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\\>5 ABSTRACT

Residual stresses are derived for a transversely anisotropic thick
hollow cylinder which has been chemically vapor deposited at an elevated
temperature. Such stresses|arise because of the differential rates of
contraction in the radial apd tangential directions and the anisotropic
elastic constants. Residua]l stress distributions for cylinders with a
wall ratio (outer to inunor fradius) of 1,30 of pyrolytic graphite and
pyrolytic silicon carbide (§-5iC) are presented as a function of the
radius to inner radius. The, effect of the variation of the elastic
anisotropy on the tangential ‘stress at the inner and outer radii is pre-
sented as a function of the wall ratio. Finally, the tangential and
axial stresses at the inner and outer radii and the maximum radial stress
of chemically vapor-deposited d-SiC are presented as a function of the
wall ratio.
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NOMENCLATURE

3 a inner radius of cylinder
; b outer radius of cylinder
: Cqr elastic stiffnesses, i.e., €11, €12, €13, Ciys €33, Cuy
o (see Appendix C)
ﬁ n anisotropy parameter
% radius coordinate
¥ Sqr elastic compliances, i.e., 511, S)2, S13, Sl4, 5233, Suy
(see Appendix C)
r t thickness of thin-walied cylinder
E u displacement in the radial direction
¥ wall ratio = b/a
] z axial coordinate
Egp Young's modulus in the 6 direction
Epr Young's modulus in the r direction
4 Ezz = Epg Young's modulus in the z and € directions
Qi Ta ambient temperature
E: Tq deposition temperature
i; Boo contractual strain in the 8 direction due to cc¢Hl-down
} Brr contractual strain in the r direction due to cool-~down
? €gg = U/r strain in 6 direction
f; €pr = du/dr strain in the r direction
4 €2z strain in z direction
k. 0 angular coordinate
A vzg = Vgg Poisson's ratio in the 0 direction due to a stress in
Ey z direction .
vgz = Ve Poisson's ratio in the z direction due to a stress in
8 direction
vor Poisson's ratio in the r direction due to a stress in
the 6 direction
Vrg Poisson's ratio in che 6 direction due to a stress in
the r direction
Vor Poisson's ratio in the r direction due to 2 stress in
the z direction
{ Vrz Poisson's ratio in the z direction due to a stress in
3 the r direction
; | Jgp stress in the 8 direction (tangentjial stress)
3 Opr stress in the r -irection (radial stress)
Ozz stress in the z direction (axial stress)

0gp/C tangential stress ratio
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I. INTRODUCTION

Silicon carbide (SiC) and silicon nitride (SijN,) are candidate materials
for high temperature agplications in ceramic gas turbine for vehicles! and elec-
tric power generation.< The usual method of manufa:.uring these materials into
intricate shapes is by hot pressing billets and diamond grinding. Such a finish-
ing process is difficult and expensive because of the high hardness of these mate-
rials. Alternative methods of manufacturing silicon carbide and silicon nitride
have been investigated to reduce fabrication costs. Ore of these methcds that
appears to have potential promise is the chemical vapor depositien (CVD) process,
because it readily allows the formation of complex shapes of ceramic materials
on preshaped substrates. This, of course, minimizes mechanical fabrication

procedures.

Vapor deposition is the formation of a solid deposit occurring as condensa-
tion of elements or compounds from the vapor state. Chemicaliy vapored deposits
are formed by chemical reactions which take place on, at, or near the deposition
surface, i.e., mandrel or substrate. Deposition temperatures of structural mate-
rials of interest are relatively high; for example, pyrolytic silicon carbide
can be formed at temperatures as high as 1800 C (3272 F) and pyrolytic silicon
nitride up to 1500 C (2732 F). The usual method of producing pyrolytic shapes
of silicon carbide and silicon nitride is to introduce the appropriate gas mixture
into a chamber containing the heated mandrel, allow evacuation of the exhaust
gases, and with proper contrcl of the complex physical and chemical steps, depo-
sition will occur. For a detailed description of the CVD silicon carbide
process see, for example, Weiss3 and for the CVD silicon nitride process see

Niihara.

Although CVD silicon carbide or silicon nitride shapes are relatively easy
to produce, their tensile strengths are less than that of respective hot-pressed
materials. This, in part, is due to residual stresses inherent in the process
of producing vapor-deposited materials which arise because of several possible
mechanisms.®»3 Even though physical processes such as temperature gradient and
structural growth or phase changes during deposition may be mathematically trac-
table, the only mechanism considered here resulting in residual stress is that
caused by the therma. anisotropic coefficients of expansion during uniform

cool-down,

The complete detailed derivation for the thick-walled cylinder case is given
in Appendix A. A thick hollow cylinder configuration was chosen as the geometry
to analyze because such a configuration is compatible with cylindrical anisotropy
and also provides an ideal vehicle by which the residual strains and thus the

1. McLEAN, A. F. Ceramics in Small Vehicular Gas Turbines in Ceramics for High Performance Applications. Proc of the 2ad Army
Materials Technology Conf., ed. by J. J. Burke, A. E. Gorum, and R. N. Katz, Brock Hill Publ. Co., 1974, p. 9-36.

2. BRATTON, R. ). Ceramics in Gas Turbines for Electrical Power Generation in Ceramics for High Performance Applications. Proc.
of the 2nd Army Materials Technology Conf., ed. by J. J. Burke, A. E. Gorum, and R. N. Katz, Btook Hill Publ. Co., 1974,
p. 37-60.

3. WEISS, I. The Relationship of Structure ane. Properties to Deposition Conditions and the Origin of Residual Siress in Chemically
Vapor Deposited Siliccn Carbide, Ph.D. Thesls, Rensselaer Polytech-ic Inst., 1974, p. 49-53.

