2.5) sup Ir(,,x)l <_m 0, sup Is(¶,X)I 1_M0

O<_T<t 0<T<_t

Sketch of Proof. The proof is similar to that of [10, Lemma 1), [5, Lcmrm 6.21.

Define the A and V characteristics of (2.3) respectively by

t t
(2.6) x - xI(t,B) - B + f AdT, x - x 2 (ty) - y + f pdT (My e R)

0 0

where A - X[r(t,x (too)) - s(t,x1 (tB))), u - U[r(t,x 2 (ty)) - s(t,x2Ctoy)))

Let a-.-+ X-," - . +)J.L denote differentiation along the X andcharacteristics respectively, thus r'(t,xI) -I r(t,XY(t,M)),

2'(tx - s(td x(t,)). Equations (2.3) become the ordinary differential

equations

d( t r(t,x1 (t,B)) + -i (r(t,xl(t,8)) + s(t,x1Ct,S))) - g(t,x.(t,O))
(2.7) d a

d (t'x 2 (t'Y)) + 2 (rlt,x 2 (t,y)) + s(t,x2 (t,y)) - g(t,x 2 (ty))
note that solutions of (2.7) will exist for as long as the slopes X, V of the
characteristics x (t,B) and x 2 (ty) remain bounded. Put

1Q
at

R(t) - sup e [Ir(T,x) I + Is(T,x) 1]
O<T<t

"so a sup Ir0(x)I, so - sup 1s0(x)l
xe R xf3

Integrate each of the equations (2.9) using r(O,x (0,8)) - M,

R(O,x 2 (OY)) - s 0 (y) (see (2.3), (2.6)), add the resulting equations and take

absolute values, a standard argument yields the inequality
t t e

(2.8) R(t) ._ro + sa + 0 R()d + 2 f e ig(C)d
0 0

Gronwall's inequality applied to (2.8) gives

(2.9) R(t) < (r 0 +s0 )e2  + 2e 2  f tg()dE,
0

and thus finally

(2.10) sup (Irc,,x)l + IS(Tx)I) ( M

and the proof Js complete.

Imeina 2.3. Lot the assumptions of Lemma 2.. nnd (9) bi, satisfied. Dnfine the

coin tant D 0

"-4-



D r + 0 + sup Ir'(x)! + sup 1;(xwl + jgjj 1(o + , i .o I "1xC 3R X93 (,) L 0- L (0,-)
For as long as tho a 1-solution r, s of (2.3) exists and if D1 is sufficiently

msall, there exists a constant M, U (ID ) > 0 where M (D ) + 0 as D1 - 0,

such that

(2.11) sup Irx (t,x)l < Ml, sup sxItx8 l_ M
xfIR xe 3R

Sketuh of Proof. (Compare (10, Lemma 2], [5, Leama 6.3).) Differentiate the first

equation in (2.3) obtaining (recall A - A(r-s))

(2.12) r + r -Xr 2  s - (rr+s) + g
xt xx r x sxx 2 x x x

We remark that although Lemma 2.1 does not assert the existence of rxx dnd rxt,

note that the left side of (2.12) is r; and this does exist for as long as the
1 x

S1-solution r, s of (2.3) exists. This observation also justifies the validity

of equations (2.12)-(2.18) which follow. Since V -A the second equation in

(2.3) gives

(2.13) ax + -L (r+s) - 2+
2A 4A 2N at ax

Define 1
(2.14) h = - log(-A(r-s))

2
Differentiating h along the A-characteristic and using As - gives

s r
A

(2.15) h- + g - s•)

Substitution of (2.13), (2.15) into (2.12) yields

2

rx + (S + A r + - s - -9 (r+s) + g + g
x 2 rx x 4X exBXA

or equivalently
2

(2.16) Cehr) S + Arx)ehr - h
x (+A~erC- 3 .s ~ (r+s)+ -Lg + g)e

Define the function z by
r-e CL hl(Zd)(2.17) z(r-s) - r-s

0

2
then "- a (r+s) + 0 ehg 4 a ehs and (2.16) becomes

8A 4X 4

hrx a h - h
(2.18) Car) + X-+ r)e rx + gx"

x 2 rx x

To integrate (2.18) along tho A-characteristic put

( 9k(t) - S + Ar(rlttxl(t,')) - s(tX(tSl)))rl(txl(t,8))

p(t) - r x(t,x 1 (t,0))exp(h(t,x1 (t,M))]

p(t) - z'(t,xICt,s)) + g xt,x1 (t,O))oxpth(t,xI(t,B))1 .



Then

t t t
(2.20) P(t) - p(O)expI- f k(M)dT] + f v (E)exp[- f k(-r)d]d4.

