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1. Introduction and Statement of Main Results.

Let M and N be random integers chosen uniformly and independently
from {1,2,...,x}. Throughout (M,N) will denote the greatest common
divisor and [M,N] the least common multiple. Cesaro (1885) studied the

moments of (M,N) and [MN]. Theorems 1 and 2 extend his work by providing

explicit error terms. The distribution of (M,N) and [M,N] is given by:

Theorem 1.

(1) P {M4,N]< 6 and (4N)=k) = ;g 3 fes(1-log 1)) + 0, (ROEE)
log ()
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Where [x] denotes the greatest integer less than or equal to x.
Christopher (1956) gave a weaker form of (2).

(2) easily yields an estimate for the expected value of (M,N):

E[(M,N)}=-—:2L Y 1,3) = y kP{(M,N):k}=—g—logx+O(l).
X x  i,j<x k<x X 7

(2) does not lead to an estimate for higher moments of (M,N). Similarly
the form of (3) makes direct computation of moments of [M,N] unwieldy.

Using elementary arguments we will show:



Theorem 2.
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where C is an explicitly calculated constant.
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5) for k >2, EX{ (M,N)k} =

where t{z) is Riemann's zeta function,

& (x+2) e
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(6) for k >1, EX{[M,N]k} = + 0 log x) .
Section two of this paper contains proofs while section three contains
remarks, further references and an application to the statistical problem of

reconstructing the sample size given a table of rounded percentages.

2. Proofes of Main Theorems.

Throughout we use the elementary estimate
3 2
(2.1) o(x) = % ok)=-5x%x +REx)
1<k<x b

where R(x) = O(x log x).

See for example Hardy and Wright (1960) theorem 530. Since
# {m,n <x: (m,n) =1} = 20(x) + 0(1) and (m,n) =k if and only
if klm, kln and (%, 1-1%) =1, we see that # {m,n < x:(myn) = k} = Etb(i—)m(l).

This proves {2). To prove (1) and (3) we need a preparatory lemma.



Lemma 1. If Fx(t) =#{mn <x: mn <t % i (myn) = 1} , then

rolon

F,(6) = -2 t(1-log £)x° + 0, (x 1log x) .

kit

Proof. Consider the number of lattice points in the region

Rx(t) = {m,n < x: mn < txg]. It is easy to see that there are

t(1-log 1:)::;2 +Ot(x) Nx(t) such points. Also, the pair (m,n) e Rx(t)

and (m,n) = k if and only if (f, p) € R,y (t) ond (& 2) = 1. Tus

N (t) = Y E / d(t)., The standard inversion formuls says
1<a<zx
Fx(t) = 2 u (4N /d(t) = —-26— t(1-log t)x2 + Ot(x log x) &
1<d<x x a4

Lemma 1 immedigtely implies that the product of 2 random integers is

independent of their greatest common divisor:

Corollary 1.

P {MN] _<_tx2l (M,N) = k} = t(Q~log t) + O

To prove (1) note that

i

PX[[M,N] < tx° and (M,N) = k} = PX[[[M,N] < tx2I (M,N)

k} .

= P {MN < E lef (M,N) = k} - B_{(MN)

Use of (2) and Corollary 1 completes the proof of (1). To prove (3) note

that

k)« P_{(M,N) =k}



5 1 [1/%] .
P {IM,N] < tx7) = P L4N) > (g1} + ) P {[M,N] < tx b, )=k} P_{(M,N)=k}.

Using (2) and Corollary 1 as before completes the proof of Theorem 1.

To prove Theorem 2, write, for k > 1,

k k k
(2.2) Y (mmn) =2 N Y  (mm)" - I i
myn < x l1<m<x 1<n<n 1<i<x
k+1 k
=2 X (m) - +0(x)
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where fk(m) = dkcp(-:%) . Dirichlets Hyperbole argument (see eg. Saffari
djm
(1970)) yields for any %,
k_x X . X
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where
k+l
Ik(t) = Z ik=EE:i'+O('tk) .
1<i<t
Wen k =1, we proceed as follows: Choose % = \/Z . The first sum

on the right side of (2.3) is,

(2.4) y
k



The second sum in (2.3) is
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and » is Fuler's constant.




