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l ABSTRACT

We obtain sufficient conditions for the global existence, uniqueness, and
continuous dependence of. solutions of the quasilinear Cauchy problem (i: one
space dimension):

+ - = 0 < < €
Yig YOy, - (0ly ) =g (0 <t<w x€ R)

(*)
y{(0,x) = yo(x), yt(O,x) = yl(x) (x £ R) ,

for smooth, small data Yogr ¥q7 and g. In (*) subscripts denote partial
differentiation, o > 0 is a constant, ¢ : R+ R, g : [0,») x R > R,

yo, yl : R -QR are given sufficiently smooth functions, and o € CZ(IR)
satisfies o(0) =0, 0'(§) > € > 0 (£ € R); the "genuinely nonlinear"
problem o¢"(£) 2 0 is of primary interest. The results can be used to study
certain nonlinear Volterra functional differential equations arising in heat

flow and viscoelastic motion for "materials with memory". D D C
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SIGNIFICANCE AND EXPLANATION

This paper concerns the initial value problem for th¢ one dimensional

quasilinear wave equation with dissipation

Yep oy, - (0ly D), = g(t,x) (0 < t < w® -—»<x <

(1) tt

y(0,x) = yo(x), yt(O.x) = yl(x) (= < x < @),

where the subscripts t, x denote partial differentiation, a > 0 is a fixed
constant, and the given real functions o, g, Yo yl are assumed to be
sufficiently smooth. If o(f) = c2£, - < ~ < o, ¢ a constant, equation (1)
is the linear wave equation with dissipation which can be solved explicitly
by elementary methods.

However, there are problems arising in such applications as fluid dynamics,
electrodynamics, elasticity, and others in which the linear problem o(Z) = c2€
does not adequately model the physical situation. If, for example,

g(g) = c25 + £(£), where f is a smooth function with £(0) = £'(0) = 0

(e.g. f(£) = Ez)o (1) can no longer be solved explicitly; yet it is important
to obtain qualitative information about solutions. Before one can do this,

one must know what types of solutions exist and for how lony. If a =0, g =0
in (1), it is known that solutions can develop singularities in the first
derivatives at a finite time - t, even for arbitrarily smocth data yo(x).
yl(x) (such solutions are called "shccks").

It is the purpose of this paper to obtain reasonable sufficient conditions
for the global existence and uniqueness of smooth solutions of (1) for a > O.
Our result states that such solutions exist for 0 < t < ®, -» < ¥ < =,

provided the data functions yo, Y., g are sufficiently smooth and small (in

a suitable norm); we also show that the solutions depend continuously on the
data. .Consequently, shock solutions do not arise in our situation. As an
application we indicate briefly how our result can be used to discuss a
problem arising in nonlinear ‘heat flow and viscoelasticity.

The method of proof is technical and involves an extension of a method
of T. Nishida who studied (1) with the forcing term g = 0; Nishida did not
consider the problem of the continuous dependence of the solution on the

data yo. yl, and gq.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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A FORCED QUASILINEAR WAVE EQUATION WITH DISSIPATION

*
J. A. Nohel, Madison, Wisconsin

1. Introduction. We study the global existence, uniqueness and continuous depen-
dence on data of smooth sclutions of the initial value problem

(ded) +‘ayt - (G(Yx))x =g (o <t <w x¢ R) ,

Yee
(1.2) y(O,x) = YO(X). Yt(O.x) = Yl(x) (xe R) ,

where the subscripts t, x denote partial differentiation, a > 0 is a fixed
constant, ¢ : R-*+R, g : {0,) x R+R and YO' yl : R+R are given smooth
functions. We shall assume throughout that

() o€ c2(R), 0(0) =0, 0'4E) >€ >0 (Ee Ric >0) ;
the case o0"(E) £ 0 is of primary interest.

If a=0,g =0 it is known [4], [7] that solutions of the Cauchy problem
(1.1), (1.2) will in general develop singularities in the first derivatives even
for smooth data, and smooth solutions will not exist for large t. If a > O,

g £ 0 Nishida [10], has established the existence and uniqueness of global smooth
solutions of (1.1) for smooth and sufficiently small data (1.2) by a remarkably
simple method.

