RADC-TR-77-369, Volume II (of three)
Final Technical Report
November 1977

ADAO48015

FACTORS IN SOFTWARE QUALITY
Metric Data Collection and Yalidation

Jim A. McCall
Paul K. Richards
Gene F. Walters

General Electric Company

!
\LE coPY

0

MmN
e f

Approved for public release; distribution unlimited.

DD
2t o
JAN 28 1978

ROME AIR DEVELOPMENT CENTER
; Air Force Systems Command
i Griffiss Air Force Base, New York 13441

This report contains a large percentage of machine-produced copy which
is not of the highest printing quality but because of economical considera-
tion, it was determined in the best interest of the government that they be

used in this publication.

This repnrt has been reviewed by the RADC Information Office (OI) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign natioms.

RADC-TR-~77-369, Vol II (of three) has been reviewed and approved for
publication.

JOSEPH P. CAVANO
Project Engineer

APPROVED: %W % 36

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

JOHN P, HUSS
Acting Chief, Plans Office

FOR THE COMMANDER:
;2/;1/ ~ %«4/

If your audress has changed or if you wish to be removed from the RADC mail-~
ing 1ist, or if the addressee is no longer employed by your organization,
please notify RADC (ISIS) Griffiss AFB NY 17441, This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

LFLE RNy EN]

READ INSTRUCTIONS
BEFORE COMPLETIIIO FORM
J3 1ENT'S CATALOG NUMBER

o Tire e subuun
[FACTORS IN SOFTWARE QUALITY » ,yO/um e IT.
ﬁetric Data Collect on and Validation,

e s

N/A
8. CONTRACT OR GRANY uuu.tn(c)

F3@6@2-76-C-@417 — i

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

——

7.
/(9 Jim A./McCall,
Paul K.J/Richards

General Electric/Command—é~Information-Syotens

450 Persian Drive
Sunnyvale CA 94086 / /6 D301

11. CONTROLLING OFFICE NAME AND ADDRESS

W \E

November ¥77 / i

15 H
|

Rome Air Development Center (ISIS)

Griffiss AFB NY 13441 145
. MONITORING AGENC! AME S(i{ ditferent from Controlling Ollice) 15. SECURITY CLASS. (of this report)

Same 19 Mg‘F‘) UNCLASSIFIED

Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entetred in Block 20, If different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer:
Joseph P. Cavano (ISIS)

19. KEY WORDS (Continue on reverae aide if necessary and identity by block number)

Software Quality
Quality Factors
Metrics

Software Measurements

ry

20. ABSTRACT (Continue on reverse side If y and fy by dlock)

An hierarchical definition of factors affecting software quality was compiled
after an extensive literature search. The definition covers the complete range
of software development and is broken down into non-oriented and software-
oriented characteristics. For the lowest level of the software-oriented fact-
B ors, metrics were developed that would be independent of the programming lang-
R uage. These measurable criteria were collected and validated using actual Air
; Force data bases. A handbook was generated that will be useful to Air Force

DD , 35 1473 toition oF t Nov 8 1s oRsoLETE LASSIFIED

SECURITY CLASBIFICATION OF THIS PAGE (When Dete Entered)

b e e e e . TN, ..
Koo 3

: i - - b

= B i
J SECURITY ct.ggncqn! QF THIS PAGE(When Date Bniered) i
}" acquisition managers for specifying the overall quality of a software system. «
B 3
i 4 |
. [

i S TR

vt s

- e et e
»

—

LASSLE
SECURITY CLASSIFICATION OF THIS PAGE(hen Dace Entered)

%

PREFACE

This document is the final technical report (CORL A003) for the Factors in :
Software Quality Study, contract number F030602-76-C-0417. The contract was i
performed in support of the U.S. Air Force Electronic Systems Division's
(ESD) and Rome Air Development Center's (RADC) mission to provide standards
and technical guidance to software acquisition managers.

The report consists of three volumes, as follows:

Volume I Concept and Definitions of Software Quality

Volume II Metric Data Collection and Validation

Volume III Preliminary Handbook on Software Quality for an
Acquisition Manager

The objective of the study was to establish a concept of software quality

and provide an Air Force acquisition manager with a mechanism to quantita-
tively specify and measure the desired level of quality in a software product.
Software metrics provide the mechanism for the quantitative specification and
measurement of quality.

This seccnd volume describes the application of the metrics to software
products and the validation of the metrics' relationship to software
quality.

_v_mf._s\mn o o i

g White Sec10h

e faft Seciten (?x D D C

WRANROUNCED] M

JUSTIFICATION ..o eeaenr o @E_ﬂn /7
JAN 23 1978

COSIT
D

BRTRIBUTION /AVAILABILITY °ACE3

Bl

st WAL and o SPECIN
. L ant-w WEVIN

/14

[3
i
TABLE OF CONTENTS
Section Page
7 RELATIONSHIP OF METRICS TO QUALITY FACTORS. « . . 7-1
7.1 Concept of Relationship+ .. 7-1
7.2 Data Used for this Study ¢ ¢ v v ¢« v v o & 7-4
7.3 Normalization Function Development 7-14
7.4 Validation Process ¢ & ¢ ¢ v t 4t o 4 v e 0 0w . 7-24
7.5 Figure of MeritProcedure ¢ ... 7-28
8 METRIC DATA COLLECTION. e e e 8-1
8.1 Metric Application ¢ ¢ v v i i v e b e e 8-1
8.2 Tools Used for Data Extraction 8-5
8.3 Other Tools Applicable to Metric Data Collection 8-6
REFERENCES . & . v ot ot e ot e 6t et o s e o o et v o o o oo s o u Ref-1
APPENDIX C: RESULTS OF DEVELOPMENT AND VALIDATION OF
NORMALIZATION FUNCTIONS & ¢ ¢ ¢ ¢« v ¢ v « o c-1

APPENDIX D: METRIC APPLICATION “ e e s s e e D-1

114

AT g v

Figure Number

7.1-1
7.2-1
7.2-2
7.2-3
7.3-1
7.3-2
7.3-3
7.4-1
7.5-1
7.5-2
8.1-1
c-1

c-2

c-3

c-4
c-5

c-7
c-8
c-9
c-10
¢c-n

c-12
c-13
C-14
C-15
C-16
c-17
c-18

iy

LIST OF FIGURES

Title
Software Development Process Control
Air Force's Data Bases Chosen

Problem Reports and Configuration Management .
DPR/SPR/MTM History for Selected Data Bases. .
Frequency Distribution for Metric SD.2
Frequency Distribution for Ty = o e e
SD.2 (Implementation) Normalization Function .
Validation of SD.2 e e e e e
Figure of Merit Procedure
Determination of Level of Confidence
Automated Standards Checking During Design . .
ET.7q (Design) Normalization Function
ET.2p (Design) Normalization Function
ET.5, (Design and Implementation) Normalization
Function e e e e e e e e e e e s
SL.1p (Design) Normalization Function
SI.3R (Design) Normalization Function
ET.]R (Implementation) Normalization Function
SI.1p (Implementation) Normalization Function
SI.3R (Implementation) Normalization Function
SL.4p (Implementation) Normalization Function
SI.1y (Design) Normalizatfon Function
SI.3, (Design and Implementation) Normalization
Function e e s e e
S1.1y (Implementation) Normalization Function
SL.4y (Implementation) Normalization Function
M0.2,, (Implementation) Normalization Function
SD.2, (Implementation) Normalization Function
SD.3y (Implementation) Normalization Function
€o.1y (Implementation) Normalization Function

HD.2F (Design) Normalization Function

ooooo

| 4
LIST OF FIGURES (Continued)

Figure Number Title
c-19 GE.2p (Design) Normalization Function
c-20 M0.2. (Implementation) Normalization Function
c-21 GE.2p (Implementation) Normalization Function

b c-22 $D.2¢ (Implementation) Normalization Function

4 c-23 SD.3; (Implementation) Ncrmalization Function
D.2-1 Automated Analysis of Decision Points
D.2-2 Status of Problem Reports
D.3-1 Automated Consistency Checks During Design
D.4-1 Data Representation on Flowcharts
D.9-1 GE/ISDS Complexity Measure ¢ .«
D.10-1 Source Code Profiles by Code Audit Routines
D.12-1 Hierarchial Structure Measure Example
D.18-1 Comment Count by Code Audit Routine
D.18-2 Effectiveness of Comments Examples

LIST OF TABLES

: Table Number Title
7.2-1 Problem Report and Man-Power Expenditure
Categorization,

7.2-2 Data Support for Normalization Function Deve]opment
; and Validation
3 L 7.3-1 Regression Analysis Summary« .« ...
o 7.4-) Validation Data Summary for Maintainability

8.1-1 Summary of Collection Techniques
x 8.1-2 Source Frequency e e e e e e e e e
] c-1 Reasons for No Analysis or Correlation
A j c-2 Data Collection Summary for Correctness
2 | c-3 Data Collection Summary for Reliability
. _ Cc-4 Regressfon Analysis Summary for Relfability
o : c-5 Data Collection Summary for Efficfency

C-6 Data Collection Summary for Usabflity

P
£

TabTe Number

c-7
c-8
c-9
c-10
c-n
C-12
C-13
C-14
D.1-1
D.1-2

vi

LIST OF TABLES (Continued)

Title Page
Data Collection Summary for Maintainability c-22
Regression Analysis Summary for Maintainability C-23
Data Collection Summary for Flexibility c-32
Regression Analysis Summary for Flexibility C-33
Data Collection Summary for Testability c-40
Data Collection Summary for Reusability c-42
Data Coliection Summary for Portability c-44
Data Collection Summary for Interoperability C-46
Metric Source and Tool Legend D-1
Other Data Collection Tools D-2

7]
Coaan

TEAuE R

Y

e

-

e e B e ——— - - ——— o e — - - -

R

L taw e

]
)
t

L gt

SECTION 7
RELATIONSHIP OF METRICS TO QUALITY FACTORS

7.1 CONCEPY OF RELATIONSHIP

The hierarchical framework which has evolved supports the simple, understand-
able, and logical relationships of the components of the software quality
concept. It also supports the mathematical formulation of the relationship
between the metrics and the quality factors.

A software development can be envisioned as a process which is controlled by
management (both contractor management and AF SPO personnel). This control

is exercised through reviews, status reporting, and software products (Section
5, Interim Report #2) delivered during the development effort (Figure 7.1-1).
Currently, the major emphasis of the control is to evaluate the scheduie and
cost performance and to determine the functional correctness of the software
being developed. The concept underlying software quality metrics is to use
these control vehicles to provide an indication (and therefore a mechanism

of control) of the quality of the software product to be delivered.

These software qualities or characteristics which go beyond the technical
mission - qualities such as reliability, maintainability, usability, test-
ability, and portability, which have been defined in previous sections -
have been recognized in recent years as a necessary concern for software
development managers.

This recognition has come about because of many instances in which not con-
sidering factors such as these has driven total project costs well beyond
initial estimates. It has been found that the costs throughout the total
life cycle are more affected by the characteristics of the software system
than by the mission-oriented functions performed by the software system.
Large software systems have sometimes proven untestable, unmodifiable, and
largely unusable by operations personnel because of the characteristics of
the software.

oippidiliiapiin dilarmriprii A gl L s el o =g A L

LO4JUO) SS300.4qd JuswdO|IABQ d4eMIS6S | -]/ dunbijy

t-»091

* INIMdATIAI0 JUVMLI0S ¥ ONINNG U3QIAQYd
SLNIWNJ0Q GNY SM3IAZY 40 135 ILITdWOD

L %04 *8 XIGN3ddy *l-8 Jun9I4 335
1 1041N09)
INBWIOVNWN 1230084
RIIATY
403 vad b3
r-—""T—""F - """ |
i {
__ . t
INVNEINIW 3 e - 10D 8 SISATY
SNOILV43d0 isiL 1 ONINKVYSOUd N9153C SLNIMTIND3IY “
_ 3 : b
| 1 1 ! i
{ i
i |
r SWI80Ud 30 NOILVII4ILINIAL OL 3N NOILiwe3ll I_
SSTONM INMAOTIAID JUWLIOS
[4

7-2

- o ———— e .]‘)l.}\ill‘i«llllllv,ltll\l

A O I

B s s RS A
TN

The metrics that have been established provide quantitative measures of
specific software attributes. At any specific time during the software
development, a set of metrics can be applied to available review material,
documents, and code. Table 6.2-1 identifies which metrics were applied
during the three phases of requirements analysis, design, and programming.

When the metrics are applied, the resulting measurements can be viewed as
an n-tuple:

(m], Mys Moy« . oy mn)

Each element, m, of this n-tuple rcpresents a quantitative measure of the

system with respect to a specific metric or software attribute.

Certain subsets of this n-tuple relate to specific software quality factors.
For example, metrics i = 1 to k may relate to maintainability. The subset
of the n-tuple

(m], Mys o o vy mk)

then, are the metrics which Table 6.3-1 identifies as related to maintain-
! ability. This relationship can be viewed as a function relating the
measurement-tuple to a rating of the specific quality factor:

f(m]. Mos o o oy mk) = ry

where ™ is a rating of the maintainability of the software.

The definitions of the quality factors support the concept of a rating, e.g.,
the rating for the quality factor, maintainability, would be in terms of the
amount of effort (man-days) required to maintain the software.

ks S I
faenn
——— s e ————— - . .

A preliminary identification of the nature of the relationship f() was the
x) goal of the fourth phase of this contract effort. The relationship is
o called the normalization function.
{ i
! _ The derivation of mathematically complete, generally applicable functions were i
i . beyond the scope of this effort. The 1imiting factor was the size and nature of }
i our sample. This aspect of the study is discussed in paragraph 7.2. The procedure *

7-3

T R E T, o oaes ST O PTG ovh [T S RS

= gy

for the derivation of the normalization functions (paragraph 7.3), the concept
of their use through a figure of merit procedure (paragraph 7.5), and the

- methodology of validating these relationships (paragraph 7.4) are discussed in
this report and specific examples from our experience are presented.

The metric n-tuple has considerable value from a quality assurance viaupbint.
An analogy can be drawn with the set of indicator Tights in a cockpit of an
airplane. If a particular indicator light flashes, this immediately identifies
a specific characteristic which is beyond acceptable Timits or has reached

a level at which attention should be focused on that characteristic. There
may be a sound reason for the indicator to be flashing, not necessarily result-
ing from an underlying problem, but a justification should be established.

This particular use of the metric n-tuple, without the precise relationship
provided by a normalization function, is explored and discussed further in the
conclusion of this report and in Volume III.

7.2 DATA USED FOR THIS STUDY

Two large-scale software system developments for the Air Force were used as
the data bases for application of the metrics. The two systems were chosen
because they represent large-scale software developments, were developed
according to military standards, and represent two different applications.
Figure 7.2-1 presents some of the general characteristics of the two systems.

System A is a command and control system developed in JOVIAL (J4). Periodically,
a new version of the system is developed in response to changes in hardware

and software requirements. The data base used represents a recent formal

product delivery of the system. The system represents an application with

which both the customer and GE have had considerable experience. The system

has an excellent operational history.

System B is a data base management system developed in JOVIAL (J4). The data
base used is the initial software development of the system. It typified the
development of a new capability and exhibited several significant problems
during the design and development phases. The system provides the capabilities

et b e g

€091

WILSAS
INIWIOYNWW
3sv8 vivo

uasoy) saseg eleq §,9I404 Jiy

L-2°, 34nbi4
SW31804d
IN3WdOT3IA30 AYOLSIH
INVOLI4INOIS TYNOILVYIA0 G009
SGv01 3¥0J 2L SGY01 302 L
SKYY90ud 2¢ SKYY904d 9%
3002 vIAOC 3009 vIAOL
S3INIT 000°SH

S3NIT 000°0¥

{NOISY3A HIN)

WILSAS M3N 31940 U
3L NNOD TIIN W3LSAS
i

ALITLLA W3LSAS NOTLVO11ddV
INIHIDVNY W3LSAS T0HINGD bkl

35v8 V1va ONY GNVHHO)

\ INHJOTIA30 HINOW 5L /
\ TNOILY¥3dO SHINOW b2 /

N\ SQYVONVLS 1IW /

A $19300¥d IS~ 39UV \

to update, delete, and modify portions of a large data base as well as
selectively list, retrieve, or compare two data bases.

The data base for each system consists of the following:

o Documents - The complete set of documents identified in

1 Appendix B, including the requirements specification, design

i specifications, test plans, user manual, interface control
document, etc. were available for analysis.

o Review Material - The documentation prepared for and the recorded
proceedings of the various reviews identifed in Appendix B were
part of the data base.

® Source Code - The source code 1istings of each program in both
systems were available both in hardcopy and on magnetic tape.

o Problem Reports and Configuration Management Reports - The
complete set of problem reports identified in Appendix B were
available as well as the configuration management report which
maintains a log and status of the problem reports. Figure 7.2-2
presents examples of each of these reports.

The Design Problem Report, DPR (item G), identifies problems the
programmer and customer have encountered with the system analyst's |
design. The Software Problem Report, SPR (item C), {dentifies soft- 3
ware problems encountered with a program. The Software Analysis

Report, SAR (item D), provides the scope of the problem and recommends

the solution/action. The Modification Transmittal Memorandum, MTM

(item E), COMPOOL Change Request, CCR (item F), and the Data Base

Change Request, (DBCR, not shown), indicate solutions/changes imple-

mented. The Configuration Management (CM) Status Update Listing (item A)
provides time-to-fix statistics by tracking the maintenance efforts. The
Summary Listing (item B) will be discussed in more detail in Section 8 v
since it provided automated metric data.

N L i o
~ - Y
PO AR -

.
- -_—. — —

—— ey, E R

e Gt

judwabeuey uojjeanbijuo) pue sjuoddy wA[qodd 2-2°L d4nbi4

1-7

v

REST AVAILABLE COPY

ailnlvndy aWwW) U4
avo3 NV ion alra "asde
—
SANInILYLS VigY m
L 23 ¢ <00 < we (3] 123 (11
- v e 1 'y . P o 2848 mt agvan o S,
*3iNmyS 009 104 40 °SaNad 19404 49 °*slwns ‘UAY J4 *Sivass n davy
a0 12304 Olive §v avs Viive Sv Maldalssl dalavVey *Jdidueg V0L0L LI P 1228
slest SINIAILVLS 1V@NIIy0e m AGaS 0 SusUnidueds wj0l or o0 1880
o ire
WY MY e VIS V0 Ve g9 VS 0114103630 nus
e IS¥e g0 49 $sv WS » »
20 1t it o " 15 e " o s I8 o 0 3 . € . 1
¢ fo S .nuq 'y ”....... LY ol oo oml 0 véen - L o a0 "Ivet oe
88 8% Ind Vaiy MO,V w» g =2 ne AViS QYR uo 89834 @Ow Ofla sudndI2 VR a0 NCE vn)
01 e Yugvet Sondt 2033w YW < -mar o8t wgoy

B s w5 st bt

The problem reports were used to establish ratings for the various quality
factors. For the two data bases, a significant number of reports were
available, as illustrated in Figure 7.2-3.

DPR/SPR/MTM HISTORY FOR SELECTED DATA BASES
5000 ;
4000 SPRs

3000

S orhiorment &

ING

Figure 7.2-3 DPR/SPR/MTM History For Selected Data Bases

For the selected sample of modules, the corresponding problem reports
were extracted and categorized. The categorization was accomplished by
analyzing the problem and solution described on the problem reports and
grouping the problem according to Table 7.2-1. Also, data on man-power
expenditure to fix problems, to make changes, etc. was extracted from
the configuration management system and categorized according to

Table 7.2-1. It was felt that man-power expenditures represented the
severity or cost of problems more than the number of problems.

o Design Charts - As part of the design documents, overview and detailed

design charts are provided. For System B, these design charts were
avaflable in machine readable form, which facilitated automated
metric analysis.

Metric Information - Considerable metric data was available as part
of the data bases. The summary listings (ftem B in Figure 7.2-2)
provided a statistical profile of each program for the two systems.
Such statistics as the number of cards, statements, procedures, de-
claratives, comments, IFs, FORs, direct code statements (assembly

Table 7.2-1 Problem Report and Man-Power Expenditure Categorization
CATEGORY BY
QUALITY FACTOR EXPLANATION

o CORRECTNESS The function which the software is to perform is
incorrect. The rating is in terms of effort required
to fix.

o RELIABILITY The software does not function as expected. The

J rating is in terms of effort required to fix.

o EFFICIENCY The software does not meet performance (speed, stor-
age) requirements. The rating is in terms of effort
required to fix.

o INTEGRITY The software does not provide required security.

The rating is in terms of effort required to fix.

o USABILITY There is a problem related to operation of the soft-
ware, the user interface, or the input/output. The
rating is in terms of effort required to fix. J

e MAINTAINABILITY The rating is in terms of effort required to correct

! any of the above problems.

e FLEXIBILITY The rating is in terms of effort required to make a
modification due to a change in specifications.

o TESTABILITY The rating is in terms of effort required to test
changes or fixes.

e REUSABILITY The rating is in terms of effort required to use
software in a different application.

o PORTABILITY The rating is in terms of effort required to convert

f the software to operate in a different environment.

L] o INTEROPERABILITY The rating is in terms of effort required to couple
3 §5 the system to another system.

! 7-9

language), GOTOs, breaks from loops, operands, operators, delimiters,

etc. were available for the two systems. This metric data was oriented
primarily to the source code. This metric data, as well as al) of the
other metrics established during this effort, are covered in more T3
detail in Section 8. é

Each of these items was available for analysis. Essentially, they were
utilized as sources for metric data or, in the case of problem reports and
the configuration management report, as sources of the error and maintenance
history of the software. While our data bases represent an extremely compre-
hensive set of data about a software system development, some difficulties
were encountered. Several previous or on-going efforts ([THAYT76], [NELSR75],
[SHOOM75], [WILLN76]) sponsored by RADC have very ably discussed the problems
of data collection. Basically, the following problems arise because the data
is collected after the fact:

Large volume of data which must be manually analyzed

2. Completeness and validity of data with respect to goal of analysis
js difficult to determine.

3. Impact on production process and personnel must be kept at a minimum,

4. Interpretation of data decreases in accuracy as the age of the data
increases.

The impact of item 1, with the resources available in this study, was to reduce

the number of modules that were analyzed. System-level metrics were applied

1o both systems but module-level metrics were only applied to approximately

40% of the modules of both systems. The subset of modules were chosen to

be representative of the systems. An equal distribution of modules which

were small (< 400 statements), medium (400< n <800 statements), and large J
(> 800 statements) in size and which had a small number of SPRs (< 10), o]
a medium number (10< n <25), and a large number (> 25) written against

them were chosen.