4. NIHARA, X, and HIRAL, T. Chemical Vapor-Deposited Silicon Nitride. J. of Mater. Sci., v. 11, 1976, p. 593-603.

5. POWELL, C. F., OXLEY, J. K., and BLOCHER, J. M., Jr. Vapor Deposition. lohn Wiley and Sons, Inc., 1966, p. 659-662.




stresses can be experimentally determined.* The resulting formulae are reduced
so that they are applicable to a thin-walled cylinder and these equations are
given in Appendix B.

In order to provide numerical results, two materials were considered: pyro-
lytic graphite and pyrolytic silicon carbide. Pyrolytic graphite was developed
and exploited for use in missiies during the early 1960's. Its properties are
well characterized and are given in Appendix C. Calculations iesulting from such
well-defined properties will r1eflect the accuracy of the data base. However,
there is a paucity of experimental pyrolytic silicon carbide (a-SiC) property
data as indicated in Appendix C, and idealized values of the anisotropic elastic
constants were used in determining the distribution and magnitudes of the resid-
ual stresses. Therefore, the residual ctress calculations are those that would
result when the material (a-SiC) has high preferential orientation occurring at
a deposition temperature of 1800 C (3272 F) and thus these values are considered
as upper bounds.

As previously mentioned, the detailed steps of mathematical analysis is
given in Appendix A and will not be repeated here. However, a brief description
of the physical problem and analysis is given below, as well as resalting perti-
nent equations.

IT. ANALYSIS

The geometry considered is an infinitely long, thick hollow cylinder with
an inner radius a and outer radius b. A cylindrical coordinate system is used
with the three normal directions 6, r, and z, as shown in Figure 1. It is assumed
that the material, deposited at the elevated temperature, is preferentially
aligned in the radial direction. Thus, there is cylindrical anisotropy. It is
assumed that elastic parameters remain constant during deposition and subsequent
uniform cool-down and there is no mechanical interaction between the substrate
(mandrel) and deposit, i.e., no adhesion and/or no expansion coefficient mismatch.
Such problems can be handled independently, see Reference 6 for example. Also,
during deposition the temperature throughout the body is constant and uniform.

Figure 1. Cylindrical coordinate system,

n Tae

*As of this writing no experimental results have been obtained.

6. RUDDLESEN, S. N. Thermal Stresses in Pyrolytic Depodits in Special Ceramics 4, ed. by P. Popper, British Ceramic Research
Assoc., 1968, p. 153-163.
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The analysis given in Appendix A consists of formulating the stress-strain
relationships of a body with cylindrical anisotropy and substituting the relation-
sli'pc for the two stresses ogg and oyy into the governing equilibrium equation.
This results, after some manipulation, in the formulation of an equidimensional
Euler or Cauchy second-order linear differential equation. This differential
equation is then solved to yield radial displacement u as a function of the radius
r. Finally, through the use of the stress-strain relationships and the boundary

conditions the stresses ogg, Oyp, and ozz are derived. The equations for these
stresses are given in the follewing:

m - - - Wl
Oy = (]—m—){ (—-—2;) Wl /)™t - Wl ) s } (1)

1-W N (r/a)

C m \ [Lomel m-1 -1 w1 -}
o =[—=Y41+ Wi (/)™ e 0 ) —— (2)
T (l-mz) { (1-w2“’) (r/a)m1

=3

and

_ C m+1 m-1 [ 2 (Wm+l~ll

2T o o {(\’er P 0D [(r/a) - (“‘“) W-1)
1 -m
v (v - mu )Wy W™l [ l_ . ( 2) ‘” (3)
or GL] (r/a)m+1 1-m (w -1)

where

C = [Brr - (I+vge = Vo )8y ] 06

5 and
(1 - ve;)

1-v_ v
. . or r6\il/2
m = [Lee/['rr (—-——1_\)———-2 )]
CL)

7. HILDEBRAND, ¥. B. Advanced Calculus for Applications. Prentice-Hall, 1962, p. 13.




The tangential, radial, and axial strains are given by the following formulas:

2
Coou, €l -vgg ee rr " ) [ ™l (/)™
09 T oo (1-10) (1K) [Vgp*m(1-vgq)]
(4)
-1 +1 a
Lol W }+ 1
[Ver- m{1-vgo) ] (r/a)m+l l-m2
2
- ="'C[“'“ Foofrr Vorl [ p e
T dr e -n®) (1- wz’") [Vge* m(1-vge)T
W™l W1 } !
- (5)
[vgg m{1-vge)] (r/a)™"} 1-m
and
C(v ) (v, +mv_ )
00" er 2C [ 00" 0 +1 .2
€. =8 - (Wm -1
22 88 eecl_m ) Eee(l—mz)(l—wzm)(wz— 1 1+m
(vy - mv, ) .
—r_ 98 (w“‘"-z)(wl""-l)w"’”] (6)
where

r \

1 06
a (1-v )8 - (1-2v ) ———)B ]
] (1 "ee)l, 90 Vor (:rr 08

The stresses ogp and 0zz at r = a and r = b were also determined and are:

(006) oy = (::‘7) {1 + (1 = )[zw”"1 S1- W ]} (7)
C 1 W2
ool eny = (152) 4 - () - ) ®
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[T - el IR PR DK {.\j.ia—:r, e Tt L Pliaias

NP

. +1
(022) oy = £ {(\,ermee)(w“*l-n [1 2 & '”]

(1-n%) (1-W2™) w-1)

(9)

. ES IR0 R I ™)