It is the purpose of this note to (i) extend Nishida's method to obtain the
global existence and uniqueness of smooth solutions of (1.1}, (1.2) with g Z 0,
and (ii) study the continuous dependence of solutions of (1.1), (1.2) on the data
Yor ¥y 9- The result (i) is implicit in a recent paper of MacCamy [S):; however,
his proof of the analogue of the important Lemma 2.3 below is not entirely complete.
The result (ii) is new. ’

We remark that our results (i) and (ii) can be used to obtain a local existence
and uniqueness result for smooth solutions of the functional differential equation
(1.3) Yep *+ 0¥y - (Oly, ) = Gly) (o<t<T xe R,

subject to the initial condition (1.2), for some T > 0. In (1.3) G is a given
mapping defined on a suitable function space, and G satisfies a Lipschitz type
condition. While limitations of space do not allow us to present this problem in
detail, we point out that if F(g) denotes the solution of (1.1}, (1.2) on

[0, T} x R, then a solution of_(1.3), (1.2) is a fixed point of the composition
map K defined by K(y) = F(G(y)). Such a fixed point can be found with the aigd
of our continuous dependence result for smooth solutions of (1.1), (1.2) for
sufficiontly small data in a manner similar to the method wo used with Crandall

*

Research sponsored by the United States Army under Grant No. DAAG29-77-G-0004 and
Contract No. DAAG29-75~C-0024 and the National Sciencc Foundation under Grant No.
MSC75-21868.
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in (1) to solve a functional differcntial cquation in which, however, the under-

lying problem was an cvolution cquation of parabolic, rather than hyperbolic

type. The details will be presented in a forthcoming joint paper with C. Dafermos.
The Cauchy problem (1.3}, (1.2) has arisen in certain applications in hcat

flow and viscoclastic motion for “"materials with memory” studied by MacCamy [S],

{6);: the functional G has the form

) t
(1.4) G(y) (t,x) = ¥it,x) + By(t,x) + [ b(t-v)y(1,x)d7 ,
0

where Y is a real smooth function on [0,=) x R such that

sup [¥(t,0 ] ¢ 210, N0, sup ¥ (t)] e LT10,% ,

xf R x¢ R
B >0 is a constant, and b ¢ L"(O,-;‘R), the value of G at (t;,x) depends
on the restriction of y(:,x) to [0,t). 1In (5], [6) the interest is in the
existence of global smooth solutions of the Cauchy problem (1.3), (1.4), (1.2);
this is carried out by combining Nishida's method with certain delicate a priori
estimates obtained by energy methods. However, the proof in [S), [6] appears to
us to be incomplete, because the local existence problem for (1.3), (1.4), (1.2),
- which can be handled by the method outlined above, is essentially ignored.

In Section 2 we obtain the desired results for a "diagonal” strictly hyperbolic
syster of first order equations equivalent to (1.1), (2.2); the results for (1.1),
(1.2) follow as an easy corollary and thesc are stated in Scction 3. We acknow-
ledge useful discussions with M. G. Crandcll, C. Dafermos, and R. J. DiPerna during
the preparation of this paper.

Finally, we mention related work of Matsumnra [8), [9] received after the
completion of this paper; the author generaligzes Nishida's results for (1.1), (1.2)
with g 2 0 from one space dimension to quasilinear hyperbolic equations in
several space dimensions, and he obtains global existence of weak solutions and
results concerning their Aecay (Nishida's method does not apply in this case).

2. Equivaleont Systoms and Preliminary Results. We assume that o in (1.1)
satinfies assumptions (o). 1In addition, assume thit g, and the initial func-
tions y,, Y, in (1.1), (1.2) satisfy:

{(9) g, g_¢ c(l0,») x R), g(t) = sup 'q(t-!)l € L.(oo.’ n Ll(ov.) .
X
. t  §
gltt) = gup Iqx(t.x)l e L.(O.-) ’
x¢ R
2 1
(1) Yo¢ B (R), ch 8 (Rm),

whero £ denotes the sct of rcal functions with continuous and bounded deriva-
tives up to and including order m.

Following Nishida [10) we roduce the Cauchy problem (1.1), (1.2) to the
equivalent system (2.3) below. DPutting Y,V amd y, =V in (1.1), {1.2)

-2~
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yields the equivalent Cauchy problem

vt- ,‘-O.wt

v{0,x) = y(')(x), w({0,x) = YI(X) (xe R) .

