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I. INTRODUCTION

Materials that conduct electrical currents very poorly even in the

presence of strong electric fields are known as insulators or dielectrics.

Such materials find wide use in cable insulation, high voltage standoffs,

capacitors, and other components. When a dielectric material is sub-

jected to sufficiently strong electric fields, it undergoes rapid struc-

tural changes and its conductance changes markedly. The phenomena

associated with these changes are referred to as dielectric breakdown.

Breakdown properties are frequently studied by constructing capacitors

with two parallel planar electrodes separated by a slab of dielectric

material or with one planar electrode and a second nonplanar electrode

separated by a dielectric slab.

The mechanisms responsible for dielectric breakdown have received

attention for over 100 years (1,2). It is useful to distinguish two

principal mechanisms, thermal and electrical. Thermal breakdown gener-

ally occurs in those situations where leakage currents are large and the

field is less than 105 V/cm. In thermal breakdown, leakage current

causes a temperature rise which enhances the electrical conductivity,

causing still further temperature rise, the process continuing until the

dielectric burns, fractures, blisters, or otherwise loses its integrity.

Thermal breakdown is generally a relatively slow process, with a time

scale of many seconds. Destruction to the dielectric involves a size-

able portion of the insulator, and the associated light emission is ther-

1
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mal in character. No new conduction mechansim has to be hypothesized in

thermal breakdown; high conductance follows from the positive temperature

dependence of the conductivity with temperature and damage occurs through

Joule heating, by oxidation, chemical dissociation, thermal stress, and

mechanical stress.

ElecLrical breakdown occurs at field strengths greater than

5 X 105 V/cm. It is accompanied by formation of a localized gaseous

channel that grows within a few tens of nanoseconds from inception and

light is emitted characteristic of the gas in 'he channel. The two

mechanisms, thermal and electric, compete with each other in a given

material under given environmental conditions (2).

Historically, another term has also been employed in describing

breakdown mechanisms, "intrinsic breakdown" (2). Intrinsic breakdown

refers to the (unique) ultimate breakdown strength of a material---

implying that each material has a unique ultimate strength. However,

attempts to measure a unique strength have not been successful (2).

Thus, the most carefully annealed single crystals do not give higher

breaKdown strengths than crystals with strains. Deliberately introduced

impurities do not necessarally reduce breakdown strength.

The present study is concerned with the cheory of breakdown in

solid insulators. In Chapter II, a short review of earlier experimental

observations and theoretical work will be given as background information.

This review will include a discussion of a phenomenological model of

Budenstein (4) which will provide the basis for the present study.

Chapter III considers one aspect of this model as it might pertain to

alkali halides and similar materials. Chapter IV contains the major
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effort of this thesis, a cal.alation of the ground state energy of the

doubly negative hydrogen molecular ion. Chapter V considers the impli-

cations of the results of Chapter IV to the general breakdown model

proposed by Budenstein, and recommendations are given for further theo-

retical work which needs to be done in evaluating this model.

I'



II. BACKGROUND ON DIELECTRIC BREAKDOWN

In order to put the present study into proper perspective, it is

necessary to indicate the results of previous work. There exists a

copious literature on breakdown in solids, including several cogent

review articles and monographs (1,7,8,9). Our review here will, of

necessity, emphasize those points which relate most directly to the model

we wish to investigate, and without which a proper understanding of the

differences between this model and others proposed previously cannot

he achieved. This review will first describe a broad range of breakdown

phenomena obtained from studies of thin film and bulk samples, and will

then examine the existing theories of electric breakdown.

A. Experimental Background

Dielectric breakdown occurs at field strengths of about 106 V/cm

in homogeneous dielectrics. A statistical nature rf breakdcwn is

indicated by the wide variation in the breakdown field strength found

in a given substance. Indeed, in a thin film capacitor that breaks

down with isolated single hole channels, the breakdown voltage may

easily vary by 100% (10). Similar variations have been observed in

carefully grown, annealed single crystals of various alkali halides(ll).

Overlapping of the distributions of the breakdown field strengths can

4
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be expected for most homogeneous insulators, even though the materials

may be structurally dissimilar.

When dielectric breakdown occurs, the dielectric changes abruptly

from a nonconducting state to one in which a localized current passes

through the material, he local resistivity decreasing by about ten

orders of magnitude (12). The conduction process is always accompanied

by local destruction of the dielectric. If the device is a thin film

capacitor, the electrode material may be evaporated or blown back from

the breakdown channel, and the capacitor left non-shorted. Thus

multiple breakdown studies may be performed on a single sample. In a

macroscopic insulator, the localized region of destruction of a breakdown

becomes a high conductance gaseous path through the sample. Local

removal of the electrode material does not isolate this path because

surface flashover from one electrode to the gaseous channel occurs upon

re-application of the field before the solid dielectric can break down

in another place.

The destruction within the dielectric causes the formation of a

channel through the material, extending completely through the dielec-

tric. The channel may contain frequent branching, giving a "tree" or a

"star" pattern. This pattern is especially prominent for nonuniform

(point-plane) applied field geometries. In other cases, such as

parallel plate geometry, a straight channel with essentially no

deviations may occur, or tree channels formed, normally from the cathode

side. The formation of one or the other type of channel may be polarity

dependent.
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The following illustrations are the most graphic manner in which

the evidence of the breakdown channel may be presented. The orientation

of the view is along the direction of the electric field lines in each

case for Figs. 1-4. Figures 1, 3, and 4 are from thin film capacitor

studies, while Fig. 2 is in a bulk sample.

In Fig. 1, the typical single-channel unbranched breakdown is

illustrated. This type of breakdown is normal in thin film capacitors,

where the voltage is applied relatively slowly to the capacitor. The

central region is the main channel, the next region the dielectric where

the upper electrode has been removed by the breakdown, and the outermost

region the upper electrode. Two points of particular note appear in this

photograph: Firstly, the appearance of the electrode is similar to that

of an explosion cavity, with much peeling back of the electrode from the

channel, and lines of metal fragments extending quite some distance from

the center of the channel. Secondly, the dielectric appears to have

suffered structural damage in the regions visible in the photograph.

The "star" pattern of breakdown channel occurs frequently in

point-plane geometries, but can occur also in other electrode configur-

ations. The breakdown illustrated in Fig. 2 makes the origin of the

name self-evident. Although the scales of the two illustrations are

different, it will be noted that the breakdown event in Fig. 1 is

significantly different from that in Fig. 2. In the former, the main

channel was the dominant feature, whereas the side channels are much

more prominent in the latter case. The "tree" pattern of breakdown is

similar to the "star", but shows more extensive side-branching and a
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Fig. 1. Normal single channel breakdown in a thin film

showing damage to dielectric and electrodes.
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Fig. 2. A "star" breakdown pattern. Taken in a macroscopic

sample of LiF in a nonuniform electric field.

(Photo courtesy of Dr. James Davisson, Naval Research Laboratory)
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much lower degree of overall symmetry in the positioning of the side

channels. The "tree" pattern is not illustrated.

The next two illustrations show explicitly that breakdown channels

may serve as nucleation sites for additional breakdowns in thin film

capacitors. Both of these figures are somewhat atypical; the sort of

clustering shown in Fig. 3 apparently occurs only in CaF2 . Clustering

of breakdown channels can also occur in other materials; that of Fig. 4

is in SiO, and is the more common sort of clustering.

The process of dielectric breakdown in liquids seems to require

production of a gaseous channel (13). These gaseous channels frequently

exhibit a structure similar to the beading which may occur in channels

in solids. A gaseous channel appears to be an essential part of the

breakdown in solids. This observation is certainly compatible with the

experimental observation that there exists, in thin film studies, some

minimum voltage at which the breakdown event terminates. For a given

capacitor, this voltage minimum is quite sharp, and seems to be the same

for similar capacitors, regardless of thickness. This is explicable in

terms of a gaseous discharge, which exhibits the same effect.

Examination of the breakdown region in both thin film and bulk

systems provides evidence for the existence of a high pressure gas

internally during the breakdown process (14). Material is thrown away

from the breakdown site (as in Fig. 1), fracture lines emanate from the

breakdown region, and electrodes are deformed. Inspection of the region

of destruction in thin-film capacitors for a given breakdown event

reveals a central region of complete destruction of dielectric and both

electrodes. The outer (evaporated) electrode is further eroded or blown
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Fig. 3. Multiple breakdown pattern observed in a thin-film

sample of CaF 2. This type of multiple breakdown seems to occur

only in this material.



Fig. 4. Mutiple breakdown patterni fUL a LhilL-fl-ill samle1

of SiO.
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back from this central region, giving a cratered appearance. The entire

configuration suggests that a high pressure, high temperature gas

existed in the central region during breakdown (10).

The thickness dependence of the breakdown strength has been studied

for both thin films and for thicker specimens. For thin films the

field strength increases as sample thickness decreases (1). A similar

but less pronounced variation was observed in thicker samples (15).

Another parameter which has been studied is the temperature depen-

dence of breakdown. It is generally found in the case of electric

breakdowns that the small variation in breakdown field strength with

temperature acts to lower the field strength with increasing tempera-

ture (11).

Breakdown strength increases slightly with the rate of application

of voltage to the specimen (15,16). This effect seems to be found in

all materials, and persists in both thin film and bulk samples.

In a study by Budenstein and Hayes (3, 17), several observations

were made which relate to the most likely sites for breakdown. One

observation was that, in Al-SiO-Al capacitors, imperfections with dia-

meters of '-l pm were frequently the sites where individual breakdowns

would occur. The identity of these defects was not discernable,

however. If the beam of an electron microscope were focussed on a defect

and the voltage across the capacitor gradually increased, breakdown

would always occur at the irradiated defect. However, if none of the

above defects were within the illuminated area, breakdown would occur at

some other site, out of the field of illumination. The capacitors
0o Astudied varied in thickness from about 2000 A to around 10000 A.
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In another study (10), it was found that the material of the elec-

trode made a significant difference in breakdown strength; it has also

been noted that he change from metallic to electrolytic electrodes makes

a considerable difference in the pre-breakdown behaviour of the capaci-

tor (18). This may be attributable to changes in the work function at

the electrode-dielectric interface. It has also been determined that

the polarity of the applied voltage influences somewhat the character

of the breakdown (17). The effect of polarity decreased for increasing

dielectric thickness.

Studies have also been carried out which analyze the light emission

produced during breakdown (10). In the case of thin film capacitors,

Smith found that the spectral character of the light emitted was

entirely a gaseous bright-line spectra of the electrode and dielectric

materials. This study was carried out using Al-SiO-Al capacitors pri-

marally, but similar results were obtained using Al-SiO-Cu capacitors,

and capacitors with MgF2 as the dielectric material. Neutral state and

second-ionization state radiation was observed in these spectra, but the

emission spectra of the singly ionized species predominated. The light

emission spectra was observed within a time of about 10 nsec from the

onset of breakdown conduction as indicated by the voltage waveform. A

search to detect any thermal component in the radiation indicated that

the thermal component was less than one percent of the total emission,

if it was present at all. Another point of some significance is that

when the electrodes were of different materials, the spectra of both

were present from the first, in addition to that of the components of

the dielectric.

NEED"- - - - - -- - - - - -- - - - - .--- - - - --- -
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Cooper and his coworkers at Manchester have also carried out a

number of experiments which provide information on the breakdown

transition (19,20). In the majority of their studies, the specimens

used were alkali halide single crystals about 0.5 mm thick. Prebreakdown

currents up to about 10-8 amperes occurred in samples for field

strengths of about 60 percent of the breakdown value. The transit time

for electrons in the samples they employed were determined to be about

5 nsec (19). In these experiments, they were able to investigate the

prebreakdown light emission to within about 2 nsec of voltage breakdown.

The initial intensity of the emitted light was so small that an image

intensifier was required to determine the light output. This technique

did not, unfortunately, allow them to determine any spectral differen-

tiation in the light. Light emission was first detected about 20 nsec

before the voltage drop characteristic of breakdown. At 19.5-20 nsec,

a faint glow was detected near the cathode, extending for some distance

along the cathode, but not for any great distance into the dielectric.

This diffuse light gradually extended itself across the dielectric,

growing somewhat in intensity. This core completely crossed the

dielectric about 10 nsec before the onset of breakdown. The light emis-

sion grew rapidly in intensity from this point on. It was also observed

that the light from the core reglon showed a beaded appearance, typical

of many breakdown patterns. This core region did indeed become the

breakdown channel.

From the inability of doing spectral analysis of the light, Cooper

was not able to say what physical process was producing the light. From

investigation of temperature variations he felt that it was not arising
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from thermoluminescence (22), but was from the same process as the

breakdown, or from a process which was intimately connected with the

formation of the breakdown channel.

Cooper et al (20) also studied the orientation of breakdown channels

in single crystal samples which had been carefully annealed. The

breakdown channel would, for a particular alkali halide, normally align

in a simple crystallographic direction ( usually [100] but [110] was

occasionally observed), even when the applied field was in some other

direction. A photograph is shown of a breakdown channel in KCl when the

applied field was in the [110] direction. The channel started out in

the [100] direction, shifted to a [010] direction, and then changed back

to its original direction. Unannealed and polycrystalline samples did

not exhibit this behaviour, but would break down in the direction of

the applied field.

Grinberg and de Grinberg (21) report directional effects in

breakdown. In this case, the breakdown channel lies predominantly in a

[110] direction, with side branches in a [100] direction. No treeing or

dendritic growth to the channel was noted; each side branch was single.

Their crystals were, however, prepared by cleaving after annealing, and

thus are not comparable with those of Cooper's work, where it was demon-

strated that the presence of the strains caused by cleavage could alter

the breakdown direction. Grinberg and de Grinberg also find the pres

ence of free atomic alkali metal in amorphous form about the breakdown

channel.

Another point determined by the study of Al-SiO-Al capacitors by

Budenstein and Hayes (17) is of some interest in this connection.

II
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Selected area transmission electron diffraction studies of breakdowns

determined that "balls" or crystalline silicon of about 1 Pm diameter

were always found in the breakdown region. X-ray diffraction studies of

these capacitors before and after breakdown showed that the silicon was

a result of the breakdown process, and did not exist within the specimen

prior to breakdown.

Similarly, in electron beam interaction studies of insulating mater-

ials, a chemical reduction of cations has frequently been observed at

relatively high beam currents (23,24). In this case, the cations nor-

mally form into amorphous clusters of essentially atomically pure mater-

ial in the region where the beam current is relatively large, frequently

globular in shape. Also, it sometimes occurs that breakdowns occur in

these samples; these breakdowns have channels similar to those of the

breakdowns which occur in capacitor studies.

In another study of thin film SiO capacitors, Tsuchida and Ueda

report the "breakdown strength" (for SiO films of thickness greater than

about 200 A) "increases rapidly with decreasing thickness and increased

linearly with increasing work function of cathode metal, and temperature

had a little effect on the breakdown strength" in the range of thickness

:uvestigated (25). For extremely thin films, they found the breakdown

strength to increase somewhat for decreased thickness. For such very

thin films, however, the current-voltage characteristics in the

prebreakdown region are those of a Zener diode, and the conduction was

characteristic of Fowler-Nordheim emission at the cathode. They conclu-

ded that breakdown in such very thin films was correctly described by

Zener's model.

112
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B. Theoretical Background

The literature dealing with the theoretical aspects of dielectric

breakdown is extensive, with a number of review articles available which

cover most of the major work (1,11,26). The salient points of most

major earlier theoretical work will be indicated in this section,

grouped by basic mechanism.

Avalanche Theories

Most current theories of breakdown in solid dielectrics begin with

the assumption of electron multiplication by an avalanche process. The

basic argument is that there exist conduction electrons within the

dielectric capable of gaining sufficient energy from the electric field

to enable them to ionize valence electrons from the atoms in their path

by a scattering event. Then the "new" electrons, as well as the incident

electrons, will repeat the process, and, for a sufficiently strong elec-

tric field, lead to a geometrical progression in the number of conduction

electrons. It is assumed that the addition of electrons to the conduc-

tion band is the direct cause of the high currents characteristic of

breakdown, and that disruption of the dielectric follows the high

current by Joule heating of the material. We shall examine briefly two

types of avalanche theories, one in Anich Lhe applied field is the domi-

nating factor, the other in which space charge plays an important role.

Other theoretical treatments will also be considered following these.

Probably the earliest of the field-critical theories was suggested

by von Hippel, and developed analytically by Callen (27,28). For a small

applied field, conduction electrons do not, on the average, gain energy
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from the field; they remain near the bottom of the conduction band. With

increasing field strength, the average energy slowly increases, but ener-

gy losses associated with scattering events still dominate. However, at

a sufficiently high field strength, the energy gain between collisions

is sufficient to lower significantly the collision probability. Once

beyond this "friction barrier", an electron gains sufficient energy

to cause secondary ionization through a collision process with a bound

electron in the valence band. The friction barrier is in the range of

0.1-0.2 eV above the edge of the conduction band. The critical field

for breakdown is taken to be the electric field at which the average

conduction electron energy is equal to the friction barrier (1). The

principal features of this treatment include:

1. The field strength necessary to cause breakdown is that field

capable of accelerating the average conduction electron to

ionization energy, regardless of its initial energy.

2. The breakdown field will increase with an increase in tempera-

ture. This is a direct result of the enhanced scattering at higher

temperatures. Smith (15) indicates an increase in field strength

in NaCl of from about 1.1 MV/cm at 0°K to 1.6 MV/cm at 500*K.

3. The field required for breakdown in independedt of thickness,

Frohlich suggested that it is not necessary for the average energy

of the conduction electrons to exceed the friction barrier, but that

only the highest energy electrons need be accelerated to the ionizaticn

energy (1). The critical field for breakdown under this assumption is

taken to be that field at which the rate of energy lost to the lattice

in a collision is equal to the rate of energy gained from the electric

4
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field for an electron at the Ionization energy (1). At the critical

field strength, electrons with higher initial energies will attain

energies greater than the ionization energy. Thus the high energy tail

of the electron energy distribution is gaining energy from the field

more rapidly than energy is being lost in collisions with the lattice.

We thus have a supply of electrons available to cause the avalanche

multiplication of electrons. Frohlich's criterion is similar to that of

von Hippel and Callen in that both predict a critical field strength

that depends on an energy balance. The difference between the two is

the emphasis on the status of the average conduction electron by von

Hippel and Callen and on the high energy tail by Frohlich. As the field

required to accelerate the average electron through the friction barrier

is considerably greater than that required to accelerate the high-energy

electrons through the barrier the predicted field strength of Frohlich

is significantly less than that predicted by Callen's criterion. The

other basic prediction of Frohlich's model which differs from that of

Callen is a greater temperature dependence. Frohlich predicts a

breakdown field in NaCl of 0.4 MV/cm at 00K and of 0.8 MV/cm at 600*K (1).