VorMee) (W 1) Y WD

and
C 1 -1 (2 o™iy
(022) oy, = (v, +my )(w"*-l)[w'“-(—-)-———

227r=b (1-22) (1-W2) {: or 68 Len) W21y (10)

1-m
oot ) )

From inspection it was determined that the absolute value of maximum tangen-
tial and axial stress occurs at r = a., Also, the absolute maximum radial stress
was obtained by maximizing Equation 2 and found to be located at:

_|fm+1 (wm-I_ 1)w“*1 1/2m
r/a = [(n-l) (wm+1_ 1) (1

The tangential and radial strains at the inner and outer radii can also be
obtaired and are:

(co0) =C[(1’“69)599/Err’2“er2]{ G VI (w““l-l)W’“"}+ L aw
0% r=a Eee(l-mz)CI-Wzm) Vor (1-Vggim Vo -Ll-vodnf =y 2
2
(coq) _ ClO-voe)Bge/Brp-Bvgy] Jo™ ™! o™l p |, A
U e gl (W Voot (I-VggIm vy - (1-vy ) 1-m’
(13)
(con) . = (v JEGe/E L - 2vg ][] -] R i
Y/ pe = £ -
r=a Eee(x-m‘)u-wz‘“) vop * (1w dm vy - (1-v )
a, (1)
* l-m:
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and

2
(exr) oy = mc[(l"’ee)Eee/Err i zver] Gl )] S i) )
B 2 2m
Eee(l'm ) (1-W77) \\)er"‘(l-\)ee)m \)er-(l-\)

ee)’"/‘
(15)
a
R

l--m2

In Appendix B the formulae describing residual tangential and axial stresses
at the inner and outer radii can be reduced to those of thin-wall cylinder theory.
Their usage is dependent upon the error one is willing to tolerate and that error
is dependent on the wall ratio and the material, in particular, the value of m.
Refer to Section IV for a detailed discussion of this. However, for the sake of
completeness these equations are given by the following:

C t/a

Cooe=le = * T D)esa ae)
and
. VoaC t/a
Coddeely = * T t73) an

In the next section both the more exact equations and the thin-wall theory
equations are applied to examples of cylinders of two different materials having
a wall ratio of 1.30 and a great difference in anisotropic elastic constants.
The tangential stress ratio ogg/C at the inner and outer radii is evaluated as a
function of the wall ratio and for a wide range of the anisotropy parameter m.
Finally, the residual tangential and axial stress at the inner and outer radii

..; as well as the maximum residual radial stress is determined for «-SiC as a func-
. '3 tion of the wall ratio.

ITI. RESULTS AND DISCUSSICN

The material properties of two trausversely anisotropic materials, pyrolytic
graphite and pyrolytic silicon carbide, were utilized to demonstrate the appli-
cability of the pertinent equations., Pyrolytic graphite was chosen because its
properties are well documented.5,8,9 Pyrolytic silicon carbide was chosen because
of its attractive potential use as a high temperature structural material. 1In
Reference 10, it is indicated that the anisotropic elastic constants associated
L with the hexagonal silicon cartide system (a-SiC 6H) are not likely to be differ-
S ent from other polytypes. Not all of the stiffnesses for «-SiC 6H, which were
TR determined experimentally in Reference 10, were obtained, whereas a:1 of these

LAY e
e N T
R "

P

PR

DONADIO, R. N, and PAPPAS. J. Mechanical Properties of Pyrolytic Graphite Ruytheon Technical Memorandum 1547, 1y64
High Temperature Faterials Inc., Data Sheet, October (949.

10. ARLT, G, and SCHODDER, G V. Some Elastic Cons'aris of Siltcon Carbide J. Acoust Soc of Am,v 37 no 7, ket .y 1965,
p. 384-386

© @
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for the trigonal system, which were calculated from idealized consideration, were
given and compared closely to thosc that were experimentally determined for a-SiC
6H. The compliances for the trigonal system were computed via the use of inter-

conversion equations given in Reference 11 and thus the anisotropic elastic con-

stants for a trigonal rather than hexagonal silicon carbide system were utilized

in subsequent residual stress determinations.

The coefficients of expansion for hexagonal silicon carbide (a-SiC) were
obtained from Reference 12 and are alsc used in subsequent calculations. The
details of how the constants were obtained are given in Appendix C. Anisotropic
elastic constants and other constants such as Bgg, Brr, and m used in residual
stress calculations for pyrolytic graphite and pyrolytic silicon carbide are
given in Table 1, as well as the reference source, where applicable.

It was intended to examine pyrolytic silicon nitride as well. However, a
search of the literature indicated that there were no anisotropic elastic con-
stant data available.

The stress.distributions for ogg, 9yr, and gzz, according to Equations 1 to
3, as a function of r/a and a wall ratic of 1.2 €or both pyrolytic graphite and
pyrolytic silicon carbide are shown in Figure 2. Although pyrolytic graphite
cannot withstand such high self-impcsed stresses and would fracture at a much
smaller wall ratio, the results are presented to compare the behavior of the two
materials.