-u‘(v)vx+nw-g (0<t<w x€¢ R)
(2.1)

The eigenvalucs of the watrix of (2.1)

0 1)
-0 (v) 0

are A = -Y0'(v), u = vYo'(v); by assumptions (o), A and p are real and dis-
tinct so that (2.1) is a strictly hyperbolic problem in the region
{tv.w) : ve R,we R}). To diagonalize (2.1) introduce the Riemann invariants

\4
(2.2) =W dv), sEw - dlv), $tv) = [ Vor(E) A
0

by (0) the mapping (v,w) =+ (r,s8) defined by (2.2) is one to one from R x R
onto IR XR. A simple calculation shows that (2.1) is equivalent to the Cauchy
problem for the diagonal, strictly hyperbolic system

a
r +Atx+2(r+s)-g

t a (D <t <o xe R)
(2.3) 8, + us, + 2 (r48) = g
r(0,x) = to(x). s(0,x) = so(x) (xe R),

where by (2.2} X = A(r-s), v = u(r-s) ¢ C'(R), and where by (2.1)
(2.4) ro(x) = yl(X) + ¢(y6(>t)). so(x) d yl(x) - ¢(Y6(x)) (x € R) ;

by assumptions (0) and I, the initial data Ty so e Bl(JR). It is also seen
that if r, s {is a smooth (81) solution of the problem (2.3) for

(t,x) ¢ 2 C ([0,%) x R), . then Yo detarmined by the relations Y, = w(r,s),
y"z- vir,s) (where v, w are uniquely determined by (2.2)), will be a smooth
(8") solution of the Cauchy problem (1.1), (1.2) and conversely; we shall there-
fore deduce our results for (1.1), (1.2) from (2.3).

The following local result for (2.3) is known [2; Sec. 8], (3, Theorem VI]:

Lemma 2.1. Lot Tor 8g € Bl(n), let assumptions  (¢0) hold, and assume that
9,9, ¢ g° for (t,x) e [0,T) x R, where T > 0. Then there oxists a number
0 < 'r1 < T such that the Cauchy problem (2.3) has a unique smooth solution
r, se 84 (10,7) x R,

The objective of the next two lemmas is to obtain apriori estimates on r, s,
r,r 8, f(and hence by (2.3) on ’ T st). independent of T, which enable us to

continue the local Bl-solution in t by a standard mothod.

Lemma 2.2. Let the assumptions of Lemma 2.1 hold. In addition, assume that

g(t) = sup |g(t,x)]| e 1}(0,%) .. Dofine the a priori constant M, > 0 by
© %R

M -ro+co42f g(0)ar, r

o o ™ 8upP |ro(x)|, s, = sup lso(x)l .

0 xe R Xt R

-3-
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For as long as the Bl-_lolut.ioh r, s of (2.3) oxiats ono has
(2.5) sup |r(t,x)]| < My 8up |s(t, )] < My -

xt R x¢ R

O<t<t o<t<t
Sketch of Proof. The proof is similar to that of [10, Lemma 1), [5, Lemma 6.2].
Define the 2 and u characteristics of (2.3) respcctively by

t t
(2.6) x=x (t,8) =B+ [Adr, x=x (t,y) =y + [pdr (B,ye R) ,
1 o 2 o

vhere A = llr(t.xltt.s)) - s(t.xltt.s))l. U - u(r(t.xztt,v)) - s(t.xz(t,Y))l

2 .0 .2, 2
=5t A 3 TV

characteristics respoctively, thus r'(t,xl) - 5% r(t'xl(t,B)),

Let °* denote differentiation along the A and 1y

8"(t.x2) - EL'S(t.xz(t.Y)). Equations (2.3) become the ordinary differential

at
equations
Edg r(trxl(tla)) + % (t(toxl(tls)) + S(tpxl(tls))) = g(t,xl(t.B))
(2.7
ST+ § (el (6,1)) + sty (6,M)) = glt,x,(£,1) 5

nota that solutions of (2.7) will exist for as ldng as the slopes A, u of the
characteristics xl(t.B) and xz(t,Y) remain bounded. Put

Qa -
e
R(E) = sup e [le(t, ] + |ett,0 |1 ,
o<t<t
xR
r, = sup |r (x)|, s = sup |s (x)] .
0" Jem 01t %o ™ 2F 1%