The theory of Forlani and MinnaJa (1) assumes multiplication of the

Fowler-Nordheim emission current from che cathode. Through a consid-

eration of current continuity obtained by equating the injection and

multiplication currents, they obtain a critical field for breakdown

which varies approximately as the inverse square root of the sample

thickness. Their paper does not treat temperature dependence.

Zener (29) proposed an alternate electron multiplication model

which was further developed by Franz (30). In this model, explicit

............-
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avalanching by collisions does not play any significant role, but the

field production of electrons by tunneling is taken to be the main

source of conduction electrons. Once an electron has entered the conduc-

tion band, it is accelerated by the field in the direction of the anode,

Since conduction electrons will be generated throughout the material, the

greatest current density will occur near the anode. The critical field

strength increases with the rate of application of the field and with

temperature. The mechanism for the disruption of the dielectric is again

Joule heating by the current.

In each of the preceding theories, the basic concept was that

breakdown was an intrinsic property of the dielectric, with the breakdown

conduction being determined largely by the band gap of the material. As

experimental evidence relating breakdown in thin film and in bulk single

crystal systems became available, these ideas became more difficult to

support. In the past decade, an increasing emphasis has been placed on

the statistical nature of breakdown events, reflecting the comparatively

wide range of breakdown fields observed in even the most carefully

prepared specimens (9). The theories which have been proposed most re-

cently have considered the role of space charge in the breakdown procesE

Since space charge distributions depend strongly on the specimen geom-

etry, its past electrical history, leakage currents, and the presence of

defects and mechanical strains, their variability can well account for

the fluctuations observed in breakdown strengths. The following theor-

ies each consider the effects of space charge on the process, with less

emphasis being placed on the occurrence of avalanching.
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OlDwyer (31-33) took the space charge into account by requiring the

continuity of current, assuming that the current is carried solely by

electrons. His work also included physically meaningful boundary con-

ditions at the electrodes, including electrode injection of carriers,

and modifications to the field due to the space charge. This model still

considers that collisional ionization plays a significant role. The

results obtained in (31) predict a sharply rising field at the cathode

when the overall field exceeds some critical value. The curve obtained

here requires ionization rates which are not unreasonably high; the crit-

ical field (expressed in dimensionless form) varies approximately lin-

early with the dimensionless inter-electrode separation. The results

of (33) are much more involved, and require numerical or graphical eval-

uation.

Watson and Heyes (16) have considered the build-up of space charge

by ionic migration to the cathode to predict the field strength for

breakdown, and the dependence of breakdown field on the rate of appli-

cation of the field. The critical field yielded by this treatment seems

to exceed those normally accepted as bulk breakdown field strengths, but

the critical field obtained by their approach is the field at the

cathode. This may correspond to a critical field for the build-up of

space charge near the cathode. Good agreement between theory and exper-

iment is claimed.

DiStefano and Shatzkes (6) have considered an impact-ionization

model in which the effects of recombination are taken into account.

Space charge is created which enhances the field in the cathode region.

Ultimately, an instability develops as electrons injected from the

* -V -.----.r-~ --- --- -- .,.~ .... ,.. -
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cathode gain energy from the field. Impact ionization of the lattice by

the electrons enhances the positive space charge near the cathode, which

increases the cathode field, which enhances the electron emission at the

cathode, etc. In the case of Si0 2 their model predicts a current density

for the instability (breakdown) which increases rapidly for films with

thickness below 200 A.

The impact ionization (avalanche) models seek to explain the obser-

ved increase in.current accompanying electric breakdown. Such a current

rise is taken as a necessary condition and occurs prior to any damage.

Damage to the dielectric is assumed to follow the high current and to be

thermal in nature. The direction of the current should be the same as

the field direction. Light emission should be either a recombination

radiation in the solid or a thermal emission from the solid.

I/
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Critique of Avalanche Theories

Having examined both the experimental evidence and the various av-

alanche theories of electric breakdown, it is now possible to summarize,

The avalanche approach has several virtues, including:

1. Avalanche theories explain the large increase in current that

is characteristic of breakdown.

2. They explain localization because small geometric variations

can give rise to high local fields and the size of an avalanche

increases greatly with electric field.

3. They explain the insensitivity of breakdown to the structure of

the dielectric, since it depends only on the gross features of the

electrical band structure.

4. They provide some basis for understanding the thickness

dependence of the breakdown field.

Thus there are a number of points which are well covered by the avalan-

che theories.

However, there are significant observations that do not appear to

be explicable in terms of the avalanche hypothesis. The most notable of

these include:

1. Failure to account for a gaseous channel prior to the rise in

current and fall in voltage indicating breakdown.

2. Failure to account for the line spectra observed from the

beginning of breakdown conduction in thin film studies,

3. Failure to account for the breakdown configuration in

point-plane geometries and in annealed single crystals: the channel in

' 1

Il
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the- situatiQnp will follow favored crystallographic orientations

rather than parallelling the electric field,

4. The nonexistence of current precursors to breakdown renders

unlikely any mechanism which requires the formation of high current

densities prior to the disruption of the dielectric (25).

5. Failure to account for the geometry of electrode damage in

breakdowns---in an avalanche model, such damage should be primarily

by Joule heating. In practice, damage is strongly dependent on the

high pressure gases formed within the dielectric.

6. The chemical composition of the reaction products from a

breakdown channel is not explicable in terms of thermal decomposi-

tion products, but is explicab 'e on the assumption that the material

is broken down into its separate atoms and then these atoms

subsequently chemically recombine (34).

7. There does not seem to be any direct experimental evidence

showing the existence of substantial avalanche current in any solid

dielectric system so far investigated.

8. Breakdown occurs in thin film systems at voltages too low for

the process to exist. For a field strength at breakdown of 5 MV/cm,

a sample having a thickness of 500 A will break down with an

applied voltage of 25 Volts. if the insulator In question has a j

band gap of 10 eV, not more than two ionizations can occur per

incident electron, as the electron will lose most of its energy in

each collision. Thus avalanche cannot directly cause the large

increase in current required in the avalanche theories of breakdown.

____________________ _ _ _ _ _ _ _ _ _ _ _ -- --- .-
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It might be Well to use Cooper's words to gummarIze the state of

theory and experiment at this point: "Seitz's single avalanche theory,

and also other theories in which current multiplication occurs by elec-

tron avalanching and of which the theory recently proposed by Forlani

and Minnaja is an example, are incompatible with the pattern of light

emission" exhibited in Cooper's work (19). The article this quotation

is taken from was published in 1966, but the views are those which Cooper

still holds (22). Others, notably Budenstein (17), also expressed doubts

about the applicability of the avalanche approach at about this same time.

Gaseous Model of Electric Breakdown

A model of breakdown in solids has been proposed by Budenstein (4,35)

that attempts to account for a broader range of breakdown phenomena than

seems possible with the avalanche models. The basic assumption of the

model is that, in a sufficiently high electric field, breakdown in a

solid occurs when a highly conducting gaseous channel is formed that

bridges the electrodes. Thus the theory of breakdown must be able to

explain how this conducting channel is formed. In the formation of the

channel, the following sequence of steps is hypothesized:

1. The basic assumption is made that the breakdown starts when the

density of excess charge in a local region containing many atoms exceeds

a critical value. This charge density may be produced by any of several

processes, such as field emission from the electrodes, ionization assoc-

iated with the absorption of light, electron injection from a high energy

electron beam, or some other means.
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2. The effect of this excess charge density is the 
destruction of

chemical bonds in the local region. When the bonds are broken, the prod-

ucts form a gaseous plasma containing excited atoms, 
ions, and free elec-

trons. This plasma, to sustain itself within the solid, 
must be of high

density, high pressure, and high temperature.

3. If the free electrons within the plasma are of sufficient

density, so that they produce at the plasma-solid 
interface the critical

charge density, then the process is self-sustaining.

4. As the reactions proceed, a gaseous cavity is 
formed within the

solid. The pressures generated within the gas can lead 
to the formation

of cracks within the remaining solid material, 
extending the reaction

zone.

5. When the channel completely bridges the electrodes, 
current

begins, and, in most circuits, the voltage between 
the electrodes falls.

j

.1
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III. ANALYSIS OF BOND DISRUPTION

The present study was performed to provide some insight concerning

the nature of the excess chargd density necessary for disrupting chemical

bonds and of the energies of the released particles after bond disruption,

i.e., to provide a basis for the first step in the gaseous model of elec-

tric breakdown described in Section 11.3. For the gaseous model to be

feasible, the excess-charge-induced reaction must be exothermic.

(Conversion of a solid to a gas is normally an endothermic process.

However, in the normal situation, the system is not subjected to an

external electric field in the MV/cm range.) In this chapter, the ener-

getics of the formative stages of breakdown are analyzed in two stages.

The first involves energy storage within the dielectric, the second the

solid-to-gas exothermic reaction. For definiteness, these will be

explored in terms of a particular material, NaCl, an alkali halide, in

a uniform field geometry.

A. Storage of Energy within the Dielectric

1. Generation of Defect centers by ImpacL Ionization

At low applied voltages, the small leakage current through a bulk

dielectric arises from mobile ions and, by means of the hopping conduc-

tion mechanism, or by the Poole-Frenkel mechanism, from electrons. If

there is no injection of electrons or holes at the contacts (blocking

27
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contacts), only a transient current will flow while space charge is built

up at the electrodes.

As the applied voltage increases, the potential barrier at the

cathode-dielectric interface can be penetrated by Schottky or

Fowlez-Nordheim emission of electrons into the dielectric, and a signif-

icant injection current may begin. (This occurs at field strenyhs less

than one-tenth of the breakdown strength (36). Values for the work

function at the cathode-dielectric interface do not seem to be available,

but a representative value is one-half of the band gap of the

dielectric (37)).

As the voltage continues to increase, the injection current

increases, and some injected electrons pass through the friction barrier

and attain energies sufficient to eject electrons from their bound sites.

If an electron of a Cl atom is ejected, then a Vk colour center may be

created within the dielectric. The method of production of Vk centers

has been studied by Dienes (38), and their properties are described by

Fowler (39), Townsend and Kelly (40), and Schulman and Compton (41).

A Vk center in an alkali halide consists of a molecula ion occu-

pying the lattice sites of two normal halide ions, with the atoms com-

prising the molecule displaced from the lattice sites toward a common

center. The molecular ion is usually formed from the ions originally

occupying the lattice sites. A qualitative diagram of this center is

given in Fig. 5. A more comprehensive discussion of this colour center,

along with the H and F centers, is given in Appendix D. According to

Dienes (38), the center is normally formed by ionization of one of the

atomic sites, followed by a combination of the neutral atom with an
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adjacent ion to form a molecular ion, The latter is more stable in

crystals at low electric fields than the neutral-ion configuration with

each atom remaining at its original equilibrium site. The stabilization

energy of the state in NaCI is about 1.4 eV, and the center forms an

isolated energy level in the solid at about 6.5 eV above the valence -.

band (38). Using the normal criterion for the incident energy to be

three-halves the band gap, this would require the incident electron to

have an energy of about 11.8 eV to allow the formation of this state

(the band gap of NaCl is about 7.85 eV). The equilibrium separation of

the nuclei in the molecular ion is about 2.3 A, compared to 2.8 A in

the normal lattice.

Paracchini (36,42) has observed cathodeluminescence at liquid nitro-

gen temperatures and below for alternating fields greater than 104 V/cm

in several alkali halides, although not for NaCl. In the case of a d.c.

electric field, a space charge internally built up in the dielectric

reaches equilibrium with the applied field, and luminescence is not

observed. Paracchini attributes this luminescence to Vk centers created

by impact ionization initiated by electrons injected from the cathode. A

field of 104 V/cm is substantially below that required for breakdown.

The cathodeluminescence is not seen at higher temperatures, as the tran-

sition is no longer radiative at higher temperatures. Paracchini finds

that the centers are created predominantly in the cathode region, as

indicated by the light emission pattern. For each center produced, there

will be a contribution to the space charge of a positive electronic

charge, as the center production process has involved the removal of an

...... .....
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Fig. 5. Sample configuration of Vk center in alkali halide

crystal. Note that the two halide atoms comprising the molecular

ion occupy sites close to those of the original halide ions.

(After Townsend and Kelly)

- -
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) (a)

Fig. 6. The effects of polarization on the formation of Vk

centers is illustrated by this sequence of drawings. (a) Shows a normal

lattice. (b) Shows the shift of atomic species away from the lattice

points (indicated by dots) due to the action of the electric field.

The distance between halide ions is indicated by d. (c) Shows a

neutralized halide atom. The distance indicated by d' is less than d.

(d) Shows the Vk center formed by the neutral halide atom.
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electron, leaving an unbalanced positive charge. The low temperature

luminosity is due to a radiative recombination of an electron with the

center.

2. Properties of Defect Centers

The production process of the Vk centers may be represented in

chemical notation by the expressions

CI- + e- + EQ ----------- C + 2 e- EO=7.85 eV

Cl + CI------------- > Cl + El EI-.4 eV

Or, we may describe the system by the single equation

2 Cl- + e- + E' ------- > C12 + 2 e- E'= EO-El
2

To attain the excitation energy at which cathodeluminescence is observed

requires accelerating distances in excess of 10 pm in Paracchini's exper-

iment, and decreases to about 0.1 Um at an applied field of 106 V/cm.

The effect of polarization on the formation of Vk centers is illus-

trated in Fig. 6. The lattice positions of the crystal with no applied

field are shown in Fig. 6a, where the equilibrium separation between sites
0

is (d), the separation being about 2.6 A. Polarization shifts the ions

away from their equilibrium positions in the neutral unstressed crystal,

as shown in Fig. 6b. After impact ionization has occurred at a Cf- site,

the adjacent positive ions relax by moving toward the neutral (Fig. 6c).

This latter relaxation lowers the separation of the neutral and an adja-

cent halide ion, thus favoring the formation of Vk centers. The condi-

tions needed for the formation of Vk centers exist in breakdown studies.

The reverse reaction is also possible:

C12 + e------------- > 2 C- + E'
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The energy given off in the reverse reaction may appear as lattice vib-

rations (phonons), go into the production of paired H and F centers, or,

at temperatures below 80'K, may appear in the form of visible light (38).

The H center is chemically the same as the Vk center, and consists of a

C12 molecular ion which occupies a single CI" site. The F center is a

halide vacancy; F centers serve as electron traps. The production mech-

anism proposed by Pooley (43) for the paired H and F centers via the

recombination of an electron with a Vk center requires that the electron

be trapped by the F center.

The Cl2 state is frequently referred to as a "trapped-hole" colour

center, as the now unbalanced charge of the Na+ ion adjacent to the

center represents a positive charge localized in a region. This unbal-

anced charge adds to the positive space charge in the cathode region,

leading to the enhancement of the injection current, provided that a

compensating negative space charge does not build up also. The effect

of this space charge is to steepen the voltage gradient in the cathode

region, while lowering the field in the bulk of the insulator relative

to its maximum value. The effect of this electric field gradient is

two-fold: first, the electrons injected into the material can now gain

energy from the field in a shorter distance, and, second, Vk centers are

generated in a smaller volume of the crystal. Each Vk center is a region

of high potential energy; work has been done by the field to supply this

energy. Thus the localization of the Vk centers by the electric field

gradient implies a high energy density as well as a high space charge

density in a local region. Defects may play a significant role in the

trapping of charge and the localization of the centers. The possible
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rQle of defecta on the formation of the initial space charge density and

their subsequent effects on breakdown will be considered later.

The Vk center is a state of high potential energy with respect to

the normal lattice. The source of this excess energy is the applied

electric field. Vk centers are created directly from the ions of the

lattice by impact ionization, and they are annihilated by electron

capture, with the energy on annihilation normally going into phonon pro-

duction. There is, however, another method of decay for the Vk center

on capture. This mechanism, proposed by Pooley (43), involves the con-

version of the Vk center into a pair of H and F centers. The H center,

although chemically similar to the Vk center, cannot easily decay back

to the normal lattice configuration. In order to return to the normal

lattice, it is necessary for the H center to recombine with an F center.

The mechanism of Pooley requires that the F center and the H center

with which it is paired be separated by several lattice spacings (at

least four, and normally more), so the likelihood of H-F recombination

is small. The H center retains the primary energy characteristics of

the parent center. Both the Vk and the H centers represent sites at

which energy is stored within the lattice, and both of these centers are

the primary result of the build-up stage of breakdown.

B. Solid-Gas Reaction

1. Energetics of the Reaction

According to the proposed model, breakdown begins with the pro-

duction of a high temperature, high pressure gaseous plasma within the

crystal. The rate of conversion of solid to gas must be very rapid and

_____ -----
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highly exothermic if the gas is not to condense. In the present case, a

reaction sequence that fulfills the requirements is

a. (Cl")solid + E3 .-----. P (Cl2)gas + e- E3=1.4 eV

b. (Na+)solid + e ------ (Nao)gas + E4 E4=5.95eV

gsi gasca. (Na gas + E5 ------- )- (N )gas+e- E=.eV

The values given for the energies of the above reactions are taken from

tables given in (44,45), For two atoms of Cl and two of Na to go to the

gaseous state from the form of an isolated Vk (or H) center, we add

equation (a) to 2 times equation (b) to equation (c), and obtain

d. (cl") solia + 2(Na+)solid 2(C)gas + (Na)gas+ '')gas+9d

where Ed = 4.45 eV is the net energy of the reaction, starting with the

Cl state within the crystal, Note that reaction (d) is exothermic and

does not alter the number of electrons within the system. This reaction

sequence presupposes clustering of the Vk centers within a region suffi-

cient to alter the bonding characteristics of the Na.

The reaction sequence of equation (d) could occur at any Vk (or H)

center with a minute gaseous pocket being formed. This gas will be

rapidly quenched unless additinnal conditions are met which lead to

repetition of the same or similar reactions in the immediate vicinity

of the first.

2. Growth of Reaction Zone

The dielectric is under high electrical stress due to the external

electric field when breakdown occurs in a solid. When the gas is formed

as described above, it creates a small conducting region within the

dielectric. The field about the region is distorted as shown in Fig, 7.

S.
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OL N Gas Pocket

Fig. 7. Electric field distribution in the neighborhood of the

internal gas pocket. Additional randomly positioned Vk centers in

the vicinity of the C-gs pocket arc also indicated. Note particularly

the distortion of the field due to the gas pocket.

