¢

3
2 ' «/

R / e
RADC: TR 77-369 - Bz
/'T-“ma] Yechnical }(epﬂtt

-~<ng»a/
Linor 77 KTZi;JL,J

o —— O

cy} gAcmRs IN SOFTWARE QUALITY, Veluvc =L,

| <O Preliminary Randbook on Software Quath for an
![; / Acquisition Manager, e —— /

/ g2 a Jin A. /McCall
tmm : (J Paul K.|Richdrds
L8 WS

- - Gene F. /Walters y

AUA.@%@@@S

£ == General Electric Company
.
puoan-te

.‘.,;',_t.v—-'a w:-' | = //\ G ————
L) e kt} /7.l v =

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

)47 Y50

This report has been reviewed by the RADC Information Office (OI) and is
relcasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, includinz foreign nations.

RADC-TR-~77-369, Vel IIT (of three) has been reviewed and approved fer
publication.

JOSEPH P. CAVANO
Project Engineer

APPROVED: %&iﬂ, % gw

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMANDER:

JOHN F, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the sddressee 1is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. PRetain or destroy.

SECURITY CLASSIFICATION OF THIS BAGE (When Date Entered) : !

etromr e O DOCUMENTATION PAGE orrSeL OAELEERE pom
] 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER |
RADC-TR-77-369, Vol IITI (of three)
4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Final Technical Report
FACTORS IN SOFTWARE QUALITY — AEE 76 - Jul 77 -
Preliminary Handbook on Software Quality for an S PERFORMING ORG. REPORT NUMBER
Acquisition Manager N/A
7 AUTHOR(s) 5. CONTRACT OK GRANT NUMBER(S) |
Jim A. McCall
Paul K. Richards P30602-76-C-0417 ~
Gene F, Walters
9. PERFORMING ORGALIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJECT, TASK
Ceneral Electric/Command & Information Systems AREA & WORK UNIT NuMBERS
450 Persian Drive 64740F
Sunnyvale CA 94086 22370301
11, CONTRCLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE
Rome Air Development Center (ISIS) | _Novepber 1977 ull

Criffiss AFB NY 13441 13. NUMBER OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(I/ ditferent lrom Controlling Ollice) 15. SECURITY CL ASS. (of this report)

UNCLASSIFIED

Same

T8a. DECLASSIFICATION/ GOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

Y Lol

17. DISTRIBUTION STATEMENT (of the abatract entered in Bloek 20, 11 different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer:
Joseph P. Cavano (ISIS)

19. KEY WORDS (Continus on reverse eide If necessary and identify ty dlock number)

Software Quadity
Quality Factors
Metrics

Software Measurements
1

zo\ABSTRACT (Continue on reverse aide Il necessary and identify by block numbes)

An hierarchical definition of factors affecting software quality was compiled
after an extensive literature search. The definition covers the complete rang
of software development and is broken down into non-oriented and software-
oriented characteristics. For the lowest level of the software-oriented fact-
ors, metrics were developed that would be independent of the programming lang-
uage. These measurable criteria were collected and validated using actual Air

DD , 5%, 1473 eoimonor 1 s
1 JAN 73 3 10N OF 1 NOV 6818 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAOE ﬁm Deta alwot)

Force data bases. A handbook was generated that will be useful to Air Force —4—%

s R e o

i ~-~-—-—-—~s—I——‘—-—-——-—-—-—.
SECURITY CLASSIFICATION OF THIS PAGE(Whan Dete Entered)

Py " ” 4 B O RNy it AB A s e e
UG A iskitdin b uind iAo At i A A

t acquisition managers for specifying the overall quality of a software syste=m.

UNCLASSIFIED
SECUMTY CLASHIFICATION OF THIS PAGE(When Date Entered)

PREFACE

This document is the final technical report (CORL A003) for the Factors in
Software Quality Study, contract number F030602-76-C-0417. The contract was
performed in support of the U.S. Air Force Electronic Systems Division's
(ESD) and Rome Air Development Center's (RADC) mission to provide standards
and technical guidance to software acquisition managers.

The report consists of three volumes, as follows:

Volume I Concept and Definitions of Software Quality

Volume II Metric Data Collection and Validation

Volume III Preliminary Handbook on Software Quality for an
Acquisition Manager

The objective of the study was to establish a concept of software quality and
provide an Air Force acquisition manager with a mechanism to quantitatively
specify and measure the desired level of quality in a software product.
Software metrics provide the mechanism for the quantitative specification and
measurement of quality.

This third volume is a preliminary stand-alone reference document to be used
by an acquisition manager to implement the techniques established during the
study.

is ¢ Sectiom
ron .1 Sactiom 3
(n]

BY
DISTZATRCI /NN TV Y SRS

i

e+ e i s

i

\TAR

3

tion

TABLE OF CONTENTS

ImmT Im . - L] L] . . L L . L] L d O . L] - L] * L] * - .

1.1
].
].

-
.
L)) L] o, W n

Purpose ¢ v e s e e e e ; B T
Scope EECEREE R e o v e e e e e e e e s e
Relationship of Handbook to Quality Ass&nanog Function . .
Benefits of Approach e v e e e e e v s e s e s
Handbook Organizatfon e e e e

Relationship of Handbook to Factors in Software Quality
Fi na 1 Repo rt L] . o ¢ & e o L : v L] * o * . L

Definitions ¢« . ¢ v ¢ v v ¢ ¢ s o c e e e e e .

Recommended Use of Handbook e e s e e e e e

SPECIFYING SOFTWARE QUALITY ¢ ¢ v ¢ v ¢t ¢ o o s o o .