The impact of items 2, 3, and 4 above on our study was minimal because of
the large amount of data and complete documentation that is collected and
generated during a software development in our environment.

Several other restrictions were imposed on the study because of data avail-
ability. During the derivation of the quality factors and quality metrics,

a complete view of software was taken. However, the operational and mainte-
nance historical data necessary to validate all of the quality factors was

not available. For example, some of the metrics are system-level metrics
only, i.e., they are measured at the system level. Since only two system
developments were used, development of a normalization function and validation
of its accuracy was not possible. Also, the two systems have not experienced
all of the activities required to accumulate historical data to validate
metrics relating to several of the quality factors. For example, neither
system has been converted to operate in another environment. Therefore, a
normalization function relating the metrics with the quality factor portability
was not possible. Metrics relating to interoperability, portability,
reusability, testability, integrity, and efficiency could not be analyzed
because historical data was not available.

A11 of the metrics were applied to obtain experience with their data collection.
This experience is described in Section 8 and Appendix D. Table 7.2-1 identi-
fies which quality factors and their related metrics were supported by the

data available. The plus (+) sign indicates that an analysis was possible
because data was available and the metric could be applied at the module

level. A zero (0) indicates that either the metric was a system level metric
and therefore the sample was too small and/or historical data was not avail-
able to conduct an analysis. The code column relates the metrics to the
software quality metrics table 6.2-1.

7-N

Table 7.2-2 Data

Support for Normalization Function Development and Validation

METRICS

LEVEL AT WHICH

METRIC APPLIED

TRACCABILITY
COMPLLTLNLSS CHECKLIST
PROCEDURL CONSISTENCY
DATA CONSISTENCY
ACCURACY CHECKLIST
ERROR TOLERANCE CONTROL

ERROR TOL ERANCE
INPUT DATA

ERROR TOLERANCE
RECOVERY FROM
COMPUTATIONAL FAILURES

ERROR TOLERANCE
RECOYERY FROM
HAROMARE FAULTS

ERROR TOLERANCE
RECOVERY FROM
DEVICE ERRORS

DESIGN STRUCTURE
STRUCTURE PROGRAMMING
COMPLEXITY MEASURE
CO0E SIMPLICITY
STABILITY MEASURE
MODULAR IMPLEMENTATION
REFERENCE GENERALITY

TMPLEMENTATION
GENERALITY

DATA STORAGE
EXPANDABILITY

COMPUTATION
EXTENSIBILITY

MODULE TESTING
INTEGRATION TESTING
SYSTEM TESTING
QUANTITY OF COMMENTS

EFFECTIVENESS OF
COMMENTS

DESCRIPTIVENESS OF
IMPLEMENTAT ON
LANGUAGE

PERFORMANCE
REQUIREMENTS
ALLOCATED TO
DESIGN

ITERATIVE PROCESSING
EFFICIENCY

OATA USAGE EFFICIENCY
STORAGE EFFICIENCY
ACCESS CONTROL
ACCESS AUDIT
OPERABILITY

TRAINING

SYS
SYS
SYS
SYS
SYS
SYS

SYS

SYS

SYs

SYS
MOD

MOD
MOD
SYS
L
SYS

MOD

SY§

SYS

SYS
SYS

Mop

MOD

SYS

MOD
MO0

SYS
SYS
SYS
SYS§

QUALITY FACTORS

RELIABILITY
EFFICIENCY
USABILITY
INTEGRITY
FLEXIBILITY
TESTABILITY
REUSABILITY
PORTABILITY

CORRECTNESS

> | MAINTAINABILITY

£ | INTEROPERABILITY

»
3
P
£
2
z
£
g

o 00 OoO»
[~ — I - I

* 4+ + 4+ O

* O ¢ 4+ + <+
[T - I - B - T -

0o 0o o0 O

o0 O ©

TR

e

IR M VY Ry

e e staes

Table 7.2-2 Data Support for Normalization

Function Development and Validation (Cont.)

QUALITY FACTORS
- >
o [:
e 2 = > > P E E et & = =
: BElf 2|81 5 |513|3|212(2;¢8
METRICS CooE |2l 5| g | 5 = 8 2 a 8 5 a e
a2 g S| 2 E | & s 5 & s
gE|ls|g| 5| 8 | =222 |8)|818]|8&
=t E 3 =
AL Al mf opa] A lea | | M| M oM
USER INPUT INTERFACE | cM.1 | svs 0
USER QUTPUT INTERFACE | cM.2 | svs 0
SOFTWARE SYSTEM
1NDEPENDENCE $S.1 | mop 0 0
MACHINE INDEPENDENCE | MI.1 | mOD 0 0
COMMUNICATTONS
COMMONAL 1 TY cc.y | svs 0
DATA COMMONALITY oc.1 | svs 0
CONCISENESS 0.1 | svs +
LEGEND

SYS - SYSTEM-LEVEL METRIC
MOD - MODULE-LEVEL METRIC

A
PA
NA
+
0

- DATA AVAILABLE l
- DATA PARTIALLY AVAILABLE
- DATA NOT AVATLABLE

- ANALYSIS POSSIBLE

- ANALYSIS NOT POSSIBLE

HISTORICAL DATA AVAILABLE
TO DEVELOP NORMAL IZATION
FUNCTION FOR QUALITY FACTOR

- N fa s aaei

A more subtle yet very significant impact on our study was the fact that we

applied the metrics well after the system had been delivered and was opera-

tional. Many of the problems (low metric scores) which would have been

realized had the metrics actually been applied during the development were .
not evident. For example, had we applied the set of metrics related to

design at the time of the CDR, significantly different metric scores than the

ones recorded in this study would have been realized. Over time, many of the ;
problems have been jdentified, analyzed and corrected. This bias that was 3
introduced is very significant, especially to the metrics applied during the '
requirements and design phases. The metric scores can be assumed to be
significantly inflated.

Thus, the most effective and accurate means of applying the metrics and also
establishing normalization functions would be in an on-line mode, that is,
applying the metrics during a software development effort, tracking error
history, and then accumulating operational and maintenance historical data

to establish normalization functions. The data would be current and therefore
more accurate and easier to collect and would reflect the status of the soft-
ware development in terms of the software quality metrics more realistically.
This on-line application of the metrics is described further in Section 8 vhen
the application of the metrics during this effort is discussed.

7.3 NORMALIZATION FUNCTION DEVELOPMENT

In this section, a description of the methodology of deriving a normalization
function will be described and then examples will be provided. Complete
results from this effort are contained in Appendix C.

The methodology is as follows:

o The metric n-tuple for a particular phase of development is applied
to the available software products (review material, documents, code).
This process is done initially at a module-by-module basis and then
at a system level. The application of each metric is described in

N Section 8. The results of this step are n-tuples of measurements

E for each module and for each system.

7-14

R

e Subsets of the measurement n-tuples which relate to specific quality
factors are segregated. For example, the k-tuple, (m], Mys o . .mk),
which represents the measurements for the k metrics which relate to the |
quality factor, maintainability, are extracted for each module and each |
system.

o Data which represent the quality factor performance or rating of _
the individual modules and systems are collected. For example, the ;
amount of effort axpended to correct fixes to each module and system ’
is collected to represent a rating of the maintainability of that
module or system.

e Using the measurement k-tuple as independent variables and the ratings
of the individual modules or systems as dependent variables, a regres-
sion analysis is performed to derive the normalization function.
Linear regression analysis was performed in this study. There is
some indication that in a few selected cases a nonlinear function
might be more appropriate. This exploration should be considered in
future efforts. The resulting function, in the linear regression E |

; case, takes the form:

I

il

P -
re = agtam +am, + ... am
where rg is the predicted rating of quality factor f, given the

measurement k-tuple (m1, m2. Mas o o s mk) and the a; are the

regression coefficients derived from the regression analysis.

[. These weights assigned the individual metrics reflect their predic-
, tive value with respect to the particular quality factor. Several

}‘~ iterations of this procedure are required to eliminate the metrics

. which do not show significant correlation. If time had permitted,

initially a complete factors analysis would have been performed to

group related metrics with specific quality factors. This was done
intuitively during the process of establishing the metrics.

‘ o There is a serious misinterpretation which can be made at this point.
S J The utility of the derived normalization function is very dependent upon
the sample used. In the case of this study, the two systems used,

‘ : ‘ 7-15

i
!
i
f

i R

e

T

while two different applications, were developed in the same environment,
according to very strict standards and conventions, using the same language,
machine, operating system, development tools, etc. For this reason many
metrics, when applied to all of the modules, showed no variation in measure-
ments. A simple example is the metric (SI.2), use of a structured language
or structured preprocessor. JOVIAL (J4) was considered a structured language,
although according to a very strict definition it is not, because;

o Several of the structured programming constructs are implemented
within the language.
It is a block oriented language
o Our standards and conventions restrict the use of constructs which
violate some of the structured programming philosophies.
Every module, then, received a score, or measurement, of 1 for this metric.
Since this measurement showed no variation, the regression analysis indicated
there was no correlation between this metric and the quality factor rating.

If this result is interpreted absalutely, then one could conclude that the
use of a structured language or structured preprocessor has no effect or
correlation with the resulting maintainability of the system. This is
obviously an incorrect conclusion. What the result does mean is that for
the application in which the metrics were applied and the regression analysis
was performed, the variability in the maintainability of the modules in a
system or between systems is not a function of the use of a structured
language. The reason is that the use of a structured language is a standard
to which there is strict adherence.

Our expectation is that if these metrics and methodology were applied to other
system developments in other environments and, for this particular example,

in environments where the use of a structured language or structured pre-
processor varied, a significant correlation between this metric and the
resulting rating of maintainability would be indicated.

Thus, the use and interpretation of the normalization function is critical
to its effectiveness. This concept is considered in more depth in Section 9.

7-16

t

To illustrate the methodology an example will be presented in this section.
Complete data from the regression analyses are provided in Appendix C.

Using the quality factors which were supported with historical data and

for the metrics which could be applied at the module level (see Table 7.2-2),
several analyses were performed. These analyses included analyzing indi-

vidual metrics versus the rating of a factor and a multiple regression

analysis of the k-tuple of metrics relating to a factor. In certain cases
individual elements of a metric were also analyzed on a single basis with

a quality factor when high correlation was expected. The methodology to

perform any one of these analyses was the same. An example of the analysis

of one metric, SD.2, effectiveness of comments measure, and its relation-

ship to the quality factor, maintainability, will be given to illustrate :
the methodology. f

A sample of modules from System B was used to develop the normalization %
function relating metric, SD.2, individually to maintainability.

Standard linear regression techniques ([THAYT76], [FLEIT66], [LABOV66], [COOLHGZj
[POOLL77], [PADED56], [KUESJD73]) were used. Routines to perform the analysis wey
developed on a PDP 11/40 and Tektronix 4051 terminal. Since the metric and
the quality factor rating were normalized positive valurs, all data points
fall within the positive quadrant of a graph. The regression line was
forced through the origin to support this concept.

Using the metric table, Table 6.2-1, the measures associated with the
effectiveness of comments metric were collected from a sample of modules.
Historical operations and development data was used to determine the
number of fixes to each module in the sample and the number of man-days ,
expended to accomplish these fixes. A rating of maintainability was i
then calculated for each module by the following formula:

MD
i_ i
rM']/(_“1)

7-17

Total number of man-days expended on fixes to module i.

g "
e
"

Total number of fixes to module i.

b~
ande
t
FIPOETIAY == PNy PR

Normalized rating of maintainability for module 1.

The rating of maintainability then is based on the average number of man-
days expended to make a fix to the software.

For the sample chosen, the distribution of occurrence for the metric

value and the rating are shown in Figure 7.3-1 and Figure 7.3-2 respectively.
The histogram is generated by accumulating the number of data point falling
in the interval k < X <k + 0.1, where k = 0, 0.1, 0.2,..., 0.9 and dividing by ;%
the total number of modules in the sample to arrive at a frequency of occur- 3
rence figure.

The independent variable is the metric value determined for each module.
The dependent variable is the rating value determined for each module.

The resulting regression equation is the normalization function. Its form
in the case of one independent variable is:

- e
™M Ay

where M is the predicted rating of maintainability, ay is the predictor

coefficient for the metric value, m?, in this case metric $SD.2, m?o'z.

Figure 7.3-3 illustrates the regression line determined for this metric:

D.2

- S
™ 0.46mi

The dashed lines represent a 90 percent confidence interval for the sample.
The standard error of estimate is 0.15. The correlation coefficient for .
the regre - "on 1ine is 0.92. This represents a significant correlation '
between :ne metric and the rating of maintainability.

T PR

100

80
60
FREQUENCY
OF -
OCCURRENCE AVERAGE METRIC VALUE = .74 -
(%) 40
20

0 [} l 1

1
o .1 .2 .3 .4 5 6 .7 .8 .9 1.0

SD.2 EFFECTIVENESS OF COMMENTS MEASURE

1585

Figure 7.3-1 Frequency Distribution for Metric SD.2

7-19

t

o e ™ e fesannl

- v-‘_...———.&--_

e

100
|
80 {
{
FREQUENCY 60 -
(3 4!
W&‘;R)RE"CE ~ AVERAGE RATING VALUE = .32 - |
40 |
20
0 . i 1 1 4 | 1 o |
o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
ry RATING OF MAINTAINABILITY ';
1587

Figure 7.3-2 Frequency Distribution for "

7-20

[}

Loy
sy R

<+ et —

£y
PR

LU

. - P
- _.A‘.._.___‘-_ R

-

»
1
o
£
]

™
]

AVG MAN-DAYS

TO FIX

1.0
.8
®
P
PR
6 -
P
//
- / -— rp = 46mSD.2
/ . s
. /'
-
- ~
-~

.2
0 A 1 1 A 1 {(] A 1]

o a1 .2 .3 4 .5 6 .7 .8 .9 1.0
SD.2 EFFECTIVENESS OF COMMENTS MEASURE

1586

Figure 7.3-3 SD.2 (Implementation) Normalization Function

- A.

L akmam o n U e il i ealme e .

S P ST S

This information is displayed in Table 7.3-1. This table is an excerpt
from Table C-8, where the results of the analyses of all of the metrics
related to maintainability are described.

This example will be continued in paragraphs 7.4 and 7.5 to illustrate

the methodology of validating the metrics and arriving at a figure of

merit. The amalysis of data points which fall outside the 90 percent
confidence interval will be discussed in paragraph 7.4. The histograms

are provided to allow some evaluation of the sample. In this example,

all metric values were above 0.5. While we would have liked to had a better
range of metric values for the sample, other modules measured in System B
fall within this same range. This represents an environmental limitation
to our study because comments are strongly emphasized by our standards

and conventions.

Appendix C contains the remainder of the results of the normalization
function development. Tables such as Table 7.3-1 provide summary results
of the normalization functions for the groups of metrics related to a
quality factor, for each individual metric related to a quality factor,

and in some instances, selected metric elements related to a quality factor.
Remarks highlight specific results in Appendix C. Where regression analysis
was not performed, the summarized metric values are provided for informa-
tion and there is an indication as to the reason why no regression analysis
was performed.

1 '
Table 7.3-1 Regression Analysis Summary i
METRIC MAINTAINABILITY
' SYSTEM B SD.2 RATING 4
'Iéml VIDUAL AVERAGE .75 .32
TRIC
j STD DEV .13 .15 -
PREDICTOR .46
COEFFICIENT
STANDARD .15 ;
ERROR OF
ESTIMATE i
CORRELATION .92
COEFFICIENT ’
'~

7-23

7.4 VALIDATION PROCESS

The process of validating a normalization function wili be described and
examples presented. Appendix C contains a summary ‘of the complete set

of data used during the validation phase of this effort.

The methodology used for validating a normalization function is as follows:

e The normalization function derived in paragraph 7.3 predicts a rating

' for any measurement k-tuple. There is a certain variance associated

E with the predicted rating and actual rating.

® a 90% confidence interval is determined based on the normalization
function, the variance, and the sample. Another subset of modules
is then plotted and depending on their compliance with the confidence

3 interval, the normalization function is accepted or rejected.

3 ® In the case where a normalization function is rejected, several
actions can be taken:

- Conduct a factor analysis to determine the minimum number of

: dimensions needed to describe the relevant information con-

tained in the original measurements.
- Reevaluate the metrics and their units to ensure they do not

’ present possible ambiguities in their measurement of the cri-

' terion or quality factor.

‘ - Evaluate the correlation coefficients of the metrics. While a

metric may logically be an important characteristic of a software

{ product, it may not correlate well and therefore is not a consis-
tent predictor of the final quality of the software.

~ Reestablish a normalization function by utilizing regression
analysis techniques.

- Evaluate the quality factor rating (its representative distribution).
It may not be linear itself and therefore cause problems in estab-
lishing a Tlinear relationship with the associated metrics. Consider-
ation of nonlinear regression will be given in this case.

-
-~ PRSI
———— e

NN
[

7-24

B e T v SO e g e B PN A

In the example presented in paragraph 7.3, a linear function for the metric
SD.2, effectiveness of comments, and a 90% confidence interval were deter-
mined using a subset of modules of System B. The corresponding metric data
and maintainability rating data were compiled for a subset of modules of
System A. This data is summarized in Table 7.4-1.

Table 7.4-1 Validation Data Summary for Maintainability

SYSTEM A METRIC SD.2
Individual | Average 77
metric. Range .6-.8
analysis v dev 018

Average .306
Rating Range .21-.40
Std dev .068
gormalization
unction
accepted/ Accepted
rejected

Plotting the points on the graph presented in Figure 7.3-3 results in

Figure 7.4-1. Al11 of the data points fall within the 90% confidence inter-
val. Recalculation of the regression line using all of the data points does
not change any of the values substantially. Thus, this normalization function
is considered validated.

Note that there was one point in the initial sample which fell outside the
90% confidence interval. An evaluation of this module revealed that while
several fixes had been made to the module, they all were related to a basic
problem. Thus, the average time to make the several fixes was quite low,
resulting in the unusually high rating. Based on this explanation, we felt
it was not justified to reject the predictor coefficient determined. During
the validation for several metrics, data points fell outside of the 90%
confidence interval. Those modules were evaluated for any abnormalities
that would justify their deviation from the norm. Where justifications were
not found, the normalization function was rejected. In the cases where time,
resources, and data permitted, the steps described in the beginning of this
paragraph were taken.

7-25

ot e AT ey At T o VNG RIS ¢

SaCALD. s Ve e e n i 2 M i e

Abadin

T
1

AVG MAN-DAYS
TO FIX

PREDICTOR COEFF:
AVG m:

RANGE OF m:

STD DEV:

AVG r:

STD ERROR OF EST:

CORR COEFF:

7-26

1.0

0 1) VR R | 141/1 A G |
o .1 .2 .3 .4 5 .6 .7 .8 9 1.0

$D.2 EFFECTIVENESS OF COMMENTS MEASURE

.46
.74
.5-1.0
A3
.32
.15
.92

Figure 7.4-1 validation of SD.2

1588

I DS

AR At ian et ittt o

The statements made in paragraph 7.2 qualifying the interpretation of the
normalization function should be reemphasized here. The sample, both in
size and variation in nature, limits the general applicability and precision
of the results. The methodology established and the results achieved,
nevertheless, are valuable.

For instance, of the three metrics quantifying self-descriptiveness (SD.1,
$D.2, SD.3), only SD.2, effectiveness of comments, correlated well with
maintainability. SD.1, a measure of the quantity of comments, varied insig-
nificantly in our sample. The mean was .25 (the percent of comments per
card was 25%), ranging essentially between .20 and .30. This lack of varia-
tion in the measurements meant no correlation with maintainability could be
established. The reason for this lack of variation is our standards and
conventions establish very strict guidelines on what situations should be
commented. This does not mean that SD.1 would not bhe a valuable metric in
another environment where the standards are not as strict. It does mean that
in our environment, where the percentage of comments/cards in programs are

fairly standard, no variation in maintainability is attributable to that metric.

$D.3, descriptiveness of implementation language, did not correlate well with
maintainability either. Again, the main reason was the lack of variation in
the measurements caused by our strict standards on the format of the programs
and naming conventions for variables and a specific software support tool
(GEDIT) used to preprocess all source code and indent, block, and number the
code in a logical, standard manner. Variation in this metric would be found
between system developments or in an environment where strict standards or
automated tools are not used.

The summarized data and results of the validation process for these three

metrics, as well as all of the other metrics for which normalization functions
were derived, are in Appendix C.

7-27

o .

Caananie o,
B e i, b

7.5 FIGURE OF MERIT PROCEDURE

The intent in deriving a figure of merit is to provide the SPO with an overall
measure for each quality factor. The figure of merit will be normalized
according to the standard units of measurement chosen for that factor. In
keeping with our example, the figure of merit for maintainability will be in :
terms of the average time to fix.

i s o,

The figure of merit procedure is basically the use of the normalization function §
as a predictor of the level of quality being achieved for a quality factor.

Thus, if a particular measurement k-tuple is applied at a specific time during

the development phase, the values obtained can be inserted in the normalization
function for that quality factor for that phase and a figure of merit is determined.