Table 1, ANISOTROPIC ELASTIC CCNSTANTS

Pyrolytic Pyrolytic
Constant Graphite Ref, Silicon Carbide Ref.
Ego 4.29 x 10 psi 8 60.6 x 105 psi *
(29.58 x 105 MN/m?) (417.82 x 108 MN/m”)
Err 1.55 x 10 psi 8 74.1 x 108 psi *
(10.69 x 106 MN/m?) (510.9 x 106 Mi/m?)
Vo -0.15 8 +0.255 *
Vor +0.90 8 +0.079 *
vre +0.325 t +0.097 t
Boo -460C x 10-® in./in, 9 -9624 x 10-% in./in. 12
T4 of 2150 € (3902 F) Tyq of 1800 C (3298 F)
Bpr -51,700 x 10-% in./in. 9 -9204 x 107% in./in. 12
Tq of 2150 C (3902 F) Tq of 1800 C {3298 F)
m 1.415 t 0.932 ¥

*Indirectly obtained from Reference 10
*Calculated from the rer\pr?ca} relationship vre = vop Epr/Eon
m = [E ;,,./[rr(]-vervrg/l 'VGH)]ﬁ

11 HEARMON Rt SN A Brinsducen 1o Applied darsotropre Flasnerrs Oxford U Press, 1961, p 25
12 TAYLOR A and JONES KM The Cryvstal Struciure and Thermal Fapanston of Cubic and Hexagonal Sithcon Carbide  Proc of
the Cont oo Shon ¢ arbede Pereamon Press 1960 p 147 144
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It is not to be inferred here that the stress distributions shown in Figure
2 are absolute. That is, mechanisms such as temperature gradient, phase trans-
formations, for example, will impose other residual stress patterns., The residual
stress distributions presented here are caused by only one of the various acting
mechanisms and are a part of the sum totai.

Notice that ogg and orr as a function of r/a shown in Figure 2a are of oppo-
site sign compared to the corresponding stresses in Figure 2b. This is caused
by the constant C, recalling that

¢ = [Brr-(1+vgg-var)Bae]Eoe |

l-Ve%

The different sign of the tangential and radial stresses for the two materials

is due to the relative magnitudes of the radial and tangential shrinkage during
cooling. That is, if Byy < (l+vgg-ver)Bpo which is typical of pyrolytic graphite,
and if Brr > (1+vgg-ver)Bgg which was determined for pyrolytic silicon carbide,
then the tangential and radial stress distributions will be of opposite sign.

The axial stress distributions for the two materials are of the same sign because
vgg of the two materials is of opposite sign, thus compensating for opposing sign
of the constant C associated with each materisal.

The absolute values of the stress magnitudes for pyrolytic graphite are
greater than those of pyrolytic silicon carbide for the same wall ratio. This
is mainly attributed to the constant C, which for pyrolytic graphite is very much
greater than that for pyrolytic silicon carbide. Again, the magnitude of C is
strongly dependeat upon the contraction rates during cooling, i.e., Brr and Bgg,
as well as Egg. Since Brr for pyrolytic graphite is much greater than that of
pyrolytic silicon carbide, then pyrolytic graphite will have greater stress
magnitudes even though Egg is an order of magnitude less than that of pyrolytic
silicon carbide.

It is interesting to note than even if Bypy = Bgg, residual stresses would
still persist because of the elastic anisotropy.

The influence of the elastic anisotropy parameter m on the tangential stress
at the inner and outer radii of a thick cylinder, Equations 7 and 8, was evaluated
as a function of the wall ratio W and is shown by solid curves in Figure 3., Prac-
tical values of m ranging from approximately 0.8 to 1.6 for hexagonal and trigonal
crystal structures were obtained from References 11 and 13, Therefore, m was
varied from 0.50 to 2.0 as shown in Figure 3. Note that beyond a wail ratio of
approximately 1.30 the absolute magritude of the tangential stress ratio increases
as m decreases. At wall ratios of approximately less than 1.30 the magnitude of
m appears to have little effect on the tangential stress at the inner and outer
radii.

13 HEARMON, R F S The Elastc Constants of Anisotropic Matenals - Il Advances 1n Physics - A Quarterly Supplement of the
Phii. Mag, v S.no 19, July 1956, p. 323-381.
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Figure 2. Residual stress distribution as a function of r/a for
anisotropic thick hollow cylinders of (a) pyrolytic graphite
and (b) pyrolytic silicon carbide.




¢4
b

(s "
M SR T .«v*‘.,;s, e

Qg
AR

P

E
.

ORI T T

Thick-Wall

Theory
—m>
& 0.50
o |- S/ =i
& 2.00
&
& —
0.20 |- N —
‘$ /
@x " "Thin-wall shell theory, m ~ 2.0
\Q’

2" NagelCr * b

010 - <
////
1

L
1% L5 20 2% 2%

1.25
L
é_ e CI 12
% 0.10 |-
= 0 \\
§ / Thin-wail sheil theory, m « 2.0
A
= 0.20 —
(-]
i I % T
%
© )
T 030 "%
%
%

%
0.40 I~ 2. Thick-Wal
?%\ Theory
-0.50 r— .

<0.60 -

F-

O N
L 8REHS8
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function of the wall ratio W, and the anisotropy parameter m.

In Reference 14 the residual stresses in transversely anisotropic hexaferrite
material during cooling were determined ignoring Poisson's ratios and axial
deformation. This, of course, simplifies the analysis but dependent upcn the
material constants, the error could be extreme. For example, for the special
case vgg = vgr = 0, m = (Eegisrr)%, C = (Brr-Beo)Egs, and applying this approach,
the stresses would differ from values calcvlated from more exact theory by -50%
on a cylinder of pyrolytic graphite and -86% on one of pyrolytic silicon carbide.