2.1
2.2
2.3
2.4

Concept of Factors in Software Quality
Specifications Using Software Quality Factors
Identificatfon of Critical Software Attributes
Quantification of Software Quality

MEASURING SOFTWARE QUALITY v ¢ ¢ 0 o v v 0 0 v o o o s

3.1
3.2
3.3
3.4

The Concept of Quality Metries
Formal Inspection of Software Products Using Metrics . . .
Metric Indicator Concept « ¢« ¢ ¢« ¢ ¢« o v o o &
Formal Relatfonship of Metrics to Quality Factors

114

LIST OF FIGURES ,

: Figure Number Title Page |
1-1 Relationship of Software Quality toCost 1-8 . 1
1-2 Software Development Process Control 1-10 3
2-1 Allocation of Software Quality Factors to 1
Product Activity & ¢ ¢ ¢ ¢ v v ¢ v 0 o 2-2 "]
2-2 Relationship of Criteria to Software Quality j
Factors . . . ¢ . ¢ ¢t v bttt e e e e e e ... 210
3-1 Concept Oof Metrics . . & v & v ¢ ¢ v ¢t o ¢ o o o o » 3-2 :
3-2 Normalization Function (Design) for Flexibility. . . 3-7
B 3-3 Determination of Level of Confidente 3-8

LIST OF TABLES

Table Number Title ‘ Page]
1-1 Presentation of Approaches to Specifying and
Measuring Software Quality 1-6 .
2-1 Deftnition of Software Quality Factors 2-3 .
2-2 System Characteristics and Related Quality Factors . 2-5 ;
2-3 The Impact of Not Specifying or Measuring _
] Software Quality Factors e v e e . 27 1
t 2-4 Relationships Between Software Quality Factors . . . 2-8
! 2-5 Criteria Definitions for Software Quality Factors. . 2-12
3 ' 2-6 Problem Report and Man-Power Expenditure ;
| Categorization S e e e e s e e e s 2-15 4

3-1 Example Metrics e e e e e e e e .« o o o 3-3

SECTION 1
INTRODUCTION

1.1 PURPOSE

In the acquisition of a new software system, a major problem facing a System
Program Office (SPO) is to specify the requirements to the software developer
and then to determine whether those rgqhirements are being satisifed as the
software system evolves. The parameters of the specification center about the
technical definition of the application and the function of the software within
the averall system. Following this specification, a realistic schedule and
costs are negotiated.

There has been no mechanism for specifying the qualities or characteristics
of the software - qualities such as reliability, maintainabiljty, ysability,
testability, and portability. The importance of these software qualities
which go beyond the technical mission has been recognized in recent years as
a necessary concern for software development managers.

This recognition has come about because of the many instances in which the
consequences of not considering software quality nas driven total project costs
and schedule well beyond initial estimates. It has been found that the costs
throughout the total life cycle are more affected by the characterjstics of the
software system than by the mission-oriented functions performed by the software
system. Large-scale software systems have sometimes proven untestable, un-
modifiable, and 1largely unusable by operations personnel because of the
characteristics of the software.

While the application functions, cost, and schedule aspects of development can
be objective]y defined, measured, and assessed throughout the development of
the system, the quality desired has historically been definable only in sub-
jective terms. This occurs becayse the SPO has no quantificable criteria
against which to judge the quality of the software until he begins to use the
system under gperation conditions. This usually leaves the SPO with only two
alterpatives: to incur increased costs or to back off fram the requirements
initially desired for the system.

1-1

I

B ————n e e . m aee

=rsg e Y

P

The objectives of this handbook are (1) to describe to the acquisition manager

what the software qualities or characteristics are that should be included in

a specification, (2) provide a mechanism for objectively specifying the

software quality requirements, and (3) introduce a methodology for measuring .
the level of software quality achieved.

1.2 SCOPE 1
This handbook is based on the results of a study conducted in support of the 3
U.S. Air Force Electronic Systems Division's (ESD) and Rome Air Development i

Center's (RADC) mission to provide standards and technical guidance to soft- }
ware acquisition managers. The study represented an initial conceptual inves-

tigation of the factors of software quality with a limited sample validation

of the concept. Further reasearch and demonstrations of the concept are

planned. With this fact in mind, three approaches are described for both

specifying and measuring software qualities. The approaches are presented

in order of increasing quantification. For both specification and measure-

_ment, the first two approaches described are immediately implementable and

usable, while the third approach is in its conceptual infancy. Further exper-
ience and analysis are required to derive the generally usable quantified
relationships required by the third approach.

1.3 RELATIONSHIP OF HANDBOOK TO QUALITY ASSURANCE FUNCTION

The techniques described in this handbook are envisioned as an integral part of
an overall quality assurance program. Two important facets of quality assurance
are covered in the handbook; software quality specification and software quality
evaluation. A review of MIL-STD 483 and 490 provides insight into how these
techniques fit into current software development and quality assurance practices.

Appendix I, System Specification, Type A, of MIL-STD 490 covers characteristics
(paragraph 3.2) of the system which should be described in the specification.
Characteristics such as reliability, maintainability, availability, and inter-
changeability are mentioned but are oriented toward hardware systems. The :
software quality factors described in Section 2 of this handbook should be

incorporated in this section of a system specification. Appendix VI, Computer

1-2

Program Development Specifications, of MIL-STD 490 and Appendix VI, Computer
Program Configuration Item Specification, of MIL-STD 483 also relate to the
specification of software in Section 3, Requirements. It is stated that

the requirements "shall contain performance and design requirements" and
"specify design constraints and standards necessary to assure compatibility
of the CPCI." The design requirements and standards should also include those
features that enhance software quality. Section 2 of this handbook provides
the terminology and procedures for including requirements for software quality
in the specification.

With respect to the measurement of software quality, Section 4 of the afore-
mentioned appendices of MIL-STDs 483 and 490 cover quality assurance provisions.
Current emphasis in these sections 1s on functional testing, the "formal
verification of the performance of the CPCI in accordance with the requirements."
These quality assurance provisions should also include evaluation of the soft-
ware quality. Section 3 of this handbook describes approaches utilizing software
metrics which quantify and formalize the software quality evaluation procedure.

1.4 BENEFITS OF APPROACH

The concepts of software quality metrics expressed in this handbook contribute
to a more disciplined, engineering approach to software quality assurance. The
software acquisition manager is provided with conceptually simple, easy to

use procedures for specifying required quality in more precise terminology.