This figure of merit can then be evaluated relative to the level of quality
specified by the customer. If the figure of merit is below the specified
level, evaluation and/or corrective actions should be initiated. If the

figure of merit is above the specified quality level, then some degree of i
} confidence that the development effort is progressing satisfactorily with
respect to the required software qualities is derived. . {

B et s L s e

Figure 7.5-1 continues the example used previously. The normalization g
function is: i

- SD.2
‘ ™ .46 my

P If the system (or module) measurement for SD.2 was found to be .75 during the

implementation phase of the development, a predicted ratina of .345 results. If
:i the SPO had specified that the required maintainability of the system was an

: T* average time-to-fix of one man-week (1/5 man-days = ry = -2, identified in

¢

{
{
¥

Figure 7.5-1 by point A), he has approximately an 84% level of confidence that
. the maintainability of his system will be better than he specified. This ,
t ' figure is arrived at using the predicted rating, the specified rating, and .
’ fs the standard error of estimate determined during the regression analysis.
P, Figure 7.5-2 illustrates the derivation of the confidence level.

7-28

R o e N i di el e

e R fibiaci st v i R T o TP Ty Ty

..,._-;....

1.0
- -
.8
7" ' 3 "",,"f
] 1 .6 — :
e - - - ~ i .46 w302 !

ey

-y

SD.2 EFFECTIVENESS OF COMMENTS MEASURE

Figure 7.5-1 Figure of Merit Procedure

i - (SPECIFIED RATING) .2

ST MEAN = .345 (PREDICTED RATING)
] - STANDARD DEVIATION = .15 (STANDARD ERROR OF ESTIMATE)
LEVEL OF CONFIDENCE = Pr {x z.z} = .84 (SHADED AREA)

1590

i WY
- J’ LR
- —

Figure 7.5-2 Determination of Level of Confidence

7-29

’
¥
13

|
)

&

{

|

A

¢

This relationship between the figure of merit derived frem the metrics and
the quality level specified by an SPO is elaborated upon in Appendix E,
which presents a preliminary handbook for SPOs on the specification of
software qualities.

VW T YT

SECTION 8]
METRIC DATA COLLECTION

8.1 METRIC APPLICATION

While the historical data and sample size prevented the establishment of
normalization functions for all of the quality factors, a significant benefit
of the study was the experience gained in applying all of the metrics to the
systems. Whether regression analysis was to be performed or not, the metric
data was collected for all of the metrics.

i,

It was found that applying the metrics to the various software products
provided considerable insight into the design and implementation of the ;
software. This reflects the n-tuple (indicator 1ights) concept described
in paragraph 7.1.

The purpose of this section is to identify where the metric data was found,
how it was collected during this study. and what automated tools are available
that could be used to collect the data in future applications.

During this effort most metric data was collected manually. Some automated
tools were available and used. Other tools were identified that would provide
metric data. Table 8.1-1 provides summary information on the collection
techniques used.

Table 8.1-1 Summary of Collection Techniques

DEVELOPMENT
PHASES REQUIREMENTS DESIGN IMPLEMENTATION

Number of
elements 25 108 157

Collected

during this

study:
Manually 25 100 144
Automatically - (0%) 8 (7%) 13 (8%)

Can be
automatically
checked 6 (24%) 30 (28%) 83 (53%)

8-1

Thus, over 40% of the metric data can be collected via automated means. AS
more formal languages and techniques avolve for preparing requirements
specifications and design specifications, a larger percentage of automated
coilection would be expected. The remaining metric d. “a which is manually
collected, in general, can be done quite routinely by trained personnel.

There is the typical 10% of the data which requires a significant data collec-
tion effort. As experience with the metrics is gained, a determination of the
significance of those metrics and whether they are worth the data collection
effort required can be made.

Table 8.1-2 identifies the sources of the metric data and the number of
elements which use that source for metric data, e.g., the system requirement
specification is utilized as a source of data for 23 measurements (elements).
More than one source may be used to arrive at a measurement, so the totals
between this table and Table 8.1-1 do not directly correspond.

Table 8.1-2 Source Frequency

NUMBER OF TIMES

SOURCES USED AS SOURCE
Software System R.:quirements Specification 23
Standards and Conventions 8
Preliminary Design Specification 13
Preliminary Design Review Material 2
Detailed Design Specifications 98
Critical Design Review Material 2
Validation and Accep:ance Test Specification 5
User's Manual/Operator's Manual 25

Interface Control Document
Data Base Management Plan

Problem Reports 2
Source Code 135
Training Material 2

Programmer's Notebook

-~
- —

SECTION 8
METRIC DATA COLLECTION

8.1 METRIC APPLICATION

While the historical data and sample size prevented the establishment of
normalization functions for all of the quality factors, a significant benefit
of the study was the experience gained in applying all of the metrics to the
systems. Whether regression analysis was to be performed or not, the metric
data was collected for all of the metrics.

It was found that applying the metrics to the various software products
provided considerable insight into the design and implementation of the
software. This reflects the n-tuple (indicator 1ights) concept described
in paragraph 7.1.

The purpose of this section is to identify where the metric data was found,
how it was collected during this study, and what automated tools are available
that could be used to collect the data in future applications.

During this effort most metric data was collected manually. Some automated
tools were available and used. Other tools were ‘dentified that would provide
metric data. Table 8.1-1 provides summary information on the collection
techniques used.

Table 8.1-1 Summary of Collection Techniques

DEVELOPMENT
PHASES REQUIREMENTS DESIGN IMPLEMENTATION

Number of
elements 25 108 157

Collected

during this

study:
Manually 25 100 144
Automatically - (0%) 8 (7%) 13 (8%)

Can be
automatically
checked 6 (24%) 30 (28%) 83 (53%)

8-1

The frequency with which the sources are used indicates their importance
to the resulting software end product and the quantifiability of their
contents. For example, the source code is most frequently used and the 7
detailed design specification is second most frequently used. The importance i
of the user's/operator's manual is indicated by its relatively high use. The
relatively high use of the software system requirement specification and the
preliminary design specification emphasizes the fact that some measures can
ba applied very early in the development phase.

Appendix D provides a detailed examination of each measure, identifying where
it was collected for this study and what type tool is available to automate
its collection. The next two paragraphs briefly describe the automated tools
used to collect the metric data during this study (paragrabh 8.2) and those
tools applicable to this task (paragraph 8.3) but not available during this ;
study.

In Appendix D, examples are used to highlight the procedures and tools used
to determinz the measures. To illustrate the contents of this appendix, the
following example is provided:

An element of the design structure metric is based on the number of
modules which do not have a single entrance and a single exit (SI.1(6)).
During the design phase of a software development, an example of an
automated tool which provides data for this measure is the Integrated
Software Development System (GE/ISDS), described in paragraph 8.2.

Using design charts in machine readable form, GE/ISDS performs- various
analyses on the design of individual programs. One such analysis
identifies routines which have multiple entrances and exits. An example
of a design chart and the resulting automated analysis is shown in
Figure 8.1-1.

Appendix D contains many other such examples.

8-3

SRR~ T O

. . BRI .o S T e e 1 T ST T e~ —mwpare — e

e Audeamialacy acar. o

i o

ubysag Bupang bujpyoey) spaepues pajewoany |-|°g 34nbyy

(Lusuzs) 1

TR,
D b L
ST H AR
\ 228729

ON

40¥y3

. - .J S$3A

G473y
H3HL0 3H!

RED

WIATCTI 3NLT ANALAD (ND) 1 3owd ON

oFioiid

: ToEIEe Zleg TN
Lli-dei~11 P 3lod (S8 : TR] N3 334
SIATONG 32020 Zn T s TIGEmel
Tcs
RENE- R E
ML oe3
15509
: : o - N = R T -

8.2 TOOLS USED FOR DATA EXTRACTION

The following software support tools were used during this study to auto-
matically collect metric data. Examples of outputs from the tools are in
Appendix D corresponding to the measures which they provided.

A brief overview oriented toward describing the capabilities of each tool
is provided. The intent in describing these tools and providing examples
of their output in Appendix D is to emphasize that automated metric appli-
cation is possible early in the development phase.

8.2.1 GE/INTEGRATED SOFTWARE DEVELOPMENT SYSTEM (GE/ISDS)
GE/ISDS is an integrated system of software support tools based on a common i
data base of software development information. Current capabilities emphasize
analyses utilizing machine readable design charts. Some of the automated
analyses include analysis of the design charts for compliance with standards,
flow path, minimum number of tests required, and connectivity. Prototype ;
versions of several other tools include methods for using structured pro-
gramming constructs in flowcharts, interactive data base usage/structure
definition, a measure of program complexity based on control structure and
variable usage, and a formalized test procedure language for thorough
testing of program segments ([CHANP76], [RICHP74], [RICHP76]).

8.2.2 CODE AUDIT ROUTINES (GJSUMRY/ATP)

These routines provide a profile of software characteristics for JOVIAL (J4)
code. Included in the profile for each routine are counts of the number of
cards, statements, procedures, declarations, comments, IFs, FORs, direct code
statements, GOTOs, breaks from loops, operators, operands, delimiters, and
other specified JOVIAL constructs ([ALGEC77]).

8.2.3 CONFIGURATION MANAGEMENT SYSTEM
As an aid to the strict configuration control of the development of software and ;
any changes made, this system maintains a current status of any problem reports

recorded against a routine. The system provides a log of any changes made and
actions taken with regard to the software being developed.

8.2.4 REQUIREMENTS TRACE ROUTINE
This routine maintains a current list of performance requirements identified
with itemized software system requirement specifications.

The impact of using these tools during this study was quite significant. Far
less data collection would have been possible if all data collection had been
done manually. The advantages in accuracy and manpower savings of automated
data collection stresses its importance to the application of metrics.

8.3 OTHER TOOLS APPLICABLE TO METRIC DATA COLLECTION

Several other software support tools have been identified which appear to be
applicable to metric data collection. A brief description of several will be
provided in this section. The intent of i:'s section is not to provide a support
software tools survey, so the descriptions will be generic in nature. Examples
of available tools will be mentioned.

8.3.1 REQUIREMENTS SPECIFICATION LANGUAGE/ANALYZER

The underlying concept of this tool is that if the requirements specification
is written in a formal language, some form of analyses can be made on the
specification. The analyses that can be done that relate to our metrics fall
within the completeness and consistency areas. Examples of this tool are
PSL/PSA [TIECD76] and RSL [BELLT76].

8.3.2 PROGRAM DESIGN LANGUAGE/ANALYZER

Consistent with the concept expressed above, if the design specification is
written in a formal language (PDL), some analyses can be automatically performed.
GE/1SDS provides these type of capabilities based on design charts. Planned
enhancements are to provide the same analysis capabilities for a PDL. Some
examples of work in this area are the PDL [PROG75] concept originated by IBM
and the HOS concept [HAMIM76].

8.3.3 AUTOMATED VERIFICATION SYSTEM

These support software tools involve instrumenting source code to measure test
effectiveness. The structure of the code, as well as path usage and time data,
is analyzed. Some assistance in generating test data is provided. Examples of

8-6

e s SJRPveTpeay ey sty o

tools in this group include FLOW [RICHP76], ANALYZER [NBS74], NODAL [NODA75],
PET [PET72], and JAVS ([BROON76], [MILLE74]).

8.3.4 TEST PROCEDURE LANGUAGE

This tool is currently under development and is based on the use of a test pro-
cedure language (TPL) to formally state and document test procedures and a
VERIFIER to apply the test procedures to the target modules or system. The
test procedures are a deliverable product of the software development process
and are used for both initial checkout and subsequent regression testing of
target program modifications [PANZD76].

8.3.5 EXECUTION ANALYZER

Considerable information is gained by executing code under various loading
conditions. A post execution routine could provide automated analysis and
reports of pertinent metric data based on the execution. Such information
as run time, core usage, module link-time and 0S 1ink-time are some of the
examples indicated in Appendix D that could be reported via an automated
tool.

8.3.6 CONSISTENCY CHECKER

This type tool provides the capability to identify various consistency measures
relating to data, variable usage and initialization as well as others. Con-
sistency checking can be done at the code level [RAMAC75] or at a specification
level, such as extensions to PSL/PSA would provide.

8.3.7 DATA BASE ANALYZER .

Analysis can be performed on the data base via‘tools such as a data definition
language processor or a data base optimizer. The'ahalyses center on data
usage, data structure, and data redundancy.

These tools represent a sample of those available. The major concern would be
of effectively using a subset of these tools in a software development environ-
ment. An integrated concept would be required.

e s st

s

ABERD72
ACQU71
» AIRF76
L ALGEC77
AMORW7 3

BELLD74

B ol o ot

BELLT76

BENSJ76

= BOEHB73a
i

BOEHB76
‘ BOEHB73b
E BOLEN76

BOULD61

2 { BRADG75
BROON76
BROWJ73

BROWP72

REFERENCES

Abernathy, D.H., et al, "Survey of Design Goals for Operating Systems",
Georgia Tech, GITIS-72-04, 1972. 1

"Acquisition and Use of Software Products for Automatic Data Processing
Systems in the Federal Government", Comptroller General of the U.S.,
Report to the Congress, June 1971.

it st

“Afr Force Systems Command", Aviation Week & Space Technology, 19 July 1976. !

Algea, C., "ATP - Analysis of JOVIAL (J4) Routines", Internal GE Working
Paper, March 1977.

Amory, W., Clapp, J.A., "An Error Classification Methodology", MITRE Tech
Report, June 1973.

Bell, D.E., Sullivan, J.E., "Further Investigations into the Complexity of
Software", MITRE Tech Report MTR-2874, June 1974.

Bell, T., et al, “An Extendable Approach to Computer-Aided Software Require-
ments Engineering”, 1976 Software Engineering Conference.

Benson, J., "Some Observations Concerning the Structure of FORTRAN Programs®,
International Symposium on Fault Tolerant Computing, Paris, June 1975.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.S., Merritt,
N.J., "Characteristics of Software Qualfty”, Doc. #25201-6001-RU-00, NBS
Contract #3-36012, 28 December 1973.

Boehm, B., Brown, J., Lipow, M., "Quantitative Evaluation of Software
Quality", 1976 Software Engineering Conference.

Boehm, B.W., "Software and its Impact: A Quantitative Approach”, Datamation,
April 1973.

Bolen, N., "An Air Force Guide to Contracting for Software Acquisition",
NTIS AD-A020 444, January 1976.

Boulanger, D.G., "Program Evaluation and Review Technique", Advanced Manage-
ment, July-August 1961.

Bradley, G.H., et al, "Structure and Error Detection in Computer Software",
Naval Postgraduate School, NTIS AD-AO14 334, February 1975.

Brooks, N., et al, "Jovial Automated Verification System (JAVS)", RADC-
TR-20, February 1976.

Brown, J.R. and Buchanan, H.N., "The Quantitative Measurement of Software
Safety and Reliability”, TRW Report $5-73-06, August 1973.

Brown, P., "Levels of Language for Portable Software", Communications of
the ACM, December 1972.

Ref-1

X CASEJ74 Casey, J.K., "The Changing Role of the In-House Computer Application
i Software Shop", GE TIS #74AEG195, February 1974.

CHANP76 Chang, P., Richards, P.K., "Software Development and Implementation Aids",
GE TIS #76CISO1, January 1976.

CHENL74 Cheng, L., Sullivan, J.E., "Case Studies in Software Design", MITRE Tech
! Report MTR-2874, June 1974.

L CLAPJ74 Clapp, J.A., Sullivan, J.E., "Automated Monitoring of Software Quality",
’ Proceedings from AFIPS Conference, Vol. 43, 1974.

COHEA72 Cohen, A., "Modular Programs: Defining the Module", Datamation, March 1972.

COMP69 “Computer Program Development and Configuration Management”, AFSCF Exhibit
%; 375-2, March 1969.

: COMP66a “Computer Program Development and Configuration Management for the Manned
| Orbit Laboratory Program", SAFSL Exhibit 20012, September 1966.

{ COMP66b “Computer Program Subsystem Development Milestones®, AFSCF SSD Exhibit
f: 61-478, April 1966.

CONF64 "Configuration Management During Definition and Acquisition Phases",
; AFSCM 375-1, June 1964.

CONF66 “Configuration Management of Computer Programs", ESD Exhibit EST-1,
Section H, 1966.

CONNJ75 Connolly, J., “Software Acquisition Management Guidebook: Regulations,
Specifications, and Standards", NTIS AD-A016 401, October 1975.

SR

‘ COOLW62 Cooley, T., Multivariate Procedures for the Behavioral Sciences, John
| Wiley and Sons, Inc., N.Y., 1962.

i~ e L A

L]

CORRA74 Corrigan, A.E., "Results of an Experiment in the Application of Software
Quality Principles”, MITRE Tech Report MTR-2874, June 1974.

o CULPL7S Culpepper, L.M., "A System for Reliable Engineering Software”, International
s Conference on Reliable Software, 1975.

DAVIC76 Davis, C., Vick, C., "The Software Development System", 1976 Software
Engineering Conference.

DAVIR73 Davis, R.M., "Quality Software can Change the Computer Industry Programs
Test Methods", Prentice-Hall, 1973, Chapter 23.

: A DENNJ7O Denmnis, J.B., Goos, G., Poole, J., Gotlieb, C.C., et al, “Advanced Course
‘ : on Software Engineering", Springer-Verlag, New York 1970.

I i o i A, oif Sninay Aulibah SIS JhhJRNR A
- - Y
R -

B M

‘ Ref-2

BN VI B ST SAPEIRI

DIJKE69a Dijkstra, E.W., "Complexity Controlled by Hierarchical Ordering of)
Function and Variability", Software Engineering, NATO Science Committee
Report, January 1969.

DIJKE72 Dijkstra, E.W., "The Humble Programmer®, Communfcations of the A(M,
October 1972.

. DIJKE69b Dijkstra, E.W., "Structured Programming”, Software Engineering Techniques,
! NATO Science Committee Report, January 1969.

DIOKE72 Dijkstra, E.W., "Notes on Structured Programming” ," Structured Programming,
Dahl, Dijkstra, Hoare, Academic Press, London 197Z.

DOCU74 “Documentation Standards", Structured Programming Series Volume VII and
Addendum, RADC-TR-74-300, September 1?24 and April 1975,

DODM72 “DOD Manual for DOD Automated Data Systems Documentation Standards", DOD
Manual 4120.17M, December 1972.

DROSM76 Drossman, M.M., "Development of a Nested Virtual Machine, Data Structure
Oriented Software Design Methodology and Procedure for its Evaluation,
USAFOSR/RADC Tech Report, 11 August 1976.

DUNSH77 Dunsmore, H., Ganon, J., "Experimental Investigation of Programming

gompIexity“, Proceedings of ACM/NBS Sixteenth Annual Technical Symposium,
une 1977.

’ EDWAN75 Edwards, N.P., "The Effect of Certain Modular Design Principles on Test-
‘ ability", International Conference on Reliable Software, 1975.

ELEC7S "The Electronic Air Force", Air Force Magazine, July 1975.

Eo ELSHJ76 Elshoff, J.L., "Measuring Commercial PL/1 Programs Using Halstead's
! Criteria", SIGPLAN Notices, May 1976.

ELSHI76b Elshoff, J., "An Analysis of Some Commercial PL/1 Programs“, IEE Trans-
actions on Software Engineering Volume SE-2, No. 2, June 1976.

ENDRA7S Endres, A., "An Analysis of Errors and their Causes in Systems Programs",
' International Conference on Reliable Software, 1975.

{ FAGAM76 Fagan, M., "Design and Code Inspections and Process Control in the Develop-
i ment of Programs", IBM TR 00.2763, June 1976.
: FIND75 “Findings and Recommendatfons of the Joint Logistics Commanders”, Software
4 ot Reliability Working Group, November 1975.
- FITZA76 Fitzsimmons, A., Love, T., "A Review and Critique of Halstead's Theory of
. Software Physics", GE TIS #761SP004, December 1976.
N FLEIJ72 Fleiss, J.E., et al, "Programming for Transferability", RADC-TR-72-234,
' September 1972.

3 Ref-3

T A (e W s e W R 3] WA S TEDY TP

FLEIT66

GILBT76

G00DJ74

GO0DJ75

GOvVE74

HAGAS75

HAGUS76

HALSM77

HALSM73

HALSM72

HAMIM76

HANEF72

HODGB76

JONEC?7

KERNB74

KESSM70

KNUTD68
KNUTD71

Ref-4

el e

Fleishman, T., "Current Results from the Analysis of Cost Data for
Computer Programming”, NTIS AD-637 801, August 1966.

Gilb, T., Software Metrics, Winthrop Computer Systems Series, 1976.

Goodenough, J., "Effect of Software Structure on Software Reliability,
Modifi?g;lity. and Reusability: A Case Study", USA Armament Command, .
March . j

Goodenough, J., "Exception Handling Design Issues", SIGPLAN Notices,
July 1975.

"Government/Industry Software Sizing and Costing Workshop-Summary Notes",
USAFESD, 1-2 October 1974.

Hagan, S., "An Air Force Guide for Monitoring and Reporting Software
Development Status", NTIS AD-A016 488, September 1975.

Hague, S.J., Ford, B., "Portability-Prediction and Correction”, Software
Practices & Experience, Vol. 6, 61-69, 1976.

Halstead, M., Elements of Software Science, Eisevier Computer Science
Library, N.Y., 1977.

Haléﬁea?§7n., "Algorithm Dynamics", Proceedings of Annual Conference of
’ 3.

Halstead, M., "Natural Laws Controlling Algorithm Structure”, ACM SIGPLAN,
February 1972,

Hamilton, M., Zeldin, S., "Integrated Software Development System/Higher
Order Software Conceptual Description”, ECOM-76-~0329-F, November 1976.

Haney, F.M., "Module Connection Analysis - A Tool for Scheduling Software
Debugging Activities", Proceedings of the 1972 Fall Joint Computer
Conference, Vol. 41, Part 1, 173-179, 1972.

Hodges, B., Ryan, J., "A System for Automatic Software Evaluation", 1976
Software Engineering Conference.

Jones, C., "Program Quality and Programmer Productivity", IBM TR 02.764,
January 1977,

Ka;?;?ha?672.. Plauger, P., The Elements of Programming Style, McGraw-
1] .

Kessler, M.M., "An Investigation of Program Structure", IBM Federal
Systems Division, Interna) Memo, February 1970.

Knuth, D.E., The Art of Computer Programming Vol. 1, Addison-Wesley, 1968. ¥

Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software Practice
& Experience, Vol. 1, pp 105-133, 1971.