Figure 4 presents the tangential and axial stresses at the inner and outer
radii as well as the maximum radial stress as a function of the wall ratio for
pyrolytic silicon carbide deposited at 1800 C (3272 F). The maximum radial

14. KOOLS, ¥. Complications in Flring Oriented Hexaferrites Due to Anisotrapic Effects Cracking of Radially Oriented Fringes During
Firing. Science of Ceramics, published by the Societe Francaise De Ceramique, v. 7, 1973, p. 27-4S.
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Figure 4. Reosidual tangential and axial stresses at the inner
and outer radii and maximum radial stress for a thick
hollow cylinder of pyrolytic silicon carbide as a function
of the wall ratio W.

stress was determined by first obtaining the location of this stress from Equa-
tion 1i and using that value in Equation 2. The reader is cautioned that the
stresses shown represent upper bounds in that it is assumed that the material is
fully anisotropic. It appears from Figure 4 that the largest tensile stres. will
occur in the tangential direction at the outer radius of the cylinder. If the
mechanism of differential-direction cooling due to anisotropy of CVD silicon car-
bide is the major cause of residual stress, then a longitud:nal fracture will
occur and originate at the outer radius. Thus, for a given material and deposi-
tion conditions there should result a critical wall ratio above which fracture
will occur, see Reference 14,

In Section II the tangential and axial stress equations were simplified
assuming the cylinder wall was thin, resulting in Equations 16 and 17. The stress
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ratios (0gg/C)r=g and (cge/C)y=p based on Equations 16 and 17 for m values of

0.50 and 2.00 are shown plotted as dashed lines in Figure 3 to facilitate compar-
ison to the more exact theory given by the solid curves. It is readily seen that
the differences between the more accurate thick-wall cylinder theory (solid curves)
and the thin-wall cylinder theory (dashed lines) results can be quite extreme and
depend upon the wall ratio W and the anisotropy parameter m.

IV, SUMMARY

1. The signs of the stresses are dependent upon the magnitudes of the
directional contractions during cooling, Bpy and Bgg, and Poisson's ratios, vgg
and vgr.

2. Even if the contraction during cooling in the radial (Brr) and tangential
(Bgg) directions were equal, residual stresses would persist because of elastic
anisotropy.

3. The absolute maximum stress which results from uniform cool-down is the
tangential stress at the inner radius of the cylinder for all materials of trans-
verse (orthotropic) anisotropy.

4. The maximum tensile stress for a fully anisotropic cylinder of pyrolytic
silicon carbide material (a-SiC) occurs in the tangential direction at the outer
radius. Fracture should originate at this location and extend in the longitudinal
and radial directions. This mechanism should result in a critical wall ratio
above which fracture will occur.

5. As the elastic anisotropic parameter m decreases the tangential stress
increases when W > 1,30, If W is less than 1.30, m will have little effect on
the magnitude of this stress.

6. If axial deformation and Poisson's ratios, vgg and vg,, are ignored,
errors in determining the residual stresses are dependent upon the properties of
the material. The stresses would differ from those values calculated from more
exact theory by approximately -50% for pyrolytic graphite and -86% for pyrolytic
silicon carbide.

7. The differ=nces between the thin-wall cylinder theory and the more
accurate thick-wall cylinder theory results can be quite extreme and depend upon
the wall ratio W and the anisotropic parameter m.
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APPENDIX A. ANALYSIS

The geometry considered, as previously mentioned, is a long, thick hollow
cylinder, as shown in Figure 1, with the three direction coordinates 6, r, and z.
The hexagonal crystal structure is assumed to deposit at an elevated temperature
in a preferred orientaiion in the radial direction such that there is isotropic
symmetry about the Z-axis and anisotropy exists in the radial direction. It is
also assumed that the elastic constants remain constant during deposition and
subsequent cool-down is gradual such that the temperature throughout the cylinder
is uniform. It is further assumed that there is no mechanical interaction between
the substrate (mandrel) and deposit, i.e., no adhesion or no expansion coefficient
mismatch, Also during deposition there is no temperature gradient occurring within
the body (this problem can be solved separately).

According to Reference 15 the stress-strain relationships of such a body with
cylindrical anisotropy is:

€99 = (1/Egp) (0pp-v20802z) - (Vvre/Err)orr
err = (1/Epp)orr-(ver/Eee)oge-(vzr/Ees)ozz (A-a)
€zz = (1/Ezz)0z2-(vez/Epe) 066~ (Vpz/Exr)orr

Notice, because of the conditions of symmeiry, there are neither shear stresses
nor shear strains. Also, since E;; = Epo, vzp = vgz = Vggs Vre = Vrz, Vzr = Vor,
and from the theorem of reciprocity we have vyg/Epy = vgr/Ege, thus:

egg = (1/Egg) (09g-v0692z-Verdrr)
€ryr = (1-Eyp) [opp-vro(coetozz)] (A-b)
ezz = (1-Egg) (072-V98096-Verdrr)

During uniform cool-down the contraction of the cylinder in the r direction
is different than that either in the 6 or z direction because of the differing
thermal coefficients of expansion of the material, Thus, additional strain com-
ponents must be added to Equation A-b as given in the following:

egg = (1/Egp) (0pe-voe0z2z-Vordrr)+Bee
err = (1/Ery) [opr-vre(ogo+ozz) 1+Brr (A~c)
ezz = (1/Egp) (022-V6a966-Vorder)+Bo0,

where Bgg and Bppy is the total contraction in the tangential and radial direction
due to isothermal cool-down.

We shall first let €;; = 0 and later modify the solution to comply with an
infinitely long cylinder with a stress-free end condition, thus Equation A-c
becomes:

15. LEDHNITSKIL, S. G. Theory of Elasticity of an Anisotropic Elastic Body in Holden-Day Scries in Mathematicsl Physics, ed. by
J. L. Brandstatter, 1963, p. 25.