The specification procedures force a life-cycle view at the initial planning
stages of a software development. An acquisition manager essentially performs
a tradeoff analysis between the quality factors, cost, and schedule in estab-
1ishing the requirements of the system. The software developer is forced to
address how they plan to build the required quality into the software.

Specific software quality attributes required are independent of the design
and implementation techniques used by the software developer. Further
insurance or confidence is gained from this more precise description of
the quality requirements.

The software quality metrics provide a more formal, consistent means of
evaluating/inspecting the software products developed during a software system
development effort. They also provide a means of tracking the progress since

they are applied at several points in time during the development. The .
3 consistency provides a basis for comparison between projects or betweén

‘ different data collectors.

The metric indicator concept adds an additional dimension in that it provides
a mechanism for pinpointing difficiencies. Evaluation is required to
determine what corrective action, if any, need be taken.

] Many of the metrics can be automatically collected enhancing their accuracy
and consistency. The metrics are applied during all phases with increasingly
greater confidence in their indication of quality. The accumulation of the
metric data and the application of these analytical techniques enhance the

1 understanding of the software development process and the characteristics of
2 good design and implementation.

The cumulative effect of these procedures and techniques is that a quanti-
tative relationship between metrics and software quality ratings can be
derived and used to predict how well the software development is progressing
toward achieving the required quality in the resulting software product.
This ability to specify software quality and quantitatively measure the
development in terms of the quality will assist the acquisition manager and
software developer in producing higher quality products.

E
b
? 1.5 HANDBOOK ORGANIZATION i
= The handbook has been organized as a reference document for an acquisition :
? : manager, describing the concepts of software quality and identifying where
{ more detailed information can be found.

;

[

L
o4
T
1
{
R

T o

1 1 The first section provides introductory information, definitions, and recom-
mendations for use of the handbook.

The second section describes three approaches to specifying software quality.
Each description is organized in the following manner:

e General discussion of approach
o Steps to be followed

The third section describes three approaches to measuring software quality.
Each approach is described using the same format of the second section.

The three approaches in each section are presented in order of increasing
formality and quantification of the relationship between the metrics and

the quality factors. The approaches are titled and can be easily identified
in the handbook as shown in Table 1-1.

1.6 RELATIONSHIP OF HANDBOOK TO FACTORS IN SOFTWARE QUALITY FINAL REPORT

{ This handbook is based on and utilizes the concepts described in the Factors
' in Software Quality Final Report, Volumes I and II, and previous research
efforts related to software quality referenced in that report. The report
is the result of work performed for ESD and RADC under contract number
F030602-76-C-0417.

P I nA————

It is recommended that the Factors in Software Quality Final Report be read
and used as a supporting reference for implementing the concepts described
in this handbook. ’

first volume of that report be used as a data collection form in applying

l
] ‘2 It is also recommended that the metric table (Table 6.2.1) contained in the
{ the metrics.

1-5

o
' j

£

T I TTTYRTT

SY0LIV4 ALITVAD OL SOINL3W 40 JIHSNOILYI3Y TWWdOd b°e €
L1d3INOJ HOLYIIGNI JIdLIW g€ 4 ALITVND
JYYMLI0S
SITYLIN INISN SLINA0¥d FAVMLA0S 40 NOILIIJSNI TYWIOI 2°¢ I ONIYNSYIH

ALITYND 3¥VYMLO0S 40 NOILWII4ILNVND v'e €
SALNGIYLLY YYMLJO0S TVWOILINI JO NOILYIIJIIN3QI €°¢ 4 ALIVND
JYMLI0S
SY0LIV ALITVAD 3YYMLA0S ONISN SNOILYIIAIJIdS A4 L ONIA4II3dS

NLIL # HdVdIvVdvd # HOVOuddY J1401
NI Q3IINISHId
AiLpenh aaemijos
buranseay pue 6uifyisads 03 sayoeousddy jo uoLjeausssuad [-l alqel

i e 44 g

1.7 DEFINITIONS

The following definitions are provided as explanation of terminology used in
this handbook:

o Software: the programs and documentation associated with and resulting
from the software development process.

o Qualfty: a general term applicable to any trait or characteristic,

; whether individual or generic; a distinguishing attribute which
indicates a degree of excellence or identifies the basic nature of
something.

e Factor: a condition or characteristic which actively contributes to
the quality of the software. For standardization purposes, all factors
will be related to a normalized cost to either perform the activity
characterized by the factor or to operate with that degree of quality.
For example, maintainability is the effort required to locate and
fix an error in an operational program. This effort required may be
expressed in units such as time, dollars, or manpower. The following]
rules apply to the set of software quality factors: ﬂ

| A condition or characteristic which contributes to software quality

; - A user-related characteristic

- Related to cost either to perform the activity characterized by
the function or to operate with that degree of quality

- Relative characteristic between software products

The last rule, that a factor is a relative characteristic between
software products, requires a brief explanation. Figure 1-1 illus-
trates the relationship between a factor and the cost to achieve
different levels of that quality factor. As an example, assume the
curve describes the cost versus level of quality relationship for the
factor reliability. A much lower level of reliability, which costs
less to achieve, may be as acceptable to a management information
system (MIS) acquisition manager as a much higher level is to a

command and control (CZ) manager due to the nature of the individual

e e e b e e e it . ot - -

{

- e i

P R

applications. So, while the c2 final product may have a higher degree of

reliability according to our measures, it may be no more acceptable to
the user than the MIS system with its lower reliability is to its user.

2

‘(//,f"' c

cosT
$

)(”,,———- MIS

1 Rating of Reliability 0
Figure 1-1 Relationship of Software Quality to Cost

o Criteria: attributes of the software or software production process
by which the factors can be judyed and defined. The following rules
apply to the criteria:

- Attributes of the software or software products of the development
process; i.e., criteria are software-oriented while factors are
user-oriented

- May display a hierarchical relationship with subcriteria

- May affect more than one factor

e Metrics: quantitative measures of the software attributes related to

the quality factors. The measures may be objective or subjective. The

units of the metrics are chosen as the ratio of actual occurrences
to the possible number of occurrences.

o Normalization Function: a formal mathematical relationship between
a set of metrics and a rating of a quality factor.