SRR o N e N o A TUSE AT TS AP TTCPN T I

KOSAS74 Kosarajo, S.R., Ledgard, H.F., "Concepts in Quality Software Design",
NBS Technical Note 842, August 1974.

KOSYD74 Kosy, D., “Air Force Conmand and Control Information Processing in the
1980s: Trends in Software Technology“, Rand, June 1974.

KUESJ73 Keuster, J., Mize, J., Optimization Techniques with FORTRAN, McGraw-Hill,
N.Y., 1973.

LABOV66 LaBolle, V., "Development of Equations for Estimating the Costs of
Computer Program Production", NTIS AD-637 760, June 1966.

LAPAL73 LaPadula, L.J., "Software Reliability Modeling and Measurement Techniques",
MTR-2648, June 1973.

LARSR75 Larson, R., “Test Plan and Test Case Inspection Specification", IBM
TR 21.586, April 1975.

LEWIE63 Lewis, E., Methods of Statistical Analysis, Houghton Mifflin Company,
Boston 1753.

LIEBE72 Lieblein, E., "Computer Software: Problems and Possible Solutions",
CENTACS USAECOM Memorandum, 7 November 1972.

LIGHW76 Light, W., "Software Reliability/Quality Assurance Practices", Briefing
given at AIAA Software Management Conferences, 1976.

LISKB75 Liskov, B., "Data Types and Program Correctness", SIGPLAN Notices,
July 1975,

LISKB73 Liskov, B.H., "Guidelines for the Design and Implementation of Reliable
Software Systems", MITRE Report 2345, February 1973.

LOVET?76a Love, T., Bowman, A., "An Independent Test of the Theory of Software
Physics", SIGPLAN Notices, November 1976.

LOVET76b Love, T., Fitzsimmons, A., "A Survey of Software Practioners to Identify
Critical Factors in the Software Development Process", GE TIS 76ISP003,
December 1976.

MANNJ75 Manna, J., "logical Analysis of Programs",'international Conference on
Reliable Software, 1975.

MARSS70 Marshall, S., Millstein, R.E., Sattley, K., “On Program Transferability",
Applied Data Research, Inc., RADC-TR-70-217, November 1970.

MCCAT76 McCabe, T., "A Complexity Measure", 1976 Software Engineering Conference.

MCCRD72 McCracken, D.D. and Weinberg, G.M., "How to Write a Readable FORTRAN
Program", Datamation, October 1972,

PR SR SERPORY (R

MCK1J77

MCNEL75

MEALG68

MILI70

MILI68

MILLE74

MULOR70

MYERG73

MYERG75

MYERG76

NBS74
NELS:74

NELSR75

NODA75

06D1J72
OSTEL74

0STLB63
PADED56

McKissick, J., Price, R., "Quality Control of Computer Software",
1977 ASQC Technical Conference Transactions, Philadelphia 1977.

McNeely, L., “An Approach to the Development of Methods and Measures
for Quantitatively Determining the Reliability of Software", Ultra
Systems Concept Paper, February 1975.

Mealy, G.H., Farber, D.J., Morehoff, E.E., Sattley, "Program Trans-
ferability Study”, RADC, November 1968.

“Military Standard Configuration Management Practices for Systems,
%gg;pment. Munitions and Computer Programs", MIL-STD-483, December
"Military Standard Specification Practices", MIL-STD-490, October 1968.

Miller, E., et al, "JOVIAL/J3 Automated Verification System (JAVS)
System Design Document”, GRC, March 1974.

Mulock, R.B., "A Study of Software Relfability at the Stanford Linear
Accelerator Center, Stanford University", August 1970.

My$rs, G.J., "Characteristics of Composite Design", Datamation, September
973.

Myers, G.J., Reliable Software through Composite Design, Petrocelli/
Charter, 1975.

Myers, G.J., Software Reliability: Principles and Practices, John Wiley
& Sons, New York, 1976.

“Analyzer - Computation and Flow Analysis”, NBS Tech Note' 849, 1974.

Nelson, Richard, “A Plan for Quality Software Production”, RADC Internal
Paper, June 1974.

Nelson, R., Sukert, A., "RADC Software Data Acquisition Program". RADC
Paper presented at Fault Tolerant System Workshop, Research Triangle
Institute, November 1975.

“NODAL - Automated Verification System", Aerospace TOR-0075(5112)-1, 1975.

Ogdin, J.L., "Designirg feliable Software", Datamation, July 1972.

Osterweil, L., et al, “Data Flow Analysis as an Aid in Documentatfon,

?;;:rtion Generation, and Error Detection®, NTIS PB-236-654, Septamber

Ostle, B., Statistics in Research, Iowa State University Press, 1963.

Paden, D., Linquist, E., Statistics for Economics and Business, McGraw-
Hi11, New York, 1956.)

Ref-6

PANZD76 Panzl, D., "Test Procedures: A New Approach to Software Verification",
1976 Software Engineering Conference.

PARIR76 Pariseav, R., "Improved Software Productivity for Military Systems
through Structured Programming", NTIS AD-A022 284, March 1976.

PARND72a Parnas, D.L., "A Technique for Software Module Specification with
Examples", Communications of the ACM, Vol. 15 No. 5, 1972.

PARND71 Parnas, D.L., "Information Distribution Aspects of Design Methodology",
Proc IFIP Congress 1971.

PARND75 Parnas, D.L., "The Influence of Software Structure on Reliabiiit&".
International Conference on Reliable Software, 1975.

PARND72b Parnas, D.L., "On the Criteria to be used in Decomposing Systems into
Modules", Comm. of the ACM, Vol. 15, No. 12, December 1972.

PATH76 Pathway Program - Product Quality Assurance for Shipboard Installed
Computer Programs, Naval Sea Systems Command, April 1976.

PET72 “PET - Automatic Test Tool", AFIPS Conference ProceeQings. Vol. 42, 1972.

PILIM68 Piligian, M.S., et al, “Configuration Management of Computer Program
Contract End Items", ESD-TR-68-107, January 1968.

POOLL77 Poole, L., Borchers, M., Some Common Basic Programs, Adam Osborne and
Associates, Berkeley, 1977.

PROG75 Program Design Study “Structured Programming Series” (Vol. VIII), RADC
TR-74-300, 1975.

RAMAC75 Ramamoorthy, C., Ho, S., "Testing Large Software with Automated Software
Evaluation Systems", 1976 Software Engineering Conference.

REIFD75 Reifer, D.J., "Automated Aids for Reliable Software”, International
Conference on Reliable Software, 1975.

REIFD76 Reifer, D., "Toward Specifying Software Properties”, IFIP Working
’ gonf?r$g§§ on Modeling of Environmental Systems, Tokyo, Japan,
! pri .

A RICHF74 Richards, F.R., "Computer Software Testing, Reliability Models, and
;‘ Quality Assessment", NTIS AD-A001 260, July 1874.
{

RICHP74 Richards, P., et al, "Simulation Data Processing Study: Language and
Operating System Selection", GE TIS 74CIS09, June 1974.

et RICHP75 Richards, P., Chang, P., "Software Development and Implementation Aids
b T IR&D Project Final Report for 1974", GE TIS 75CISO1, July 1975.
g RICHP76 Richards, P., Chang, P., "Localization of Variables: A Measure of
; __ Complexity™, GE TIS 76CIS07, December 1976.
: Ref-7
¥
¥
Y‘

BRI/ S STt R T ey ———

ROSED76 Rosenkrantz, D., “Plan for RDL: A Specification Language Gererating
System", GE Internal Document, March 1975.

RUBER68 Rubey, R.J., Hartwick, R.D., "Quantitative Measurement of Program
Quality", Proceedings of 23rd National Conference, ACM, 1968.

SABIM76 Sabin, M.A., "Portability - Some Experiences with FORTRAN", Software-
Practice & Experience, Vol. 6, pp 393-396, 1976. '

SACI76 "SAC in Transition", Aviation Week and Space Technology, 10 May 1976.

SACKH67 Sackman, H., Computers, System Science, and Evolving Society, J. Wiley
& Sons, 1967.

SALIJ77 Salinger, J., "Initial Report on the Feasibility of Developing a Work
Measurement Program for the Data Processing Departments”, Blue Cross/
Blue Shield Internal Paper, January 1977.

SALVA7S5 Salvador, A., Gordon, J., Capstick, C., "Static Profile of Cobol Programs", .
SIGPLAN Notices, August 1975.

SAMS75 "SAMSO Program Management Plan Computer Program Test and Evaluation”,
February 1975.

SCHNN72 Schneidewind, N.F., "A Methodology for Software Reliability Prediction
and Quality Control", Naval Postgraduate School, NTIS AD-754 377,
November 1972.

SCHNN75 Schneidewind, N.F., “Analysis of Error Processes in Computer Software",
International Conference on Reliable Software, 1975.

SCHOJ76 Schonfelder, J.L., "The Production of Special Function Routines for a
Mult:-g;ch:nesLibrary”. Software-Practice and Experience, Vol. 6,
pp 71-82, 1976.

Schoeffel, W., "An Air Force Guide to Software Documentation Requirements",
NTIS AD-A027 051, June 1976.

Shooman, M.L., Bolskey, M.I., "Software Errors: Types, Distribution, Test
?335Correction Times", International Conference on Reliable Software,

SHOOM75b Shooman, M., "Summary of Technical Progress - Software Modeling Studies",
RADC Interim Report, September 1975,

SMITR74 Smith, R..”Mana?ement Data Collection and Reporting - Structured Programming

Series (Vol. IX)" RADC TR-74-300, October 1974.

SOFT75 "Software Engineering Handbook", GE Special Purpose Computer Center,
September 1975.

P T R T B . IR T i I ST S . QI

e e -
P N

SPAC76

STEWD74

SULLJ73

SUPP73

SZABS76

TACT74

TALIW71

TEICD76

THAYT76

THAYT75

USAR7S

VANDG74

VANTD74

VOLKW58

WALTG74

WALTG76

WAGOW73

“GE Space Division Task Force on Software", Engineering and Management
June 28 Report, 1976.

Steward, D.W., "The Analysis of the Structure of Systems", GE TIS
T4NED36, June 1974,

Sullivan, J.E., "Measuring the Complexity of Computer Software", MITRE
Tech Report MTR-2648, June 1973.

"Support of Air Force Automatic Data Processing Requirements through
the 1980's", SADPR-85, July 1973.

Szabo, S., "A Schema for Producing Reliable Software", International
Symposium on Fault Tolerant Computing, Paris, June 1975.

“Tactical Digital Systems Documentation Standards", Department of the
Navy, SECNAVINST 3560.1, August 1974.

Taliaferro, W.M., "Modularity: The Key to System Growth Potential",
Software Practices and Experience, July-September 1971.

Teichroew, D., "PSL/PSA A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems", 1976
Software Engineering Conference.

Thayer, T.A., Hetrick, W.L., Lipow, M., Craig, G.R., "Software Reliability
Study", RADC TR-76-238, August 1976.

Thayer, T.A., "Understanding Software through Empirical Reliability
Analysis", Proceedings, 1975 National Computer Conference.

"US Army Integrated Software Research and Development Program", USACSC,
January 1975.

VanderBrug, G.J., "On Structured Programming and Problem-Reduction®,
NSF TR-291, January 1974 (MF).

Van Tassel, Dennie, Program Style, Design, Efficiency, Debugging and
Testing, Prentice-FE'lq, Inc., New Jersey, 19/4.

Volk, W., Applied Statistics for Engineers, McGraw-Hill Book Co., Inc.,
New York, 1958.

Walters, G.F., et al, "Spacecraft On-Board Processor/Software Assessment",
GE TIS 74CIS10, June 1974,

Walters, G.F., "Software Aids Index", GE Internal Working Paper,
December 1976.

Wagoner, W.L., "The Final Report on a Software Reliability Measurement
Study", Aerospace Report TOR-0074, August 1973.

Ref-9

WEING71

WHIPL75

WILLN76

WOLVR72

WULFW73

YOURE7S

ZAHNC75

Weinberg, G.M., "The Psychology of Computer Programming", NY, Van
Nostrand Reinhold, 1971.

Whipple, L., "AFAL Operational Software Concept Development Program",

Briefing given at Software Subpanel, Joint Deputies for Laboratories
Committee, 12 February 1975.

Willmouth, N., "Software Data Collection: Problems of Software Data
Collection”, RADC Interim Report, 1976.

Wolverton, R.W., Schick, G.J., "Assessment of Software Relfability”,
TRW Report SS-72-04, September 1972.

Wulf, W.A., "Report of Workshop 3 - Programming Methodology", Proceedings
of a Symposium on the High Cost of Software, September 1973.

Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall,
Inc., Englewood Ch??s. New gersey. 1975.

Zahn, C., "Structured Control in Programming Languages”, SIGPLAN Notices,
July 1975,

Ref-10

L PR

ey ey

APPENDIX C

RESULTS OF DEVELOPMENT AND VALIDATION
OF NORMALIZATION FUNCTIONS

This appendix is organized as follows:

For each quality factor:

¢ Analysis was not performed on certain metrics. These metrics are
identified and reasons why they were not used is ygiven according
to the codes described in Table C-1.

¢ Regression analysis was performed on certain individual metrics.
A summary of the metric scores and the quality factor ratings
for the quality factor ratings for the subset of modules (System B)
used is given as well as the results of the analysis: predictor
; coefficient, standard error of estimate, and correlation coefficient.
The results are plotted on graphs.

e Based on these results, a second subset of modules (from System A)
were plotted on the same graphs as a validation of the normaliza-
‘ ' tion functions developed in the above step. A summary of the rating
and metric scores for this second subset is given for comparison.
Acceptance or rejection of the normalization function is indicated.

: '; : o Based on these results, certain metrics were chosen to be used in
"75 : the multiple regression. The results of this analysis are provided. |

o @It v s
; - - L 4TRSS ey o s mnd T T~ M AT O g——— . o o

Aok o s it D

Table C-1' Reasons for No Analysis or Correlation

CuDE

EXPLANATION

R1

R3

R4

NOT SUFFICIENT VARIATION IN DATA BASE - Very strict
standards or a restriction of the development envi-
ronment may cause a very limited range of metric
scores which would 1imit statistical significance.

NO HISTORICAL DATA AVAILABLE - It may be impossible
to derive a rating of a quality factor because sup-
porting data was not collected or the system had
not experienced the activity represented by the
quality factor. For example, if a system had not
been moved from one environment to another, there
would be no data to derive a rating of portability.

DATA BASE DOES NOT SUPPORT METRIC DATA COLLECTION -
Data may not be available in the data base which

is required to determine a metric. For example,
programmer notebooks which contained module level
testing information were not available, therefore
many of the instrumentation measures could not be
applied. There was no source available for those
metrics.

SYSTEM LEVEL METRIC - Since only two systems were
used, a larger sample is required.

st

Bagoan o

——

- - {00° - - 90° 100° =\\ - - A30 Q1S
- - *1-6L° - - T "L-L8° - - 0N SISATVNY
pit ik
t l 26° 1 8’ 66° 86° t L I9VYIAV | TWNATAIONI
2°S) 1°sd 1°dd .18 2'S) 1°8 1°dd 1'ul L°dd
| 8 3 V W31SAS
NOILYIN3NIIdWI NOIS3C = S1WbY

SSaUTIBLL0) 404 ALRULING UOLIIAL(0) eIeg 2-) aLqel

Py ‘LY :csuosedy

*so143aw buymo| 04 Y3 uo paunojuad jou spskieue uo}ssaabay

SSINLIFWYO0I

M
1

- - - %" - - - - - | A0 ws
- - - 1S - - - - - TRV | SISATAW
” THLIW
0 L 8 66° - 0 L L L | ovuav | wnazazenr
$°13 1w | 'S) §°13 | ¢°13 €13 2°13 L*2v
8 9 ¥ WAESAS
91530 SAubY

f3p14qeL |y 404 Adeumns uoj3d9[10) eleq €-J 3lqel

W ‘Y suoseay

*soja30u Bupmol o uo pawanyaad jou sisk|eue uolssasboy

c-4

ALITISVI TN

- - - - - A3Q ais
- - - - - INVY SISATWNV
INULM
L 0 L L L Y3V TYNAIAIGNI
2'Is LA E L°v 2's) L°SJ
9 % V W3LSAS
NOILVIN3W3TdWI

(penupjuo)) A31LLqet|dy 4oy Adeumng uoi3da|10) eeg €-) 3lqel

*$o1439W Buimo| |05 uo pauluojudd- Jou SLsA|eue uoLSSAU63Y

(panujjuo)) ALITIGVITIY

..1 zl'.!!l,iul.'lll.l\l.l\.,--.xlzlll-‘o
" o Cveer e e oA e a v

R S I T O DT T PR RS

. . e WO 4000
*paYdIDR UOLIIN) U0, JZ}| | MRAON 4u ¥0138{34i0)
TUOLIRIBAL0D JURDLILUBESUL ¢S)SALRUR JAYISNS WO PIIIIRY & in 40453 PIS
| w |
89S ¥ - _ uo}ssa4b9y 1
pepniw] ’ ¢ adiIt
e o 2 ASQ R3S
‘-0 66°-0 “L-ge” sbury
€0z’ L9 8L ebeaony
Iiw »e ' » » ™ » » Y Wa1SAS
s8" St t9° ” C 8| wepe)
: UejIR[3140)
9" 80" L o 8L i3s3 4o
40443 PIS
® £l sz 2 ¥£° | SIWI33580)
20324p84¢
%!’ s¢° 12 It @ 0z §2° A0 PAS
5°-£0° 66°-0 6°-62° *1-0 ‘t-0 ‘t-§" ‘t-ge° sbuny
se2” 5L9° WL L9 1§ ” w sbuadny
W £°IS 1'1s 5'13 £'13 23 1°13 8 331SAS
: 91530 . :

A34110L13Y 40) Adwmng sysA{euy uojssaubay 9-3 ajqey

c-6

_ *Sapajau Bupmo| |04 UO pauliOSaad SiSA|euR wO}SSIUDNY

m_ . _ (panupauo)) ALTTIVITRN

B tatndba iR SN

i i)

WO

1°13

SIMAON 8 WILSAS °
SINAOW V W3LSAS O

uo13ouny uoijezyieudoN (ubyisag) Y .13 -9 aunbyy

(N9IS30) 3WNSYIW T0YLINOD 3INYYITOL ¥OW¥3 (°13

= xL
XI4 OL
SAVG-NW
l
¢L
— No
-8
- O-
-0t

e
feae e ae a

uoj3ouny uojlezyjeuoN (ubisag) Yy-13 z-9 aunbyy

(N91S30) NSV IINVHITOL ¥ONUI ViVe- INdNI 213
6 8 L 9 s ¥ €

=4 Ll 1 1 I ¥ l

1

o't

8091

c-8

uoL3doung uorjezyewdoN (uoLyejudws|du] pue ubsaq) xm._.m £-0 94nby

8091

(NOILVINIWITJWI ONV N9ISIA) JunsSyIW SHO¥¥I 3D1A3Q WOYJ ANIAOITY §°13

o'L 6 8" L 9’ S’ LA € Z’ L
I) I 1 1 |

o n K2

.« _ -
m~hm EmN - -

— XI4 0L
—_— g SAVQ-NYW

s g e v gy oy < -

. rd

-

uoj3ouny uoyjezyleudoy (ubisag) ¥1°1S ©-0 unbiy

(N9IS3Q) FWNSYIW JNLINYLS NOISIA L°IS aso9t

46

c-10

o - S e oem e s e G e e

uorjouny uotjezijeudoN (ubgsaqg) xm.am G-9 3unby4

3
(N9IS3a) YNSYIW ALIX3TWOD €°IS 8091
o't 6 8 L9 S v € r A &
X14 0L
. e _ - 45 SAVG-NW
n} - . L
\\
- 49 Y,
]
; L L
3 4 g
- 0.
4 o 4ot
_w
i .
T T T TN v

gy - - Sl i I P L 3o - K. T M R PO e i Ak

gge | 3UBIH4900

uogiIviddas)

" *pa3dadde uojjIoung UOLIZ| | PMON ya 40443

UOJIRLAUL0D JuRdLSLubisUL “SESAlRuUR JayIung WoL) PBIOB[IY & €€ paRpURLS

0 0 e o | e

39S u} _ : uoysSaabay |

papniou] / / 4 / 3y

6€° 50° ob’ a2 2’ ASG P3S

‘L-0 6-L 66°-0 -4 *L-¢E° sbuey

82" 8L 9 1/ i 6° abeiany
MWL . »e »» : » » . » ¥ W31SAS

w 8L’ 8L’ £9° £8° | usiI4a0]

ML T AT

¥ % e 1y 1e” | sIsmasy jo

. 40443 PIS

£§° £s° 85" ¢ | - - (S | sIwaE14490)

. 40324paud

s1* ot° 9% o w (1% A% p3s

1-€0° 6°-5° 68°-0 6 -LL° "1-0 “1-€£° sbuny

® 9 99° L2 L9 - 6L auany
NIV | VIS £1s L°1s 13 | £13 2’13 113 & WILSAS

NOTLVINIWITdHI

(PoMuI60)) ATL|4qRL|3Y 404 Auwumng sisA|euy uoissaubay -7 alqel

*sajugaul GuiMo] |04 uo pauiLosaad SLSK|vue wetssSaubay

c-12

(penuj3uo)) ALITIGYT 1Y

(12
uo{3oung uoijezyjeuwdoN (uojejudwa |dw) 4,13 9-9 aunbyy M
(NOILVINIW3IdWI) F¥NSYIW T0Y1INOD IONWYITOL ¥OW¥3 113 18091
o't 6 8" L 9 G b ¢ ” -
12T Tg T T Tor T 1
0o - . :
o | |.
XId 0L
SAVQ-NW
¢ | n
|rg3 WS = C
- . PR NI -~ - 2 ::.,..w

v e R e
ol FRRTL Py RN, > et 4T

UOLIJUAL UOLIRZ) |GHMON (UOL]RJuama {du]) x—.um L0 3unbyy

(NOLLVINTWETINI) RNSYIN WNLOMILS NOISIO LIS 98091
oL 6 & Lr 9° 3 L2 'Y Z L

F rt=tr 1 T 1 ¥ 1 71T T

a0k }
SKT-I
—.
ﬂb
ca . -
_u .0 . 0"k S
\
7

Bl emscam uns

-

uoj{3ouny uojjezijeudoN (uoijejudwsjduy) xm.um g-) a4nbL4

(NOILVINIWITIWNI) FUNSYIW ALIXITdWOD €°IS

C-15

HB091
oL 6 8 £ 9 s v € z U
m\\\,_ I 1 1 { 1 n% o I 1
XI4 0L
SAVG-NWW
L
z&

Ghaiis TR R el e) N e ani o

Rt

¥B}3oUNy uopIez||euiey (uoLIvjuSwaidw]) dp IS -0 aunbyy

(NOTLVINIWITANF) ALIDITWIS SNIGOD 3O ASYM °IS 18084
gL 6 8 t 9" §° L 4 g r L
[~ | | GE T T T A ﬁ

e
Q
c-16

C-17/c-18 |

90" 80" €L - - e - | A3a as
8" -t -8 | v - - “1-0 - J9NVY SISATVNY
IIYLIW
9° 96 oL g 1 £9° L | I3vyav | narazani
L"3s €33 2°33 1"3S €33 2'13 1°33 .
— A g % V WILSAS
NOILVANIWI TdWI NDIS30 “

AouaLdi443 404 Auewwng uoLlda||0) eleq G-J Ilqgel

€Y ‘2d :suoseay

‘paunojuaad jou mmw»—mza uoLssaabay

AINIIOI443

- e e e - T R T e S g
- 4

N A v s

c-19

*pazZL 143N SI A3LJNJ3S |BI}SAYq °I4BMISOS U} pIJedoduaodu} d4e Suojsiaoud

21PNe 40 |043U03 SSIIJV OU JULS 043Z d43M g PuR y WIISAS Y30Q 404 VY Pue |°Jy J0j S3IUNOS JLAIaN

Py ‘28 suosedy
pau0jUdd JON sisA|euy uoissaubay

ALI¥93LINIT

TR R E N 2 A

INVY SISATWWY
UL
/N DVIIAY | TWGIAIONT

L°Wd L°91

8 % V WILSAS

N91S30 SINDY

A3i1190SN 40 Auvuming UOLIIDLLO) ®©IRg 9-)
$y csuosedy

*pAI0Saad Jou SisALoue uoyssI46ay

VERTT S

.lln)l\.lll‘ua:ll‘,fls
B VN Y A
. .

