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1.  Introduction and Statement of Main Results. 

Let M and N be random integers chosen uniformly and independently 

from {l}2}..,,x].    Throughout  (M,N) will denote the greatest common 

divisor and [M,N] the least common multiple.  Cesaro (1885) studied the 

moments of (M,N) and [l£N]. Theorems 1 and 2 extend his work by providing 

essplicit error terms.  The distribution of (M,N) and [M,W] is given by: 

Theorem 1. 

(1) P {[M,N]< tx2 and (M,fir)=k) = -§ ~ [kt(l-log. kt)} + 0.   , (iSfiJE) 
it    k ' 

ß      1 log (|) 
(2) P { (M,N) = k)   = -|    -§ + 0(^1 

jt      k 

o £      [lA-] , 
(3) PX([M,N] < tx^}   = 1 + -f •     I        {jt(l~log jt)-l}   + 0t(

i2^~) 
*   0=1 

Wiere [x] denotes the greatest integer less than or equal to x. 

Christopher (1956) gave a weaker form of (2). 

(2) easily yields an estimate for the expected value of  (M,N): 

E((M,W)}=-|   £  (i,j) =   £  k P {(M,JT) =k) =-|log x + 0(1). 
x  i, 3 <x       k < x « 

(2) does not lead to an estimate for higher moments of (M,Bf). Similarly 

the form of (3) makes direct computation of moments of [M,N] unwieldy. 

Using elementary arguments we will show: 



Theorem 2. 

(1+)     Ex( (M,N)} = -f log x + C + 0(i2JL£) 

where C is an explicitly calculated constant. 

(5) for k > 2,  E { (M,W)k} = S-- {§ÄL - 1} + 0 (xk~2 log x) 
- x K+I    £(k+l) 

where    £(z)    is Riemann's zeta function^ 

(6) for    k > 1,     E  ÜM,N]k}  =  -8(k+f0    x
2k + oCx21""1 log x)   . 

x £(2)(k+ir 

Section two of this paper contains proofs while section three contains 

remarks, further references and an application to the statistical problem of 

reconstructing the sample size given a table of rounded percentages. 

2.  Proofs of Main Theorems. 

Throughout we use the elementary estimate 

(2.1) *(x) -    £    cp(k) = -| x2 + R(x) 
1 < k < x      it 

where R(x) = 0 (x log x). 

See for example Hardy and Wright (i960) theorem 350. Since 

# {m,n < x: (m,n) = 1} = 2$(x) + 0(l) and (m,n) = k if and only 

if k|m, k|n and (p r-) = 1, we see that # {m,n < x: (m,n) = k} = 2$(r-)+0(l). 

This proves (2)»  To prove (l) and (3) we need a preparatory lemma. 



Lemma 1.  If F (t) = #{m,n < x: mn < t x  and (m,n) = l) ,  then 

Fx(t) = -| t(l-log t)x
2 + Ot(x log x) . 

it 

Proof.    Consider the number of lattice points in the region 
o 

R  (t) = {m,n < x: mn < tx }.    It is easy to see that there are 

2 t(l-log t)x    + 0, (x) = K  (t)    such points.     Also,   the pair    (m^n)   €   R  (t) 

and    (m,n) = k    if and only if    (p  ~) e R   -   (t)    and    (p  ~) = 1.    Thus 

N (*) = E Fx/d^*     'Hie s^andard inversion formula says 
1 < d < x      ' 

P  (t) = % ü(d)HL/d(t) = -f t(l-log t)x2 + 0  (x log x)  . 
I < d < x it 

Lemma 1 immediately implies that the product of 2 random integers is 

independent of their greatest common divisor: 

Corollary 1. 

PX([MI]   <tx2| (M,N) = k}  = t(l-log t) + 0t fc(^p)  • 

To prove  (l) note that 

P f [M,W] < tx2 and  (M,N) = k}  = P C[[M,W] < tx2| (M,N) = k} • P {(M,N)s«=k} 

= P {MN < ~ x2f(M,lO = k}   •   P f (M,N) = k}   . 