P e i e e Ras e os e o



Sge-Vororr-vee(0zz)e =0 = 6o
Vre°ee'°rr*“re(°zz)ezz.o = App (A-d)
vgeuge+veror-(0zzje, =0 = A

where
Age = (egp-Boo)Ege

Arr = -(Grr-'Brr)Err, and
A = BggEgg \

Equation A-d can be solvzd such that the normal stresses ogg, orr, and ozz
can be expressed in explicit ferm; when this is accomplished we have:

ngg = (1/D)[{1-vervrg)rge-ver(1+vge)Arr- (vee+vervre)A]
Opr = (1+vy3)/d{vroree-(1-vge) Apr-vreA] (A-e)
t22)¢, 0 = (1/D)[(vee+vrover)ree- (1+vee)verdrr-(1-vrever)]

where
D = (1+vgg) (1-vgg~2vgrvrg)

The equilibrium equation for deformation symmetrical about the axis of a thick-
walled cylinder!® is:

dopp/dr+(opp-0gg)/x = 0 (A-£)

and also by definition:

n

€gg = u/r, and

€yy = du/dr
It is assumed that the constants Bgg, Byr, Eeo, and Eyr are not functions of the
radius, Therefore, by differentiating opy with respect to r from the second of
Equations A-e and substituting that result as well as the relationships for oggg
and oy, from Equation A-d into Equation A-f gives:

rzdﬁ/dr2+rdu/dr-m2u = ayr (A-1)

where

"

(Eee/ﬁrr)(l-VerVre)/(l—ve%), and
(1/1-vgp) [(1-v39-vgy)Brr-(1-2vyrg) (Ege/Err)Bos]

m?

a]

Equation A-1 is an equidimensional linear differential equation, which is variously
called Euler's equation or Cauchy's equation.7 whose homogeneous solution is:

16. TIMOSHENO, S., und GOOODIER, 3. N. Theory of Elasticity, 2nd ed. McGraw-Hill Book Co., Inc., 1951, p. 236.
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Up = Cyr™Cy/ R,
and the particular solution is
up = air/(1-m?), m # 1.0,

Also note that in the above solution it is assumed that vgyvrg < 1.0. The complete
solution is:

u = Cyr™Cy/ra,x/ (1-m2), m # 1.0, (A-2)

C; and C, are obtained from the boundary conditions, i.e., gpp = 0 when r = a and
b. The constants C; and C, are determined through the usec of the middie equation
opy of Equation A-e, Equation A-2, the appropriate strain definitions, and the
boundary conditions. When this is accomplished ose determines the following
equations for C; and Cj:

C[(1-vgg)Ege/Err-2ves]) (W 1-1)al™®
17 Egg(1-m%) [vay*(1-vee)m] (1-WM)

and

C[ (1-vgg)Ego/Exp-2vg2] (NB-1-1)p™*1
Egg (1-m2) [vgp+ (1-vgg)m] (1-W2M)

Co =

where
C = [Brr-(1+voe-ver)BeolEen/ (1-ve?)

Substitution of C; and C, into Equation A-2 and dividing by the variable r,
gives

co0 * /T = C[(1-vo0)Ege/Ery-2vor] { -1

(r/a)B-1

Egg (1-m?) (1-W2Mm) vor+(1-vgg)m (A-3)

(we-1.1) WO+ -
' [ver- (1-vgg)m] (r/a)®*! +a1/(1-m<)

and by differentiating Equation A-2 with respect to r, and substituting for C;
and C, from the above, the radial strain eyr can be obtained, which is:

err = du/dr = mC[(1-vep)Eep/Err-2vps) Wnt-1) (r/a)™~!
Egg (1-m%) (1-W°M) [vgyt (1-vgg)m] (A-4)

(wo-1-1) wi+1 o
) [vor-(1-vgg)m] (r/a)m*] +ay/ (1-m%)
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Through the use of Equation A-e and the definitions of strains, the tangential,
radial, and axial stresses (with e€;, = 0) can be obtained and are:

oge = C/(1-m?) {1+m/(1-W2M) [(W*1-1) (x/a)™"1- (W""2-1)W™1/(r/a)™* 1]}  (A-5)
3 Opp = C/(1-m2) {141/ (1-W2M) [(W™*1-1) (r/a)B-1+ (WB-1-1)WE*1/ (¢/2)™*1]}  (A-6)

buy

: (022), o = (1+v0e)/D {(voeMoe+vreMrr)Crz™1/ (1-u)+

[ (voeNgg+vroNpr)/ (1-2) ICo/r™* 1+ (vogPag+vroPrr) Ege} -2oeEng (A~78)

ﬁ where

1 Mgg = (1-Vorvpg)/ (L+vgg)+mvyg, Neg = (1-vervre)/(L+vee)-mvze
; Mpy = vor+(1-vge)m, Ner = vgr-(1-vgg)m

; Poe = [(1-vorvre)/ (1+vgg)+vrelal/(1-m?) - (Bgg+vyreByry), and

' Prr = [C/Ego(1-m2)]1[(1-vpp)Ege/Err-2vonl.

The axial stress o,; can now be determined such that the stress at the ends of the
cylinder vanish, This is accomplished by obtaining a resulting force C3 in the
following manner:

b
Cym(b?-a2) = -/;(ozz)ezz_onrdr
a

Substitution of (°ZZ)€zz=0 from Equation A-7a into the above, integrating and solv-
ing for C3 results in:

'-2(1+veef] IQeeMee+vreMr£] (W*i1) ¢
C3 = VA ) =
| D L Q-m?)(Q+m) ] (W%-1) a'-m (A-7b)
i . 3eeNee+vreNr£] (W1-M-1) (Wym+1 C2
| (1-n?) (1-m) ] (W2-1) pl+m

i Ego Beg D
% + —— | vgoPeo+vroPrr- -
3 2 1+vgg

Now by adding C3, given by Equation A-7b, to (0zz).,,-g, given by Equation A-7a
and noting that Mgg/Myy = mEpr/Eg@, and Ngg/Nyp = -mEpp/Ege,