C-2§

- - - - A3@ ais
- - - - N SISATVNY
YL
€8’ 178 L €8’ IOVYIAY TYNGIAIONI
¢°WD L'WO 1°9L L°d0
9 % V W3LSAS
NOILV.INIWI1dWI

(panuijuo)) A31|lqesn 404 AJeumns uoj3dd|10) eIeq 9-J dlqel

by ‘uoseay
*pauniojudd Jou spskjeue uoissasbay

t (panutiuo)) ALTITEVSA

P - - - ——————— 4 — '\‘ll‘l“l-\llllln““cﬂll‘\
PN P PN o e AL v wre .

50° - - - = - - 90° A ais
| AL - - - - - “1-SL° I SISAWVIW
JuLW
T t L 1 £6° 8’ 66° V3NV TVNGIAIONT
L*as 2’IS ¢’SJ 1S L OW PR L1°S)
g ¥ V N3ISAS
NOILY.ININI 1dW] NS1S3a
DURUIIULEN 20j AswmENG UOLIIILL0) viRg [-) Qe
i SwosTy
*soL433 BumO[104 3Y3 uO paWuO4dd J0u SisALeuR UOLSSIUBRY
ALITISWNIVINIW o8
]
(%]

e b i s L T T T T e .o

6g° |}udidiiieo) LD} 90)

*pa3dadde uojIIUNS UO|IRZ| [QUUON 4 uoj3e|aa40) 88° fuojielaauo)
*p9333[34 UOLIIUNS UOJIRZ}{RUMON o Y 40443 PIS 82°] Jous3 pas

0 0 0 L0° 9s° L9’ U1013530)

40324padd

33S u} : vojssasbay
papn{ou[/ / / / 4 / ady3ny
60° 6L° 80° 10° 80° S0° 90" %0° 90° A3 PIS
-l |56°-€E° | €6°-L° |€8°-9° | 6°-9° | £€8°-¢" l9g°-L9" fo.-s. 98°-49° abuwy
82" s9° I4:) w 1 9 L 9L L abeasany
ONLIVY .- . P »» s s »y . a» » ¥ W3LSAS
28’ i8’ 26’ 68’ 68° 88° 16° 88° €8°|JudEd14430)

' uoj3IR|%d0)

v e st° 9t L 82’ 6i° 82’ (2°|3mmi3153 jo

40443 PIS

" 99° 9% 1A £y’ L9 1A - L9 €57 IU91D13590)

4032}padd

s1° 8L’ 80° gL oL ot 6E° 61" - 6e° 175 A3] P3S
9L°~L0° | 86°-¥" | €6°~L" | "L-G" |6°~85"] 6°-6" | 66°-0 |€8 ~¢c{| *1-£9°| 66°-0) 66°-%° abuey
2 8L’ 28’ 1/ 89° L 89" 69° 8L° 89° e abeuany

LIV 1°03 | €°as | 2°as Z°OW | vIS | E7IS LIS || ¢'OW | €°IS LIS | 9 W3LSAS
NOILVINIW31dW1 __ NOIS30

JdoueuUAULEY 404 Adeumng SisAjeuy uolssaubay g-) I1qeL

m *sOtajaw Huymo| 0 uo paumoguaad sisAieue uojssaubay

(panur3uo)) ALTTIGVNIVINIWN

- . - . - — e ——— = — \0
) ’, ~ ~ -

[

L°IS

fugg: =

uoL3oungd uotrjeziewsoN (ubrsaq) :p._m 0L-9 34nb L4
(N91S30) FuNSYIW TUNLINYLS NOIS3A L°IS

o'L 6 8" LU 9’ §° v

{ L I | | L T 1 1

|

8091

Xid4 OL
SAVO-NWH DAV

L
",

|

C-24

uoL3oungy uotjezi|eusoN (uotjejuawaidu] pue ubiLsag) We-1s (1-9 aunbyiy
(NOILVLINIWITIWI ANY N9ISIA) IYUNSYIW ALIXITdWOD €°IS

9° S° 1A £ ' L %8091

L
L L 1 P L} 1 0 | 1 T

SAVO-NVN SAV
L
t.-

XI4 OL v

1718

Uuoj3oUNJ uoLjeZ| [RUION (UOLIRIUSWD |du]) zp.mm 21-9 aunbig

(NOTLVINIWITdWI) UNSYIW JUNLINYLS NOIS3IA L°IS
o't 6 8’ L 9° §° L £ e t°

r T T 1 T 1 T T T 1

‘1

1909t

Xi4 0L

L
N,

ﬁm>a=|:¢t w><v

c-26

—

P

by e
pr1s €V =

uoLIdung uoLjezZ((ewxoN (uoLjejuswa|du) zv.Hm €1-) dunbr4

(NOILVINIWITdWI) ALIOITAWIS 3000 40 JWNSYIW b°IS
o'L 6 8’ U 9 §° v £ e’ L’

4 T 1 M\ ¥ 1 1 I 1 1

w8091

XI4 OL
SAVO-NWH 9AY

c-27

uo0}3JUNy uOLIRZ|[BUMON (UO|3R3uawd |du]) Wo-W p1-) aunbyy
(NOLLYINIWIIAWI) 34NSYIW NOILVININIIAWI HVINAOW 2 OW
0°1 6’ 8’ L 9° §° | A 15 Al L

AT L} I

€-29

uoL3oung uoijezl|ewsoy (uoLjejuswdidug) zm.om Gl-J aunbr4

) (NOILVANIWITIWI) JUNSYIW SLN3WWOD 40 SSINIAILII443 2°GS
0"l 6° 8’ L 9’ S’ 12 € A L 08091
I | T L I~ 1 | T 1 L

\

— e e
BN S VS

X14 0L
SAVQ-NVN 9AY

L
W

4

uoj3oung uorjezyjewioy (uotzequswaidur) Ne-gs 9r-) aunbiy

. (NOILYINIWITdWI) FUASYIW 3WNONV1 NOILVIN3WITdWI 10 SSINIAILAINOSIQ E°0OS

o'L 6 8’ L 9° dso9lL

G
I LAV T T LN

L
L

uoL3ound uoLjezl|euMoN (uotjejuawadw]) :r.ou L1-9 dunby

(NOILVLINIWITdWI) INSY3W SSINISIONGD L°0D

0L 6 8 L 3 & ¥ ¢ 2 08091
i P2 L 1B 1 1 T 1) 1
-7 h
g
N |
€ :
O i
- :
W _ - XI4 0l .
4 _ SAVA-NYM 9AV p
-~ -4 6 L
e !
\\ W, ",
~ 19
\
_-
- 4 {
(w} o
\\ - w
- 4
- 6 v
40t ¢

T

Gaimia Lo

I TR AT AL BN e s 1

L. oy

S0° - - 14 - - gL - A Q1S

£ -2 - - Sy -¢° = - Sy -¢° - JONVY SISATVN
LM
§¢° » . A » » e’ €6° FOVIIAY TWAIAIGN]

L°0S X3 L°X3 1°39 2°X3 L1°X3 1"39 L°OW

9 % V WN3LSAS
NOILVININI NI N9IS3d
A311191X34 40) Adeuming u0L3d3LL0) IR 6-J dlqe)
vy ‘Sy :suoseay

*$31J33u BULMO]|0) UO PIMIOJJId J0u SiSK|euR WOLSSIAEIY

ALINIBIXI W

c-32

4.

B M ks ae

e, g

k.3

bl

™
*pa3dadoe uoL3IUNS UOLIBZE | PUUON.y Mw
*pa303[ad uoL3IouUNS UOLIRZ L [PUMON,
gg: | FusiI1d480) 96" JuaLdL43aon)
uo(3e[auuo) uoL3e[aduao)
L 40443 P1S AN 40443 P3IS
. . . . JUBLIL4380)
60 0 124 22 0 LS 10351 pa.y
jos ul A oxx A oex X S o*x X3 R uolssaubay
papniou] aldLI LNl
96" §6° £6° 96° 7 96° JU3L313430)
uoL3e|ads0)
148 9L’ 6L’ L T L ajewLlsy jo
40443 P3S
96° 65° oL’ 09° 9§° s’ Jualdtijan)
‘ 40301padg
Ll el S0° ve: 60" A 60° A3Q Pas
§L°-92° €6°-99° £€8°-9° 8 -2’ 6°-89"° ‘1-0 “1-49° abuey
138 28’ 8L° 8- 69° gL’ 6L° abeuany
ONILVY £°as ¢ Qs 2°39 ' OW 2’39 2 OW 9 % V W3LSAS
NOILYINIWITdWI N9IS3d
A3LLqLxag4 404 Aqeumwng sishpeuy uotssaubay oL-3 aqel
*soL433W Buimoyioj uo pauuojuaad stsA{eue uopssaabay
ALITIEIX3IW
5, " i - NS ehene. s E ok e el

uor3oung uotjeziiewsoy (ubisag) 3z oW 8L-D d4nbLy

(N9IS3G) UNSYIW NOILVINIWITdWI ¥V INAOW 2 OW
L . g b ¢ 2 L

p” I T T
-~

R R

<adiv

g

(N91S30) ALITYYINID ¥04 NOILVINIWIIAWI 2°39
0'L 6 8" L 9 G v € 2 L
I 1 3] \. LA 1) 1 T L] 1
\
~
e
P
\\\\
tugg- = 4u -~
2'P yd
\
\
\
\
\\\\
\
m
2

uot3oung uotrjezijewuoN (ubLsaq) uu.mw 6L-9 a4nb 4

S8091

JONVH) OL
SAVQ-NVW DAY

t
i,

uot3ouny uoLjezy|eudoN (uolpjejudwa jdwi) h.N.cg_ 02-9 94nb14

(NOILVANIWITdWI) 3¥NSYIW NOILVINIWITIWI ¥YINGOW 2 OW wm

o't 6 8 L 9 S 4 £ 4 l 18091

I LI 1 1 L] 1 LI 0 1

C-36

c-37
Al

uoL3oung uoLlezi|eudoN (uoLlejudwsiduy) .._N.uu 12-9 d4nbL4

(NOI LVINIWITWI) ALITVYINID 404 NOILVLNIWIIAWI 2°39
0°l 6’ 8° L 9 G* v € A L’
T T T T T 4\ T = T _ ngo9t

© JONVHD OL
SAVQ-NYW DAV

L
3y

e N .

UoL3ouUng uotjezi(ewdoN (uotzejuswadug) um.om 22-) aanbLy

(NOILYINIWITAWI) JUNSYIW SINIWWOD 40 SSINIAILIILI 2°0QS

oL & 8 L0 9 & v g 2z U

| |] ! T —\\ § 1 i T

e
e
7~
by 7~
¢ e
e .

e \\ . \

< ~

. 7~
: e
yd
i . -
4 <
beoo 4 ~
R z2-qs W68 =7 P
” P
, <
-~
~

e

: i

0"t

A8091L

F9NVHD 01

SAVA-NWW 9AV

L
e

u0L}OUNg UOLFRZ | | BUMON (uorgeyusuwaldwr) g qs €z-9 @unbiy

(NOILVINIWNI WL) J9YNONYT NOILYINIWITAWI 40 SSINIATLJI¥ISIO €°0S

o't 6 8’ L 9’ G A £’ ¢’ L

 f ! 1 1 1 1\- 1 1 1
e
~
e
~
~
\\ . ~
R . \\
. . \
~
e
) e
L 4 -~
cogs 195 = M \\
\.
~
~
Px
~

o'l

-39

M8091

JINVRI 0L
SAVG-NVW 9AY

1
4

4

*ILGe[LRAR JOU UOLINWIOIUL 339 |dWO) .

- - - b - se” A A3Q dis
- = - “1-29° - 66°-0 66 " IV SISATYNY
JTYL3W
L * » 8L” €s’ 89° el IOVYINY IVNQIAIONT
£°NI ¢°Nl L°NI 2°0W L OW €IS L°1S
g4 3 vV W31SAS
N9IS3a

A2111qe3sa] Jos AJeumng u01393110) ®IeQ {1-) @[qel

Py ‘CY 2y :suosely

*SOpA39W HuULMO| |04 Yl U0 pawuo}uad jou sisAeue uoLssasbay

40

ALITT8Y1IS3L S

c-41

-31qe|LeAR 30U UOlIRULIOJUL 339|dwO) o

80° €L S0° - - - oL’ oL* GE* - 6" | A30 4iS
€6°-L" {°L-G" |bv°-C° - - - |'6-85° |6°-G" |66°-0 - |es"-¢° NV SISATVNY
JIYL3N
a8’ 178 T L * * 89° L 89° L 69° | 39VH3AY | TWNAIAIONI
£°as ¢ as L°as €°NI NI L°NI A v'Is €°IS 2’1s LIS
8 % V WILSAS
NGILVLIN3W31dWI

(Panuijuo)) A3111qeISaL 404 Adeuwng uoL3oa|(0) ®Ieg L(-D 3lgelL

*s91433w BulMO| |03 9y} uo paunojJad Jou sisKLeue uojssaubay

(P3nujuo)) ALITIGVLISIL

[R TR TP T LT T Vs SOW W ISVRP S) . - .

- o | e e | - | mows
- leu-str | c1-0 | svr-zt | ctess - WY | SISATAN
LM
_ 0 81" €€” z 8L es* | Towuaav | weararewt
¢ | otss | em | tm | zow | Lo
8% ¥ HILSAS
NOISI0

A1111qeSnay 404 AJeumng uop399110) °3eg 2L-) tgel

24 SUoSEey

*$21433W BuiMof [0 3Yy3} U0 pauiosaad J0uU SisK|eue uo}sSILbOY

ALTTISYSN

c-42

L g

o SR NN

T W i, arean «aine e

- L0° Se* - 6L° 12 gL’ oL’ A3Q ais
- | 6L°-8L° 66°-0 - €8°-t’ L Sv°-¢° 6°-8G" IONY SISATVNY
LIk |
gL’ 8L’ 89° L 69’ 8v” A 89° EGLLELY TYNAIAIONI
"IN L°Ss £°as ¢'as L°as ¢'39 1°39 ¢°OW
8 % V WILSAS
NOILVLINIWIdWI

(panupjuo)) A311}qesnay Joj Adeumng uo1309110) e3RQ 2ZL-D dLqel

soLua33u buiMo| 04 3y} uo pawUos4dd Jou spsAleue uolssaabay

(p3nuiiuo)) ALITIGVSNIY

C-43

||
{1

e

- 10° L - A3 @S

- let--str | “1-z9° - P | Sisaww
| 1Tk]
0 81" 8L’ es° | Ve | wnarAzown
U t'ss | zow | LM
| 9 % V H3USAS
N91S3
A3111Ge3404 40 AJmuting u0{39110) #IRG €1-) Iteel
2 suesany

*sopA3au Suimo] |04 343 U0 pawunjaad J0u sisKiewe uo|ssasboy

t-%

: ALTUSNINGd

RN & AT 2 tanr s

L0° A3 ai1s

6L°-81" ONVY SISATVNY
YL
8L° 89’ IOVIINY IVNOIAION]

€°0S e-as

8 % V WALSAS

NOILV.IN3WITdWI

(PaNuL3u0)) A3}11qRIU04 404 Adeumng u0jIdR|10) B3R €(-) AlGel

-s3143aw buimo| |04 ay3 uo pauwtoguaad Jou sisk|eue uoyssaubay

(panui3uo)) ALITIEGVLINOd

"SGR ISAY B30 ON 4

- - L - - - A30 ais J.—
- - “1-29° - - - -] SISA WY

ML
» » 8L° £5° s s IOVIAY TWNCIAION]

1°0@ t°3 C OW L oM 1°3a 1"
8 % VY WALSAS
NSIS3a Siwdy
£3}1)qedadoasju] J0j Aueung uop30a10) IR H1-) dl1qel
D isuosady

*sopa3aw Buimo| |04 Y] U0 pIMOILId J0U SiSA|eue VOSSO

ALITISVE3JOM3LINT

C-46

‘aLqel|eAy e3e(Q ON &

- - ge* - 6L oL’ A3a Q1S
- - 66°-0 - | eg-e° | 6°-85° IINVY SISATVNV
, ITYLIN
. . 89° L 69° 89° J9VY3AV | TVNQIAIONI
L°20 1°29 £°0S 2°0s L°as 2 0N
: 8 % V WILSAS
NOILVININITaWI

(panupjuo)) A31L1qedadoasju] 404 Aueuwns uor3da||o) eleq §L-J 3lqel

*sa1439w buimo{ |04 3y} uo paumosadd Jou spsAieue uoyssaabay

(panutjuo)) ALITIGVYIJOYILNI

(]

o

-
- ——

s

T e

APPENDIX D
METRIC APPLICATION

Each metric will be discussed in this appendix in relation to where it was
applied (its source) and how it was collected. Selected examples will be
given.

The metrics will be covered in the same order as presented in Table 6.2-1.
The Tegend presented in Table D.1-1 applies to the discussion:

Table D.1-1 Metric Source and Tool Legend

Sources Code
Software System Requirements Specification SRS
Standards and Conventions SC
Documentation Plan P
Management Plan MP
Preliminary Design Specification PDS
Preliminary Design Review Material PDR
Detailed Design Specifications DDS
Critical Design Review Material CDR
Validation and Acceptance Test Specification VATS
Users Manual/Operators Manual UOM
Interface Control Document 1CD
Configuration Management Plan CMP
Data Base Management Plan oBMP
Problem Reports PR
Source Code CODE
Programmers Notebook PNK
Training Material ™

D-1

o

Table D.1-1 Metric Source and Tool Legend (Cont.)

Tools/Techniques Used* Code
Manual Inspection or Review MAN
Configuration Management System CMs
Requirements Trace Routine RTR
GE/Integrated Software Development System 1SDS
GJSUMRY/ATP - Code Auditor GJS

* A brief description is provided in paragraph 8.2

Where manual techniques were used but automated tools have been identified
that would assist in or are capable of providing the metric data, a code
from Table D.1-2 is provided in parentheses. These are briefly described
and examples given in paragraph 8.3. :

Table D.1-2 Other Data Collection Tools

Automated Tools Available Code
Requirements Specification Language/Analyzer PSL
Automated Verification System AVS
Test Procedure Language TPL
Program Design Language/Analyzer PDL
Code Auditor CA
Execution Analyzer EA
Consistency Checker cC
Data Definition Language Processor boLP
Data Base Optimizer DBO

R e

Y

T P SR

e

Laas P FERR —

R L]

D.1

REQMTS DESIGN IMPLEMENTATION
SOURCE] TOOL ISOURCE] TOOL JSOURCE] TOOL

METRIC

. C ference relating modules to requirements.
TR. 1 (Cross re g q PDS wn | pos

#itemized requirements traced MAN
(total # requirements) {PsL) (psL)

The TR.1 measure was determined by a manual analysis of a matrix provided in
the preliminary design specification document which identifies which routines
satisfy specific software system requirements itemized in the software
system requirements specification.