Using this in equation (2.5) yields that the second sum in (2.3) is

2 =
(2.7) 3—% log x + %xe + O(x)/2
27

log x) .

The third term in (2.3) is

o)

(2.8) 22 +062"? 108 %) .
Tt

o=

Combining (2.8), (2.7) and (2.%) in (2.3) aund using this in (2.2) yields:

T @n) -5 logx+ @+2 0 +3) -5 4062 108 %),

myn < x T n

where d is defined in (2.6).
When k > 2, the best choice of t in (2.3) is t = 1. A calculation
very similar to the case of k =1 leads to (3).

We now prove (6). Consider the sum

(2.9) Y [i,i=2 ¥
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i, €x <i

J

i

INP1

k
i k+1
% YOG +vox )
x dli j<i

N X
-2 ¥ if %‘, £ @) +o ™)y -2 ¥a& ¥ sfe (5) +oaET) .
5 k'd . k
i<x dii d=1 J S_x/d

Where



We may derive ancther expression for fk (n) by considering the sum

n k+1 £ (da)
.k n k k
(2.10) z i° =5y Rk(n) =1 — -
i=1 din d

Dividing (2.10) by 2 and inverting yields

£ ) R, (d)
S Boa@er Ta@
or
0t ¥ n, .k nkcp(n)
£ (n) = =5 o) + i w@ G R (@) = =3~ +E@) .

Wnen we substitute this expression for fk(j) in (2.9) we must evaluate:

5,60 = & 350) = B 5 I v @) )R, (@)

J <y <Ly alJg

.y 2k k
ig w(i) ) " R (d)d" .

v d<y

Now Rk(d) is a polynomial in d of degree k. Thus,
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Is, )l < g log y) .



We must also evaluate

1 k. 1 k-1, . 2k-2 2
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Substituting in the right side of (2.9) we have

i

. K v .k X X k+1
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%. Miscellaneous Remarks.

i. If Ml’Mz""’Mk are random integers chosen uniformly at random
then results stated in Christopher (1956) (see also Cohen (1960 ), Herzog

and Stewart (1971), and Neymann (1972)) imply that

(5.1) B 00 My5en e, )=)) = ZO% = + 0(—%=) k > 3.

We have not tried to extend theorems 1 and 2 to the k-dimensional case.



3.1 has an application to a problem in applied statistics. BSuppose
a population of n individuals is distributed into k categories with
n individuals in category i. Often only the proportions p; = ni/n
are reported. A method for estimating n given D; s 1<i<k is
described in Wallis and Roberts (1956), pgs. 184-189. Briefly, let
m = min[‘i_pibil where the minimum is taken over all k tuples
(bl,bz,.:.L,::,Lbk), with o, € (0, +1, +2,... } not all b, equal zero.
An estimate for n is {1/m]. This method works if the p; are reported

with enough precision and the n, are relatively prime for then the

Fuclidean algorithm implies there are integers {bi}§=1 such that

B

E b,n, = 1. These bi give the minimm m = =, If it is reasonable
to approximate the n, as random integers then (3.1) implies that

. 1 . .
Prob((nl,ng,...,nk)—l) ) and, as expected, as k increases this

probability goes to 1. For example, 2%57 = .96, E%?T £ .092,

2%57 = .998. This suggests the method has a good chance of working with a
small number of categories. Wallace and Roberts (1956) give several examples

and further details about practical implementation.

2. The best result we know for R(x) defined in (2.1) is due to

Saltykov (1960). He shows that
2
R(x) = 0(x(log x) /B(loglog x)l+€) .

Use of this throughout leads to a slight improvement in the bounds of

theorems 1 and 2.

5. The functions (M,N) and [M,N] are both multiplicative in the
sense of Delange (1969,1970). It would be of interest to derive results
similar to Theorems 1 and 2 for more general multiplicative functions.

o]
>
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