.- -i-
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Fig. 8. Typical situations of Vk and H centers in an alkali

halide in a non-uniform electric field region. In (a) two Vk and

one H are illustratel; (b) shows four Vk. centers.

J
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Thus a field gradient exists in the region of the gaa pocket, with the

region of strong field being centered about the gas pocket, Such a field

will exert a force on a dipole that is directed toward the region of

enhanced field. Suppose that there is a distribution of H (or Vk) centers

about the gaseous region. Typical situations are illustrated in
0

Figs. 8a and 8b. The field will polarize both the Cl and the Cl- atoms

of the Vk (or H) center. The C1- is electrostatically more strongly bound
0

to the local position than the Cl because of the surrounding Na ions,
0

The C will be polarized by the external field with a net force on it

directed toward the high field region. Thus the neutral changes its

affiliation to an adjacent C1-, that is, the Vk (or H) center moves

toward the gaseous region under the action of the external field and the

gradient due to the gas pocket.
0

The charge on a Vk center, a CI .CI pair, can be expected to move

from atom to atom of the pair. When the atom in the high field region is

neutral, conditions are favorable for another jump. Thus a mechanism is

available for motion of the c-nters toward the plasma region. The reac-

tion of Eq. (d) can then take place and the plasma will grow in size.

3. Reactions in the Gas

In addition to the reactions of Eq.(d), further reactions can occur

in the gas. These include

(Na')gas + El ------- > Na+ + e-

C12 + E2 -------- > 2 Cl

Cl + e ---------- > CI- + E3

S96fe of the electrons will be injected into the high field region near
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the gas, These can create additional Vk centers, the energy being

provided by the field source.

C. Implications of the Gaseous Model

The proposed model indicates that materials with relatively large

dielectric constants, and hence relatively large displacements due to

polarization, should break down more easily. The reason for this is the

added ionic displacement in the initial step in the formation of the Vk

centers. While this will probably not be the dominant effect, as changes

in the bonding structure between materials will strongly influence the

breakdown, there should be a tendency among structurally similar mater-

ials toward a reduction in breakdown strength with increasing dielec-

tric constant. Such an effect is observed experimentally (1). Polar-

ization also contributes to the stored energy in the system, although

the contribution is normally small.

The model indicates also that there should be areas in which gas

production has occurred, but the gas has been quenched before completion

of a channel. Such quenching could leave localized amorphous (glassy)

or otherwise structurally altered regions within the dielectric. The

latter could include the amorphous clusters of free metal observed in

both alkali halides and other materials (23,24), and the balls of

crystalline silicon produced at the edges of breakdowns in thin film SiO

capacitors (12).

Neither of these points has been cxplained by other theories of

breakdown. Additionally, the properties of the channel are substan-

tially in agreement with the experimental evidence. Thus the existence

of a hot gas within the channel will lead to electrode damage, and the
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light emission follpw~ng breakdown would naturally be expected to be that

of a gaseous plasma, The occurrence of treeing is also explicable in

terms of the pressures built up in the region of the channel during the

formativie stages of the channel. The production of gas in the region

surrounding the channel may also aid in the formation of cracks.

The observed increase in breakdown strength with the rate of appli-

cation of voltage is explained in the present model by the requirement

that sufficient density of Vk centers be built up to initiate the form-

ation of the gas.

More will be said later about the dependence of the breakdown on

the presence of defects within the crystal, directional effects, ageing,

and other effects.

The model presented applies directly to breakdown in ionically

bonded materials. The question arises, however, concerning the appli-

cability of the model to covalent materials. One requirement of any

breakdown model is that it be relatively insensitive to bonding types

within the material, as .t has been shown earlier that breakdown does

not depend strongly on the nature 6f the chemical bonds. It is thus

necessary to extend our investigation to cover the case of materials

which are covalently bonded, and to show that similar conditions may be

expected to hold in this case alsa.

Cooper has recently shown that light emission occurs during the

formative stage (prior to the breakdown current) in the cathode region

when the material used for the dielectric was polymethylmethacrylate

(PMMA) (46,47). This emission is very low in intensity and diffuse.

Cooper feels it is a necessary part of the sequence of events leading to

-.-.
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breakdown. In the abQve model, it is related to the process of building

up sufficient energy density through formation of a space charge to make

the system unstable as a solid.

In the next chapter, forming the main effort of this thesis, is a

calculation to estimate quantitatively the degree of instability produced

by the addition of excess charge to a molecularly bonded system. The

problem has been reduced to the simplest possible case so that it could

be solved without questionable compromising assumptions. By introducing

great simplification, however, the problem is removed from a complex

environment 6f the atom in a solid to that.of a simple molecular cluster.

The system to be investigated is the ground state energy of the

hydrogen molecular ion having two excess electrons. It is known that

H2 and H2 uolecules are stable in their ground state.

Fischer-Hjalmars (48) has shown that the ground state of H2 is stable.

However, no work has been done previously on the ground state energy of

the doubly negative hydrogen molecular ion. By making such a calculation

and comparing its results with those of the H2 neutral and H2 ion, an

estimate of the energy of formation of the H2-2 ion and the energy

release upon its dissociation can be made. These have important impli-

cations in the context of the gaseous model of breakdown.



IV. CALCULATION OF THE GROUND STATE ENERGY FOR H2 -2

A. Formulation of the Problem

The ground state energy for the double negative hydrogen molecular

ion is given by the solutions to the Schrdinger equation

H = E,

where E is the energy, i'is the wavefunction appropriate to the state,
-2 2

and H - m v +V.
i .

The wavefunction for any molecular system may be constructed

from a suitable combination of atomic wavefunctions. Then the total

wavefunction should correctly describe the 
system in the limit of

large internuclear separation, which is just the case of separate

atomic systems. It is desirable to choose a wavefunction that can

be treated in closed form, and one that is sufficiently pliable

mathematically to be solvable without requiring extraordinary mathe-

matical procedures. The H2  molecular ion is similar electronically

to the He2 molecule. Since Huzinga (49) has obtained the ground

state wavefunction similar to his was chosen for the present calculation.

The total wavefunction is given by the Slater determinant

(1) y = ~(1) a(1) g(2)B(2) Mu3)(3 u(4)0(4)1

42
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where a(n) is the spin-up and 0(n) is the spin-down spin portions of

the total wavefunction for the nth electron, and the 'g anii 4u ate

spatial portions of the total wavefunction, and are defined below. The

use of the Slater determinant takes care of the requirements imposed on

the wavefunction by the Pauli exclusion principle, and insures tOat

the proper symmetry of the wavefunction is maintained. In this

(standard) shorthand notation, the elements given are the diagonal

elements of the determinant.

The space part of the wavefunction of the doubly negative hydro-

gen molecular ion is chosen as a superposition of two combinations of

atmoic S orbitals, 4g and 4u" These are defined by

(2) 4g Ng(Xa + Xb)

and

(3) 4u = N (x X')
uu a b

where Xa ) and xb(XQ1) are IS atomic wavefunctions centered about

nuclei a and b respectively. The atomic wavefunctions are defined by

(4) x =FR e -a4?eya

and

(5) = =F e-arb ' =4 e -Yrb
X' wn X b

If c and y are different, then Xa X a and b "XX

The constants N and N are normalization constants, so thotg u
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10 r gV* dVdV = 1 and f f dV adVb =1

-00 -0 -00 _-C

Then

1 1

(6) N and N
g U(I+S)

where S and T are the overlap integrals

(7) S = T TxaxbdVadOb and T f fX a dVb
CO -0 -OD -. 0

If we define V = cR and x = YR, N and N may be rewvitten as~g u

Ng +e-W(l+w+ ] and Nu =  (I-+- x + 2+

Before proceeding further, it should be pointed out that the

terms involving electron interactions with the nuclei involve the

interactions of a single particle with two centers. It is natural,

then, to consider carrying out the necessary calculations in a

coordinate system in which there are naturally two centers present.

There are two conic sections in which two focal points are present:

the ellipse and the hyperbola. If we choose a coordinate system in

which confocal ellipses form one coordinate, and hyperbolae, confocal

to the ellipses, the other coordinate, then Fig. 9 might illustrate

these coordinates.

By definition, the ellipse is that geometrical figure formed by

the loci of all points having the sum of the distances from the point

to two foci as a constant. Similarly, an hyperbola is the loci of

/4
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\p

fc aconstant
t cons rant

Fig. 9. Confocal coordinate system used for evaluating two-center

integrals. The third coordinate is the rotation about an axis Joining

the two foci, which are indicated by dots in the figure.

- -z_ _ _ _ _ _ _ _ _
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TABLE 1

NOTATION USED FOR CONFOCAL INTEGRALS

a screening parameter for inner electrons

y screening parameter for outer elettrons

c(i) spin-up portion of the wavefunction

8(I) spin-down portion of the wavefunction

R internuclear separation

w = aR

x= yR

r distance of electron from nth nucleus
n

Useful confocal coordinate relationships

_ Rcosx ( 2 _) (-1 2)]Xcoord - 2 _
coord 2 R~Xcoord' Ycoord' Zcoord are

Y o r- 2 rectangular coordinates

XlIR
Zcoord 2

2 4 + 2 + 2_v 2

R 2 (X 2_1j2 a x a l x x2
)  

11

r R (X + r R(X - v)

a 2 2

- _-. _- , -7
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all points such that the difference of the distances to the foci is

a constant. In Fig. 9 this is expressed by, for point P,

ra + rb = e along the ellipse

r a - rb = h along the hyperbola

These constants are related to the coordinate system by the separation

of the foci. Thus

a b e and X b = h
R R R R

We also have the inverse transformation

ra i R (X + 1j) rb i R (X

which will allow the conversion of the Hamiltonian into confocal

(elliptical) coordinates. The remaining coordinate, 4 , represents

the rotation about the axis of the foci.

Before proceeding further, it is also necessary to express the

Laplacian operator in confocal coordinates. In rectangular coordinates:

this operator is given by

2 2 2= _- + - + -

ax 2 y az2

By expressing X, p, and 4 in terms of x, y, and z, and using the chain

rule to obtain the necessary partial derivatives, the result may be

obtained (51)

-.
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4__2__2 
2  2

v = 4 [(X 1) _ + 2X + (1-p2

R2 (X 2 _ 2 ) [ 2 X 2

X 2_ I 1_2 2

Transformation to this coordinate system will allow the greatest

simplification possible in the individual energy terms.

In calculating the energy, it is cumbersome to carry along a

large number of (unit-determined) constants, Thus it is convenient

to adopt the so-called atomic system of units. In this convention,

masses are measured in terms of the mass of an electron, m , ande

charges in terms of the charge of a proton (equivalent in magnitude

to that on an electron, but differing in sign). Angular momentum

in this system is measured in units oft. One can thus express the

necessary conversion factors from this system of units to MKS units as:

1at. mass unit = m 9.1 X 10 kg

at. charge unit = e 1.67 x 10 Coulomb

-34
1 at. ang. mom. unit = 6.67 x 10-  J-sec.

27r

We still have at our disposal one unit which may be arbitrarily

chosen to determine all other units. (In the MKS or SI units, the

meter, the kilogram, the second, and either the Coulomb or the Ampere

(= Coulomb/sec) are chosen as the basic undefined units. Four units

have been found sufficient to determine all other units of physical

measurements.) It is convenient to consider for the last unit a

length; conventionally, the length unit chosen is the radius of the
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innermost electron shell of hydrogen, as given by the calculation of

Bohr. This unit, designated a0 , is known as a Bohr.

0 011
a = 1 Bohr = 0.5292 A = 5.292 x10 m.
0

As the unit of energy, two choices are frequently seen in the literature.

The potential energy of a single electron attracted by a single proton

(i.e., a hydrogen atom) is given by -e 2/r, where r is the distance

between the two particles. If we take the energy at a unit distance

in atomic units, we obtain

I-e2/ao1 = 1 Hartree = I At. energy unit.

This energy is twice the energy of the hydrogen atomic ground state.

Thus the energy may be related to other units by

1 Hartree = 27.21 eV.

The other choice of units for energy frequently made is the Rydberg,

where

1 Rydberg = (1/2) Hartree = 13.605 eV.

The latter unit, better adapted to calculations on hydrogen, will be

used in the calculations to follow. The ch6ice of these units *ill

effect a great simplification in the form of the equations without

any loss of physical content.
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The energy of the system will be given by

E *H= 1 Jd 0 i ~ V V2 dV 3 d V4 1

where H is the Hamiltonian operator appropriate to the system. For

the hydrogen molecular ion, H is given by

2 2 2 2 2 2 2 2 2 2(8) H =- V1 -V 2 -V 3 -V4  F

ral ra2 ra3 ra4 rbl rb2

22 2 2 2+ 2 +2 +2
rb3  rb4  r12  r 13  r 14  r23  r24  r 3 4  R

where R is the internuclear separation. The Rij are the distances

of the ith electron fram the jth electron, and rai(rbi are the distances

of the ith electron from nucleus a (nucleus b). Equation (8) may be

rewritten in a more compact form as

44(8.1) H= v2  +-) + ] +
i=l rai rbi j<i ij R

where the sum oVer i is a sum over the electrons present in the system.

After expanding the wavefunction, grouping, and cancelling terms which

are zero (see Appendix A), the energy can be expressed in terms of

the original set of basis functions as

, 2 2 2 4
(9) E= {Jfl _ (-V f fdV

Si= r fai rbi

f (r )) d + (R) fl~fld4V}

i>j1 l
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where

(10) f 1 9 g1u (2) u(3) 9(4) " )g()4u (2)g(3) u ( 4 )

+ +u(lW)g (2)g(3) u4 - u (1)4g (2)u (3) 9g(4)

is the spatial portion of the wavefunction in terms of the original

basis set, and fl* is the complex conjugate of f. Equation (10) may

be further reduced by noting that f fl, and that

j4)g (lg()dV1  F (1)4) (l)dVi 1.

It is then easily seen that the terms of the energy may be written

in a form analogous to that of Huzinaga (49). For ease of comparison,

his notation is used here.

(11) E = 2H + 2H + J + J + 4J - 2K +2
g u gg uu gu gu R

where

(12) H = ) (l)(- V2  r2 - 2 o+ (1)dV
g J g1 ra, r blg 1

(13) H u =  Cu( I ) ( - V2 2 ral _2 u(1)dV
(13)U 1 ral bl

(14) Jgg = rr 4 g(1)g(2)(r2 )g (1)4)g (2)dV dV29 0-09 9 r 12 1 2

(15) Juu = 1T U()U (2) ( ) U(1) u ( 2)dVidV 2

(16) Jg =f 4gl)u2)(~L4 1
M 2= u(2)dVidV2

gu F 1
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(17) Kg= JJ (2 ) (2-)u(1)g(2)dVldVgu 9gl)u2r(T u 9 1 (11 u-00 g1

These integrals are most conveniently handled by separating them

further into the atomic wavefunctions comprising them. Note that

the H and Hu integrals refer to interactions of the electrons with

the nuclei, the J integrals (Jgg , Juu and Jgu) to interactions be-

tween "equivalent" electrons, and the Kgu to interactions between

"unlike" electrons.

B. Evaluation of Terms

Each term may be expressed in terms of the atomic wavefunction

basis set and then separated into simpler integrals over atomic

states. If we consider H first,

g

2) 1 = - -_-= -2 ) (1)dV
1g g( 1 ra rbl g I

11g= N2 (Xa +Xb) ( v2  r2 _.2)rl(X a +X V
g(12a.00 ral rbl ab 1

2 V2 2 2

(1.)H N gf2JX + Xb (- 1 -r - ( + )

gl g l al bl
_-

-l ral bl)al -2 + w-+ eW2 +

,2 2 2+ 2f C a -r - -)x dV 1al rbl

-i The first integral is

(18 x(- V2  2  2 )dV za 2 -2a +a [ +.e+-2w(2 +i
j aal 1)1-

-W

ahd the second is
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V2 2-2)XdVl= _wF l~
(19) x 2  -2 bd ae- (2+2w)(2-a) + (11 +rlL)(19) a- 1 ral rb 1

Substitution of Eqs. (18) and (19) into Eq. (12.1) gives

(2)Hg=2aN{a-2(1+t) (I-e e{w (1w)(4.-a) + ..

(20) H3 

In a like manner, H is evaluated as
u

(21) H = 2Y2N2 {Y - 2 1 (--2x )+ e~x[ 4x)( y + Y
2(+)(- ) [(x)4Y 3J

The integrals involving the electron-electron interaction terms

are naturally more difficult. Each will be taken in turn.