Integrate each of the equations (2.9) using r(o,xl(O,B)) - ro(B),
.(o.xzto.y)) = so(y) {see (2.3), (2.6)), add the resulting equations and take

absolute values; a standard argument yields the inequality
o

2 t t 25
(2.8) R(t) <r +8, +>[ RIEYAE + 2 [ e° g(Drat .
-0 0 2
0 0
Gronwall'e inequality applied to (2.8) gives
3t 3t ¢
(2.9) R(t) < (rgtsde” + 26" [ q(E)aE,
0
and thus finally
(2.10) sup (r(r, x| + |s(r.]) <My
0<t<t
x2 R - . .
and the proof is complete.
Lemna 2.3. Lot the acoumptions of Lemma 2.) apd (g) be satisfied. Dafine the 4

fitant >
conatant D, > 0 by



D, mr +s.+aup Jritx)]| + sup lsttx)] +]lgll
1 0 o] 0 x€ R 0 Ll

ellall o+ llo L
x¢ R ) L (0

') L (0,=)

(0,=

For as long as the dl-solution r, s of (2.3) exists and if D, is sufficiently

small, there exists a constant M, = M, (D,) > 0 where M (D)) +0 as D, +0,

such that

(2.11) sup |rx(t,x)| <M, sup st(t.x)l M.

x¢ R . x¢ R
sketch of Proof. (Compare [10, Lemma 2), (S5, Lerma 6.3}.) Differentiate the first
aquation in (2.3) obtaining (recall A = XA(r-s))

2
(2.12) LI + erx - -kr:x

a
- - + +
Asrx'x 2 (rx sx) 9

x

We remark that although Lemma 2.1 does not assert the existence of Yo and L
note that the left side of (2.12) is r; and this does exist for as long as the
Bl-solution r, s of (2.3) exists. This observation also justifies the validity
of equations (2.12)-(2.18) which follow. Since u = - the second equation in

(2.3) gives

. & -8 c o2 2
(2.13) s, * % + n {x+8) 2% ( ¢ + A ax)
Define

(2.14) h-%lwbupﬂ)

Diffetentiating h along the A-characteristic and using As - -lr gives

rd _.r- - g ; - .
(2.15) h T ( > (x4s8) + g s8) .
Substitution of (2.13), (2.15) into (2.12) yields
2

. ] - - SRR - a
ro + (2 + Atrx + h )rx T an (x+s) + a9 + 9,

or equivalently

2
h_ . L3 LS - P - T L h
(2.16) (e rx) + (2 + krrx)e r, ! B o (x+s) + e gx)e .
Define the function z by
r-s
o) a__ _h(d)
(2.17) z(r-s) of YR da€
az h a h a h

then 2° = - a e (r+8) + eI axe s$” and (2.16) becomes

h_ .. a h . h
(2.18) (o rx) + (2 + Arrx)e r,"¢e teg, .

To integrate (2.18) along tha A-characteristic put
K(E) = 34 A (r(t,x) (£,8)) = mltox, (£,8)))r (€, (£,8))
(2.19) p(t) = rx(t,xl(t.B))exp[h(t.xl(t.ﬁ))1

plt) = z’(t.xl(t.ﬂ)) + gx(t.xl(t,B))oxp[h(L.xl(t.B))1 .

a8a
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Y R <

Then

t t t
(2.20) p(t) = p(OYexpl- [ k(tv)dr) + [ piflexpl- [ k(n)andg-.

0 0 1
Suppose we can show that for any solution r, s of (2.3)

a
(2.21) lxrle <7
Then k(t) = % + Ar(-)rx(-) > % and by an easy calculation
(2.22) otor] < lotor] + 3 sup |ztr,x (r,80)]
O<t<t
4
+ o sup lg (T,xl(t,B))exp h(1.31(1,8)| .

0<t<t
We next show that (2.21) holds for any solution r, s of (2.3), provided the
constant D, > 0 is sufficiently small. Indeed, at t = 0 and for any B € R

1
lr(t(O.B) - 8(0'8))rx(0,8) satisfies

I3 - t - S‘_
(2.23) Ir0(3>xr(r0(s> so(s)>| < sup 'ro‘x"r‘”o‘*’ sox)) | < 2
x€ IR
provided D1 > 0 is sufficlently small. By (2.19) Arrx = Xre-ho and by (0},

(2.14) and Loemma 2.2 |Xre-h[ is uniformly bounded in (t,x) by a constant
Kl(pl) > 0, where Kl(Dl) +~ 0 as Dl + 0, for any solution r, s of (2.3). By
(2.14), (2.17), (2.22) and Lemma 2.2 the gquantity p is uniformly bounded for any

solution r, 8 of (2.3) as follows:

(2.24) by < lot] + 3 sup lzlrtt,x) ~ stt,x)1]
0<1<t
x€ IR
4 s- sup YAA[r(T,x) ~ s{t,x)) ‘g*(T,x)‘
0<Tt<t g
xt R
< Kz(Dl), where Kz(Dl) + 0 as D1 +0 .