Fan Sw oot i,
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we obtain oz, which is:

- ¢ ( wm+1_y [ n-1 _ W m-1]
"2 " i) e | Vermes) (D] (FT S ey
(A-7)
1 2 (W-m.1)
+ - wm-l_l wm+1 -
(vor-mvos) ( ) [(r/a)m+1 (1-m)  (W2-1) ]}

Now the axial strain e;; can be obtained by substitution of Equations A-5, A-6,
and A-7 into the last of Equation A-c. This results in:

€rr = BuaeC (veo+vgyp) i 2C ver+mveé\ hlem_ 2
22 7 POt E o (1-m?) | Egg(l-m2) (1-W2M) (W2-1) |\ l+m
06

=) )]

Equations A-3 and A-4 give the tangential and radial strains as a function of
the :1adius ratio parameter r/a, the wall ratio, and the various elastic and
physical constants. The axial strain given by Equation A-8 is constant and
dependent only upon the wall ratio and the elastic and physical parameters.

(A-8)

Equations A-5, A-6, and A-7 gives the tangential, radial, and axial stress
Oggs Orrs and 07 as a function of the radius ratio parameter r/a, the wall ratio
W, and the various elastic and physical constants,

The stresses and strains at the inner and outer radii can readily be obtained
by allowing r = a and r = b in the appropriate equations. The tangential and
axial stresses at the inner and outer radii are obtained from Equations A-5 and

A-7 and are:
(s
1-m2/ | \1-w2m
_{C i m -1 2m
(099)r=b = (1_m2> 1-(1-w2m> (zwm -1-W )], (A-10)

c 2 \ 1o
- m+1_1y01-
(022) 1oy (o) (L) {(verﬂnvee)(w 1)[1 (1+rr;/ WD |

{2\ @y
+(vor-mvgg) (WM~ 1-1)wm-! [1 (l_“) 1) ]}’

1]

CLT: .

(A-11)




and

¢ f +1 -1_ Z\WEH'I)-]
vgr+mvgg) (W0 "1)["‘“ (1*4 (WZ—I)J

(1-m2) (1-W2®) 1(
1 .- 2 \ (W "-1)
+(vgr-mvgg) (WB~1-1) [1-(.1-—111)—(_"2—-1_)‘ w1

The tangential and radial strains at the inner and outer radii obtained from
Equations A-3 and A-4 are:

(OZZ)r._.b =

(A-12)

Cl(1-vgg)Ege/Erp-2vp3] {  (WM1-1)  (WR-lL.)W™1) g
(e00) .., = T 5 + —p  (A-13)
r=a Egg (1-W<™) (1-m°) vor*(l-vgg)m  vgp-(1-vgg)m

“1-m?,
CL(1-vgg)Egg/Err-2ve2] [ (W*1-1)WR-1  (wB-1.7) }' a)
m

(co8) rap = Ege (1-W2M) (1-n?) vor+ (1-vgg)m * vgg-(1-vge) +1-ﬁ2, (A-14)
. mC[(1-vge)Eeo/Err-2ve3] [ (M*1-1)  (Ml.)w1] g A-15)
(Err r=a Eee (1_w2i) (1_m2) vor+ (I-VGO)m B vor- (l_vee)m '1-m2’ -
and
mC[ (1-vgg)Ege/Epr-2ve2] ([ (WO*1-1)w-1 W11 ) a A-16)
(err)rzb ® 7 Egg(1-N2M) (1-n%) vgr+(l-vgg)m  ver-(1-vgg)m) 1-m?

Since €5, as given by Equation A-7 is constant, there is no difference in axial
strain at the inner and outer radii.

Examination of the stress equations for ogg and oz, reveals that the absolute
maximum stress occurs at the inner radius, i.e., when r = a,

The location at which the radial stress is a maximum can be found by maxi-
mizing Equation A-6. If this is accomplished we obtain:

r/a = [(_Hl"‘_]; _____(wm-l-l) wm-b-l}%m (A-17)
m-1/ (WB*+1.1)
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APPENDIX B. THIN WALL STRESSES

The residual stresses ggg and oy at the inner and outer radii of a thin-
walled cylinder can be obtained from Equations A-9 and A-10, and A-11 and A-12.
This is accomplished by letting W = 1+t/a where t is the cylinder wall thickness
and using series expansions for each of the terms that appear in Equations A.S to
A-12, For example, the reduction of Equation A-9 to thin-wall cylinder theory is
accomplished in the following manner:

Note:

3 (080) oy = (C/1-n2) [1+(n/1-WZ) (2W™*1-1-¥2)], and
by using a series expansion for W2M and WM!, i.e,:

W2 = (1+t/a)2® = 1+2mt/a+m{2m-1) (t/a)%+......, (t/a)2 < 1, and

¢ Wit = (1+t/a)™*l = 1+ (mel)t/a+m(m+1) (t/a)2/2 +......, (t/2)2 < 1,
% and substituting the appropriate series expansion (cnly up to the second-order
3 terms) into the above equation ‘as shown below gives:

¢\ m[2((1+(m+1)t/a+m(m+1)/z(t/a)2j-1-((1+2mt/a+m(2m-1))(t/a)
(©60)p=5 = 1-m?/ 1 2m(t/a)+m(2m-1) (t/a)?