(14) J = t,(l) g(2)(-)2 (l)4 (2)dV dV
gg j, gCO r 1 2 g g 1 2

(14.1) J N r Xala(2(Pt)dVldV2
. Jgg g r12 1 2

+ 2 rr xa 2)(2)Xb(2 W*dVV + 2 (( 2 X(1) Xa(2)X (2)(92dVldV2

a r 1 2 a ()X () 1 d 2
Ff 0 a 12 ICOb 12

+ 1~fOa b b 2 1 2 2 b 2 12

+ 2fwcoX2b (2 (2a\ 2)Xb V +f r X (2)x X(l)(- )dV dV
-0-Ob'X b r12 12+ - X-0a b r 12  1 2

+2J'X()blX( 2 (7-t:-) dVldV2 + J xo 1 2 - Vd

If like terms are equated, J 99becomes

rgg
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(14.1) Jgg = 2N {Jggl +  (2) (--L 'd + 4 FJ (1) xa

Eqato (12 ts-C ealuate te-yrm 1 f 2 -olas. The (2r)er

f12
2 2N52

(. 1 d2  J 2 Xa(1)Xa( 2 )X (2)( )dV dV

+1J22 Xa ()Xa (2)(-() dV dV 2

This may be written

(14.2) J = 2N4 .{J +4U + 2Jg +
gg2 ggl gg2 Jgg4

Equation (14.2) is evaluated term-by-term as follows. The first term

(14.2.1) 1 1 fi co X(l)X (2)(2)W dV = "'
ggl F a a r 12  1 2 4

Next, 

0C

(14.2.2) Jgg2 = Xa(l)Xa (2)Xb(2) r.-)dVIdVd2-CO.-CO12

-3w 1 51

2a e-(2 (1

The third term is

gg3jf a a 2 V1d2

12

1:iI -- F+T -3 Jw +

2!a-{- -2w L25 23w +32 +w3  S2(Ctw

-gg3 5 8 43 w

+ (S')2Ei(-4w) -258'Ei (-2w)] I

where

. .........
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S e-W(l + w +3)

S' ew(1 - w +2

C = 0.57722.... (Euler's Constant)

and 6, (-x) is the exponential integral function (52). The last

term is

(14.2.4) J [F' X2( 2W d
gg4 jj-O 12 12

cgg t [ -2w 2 11 3w 2

In an identical manner, J may be dete- ained . From this point on,uu

limits will be omitted as integrals; the limits of integration are

the ranges of the variables of integration

(15) J = 4u(1)u(2)() (i) (2)dVldV

Equation (15) may be written in terms of the atomic orbitals as

(15.1) 1uu 2N 4 - f Xa(2)X 2 ( ) __2dV2dV

uu u r1 2  1 2

-4 X (l)x'(2)xj(2)(92)dV dV +2 X'lX()b()' 22dVV

Ifi

12 2+12

+ ff X;2 ,X,2(2) (2 LdV dV2
(See Appendix A for details of the expansion.)
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Equation (15.1) may be written

4
(15.2) J 2N {J - 4J +2J + i

uu u uul uu2 uu3 JIu4

where Juul' Juu2' Juu3' and Juu4 are defined and evaluated below. L

uuu = f a a b)  r 12 1+

(1.21 2y_ 1 JJ a r 23T

Juu3 4 -8- x )](15.2.2) Jf X'()a (2) (2) (2dV dV
UU3 a b b r12 12

Juu =  2e 2 x(+ + 3
uu3 5 8 43

+ 6T2(C + £n(x)) + (V') 2 E(-4x) - 2TT'Ei(-2x))
X

where

2 2
Te= esx U+x+ ) T' eet x(1 x

(15.2.4) 'u4 f X'.,2(1)X72(2)(2)dV dV2

2

r2 -2x 2 11 3xx 2 1

Next, consider the f~rst of the interaction terms between the

two types of electrons, J A
gu-
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(6 gu jj ' g"" U )(r 2 (1) u (2)dV1dV 2

(16.1) J N2 N2 - { Xa(l)Xa (2) ()-- dVdV2

gu g u 12

+ 2f X
a ( 1 )  

12X

r12 2 2 r12 V2

-II Xa(1)Xb(1)Xa(2)x( 2)(-L)dV dV2 + L 2 dVdV

+12 Xa(1)Xb(1)X(b)(a2 V2 (br12 2

+ Xa(1)Xb (,)X2 (2)2 )dVIdV2 - 14 Xa(2)Xb(1)X'2)X'(2)(2)dVldV2
a. 12 12

- ffX2(l)X,(2)'(2) ( 2)dVldV _ ff Xa(1)XI (2)X'(2)&--dVd
b- 12 2 b r12 1d 2

- fJX()blX( 2)XI( 2)( ( 2)WdV + ffX2 ~' 2 (( 2)dV dV

+f aJ X(1) Xb (1) X4 (2 (-d 1 2 }12 a b r1

X rl2 MX 2 2( dVd

if J u in Eq. (16.1) is expanded in terms of the basis set, Jgu may

be written

(16.2) 1 =2N 2N 2' Hf Xa2(1)X' (2) ( 2 ~)dVdV2gu g u aJa) 12 12

+ H' X2(1)X, 2 (2)( 2 )dV dV2  2 (4Xb2) 2-dV

a b r12 1 LfX 1 X 1 a 12 12

22

-2 X(1) X'(2) x,(2) (7 )1- 2) 2(2)dVdV -V

[I f f Xa a (l) b r12 2

Then, using a symbol to represent each integral, Jg may be written
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(16.3) J 2N2N 2  +J -2J - 2Ju-J
gu g u gul gu2 gu3 gu4gu5

These terms are defined and evaluated below.

gui~~~~ 2)(3X()'dVyl
(.)2 2 2 2]

(16.3.1) Jg2 = Xa(I)xa 2(2)(9-)dV dV 2yg u f r 1 2 1 2 (a 4 y ) 2 2 ( (1 y

2 ~22

J = {(l - 2x2)x - x - 1) + e- 2X(x + I
gu2 R 3 3I)Y Y

_ y -2X-2

(e - 2x  e- 2w )(l + w + x) + e (- w + x) - e-2w(I. + w -x)

(a -Me + y)2 (a + y)(a - y)2

a[-2x -e2w (1 + w + x)

(a - y)( +y)2

a _e___-2x-e 1+2R2(-y 2R)]
+ [2x(lw+x) + e 2x (a-y) -2w (a-y) 2

(a+y) (e-y) 3 2 2

222

(1.3.3) J gu3 = ff xa(1)Xb(1)Xa(2)(b)r 12)dlV

(a+y) 2R e-w-x
2y 3 {-6w(l+w+x+ 3 -[

gu3 -5 (a + y)3 R y2 J

2 (aq~y) 22)

+ e-W-X (l+w+x) + we-WX (l+w+x+ 6S'TEi(-2w)

(a+y) (c+y) R y x

6S'T'EZ(-2(w+x)) - - e y_(l+2w+2x) + 1

y x y 2x 2 (a-y)2 +
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= 6Se-X 2
+SeX+ 2 + +) 1 - Fn(2) - T'Ei(-2x) xe-

y x (a+y)2 + f + 6

+ [_(w) - Zn(l + +

(16.3.4) Jg = X 2 ( I ) X ' (2)X(2)(--)ddVV
gu4 a a ra12 b2

gu 2e-X(l + x)R (eX e2W-X) ( + W + x)Jgu4 = R Y2 -~ +-)

2 2
-2w-x (+l+X (wl e 2w-x (a-y) _R

e- (w + 1) + e-X(w (e e )(1 + W + x + 2
2 y3
2 (a + ) (a + Y

+ e (2 - 2w + W)e- x(2 + 2w + w2) }

2a (a + y)

2 r12

(16.3.5 J-fx 2 (eW) xU ) () +wV x)

3  -2 -2x-w
a Y(a+ Y)

2 22

Y a+ Y) (ac +

+-W( 2 -2 + 2) - e /w(2 + 2x + x2)

2y (a + y)

The final set of interaction terms which must be considered are

in the K term: it is the most troublesome of all the terms in the
gu

evaluation of the energy.

! 4*
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(17) Kg if~()~(2) (-)I (2)dV dV2

It is easy to see why this integral is difficult; it involves the

interchange of an electron in une orbital wlt "a 4n another

orbital. The expansion of Kgu in terms of the basis set is

2 22(171)= 2N2N2 { .a(1) Xa(1) Xa (2) xa'(2)( )V dV2

(17S.) Kgu g u r12

- i(),(lX2X( dd -21 (1 ()x 2 -t)V dV2
2 Xa(1) (1)Xa(2)Xb(2)( 12 )dVdV2  I 2 Xa())Xb( r 2

- fX(l)Xl(l)Xb(2)Xb(2) &L)dVdV +i Xa(l)X'(l)X(2)4(2)YYd2 dV

+ ~ X~)X(lX(2)xb(2) 2 d

Equation (17.1) can be expressed as

(17.2) K 2N2N 2  -K - 2[Kgu3 - K- K

gu g u gul Kgu2

where

(17.3.1) K X (1)Xa (1)X (2)Xa (2) dVdV2

gul J a a a a 12 12

(17.3.2) Kgu4 =, f2 Xa(a)Xa(1)X,(2)Xb(2)(2)dVdV2

U' 2

(K ( X ( X' ( .t tL4+

gu , r1
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(17.3.5) K J Xa (l )Xa (2 )x (2)(-r2 )dV~dV 2gu5 a 12

f jjX'(1)X,(1)X'(2IXb(2) (---)dV dV212"

The term Kgu5 will have to be handled separately-it is the

only one of the integrals involved which cannot be solved in closed

form. (However difficult the other integrals may appear, they each

possess "closed" form solutions in terms (at worst) of transcendental

functions.) The values of the other terms are:

(17.3.1.1) K = 30+Y 3

gul (y)5

(17.3.2.1) K gu2 (a+y ) 6R R

(17.3.3.1) K { 8e-X(-2y+(a2-y 2)R) + 2ye - _]

gu3 (a+y)3 ( 2 _ 2)2 R

(e - x - e- 2w - x )  3 3 (a+y) 2R)R
) (2 +  (w+x) +

a~ )2 4~

-2w-x xw2_2 ) -- 2w-x w2+w2
e (w+l) + eXwlw + -X~w2-2w+2) - e-W w2+2w+2)

a2 (a + y)R 4a 3R

(173.4.1) K - y 8e-(- 2a+(y 2-a 2)R) + 16 e x

g4= (a Y)3  (Y2  2 a2)2 R

(e - w  e- w- 2x) 3 3 (a)2 2
(a + y)2 +  (w+x) + 4 R

y~ct'y)

__ _ _ _ _-I
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e -w-2x (x+l) + e-W(x-l) + e-W (x2-2x+2) - e- 2x(x2+2x+2)

y2(a + y)R 4y3R

The remaining integrals (designated as Ku) are best handled

by returning to a combined form, so that the integrand will possess

symmetry properties making the solution a bit easier to obtain. In

this form,

.) K (f 2X() (X()'2 - X
(17.3.5.1) 1ub 2 a2) (2))dV 2

The evaluation of this integral will be treated in detail, as this

integral presents the greatest difficulty of those encountered.

Consider first the integral over the separation, namely

(22) 1Kl f Xa(l)b(1l)( r2 )dVl
12

As the integral IKI (Eq. (22)) involves (r-), where r12 is the

121

separation of the two electrons, it is necessary to express (-) in

terms of confocal (elliptic) coordinates. This expansion, normally

termed the Neumann expansion, is

(23) (1) = 2 k (-l)m(2k)

12 k=o m-k (+

P I m l IX (a)] Qklm [X(b)IP k m 1( )P k m(112 ) e •

where (i ' pi 4i) are the coordinates of the ith electron, and

[_(s)] is the lesser and [X(b)] the greater of X1 and X 2* The PkImI
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and Q k are the associated Legendre functions of the first and

sevond kinds, respecrively (60).

The integral of Eq. (22) over i and 2 may be carried out

immediately by noting that

d 1 k) e d4id42 = 0, m # 0
-k0 m=-k

since

f 2n-md I eiml 2  i 0

0-0

Thus becomes a nugatory coordinate, and m is zero for a non-

vanishing integral. For m = 0,

~27r (27 2f(f2 d 1 2f d 2 f (X ' X2 2 ) 119 = 47rf(Al X 2' t i )1 9 2)

o O

Since m = 0, there is no azimuthal dependence, so the separation

between the two electrons can be expanded using the expansion

Xa ()X (1) =- e-(aIY)RX/2 e-(a-y)R/2
(21 lf (

The integral of Eq. (22) can be written

(22. I) k3  00 1 C/
(2.) 1k r ( Rk=O I 1 0-a)

X Q k X (b)] Pk(111)P k(112)e- (a+y)R k 1 /2 e- (a-y)Rpl/2 dXl1diii.
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in confocal coordinates, where the integration over azimuthal

dependence has already been carried out. This may be rewritten as

= Iii ( 2_ 2)P

(22.2) 1KI =  =R' X (2k+l) (X P )P [ (a)Qk X(b)j
k=O -

X Pk( )Pk(2)e-(a+y)RXI/2 e-(a-Y)Rpj/2 dX1dl

-(a-X) ui
It is the presence of the exponential factor e 4 which

makes this integral difficult: this factor prevents simplification

by use of orthogonality conditions of the Legendre functions.

To proceed further, make the expansion

(24 e(ay)RlI/2 RI)j(l) -- ) j P
j=0 j=0 2

The 1J, however, may easily be replaced in this series by Legendre

polynomials, which will be truncated after only a few terms. This

allows the use of the orthogonality properties of the Legendre

polynomials.

It will be noted at this point that a "straightforward"

expansion in orthonormal functions (i.e., in Legendre polynomials)

could have been used in preference to the treatment adopted. The

drawback to this procedure lies in the problem of representing the

exponential adequately with only a few terms; approximately four

times the number of terms would have been required for acceptable

accuracy with the "straightforward" approach as were actually used

N, with the approach given here.

7 -.
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The original series will thus be replaced by the new series

e-(a-y)r12 RU I A P (p)

j=O

where the coefficients A will be evaluated by direct comparison

of the power series expansion with the expansion in Legendre

polynomials when the power series is expanded in terms of Legendre

polynomials.

Substitution of the expansion of Eq. (24) into the integral

gives

(22.3) 1K1 /j F R3  X (2k+l) (X -2 )Pk[X(a)]Qk[(b)]

k=O

(Pl1)P k(0 2 ) e - ( + ) /  AjiP (V 1)dX 1dgi

j=O

2 2

The uI dependence of (Xl- 1 ) involves only P0 (6) and P2 (j). Hence,

the integrand will be expanded to obtain the Pk(p) dependence. Then

the summation over k involves only a finite number of terms. Thus,

2 2
the expansion of (X1- 1 ) is

(25) (X I (:_ i2 2Z (1

i2AA

2 1 2 1 P2 1+ A(X -)P(' 3 P2 ()P() + A(X P

1 1
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TABLE 2

FIRST FEW LEGENDRE POLYNOMIALS

n P (x)
n

1x

2 () (3x 2 - 1)

3 ((5x 3 
- 3x)

4 1i)(35x 4  30x 2 + 3)
1

5 1i (63x 5 _ 70x 3 + 15x)

n Qn(x)

1 x+1

11 x+l
1

1 + 1 (55,

1 22 (t)(3x -1)t(-) 3 )x

1 3 52 23 (t)(5x -3x)n(- ) ()
- 1I~ x ~

1 4 2 x+1 -35 3 554 (~(35x -30x + 3)tn-) - -x +

1 5 3 + 63)x4 + 49 2 8~5 ()(63x -70x + 15x)tn(Q---) x 1
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2A2
3 P2l)2( ) + .

S 21 t)2

21 - 1 -

(For convenience, Table 2 contains the first few Legendre polynomials.)

Next, the products of Pj(p)P2 (U) are expanded and the series

truncated for j = 3.

3 2

P1 (0l)e 2 (u I) = + 2 P()1~ ~ 1i

P2(0I)P2(P ) = (18) P (V ) + .1 P2 (u) + -1 PO(Vl)212 1 F84 72187 l(l

P )P2(0I) = 3[30 PS(I +0P( ) + i- P
3 1j" 2 3 5 '3 1 10 l'1 jd

These results reduce the integral of Eq. (22.3) to the form

(22.4) 1KI = y R3 1 (2k+l) PkX(a)] Qk[(b)]Pk( 2)

1 2 0 1 1(aeY)RXI/ P.(2 ) I(X -3 ) -[ X2APB dXldp1
1 1 j=0 J 1

where the coefficients B are obtained by a direct summation of the

coefficients of P (1) in Lhe expansion. The orthogonality of the

Legendre polynomials is expressed by the equation

(27) P 2P(z)dz 2

-il

This allows Eq. (22.4) to be written

iJ1
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(22.5) 1 = y R'' R2 { (2 '

Due to the involved nature of the integrals in the series

expansion, it was found necessary to truncate the series after

three terms. The entire K contribution to the total energy amounts
gu

to only about five percent of the total energy (the term is positive,

and thus is a weakening of the bonding), so that its truncation did

not lead to a significant error in the total energy. For an inter-

nuclear separation of one Bohr, this truncation resulted in an error

of about eight percent in the value of the K term, as compared with
gu

the results given for a similar term by Huzinaga (51) (see Appendix F

for the numerical values in the comparison). This accuracy was felt

to be sufficient, as the addition of a further term to the series

would have greatly lengthened the calculation and required an un-

reasonably long delay in the completion of the work.

At this point, it is convenient to give the coefficients

resulting from the expansion of the exponential and the product

2 2of this expansion with the (i-i) term. Coefficients are given in

Table 3 for an expansion of the exponentialte th the fifth power.

Only the terms with j<3 were used in the calculations.

After the integration over li

(22.6) kl = 2 fct eR2  in t tok(a)lQkF(b)aPk(it2)

k
1

nula seaato of- on-or hstuctonrsle na ro
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X e- (c+y)RAI/2. 2£A _ dA _ Bk k F (a)] Qk CX (b)] Pk ( 2 )

X e- (+y)RXI/ 2 dA I

In Eq. (22.6), X(a) is the lesser and X(b) the greater of X1' X2

Thus the integration over X involves integration over the Pk[A(a)]

1k

for values of X I less than X2, with Qk(X2) independent of A1 , and

integration over Qk[A(b)] for values of X1 greater than X2, with

P k( 2) constant. It is therefore necessary to take the integral

separately over the range X1 < X2 and A > X2"

Equation (22.6) will be expanded term by term. Let m = (a+y)R

for convenience. Let us consider first the k=O term:

(28) 1 '28 f 1+(a)] Qo[(b)1PO(1 2 )(a+y)R1/2(2_I)dX

1

o-m(1/2 (X.2 _ )dd
13 1X e m £l2(i

The first of these is evaluated in Table B-i of Appendix B. The

second integral does not contain the value X1=1, so there are no

singularities to be avoided.