1-8

s

-

o
|
!

1.8 RECOMMENDED USE OF HANDBOOK

It is recommended that this handbook be used by an acquisition manager as a
reference during the preparation of a software system specification, or a request
for proposal for a software system development, and during evaluation activities ¥
of the software development phase.

The concept of quality metrics as described in this handbook involves the 3
application of the metrics via already existing control mechanisms, i.e., reviews, :
status reports, documentation delivered during the development, and source code.
The current emphasis of these controls is to evaluate the schedule and cost
performance and to determine the functional correctness of the software being
developed. The quality metrics are applied to these control vehicles to provide
an indication of the quality of the software product being developed. This
concept is illustrated in Figure 1-2,

The metric data collection (measuring) can be done by the contractor or
developer and reported during reviews or it can be performed by the acquisftion
manager's quality assurance or verification and validation personnel.

The order in which the three approaches to specifying and measuring software
quality are presented not only corresponds to the increasing formality of the
relationship between quality and the metrics but also represents an increasing
manpower requirement for implementation and an increasing requirement for
experience on the part of the SPO with the concepts. Based on these facts, it
is recommended that the concepts be incrementally phased into an acquisition
manager's operation. The first approach described, for both specifying and
measuring quality, can be implemented with a minfmm amount of effort and will
yield immediate benefits to the acquisition manager. The second approach can
then be phased in, requiring additional effort, but providing higher confidence
in the indication of the level of quality being achieved during the development
process. The phased approach to the introduction of the quality metrics con-
cepts allows for training, familiarization, and experience to be gained while
the concepts are actually used and benefits realized. The third approach will
become more viable as experience and historical data 1s accumulated using the
first two approaches. The mathematical relationships required by the third
approach are derived from the historical data.

M L ADY
L4 129d
L043U0) $S3J044 JuaWdO|3Ad(] d4RMIJOS 2-| dJ4nby umumpwucww”ouom MIIA Y
pue uoi{IRPLLeA mh<a>A
MO | ADY
ubysag Led4344) ¥ad
M3 A9y ubisag
2-9001 Adeuju} 344 ¥ad
M3 LAY M3IAN
_ S3UBWaJ | nbay O
*NMOHS 3¥V 1N3Wd0T3A30
FAYMLI0S V ONINNG Q3AIAQYd GN3931
SIN3WNJ00 ANV “SL¥0d3Y SNLVLS
‘SMIIAY 3IHL 40 13S8AS V ATNO
(1041502)
muzﬁ.mww.h_ 1hn3 173coud
MIIANY MIIAY
S1VPA L) ¥ad 0N
v I 4 \ & A 4
SWSINVHIIW T04LINOD INIWYND VIA G311ddY SIIULIW ALITVND
I R e e
" |
. . |
JONYNIINIWN 3 | JTLOLET R 2 — SISATYNY
o1 1o 53 N IWWVY90Yd 1S3 SINIWISINDIY “
“ i F
| |
1 : |
H SW31808d 40 NOILVIIJIIN3O1 OL 300 NOIiw¥iLl |_

SSID0Ud INMAOTIAI0 IUVYMLIOS

~n ATt

1-10

SECTION 2
SPECIFYING SOFTWARE QUALITY

2.1 CONCEPT OF FACTORS IN SOFTWARE QUALITY
An acquisition manager's involvement with a software product can be categorized
in terms of three distinct activities as follows:

SOFTMARE_PRODUCT ACTIVITIES

¢ Product Operation
o Product Revision
® Product Transition

Specific qualities or characteristics (quality factors) of the software product
are related to these activities as shown in Figure 2-1. The questfons in
parentheses provide the relevancy or interpretation of the factors to an
acquisition manager.

Thus, with respect to the operation of a software system, an acquisition manager’'s

concern for quality is in temms of its correctness, reltabilfty, effictency,
integrity, and usability. Over the 1ife cycle of a system, revistons to the
system may be necessary due to problems or changing requirements. The
acquisition manager is therefore concerned with the maintainability,
flexibility, and testability of the software. Longer range considerations

may involve moving the software to another hardware system, interfacing it

with another system, or developing newer versions of the system. The

related quality concerns are for portability, {nteroperability, and reusability.

The definitions of these eleven quality factors are in Table 2-1.

A1l of the quality factors should be considered in the initial specification
for the software. The first approach (paragraph 2.2) describes the procedure
for considering these quality factors. The following paragraphs (2.3, 2.4)
describe progressively more detailed approaches to specifying software quality.

-

P

w1

i o Pt

¢SEL A3LALIOY IONPOUd 03 S4030R4 ALLBND 3JeMIJOS 4O UOLIRIOLLY L-2 34nbiy

(ZW3LSAS YIHIONY HLIM LI
39V4¥3INI O1 378V 38 I 1NIM) ALITISVY3dOY3ILNI
(3YVML40S 3HL 40 3NOS

Amwuw“u““ “““H 1 uoddazv ALITI8VSA3Y ((11 N T NVD) ALITIEYSA
¢ oV (¢3S LI SI) ALT¥93INI
11 3SR 0L 378V 38 1 T1IN) ALTI18VLIY0d

(eNVD LI SY T73M SY
JUVMOUYH AW NO NO¥ LI T1IM) AIN3IDI443
(¢MIL 3HL 40 TV _
AT3LVHNOV LI 00 1I S30Q) ALTTIGVITY
(ZINVM 1
lvHm 00 11 S300)

NOILISNVYL
1Inaodd

SSINLIW0D

NOI1V¥3d0
1Ina0Yd

(11 1S31 1 NVD) ALITIAVIS3L
(¢L1 FONVHD I NVI) ALITISIX3I N
(é11 XI4 1 NVD) ALIVIGUNIVINIVW

NOISIAY
1Inaoyd

2-2

| A ————— ememe . wn e ameo - ————— e Y | e g ——— B - e ——

A i Table 2-1 Definition of Software Quality Factors

TR Ry

CORRECTNESS Extent to which a program satisfies its specifications
and fulfills the user's mission objectives.
RELIABILITY Extent to which a program can be expected to perform f
its intended function with required precision. j
a FFICI The amount of colputing resources and cade required by E
a program to perform a function. i
1 ITY Extent to which access to software or data by i
unauthorized persons can be controlled. i
USABILITY Effort required to 1earn, operate, prepare input, and ;

interpret output of a program. ;

NTAINABILITY Effort required to locate and fix an error in an
operational program.