D-3

D.2

KETRIC REQMTS DESIGN JIMPLEMENTATIO
SOURCE] TOOL JSOURCE} TOOL JSOURCE] TOOL
CP. 1 COMPLETENESS CHECKLIST:
(1) Unambiguous references (input, func..on, SRS [MAN § DOS | MAN | CODE | MAN
outputg . (psL) (poL) (ca)
(2) AN data references defined, computed, or SRS] MAN 00S MAN | CODE | MAN
obtained from an external source. {PsSL) (poL) (CA)
(3) A1l defined functions used. SRS | MAN | DDS | MAN | CODE | MAN
(PSL) (PDL) (CA)
{4) A1l referenced functions defined. SRS | MAN | 0DS | MAN | CODE | MAX
(psL) (POL) ()]
(5) A1 conditions and processing defined tor - | SRS MAN | DDS 1SDS | CODE | MAN
each decision point. {PSL) (Ca)
(6) A1) defined and referenced calling sequence . DDS | MAN | CODE | MAN
parameters agree. '
(7) A1 problem reports resolved. PR (cMs) | PR (cMs) | PR cHus
(8) Design agrees with requirements. DDS | MAN
SRS ;PSL
PDL
(9) Code agrees with design. oDs | (ISDS)
CODE [(CA)

LIERPE P T
.
e el e e

o

Most of the completeness measures (CP.1) were 1, i.e., no deficiencies were
detected. This was a function of applying the metrics after delivery. Most
of these measures were applied manually during this effort. The use of a
formal requirements specification language and formal design language would
greatly enhance the automation of the metric data collection for this metric.
Automation is definitely required because manual determination of these
measures during an on-going project would be a difficult effort. An example
of an automated tool used during this effort is the GE/Integrated Software
Development System (GE/ISDS) (a description is in paragraph 8.2). GE/ISDS
performs analyses on design charts which are prepared via an interactive
graphics system and maintained in machine readable form. An example output
from an analysis of decisfon points (CP.1 (5)) is shown in Figure D.2-1.

A tool such as PSL/PSA (CARA) provides the capability to determine such
measyres as CP.1 (3) and CP.1 (4). Figure D.2-2 provides an excerpt from
a configuration management report which was used to determine CP.1 (7).

R

SJULO4 UOLS|OaQ 3O SisA|euy pajewoiny |-z°q a4nbi4

L3y

\\) ERELTN A
2324040 160 341 5M

(£ 43408,

IHI) L4MHAS .

$C Lo Tl

L GELGE T T e el T

ol Tl B L L L P T

LR LER

R - |

A%3L NOISIJIIT INILSISNOSND a0 3LITHTINT I Zo¥d . g JN3

8£:92:20 : ML B1-1 : 438NN 399d IN=1[JIHGS I INIH
Nnmurz-ﬂ~ : A1uq WIF 1394080d @ EXCLERI, (0% 1 IHENNGT
S 1 ANZE WNATHS .
L 4344044
.......... W33 135S

<A

\\< 50 DN (40819572401
($£°851118 41 Y

// INDTIONAS SIHL d04 aomo\\

BEST AVAILABLE COPY

Geseveccanasnansstacsnannasssanns- ay

meeserceccssecscsnacvasvaresamemecacaenaforarcccenaccsreronasnccanccananact

=3 H0ds

$ 1-idigdi N3N e=Q ¥40d

ecesmmuvmsce-treansac-avssaveccvnsnnransodanancncsnannncanas s .

0=t 143435, Y ININ
37301 2394040 4370

r . . .
- - - ~a L R L L LT MR- s TR o e -
. SN — e -
- e e e A o
, -
. i , s
' _ .) _—)

~- 9%--AQ808 -~ 9¢ - W22

eemmnensaooo D 00NE WOME S1SIy --
1S34 ONILVAIVAY
‘N S¥n)Y0 ¥OuN3

s--aM -80a09t -- 60V T VgN

xo..._.u ::Scooac
aNvY WI31Sly

83 cnoaunnn-:.c 2....3.

AMNIAONG AVIESIG
40N 00 swaLY us:..c

ST ySes

609 ises dx.u n:.:.& M

:sooo non tunn

SNOTSHIANDS
cermemmeeooneo - -INT 490 JOO‘I@Q
.:n S19174m00 W¥g oM

cacmmmessammmremrm oo PSR -

:om.o- SLuynel

4600 vges

$009-- 9SS -~ AVAS gridvi® QN GRODR 9T T VGYW

14 47

N1 YvH $11810 L7 O~ """"netss QINYIT RN T VEVS

CUIN ENA00e 1T wP2e

ATw300uy
0314118nr 10N WIOVIN

TTTTTTTT T ANLNY=an® SNIING TTTTT L CINVIEE "B

oM onoo. 22 4

dX3 GiNvred

rNNO

NOTIVINIA—SONNOy
oum_..cu inay u::euz

1d c»n [

= r——- WIRNNN
SHYN TJouinGd
AN LN

*ON _zoo zux«» :umoau aow
Poomesss—oo w04 43w NOLLDY o 3iv0 -

O‘.oooooo.ooo.oooooooooooooooooooooooo.o.ocoo ssoce

TTUTWIWS

Y 3w
ke V1 L]
T RON T INWNIYY

v £ v A % t ¥-

(778 V¢ o»»oze~

ou:.ou u:cz :cc .:..\..3 u.n zucao

e

D.3

REQMTS DESIGN IMPLEMENTAT IO—N] _
HETRIC SOURCE| TOOL |SOURCE| TooL [SOURCE] TOOL
' 1CS. 1 PROCEDURE CONSISTENCY MEASURE '
(1) Standard design representation D0S 150S
1. £ modules vigiate ryle ’ '
total 7 modules i
(2) Calling sequence conventions DDS | 1SDS | CODE | MAN 3
1. ¥ modules violcte rule ICo (CA) :
" total # modules ‘
{3) Input/output coaventions : DDS ISDS | CODE | MAN
1 # modules violate rule (CA)
- total # moduTes .
(4) Error handling conventions 0DS MAN CODE | MAN
1 # modules violate rule (1sDS) {CA)
- total # modules

Enhancements to many of the typical currently utilized code audit routines
could display for easier inspection or enforce conventions relating to
the CS.1 elements identified. During design, GE/ISDS is an example of
automated analysis performed on design charts relating to these con-
ventions. Enhancements to a tool such as ISDS could provide complete
coverage of this metric. Examples are shown in Figure D.3-1.

1505
{ONMECTIVITY ANALYSTS
AR T T E PR YT SR PRy DATE @ (1-tap-T7
S G e THE : HO12N:83
4
VE ORI
>
=
x , 1s50s
r it
M\ I7P0L AND LTHE USAGE ANALYSLS
» _ FILEAGME & SIfaeger g PATE : 11-MAP-TT
A ‘ POGE CORRER § 1ote TIME ¢ @2:21:10
y 4
! Fasi 0 TER LTROT LINT ILLOGICHL
. . .
s '
N .
AN
£,
H)

e -

Figure D.3-1 Automated Consistency Checks During Design

D7

D.4
R S REQMTS DESIEN _[INPLENENTATIO
NETRIC source] vooL Jsounce] Toor }source] TooL
CS. 2 DATA CONSISTENCY MEASLRE '
1
d antati s
m (f’f“‘.“:&uﬁ: violate pule) o l fi =
ota moduies
(2) Vaming conventions POS { MAN | CODE { MAN -
1. £ modules violate rule 1508 (ooLP) ;
T total ¥ modules DOLP {ca)
(3) Unit consistency pps | maN | coDE | MAN
(l- # modyles violate rule)
total § modulas ;
istent global definiti 0os | man | cooe | man !
“]ns sut;:ulgso iola: :u‘eons DaMP (DOLP) :
- total % Eauies (CA) :
1st 00s | AN | CODE | MAN ;
" (O e | @
t es
]
The measures dealing with data consistency (CS.2) pose a very difficult
manual data collection task. The use of an automated tool is necessary both ;
from a cost to collect and an accuracy standpoint. The use of a formal
Program Desjgn Language would enhance the ability to automate the collection
of this data. For this effort, the Data Base Mapagement Plan, the section _
of the Detailed Design Specifications which identified the internal ;
variahles to be used in a routine, and the organization and substantial 1

commenting of the code aided the manual collection of this metric data.
A current enhancement to the design charts produced dyring contractual
efforts to include data representations will allow automated checking of
€5.2(1), as shown in Figure D,4-1. ﬁ

D.4 (continued)

Taxvztae L g

l_

I R:CONFIG
I :RECOUNT
e e o T:XYZTAB

Figure D.4-1 Data Representation on Flowcharts

The type of problem that should be identified by CS.2(4), consistent global
definitions, is illustrated by this example:

Routine A
COMMON/VAR/SUM, DEV, ROOT
COMMON/MATRIX/X(15), Y(25)

: Routine B.
: COMMON/VAR/TOTAL, ROOT, DEV
COMMON/MATRIX/X(25), Z(15)

The Data Base Management Plan and adherence to the plan in the design
documents is the key to prevention of these types of errors.

D.5

REQMTS DESIGN IMPLEMENTAT ION
SOURCE| TOOL JSOURCE] TOOL [SOURCE] TOOL

METRIC

C. 1 ACCURACY CHECKLIST:

(1) Ervor an2lysis performed and budgeted to SRS | MAN
module.
(2) A definitive statement of requirement for srs | MAN

accuracy of inputs, outputs, processing,
and constants.

{3) Sufficiency of math library. DDS | MAN

(EA)
(4) Sufficiency of numerical methods. DOS | MAN | CODE | MAN
(5) Execution outputs within tolerances. CODE

MAN
(€A)

The accuracy checklist measures (AC.1) require a high level analyst familiar
with the mathematical requirements of the system to manually inspect and
analyze the documents and described methods. Some assistance can be derived
from analysis of execution or simulation results.

An example presented in [VANTD74] {1lustrates t atvs{s required for
AC.1(4). Three implementations of the equation;

3 2

y=Ax" +Bx" +Cx +D

are provided. They are listed in order of increasing efficiency and accuracy.

Yy = A®X**3 4 BRY#*2 4 C*X + D
Yy = A*X*X*X + B¥*X*X + C*X + D
y = D 4 X*(C + X*(B+A*X))

e M 2 ddaben s

sy e

D.6

REQMTS DESIGN [IMPLEMENTATION]

R E
NETRIC SOURCE| TOOL |SOURCE] TOOL [SOURCE{ TOOL

FT. 1 ERROR TOLERANCE CONTROL CHECKLIST: 1

' (1) Any concurrent processing centrally POS | MAN | CODE | MaN
controlled. 00$
(2) Errors should be fixable and processing PDS | MAN | CODE | MAN
continued. D0S .
(3) When an error condition is detected, it POS]| MAN | CODE | MAN
should be passed up to calling routine. DOS
' FT. 2 RECOVERY FROM IMPROPER INPUT DATA CHECKLIST: 3
(1) A definitive statement of requirement for SRS | MAN
error tolerance of {nput data. 3
(2) Range of values (reasonableness) for items DDS | MAN | CODE | MAN i
specified and checked. . j
(3) Conflicting requests and illegal combinations DOS | MAN | CODE | MAN '
identified and checked. y
(4) A1l inout is checked before processing begins. (1111 MAN CODE | MAN]
(5) Determination that an data is available prior DDS MAN CODE | MAN

to processing.

ET. 3 RECOVERY FROM COMPUTATIONAL FAILURES CHECKLIST:

(1) A definitive statement of requirement for SRS | MAN
recovery from computational failures.
(2) Loop and multiple transfer fndex parameters 00S MAN CODE | MAN
: range tested before use.
" ‘ (3) Subscript checking. DDS | MAN | CODE | MAN
(4) Critical output parameters reasonableness DDS MAN CODE | MAN

checked during prucessing.

l.. ET. 4 RECOVERY FROM HARDWARE FAULTS CHECKLIST:

(1) A definitive statement of requirement for SRS | MAN
recovery from hardware faults. '

: (2) Recovery from hardware faults (e.g., DDS |[MAN [CODE |MAN
{ arithmetic faults, power failure, clock).
ET. 5 RECOVERY FROM DEVICE ERRORS CHECKLIST:

(1) Definitive statement of requirement for SRS | MAN
recovery from device errors.

(2) Recovery from device errors. DDS |[MAN |CODE |MAN

D-1

3 L3 !

. " LEes 2 - - i
- f LR S ey aan -
- -t . - .-

{

D.6 (continued)

A1l of the measures associated with error tolerance (ET.1 through ET.5) were
manually collected. The major source of information was the description of
the inputs, processing, and l1imitations in the detailed design specification.
Often, an itemized 1imitation would contain a phrase such as; “"all function
cards must be reinput under an error condition," or, "the permissible values
are," or, "the acceptable range,” etc. These phrases identify limitations
on the processing. In order for the system to be error tolerant, it should
"gracefully” handle violations of these limitations. Most of the measure-
ments are oriented toward the identification of failures to provide typical
error tolerant capabilities.

The software system requirement specification was also a valuable source.

In our environment, an Operational Hardware/Software Specification evolves
during the development phase from the System Requirements Specification.
The operational constraints imposed by both hardware and software are de-
scribed. The error tolerant handling of the constraints must be considered.
The manual inspection of the code is considerably easier if there is a good
detail design document and accurate design charts. These documents aid in
identifying the key portions of the code to inspect. Basically input pro-
cessing code should be examined to insure necessary checks occur. Loop
indices and subscript checking, if necessary, is easily checked. The common
example given is:

IVAR = 0
DO 100 I =1,N
IVAR = IVARH]

.

160 CONTINUE

If N <0, the wrong value of IVAR is realized. Instead a check should be
made, such as:

D-12

= e me —mpn TIER

D.6 (continued)

IVAR = 0

IF (N.LE.D)
DO 100 I =1,N
IVAR = IVAR+1

100 CONTINUE
END IF

D-13

ﬁm‘!;%‘w:-'n’w;-ﬂn o

D.7

REQMTS DESIGN EMENTAT TON]
SOURCE] TOOL |SOURCE) TOOL JSOURCE] TOOL

METRIC

SI. 1 DESIGN STRUCTURE MEASURE:

(1) Design organized in top down fashion. PDS | MAN | CODE | MAN
00S | (1S0S) (CA)

(2) No duplicate functions.
{3) Independence of module 00s MAN | CODE | MAN
1~ ¥ modules violate rule) ‘

to ules
(4) Module processing not dependent on prior DDS | MAN | CODE | MAN
process

ing.
1- 1 modules violate rule
total ¢ modules

(5) Each module description includes input, output DDS | MAN
processing, limitations. (PDL)

3. £ modules violate rule
total # moduies
(6) Each module has single entrance, single exit. p0s | IS0S { COOE | 6J
1- 1 modules violate rule
total # modules

(7) Mo global data. DDS | MAN | CODE

NAN
(Ch)

The design documentation consists of a preliminary desfgn specification (PDS)
and a detailed design specification (DDS) (see Appendix B for a description).
The detailed design specification is usually organized with an overview and
subsystem descriptions and then descriptions at the program level. The
preliminary design specification and detailed design overview were the major
sources for determining the design structure metric (SI.1), during the
design phase. A hierarchy chart and brief descriptions of the subsystems
and planned modules were used to determine if top down design techniques had
been followed. Several violations were found for S1.1(3), (4), and (6).

Most of these violations were identified by examining the section of the
detailed design specifications which describe the calling sequence. Several
modules had multiple entrances (GE/ISDS flags this attribute from the design
charts). Several modules were dependent on prior processing. The most
common indicatfon of this was “the following data blocks must be set prior
to execution of this module” phrase found in the calling sequence description.
This is a characteristic of a COMPOOL system but 1s also evident in any
environment where there fs considerable (SI.1.(7)) global data.

& i 27y i

i ————
iJ
& i
¥ § D.8
1 f REQMTS DESTGN JINPLENENTATION]
3 . METRIC
3 % souRCE| TooL |SOURCE| TOOL |SOURCE| TOOL
3, 1 ‘sx. 2 USE OF STRUCTURE LANGUAGE OR PREPROCESSOR CODE | MAN
Refer to paragraph 7.3.
R
D-15

- tea o Sl o
-,

D.9

NETRIC REQMTS DESIGN IMPLEMENTAT]
SOURCE] TOOL [SOURCE| TOOL [SOURCE] TOOL
1. 3 COMPLEXITY MEASURE (by module, see para. 6.2.2.6) DOS | ISDS | CODE | GJS

GE/1SDS was utilized to calculate a complexity measure (SI.3) from a special
form of a design chart. This measure could be calculated from machine
readable design charts, a PDL, or from code, however, these enhancements
have not been implemented in ISDS yet. Instead, data gathered by a code
auditing routine, GJSUMRY, was utilized to calculate a modified version of
Halstead's E measure [HALSM73,HALSM72,LOVET76a]. This measure is based on
the number of operators and operands in a program.

An example of the automated calculation of the ISDS generated complexity
measure is in Figure D.9-1.

aunseay A3}xa|dwo) sOs1/39 1-6°Q d4nbi4

0-17

X209

—~—~———~— | T~

£208°8 = ALIXIS0D

ANNDD 30N £l 2t 1" 6 s
1
PR YPRT R TR ERR ey - L APRAVE LR TV LS SN I §
AAACIRAOL b SRR A AR v + 3 K b FAMW 0P Kra 1 rd sl B0 s KA K DRy At & “
1
* by PR P e e N S Ez S i g m
ra O TV P S Ik SRR L o U S T g S “
AN ¥ SR TN ZRES TEPORA S S s R P S L 2 S "
1
1
H

@ & NOLLING3N WYB90LSIH ALIXITdHGD

[IC L -t
e MLNsE 175 9l
31 aw3

$ @=4001

s =383

- $ 124007 WY
CEXNITSEITHIU. 07 3uIHT GNY YN 0 (SWN]TS$1013dL o1

N

R A A 5 O a2l e N L i e T eea e e ar e e Ao a ok X it et st .

S ATEIe
N

D.10 .
REQMTS DESIGN IMPLEMENTAT TON|
WETRIC SOURCE| TOOL JSOURCE] TOOL]SOURCE] TOOL
SI. 4 MEASURE OF CODING SIMPLICITY (by module)
{1) Module flow top to bottom. CODE | MAN
(2) Negative Boolean or complicated compound CODE | MAN
Boolean expressions used.
of above
1- ¥ executable statements)
(3) Jumps in and out of loops CODE { GJS
} single entr*[singlg exit ‘Igggs)
tota 0CPps
(4) Loop index modified . CODE | MAN
(1_ ! lo__o% 1n$ices modified) ,
ta 00ps
(5) Module is not self-modifying. CODE { MAN
(6) A1l arguments passed to a module are CODE | MAN
parametric.
(7) Number of statement labels. CODE | MAN
(1_ # labels) (ca)
¥ executable statements
(8) Unique names for variables. CODE | MAN
(9) Single use of variables. : CODE | MAN
(10) No mixed mode expressions. CODE | MAN
(11) Nesting level CODE | MAN
1 (CA)
(s vestivg Tever)
(12) Number of branches CODE | 6JS
1- # branches)
¥ executable statements
(13) Number of GOTOs CODE | 6US
(l- # GOTO statements
T executsble statements
(14) No extraneous code exists. CODE | MAN
(15) variable mix in a module CODE | MAN
(l internal variables _ (CA)
total # variables
(16) variable density CODE | MAN
1- # variables (CA)
executable sta&ments)

The code simplicity measurements (SI.4) represent a mix of manual inspection
of the source code and a report of statistics about the source code by a code
audit routine. Several other elements could have been collected automatically
(as indicated) with some minor enhancements to the code audit routine. Most
of these manual measurements, once a routine is established, can be done quite
efficiently. Approximately 1-2 man-hours were spent per routine taking the
manual measurements relating to the source code.

D-18

A o2 1958 G b AL s kb _h it 3 el bz A

D.10 (continued)

Figure D.10-1 displays examples of output from two code audit routines used.
The annotations describe some of the data collected.

An example of SI.4(2), complicated BOOLEAN expressions, shown here;
IF #GRLERR EQ V(NOREC) $

BEGIN ##BEGIN 3 ##
IF #GDEREQ NQ V(DEL) $
BEGIN ##BEGIN 4 ##

IF(#SOACCS EQ V(RANFIX) AND #GDERRF GR #SDMAXN OR
#GDTTDT(0) NQ V(VBLK) AND(#GDERRF NQ O OR #GDERRF
NQ 0)) §

BEGIN ##BEGIN 5 #¢#

iliustrates the complexity it adds to the program. Their use may also compli-
cate the logic as shown by [KERNB74] with this example;

IF (.NOT. FLAG) THEN A=B ELSE X-Y;
which is simplified as

IF (FLAG) THEN X=Y ELSE A=B;.

The standards and conventions we established for JOVIAL restrict the use of
the switch construct because it constitutes self-modification. An example
of the complexity self-modifying code adds is given by [YOURE75] with this
COBOL example (ALTER in COBOL is similar to SWITCH in JOVIAL).