Using the values tabulated in Table 4, the integral of Eq. (28)

may be written

F=-m/2 2 XA

28--(m/2? 3
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22 X 2 1
1 + m X- e m?-% (L+- 1- m + R)em/ 2 EZ( - '-(+1))

-In -2 1- 2 X -m2 2 8 -k2 .Xl :

mm

+ (1 + + m 2 Ei(- 2(:-/-1))2- e-m/2(2)}

T) e(ee+E

The m/2 rab + e -m/ 2 EB(r f(X 1)I 1

Equation (28.1) may be rearranged as

(28.2) 128 PO ( X2)  eO [M (a)_ +o4 2- ) m / d

28 3 2 X- 6 2m2 12 2

I~ '~

(-m/2 m 2 emm/2 2101) -mei(_X/2(m)l
+em te 1n2) _l 2)- 2

The comparable B term for k=0 I-s

The A1 term of Eq. (22.5) is

-j/221(29) 13 PI (P a)] Q [ X (b) ] I(2e mn l2

i
= JI(-mI!2(2  - ")dXl- 02 2e

- (X -(a)]

1

IV~t.l~. - X2eu

+- -02 X , / 2 (X+- 3"l -m /2 , +) ) + /2i"i"(~l)

{1--mX2/2 '

lit________ -- e -.--2-e-- 2
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TABLE 3

EXPANSION COEFFICIENTS

A. B.

2 2 44 2A2
(a-y) 2R2 + (c - 15

1 - 24 1940
_ R (-)3R3 ( -)- 5  187A3 4AI

(ca-y)R 3 ay R 3_(-)5R 5 8A3 1 L
1 2 80 63(3840) 15 15

22 4R4 4A 4A 2A0
(-Y) R2 + c -2y)R 4 2 +

12 679

S33 5R5 130A 5  56A3  2A,

(c+-y) R R 5 3 +R
120 5040 99 5 5

40A4  12A 2

4 2(c-y) R 231 +35
4 3395

(c-y) 5R 20A4  20A3

30240 1;.7 63

10A4

6 033

42A 5

7 014
143

-J-
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TABLE 4

INTEGRALS ENCOUNTERED IN EXPANDING UNLIKE ELECTRON INTERACTION TERM K
gu

fe -my /  yndy = (Dn) - (DnX)
1

n (Dn) - (DnX)

2 e-m/2 _ -mX/21

0 m e-m/2 2

1 - F-m/2(l + a emX/2(l +

m2 -

16 -m/2(l + m 2 -mX/2 A 2X2

-- -l +- (I + -+ m

3 22 8mm

96 2[m/2(l + m 2 - 3  -m/2 2+ m+ 3)j3- e + + -)-e (1 -- + -
4 82 8 48jm

43 2 3 4 282 m3 3  m4 4 7
-m42_(i+2 [ e e (1+--+ m 8 +8

5 e 2 8 48 3 4 3 88 8)

6 ,(+ - 384I - e

(i+ +2x2- + m -x -+ m 4,x- + m5A 1
228 48 384 %3805

n C = J d- my yndy

1

" I. -. ~ -- ________ - - - - - .---. '--
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0 e-m l)

-In

Se__ (+M)

m
-In

1 e (2 + 2m + m 2
m

em

3 - (6 + 6m + 3m2 + m3)

e

4--- (m 4 + 4m3 + 12m2 + 24m + 24)
ee

5 e--(m 5 + 5m4 + 20m3 + 60m 2 + 120m + 120)

6 e (m6 + 6m5 + 30m4 + 120m3 + 360m2 + 720m + 720)7

in-m

e_. (m7 + 7m6 + 42m5 + 210m4 + 840m3 + 2520m 2 + 5040m + 5040)
In8

8e_._ m8 + 8m7 + 56m 6 + 336m 5 + 1680m 4 + 6720m3 + 2016m 2 + 4320(m+1))9
In

e_. (m 9 + + 72m 7 + 504m 6 + 3024m5 + 15120m 4 + 60480m3

+ 181440m3 + 36288m + 36288)

n fz n e-mz/2&'t(z + )dzz z

I-mX/2e .z+l. 2(x+) + m)e I_-)-e/Ei( - M~~)+e-/2 Ei( - 11(X-1)

/2 j- - (2 m/2Ei(-a(X+I))

1 -

ein

e ,/ E (X-1))= • • =

- - - - - - - - - - - - -- - - --24 -
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16 2 m2) 2  /2 .+. m 2 m/2
2 (1+ -+ )e 2n )- (i--+--) e E

m3 2 8 28

(-mx+l)) + (1+2+ -) e-m/ 2 Ei(-.(X_-)

2 2 33 2 3

96 -l +m 2 m3X3 m m
*(1+ -(128 48 tn(28 2 8 48

mn -

2 3 _/2 Eem/2Ei(_ m(X+1)) + (i1+1 +n_2)em/Ei(_7(l1)

22 33 44

24(32) l+mX+m m x m + ) -mX/2 X+l
4 -+ -m- e~~~- Y-n(-Tj)

m5 2 8 48- 384

2 3 4 /2
2 8(48 8- 2+-- -

n m nm m e-m/2 Ein

+ ? 48 38 4  2 in-l

ee
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Of the integrals in Eq. (30), the first two are given in Table B-l,

and the third in Table 4. Then the integral of Eq. (30) becomes

e-reX2  2  2-'-) _ e-m/2 (2 )

(30.1) 130 P1 (P2) {Q(x 2) m2 2) 2

' 3  m 2 X 2 3 3

+-m) 14 +e2/2 ,, m~2+ mX/ 1 2 .

+-M)~ 4 e 2 8 48 2 + 8  + 4 8 j
2

2 21
2X m m3 tm2.,2mX

(1+2 2

- 2 (l+8-48 2 12 48

X 2

2 (X2) - 2 [n(-( - i

22

(1-!)e'/2E (_M i , ) + E1+ (--m/ E(I) (X3 )

2 3_2 2

mmi2 /292 3 m/2

- (3 2) P- (P) + D + (X-) - -3 )  . ..] ]
1 2 2

12 29 2 /

(3) P(I) +~ F(.L ) +EZ1- (X-l)) -(R3) 4 (1l~-T ej3

- (3) 2 D)++I 8 48~ 3m2 2 j



76

)- -m X- + 4mX)e - I D2X) - )

where the notation of Table 4 has been used.

The corresponding B term for k = 1 in Eq. (22) is

(31) 131 = PI(10)f P1 [(a)]Qil&(bie-mXl/2 dXI

(31.1) 131 = PI(11) {(Dl) [n( I) + Ei(- E10- 1)) [4 (1-2)

31 1 e2m2/2 2

e m /2 Ei(- (X+ )) + e(2 
}

The next term in Eq. (22.5) is

(32) 1 P2 [I(a)]Q2 [ (b)]P2 (1 2 )e-ml (1 / -X2 ) dXI
1

In the notation of Table 4,

(32.1) 132 = P2 ( 2 ) 3[(D4)-(D4X)_ - 2[(D2)-(D2X)i + 2

2

[3 2 2 23
re-m / 2 _ e-mX/2] I

3 ~ -mX/2 X m2 2 m33  3 .X+I.

(X2 (1- ,) (2) (I - X-++ )] + (D4 X) ln---f
23 2[2(m 2 8 4

23 4

32 2 3 4 /n )em 1 n n m2 2(X+I + (D4) Ei(- 2(1-1))
2 8 48+ ) E(- 284 2

m

_24(32)(2! 32+ m21+ 3,) -ml/2 i.i

96 -8' '  -7{(D2X) ZnnX
Sm
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16 m m 2 em/2 (N+1)) + 8 -mX/21e3E((- +-),.+l)(-(D2) E2( 8(-2)) -

In in

+ _ {e-mX/2 n .lA +m/2 !(X+1) e-m/2 Ei( -
6m enj - Ei(- 2 )+ E 2(-

Now
3X 2 _1 +1- 3

Q2 M 4 ) - -

so terms can be combined in the above expression to obtain a simpler

form for the integral.

(32.2) P2 (Ij2 ) 3 1) en(4l) [3(D4)-(D4X) - 2[(D2)-(D2X)]
2 222 33

2 -m/2-mX/2 3X2-i i e - m /2 9 e-mX/2 i m X[e e (I +-- X" i +- g
3mLe J 2 2(1274 228-48

(M7) (R)
-(D2X) .iX+- 3 m 2 em2 3 i4  12+) + =-;) ( + -E I -e-('+ T X(-

m

3 .2 m3X 2  m2 X 3m -iX/2
+ !(D2) Ei(- 2(X-1)) - ( )+-+ + e

In

I(D2) E(- 2(X-1) + ' (l )em'/(- e(-)) }(X+}

Equation (32.2) may be simplified as

FX2 [!D)!(D2) + -m/j tnX+L i- IX1
(32.2) P2(1 2 4... - 6 2+
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F( 32 m m2  3 m 4  8 i in2  1 m/2 m[(18) (--51+(1- +-- a- - ) - --3(l-+ 2l( 8 (1+111838 )

+ e (i+mX/2) 9(1+mX/2+m2X2 /8+m 3 13 /48) 144 (m3 2 + m21 3m

2 C-2 2 3 96- + T 4 - 1

(2)(12) i 9 4+]

The Bk term for k = 2 is

(33) 133 = P2 ( 2 )i P2 [X(a)]Q2 [(b)le-mxl/2 dX1

2X 31 P2 (X2 ) L_ 2 -mX,/2
(33.1) P 2(1 )Q (X2) )eil dX1 + ( dX1

+ 22 1) f3~l 2nj 2 i1 2/2 2 2

2

+ PW4-[3- 2- -n(2l 3 1-2 /2

(33.2) 133 = P2 (p){ n(X+)(3X2_) 3(D2)-3(D2X)-(DO)+(DOX)+3(D2X)-(DOX

+ 3X1 _ 2 (DO)] M(X-l)) +31 2 -1 [148m 2  2]
+ [3 (D2)'~ -- D)

in/2 3X 2-1 14 8 () + 4 -- 1+ X em 2
e i-MX1)- (z:'-) 1-3 2 + 2(~)

If one regroups and cancels terms, Eq. (33.2) becomes

3X2_! -1-1 2(Xi))

(33.3) 1 P (11) ( -8) {3(D2)-(D)O)}{ W-. + Ei(- ~A1)

48 2 mm 2  24 m)e-mX/21

(I4+--2 )Ei(- (X+1)) - -(2+ TX)em

Proceeding to the next level of integrals in Eq. (22.5), k = 3,

the A term is
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(34) 134 = p(lP[a ) 3 [ b l x 2 l " -m 1 /2

() _P()P [X(a)IQ tX(b)I(X 1 - dXI
1

34 3 2 (2 s e 1

(34.1) 134 = p3(Q2) {2 5x5 _ 14 x3 + X e-mX1/2 dX

32 3 2. 62 +  n (L1i) 1d I

- 1, 1 Xir+l eX]

Again, Tables 4 and B-i are used to evaluate the integrals of

Eq. (34.1). There are at this point nine separate and distinct

terms in tthe evaluation of the integral of Eq. (22.5). These are

collected in Eq. (22.7) and are further simplified in Eq. (22.8).

(22.7) IKl = P3 (6'2 ) { 2~js(5 5(5)-~(3+~(3)(l

L-- --- D5.) JJ - + 5(D5) EA.(-2 ~ )

23 41 5i -

0 64 [5mmm m m/2 2

_ -5(120)( )(i- 2 8 48 384- ~)e E.L(- ~X+)
~m

-5(2)6--)24 m3 + 16m3)2 + (m7 2 ) ( 2 2 + (3m 2+7m())-m) 
2/21

-m

P3 (X 2) [(D4X ) - 3(D2X) +- me -

P3(2) A2 +l14 D)E( 22-I) 14,96,

-(A 1 (D3X ) ln(-X) + (D)E( (\ m
X-4 223 m 84

4 2 1

X22

m/2 E(- 2(X2+l)) - 146 2 -

4 1) + 5(D ) e 2 2

m -

M 2

P (X !(O !(2)+12em22
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______ r 2~~) 2+1 +(l /

+ 4 DX) n ( +2-1) E !(X 1)) -

~~Ei (X (2+1))] 2 2

(22.8) 1K Pa(p 2){ X) [{5(D5) 1-4(D3) + (Dl) Zn

+ Ei(-

2 3 2 3 4 5
_- 2~i _ - 1496 m m m m m
2{~ ~4 (1(-- 8'48 6 28 48 384 3840
m m m

m/2 64 m4X3 + 2 M2 2 2
e E. (- X+1)) - {700(- )-g) + 2m X + ( +72)

m

+ (2 + 1496, Xm2 1 -mX/2(3m -+-7"2)A- + 4m) + e9m

m

m2 2 3 3 4 4 2X2
3{240(m X) - 96(i+ m- -- )} e-m /2]

{240~~)12 8 48 384~
m 

2m

-X-~[54-.(D3)+(Dl)-5(D5X) + 1(3)(l

The B term for k = 3 in Eq. (22.5) becomes

(35) 135 = f P3(P22)p3 [(a)I Q3 1X(b) ]e-Xi/2 dXl

(35.1) 135 P3 (1 2 ) {Q3(X2 P (XI ) fl dX1 + p 3 (X 2Q 3 (X1 )

1 2

e-mXl/2 dXl}
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(35.2) 1 = P3(i 2) P ( [ 5(D3)-3(Dl)){n i) + Ei(- (X
35 3 2 (12) Xera/2 2(%+1

m m

480 2  
16a2- + 4m)2 - 10(D2X) - -m e

4 3

5X 2

'(-- ) 5(D3)-5(D3X)-3(DI)+3(D)]

At this point, the desired level of approximation for the Kgu5

integral has been reached. It is now necessary to take the terms

developed in Eq. (22)-(35) and include these, with the proper

coefficients, in Eq. (22.6), for IKI and carry out the integration

over the second set of coordinates. Thus

(17.5.5.1) Kgu5 = J 'Kl(Xa( 2)Xb( 2) - X'(2)Xb(2)) dV2

is the integral that must be solved.

At the present level of approximation, the P coordinate appears

in the factor IKl only through Pi(1), the ith Legendre polynomial.

One property of these Legendre polynomials is that each contains only

even or odd powers of the argument, as i is even or odd. This property

allows some simplifications for the Kgu5 integral.

Note that

(36) X (2)X'(2) - X'(2)b ( 2 ) = ' _e- --ra e - Yrb - e-Yrae -rb

a b a Xb( ff

(36.1)3Y = r-[(a+y)RX/2] [j(a-y)RI/2 -~y)RP/2]

(36.1)e e -
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The second wavefunction is an odd function. Since the integral

over P is carried out between symmetric limits,

(37) I  [e-(a-Y)Rp/2 - e(-Y)Rp/ 2 P = 0
J-1

and

(38) fl[e -(C-y)Rp/2 - e (-y)R / Pi (P)2di =0

-1

for even values of i. Thus the even terms in the expansion for I
KI

contribute nothing to the final integral.

The lowest term remaining which contributes to the Kgu5 integral,

after combining terms (see Eqs. (30.2) and (31.1) for individual term

values) is

r-48A 2 + m2 m2  m3  2EI  ml
(39) 1 =2V7VR P M U- _)_ - ( 2+

39 1 -Lm m 2 7 8 4 )

m / 2  X+1 m CA1 m2  ) +
_ [( ) + Ei(- 0-(-l)_ - (1_ ) =) + 42 )

d L m

2B1  m/2 48 FE2m 2  m2 1 -mX/2
m2 (i-2 e 1  Ei(-2(,+l)) +- [A(4-- ) - B(- e

-22) m 4-

_6AI U-m 2 + m2 2 ) 2 m3  4B1  m7 em/2}

Equation (39) may be simplified by letting

S48AI m2  2 (M)+m2 m3 2B1 2).

(40) T I = _7( - ( - )- + ) -L 1
L in 74

:{- _ i. 1 ml iJm
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r48A, m1 2  m2 in im
2 m 3  2B1  2)_1

(41) 12 72 722 8 48 2  2)

Equation (39) then becomes

(39.1) 139 2/0y R2p (1) {Tlem/2X[ +

- T Xe m/2 Ei(--E (X+1)) + 48 A (4- B( -) emX/2

12 2 -n 1 6 16

- 21 e-m /2 }

11

To complete the calculation of the first term in Kgu5, integration

must be performed over the remaining electron coordinates:

(42) T4 R (X [e-(a-y)RI/2 - e(a-y)R11/2] e(+Y)RX/21KldXd

Consider the p integral first. P1 (P) 
= P, so

(1 2 [ -(-y)Ru/2 (a-y)Rp/2I 2
(3)_ i 2  - e dli = 2 (X2Bgu Ggu)

where
(44) B gu = 1 i[e-(a-Y)RI/2 -e e(-Y)RI/2] d

-1

-(a-y)R/2 (-y) R/2

(4.) B =-e (l+(a-y)R/2) + e ((c-y)R/2-1__

(44.) B ed

gu (-y) 2R2/4

and
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(45) C gu 3 f [(ay)RI/2 - ~y)Rji/2] dii

(45.1) C + (ty)R/2 - [6 - 3(ct-y)R + 2-(a-.y) 2R2 - &)3]
gu (a-)R/64

e 1 / 6  + 3(ca-y)R + 1 (ca-y)2 R2  + ay 3R1
(cC-Y) 4R 4/16 L48

With these definitions, the integral over X can be obtained:

(43.1) 13y3'o LX'Bgu-Cgu] eJmX/2 /2 XJ EL (X-1

-T2 em!2 Ei( mQ(X+ 1)) + 48 [A1 (4- 2lL - Z B(-i X/2

2 m 6 16

- 2T 11ein!2} dX

11 ~ 1

(4.2 B tR {B 0 T em/X3EiL 1Xi)-X2X-2 0n0±.~ T EZ-m/ e-1)IX2dX

L8_ 2- 2 jm/

+ B 4)e-inv2 [A (4 2E 2 (- Xe
gu M4  - 1 6 B1(~) 6 d n/2?

Fm2xrX+i Em.(-

JTPie + i + - 21(X-1)) e dX0gul

+ CguIJ 1Tllei2m/ &(- 2(X+1))d' +2CguJ1 T 11 ei einI dX

fO 2 2
- CguJ (j1 ) {A,(- M--) - B (P-~)} e-m dX
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The majority of the integrals of Eq. (43.4) appear in Tables

B-1 and 4. The remaining integrals will now be evaluated in steps

(44)-(52).

(44) 1 = J'X3e-mX/2 Ei(- M(X-l))dX

To integrate by parts, let

dv = X3e-mX/2dX

V 9 -mX/ M)3 X 3+M) 2X2+T

m 6 2

u Ei(- 2(X-1))
2

-m/2 (X-1)
du=e

(X-1)

Integral IE may then be replaced by

= uv]C - rvdu

(44.1) I = 1 Fi

Noting that Ei (- (X-1)) cannot be evaluated at the lower limit

and replacing this by tim EZ(-re(B-l)), Eq. (44.1) becomes
2

- m3 2

(44.2) I = {e - m/2 m m
E 3 i m e

+m9L -mX/2L 48m3 X3  m 2] -m/2 (X-1)4 +ree e- + , dX}
2 (4 8-8)
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Consider now the remaining integral of Eq. (44.2). This

integral can be evaulated by making a change of variables, X- 1 = z.

j6 M-mz 3 2

3 -m.2(45 T8~ ~ [ (z -3z +3 z-1) + S-(z -2z+l)

+ M (z-l) + dz

2 M 2 3 -
(45.1) ~ 6 2  m m m m(45.1 1 m e ( 6 + (i ++- + ) Ei(-m(6--l)) 1

The insertion of the result of Eq. (45.1) into Eq. (44.2) yields

96 -m/2 m2  5m+ 2

(44.3) 4 e (16 16 +
m

(96 e-m/2)(l +m m2 48 [ )]
+& f9 e) E (2( - )  -Ei (-m(S-1)

Step (44.3) has to be substituted back into Eq. (43.2). In
(X+l

Eq. (43.2) the integral over tn must be evaluated before pro-
X+I.

ceeding to the limit. The value for the Zn ( -) integral is

(46) m9"6 {e-m/2(1 + R + "2 + R 3 tm [n (2) -Zn (6-1) + E(- !-(-l)
4e 2 8 8 -l -2

m m2  m3 )e - m/ 2  1 ' 3m 1)) -m/2-~~~ ~ (i-i )(-m)-3 4 +( +i(

2 8 48~ 3j4 2

Thus the first term in the K integral (Eq. (17.3.5.1),. gu5

including coefficients, is

.. .
.J
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(47) BT 96 e-m m2  2 3gu II 4 { m 2 - - ( 'M x(m(4 ) BI 16 + e R -)_

+ m 2 3

+ em + 0+ 2 + E-) jjn(2) - tn(6-l) + 2 Ei(- (6-1))

- E/-m( -1)_ }

The last term in Eq. (47) has alteady been evaluated in Appendix

B, and has the limiting value

C + Zn(m) - Zn(2) + Zn(2)

giving a final value for Eq. (47) of

96 r mm2  5m 2 2 3
(47.1) B T ) - )e( q + + ) - ( + a- ) E(-m)gu ii m-L 8- - i(m

2  
i 3  m2

e-m(I + m + " + L-) (C +. -)

The corresponding term in Eq. (43) with coefficient Cgu may be

solved in an identical manner, with a final result of

(48) C T () - 2(i (C +Z )
gu ll m2 L 2 -(1

The integrals of the Ei(- m(X+i)) terms of Eq. (43.2) will be

considered next. The approach, as above, is by an integration by parts:

(49)= X3 e-mA/2 Ei(- m(X+!))dX
Jl
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Let

dv = X3e-mXl2d

m2 2 m3x3 96) -mX/2
tl =+ + t) "

u = E.(- i(X+l))

-m/2(X+l)du =e dX

This gives

(49.196 am - m2 +- -+ 1) Ei(-m)

El "4 '48 8 2

,9.m X/2 m3 3  m2 X2 + -m/2(+l)+Jt'e t -'+ + (6 i) (-l dX

4m 48 + 2 (X-1)

The remaining term in Eq. (49.1) is integrated by making the

substitution X + 1 = z.