% The above reduces to:

; (oee)r=a = -C(t/a)/[2+(2m-1)t/a], (8-1)
f? Utilizing the same approach the remaining desired equations are:

:?’ (900) .y, = C(t/a)/ [2+(2m-1)t/a], (B-2)
,i (022) .., = -veeC(t/a)/2(l+mt/a), (B-3)
'ég. ard finally:

¥l (022) .y = V69C(t/a)/2(Lemt/a) (8-4)




APPENDIX C. ELASTIC AND PHYSICAL CONSTANTS

The elastic constants for two transversely anisotropic materials, pyrolytic
graphite and pyrolytic silicon carbiae, were used in the body of the report te
obtain numerical results. Pyrolytic graphite was chosen because its property data
are well documented, see, for example, References 5, 8, and 9. Pyrolytic silicon
carbide was also considered because it is a material of potential promise. Unfor-
tunately, a search of the literature revealed that there were no anisotropic prop-
erty data aveailable for the other material of interest, pyrolytic silicon nitride,
Even though the pyrolytic silicon carbide data from the literature were incomplete
the anisotropic elastic constants were estimated indirectly from Reference 10.

The data for pyrclytic graphite data are first presented and then that data
for pyrolytic silicon carbide follow.

The anisotropic eiastic constants utilized for calculations were those ob-
tained from Reference 8 as:

-0.15
+0,90

Ego = 4.29 x 10° psi (29.58 x 103 MN/m2), veg
Epr = 1.55 x 10% psi (10.69 x 103 ™N/m2), vgr

Although the published value for vypg is 0.35, for consistency the reciprocating
relationship was used, resulting in vyg = 0.325. This value was used throughout
the calculations., Recalling that:

2. .1
m = [(Ego/Exr) (1-vgrvre)/ (1-veg) |7
and substituting the above constants intc this relationship gives:
mn= 1,415

The total contraction during cooling in the tangential and radial directions
vas determined from Reference 9 as

Bee = ay1+az(Ta-Tqg)

where
@y = -270 x 10°% in./in.
and
ap = 1.13 x 1078 in./(in.-°F),
thus
Bgg = -27¢ x 107 in./in.+[1.13 x 107 in./(in.-°F)1(70 3-3902 F), or

Bgg = -4600 x 107 in./in.

{
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also
Brr = @3(T3-Tq),
where
a3 = 13,50 x 10-% in./(in.-°F),

and

Brr = [13.50 x 107%® in./(in.-°F)](70 F-3902 F), or
Brp = -51,700 x 1078 in./in,

The manner by which the elastic and physical constants for silicon carbide
(CVD) were calculated are now presented in the following.

The authors of Reference 10 determined by resonance and the double-pulse
echo method for the hexagonal crystal structure (a-SiC 6H (33)) the magnitude of
the stiffnesses ¢y, c12, ¢4y, c33, and cgg and the compliances sj;, sy2, Syy and
sgg. Unfortunately, no values were reported for cj3, s;3, and s33. However,
according to Reference 11 there is an interconversion between the stiffnesses and
the compliances of a hexagonal system. Through the use of three simultaneous
equations, the three unknowns cj3, s;3, and s33 were calculated. Using nominal
experimental values of the known parameters, s;3 was found to be an imaginary
number, which can not physically occur. Cleser examination of the errors associ-
ated with the experimentally determined constants published in Reference 10 re-
vealed that extremely large errors would result in the calculation of ¢33, s)3,
and s33 when using the interconversion egusations. However, the elastic constants
of other polytypes of SiC are not likely t. be very different and have included
calculated values of the transformed elastic constants of a cubic polytype B-SiC,10
Although this system is trigonal rather than hexagonal, mean values of the trans-
formed stiffnesses compare quite well to those experimentally determined stiff-
nesses for the hexagonal structure. These transformed values of the stiffnesses
for the trigenal system were used here in conjunction with the interconversion
equations for a trigonal system!! to determine the compliances. These calculations
and the results are summarized below.

The interconversion equations are:

(@) cii+cy12 = s33/Xy (e) cr11-c12 = suy/Xp

(b) cy3 = -s13/X%; (f) c1y = -s14/X;

(¢} c33 = (s11+s12)/%y (g) cyy = (s11-s12)/X;

(d) X1 = s33(s;1+s12)-25{5 (h) Xp = syu(s)1-517)-2514

Reworking these equations so that they .re amenable for use, we obtain:

?
sy =lepa/teyyrey 0 s Syp = =s11-d8 3/ (1 e3a-533)

i

N 12 R VA FO R N N s/ (H/eyy=3a3) -5 14/ (1 cuy-Suy)




The transformed stiffnesses,!® given in 1012dyn/cm?, are:

cy1; = 4.793 c1y = 0,598
Ci2 = 0.981 C33z = 5.214
c13 = 0.558 cyy = 1,483

By utilizing the above equations the corresponding compliances given in units of
10-13¢cm?/dynes, are:

s11 = 2.392 s1y = 1,211
S12 = -0.610 S33 = 1.958
sy3 = -0.189 syy = 7.72

The remaining elastic constants were determined from the above and are given

Egg = 1/s11 = 60.6 x 105 psi (417.82 x 103 MN/m?)
Epp = 1/s33 = 74.1 x 105 psi (510.90 x 103 MN/m?)
Vgg = V12 = -Sy2/sy) = +0.255
Vgr = V13 = -513/51) = +0.079

and

vrg = vor = Erp/Egg = 0.097

Finally, m was determined from the above values to be 0.932.

Reference 12 gives the thermal expansion curves in the basal direction "a"
and in the "c" direction as a function of temperature for the hexagonal silicon
carbide system (mod II). These curves were used to determine the total shrinkage
in the & and r directions of SiC from 1800 C to room temperature and were found
to be

-9624 x 10-% in,/in.,

Bag

and

u

Brp = -9204 x 107% x 107® in./in.
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