TESTABILITY Effort required to test a program to fnsure it performs
its intended function.

FLEXIBILITY Effort required to modify an operational program.
PORTABILITY Effort required to transfer a program from one hardware
. . : configuration and/or software system environment to
) another.
ILITY Extent to which a program can be used in other

applications - related to the packaging and scope of the
functions that programs perform.

INTEROP ILITY Effort required to couple one system with another.

A

2-3

2.2 SPECIFICATIONS USING SOFTWARE QUALITY FACTORS

2.2.1 DISCUSSION OF FIRST APPROACH

This first approach to specifying software quality uses the conceptualization
of factors in software quality described in the previous paragraph as the
basic mechanism for the acquisition manager to identify requirements for quality
in a software product which have complete 1ife-cycle fmplications. For
example, if the SPO is sponsoring the development of a system in an environ-
ment in which there is a high rate of technical breakthroughs in hardware
design, portability should take on an added significance. If the expected

life cycle of the system is long, maintainability becomes a cost-critical
consideration. If the application is an experimental system where the software
specifications will have a high rate of change, flexibility in the software
product is highly desirable. If the functions of the system are expected to

be required for a long time, while the system itself may change considerably,
reusability is of prime importhnce in those modules which implement the

major functions of the system. With the advent of more computer networks

and communication capabilities, more systems are being required to interface
with other systems and the concept of interoperabiiity is extremely important.
A1l of these considerations can be accommodated in the framework derived.

2.2.2 STEPS TO BE FOLLOWED

1. In preparing a request for proposal (RFP) or system requirements
specification (SRS), the acquisition manager should identify and
assign priorities to the critical quality factors.

Each software system is unique in its software quality requirements.
There is no specific categorization of applications which can be
related to certain levels of quality. There are certain basic system
characteristics which effect the quality requirements. Each system
must be evaluated for its fundamental characteristics. These
fundamental characteristics and the related quality factors are
identified in Table 2-2.

2-4

e, 1 et S o

PURUE W, ORI L. 0 T P AL

A

-

- — e e

Tahie 2-2 Systam Chavactaristics and Related Quality Factors

" CHARACTERISTIC

o ahdatstp o e gy © bae e i [P RPI

e If hyman lives are affected

QUALTTY FACTER

Reliapility

fren e

o Long Tife cycle intainabiiity
v, c;itﬂit.y
Rortability
o Real time application Efficiency
Reliability
Correctness
¢ On-hoard compyter Efficiency
applfcation Re)iabl3Tey
- Corrgctness
® Processes classified Integrity
information .
o Interrglated systems Interoperability

|
!

v e

[

2-6

These basic characteristics should be taken into account when the
critical quality factors are identified.

In considering all of the quality factors, the life-cycle implications
of the system are considered. Table 2-3 identifies the life-cycle
implications (impact of poor quality) of the quality factors and should
be used as an input in identifying the relative importance of the
quality factors.

During the process of identifying the importance of the quality
factors, the tradeoffs between certain quality factors should be
recognized. Table 2-4 should be utilized as a guide for determining
the conflicts in quality requirements. A few examples are provided
to 11lustrate how the table is interpreted:

Maintainability vs Efficiency - optimized code, incorporating intricate
coding techniques and direct code, always provides problems to the
maintainer. Using modularity, instrumentation, and well commented
high-level code to increase the maintainability of a system usually
increases the overhead, resulting in less efficient operation.

Integrity vs Efficiency - the additional code and processing required
to control the access of the software or data usually lemgthen run time
and require additional storage.

Interoperability vs Integrity - coupled systems allow for mnve avenues
of access and different users who can access the system. The potential
for accidental access of sensitive data is increased as well as the
opportunities for deliberate access. Often, coupled systems share
data or software, which compounds the security problems as well.

pazpiweu sy A3riendb 400d jo Joudmy UM - X

PRUNSYIW 3Q PLADYS 5403084 Ajjtenb auayw - 7
aN3937 0
X X v KLT'1] ¥U3A0NINT
X v | v ALITIVSNE
X m j v v ALITIEVANOS
X v | v ALITISIXI Y
X X X X v v ALITISVISIL
X ! X v | A" ALTTLEWNIVINIWM
X X X ﬁ 7 4 v | ALITISYSD .
X v v v ALT¥93LNI
X v v ANGII1443
X X X v v v ALITINI VN
X X X v v v SSINLITN0D
NOILISVLL FONYNINTVN NOLIVE3D | s guma NSIS30 | SISATw | SISWd S
NALSAS 3000 Sb | IDA-HN
W1AVe340 NOILVATVAZ INNIOTIAIG

$403004 A3pjend auem3;o5 bup.nsedy 40 BupA3L09dS Jou JO Joeduf 3yl £-2 2lqey

s P T S n e ko e v o tad KR i m erah m e cimaid gl aa2 L W L m

j 1 Table 2-4 Relationships Between Software Quality Factors

W ST T

&
FACTORS q‘?