Therefore |Arrx| :_xl(Dl)Kz(Dl) uniformly in (t,x) for any solution r, s of
(2.3). The assertion {2.21) holds at t = 0, for Dl sufficiently small (by
(2.23}). Choosing D1 smaller if necessary so that Kl(Dl)Kz(Dl) < %, we con-
clude that (2.21) continues to hold for as long as the solution r, s exists.
Returning to (2.22), (2.24) and using r. - oe-h establishes the estimate for Ty
in (2.11); a similar arqument yields the estimate for Sy and completes the proof
of Lemma 2.3,

The a priori estimates of Lemmas 2.2 and 2.3, togcther with |lgf| <®
L {0,)
yield uniform a priori estimates for Yoo B for any solution r, s of (2.3),

provided D, > 0 is sufficiently small. Then Lemmas 2.1, 2.2, 2.3 and a standard

1
continuation argument qive the first part or the following global result iur the

Cauchy problem (2.13).

-6~



Thoorem 2.1. Let tho assumption (o), {g) bec satisfied, and lot the initial data

Y., 8, € Bl(m). If the constant D

o' "o 1
the Cauchy problem (2.3) has a uniquc Bl-solution r,8 for 0<t<m xe¢ R

{see Lemma 2.3) is sufficiently small, then

and the a priori cstimates (2.5), (2.11) are satisfied for 0 < t < o,

Let tho above assumptions be satisfied by initjal data r_, s, and r

0 0 o' "o
and forcing functions g, 5; demote by r, s and r, s the corresponding Bl-

solutions of (2.3) on [0,%) x R. Define

g(t) = sup jr(t,x) - r(t,x)] + sup |s(t,x) - s(t,x)] .
x¢ R x¢ R

Then there exists a constant M

2 " M2(U,Mo) > 0 such that

2M M.t t -~2M M <t

(2.25) Tty <e 21 (g +f e 2 1sup lattx-airolan (<t <o,
0

x€ R
where MO' Ml are the bounds in (2.5), (2.11) respectively.

Remark. The continuous dependence result (2.25) also holds for local solutions
r, s and ;, s on [O,Tll x [0, ) of the Cauchy problem (2.3) ({(see Lemma 2.1),
butonly for 0 < t < Ty-

Proof of Theorem 2.1. It remains only to prove (2.25). If r, s and r, S are

Bl-solutions of (2.3) for the situation in the theorem, one has

0 < t<ew
X €XR

\(s—g)t + us_ - Esx = - °2—' [(x-r) + (s-s)] + g - g i

(c=), + Ar, - Ar = - % [(x-T) + (5-5)] +g - g
(2.26)

subject to tho initial conditions
(2.27) r(0,x) - r(0,x) = xa (%) = I (x), $(0,x) - 5(0,x) = s4(x) - Eo(x) (x € R)
where A = A(r-s), p = u(r-s), A = A(;—g), U= u(r-s). But
A, = Ar, = deer), +(A-D)x,
us, - us = u(xs-su)x + (u-u)sx H
Thereforc (2.26) can be written as

(r-r)t + Mr-r)x = -~ = [(r-r) + (s-5)] + g - g - (X-X)rx l

(2.28)

e nie

(s-8), + u(s-8), = ~ 3 [(r-r) + (s-5)) + g - g - (u-i)Ex . }

Recalling the definitions of A, u and using (0) and the mean value theorem

one hasg :

A =X wA(r=s) ~ A(r-8) = g% (r -5+ 8, Ir - 5 - (r-8)1) (x = 8 - {(r-3))

--- -gy. - - - - - --‘-. - - --..
= y(r-s) - p(r-s) af (r 8+92[r 8 (r~8))) (r - 8 (xr-s)) .,

A4 |

[T

for some 0 < 01, 02 < 1, Therefore, (2.28) becomes

-7-




T el

(8 -2 (- - eaE -3

(x-x) = = ar

Nig wiR

(6=8) = ~ 3 (r-D) - F (I r - F - ednE, 003,

m ;&. We next noto that assumptinn (o) and .