(50) e (z 3 - 3z2 + 3z - 1) + M- (z2 - 2z +1)

m J2

+ 2 (z - 1) + 1 dz

96 +m/2 Fe' mz [F2,m 3 .  2 m 2( 1  _+m2 )

- e e z  !'- + z( )(i-y+ -~
m J;2 -

mi Mm 28z2i +- 3) -z

___________- .--- )-(-
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963 em2 8 2 - 2m  m2 e-2m

96 r m/ () m (1+2m+2m2) + (m )(i - - (I + 2m)

m44 m3 8 2)M2

2 -2m 9e/2 m2 3
(lm j a6 (- + - ) E(-2m)

- mn

Combination of like terms and multiplication of this integral

by its coefficient in the K term yields the final resultgu5

+m/2t96 [e-m/2 (1 + _ 2 3
(51) T B e e + - + S-) Ei(-m)

12gu m4 L 8 48

m 2 m3  +m/2 _1 2 m2 e-3m/2}

i 8 48 E d(2m 1 (- + +4)
m

Identical techniques give the solution of the equivalent Cgu

integral of Eq. (43.4)

=em/2 e_mX/2 g( (+)d

4 m 2e 4e
(52.1) T2 (l + mEi)2(52) Tl 2 Cgu E(-m) + 2 2

1 m m

The remaining integrals of Eq. (43.2) are tabulated in Tables

B-1 and 4.

Substitution of Lhese Lerims inLo Eq. (43.2) gives the first

non-zero contribution to the Kgu5 integral. As the integrals were

to be used in a computer program for finding the numerical value of

the energy as a function of internuclear separation, no additional

simplification was attempted with this integral.

1
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The next term which yields a non-zero contribution is the k = 3

term in IKI of Eq. (17.3.5.1). The integral multiplying the

coefficient B3 in Eq. (22.6) is

(53) 1 V'3Y 3 R2P (1) {P3(X) F{5(D3) - 3(Dl)} XQnn(+ + Ei(- )

- {30(16) (
2  3 12(1- - 8 + - 88M) - 12 (1- 4") e m / 2 Ei (-40t+1))

M42 8 48 -2 (1 2I1}e 2

- 30(16) (!!L.. + 4m)} e - 10(D2X) 6emX5X

m4  2 3m 1- 2_

30(16) 2 2 2 2 3 3
[5(D3) 3(Dl) - {(1- m + (1- m + m 4X(D3 - (14 0) 20()+- +

m4120 2 8 48

e-mX/2]

Proceed by again considering the P integral in Eq. (17.5.5.1)

ueing Eq. (53) and (32.6). Now

(54) -i (X2 -
2)P () _-(t-'y)Rp/2 -e(a-y)R/ _ d = X12B + C

-1 gu3 gu3

where Bgu3 and Cgu3 are determined in Eqs. (55) and (56), respectively.

a _1 3e- (-)Rp/2 (x-y)Rp/

(55) Bgu3 (2 (5 p- 311) e- e dp

(55.1) B gu= 5 R 3(a-y) (a-Y)R + 6 e( 4Y)R/2- - (-y) 4R4/16

5 c(-Y)3R3  3(a-y) 2R2  6] -( -y)R/2

- + 4 + 3(oa-y)R + (a-y)4R4/16

r (a-Y R /1
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3. 3 + ( -) -Y) /2 
e( y)R/2

(ct-Y) R / 4 - )R4

The integrals required for evaluating B are listed in Table B-i.gu3

Similarly, C isgu 3

1 I  3 (-y)Rp/ -yR/

(56) C _ J 3 1 5p] (e Y)R/2 - e dX
(56) gu3 2 i8

- 48 {Fjq-y 3 R3 4(-y 62 R" I cy R

(56.1) Cgu3= ( 4R4 [:3(-y) R + 3(a-y)R - 6j e -

g3 (ct-y) 4R4[- 4j

-(at-y)
3R3  3(a-y) 2R2  6J (y)R/ 28 + 4 +3 (Ct-y) R + 6]e - ( Y R 2

320 rV(c-y) 5R5  5(a-y)4R4  5 (-y) R 15 (oy) 2R2

(a-y) 6R6  [ 32  - 16 + 2

S()5R 5 5S-S 4R4 5(-)3R3

+ 60(a-y)R - 12 eR(-y)R/2 + L R + 1 R + 5(2-y) R

2 22 ( -Y R 2

+ 15(c-y) R + 60(a-y)R - 120] e(aY)R/2)

With these definitions, the integral of Eq. (54) can now be

evaluated by integrating over the final coordinate. The integral

of Eq. (54) is

(54.1) a2. 3 3R c B + C etmX/2 {P 3(A) 5D)- 3(Dl)}
2 j 1  - gu gu3] 4

4m2 3 1(

{n(?+l) + Ei(- (X 1)) - {316) (1 -L + a- ) - m)}
A-i 2 4 2 8 48 2 2

m/2 {30(16) 2x/2 16 m112]

X Ei(- 2(X+ 1)) - {--- 16 - + 4m)} Im - 10(D2X) L6 -m
2 m4 2 3m
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(5X2 21[ 480 m2  m2

_ 23 [5(D3) - 3(Dl) K:Zf) + (1 - )(L

m2 12  m3 13  -m/2l+- +-- e } d
8 4Tjed

For convenience, let

(57) T13= 5(D3) - 3(Dl)

( 480 m m2  m3  12 m e m/2
(58) 1 m ( - 8 48 m )

The integral of Eq. (54.1), on substituting for P3 (), becomes

(54.2) rY1 ((X 2B + C 5X 31-3 )T Zn2X±i ) + Ei(- Tx1
2 11 gu3 gu3 8 1 3  2

- -- )T1 4 Ei(- (+1)) + ){ 5(D3X)-3(D1)O

2 3 m2

-mX/ 232
-2 ( D 2 X)  -m )' L)TI + We'

e-mX/2dX

Each term in the integral of Eq. (54.2) will be evaluated

separately. Taking these in order,

o° 3 - Ii em/d

(59 151 T __8 I n(A1) + E T (- 2 -
(59) 159 3 1 8 d

5T 2 3
(59.1) 1 {(D3)[en(2) -Zn(6-1)] - (1- +I- e m  E/(-m)

(59.19 8 2nm

+ (3) Ei( (-) - + 4m)e - m /2 }

2m
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5T 3T13
+ 13 X3 Ei(- L(X-l))dX - 31-3 {(Dl)[,n(2) -Cn(6--l)]

8 2 8 8

4 (i- mn) em/ 2

- m- ) e i(-m) + (Dl) Ei(- M(6-1))

3T 13 (00
- - IjX Ei(- (X-1))dX}

8 1 2

The Ei integrals of Eq. (59.1) can be integrated by parts.

In the first integral, let

dv X3 e-mX/2dX

= 6 -mX/2(I + 2 +M2X2 M3X3

im4  2 8 48

u = Ei(- in(A-))

-m/2 (A-l)
du = e

With this, the Ei(- 2(X-1))X 3 integral in Eq. (59.1) becomes
2 2

(60) 
2 =8 4ra {86 e-m/2(1 + 6- i))

59 6+1 8

~ Ifld m2X2  mA e-mn/2 e-m /
!2 

I -I)

+ 6 (m34 3  + -2 + -- + 1) i) d \ }

m4  1 48 8 2 (X-l)

In the last integral, let z - 1.

ir
i _ _ _ _ __ _ _ _ _ _ _
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'6-m2 3~ 2 2
(61) ._ em2 m l .2 + i-(l+2) z + e-mzdz

m / 2

m4 L2 8

The first of these integrals in Eq. (61) is equal to

(62) e -m/2 2

and the second is equal to

(63) 96 -m/2 2 3
(63) (i +e2(1 + E-) EZ(-m(6-1))

in 2 8 48

By similar methods, the other integral over EZ(- L(X-1) in2

Eq. (59.1) is evaluated.

(64) tim6+1 - e-'/2 (+L) Ei(- L(6-1)) + 2e-m2

6--1 Lm2  2 2 M

4em/2 (+2) EZ(- m (6-1))]

In

Noting that ths coefficient of those terms which are ill-

behaved at the lower limit in Eqs. (59.1), (63) and (64) is the

same for each pair of integrals, the discontinuity can be reduced

to evaluating

(65) (n(6-1)1+ 2n(- T(6-1)) - /n(-m(6-1))16 1
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This is the same term which is evaluated in Appendix B; its

value is

(65.1) - bn(2) +Zn(M) + C
2

Using this result in each of the two pair of ill-behaved terms

of Eqs. (60), (63), and (64),

16 m/2 2 3
(60.1) 15 { T (D3)[Zntm) +C -4 e m ~+ - m ) E(-m)59 8 Cgu3T13 m 2 8 48

i6e
-m/2 F382  m2_

+ 3m 2 + + 4- 4m - - C T {(Dl)[EMI)+c]
m4  [8 8 2 gu3 13 2

4em/2 (-i) + 2 e
-m / 2

m 2 m2

Taking the integral over X2Bgu3 in Eq. (54.2) next, the same

sequence of steps is followed.

(66) 166 = wX5 [Z( ) + E(- L(X-l) jmX/2 dX

(66.1) _ dX + 5  ( (X-I)) -nX/2 

The first integral on the right-hand side of Eq. (66.1) may be

evaluated, using Table B-1. It is found to have the value

(67) Lam{(D5)[Zn(2) - tn(6-i)] + (D5) El(- M(6-1)) 120(64)
25+ m6

- -
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! 2 m3 +m4 m5 /2

S48 384 3840 ) e

4 2 2 2 -+ I
+ (UL~ + 2m3+ (M- + 72) (-) + (31M2 + 72)()) e lm/

82 4 2

The other integral in Eq. (66) can then be integrated by parts,

with

dv X X5 e-mX/2 dX

-120e-mX/
2  xM + m3X3 + n +X4  5X5

(m1)6 2 8 48 384 3840
2

u = Ei(- 2(X-1))
2

du = e
- m/2(l- 1) d_-l

(X-l)

It is found that

(68) 168 =JOX5e-mX/2 Ei(- L(X-1)) dX(8 68 1 2

120(64)e-m/2 m2  m3  4 5

m 6  (1 + _m + + +m+-+ () (-
6 2 48 4 384 3840 2

+ 120(64) e-mX/2 (1 + x + m2X2 + 3 3 + MY + 352) e-mX ') l2
m 1 2 8 48 384 3

The terms in Eq. (68) are then evaluated, yielding

(68.1) = (120)( 64)e
-m2 +m (i+ m2

68 m6  [640 64 2 24 2 8

?%
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2 3 2 3
( + + 2 +i( +m2 + M3 + m

120F64)e -m /2  2 m3 m4 m5

-m 3840 L + + + + i +  
l) Ei(- -1))m6  6+1i 8 34 34

Combination of Eq. (68.2) and Eq. (60.1) gives the value of

159 in Eq. (59.1) as

{5F_120(64) m/2 ( m+m2 m3
(59.2) B T r(D5)(Zfn( )+C) 6 e

gu3 13 8I T

4 5 -m/2 4 3

+ .m-4- m 65 ~ (_) m4__ 7m 3 -18m 3 _36m + 2 + 15(I+m)
384 3840 m6 4 2 4 8 2

2 L 2  3 3 4
+ 5(2+m+WM) + 5(6 + 3m + -- + E-) + 5(24 + 12m + 3m2 + % + 6

2 4 2 2

2 3
(496 em/238(D3)(Zn( )+C) - - (1 - + 8- ) (m

n6e
-m/2 15 3m m2  )

The next of the major terms in Eq. (54.2) are presented in

Eqs. (69)-(74.2). This term is

(69) T-3) (X2 Bgu3 + C e / Ei(- +)) d16) T4 )l 8 -- - Cgu3) e

The method of solution will be simih:r to that used on the ill-

behaved integrals just considered. i.e., expansion by parts folloued

by a substitution of variables.

V--
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(69.1) 169 = (5X3-3X) e-mX/2 E (- (X+l)) dX

5 J 3 e-m1/2 E (_ )(X+i)) dX - 3 X e- mX/2 E - W(X+1)) dX

r 16e -3m/2 2 9 -m/2
(69.2) I 5 I(D3) Ei(-m) + (- + -2 + 4) 4 U T69 I4 8i2

2 _ m -3m/2 2em /2
+ - .- )Ei(-2m) - 3 (D) Ei(-m) + - - EI+m2m)1

8 4 1 L2 2

Similarly,

(70) 5 J X5 e-mX/2 Ei(- Ln(+1)) dX - 3 f3 e-mX/2 Ei(- 2(X+i)) dX

f3m/ 4 2

(70.1) 5 (D5) Ei(-m) + 64e (a4 + m3 + 2m +  m.+ 3

L m6  2 2 2 4

3 2151 In) (m3 + 3m2 + 2)+ 5 (2 - m + 2)(m2 + m +)

2 2 2 2 4 5(

3m4 ) +  (24 - 12m + 3m -_ + )

2 8 2 2 16

2 3 4 /2)

64(120) (i + M _ + m 4-T5-) ei 2
6 2 - 4- 384 3840 Ei(-2m

m

I 1 6e-3m2 2 96em/2 m2
(D3) Ei(-m) + ( +  + 4) 4 2

- m 4 8 8m

_m3  Ei(_2ml

48

The next term in Eq. (54.2) is
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(71) f \2B + Cg 5u 2  2) [5(D3)- 3(DlX) e-mX/2 dX
( 1 - (2gu3 gu3) -2

- --

(71.1) - 2 B ( ) (6 + 3mX + 3m 22 + -- )-mX dX
2 gu3 i 1 4 8

5 Bgu3 i 4(1 + ! e dX + (C(6 + 3m2 23 2 +(3C3u

?g m33 eemm(

4 8 Cu 3gu3 m 2

2C (L2) f (6 + 3m mX+mX) e-mX dX

4 8 4 4'8

in 1

+3 Cgu3 M2 2

These integrals are tabulated in Table 4. Using the terms

defined there and rearranging the result algebraically yields the form

(71.2) ~!a {25 I(07) + 2~(C6) + 48(5 + 96(C)m m3( m4  -

- 15 -(C4) + n(C5)] - a0 [ (C 5) + L2 (C4)]

- o + 2. c2)] + 4 [.SCc + (c3)]1
2 m3 m 2 _

+ 15 (02)~ + ( + -- (03 + -- (02)]+

-- - m im

20 [4 o 8 96l15TOC) + - + 4~ C2) + i.(C2 OC) ~C)

+ 4912 (25 + (C)]}-C)+7(3 6C

4 rim 2 -4

(C)+ O] 2 ;(3 2C)+L C1 6(

15L2 F M 3 M
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The next term t., be considered in Eq. (54.2) also has its

component integrals given in Table 4:

5 402 4(72) Bgu (2-- (i + - + m2 ) - m dX

f)l2' gu3 in 2 8 3mr

u3 00 X 2[40 ( 0 m2n2 2) 4

IfC~3 Eq. ( +s +vlae - y us of ed blaeitgrl
1u in3 2 8 3m

If Eq. (72) is evaluated by use of the tabulated integrals

and combining terms, its value is

(72.1) B 2 m(C7) + LO(C 6 ) + (EM - 5 )(C5) - _0(C4)
gu3[2m 2 M3 6m M2m m3  in

-L )(C3)]+ C I2(C5) + 50(C4) + 100 L 65 3
-3 m) (  _  gu3 +m m M 3 6m

-m3-0(C 2 ) - (60 - m)2(CI)

in2  in
3  m

The next term from Eq. (54.2) is

OO 2(73) 1) Tu , uXo-mX/2 dX
(73) 173 = T13 11 ( 3 gu3 Cgu3)

13 2 e dX + T13 2 X e dX

2CC2Cgu3 T e-m )X/2

3 T 3 1
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Equation (73) is evaluated as

(73.1) 2 5B u3 T 1 3 (D4) + T1 3 (.5C.2.312 2 gu3 
2 u3 TI3(D )73 2 2 3 3

The final term in Eq. (54.2) is

(74) r(SX3 A) 2 +4m)] (X2Bg+3 e-mX/2dX)74 'N 41- - + 4m + Cgu3 ) X

2 4 gu3 gu3

Referring to Table 4 for the solutions to these integrals,

and rearranging, the final result becomes

(74.1) B [5(C6) - ij(C4) + i.Q 5 ) - 1-2(C 3gu3 m2  m m3  m

+gu 25(C4) - 1 (C2) + I00(C3) - 120(Cl_

gu3 JiM,2 - m2  
33

Substitution of Eqs. (59.2), (67), (68.1), (69.3), (70.1),

(71.2), (72.1), (73.1), and (74.1) into (54.2) yields the next term

in the series for Eq. (17.3.5.1). As the calculation of the energy

was to be done numerically on a digital computer, each term was used

in the form presented above without explicit back-substitution.