ALTER SWITCH1 TO PRCCEED TO SWITCH2

SWITCH1
GO TO INITIALIZATION-ROUTINE B

SWITCH2
ALTER SWITCH3 TO PROCEED TO SWITCH4

A el aais g

Sauj3n0y 3PNV 3p0) Aq Sa}404d 3poJ @ddnos (-01°Q 34nbjy

| 1008 [. 4 . L [Rl T "
" we - t . i 07 e gsee
Togeg T T seet " [' TN T wm ee
P) oot ot] ot [e 7 aw Taceee”
wes L " " £ " 6T e Usomas
“teve —-- - ey] ' t e e Y R
L) et [4] * z ! [B Tadaee . R
s * o € T gheek
ane e o . : a LI R e .)
s S Bisies L™ S 7
Tueee T T T] v z tt T i &
(L] 8_ . . z 1 q “ TR o >
«
s : ¢ T8 T T a0ee8
0w e ” 3 t » T w0 . ..
sy T . — “.II..”\| o ¢ ot
- wes . 2 L) - L v T —pe——— e —
s e N L L -3
" ance .)] E} ~ on Migsade
. ° E Nt
sy seee . [} u] - U T el .- _—
= eme . - — e t— i 5 -3 i e » (o d
0%’ 113 1] z t - N) R R o SO et
stee stot L] 13 2 ” - » e T o m" 33eee g
20 a0t [t} -] P T g YOOW' T ey
os Y Yol fm wm T e
L L] Rianaaianats g8 [4 2 € o T T e a .
¢ - " 0 pr— .-
208 e ' wl . » - o Javidee T
Lt ™ Ja1sads [
"we e s . ¢ v - »w taee - L
- - .] . ..
e T e . . s . =T Wi | e halaanid
. 2 . . . [and - ke
e e ? s S - - a143 e e im0 ——
oo et “ . . * bl L - e i . ———dmiag "
" 1008 18 . . . T8 T e T T T ——— o — » Lad 00980 ,00000s00000
= - T S
%S 6TMe Pvem u onIvedn 00 404 NI w0 w0 com v e . L] []
8 olive ow s wBs xvsew 1303 *a3e avaicoe T e Jevtaee — e e R IEERR .
” Wre wsomt Sindedvas wioe aSfC DaE eIagw | ot T uSIw e puaes)
PP s - R L2 S
- - [S S
- 114088 —_— i
. o [) u -
Y. s e " A\ & L 4 4 LY . t] NOIDEE ’ . s T
o osres e " . ¢ W TS T e e w nedd - Sl
P_ *$732C *Jowe 01 *SivmiS oL 0 *$6 s SN CHAY 0F “witws *1320 W v — T megd e S
0 "SiWuS *doey 01Ty *tatmit *W Oliva w0 Néva 3lae Antinde: “eac. ntgilae - sed ” iy
" nve sucmt Siadedivas IA1LeEY 35, saSr8 Tanr %G1 afug s e - S
ﬂ v IR)
— e — — — R] B e —
6 Temmie H -
™ NS . - * e
E e "” . vors € e ” nes st 0 e PR
——. e - ——
‘L ue e . "y L e tot Sec2 Ckew T T 0T Thi N
B Ti0L 40 *Siveis 3003 WITL S0 CSINAAS WAL . *Sineis RYTEN 5. aif P oy
olive 8¢ adatl 133010 Olive $v s GIAve 8¢ ~ul251/81 MALLYYRe “1D02se “Vils ntgbiee " e @ISR
» NS 9:A0np) S AP NP Traiiuidiee Asanfe wahy SOI aSup ||»l||l-n...mo|ll|||
.
-
.
— ;
A +og Areep L- . nm. . z n “ nn'ﬂ.ll.."l.nrlulunln nl
- <
V MU -+ DU S-S S S-S I T ST S S T S
........ £t .- ..44.6 ap vl... el -3t T en £ ey R T ST YO
A — AT A B fetmSnme o sle2— Bl el (Jn i3t 89T _Bediels w3 o e (e 30
.
— » «393 CRTCRERRE S TYE TV ¥ € ENpr i vur v 7Y Y — o
1 . L
3 ot " ave st 3 30t M oft eh | oo
. R

\

D.10 (continued)
[BOEHM73a] provides justification for SI.4(7) with this example:

The label, 5; is unnecessary.
D010 I =1,N

x 5 X(1) = A(1)+B(1)
| 10 CONTINUE

S1.4(8), (9), (10) posed the biggest data collection problem. Certainly,
examples such as:

A1) stores craft altitude
A(2) stores craft velocity
A(3) stores date of run

and
TOTAL
SUM all same quantities used in different modules
CuM

given in [BOEHM73a]), and
DIMENSION A{20), B(30)

Do10 I=1,50
10 A(I) = J

_ by [YOUR75) are important to catch. The greatest assistance in applying
o - these metrics is well commented declarative statements which identify the 1
: attributes of the variables. An example from a module inspected during ’

this study is shown here:
S dedededode e dede de dede dode do de e de e e de S de dede e dode dedo e ke dede e dede Jode dedede dedede dede K dede & dedededo ke dede ke Rede ke e R e dede ke dede ek

: - * |
RN Thkhddeikhkddekhihhikdhhikikhhihihs [TEMS *Rrrkihidhiidkiiihrthikdhihtiis

E . * ' N

; f1 . RERRRRERERARRERREATRERhRARIRREAIARRREEIEREREREEERRRARE X EREEEEERAR AR AR

i)

20 ITEM SEC 0$ ## SAVED SYS ERR COUNT #¢

T . ITEM SAVPLK 0 8 $§ ## SAVE BLOCK NAME ¢

RN ITEM SAVFILE 148 U $ ## SAVE FILE NUMBER #¢

4 ITEM SAVREC 1 48 U $ ## SAVE RECORD NUMBER #¢

E ITEM OPERANS O 8 $ ¢¢ OPERATOR RESPONSE ¢

; ; ' ITEM SZERO 0 g ## MUST BE ZERO p#

E | | ITEM BLEN 0 ## BLOCK LENGTH ¢¢ i

; i . D-21 ﬁ
]

0.1

mm REQNTS DESIGN [INPLEMENTATIO
SOURCE] TooL |source| vooL Jsource| TooL
MO. 1 STABILITY MEASURE
(exgccced é modules changed PDS) MAN
total # modules oDs | (1sDS)

The stability measure is based on Myer's [MYERG75] stability model. Each
module is categorized according to specific criteria as to its module '
strength and module coupling. A matrix is built based on values assigned

the various categorizations and the module interactions within the system.
Taking into account the various paths by which a change to one module may
effect another module, a second order matrix is calcylated. From this second
order matrix, a predicticn of the number of modules that can be expected to be
effected if any mpdule is changed is calculated. Since this is a system

level metric, validation was impossible. The value derived for System B,

for example was very high compared to the examples presented by Myers. This
is very logical because in oyr epvironment, most data is global to the

system (COMPOOL) and accessed by many routines. Thus any change to the

data or the way the data is manipulated by a routine potentially can effect

a large number of other modules in the system. The significance of the
measure is even if other modules are not effected, considerably more effort
must be expended testing to insure they are not in this type of an environment.

e ; - A S i T

TR T TS T

D.12
VETRIC REQMTS DESIGN [IMPLEMENTATION]
‘ SOURCE] TOOL]SOURCE| TOOL |[SOURCE] TOOL
' . MO. 2 MODULAR IMPLEMENTATION MEASURE
' (1) Hierarchical structure
1- # violations of hierarchy PDS | MAN | CODE | MAN
(total # modules Dps | (1sDs) (CA)
J (2) A1 modules do not exceed standard module COOE | GUS
size (100)
(1_ 4 modules>100).)
ta modules
(3) A1l modules reoresent one function DDS | MAN | CODE | MAN
('l- # modules viclate rule)
: total # modules
i (4) Co:t;‘ollinq parameters defined by calling DDS | MAN | CODE | MAN
K module
(]_ # modules violate rule)
total # modules
(5) Input data controlled by calling module DS MAN CODE | MAN :
(]_ # modules violate rule) ;
tota ules H
(6) Output data provided to calling module DDS | MAN | CODE | MAN ‘

1- 2 modules violate ru‘.e)
total # modules :
(7) Control returned to calling module 00s MAN CODE | MAN
(]_ # modules violate rule)
total # modules

(8) Modules do not share temporary storage 00S MAN CODE

MAN
(ca)

Each of the modular implementation measures except for M0.2(2), were collected
manually during this effort. The detail design specifications identified
: module interactions by a called/calling matrix and had a specific section
> which described the calling sequence and parameters for each module. An
evaluation of the parameters and their effect on the processing led to the
above measures.

In MO.2(1), any interactions between modules which are not successors or
predecessors on the same branch are considered violations. In Figure D.12-1,
. the measure is 3 violations/8 modules = .375. The violations are the inter-
action between modules 1 - 2, between 1 - 5 and 2 - 5, and between 5 - 6.

.
e @y, B DT e e

D-23

e B

MODULE

MAIN
0
MODULE MODULE MODULE
1 2 3
MODULE MODULE MODULE
5 6 7

Figure D.12-1

o e

Hierarchical Structure Measure Example

TRANY

D.13
NETRIC REQMTS DESIGN IMPLEMENTAT JON
SOURCE] TOOL |SOURCE] TOOL |SOURCE| TOOL
GE. 1 EXTENT TO WHICH MODULE IS REFERENCED BY QTHER pDS MAN CODE | MAN E
MODULES (1s0s)| (CA)]
(l common modu1es) (PoL)
total # modules

This measurement was also easily determined by the same source mentioned
in D.12 and confirmation made by inspection of the code.

The implication of this measure is that modules which interface with a number
of other modules in their current application will probably be easier to
interface or use in another application.

D-25

D.14

RETRIC REQMTS DESIGN IMPLEMENTAT 10!
SOURCE] TOOL JSOURCE)] TOOL]SOURCE] TOOL
GE. 2 IMPLEMENTATION FOR GENERALITY CHECKLIST
1]
(1) Input, processing, output functions are not DDS § MAN | CODE| WAN ;
mixed in a single module. (1sos} (CA) ;
1- # modules violate rule)
(tota ules
(2) Application and machine-dependent functions CODE ‘
are not m‘xed in a single module. (CA)
violate rule
(" modules)
(3) Processing not data volume 1imited. DDS | MAN | CODE| MAN
1- 4 modules Hmited) (ER)
(tota modules 1
(4) Processing not data value limited. ODS | MAN | CODE| MAN
1- 1 mdules limited (EA)
(ules ;
(5) A11 constants : should be defined once. CODE | MAN ?
(]_ # modules violate rule) (CA) 1
total # modules

Since GE.2 is a system level metric, no validation was possible. However,
the characteristics identified by these measures, we feel, are quite
important to the generality of the software produced. (1) and (2) were
determined by a simple identification in the design documents and code
whether the module contained any machine dependent, input, and/or output
code. The more modules involved in machine dependent functions or input
or output, the more effort will be required to use any one module in
another environment or application.

GE.2 (3) and (4) correspond to several error tolerant elements where the intent
of the measures was to determine how well the system handles exception cases.
These measures are related to the fact that there are exception cases. The
more limitations on a module or a system the less generally usable it is. This
includes the case where the algorithm or function and its implementation are
restrictive or the case where poor programming practices have restricted

the general use of the program. An example of the later situation is if

the limit of a loop in a module which represents the maximum number of inputs
to that module is "hard-coded", it is more difficult to change the module
correctly to handle more input.

D-26

s A o

D.14 (continued)

D010 I=1,25
! SUM = SUM + X(1)
10 CONTINUE

A better implementation from a generality viewpoint would be to make the
limit flexible with respect to the number of inputs.

‘ DU10 I=1,N
i SUM = SUM + X(I)
10 CONTINUE

B R L T P .

i

N ’
4 y z

- i)

D-27 §

D.15

REGHS | DESIBN [IRPLEMEATATIO
- |source| roou [sounck| TooL |source] Toot

METRIC

|

EX. 1 DATA STORAGE EXPANSION MEASURE:

(2) Percent of memory tapacity uncommitted CO0E | (EA)

(1) Logical processing independent of storage ooS | MAN ;| CODE | MAN ¥
specification/requirements (by medile)
(‘_ # modules violate rule
total ¥ modules .

amount of memory uncommitted
(Eoial amount of available memory)

EX.1(2) requires execution of the code under typical loading conditions.
Most job execution reports provided by operatihg system software provides
the data to determine this measure.

Examples, from System B and [YOURE75], of using parameters to insure the
processing is independent of the storage specification follow:

D-28

FOR N = NENT(TRELOC) $
BEGIN

END

*THIS ALC PROGRAM REQUIRES THREE TABLES: THE SIZE OF

*EACH TABLE IS A FUNCTION OF THE PARAMETER

*"SIZE",TO CHANGE THE SIZE OF THE TABLES,

*MERELY REDEFINE “SIZE".

*

SIZE EQU 40 -_
TABLE1 DS CL(SIZE) -
TABLE2 DS CL(2*SIZE)

TABLE3 DS CL{SIZE+5)

- Ty

pe e R4

A]

D.16

REQMTS DESIGN IMPLEMENTAT [ON
SOURCE| TOOL |SOURCE) TOOL {SOURCE(TOOL

METRIC

£X. 2 EXTENSIBILITY MEASURE:

(1) Accuracy, convergence, timing attributes DDS | MAN | CODE| MAN
which control processing are parametric.

1- ¥ modules violate rule)
(total = modules

(2) Modules table driven. DDS | MAN | CODE| MAN

1- # modules not table driven)
(total ¥ modules

(3) Percent of speed capacity uncommitted. CODE | (EA)

amount of cycle time uncommitted
total processing time

The discussion in paragraph D.15 pertains to EX.2(3) also. EX.2(1) and (2)
require an analysis of the design strategy expressed in the design document.
The following example is described in [YOURE75].

THIS IS A SUBROUTINE THAT WILL SEARCH THROUGH ANY
SINGLE-DIMENSIONED ARRAY TO FIND A SPECIFIED
ARGUEMENT. THE ARGUEMENTS TO THE SUBROUTINE
ARE AS FOLLOWS:
TABLE THE NAME OF THE ARRAY TO BE SEARCHED
FIRST THE LOWER DIMENSION OF THE ARRAY
LAST THE UPPER DIMENSION OF THE ARRAY
ARG THE QUANTITY BEING SEARCHED FOR
FLAG INDICATES WHETHER OR NOT SEARCH WAS SUCCESSFUL

N0 O o 0 o0 o0 0 0 60 O

SUBROUTINE SEARCH (TABLE, FIRST, LAST, ARG, FLAG)
DIMENSION TABLE (FIRST, LAST)

D.17

REQMTS OESIGN |IWPLEMENTATI
sounce] Toot [sormce| Toou |source] oot

METRIC

IN. 1 MODULE TESTING MEASURE (by module)

(1) Path coverage. 0DS (MAN | CODE | (AVS)
(t‘ aths to be tested) PNk | 1s0s (TPL)
total 7 paths

{2) A1l fnput psrameters boundary tested. ODS | MAN | CODE | (AVS
parameters to be boundary tested PNK (TPL
total § parameters VATS

IN. 2 INTEGRATION TESTING MEASURE

(1) Module interfaces tested. 1CD | MAN | COOE §AVS
to be tested \ VATS TPL
total ¥ Interfaces
{2) Performance requirements (timing & storage) SRS | MAN | CODE | (AVS)
coverage. VATS | RTR (TPL)
? rgg*‘lremtnts to ? tegted
tota pert requirements
IN. 3 SYSTEM TESTING MEASURE
(1) Modu)e coverage (for all test scemarios) SRS | MAN | CODE | (AvS)
modules to be tested VATS (TPL)
‘ tota of modules
(2) ldentification of test inputs and outputs in (1111 MAN CODE | MAN
summary form. VATS

For both system developments used in this study, module testing was docu-
mented in individual programmer's notebooks. The notebooks contain the
following information:

Date of test

Brief statement of test objectives
Brief description of input conditions
Description of test results and analysis

The notebooks were not available for the two system developments because of
the timeframe since delivery of the two systems. A review of notebooks of
current software developments revealed that sufficient information is
available to determine the IN.1 measures. Several automated aids are available
in this area and are discussed in paragraph 8.3. An example of automated
assistance during the design phase is the minimum number of test cases to

biiad

git cl A

{a
. Feenene

NE :
- —— ——

d

e e

D.17 (continued)

cover all program paths determined by GE/ISDS from design charts of a
b) program. An example report is shown in Figure D.17-1.

Is (he next entry of row ond column table (n o different colum ?-YES
Is the next entry of row ond cCOlumn taD'n im ~ AN¥inmant ralim 7-NA

Does (he losi of (he doto for !
Does the last of the doto for
Does (he lost of the doto for L.
Does *he lost of the dalo for &

Dacs (he nexi eniry begin at (h PAIHS NOT TAKENS

Does the next ontry begin ot r FROM “ 10 “TCONDITION —~— " T -

Is {ne row or colum wolue of ¢ S ——
Is (he rouw or coluan value of @ | TEST NunkeEr 1

is no dota given?

1 1S THE NEXT ENTRY OF ROH AND COLUMN TAELE IN A CIFFE
Is no dato given?

RENY TGLUN 7-VES
z DOES THE LAL1 OF THME DATA FOK THIS ENTRY GO PRST THE PEQUESTED ?-VES

ONNOOAANDE B WWRN -
OOBONDODUNANALEDLALWN

Is Z out of ronge of °PVS? “DOESTHE NEXT ERTRV BEGIR WY THE VERV 6DITON
Is Z oul of range of *PVS? 5 1S THE RON OR COLUMN YALUE OF ENTRY A’ NOT A LEGAL VALUE? 'r-vzs
RETURN ¥

TEST NUMBEP—"2 "~ - R

1 1S THE NEXT ENTRY' OF RON AND TOLUMN TABLE IN A OTFFERENT TOUOW 7=VES —
DOES IHE LAST OF THE DATR FOR THIS ENTRY GO PRAST THE REQUESTED ?-NO
DOES THE NEXT EHTRY BEGIN AT THE VERY QOTTON OF [TS COLUMN? ?-uo
1$ TME ROW OF COLUMN YALUE OF ENTRY ‘A’ NOT N LEGAL VALUE? 2-NQ
1S NO DAIN OIVENT ST OPSYES

senaan

TEST NUMBER 3

1 IS THE MEXT ENTRY OF ROM AND COLUMM TABLE IN R DIFFERENT COLUM ?7-NO

, 2 DOES THE LAST OF THE DATA FOR THIS ENTRY GO PAST THE REQUESTED P-vES
g 4 DOES THE NEXT ENTRY BEAIN AT THE VERY BOTTOM OF [TS COLUMNY P-vES
S IS THE ROM OF COLUNN VALUE OF ENTRY ‘A’ NOT A LEGAL VALUET = ~~7-No
6 1S NO DATA GIVEN? _2=NO
! : 15 2 OUT OF RANGE OF ‘PVS? : TT T Te-ves
¢ e e
. JEST NUMBER 4

1_ 1S _TNE NEXT ENTKY OF ROM_AND COLUMN TABLE IN A DIFFERENT COLUM 2-NO __
3" DOES 'THE'LAST OF TRE TATN FOK TRIS ENYRV U0 PAST THE REDUESTED $-nO

: 4_OOES THE NEXT_ENTRY BEGIN AT THE VERY BOTTON OF 17§ COLUI‘N? 2-vES
% : ;: :'olil’:g: 0?;: t;w VACUEOF ENTRY “A* MOT A LEGAL VALUET F=no
? N
718 2ot o hmerwrRr v oo ot "'*-—-ku"‘“'
®

Figure D.17-1 Minimum Test Case Generation by GE/ISDS

!
+
[}
:

- BEST AVAILABLE COPY

D-31

Al

1‘ Q

: The interface control document was a primary source for identifying all of
3 ; the data files used as interfaces. They are described in detail in this
: document. The validation and acceptance test specification indicated that
testing module interfaces (IN.2(1)) 1s a primary objective of development {
testing. Included with this specification is the development test plan
which covers:

Statement of function tested
Modules exercised

Data base value required
Inputs

Expected output

Analysis of output

Priority of test

The performance requirements (IN.2(2)) are extracted from the software
requirements specification. They are traced by a routine to insure
compliance. An example output of the routine illustrates several performance
requirements identified relating to a particular specification follows:

e O AT

D-32

i
i
4
4
k]
KB
B

Ty

TYFRT TR T TETY

Example:

SPECIFICATION TO PERFORMANCE REQUIREMENT TRANSLATION w

SPECIFICATION The executive function shall provide the option for
specific parameter status reporting and data base update.

PERFORMANCE EX-40

REQUIREMENTS The executive will provide an operator interaction
option to display the contents of specific para~-
meters identified in the data base defined status
table.

EX-41
The executive will provide an operator interaction
option to data base update specific parameters
identified in data base defined status table.

EX-42
The executive will provide an option to uisplay para-
meter status values on the console or printer.

EX-43
The executive will accept and interpret run-ccatrol
data inputs which define specific parameters to be
displayed automatically, and the interval at which
they are to be displayed.

EX-44
The executive will provide an option to automatically
display specific parameters available for status
reporting.

At the system level (IN.3), the validation and acceptance test plan pro-
vides a test requirements satisfaction matrix from which IN.3(1) can
be determined.

MG S e

0.18 .
HETRIC __ REQMTS "DESIGN JIMPLEMENTATI
_ |SOuRCE] ToOL JSOURCE| TOOL {SOURCE| TOOL
SD. 1 QUANTITY OF COMMENTS (by module) CooE | eus

total # Hnes (nonblank

SD. 2 EFFECTIVENESS OF COMMENTS MEASURE

(1) Modules have standard formated prologue CODE | MAN
conments which describe: (CA)
- Module name/version number
- Author
- Date
= Purpose
- Inputs
- Outputs
« Funttion
- Assumptions
- Limitations and restrictions
- Accuracy requirements
- Error recovery procedures
- References -

(1_ # modules violate rule
ota modules

(l of comments (nonblank

(2) Comments set off from code in uniform manner. ' CODE | MAN
1- § modules violate rule (cA)

total # modules
(3) A11 transfers of control & destinations CODE | MAN
commented. (ca)

(_ # modules violate rule)

total # modules
{4) A1l machine dependent code commented. CODE | MAN
1. # modules violate rule (CA)

‘total # modules
(5) A1l non-standard HOL statements commented. CODE | MAN
(,_ # modules violate rule (CA)

total # modules
(6) Attributes of all declared variables commented. CODE | MAN
(]_ # modules violate rule (CA)

total # modules
(7) Comments do not just repeat operation : CODE | MAN
('_ f modules violate rule (Cr)

“ota modules

SD.1 was simply derived from our code audit routine, a sample output of
which §s shown in Figure D.18-1.

$D.2 measures were all determined manually from the source code lfistings but
could be collected by an enhanced code audit routine. Some selected examples
from the source code relating to SD.2 measurements arc shown in Figure D.18-2.