Lommas 2.2 and 2.3 imply the existance of & constant "2 - Mz(a,no) such thut

N
'

) g wie
x“’ i |
+

-2
at

|ea
at

X -
1"2"1' I-d-'lt { ux

(2.30) ()1, MM

1 1]
uniformiy in (t,») ¢ (0,®) x R where "1 s the bound in Lemma 1.). Integrat-
ing the firat equation in (2.29) along any A-characteristic and the second alony

! any u-characteristic and making simple estimates one obtains the pair of inegualities
T

. o aup Jriem =r(t,x)| < sup lro(x) -i:o(x)l + [ o sup lgtr,x) =g(r,0 |ar
b ’ x¢ R Xt R 0 » R

,. e-t .

wie

) ) t %1 a - €t %r -
| ; +] o (34 M M) wup |atz,%) -n(r.x)lchw-nlu2 ] & swp r(t,% -r(r,x]|ar,
)

1 R 0 x* R

)

t . - t %1
o sup |s(t,x) ~8(t,x)| < sup Ilo(x) -uo(x)l + [ o
xt R »xt R 0 x¢ R

{
{
1
i
" : t o - t %1’ - h
' + ] o (%4-:4 M.) sup |r(1,x) ~£(1,x) Id”"z":. [ % sup |e(r,x) -8(r,xar.
: 0
L}
i
!
!
!
l

swp Jo(r,x) - g(1,x) |ac

[ S]]

21 xt R o xR -
Mdaing these inequalitiss one obtains on using the definition of ¢
%t t %r . -
(2.31) tiere’ <o) + 2 [ o wsup lgtr,x) - g(r,x)|ax
‘ 0 R

t a ':1
: [ Geampe” tinar 0<t<e .
) o]
; Finally, applying Gronwall's inequality to (2.31) yields the result (2.23) complet-
I

ing the proof,

3. Global Existence, Uniqueness, and Contipuous De nce for the Cauchy Problom
{1.1); (1.2). As an immadiate consequenco of Thaorem 2.1 and of the equivalence
of tha Cauchy problems (1.1}, (1.2) and (2.3), (2.4) ve obtain tha main result of
this paper,

Theorem 3.1, Lat the assumptions (o), (g), (I) bs satisfied. Define the constant

[

} (3.1) D=wup [ygto|+oup |y, ] +eup lygoal+liell ,  +llsli ,

: x¢t R MR xR : L7 (0, L (o
é

- "“"x.'(o.-)' .
1f D is sufficiontly small, thon the Cauohy problem (1.1}, (1.3) has a unique
ad-molution y on (0, x R, and ghe solutfon y satinfies the & priori
!-tgggon




- Ealt g

> 3

L AR

. ,
(3.2 eup |y (t,x)], sup lyt(t.xl < sup Iyé(x)l + sup [yl(x)l +2 [ qi)ar = M
R 0

x¢ R xt R xe x¢ R 0
R (0 <t <wm ,
and thorae exists a constant Ml - Ml(D) > 0 (which » 0 as D+ 0) sguch that
(3.3)  sup ly. te,x) |, sup |y_ le, )], sup |y, (t,x)] <M (0<tcw ,
xR xn £t R Xt € R tt 1

Lot, in addition, tho assumptions (g) and (I) be satisfied also by func-
tions g and ;0, ;1 and let y denote the corresponding 8 -solution on
(0,=) x R. Define

T(t) = sup |y (t,x) = Yy (t,x) | + sup Iy (t,x) -y (t.x)l !
xt R b X Xt R t t

then Q}E_r_g cxints a constant M

= (o,My) > 0 such that

:;‘._' 2
! Mt LR LR -
(3.4) &(t) <o (L) +/ o sup |g(t,x) ~glr,x)|dr) (0 <t <w ,
] x¢ R
whera Mo. Hl are boundo in (3.2), (3.3) respectivoly) morcover (using

t
ylt,x) = yo(x) + f yt(T,x)dx))
0

b' sup |y(t,x) - y(t,x)| < sup |y°(x) - §°(x)|

: xR Xt R
& umlet ( l . l I 3 I
- + ———— {Bup |Y!{x) = y'(x)| + sup |y (%) - y (x)
\
: 3 M"2 wem 0 “ xR ! 1

& t -2M Mt -

+ [ @ sup |g(t,x) = g(r,x) |ar) (0<t <w
0 xR
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