From comparison of the final value of the Kgu term with values

at T = 1 given by Huzinaga (49), and for large R, it was determined

that this was a sufficient number of terms to give an overall

accuracy which was adequate for the calculation of the ground state,

varying at worst by only about five percent from the best numerical

solutions available. The work involved in adding additional terms

-- ~ -r - --- - -,----- - - r-- -
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to improve the accuracy of this integral (the only one where any

approximation has been necessary) did not seem commensurate with

the improvement in accuracy attainable with the additional terms.

For the smallest values of R considered, the total contribution

of this term was less than one-tenth of the total energy, dropping

to less than five percent in the range of internuclear separations

of interest, so the error involved in this truncation was small.

The final determination of the ground state energy curve was

accomplished by using a cowputer program to evaluate the terms

given above in Eq. (11) for values of R, the internuclear separa-

tion, from 0.2 to 15.0 Bohr. The screening constants a and y

were chosen at each value of R to produce a minimum in the energy

curve. The basic scheme used by the program was to first select an

R value, and then to compute, term-by-term, the value of the various

interactions for values of a ranging from V to 2, the range

appropriate to the screening constant for hydrogen. From a considera-

tion of the physical meaning of the screening constant, it is

evident that the values of y appropriate to the problem are between

0 and r2, as the value a = y = V1 gives a minimum in the energy

curve for large R. This corresponds physically to the equivalence

of the two electrons in a hydride ion (H-). The program then

recalculates the energy for another pair of a and y values, finally

storing the energy minimum and the values of a and y corresponding

to this minimum. Since this portion of the calculation was to be

achieved by use of the computer, no attempt was made to further com-

bine terms beyond the level presented earlier. In hindsight, it is
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evident. that there would have been some virtue in having combined

terms further: for small values of R, round-off errors began to be

a considerable factor in the calculations on the computer. This

was particularly evident in the evaluation of the Ei(-x) terms,

where double precision calculations were necessary, in the evalua-

tion of tn(M) and C, and in the highest of the terms in the Kgu5

integral, where the problem of round off was never completely

eliminated. This problem was an additional inducement to truncate

the series at the point chosen, as it was evident that the problem

would continue to be a troublesome one for the even more involved

higher power terms. Had it been possibe, extended precision (21

or more decimals) would have avoided the worst of the problems

encountered with round off, but the computing facilities currently

available do not support this arithmetic.

One additional word concerning the programs is in order. Some

effort was made to reduce the time required per run of the program,

which would have taken some two to four hours of computer time for

evaluating the ground state energy for R values spaced 0.05 Bohr

apart. This was achieved partially by first determining the rough

curve shape, and then by selecting R values which were widely spaced

in regions where the energy curve was smooth, using closely spaced

values only in regions of large curvature. This allowed a great

reduction in machine usage, but necessitated a somewhat more involved

program for plotting the results.

*
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C. RESULTS OF MOLECULAR ION CALCULATIONS

The ground state energy of the doubly negative hydrogen molecular

ion can be calculated using the functions developed in Section IV B.

The details of the results are given here. Five cases will be considered

separately; these illustrate effectively the results obtained and indi-

cate the levels of accuracy in the calculations. Of these cases, two

are chosen primarally to determine the accuracy of the numerical results

by comparison with previously known values, and a third is chosen for

the insight which it sheds on the results obtained for the doubly

negative ion ground state. These will be considered in the following

order: neutral hydrogen ground state with fixed and then with variable

screening, the doubly negative ion with and without variations in the

screening, and then the He2 ground state, for comparison with the

results for the K interactions.
gu

Case I. Neutral Hydrogen with Constant Screening

The ground state energy of the neutral hydrogen molecule was

determined using the previously developed terms for comparison with

known results, to verify the accuracy of these terms. The calculation

is derivable from that of the doubly negative ion by the presence of

only two electrons in the molecular orbitals. The value obtained for

this energy as a function of internuclear separation is given as Fig. 10.

Note that the energy approached asymptotically is not the anticipated
5

value of -2 Rydbergs, but is (-2.0 + ) Rydbergs. To obtain the value

of -2 Rydbergs requires that the molecule separate into two neutral

atoms. However, in the MO approach, the molecule may also separate into

-
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H+ + H-. Such a system differs in internal energy from the H
0 + H0

system by the calculated (5) Rydberg. This point is discussed in Slater(51)

in great detail, and the result of the present calculations are in

agreement with the values given by Slater for this approach. The

screening constant a has the value 2

For finite internuclear separations, the values found by this

calculation are close to those obtained by the best available wavefunc-

tion choice (52), and for small separation, will be about as good as can

be obtained for a simple wavefunction choice, wherein the screening

constant is held fixed.

Case II. Neutral Hydrogen with Variable Screening

In order to obtain more accurate energy values, the screening

parameter may be varied with separation by choosing values for the

parameter to minimize the calculated energy at each separation R. As

seen in Fig. 11, the behaviour at infinity is improved, although it

still shows the behaviour characteristic of MO calculations. Figure 12

shows the variation of the screening parameter with internuclear

separation for the calculations of Fig. 11. This variation of the

screening parameter is characteristic of this system (51); as the elec-

tron "orbit" will be that predicted by the Bohr model for infinite

internuclear separation, and will gradually lessen its distance from the

center of the nuclei as the two nuclei approach each other closely.

This leads to an increase in the screening parameter with decreasing

distance (as the screening parameter is inversely proportional to the

separation of the electron from the nucleus). The energy minimum
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obtained by this approach, -2.27 Rydbergs, is consistent with the better

values given by MO calculations cited by Slater (51). Values obtained

by Wang (53) by a similar method give an energy minimum of -2.278 Ryd-

bergs. In each case, the position of the energy minimum is at about

1.4 Bohr internuclear separation.

The above comparisons with previous work on the neutral hydrogen

molecule were performed to test the validity of the present computation

scheme. The transition from the four-electron calculation of the R-
2

2

molecular ion to the two-electron H molecu!e involves contraction of
2

the state function, but individual terms remain unaltered.

22

Case III. H Ground State Energy with Fixed Screening
2

If the electrons in the two types of orbitals are equivalent

(i.e., have the same screening constant), the curve of the energy as a

function of internuclear separation, shown in Fig. 13, does not possess

a minimum for finite values of the internuclear separation. The

screening constants used for calculating this curve (a=y=/) were chosen

to give the lowest energy for infinite separation of the two nuclei.

At small separations, the energy is everywhere above that of the neutral

hydrogen molecule. Indeed, the energy of the H2 is greater than that
2

of the separate H ions removed to infinity. Thus the curve of Fig. 13

actually lies in the range of free states of the neutral molecule (see

Fig. 11). As the separation tends toward infinity, the energy of the H-2

drops below that of the neutral molecule; this is in accord with the

known stability of the Hydride (H) ion. The energy obtained for very

large R values agrees acceptably with the known binding energy of the



01

E VS. M FOR R,G FIXEO

W'

-

0

0-.o0 3'.00 6.00 9.00 12.00 15.oo0

'CPQ:RPT I N (BOHR)

Fig. U3. Ground state energy for the doubty negative, hydrog(.11

molecular ion with fixed screening.

| 

A

!0

0



l.i

-2
excess electron of the Hydride ion. The asymptotic energy of the H2

system should, on the basis of the single hydride ion calculation of

Chandrasekhar (55), be about 2.05 Rydbergs. The present value of 1.85

Rydbergs is in accord with the asymptotic results using similar tech-

niques and wavefunctions obtained by Fischer-Hjalmars (48) for the R-1

ground state. The values reported there for the equivalent method

(her Method II) give the results of 1.85 Rydbergs for the asymptotic

value of the energy.

Case IV. Doubly Negative Hydrogen Molecular IOn with Variable

Screening

The next set of curves, Figs. 14, 15, and 16, illustrate the

results obtained for the hydrogen molecular ion when the screening

parameters are allowed to vary with R. Figure 14 gives the ground state

energy for the molecular ion as a function of internuclear separation.

Figure 15 gives the screening parameters corresponding to the energy

curve of Fig. 14. Of more importance, however, is the behaviour of the

curve in the region about 7 Bohr. Figure 16, which is a composite of

Figs. 11, 13, and 14, shows that the energy curve of Fig. 16 is actually

a composite of the two curves of Figs. 11 and 13, with a transition

occurring at the point where the two curves cross.

The behaviour of the screening constants alpha and gamma also

gives insight into what is happening. It will be noted that the shape

of the variation of alpha with separation in Fig. 15 is much the same

as for the parameter if Fig. 12, with alpha increasing smoothly with

2
decreasing separation. In Case III (H2 ), the two constants were held

-,t -- - - - - - ~ .... . - -



112

0
. E VS. R FOR A.G VARYING

0

oi

U,

0

0

:4.

0

' 0 0 00 9.00 12.00 1s.00
0 .0 SPARATION {+B0HR)

Fig. 14. Ground state energy for the doubly negative hydrogen

molecular ion with variable screeniug-

Z U

rxi

t0



113

SCREENING CONSTANTS VS. R

CCD
0

QD

'J

U

I--

- "- Alpha

| J-l . . . .. .

o0 Gamma

M

0 3.06.00 9.00 1 .00 15.00
SEPAR iTION (BOHR)

Fig. 15. Screening parameters vs. internuclear separation for the

doubly negative hydrogen molecular ion ground state.

. ... ..... • m 1 m w ma a n



114

constant. In Case I (H2 ) , only one screening parameter was required

and it was made a function of R. In case IV (H2 2), two screening

parameters were used, each a function of R. The second screening cons-

tant, gamma, in Case IV is the same as alpha for R greater than 7 Bohr,

but gamma drops abruptly to zero, (or, rather, to its minimum allowed

value) for smaller values of the internuclear separation. This implies

that the second electron is no longer bound to the system, as the

screening constant may be interpreted as (/r e), where r is the separ-e e

ation between the electron and the nucleus to which it is attracted at

which the radial portion of the molecular orbital wavefunction has fallen

to (l/e) of its maximum value. Thus the minimum of Fig. 14 is actually

the minimum for the neutral hydrogen, and is not the value which the

doubly negative molecular ion would have at an equivalent separation

(that is best approximated by the curve of Fig. 13). Thus what the

energy function is actually doing is properly portrayed by Fig. 16, where

a transition has occurred between the doubly negative ion and the neutral

hydrogen at an internuclear separation of about 7 Bohr. This transition

occurs by the ejection of two electrons from the system, resulting in

a new system consisting of the neutral molecule plus two free electrons.

The very considerable energy difference between the two curves in the

region of the ainimum of the neutral curve indicates the lack of sta-

bility of the molecular ion. Although the approximations inherent in

the choice of the wavefunction do not allow the exact position of this

transition to be determined, its existence and approximate location

must be close to the indicated 7 Bohr. The magnitude of the difference
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between the two curves at the position of the neutral hydrogen minimum

is believed to be correct.

The above may be interpreted in terms of hydride ions which

approach each other from infinity. When their internuclear repulsion

becomes sufficient to remove the extra electrons, allowing the formation

of the neutral molecule from the molecular ion. In constructing Fig. 16,

the curve of the energy using variable screening has been shifted

slightly with respect to the axes to make it stand out more clearly from

the other two courve, so that it does not directly overlay either of

these lines. It is readily seen that this curve first follows the curve

of Fig. 13 and then crosses over, following the curve of Fig. 11 at

about 7 Bohr. There appears to be a small transition region near the

crossover in which the energy determined for the curve allowing vari-

ation in the screening parameters is somewhat below either of the other

two curves.

This calculation, on the basis of the initial wavefunction

choice, does not treat the additional electrons on the hydride

separately. It is therefore impossible in this calculational scheme

for only a single electron to be ejected from the system. However, the

values obtained by Fischer-Hjalmars (48) for the ground state energy of

-1
the H system would seem to indicate that the singly negative ion

ground state energy is near that of the neutral hydrogen, but probably

somewhat greater (i.e., less strongly bound). It is thus probable that

the results indicated above would have occurred had the calculation

allowed the possibility of the ejection of electrons singly. However,

in that case there might have been an additional transition region.
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Case V. Neutral He2 Molecular Calculations

As an additional check on the accuracy of the terms used in this

calculation, a calculation was also made of the ground state energy of

the He2 molecule (or, if one prefers, the interaction between two He

atoms). The calculation is identical in principle to the one presented

by Huzinaga (49), so that the values of the terms obtained here may be

checked directly with those given in his paper. A comparison of the

values obtained for this calculation and by Huzinaga are given in

Appendix D. The total energy for the He system is shown in Fig. 18,

while the electronic terms only are shown in Fig. 17. The values of the

screening constants alpha and gamma are shown as a function of internu-

clear separation in Fig. 19. As the values used by Huzinaga are tabu-

lated values, his results are limited in the scope of variations of

the screening constants, so that the results obtained here are somewhat

more accurate for these constants. The difference of about 2 % between

the values obtained by Huzinaga and those obtained by this calculation

for the energy at an internuclear separation of 1 Bohr are almost

entirely due to differences in the value for the Kgu5 term where a

series of approximations are necessary in order to obtain a "closed

form" function of the screening constants suitable for performing the

variation of parameters. To obtain a more accurate energy curve for

this system, it would be possible to correct this term at selected points

by a numerical integration using the values of the screening constant

obtained from the approach used here. The additional accuracy would

be significant only for small internuclear separations, as this term
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drops off rapidly with increasing separation. Figures 17, 18, and 19

serve to demonstrate the essential accuracy of the individual terms

used in the evaluation of the molecular ion ground state energy, and

to give limits on the accuracy of the calculation.

V
C



V. DISCUSSION

If space charge in an insulator plays an important role in dielec-

tric breakdown by causing the growth of a highly dense, highly energetic

gas in thb solid, there remains the necessity of explaining the manner

in which the energy of the space charge is concentrated into a suffic-

iently small volume of the dielectric to allow the start of channel

formation. Two points must be considered: firstly, the space charge

distribution prior to formation of a gas, and, secondly, the space

charge distribution during the actual channel formation, after the

process has been initiated. Since defects serve as trapping sites, the

generation and movement of defects requires further analysis.

A. Effects of Charge Imbalance on Breakdown

1. Initial Charge Distribution

There are several lines of investigation which suggest the impor-

tance of an initial imbalance of the charge distribution. The effect

noted by Budenstein and Hayes (3,17) in investigations of breakdown sites

by visual observation with an electron microscope is perhaps the most

directly suggestive of this importance. When the capacitor under inves-

tigation was illuminated in the region of a "likely" site for the occur-

rence of breakdown, the breakdown event would always occur at this site.

If some other region of the capacitor, not containing any such site, was

illuminated, the breakdown never occurred in the illuminated region. The

122
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beam of the electron microscope was therefore insufficient to cause

breakdown, but the extra imbalance in the charge was sufficient to deter-

mine the breakdown site. Studies of dielectric materials with much higher

intensity high energy electron beams (23,24) show the patterns of

breakdown characteristic of electrical breakdown in the region of pene-

tration of the beam. In the beam experiments, an additional effect is

noted in polycrystalline samples---the breakdown will frequently occur

along or in the vicinity of grain boundaries.

Also of relevance in this connection are high energy beam studies

in plastic dielectrics. In such cases, when a beam (several MeV) illum-

inates the plane surface of a plastic disk-shaped specimen, breakdown

ultimately occurs with the breakdown channel originating on the illumi-

nated surface. The observed channel goes directly to the space charge

1hyer, then runs, with branching, along this layer and parallel to the

surface (11). Localization of the breakdown channel in a plane, perpen-

dicular to the electric field, that contains a high space charge density

is strongly indicative of the importance of space charge in the breakdown

process.

The mechanism for space charge build-up under application of an

external electric field is frequently assumed to involve carrier injec-

tion in regions where there is , geometrical enhancement of the applied

field due to asperitics. Thus for example Smith (10) assumes a hemispher-

ical electrode projection causes a field strength of three times that of

the region near the smooth portion of the electrode. Ridley (45), using

a more complex geometry, shows that Smith's results yield a lower limit
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to the enhancement of the field, a more pointed projection giving values

_ubstantially higher. If the injection mechanism is Fowler-Nordheim

emission, then the (local) injected current density is a very strong

function of the electric field in the vicinity of the injecting point:

J - J ( E2 exp(-k/E) )

where only the dependence of the current density on the electric field is

indicated. Thus only a small increase in the electric field can give

rise to a very large change in the injected electron density. If the

injected charges are trapped, then the cathode field is weakened.

However, if the field continues to rise, a point will be reached when

traps are filled. Subsequent injected electrons will then be accelerated

for long distances and be able to acquire the energy necessary for cre-

ating ionization and defeat centers, such as the Vk center.

Point defects have mobility and will move in response to a concen-

tration gradient by diffusion. M4echanical stress, the presence of dislo-

cations, grain boundaries, and other point defects will influence the

rate of diffusion. If the defect contains an unbalanced charge or a

dipole moment, then it will be influenced by the presence of the electric

field or its gradient, respectively.

Dislocations aiid grain boundaries are regions of major misfit.

Such regions tend to trap defects, thus immobilizing . 2m. Cooper (19)

has shown that carefully annealed single crystals of alkali halide

e-.hibit about one third of the scatter in breakdown field strengths

compared to :imilar unannealed specimens. Annealing does not appreciably

alter the centroid of the distribution. If unannealed crystals tend to

- - --.--
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concentrate charged defects, then a lower breakdown strength is antici-

pated. If, on the other hand, the built-in imperfections strongly inhibit

motion of defects, then the defect mobility is decreased and it is more

difficult to reach the critical charge density requisite to start the

growth of a gaseous channel. This explains how defects in unannealed

crystals broadened the range of breakdown voltages without appreciably

altering the mean breakdown strength.

Cooper (20) has also shown that the breakdown channels of carefully

annealed single crystals tend to follow certain crystallographic direc-

tions, even when the field is 45 degrees from these directions. In

unannealed crystals, the channels follow the field directions. If

mobile charged defect centers, such as Vk centers, are generated contin-

uously at a site and if these migrate more easily slong the favored

crystallographic directions (as is known for H centers), then a "spike"

of Vk centers is produced along this direction. If the density of charge

reached the critical value, then conversion of the dielectric to the gas

would occur along the spike and the resulting channel would be along the

favored crystallographic direction.