CORRECTNESS

&
&
RELIABILITY @) «‘,3\

EFFICIENCY

&
INTEGRITY 7

USABILITY

MAINTAINABILITY

B TESTABILITY

O|0|0]|0O

0|0|0|O
0/ 0/0 06 0o

O|10]0

O|0|0|0

FLEXIBILITY

PORTABILITY

REUSABILITY

INTEROPERABILITY

——

9 -

‘ If a high degree of quality is present for factor,
what degree of quality is expected for the other:

o O = High @® - v ‘

Blank = No relatfonship or application dependent

PV

L T Ry

It should be recognized this table only provides general guidelines and
further analyses along these lines should be made for specific cases.
It is important to note that if a high level of quality is required for
conflicting factors, the cost to achieve the requirements may be very
high.

2. Once the critical quality factors have been identified and priorities
- assigned, they should be included in the RFP or SRS with definitions from
paragraph 2.1, and the developer required to comment on how the soft-
ware will be developed to exhibit the qualities specified.

3. Wherever possible, as much detailed explanation should be included
with the definition for each quality factor. For example, if
portability is a major concern to an acquisition manager, as precise
a description as possible should be included as to the types of
environments to which the system might be transported.

2.3 IDENTIFICATION OF CRITICAL SOFTWARE ATTRIBUTES

2.3.1 DISCUSSION OF SECOND APPROACH

This approach involves a refinement to the first approach described in

paragraph 2.2. Each quality factor is further defined by criteria which are

the software attributes whose presence in the software enhances the characteristic
ropresented by the quality factor.

The criteria identified in the Factors in Software Quality Final Report are
shown in Figure 2-2, indicating which quality factors they significantly
impact, and are defined in Table 2-5.

These criteria are dsed in this approach to further define the quality
requirements.

2.3.2 STEPS TO BE FOLLOWED

1. Having identified the critical quality factors, the acquisition
manager then identifies the related critical software attributes
which are required. For example, if the acquisition manager wants

2-9

T e WD

CORRECTNESS

{ Tracesbility | | Consistency | | Completeness]

RELTABILITY

| Error Tolerance | | Consistency | | Accuracy | [simplicity |

| Execution Efficiency | | Storage Efficiency |

LEGEND
O Factor @
T Criteria

| Access Control | | Access Audit |

USABILITY

| Training | | Communicativeness | | Operability |

MAINTAINABILITY

Consistency | | Simplicity | | Conciseness | | Modularity | | Seif-Descriptiveness |

1320A-2

Figure 2-2 Relationship of Criteria to Software Quality Factors

"

et e e e — e v’m_'—'-“ﬁ
|

Modulari ty Generality | | Expendability | | Self-Descriptiveness |

[Modularity | | Instrumentation | | Self-Descriptiveness

PORTABILITY

Simpliicity

‘ Software System '

Modularity | Self-Descriptiveness | | Machine Independence|
: Independence 1
- ;
REUSABILITY A
Generality Modul ai ty Software System Machine Se] f-Disripti veness
l 1 Independence Independence L J

INTEROPERABILITY

[Commnications Comwnality | [TData Commonality]

LEGEND 13298
Factor

[Criteria

Figure 2-2 Relationship of Criteria to Software Quality Factors (continued)

2-n

RERERP

Table 2-5 Criteria Definitions for Software Quality Factors

t— e

RELATED
CRITERION DEFINITION FACTORS

TRACEABILITY Those attributes of the software that provide| Correctness
a thread from the requirements to the imple-
mentation with respect to the specific
development and operational environment.

COMPLETENESS Those attributes of the software that Correctness
provide full implementation of the functions
required.

CONSISTENCY Those attributes of the software that Correctness
provide uniform design and implementation Reliability
techniques and notation. Maintainability

ACCURACY Those attributes of the software that Reliability
provide the required precision in calcula-
tions and outputs.

ERROR TOLERANCE [Those attributes of the software that Reliability
provide continuity of operation under
nonnominal conditions.

SIMPLICITY Those attributes of the software that Reliability
provide implementation of functions in the Maintatnability
most understandable manner. (Usually Testability
avoidance of practices which increase
complexity.)

MODULARITY Those attributes of the software that Maintainability
provide a structure of highly independent Flexibility
modules. Testability

Portability
Reusability
Interoperability

GENERALITY Those attributes of the software that Flexibility
provide breadth to the functions performed. Reusability

EXPANDABILITY Those attributes of the software that
provide for expansion of data storage
requirements or computational functions. Flexibility

INSTRUMENTATION | Those attributes of the software that Testability
provide for the measurement of usage or
identification of errors.

SELF- Those attributes of the software that Flexibility

DESCRIPTIVENESS | provide explanation of the implementation Maintainability
of a function. Testability

Portability
Reusability

T

i o ik x o2

2o 2 nge IATA SO

Table 2-5 Criteria Definitions for Software Quality Factors (continued)

provide for implementation of a function
with a minimum amount of code.

RELATED
CRITERION DEFINITION FACTORS
EXECUTION Those attributes of the software that Efficiency
EFFICIENCY provide for minimum processing time.
STORAGE Those attributes of the software that Efficiency
EFFICIENCY provide for minimum storage requirements
during operation.
ACCL5S CONTROL Those attributes of the software that Integrity
provide for control of the access of
software and data.
‘| ACCESS AUDIT Those attributes of the software that Integrity
provide for an audit of the access of
software and data.
OPERABILITY Those attributes of the software that Usability
determine operation and procedures con-
cerned with the operation of the software.
TRAINING Those attributes of the software that Usability
provide transition from current operation
or initial familiarization.
COMMUNICATIVENESS Those attributes of the software that Usability
provide useful inputs and outputs which
can be assimilated.
SOFTWARE SYSTEM Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the software Reusability
environment (operating systems, utilities,
input/output routines, etc.)
MACHINE Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the hardware Reusability
system.
COMMUNICATIONS Those attributes of the software that Interoperability
COMMONALITY provide the use of standard protocols
and interface routines.
DATA COMMONALITY Those attributes of the software that Interoperability
provide the use of standard data repre-
sentations.
CONCISENESS Those attributes of the software that Maintainability

1 to stress the importance of maintainability, the following software
2 attributes would be identified as required in the RFP or SRS:

Consistency .
Simplicity

Conciseness

Modularity

Self-Descriptiveness

T R VUV P

The precise definitions of these attributes would be included in ?
the RFP or SRS.