Use of (2) and Corollary 1 completes the proof of (l). To prove (3) note 

that 



[1/t] 
P {[M,N] < tx )   = P {(M,H) > [£]}   +      Y      P {[M,N]  < tx   t (M,N)=k] • P  {(M,N)=k). 

k=l 

Using (2) and Corollary 1 as before completes the proof of Theorem 1«, 

To prove Theorem 2, write, for k > 1, 

(2.2) I      (m,n)k = 2    £        £   (m,n)k -    £    ik 

m,n < x l<m<xl<n<m       l<i<x 

k+1    , 

1 < m < x 

where    f, (m) =   Y     d cp(—)  .    Dirichlets Hyperbole argument   (see eg.  Saffari 
dim 

(1970)) yields for any    t, 

.k_/X\      , T I-   \-r     /X,\ -r     /J_\A/X' (2.3) T fk(m) . I       !%(?) + £       /P&Vr' -\(t)»f) 
l<m<x 1 < 1 < t 1 < 1 < x/t 

where 

V 4-k+1 1 

1 < i < t 

"When    k = 1,    we proceed as follows:     Choose    t = \fx .     The first sum 

on the right side of  (2.3) is, 

(2.10 I       ,_{-§  (f)2 +0(| log|)) 
1 < k < /x    * 

•4 x2{log y/x + 7  + 0(—)}   + 0(x5'2 log x) 



The second sum in (2.3) is 

(2.5)      I      _ «p(k){i (f)2 + of)} = j£   I Slg. + ö(^2) . 
-*• • ^ < /& 1 < k < /x  k 

How 

£%)_   ?     __2kji  .fk) + »Jgi g 0 ~«#(k)  •   ; «    /—      .' **     r—        ,     . ^^d [XJ 
1 < k < -/x   k   1 < k < /x (k(k+l)f 

l<k</x    k(k+l)      * l<k<v/x   k  (k+l) 

*2 y^ 

ri<k< >/x  f k+l)' k=l k f k+l)       k=l 

x   ::'' ' $(k) 
'" 1 < k < /x (k+l)2    k=l k(k+l)2  k=l k2(k+l)2 

+ -2 + 0(^) 
7t /x 

4 log x + d + 0 (iSBJE) 
/ x 

i*i ere 

(2.6)    d = £ {<D(k)+2kR(k) - -| k(2k+l)}/(k(k+l)) + -*(?+£) 
k=l ä it^- 

and >' is Euler's constant. 



Using this in equation (2.5) yields that the second stun in (2.3) is 

^v r3      2 5 /P 
(2.7) =^p log x + I x    + 0(xJ/     log x)  . 

2TC 

The third term in  (2.3) is 

(2.8) \ -| x2 + 0(x3/2 log x) . 
it 

Combining  (2.8),   (2.7) and  (2.^) in  (2.3) and using this in  (2.2) yields: 

£    (m,n) = -§ x2 log x + (d + -|  (7  + |)  - |)x2 + 0(x3/2 log x) , 
m,n < x it « 

where    d   is defined in  (2.6). 

Mien   k > 2,    the best choice of   t    in  (2.3) is   t  = 1.    A calculation 

very similar to the case of    k = 1    leads to   (3). 

We now prove   (6).    Consider the sum 

(2.9) I      [i,j]k = 2      I I      [i,j]k+0(xk+1) 
i,j < x i < x j < i 

= 2      I % I    #)k+0(xk+1) 
i|i    j < i 

•  ,-      ,!.    .  . .  d 
i < x    d l    j < l 

= 2      X    ^      ?   fk(|)  +0(xk+1)=2    |dk     X o\u)+0(xk+1) 
i < x       d|i d=l      j < x/d       K 

Where 



f (n)     £   Jk 

j < n 
(J,n)=l 

We may derive another expression for f,(n) by considering the sum 

n  .   k+l f (d) 
(2.10)       I   i* . V.T t ^(n) - nk V  *   . 