0 0

Suppose we can show that for any solution r, s of (2.3)
a

(2.21) _Ir <-

Then k(t) - + Ar ()r(H >( and by an easy calculation
2 r x -4

(2.22) IP(t)j ý_ IP(O)l + 3 sup IZ(,,xI (T,O)l
O<T<t

+ n s t ( sf a solu(t,B))exp hlr,x (T,p) riet

O<T<t

We next show that (2.21) holds for any solution r, s of (2.3), provided the

constant D1 > 0 is sufficiently small. Indeed, at t 0 and for any S e R

X (r(0,8) - s(0,0))r (0,8) satisfies
r x

(2.23) r;(8))• (r (0) - s (8))l_< sup lr(x)r(ro(x) - (x)) < SL

provided D > 0 is sufficiently small. By (2.19) Xr r - ar 0hp and by (0),

(2.14) and Lemma 2.2 'Xr ejh is uniformly bounded in (t,x) by a constant

K (D ) > 0, where K I(D ) -• 0 as D1 - 0, for any solution r, s of (2.3). By
(2.14), (2.17), (2.22) and Lemma 2.2 the quantity p is uniformly bounded for any

solution r, a of (2.3) as follows:

(2.24) Ip(t)l <- fp(o) + 3 sup Izfr(¶,x) - s(T,x)ll
O<T<t

4 sup r4-Air(T,x) - s(r,x) g l',X))a0<T<tX

<_ K2(DI), where K 2(D) 1 0 as D1. 0

Therefore JAr I K (D )K (D ) uniformly in (t,x) for any solution r, s of
r x-1 1 2 1

(2.3). The assertion (2.21) holds at t - 0, for D1 sufficiently small (by

(2.23)). Choosing D1 smaller if necessary so that K (D)K2 (D1) < ', we con-

clude that (2.21) continues to hold for as long as the solution r, s exists.
-h

Returnimj to (2.22), (2.24) and using rx - pe establishes the estimate for r

in (2.11); a similar argument yields the estimate for s x and completes the proof

of Lemma 2.3.

Tho a priori estimates of Lemmas 2.2 and 2.3, togother with ligIl < -
L (0,-)

yield uniform a priori estimates for rt, st, for any solution r, s of (2.3),

provided D1 > 0 is sufficiently small. Then Lomws 2.1, 2.2, 2.3 and a standard

continuation argumunt givo •l•u firtt part ot thte following global result i the

Cauchy problem (2.3).

-6-



Theorem 2.1. Let the assumption (c), (g) be satisfied, and lot the initial

r0 1 9 0 F1R). If the constant D (sea Lomma 2.3) is sufficiently small, then

the Cauchy problem (2.3) has a unique 81-solution r, s for 0 < t < -, x c m
and the a priori estimates (2.5), (2.11) are satisfied for 0 < t < -.

Let tho above assumptions be satisfied !y initial data r 0, so and r0, s0

and forcing functions g, g; denoto by r, s and r, s the corr esponding 8 -

solutions of (2.3) on 10,-) x It. Define

c(t) - sp Jr(t,x) - r(t,x)l + sup Js(t,x) - S(t,x)l
xe IR xC3

Then there exists a constant M - M2 (a,M 0) > 0 such that
2M2M t t-22l

(2.25) C(t) < e 21M 0) +f e s up jg(T,x) - d(T,X)Jd) (0 < t <

0 xE3R
where M0, M1 are the bounds in (2.5), (2.11) respectively.

Remark. The continuous dependence result (2.25) also holds for local solutions

r, s and r, s on [0,T I x [0, ) of the Cauchy problem (2.3) (see Lemma 2.1),

but only for 0 < t < TIV

Proof of Theorem 2.1. It remains only to prove (2.25). If r, s and r, s are

81 -solutions of (2.3) for the situation in the theorem, one has

(r-r) + Ar -Ar [(r-) + (S-S)] + g - g

(2.26) x x x
%(s-s)t +tx - 2 [(r-r) + (s-s)] + g-g

subject to thý initial conditions

(2.27) r(0,x) - r(0,x) - r0(x) - 0(x), s(0,x) - s(0,x) - sx) - 0a x) (x e m)

where A - X(r-s), V - V(r-s), A , A(r-s), a p(r-s). But

Ar - Ar - + .r-r)rx-rx =••x +(-)x

a- s = l (s-;) + (W-W)s
xx x x

Therefore (2.26) can be written as

(2.2)+ 2r-r) r-r) + (s-s)] + g- g- (A-A)r
(2.28)