D-34

v TP . AT T

auilnoy 3ipny 3po) Ag Juno) Judumio) | -grQ d4nbi4

D-35

e m— e — e — = e [ERUENE. . [,

C et 12°e et e0%0 1S S (1] (139 ' 68 Solt T 0T TUan T aveuw
wee 950 t7T S | {1 I 1 § SR | M) 0ve 6Lz cso T egl2™T T T @ T e 03609
SaEtTTTUOTTIIEYe TTTeg T T Eled Tz v T et T I8t T oU1st0 T €Ll T2 TTUTT @7 TTeM T 3eae
c2°2 €s*e de6 T 0T el 850 oug 202 666 1gaz @ T 7 aueay S
R 1 19°0 G gl g9 ST LU I T el cer LS L T U B~ 1.1 Q.
TTUUEENTTT T Teete TTTes T TTTTHIMGT TTéZ T Tewto T T el T TUTERSTTT e T T T aew T T T T W T uees 0
09°2 19%0 e T 80% 9 16°0 S@v ss°1 1cs C el 0 TN T 19669 C
s 6L°0 at T 8000 C Wt T te%e set T weeo ool €ec @ AN T w3800 dd
S eRNTTTTT UL TTTUEEE T TTOTeq ULy T 08%0 T G2 T UUTTTRESTTTTT 20T TTTLRENTTT T T T o T T8 T T ——
12 85°0 U S6 - Tottee el : 6820 "t Lo 291 - Ueey T T @ T oM 39849 ==
£9°2 69°0 202 - 600 " tE SRR {11 1€ - zo*r- 0SE T T Uele’ T C @ 3 2809 M
TTase T 26°0 T EIU T TTTTezeee TTTTee T wec0 T ew T 7T Tegre T gat T T e€ T T TTaT T @ weva M
ogoe 08°0 T 0v'0 - 8 09%0 I 90°0 0z 99 T .= U gk ERIAADY v
92e2 sL*0 21 e 9 8L*0 92t (s00 29t T99E T e= T D T ANOID <
TR TR T T e T 2€0 2z 8900 T we TU T 02e07 T 89 T UUTEEL TTTTT ee” TTye T o2u0dw [
oce? 85°0 29 BER-1 L T 3 T a0 26 {30 sot 242 “= " @p | 103 B
S Y1 2 09%0 -t egs T Lteo- - gel - €9%0 988 SRl 9901 9062 T ee " GH %3089 an
oot T 99%0 T T SIY T T slto e 7T Tiec0 T oemE T T twet™T gey T T TeEUTT T e T o T 1y T
$6°2 69°0 L21 Mt 151 TRT T T 1 "we 551 1es’ 6951 T 7T == "7 gu IcWMINY
b2*y 16°0 m N1 LT R 1 T 8e%0 oot feeo vt 600 T e ¥ iS360
e eges —- Lol - @2 = g0%9-— = Z m-— 2600 - €2 vt ——40%0 - §2 — -Gl -——= ee-——g9--20[53¥9 ~
1eg 99°0 £9s R L R 1 R T 11) 889 2v'2 628 2a52 e I)
89°¢ €6°0 " 859 o gten T 0e : 18°0 229 - goee 2 4192 7 ° == T gH "NOI3BO
T get2 T T T Teett T e T T ¢] R Og T gee® T el T T T 2wt T gge TTelel T T e I T wiwe -
C *ANWLS ¥3d °LNWAS ¥3d SLNIWWOD VA0l 40 *SLNWLS Wil 40 *SLNWLS *0AY 01 °SiKWLS souvd © o goe T 3ww
_SONYD §INIwNOD ___OIAVY SV JAILYYYIDIG OIivd S¥Y IVENGIN04g 3IALLYIIE vioL Wvyo0ud

st 39vd 9LAONBL 3009 3JuM10§ AUWSTO INNY =0l wSv}

T i ” N TEITERY .

Sojdwex3y SIUUWO) JO SSIUIALIIBYII 2-8L°Q dunbLy

/
—~— T~

o83z 41 iS4 S 8 B3 s 41
SINIR0D HOOd

Lv QMO0 N3N 4
4 3AVH SIIINI YW 31 ISTL 4 S 8 D3 s 4

‘oM
*90=0N 139¥d INd 00 W3WL 8 LLLLOL<OM 31

(||/||\|I/\

N
SINDSI0D Le SHIANA0D 3811 ¥04 Q3SA 39 THIA SINL “WNIII0 o/
900 e NI ,05, SI ABVNI® NI ,0LO0LL, Iwis 310N o/
(v wmax] wows w0
Wit
0N NS93S
WILIAS OL SO TWNSIS AS935 L u
133410
GIINIWN0D 3000 INION3IAI0 BMIHI
INLLNOY NIVN] o3 #]
N . $ 809 028
e ‘ﬁzdﬁuﬁhg»gt $2-u8
4 IS 0w
¥ $ (20731) 197300% 9 (J0BWL 23N 31
W11 010-- 1130 AWVuOda3L A4 S N BF [WNTOS WiLL
#4(# N AUVH0CAIL A SN BY T ANITS MALT
CIINMMOD 0UINOD 4O SUIISHWL
mﬂl PUOBBVEDPI ISP PSDVEIBITLTPEPINSSIRRISTIVISSIIRLEIVINIVENS
f3ad sevseosessnSiill »
» o
v (22113 ey
031X Mn0) STISYIuVA OIWYIZ0 TW 40 SIINGIYLLY
o e

N ————

mp otk e i

e T

WETRIC REQMTS DESIEX |IMPLEMENTATION]
SOURCE] TOOL {SCURCE| TOOL |SOURCE} TOOL
DESCRIPTIVENESS OF IMPLEMENTATION LANGUAGE
MEASURE
(1) High order language used. CODE | GJS
7. £ modules with direct code
(tota ules
(2) Standard format for organization of modules. CODE | MAN
(1_ # modules violate ryle (CA)
otal 2 ules
{3) variable names (mnemonic) descriptive of CODE | MAN
physical ot functional property represented.
1. £ modules violate rule)
(T total ¥ modules
(4) Source code logically blocked and indented. CODE | MAN
(1_ # modules violate rule
tota ules
(S) One statement per line, CODE | GJS
contiruations + multiple
(1_ statement lines
total 4 lines
(6) No language keywords used as names, CODE ?AN)
CA

1- I modules violate rule
(total # modules

SD.3{(1) and (5) were
determined manually.

ITEM SAVBLK
ITEM SAVFILE

collected by the code audit routine.
An example of compliance with SD.3(3) follows:

8 $ ## SAVE BLOCK NAME ##
48 U $ ## SAVE FILE NUMBER ##

H
I

ITEM SAVREC I 48 U $ ## SAVE RECORD NUMBER ##
H

ITEM OPERANS

N=K
N = K**2
NNN = K**3

WRITE (6,60) N,NN,NNN

8 $ ## OPERATOR RESPONSE Ris

The remainder were

which are obviously better than variable names such as A@@1, APP2, A@P3, etc.

But more subtle problems can arise from poor variable names as pointed out
in this example in [KERNB74].

D-37

i
i
|

P.19 (continyed)

In this exgmple the typographical error in the secend 1ine woyld be easy to
make and difficult to find because of the naming. A suggested naming scheme
is N. ”mp umE’

Most structured programming preprocsssors provide the indentation emphasized
in §D.3(4), Also, the paragraphing constructs such as PO .., CONTINUE in
FORTRAN, BEGIN ... END n ALGOL and JOVIAL, the PO; ... EMD;, BEGIN; ... END;
and PROCEDURE; ... END; in PL/) shoyld be taken advantage of to promote self-
descriptiveness. Whether a module is implemented with these techniques in
mind or not, is easily discernible by inspection of the souree code.

b-38

- 4

D.20

processing.

METRIC REQMTS DESIGN IMPLEMENTAT JON
SOURCE] TOOL]SOURCE| TOOL JSOURCE] TOOL
EE. 1 PERFORMANCE REQUIREMENTS ALLOCATEC TO DESIGN PDS RTR
DDS }PSL
POL
EE. 2 ITERATIVE PROCESSING EFFICIENCY MEASURE:
(by module)
{1) Non-loop dependent computations kept out of DDS | MAN 1 CODE | MAN
1o0p. (CR)
(]- 4 nonloop dependent statements in loop
tota oop statements
{2) Performance optimizing compiler/assembly CODE § MAN
language used. GJS
(3) Compound expressions defined ~=-o. CODE | MAN
compound expression derined more (CA)
(1_ than once
compound expressions
(4) Number of overlays. DDS | MAN | CODE | MAN
(]) (EA)
T of overlays
(5) Free of bit/byte packing/unpacking in loops. (111 MAN CODE D(ﬂéx)
(6) Free of nonfunctional executable code. CODE | MAN
(1_ # nonfunctional erecutable code
total executable statements
(7) Decision statements efficiently coded. CODE | MAN
;. # inefficient decision statements (ER)
(total 7 decision statements
(8) Module Tinkages. CODE | (EA)
1. Module linkage time)
(execution time
(9) 0S Yinkages. CODE | (EA)
(1_ 0S linkage time
execution time
EE. 3 DATA USAGE EFFICIENCY MEASURE: (by module)
(1) Data grouped for efficient processing. DDS | MAN | CODE | MAN
DaMp {DBO)
(2) Variables initialized when declared. CODE | MAN
(0 inftialized when declared (ca)
total 7 variables
(3) No mix-mode expressions. CODE | MAN
1 fmix mode expressions) (ca)
(~ ¥ executable statements
(4) Common choice of units/type. DS | MAN | CODE | MAN
(1/¢ occurrences of uncomnon unit operations) (ca)
(5) Data indexed or referenced for efficient DDS | MAN | CODE | MAN
DENP (080)

(ca)

ks

D.20 (continued)

Paragraph D.17 illustrated how the performance requirements are kept track
of and paragraph D-1 described the SRS requirements satisfaction vs routine
matrix in the preliminary design specification. These sources identify
the performance requirements, and the detailed design specifications reveal
whether they are accommodated (EE.1). For example, estimates of storage
requirements and run times are documented in the design documents. These
estimates which provide a best estimate, as well as a high, and a low
versus the maximum allowable are based on specific scenarios. The SRS might
specify a certain transaction type must be handled within a certain time
frame., The run time estimates for the series of modules which process

that transaction type should comply with the requiremefit.

Six of the measures for EE.2 and EE.3 can be taken from the detailed design
documents. A1l of the measures can be determined from the source code. Code
audit, execution analysis, and data base analysis all contribute to
measurements for these metrics. The most common violations to the efficiency-
oriented characteristics that these metrics represent were related to EE.2(1)
and (3). Some examples are:

FORTI = 1,N
BEGIN
AREA(I) = 2+PI*(I+X)**2
END

The 2*PI is an unnecessary computation within a loop.

As 111lustrated in [VANTD74] the following:

SIGMAT = SIN(THETA) + SIN(THETA)**2
SIGMA2 = SIN(THETA)/3.0
1s much more efficient if implemented as:
RHO = SIN(THETA)
SIGMA1 = RHO+RHO**2
SIGMA2 = RHO/3.0

EP R

. e,
- ___‘.._‘.._.»—b-—-»

e

-

T

L T,

o

Ay o

PRENREEES T TS T e

~&

1
D.21 i
METRIC REQMTS DESIGN IMPLEMENTAT [0 1
SOURCE] TOOL]SOURCE| TOOL |SOURCE] TOOL }
4
SE. 1 STORAGE EFFICIENCY MEASURE: (by module) i
(1) Storage requirements allocated to design. 0DS | MAN 1
g PSL
fpot 1
(2) Virtual storage factlities used. DOS | MAN CODE | MAN
(3) Common data defined only once. CODE | MAN
(]- # variables defined more than once
totzl » variables
(4) Program segmentation. DODS | MAN | CODE | (EA) 3
(]_ maximum_segment length)
total program lengt : !
{5) Data segmentation. DDS | MAN | CODE | (EA)
(1_ amount of unused data
total amount of data
(6) Dynamic memory management utilized. DOS | MAN | CODE | MAN
(7) Data packing used. CODE { MAN
(ca)
(8) Free of nonfunctional code. CODE | MAN
1- ¥ ronfunctional statements
total # statements
(9) No duplicate codes. CODE | MAN CODE | MAN
(1_ # duplicate statements
total # statements
(10) Storage optimizing compiler/assembly language CODE | MAN
used. : GJS
{11) Free of redundant data elements. CODE | MAN
(]_ f# redundant data elements
ata elements

The programming environment for Systems A and B did not provide capabilities
such as virtual storage, optimizing compilers, or dynamic memory management.
However, a very restrictive amount of memory available encouraged many
efficiency techniques to be utilized. These measures attempt to identify

poor practices.

D-41

D.22

- ' . REQTS DEIGN |TNPLEMENTAT]
? , o , source| Too Jsource] oo fsouwce| ool
AC. 1 ACCESS CONTROL CHECKLIST: _ '
1)] ?ier 1/0 access controls provided SRS | man | pps | man | copk]| man
10's, passwords). oDsS
{2) Dath base access control provided SRS | MAN | PDS | MAN | CODE| MAN
{authorfzatfon tables, privacy locks). {113
. (3) Memory protection across tasks provided. SRS | MAN %gs MAN | CODE| MAN
S
: AA. 1 ACCESS AUDIT CHECKLIST:
(1) Provisions for recording and reporting access.| SRS | Mak gg MAN | cODE| mAN
(2) Provisfons for immediate indication of actess | SRS | MAM | PDS | MAN | copE| man
; violation, ons

Neither System A ior B had any specified requirement for actess control v
s capibilities. Therefore, each bf these measures were not appiicable. F
] The identified sources would noimally contain statemehits which would

' provide the required data.

i B=42

REQMTS DESIGN |IMPLEMENTATION]

NETRIC SOURCE] TOOL [SOURCE| TOOL [SOURCE| TONL

OP. 1 OPERABILITY CHECKLIST:

(1) A1) steps of operation described SRS | MAN | UOM | MAN UOM | MAN
{normal) and alternative flows),
{2) ANl error conditions and responses SRS | MAN | uOM MAN | ‘uom MAN

appropriately described to operator.

(3) Provisions for operator to interrupt, obtain SRS MAN uoM MAN UoM MAN
status, save, modify, and continue processing.

{4) Number of operator actions reasonable. CODE | (EA)
(‘I- time for operator actions
total time for job

(5) Job set up and tear down procedures described. UoM MHAN

(6) Hard copy log of interactions maintained. UOM | MAN | UOM | MAN

(7) Operator messages consistent and responses UOM MAN UM MAN
standard.

o

-
— e —— e W =

-7

The user's manual or operator manual (which we call the Computer Programs
Operating Instructions) is the primary source for these measures. Generally
the user's manual evolves during the development phase, becoming more
detailed and precise as more detailed information on the exact operating
procedures becomes available. A separate section contains the daily usage
instructions and another section identifies and explains each error message.

A specific example, paraphrased from the SRS of System B is the following
itemized requirement:

The system should recognize error conditions and automatically
abort in an unrecoverable situation, or in a situation where
recovery is possible, allow operator intervention to either:

® abort the program
e accept error and continue the program
e correct error and continue the program.

R it

D.24

RERTS 1 DESIGN TIPLENENTATT
SOURCE] TODL |SOURCE| T0OL [SOURCE] TooL

METRIC

R. 1 TRAINING CHECKLIST:

(1) Lesson plans/training matertal developed for ™ MAN _
operators, end users, maintainers. &

(2) Realistic simulated exercises provided. ™ MAN

(3) Sufficient 'help’ and diagnostic infornation DOS | MAN | UOM | MAN

available on-line, (ER)

1 Normally a training manual, course material, and lesson plans would be

available to evaluate and provide a measures for this metric. In the

environment of the two systems of this study, personnel quite familiar

] with the systems operated them. Thus much less formal documentation

3 was available. The user's manual had a section on training and intro-

ductory information on the systems. These measures are manually - ;
extracted from the identified sources. \

—

An excellent example of compliance with the TR.1(3) measure is found in

i the support software, GE/ISOS. At any level of the system, 'HELP' can

L be typed, and a 1ist of correct commands at that level is provided the i
on-line user. 1

ity

Cas fiioddd

Y D-44

D.25

METRIC REQMTS DESIGN IMPLEMENTAT ION
' SOURCE] TOOL }SOURCE| TOOL }SOURCE} TOOL

CM. 1 USER INPUT INTERFACE MEASURE:

1 (1) Default values defined. DOS | MAN | UOM | MAN
(# defaults
total # parameters

(2) Input formats uniform. DDS | MAN | UOM | MAN

1
different input record formats)

(3) Each input record self identifying, DDS | MAN | UOM | MAN
(]_ # that are not self identifyin) '
‘total # input records

(4) Input can be verified by user prior to DDS | MAN | UOM | MAN ~
execution. 4
(5) Input terminated by explicitly defined DDS | MAN | uoM | MAN
Togical end of input,
{6) Provision for specifying input from SRS | MAN DDs MAN | UOM | MAN

different media.
CM. 2 USER OUTPUT INTERFACE MEASURE:

(1) selective output controls. SRS | MAN | DDS | MAN | uoM | MAN
(2) Outputs have unique descriptive user DDS | MAN | uoM | MAN
oriented labels.
(3) Outputs have user oriented unts. 1 MAN UOM | MAN
{4) Uniform Output f(;rmats. DDS MAN UOM MAN
| f ditferent output formats)

i (5) Logical groups of output separated for user pDS | MAN UOM | MAN
i examination. -
, (6) Relationship between error messages and DOS | MAN | UOM { MAN 3
‘ outputs is unambiguous. 1
' (7) Provision for reducing output to different DDS MAN UOM MAN 3

media.
¥ :?

Manual reviews of the detailed design specifications and users manual

i provided the data for all of these measures. Each input/output format was
] : i described in the users manual. The SRS identified the requirements for

!* ; different modes of operation (which involved different 1/0), from cards,

» : tape, and teletype, and for output compression and expansion.

£ D-45

—— A e L - e . . e oo

L N T PN
s i v

RETT I

D.25 (continued)

The selective output controls should include selective debug options in

case the program exhibits unusual behavior. The output labels and units

are almost as valuable to the user as the results themselves. Error messages
should be helpful, for example:

PARAMETER ¥#**wie MUST BE BCI

LOGICAL UNIT #** IS NOT VALID

DATA BASE #**%* WAS NOT FOUND IN THE DISC DIRECTORY
VERB **%%** IS NOT LEGAL FOR FUNCTION.

D-46

e

i . e

. . -
- _‘-.__ —— e o

<

R T

D.26

REQMTS DESIGN IMPLEMENTATION|
M|
ETRIC SOURCE] TOOL |SOURCE| TOOL [SOURCE]| TOOL
SS. 1 SOFTWARE SYSTEM INDEPENDENCE MEASURE : i
(1) Dependence on software system utility programs. DDS | MAN | CODE | MAN
(]_ # programs = utility program) (ca)
total ¢ programs
(2) Dependence on software system library routines. D0S MAN CODE | MAN
1. # library routines used (CA)
(total # modyules
(3) Common, standard subset of languace used. DDS MAN CODE | MAN
(l- # module violate ru]e) (CA)
y total # modules
(4) Free from operating system references. DOS MAN CODE | MAN
1- # modules with 0S references) (CA)
(total # modu}es

These measures were taken manually from the code and design documents.
Evaluation of the execution or ¢ mpilation of a routine also is helpful.

In a particular environment, automated identification of these measures
would be possible.

e et ey N S

R e

D-47

A O T

D.27
,]
R S £ :
WETRIC ~ REQMT DESIGN |IMPLEMENTATION j
SOURCE] TOOL |SOURCE} TOOL }SOURCE] TOOL :
MI. 1 WMACHINE INDEPENDENCE MEASURE: E
() Programing language used available on other DDS MAN CODE | MAN ‘é
machines. i
{2) Free from input/output references, DDS | MAN | CODE | MAN ’
(1_ # modules with I/0 references (CA) o]
total # modules
(3) Code is independent of word and character size| CODE | MAN
(]_ # modules violate rule
totat § modules
(4) Data representation machine independent. CODE | MAN 1
(1_ # modules violate rule
total # modules

Specific JOVIAL constructs such as BIT/BYTE, the I/0 system routines,
and DIRECT code were keyed on while searching the code to determine these

measures.

D.28

R

EP

,‘.“* e 2l & -

s

METRI REQMTS DESIGN TMPLEMENTATION
¢ SOURCE] TOOL |SOURCE] TOOL]SOURCE] TOOL
CC. 1 COMMUNICATIONS COMMONALITY CHMECKLIST:
(1) Definitive statement of requirement for SRS | MAN
corm:nication with other systems. - l
(2) Proticol standards established and followed. 5%!8) MAN CODE | MAN |
1
SC ‘
(3) Single module interface for input. DDS | MAN | CODE | MAN i
(] (POL) (CA)
modules used for 1nput)
(4) Single module interface for output. DDS [MAN | CODE | MAN
1 (PDL) (ca)
(1 moduies used for output)

The interface control document specifically identifies and describes any
interfaces between systems. This is especially important in an associate
contractor environment. The detail design specification and the code
were utilized to identify the routines which contained any I/0 operations.

0-49

D.29
METRIC REQMTS DESIGN TMPLENENTAT ION
SOURCE| TOOL |SOURCE] ToOL |SOumrcey Tont
DC. 1 DATA COMMONALITY CHECKLIST: i
(1) Definitive statement for standard data SRS | MAN i
representation for comunication with
other systems. %
(2) Translation standards among representations ICD | MAN | CODE | MAN 4
established and followed. 0DS (ca) }
sC
i (3) Single module to perf?m each translation. DDS | MAN | CODE | MAN
modules used to perform tnnshtion)
There was no requirements for communication between systems as envisioned by ’
this metric and therefore data was not collected.
5
1

» orew

Pl

e
.
- e —a e

e

D.30
n‘l _ REQMTS DESIGN [IMPLEMENTATION

= : METRIC source| Too. [source| TooL |source| voor 1

4

£O. 1 HALSTEAD'S MEASURE (by module) cooe | 6Js 1

? 1- ule length calculated-module length observed
module length observed

The number of operators and operands were collected by the code audit
routine. A routine was written to calculate the metric based on those

‘ inputs.

24

v

P P o 2
i ook i kb

e M e s e W 8 e iy
N
-~

D-51/D-52

-

¥ IS IS QS 2 50 1 90 £ 9L 2 2L A 987K N AF K9

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communicatiocns
(c3) activities, and in the C3 areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handiing, information system tachnology,
lonospheric propagation, solid state sclences, microwave
physics anc¢ electronic reliability, maintainability and
conpatibility. 3
3

:
MISSION
Py Rome Avr Development Center

Printed by
United Stotes Air Force
Honscom AFB, Mass. 01731