1=1 d|n  d 

Dividing   (2,10) by    n      and inverting yields 

~F- = ^    E n(5)d +  Z n(j) —r 
n d n d n d 

or 

fk(n) - ^ ,(n) •   E   ,(§)(§)* yd)    .   #1 • E(n)  . 
d n 

When we substitute this expression for f, (j) in (2.9) we must evaluate: 

sx(y) =   E dVa) =   £    / JE ^M}\(d) 

J < y j < y      d| j 

,.2k 

How 

i < y d < y/i 

R (d)    is a polynomial in    d    of degree    k.    Thus, 

-   f,r\\  <-       V      .2k,y\2k+l , 2k+l . N \K¥)\  <       1      i     {p =  0(y logy)  , 
i < y 



We must also evaluate 

j < y 3< y        j < y 

6   k  y2k+2 , 3  1   2k+2 _,_ ., 2k+l ,   N 

-T TPTJ l2k^J + 7 7w7 y (y        sy) 

6 ,1      __k   \ 2k+2_^A, 2k+l _ v        3      1 2k+2 , ., 2k+l , . = ~2 : (P " Pk^y   +0^y    log y) = -~ —5-y   +0(y    logy) 
* (k+l) 2  2k d *T  (k+l)2 

Substituting in the right side of (2.9) we have 

I        [i,j]k = S    I    dk    (8^1)+ S?§)}   + 0(X
k+1) 

i,j<x d=l a 

6        1 2k+2 x X    -V7Ö + °(x loS x) J2  h ^ ^2 ^ 1  ^k+2 it    (k+l) d=l d 

.J^^ + 0(x2k+1log*). 

5*. Miscellaneous Remarks. 

1. If M-,Mp,...,M.  are random integers chosen uniformly at, random 

then results stated in Christopher (1956) (see also Cohen (i960), Herzog 

and Stewart (1971), and Weymann (1972)) imply that 

(3.1) px{(^,v--->V^a7?E7 i + 0H^k>5- 
5 J x J 

We have not tried to extend theorems 1 and 2 to the k-dimensional case. 



3*1 has an application to a problem in applied statistics. Suppose 

a population of n individuals is distributed into k categories with 

n individuals in category i. Often only the proportions p. = n. /n 

are reported. A method for estimating n given p., 1 < i < k is 

described in Wallis and Roberts (1956), pgs. 184-189»  Briefly, let 

m = min I 2» p.b.| where the minimum is taken over all k tuples 
i=l 

(b..,b ,. ..,b, ), with b. €  {0, + 1, +2,...   ) not all b. equal zero. 

An estimate for n is [l/m]. This method works if the p. are reported 

with enough precision and the n. are relatively prime for then the 

k 
Euclidean algorithm implies there are integers  {b.}., such that 

Xb.n. = 1. These b. give the minimum m = — • If it is reasonable 
ix 1 n 

to approximate the n. as random integers then (3.1) implies that 

Prob ((rL ,n„,. ».,n, )=l) = TTTT an^ as expected, as k increases this 

1 1 
probability goes to 1. For example, '»Vc'v = »96^, TTfl ^ "992, 

1   \  = .998- This suggests the method has a good chance of working with a 

small number of categories. Wallace and Roberts (1956) give several examples 

and further details about practical implementation. 

2. The best result we know for R(x) defined in (2.1) is due to 

Saltykov (i960). He shows that 

R(x) = O(x(log x)2/3 (loglog x)1+€) . 

Use of this throughout leads to a slight improvement in the bounds of 

theorems 1 and 2. 

3. The functions (M,N) and [M,N] are both multiplicative in the 

sense of Delange (1969,1970). It would be of interest to derive results 

similar to Theorems 1 and 2 for more general multiplicative functions. 

9 
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