(-;)t + [(r-r) + (s-s)] + g- - (U-')sx

Recalling the definitions of A, v and using (a) and the mean value theorem
one has

X~rs) - - d-S (r - ; + el It - a - (r-s)])(r - s - (r-s))A - A - A(r-s) - -- ----

p - p = p(r(r-s) p(r-s) - . -G + 0 2r - s - (r-;)]) (r - s - Cr-a))
d&2

for some 0 < 0, 02 < 1. Therefore, (2.28) becomes

-7-



r - a +a (-;) - g
(2.29) -()(r-r- (.-s))r +g-x

~E ((.;,+r(.: 1.) AL'e (') (r ";;x+g '

whero - + +. , a P WO a 1o next noteo that assumption (a) &ua it- + aj x. anda
LAMae 2.2 and 2.3 imply th" existence of a constant 14 - M (o,M 0 ) such th"L

(2-30) 91 (');x - M M° d '; -Ml'

uniformly in (t,x) I (O,m) x It whero M1  .14 the bound in Lmma 2.3. Int•grat-
*I

ing the first equation in (2.29) along any A-characteristic and theo oecond along

any u-oharacteriatic and making simple estimates one obtains the pair of inequalities

a
it t -

0 sup jz(t,x) -r(tgx)lI 'sup I r (M)-r;0(X)I + I a sup (r~, x) (-gr,x) I d¶jx*l xf 0 0 NE iR

o KE 0 xu

tt 0 tir

e su Ist~x ;(,X)I sp I 0(x *~x) 1 • SUP I .(r,x~ ,x) - ,•Id ,.
+' I •e (+.M 1 N) sup Il(,.x) -r(T,"x)Id1+ 1M f sup s(-,x) -;(?x) Id

0 0 xf

Adding the.. inequalities one obtains on using th~e definition of

aa

( s.31p N ( t)e <_ !0s +p I2 f *2 su Igix) - (T.X) l)I4r

00

t ST t

AdFinally, applyite g Gronwa' inequality to (2.21) yield the rsnult (225) coiplet-

ini the prof.

3. Global Existence, Uniqueness, and Continuous Deplndenc•. for the Cauchy Pr•oblem

(1.1), (1.2). As an i---eiiate aeneequence of Theorem 2.1 airi .f the equivalence

of the Caughy problinis (1.1), (1.2) atnd (2.2), (31.4) we obtaiLn the1 main resl~ut of

this- I•Pipe,

Thoem31• Le1t the as1sumpOtio (a), (g), (I) be satltisfid. Define.._• the constant
(. -•1) COO 2I C() + 2 P 1 2 ( )sI+ IIgII _ + II5,I 4.o. IlII.

+ a + 2HN)1a 2 C (, (01.1) (1.2 t<

0-0-

b



(3.2) Gup Iy (t.X)l. sup Iyt(t.'x sup jyý(X) + sup Iy1(X)l + 2 J c.dar. mo
xem xc3 xef xe3 0

-: (0 -- t • )

and there exista a conRtai~t M - M (D) 5 0 (which . 0 as D - 0) such thait

(3.3) sup I.x , , lyttx), sup Iytt (,x)I M (0 < t .)

Lot, in addition, tho asaumptions (g) and (I) be satisfied also y func-

tU1o1 q and y 0  ! y1  and let y denote the correspondin~g 61 -solution on

(0, -) X JR. Define

t(t) - sup Iyx(tx) - gx(t,x) l + Sul lyt(t.x) - 9t(tx) I

then thcra e'xists a conntant M2 -O' (o) > 0 ouch that:

0
S0 Xf IR

.whern MoI M, are H0 ondo in (3.2), (3.3) reasectivolyi moroover (using

t
y(t,x) - 0o(X) + yt(,rx)dr))

0

suP Iy(t,x) - g(t,x)l _ sup ly0 (X) - go(0)i

xg *R 12 I ()II(,

"+ (up H (X) - i'wl + sup *l.(X) W1IM2 xe qR 0 0 g Idt

t t 2M1M 2+ 1 0 sup lg(,I,x) - j(-r,x) Id,} (0 <_ t < -}

0 x3lR
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20. ABSTRACT - Cont'd.

differentiation, a > 0 is a constant, d :R J R#, g 1[0,-) x 4 ]R,
Y -Yl : IR 3R are given sufficiently smooth functions, and a e C2(IO)
0 1

satisfies a(0) - 0, o'a() > r > 0 (F I •)R the "genuinely nonlinear"
problem o'(C) d 0 is of prim.ary interest. The results can be used to study
certain nonlinear Volterra functional differential equations arising in heat
flow and viscoelastic motion for "material. with memory".
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