2. The acquisition manager should evaluate the software developer's
plan to provide the required software attributes for each quality i
factor.

2.4 QUANTIFICATION OF SOFTWARE QUALITY

! 2.4.1 DISCUSSION OF THIRD APPROACH :
! This approach requires precise statements of the level of quality required of

: the software. Currently, the underlying mathematical relationships which allow
* measurement at this level of precision do not exist for general use. The
procedures for developing those relationships are documented in the Factors

in Software Quality Final Report. The mechanism for making the precise 4
! 'statement for any quality factor is a rating of that factor. The ratings
are explained in Table 2-6.

(T T

2.4,2 STEPS TO BE FOLLOWED

1. After identification of the critical quality factors, specific
performance levels or ratings required for each factor should be)
specified. For example, a rating for maintainability might be ;
that the average time to fix a problem should be five man-days or ’

: that 90% of the problem fixes should take less than six man-days.

" This rating would be specified in the RFP. To comply with this

Table 2-6 Problem Report and Man-Power Expenditure Categorization

CATEGORY BY
QUALITY FACTOR EXPLANATION
o CORRECTNESS The function which the software is to perform is
incorrect. The rating is in terms of effort required
to fix.
o RELIABILITY The software does not function as expected. The

o EFFICIENCY

o INTEGRITY

o USABILITY

@ MAINTAINABILITY
o FLEXIBILITY
¢ TESTABILITY
o REUSABILITY
o PORTABILITY

@ INTEROPERABILITY

rating is in terms of effort required to fix.

The software does not meet performance (speed, stor-
age) requirements. The rating §s in terms of effort
required to fix.

The software does not provide required security.
The rating is in terms of effort required to fix.

There is a problem related to operation of the soft-
ware, the user interface, or the input/output. The
rating is in terms of effort required to fix.

The rating is in terms of effort required to correct
any of the above problems.

The rating is in terws of effort required to make 2
modification due to a change in specifications.

The rating is in terms of effort required to test
changes or fixes.

The rating is in terms of effort required to use
software in a different application.

The rating is in terms of effort reqa(ed to convert
the software to operate in a different environment.

The rating is in terms of effort required to couple
the system to another system.

2-15

2.

specification, the software would have to exhibit characteristics which,
when present, give an indication that the software will perform to

this rating. These characteristics are measured by metrics. The
measurements are inserted in a mathematical relationship and a
predicted rating is obtained.

The specific metrics should be identified which will be applied to
various software products of the development phase to provide an
indication of the progress toward achieving the required level of
quality. These metrics will be discussed further in the next section
and are defined in Section 6 of the Factors in Software Quality Final

Report.

3

w——— v Buaa

SECTION 3
MEASURING SOFTNARE QUALITY

3.1 THE CONCEPT OF QUALITY METRICS

Figure 3-1 illustrates the concept of applying metrics during the de\}elopment
of a software system. The metrics are quantitative measures of the software
attributes (criteria identified in paragraph 2.3) which are necessary to realize
certain characteristics (quality factors) in the software. The metrics

provide an indication of the progression toward the achievement of high quality
end products. Specific acceptance tests can be oriented towdird evaluating the
levels of quality achieved but these testing strategies are not within the

scope of this handbook.

As previously mentioned, the metrics have been developed to be appliied to
products currently provided during a software development. They may be applied
either by acquisition manager personnel to delivered products, by contractor
personnel and reported in summary format to the acquisition manager during
reviews, or by contractor personnel as part of their own quality assurance
program.

The metrics were developed so as not to restrict or interfere with the nianage-
ment and development methodologies and techniques of the developer.

The metrics are listed in Table 6.2-1 of the Factors in Software Quality Final
Report with definitions following that table. Their application to software
products is described in Appendix D of that report. Typical automated tools
available in software development environments which assist in the metric
data collection are idéntified tn Section 8 of that report also.

For 1llustration, some examples of metrics are provided in Table 3-1. The
complexity measure is calculated from a design chart and from source code
utilizing path flow analysis and data set/use information. The effectiveness
of comments measure is a quantitative measure based on objective guideiines
for inspecting the source code for the existence or absence of comments at

-

-

$O438W 30 3dadu0)

L-€ 34nb}4

*$Ij43m
9SAY3 U0 SIILUIUIDUOD ApMIS
A3jLenb aummyjos uj suojoed

)I\/l\’

e angaepans
a0y
K31 enb Jo suoj3®d

-1pu aAj3e3juendb apjaoad
saseyd asay3 bupanp sopaaN

9A}329fqQ
aJon

saanseau
AR puenb Jsow
sapiAaoad Bupisa)

A3pend

30 uojjeziiedy

uoj3jsueay
UoLS|ARY
uojiesadp 3594 3p0) ubisag SJusuRJ | nbay
NOILV¥3d0 NOILVATVA3 IN3Wd0T13A30

1 Table 3-1 E£xample Metrics

i
RELATED QUALITY
METRIC MNEMONIC CRITERION FACTORS
Data and Control SI.3 Simplicity Reliability
Flow Complextity Maintainability
Measure Testability
Effectiveness $D.2 Self-Descriptiveness | Flexibility
of Comments Maintainability
Measure Reusability
Portability
Machine MI.1 Machine Portability
Independence Independence Reusability
Measure
| Completeness cP.1 Completeness Correctness !
. ‘ Checklist . 1
i]

ot

Sdanalan £ oA il
Ce sy

specific locations such as prologue comments with certain information,
branching statements, machine dependent code, declarative statements, and

so forth. The machine independence measure is a compilation of a number of
moasurements which indicate the degree of independence of the design and

code. The completensss checklist measures attributes that should be included
in specifications, design documents, and the code, which, if missing, increase
the probability that the final product will be functionally incomplete.

The following paragraphs describe increasingly more detailed approaches
to utilizing these metrics to provide an indication of the quality of the
softmare being developed.

3.2 FORWAL INSPECTION OF SOFTWARE PRODUCTS USING METRICS

3.2.1 DISCIASION OF APPROACH

The first level of measuring software quality involves applying the metrics
to software products as they are produced. Different sets of metrics are
applicable to products produced during the requirements analysis, design,
and coding phases of development. The use of the metrics in this manner
insures a formal and consistent review of each of the software products.

3.2.2 STEPS TO BE FOLLOWED

1. The subset of metrics which relate to the identified critical quality
factors and software attributes and are applicable to the phase of
development should be applied to the available software products.

For example, during the design phase, metrics could be applied to
design specifications, interface control documents, test plans,
minutes and materials prepared for reviews, and so on.

2. A subjective evaluation of how well the software is being developed
with respect to the specific quality factors can be made based on the
inspection of the software products using the metrics.

p— --3-&" .

3.3 METRIC INDICATOR CONCEPT

3.3.1 DISCUSSION OF APPROACH

The second approach utilizes experience gained through the application of
metrics and the accumulation of historical information to take advantage
of the quantitative nature of the metrics. The values of the measurements
are ysed as indicators for evaluation of the progress toward a high quality
product.

3.3.2 STEPS TO BE FOLLOWED

1. After the metrics are applied to the available software products,
the values are obtained and evaluated. If particular modules receive
low metric scores, they can be individually evaluated for potential
problems. If low metric scores are realized across the system, an
evaluation should be made to identify the cause. It may be that a
design or implementation technique used widely by the development
team is the cause. Corrective action such as the enforcement of a
development standard can then be introduced.

2. Further apalysis can be conducted, An examination of the metric
scores for each module in a system will reveal which metrics vary
widely. Further examination will reveal if this variation correlates
with the number of problem reports or with historical variances in
performance. This sensitivity analysis identifies characteristics
of the software, represented by the metrics, which are critical to
the quality of the product. Quality assurance personnel should
place inereased emphasis on these aspects of the software product.

3. Threshold values may be established below which certain actions
would be required. A simple example is the percent of comments
per line of source code. Certainly code which exhibits only 1%
or 2% measurements for this metric would be identified for correc-
tive action. It may be that 10% to 20% is a more industry-wide
acceptable level.

|
¢
{
i
H
|

.- «.ummrmw

3.4 FORMAL RELATIONSHIP OF METRICS TO QUALITY FACTORS

3.4.1 DISCUSSION OF APPROACH

This approach is the most detailed of the three approaches to measuring soft-
ware quality. The underlying mathematical foundations to the derivation of
the relationships are described in Section 7 and Appendix C of the Factors in
Software Quality Final Report. Basically, the measurements (mi) for a

subset of metrics are applied to the software products of a specific phase
(@) in the software development. When inserted into the corresponding equa-
tion (normalization function) a rating for a particular quality factor (rF)
can be predicted as shown below:

fn (m], Mys oees mk) = rp

Currently, generally applicable predictive equations are not available.
Specific normalization functions were developed during the study which
resulted in this handbook. They are based on a 1imited samplie and are not
recommended for general use. The procedure for the derivation of equations
which would be very useful in a partcilar development environment is
described in detail within the report.

3.4.2 STEPS TO BE FOLLOWED

1. To illustrate the procedures involved in this approach, a normali-
zation function for the quality factor flexibility developed
during the Factors in Software Quality study will be used. The
normalization function, applicable during the design phase,
relates measures of modular implementation (MO.ZF) to the flexibility
of the software. The predicted rating of flexibility is in terms
of the average time to implement a change in specifications. The
normalization function is shown in Figure 3-2.

. 0 R4 5 Lo o TIN5 o 3 et

. R . CEEN
.
" s o et ¢ A bl e .

\

1
2
2
i |
|

9 F
8
7F //
P
6 b ~
r) // M0.2
. sl _ - e -. .5!.1 :
AVG MAN-DAYS I
(TO CHANGE) -~ '
- ~
~
KK] g
3 = ! -~
~~ | ”~
2 e b //
r
~ |
1 7 (
”~ {
1 1 1 ¥ 1 3 1 1 1 3
g1608R-1

g .2 3 4 5 .6.65.7 .8 .9 1.0
M0.2 MODULAR IMPLEMENTATION MEASURE (DESIGN)

Figure 3-2 Normalization Function (Design) for Flexibility

The measurements associated with mim'2 are taken from design documents and

reveal if input, output, and processing functions are mixed in the same .
module, if application and machine-dependent functions are mixed in the same
module, and if processing is data volume or data value limited.

As an example, assume the measurements were applied during the design phase
of a project and a metric value of .65 was measured. Inserting this value
in the normalization function:

M0.2
re = .51 my
results in a predicted rating for flexibility of .33 (identified by point A

in Figure 3-2). 1f the acquisition manager had specified a rating of .2

(1/5 average man-days to change), which is identified by point B in Figure 3-2,
he has an indication that the software development is progressing well with

respect to this desired quality. By analyzing the variance associated with
this normalization function, it is shown in Figure 3-3 that the acquisition
manager has an 86% level of confidence that the flexibility of his system
will be better than his specified rating.

MEAN = .33
{

(SPECIFIED RATING) .2

/.

.33 (PREDICTED RATING)
.12 (STANDARD ERROR OF ESTIMATE)

Pr {x 1.2} = .86 (SHADED AREA)

MEAN
STANDARD DEVIATION
LEVEL OF CONFIDENCE

Figure 3-3 Determination of Level of Confidence

1 2. The comparison of the predicted rating with the specified rating
provides a more quantitative indication, with an associated level of i
confidence, of how well the software development is progressing
toward achieving the specified levels of quality. Corrective
action based on further analysis would be in order if the predicted
rating was lower than the specified rating.

3-8

WWWWM

MISSION
of
Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and comwmunications
(¢3) activities, and in the ¢3 areas of information sciences
and intslligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intslligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electrcnic reliability, uintainability and
compatibility.

:
:

WWW

Printed by

United States Air Force
Haonscom AFB, Mass. 01731