2. Space Charge Distribution After Channel Initiation

Following the initiation of a gas pocket, the charge distribution

will alter considerably from that prior to the formation of the first

gas pocket. If the assumption is made that the channel will form in the

region of highest initial charge density imbalance, then one expects that

thp region containing the pointed electrode projection will be the point
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of ntAiation of the channel, Previously, the dQminant process for

removing the defect centers from the region has been diffusion, Once a

gas pocket has formed, the effect of the internal field inhomogenieties

within the dielectric will begin to have a more marked effect on the

distribution. As was shown in Chapter III, after a gas pocket has

formed, there will be forces on the centers tending to concentrate them

in the region of the gas pocket. This will lead to a lessening of the

net diffusion from the region, and may lead to a reversal of diffusion,

as the defects are now incorporated within the gas pocket. Further, the

gas pocket will offer a lower resistance to the passage of current,

thereby leading to further enhancement of injection from the electrodes

in this region. The greater density of current in this region, and the

immediately surrounding solid dielectric, will lead to an enhancement

in the production of centers. The additional centers will be placed in

the dielectric in a manner leading to their rapid incorporation within

the gas pocket, leading to its growth. In addition, the greater current

injection entering the pocket will traverse the gas, and will perforce

have to leave the pocket through largely undisturbed dielectric material.

This will lead to the creation of further centers within the solid along

a line determined largely by the field orientation and by the orientation

of the gas pocket relative to the material. The combination of these

two effects, then, serve to establish the defect density in the region

where it is most likely to lead to further growth of the gas pocket.

If the gas pocket leads to a higher rate of creation of centers

in this fashion by acting as a "new" cathode (as is suggested by
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Lopez (56) ), then one might expect there to be another such pocket

formed further into the dielectric, spaced, relative to the first gas

pocket, much as the first gas pocket is spaced from the cathode. In such

a situation, both pockets would then repeat the process, etc. Throughout

this time, each gas pocket would be growing as it is formed, increasing

its volume both through the direct process of incorporating defect

centers directly into the gas, and by, it may be assumed, a process of

heating at the walls making use of the energy liberated on the incorpo-

ration of the defect centers. Such a process would be likely to give

rise to a channel having a "beaded" appearance, such as is actually obs-

erved in some breakdowns.

The presence of extensive defects, such as slip planes, where def-

ects may have been concentrated during the initial charge build-up

stages of the process, will also have a considerable effect on the form

and direction of the channel within the dielectric. Such planes, in

single crystals, are normally oriented along certain directions of the

dielectric. This may lead to a preferred direction of the breakdown

channel in such an orientation as to incorporate the maximum available

charge within the channel. The exact direction, however, has not as yet

been determined to give rise to this condition. The existence of such

extended defect trapping sites in polycrystalline samples would thus

depend on their orientation with respect to the field.

- --
. ________________
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B. Relevance of Molecular Results to Breakdown

The gaseous breakdown model requires a solid to become energetically

unstable at sufficiently high charge densities. External excitation must

produce intermediate states within the solid which can decay into a mole-

cular gas. If the H2, H2-1, and H2-2 molecules are taken as prototypes

for molecular bonds with different numbers of extra electrons, some gen-

eral conculsions can be drawn from the calculations on the ground state

energies of the hydrogen negative ion sequence.

The bonding energy in the ground state of the neutral hydrogen

moleucle at its equilibrium internuclear separation of 1.4 Bohr is

0.347 Rydbergs (51), or about 4.7 eV. Fischer- Njalmars (48) has

calculated the ground state energy for the H 2l ion, obtaining a dis-

sociation energy of 2.54 eV at its equilibrium separation of 1.65 Bohr.

The minimum of the 112-1 ion curve lies above that of the H2 by 1.9 eV,

with the remainder of the difference in bonding energies being due to

the stability of the hydride (H-) ion. The H2-', then, represents a

possible intermediate state, analogous to the C12 - state discussed in

Chapter III.

The results for H2-2 show, for the case in which the screening

parameters are held fixed, an energy at the position of the neutral

minimum of about -0.75 Rydbergs, or about 21 eV above the neutral mini-

mum. The state is highly repulsive, and could not form during breakdown

except as a short-lived resonant state, as it lies far into the continuum

range of states for neutral hydrogen. The repulsive character of the
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state is sufficiently pronounced that the interaction of an additional

electron with the I ion may cause detachment of the excess electron

in the negative ion, yielding a neutral molecule plus a free electron,

If the additional electron interacts elastically, then the freed electron

would have an energy up to 1.9 eV, The action of the calculated ground

state energy of H2-2 with a variation of screening parameters also

supports this conclusion. The calculations indicate the doubly negative

ion changes into an Ho molecule plus free electrons at an internuclear

separation of 7 Bohr. Thus the H2- 2 state becomes energetically unfav-

orable at large internuclear separations, The value of the internuclear

separation for the conversion gives an approximate scale of interaction

ranges for the interaction of a free electron with the singly negative

hydrogen ion, as the extra electron would have to be accomodated within

the bonding system of the H2 ~
1 ion. This implies that the interaction

would create an intermediate state during the interaction of 112-2, and

so gives a range for the interaction. It is not possible from the cal-

culations presented here to obtain significant energy information from

the state energy of te H 2- ion obtained by the variation of parameters,

due to the ionization of the extra electrons from the ion and consequent

conversion into neutral hydrogen, as discussed in Chapter IV.

From the progression of ground state energies, it can be seen that

a sufficient number of excess electrons introduced into the bonding

system will lead to the disruption of molecular bonding. This is shown

in Table 5, where the ground state energies are given relative to a

zero energy for separated nuclei and electrons at infinity. The intro-

duction of two electrons into the bonding system in addition to those

-( '*~
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TABLE 5

GROUND STATE ENERGIES AND EQUILIBRIUM INTERNUCLEAR

SEPARATIONS FOR THE HYDROGEN NEUTRAL AND NEGATIVE ION

MOLECULAR ION SEQUENCE

SPECIES GROUND STATE ENERGY EQUILIBRIUM SEPARATION
(Rydbergs) (Bohr)

H2
0  -2.73 1.40

H2- I  -2.21 1.65

H 2-2 -0.75 none

.?2
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normally present in the neutral is sufficient to disrupt totally the

bonding. In the case of excited states, Taylor et al (57) have shown

that the singly negative ion possesses no bound excited states; this is

also obviously true with regards to the doubly negative system.

The energies associated with bonds in condensed matter vary from

a few tenths of electron volts to several electron volts. If the

binding energies of the 1120, H2_l, and 112-2 systems are taken as

representative of other molecular charge-variable systems, a perspective

is provided for the proposed gaseous breakdown mechanism. The addition

of an extra electron to a single bonding pair decreases the bond stabil-

ity by about 2 eV with only a small relaxation of the internuclear

separation. An additional electron makes the system strongly unstable.

Instability arises, then, for an excess charge of between one and two

extra electrons. The case considered in the detailed analysis was that

of an isolated molecule. In condensed matter, molecular bonds between

two adjacent atoms are not completely independent of those of surround-

ing atoms. If excess electrons are added in low concentrations in a

solid insulator, they generally become trapped. In so doing, they modify

the local energy level structure. Each such electron will contribute

to the electrical potential energy of a-l atoms containing trapped

electrons. If the trap density becomes high enough, then the perturbing

potential would reach the condition where nonbonding orbitals are pro-

duced. (In the sense used here, the term nonbonding includes both

nonbonding and antibonding orbitals,) This condition is exemplified by

the lack of stability of the H2'
2 molecular ion.
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An estimate pf the charge density necessary for the production of

nonbOnding orbitals ma7 be obtained from breakdown experiments on

electron-beam irradiated plastic specimens. If a thick slab is irradi-

ated by a beam having an energy of several MeV, the breakdown occurs

when the field due to the trapped charges is 106_107 V/cm, and the

discharge path goes from the upper surface down to the charge layer and

through this layer (parallel to the surface and almost perpendicular to

the field direction) to the lateral surfaces, A field of 106_107 V/cm

implies a charge layer of 1012 or 1013 electrons/cm2 . If this charge

is concentrated in a layer 1 micron thick, the average distance between

defect centers is about 200 A.

Tang et al (58) have studied the increase in electrical conductivity

with applied field in silver azide (AgN3) and explained their results

in terms of formation of an intermediate N3 - molecular state. Their

experimental arrangement involves the study of a single crystal of

silver azide with applied fields of up to 3.5 KV/cm under high vacuum

conditions. Electrode contact-related phenomena were also studied in

their experiments, and mass-spectrographic analysis was carried out on

the reaction products and evolved gas during the reactions. Decompo-

sition of the crystal was detected with applied fields as low as

0.3 KV/cm, although the decomposition rate varied widely between samples.

For sinusoidally time varying fields, decomposition was not observed to

occur for frequencies above 15 Hertz and fields up to 1.7 KV/cm (peak

to peak). When only one contact was made between the electrodes and

the crystal, decomposition occurred only when that electrode was the

cathode. The decomposition product monitored was molecular nitrogen;

. . . . . ...... .. .
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in some samples, "bursts" of nitrogen were detected superimposed on a

general background level. The decomposition reaction proceeds through

the formation of an intermediate N3 -, having an energy of about 2 eV

above the ground state of the system. In all the azides, the breakdown

will proceed slowly at lower field strengths than those necessary for

channel formation and other features normally associated with breakdown.

Capacitors subjected to high field strengths over long periods of

time show aging effects, including reduced breakdown field strengths.

Aging may be due to intermediate states formed over a period of time at

field strengths less than those required for breakdown. Deterioration

would be associated with formation of a gas molecule rather than a

return to the original stable lattice. This effect would thus lead to

regions in which the dielectric is less stable than the original mater-

ial; such centers might serve also as nucleation centers for additional

intermediate states once they are formed. This would thus link the phe-

nomenon of aging in dielectrics directly to the breakdown, with the

primary difference being largely one of time scale.

C. Summary

Dielectric breakdown, according to the model proposed by Budenstein,

involves the growth of a localized conducting gaseous channel through

the dielectric under the action of an external electric field. In this

study, two questions relevant to the early stages of the solid-to-gas

conversion have been addressed and placed in improved perspective:
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(1) HQW is energy added tQ the solid so that the solid-to-gas conver-

sion can occur? (2) What is the mechanism for the solid-to-gas

conversion?

The first question has been explained by showing that point defects

can be introduced that have excess energies. The energy of formation of

these defects comes from the external electric field; electrons in the

conduction band of the insulator are assumed to be accelerated to

sufficiently high energies (several eV) that they can produce collisional

ioziation. and, thereby, point defects. The number of defect centers

required for creation of a gaseous breakdown channel is about the same

as the number of atoms of the solid that are converted to gas in this

channel.

The second question, on the nature of the mechanism of solid-to-gas

conversion, has been answered by hypothesizing the creation of

nonbonding orbitals when the local excess charge density is increased

sufficiently. To obtain quantitative information on the role of excess

charge density on molecular bonding, the bonding characteristics of the

molecular sequence H20, H2-1, and H2-2 was studied. This required

ab initio calculation of the H2
-2 molecular ion. Both H2 and H2  have

stable ground state configurations, while the H2-2 is strongly repulsive

for all internuclear separations. The results of the molecular calcu-

lations were applied qualitatively to bonding within a solid. By taking

the field due to space charge to be of the same order of magnitude as

the breakdown field, it was estimated that an excess of one electron

exists for about every 106 atoms in the breakdown location, For the

rapid conversion of solid to gas, an energy of several electron volts
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per atom is required. Defect centers have energIes of formation in this

range. Trapped electrons in the vicinity of defect centers will alter

the energy level structure at the defect. Nonbonding orbitals are

assumed to arise when the trapped electrons interact strongly enough

with the defect center. This is the sought after conversion of solid

to gas.

Features of breakdown in solids that have been placed in improved

perspective by the above considerations include the following.

1. The formative period after the initiation of voltage stress is

here associated with the need to store energy in the solid so that

the solid-to-gas transformation can occur.

2. The formative period is here related to the generation of point

defects due to collisonal ionization.

3. Point defects should form more readily in regions already

partially disordered and in regions of high field. The electric

field may be locally enhanced through geometric irregularities and

space charge effects.

4. The evolution of nonbonding orbitals has been followed for a

particular molecular system: H2 with zero, one, and two extra

electrons. The latter case has been evaluated for different inter-

nuclear separations, including those of the H2
0 and H2-1 molecules.

The ideas of this evolution have been applied to the creation of

nonbonding orbitals in solids due to trapped charges about defect

centers. This is taken as the mechanism for converting atoms of

the solid to atoms of a gas.

- .o C
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5, PQint defectq can Perve a. a gource Qf prebreakdown recombin-

ation radiation.

6. The radius of a trapped electron is greater if the dielectric

has a high dielectric constant. Hence, a lower density of electrons

is needed to alter significantly the energy levels at defect sites.

Thus, nonbonding energy levels will arise at a lower applied field

and the solid-to-gas conversion will be initiated at a lower field.

Dielectric breakdown will occur at lower fields for materials with

higher dielectric constants.

7. A material that is disordered has a wider spectrum of trapping

levels than a material that is more ordered. Deep traps will yield

more localization of the trapped charges than shallow traps. The

detailed trap distribution will play an important role on the

breakdown threshold. This distribution will be influenced by

a-nealing.

8. Defects can form at lower than breakdown fields, as can space

charge due to electrons. Thus molecular bonds can be broken in a

limited region. This constitutes aging of the dielectric. The

rate-limiting process in the aging is probably the creation of the

defect centers. Thus chemical effects, absorption of moisture,

diffusion of active gases and similar perturbations can provide

the energy for the defect centers.
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D. Suggestions for Future Work

The present work has increased the credibility of the gaseous mode.

of electric breakdown in solids, but much work remains before the model

can be accepted without reservation. Tasks to be done include the

following.

1. Quantitative investigation of point defect formation through

collisional ionizaiton and other mechanisms. Analysis of stability

and mobility ff defects in high uniform and nonuniform electric

fields

2. Quantitative investigation of the role of space charge on the

energy level structure of defect centers and the creation of

nonbonding states.

3. Dynamics of growth of the gaseous channel prior to-the

completion of the channel.

4. Growth dynamics of the gaseous channel after completion of the

gaseous bridge between electrodes.

5. Application of the ideas of defect formation and bond breakage

to low fields and long times to explain aging effects.

: ii

: ii
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APPENDIX A

EXPANSION OF THE SLATER DETERMINANT AND GROUPING OF THE WAVEFUNCTION

As given in Eq. (7), the ground state wavefunction for the

double negative hydrogen molecular ion is given by the (expanded)

Slater determinant

9 g(1)() 9g(2)a(2) 9g(3)a(3) 9g(4)a(4)

i (1)8(1) 9g(2)0(2) g (3)0(3) g (4)0(4)

(A-l1) 2- 4 2 u(1)a(l )  u(2)a(2 )  u(3)a(3 )  u(4)(4 )

u(1)B(1) u(2)a(2) u(3)0(3) u(4)$ (4)

This determinant is. expanded, giving the next form for the

wavefunction: it will be noted that here the space and spin com-

ponents of the wavefunction are now grouped separately rather than

kept together. The expanded wavefunction is

1
(A-2) - 4 9 () g(2)4 u(3)4 (4)ca(l)8(2)a(3)B(4)

+ g()(3) (2) (4)c(l)0(2)a(3)c(4) + 4 (1)4 (4) (2) u (3)a(l)a(2)

0(3)0(4) - g (1) g(2)u(3) u(4)a(1)6(2)0(3)a(4) - g(1)g (3) u(2) u(4)
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a~l~a2)6()B( g g 9M u (2)4,u M()1(2)ci(3)6(4) + 4, (1)4 (2)

u() (4WB(1)at(2)a(3)ct(4) + 4 (1)4 (2 ) g (3)4 u (4)a(1)ct(2)a(3)B3(4) +

'UM (1 (2) (3u ( )12(3)3) aM (4 ) - 4,g (M)4) (2)4,u (3), U(4)B(l)ci(2)

ai(3)6(4) - 4,( (14 (2)4, (3)4,u(4)B(I)a(2)a(3)a(4) - ( 9, 14 (2)4,u (3)4,g (4)

a(1)c(2)a(3)B(4) + 4, (1)4, (2)4,9 (3)4,u (4)a(1)a(2)ct(3)a(4) + 4, (1)4, (2)

9, (3 (4)W1)a(2)a(3)a(4) + 4(1)4u (2)4,9 (3) (4)cz(I)a(2)ct(3)B(4) -

9, (M (2 )4,g (3)4,u (4)a(1)a('"'(3)ct(4) - ( 9~()) ( 2)4,g (3)4 (4)ai(1)8(2)

ai(3)6(4) - 4,u (1)4,u (2)4,9 (3)4,9 (4)B(1)ci(2)c,(3)6(4) + 4, (1)4, (2) g 4

B(1)B(2)ct(3)ct(4) + 4, (1)4, (2)4,u (3)4,9 (4)ca(1)0(2)B(3)a(4) + 4,u (1)4,u (2)

4, (3)4,9 (4)B()c(2 W(13)a(4) - 4,9 (1)4 (2)4,u (3)4,9 (4)ca( )a(2M $3)a(4) -

U( (14 (2)4,u (3)4,9 (4)8(1) (2)a(3)c(4) - 4 (1)4,u (2)4,9 (3)4,9 (4a(1(2



-~ ______________7

144

The space-portions of the wavefunction, 4, (n) and 4, (n f or the

nth electron are defined by Eqs. (1) and (3) of Chapter IV, and the

spin-portion of the wavefunction is denoted by ai(n) for spin-up and

a(n) for spin-down.

By regrouping and factoring into the (six) spin components,

one obtains the form

11

4, (2)4,9 (3) -u (4) )4, (2"' U 3'- 9 4 )] ci(1)c(2)6(3)O(4) + 19M 2

U 3) (4) - 4, (1)4,g (4)4,u (2)4,U (3) + 4, (1)4 (2)4, g (3)4, (4 - 4,U (l) g (2)

4(4)4, (4)1 cx(1)0(2)ct(3)0(4) + [4, (1)4,(3)4,U (2)4,U(4) - 4, (1)4, (2)

4, (3)4,U (4) + (l) 9 (2)4,U. (3 ) g (4) - 4 (1) u ( 2)4,g (3) 9 (4 )] c()B(2)a(3

a(4 + [,M (14 (2)4,U (3)4,9 (4) -4, (1)4, (2)4,U (3)4,U (4) + 4,9 (1)4,u (2)4,9 (3)

U ~(4) - 4 (1)4,u(2)4,9 (3)4,(4)] M()ci(2)a(3)a(4) + ~1)4,g (2) u (3),u (4)

- UM 9 14 (2)4,9 (3) (4) + 4,U (l)4,( 2 ) 9 (3)4,g (4) - 4,g (M)4,(2)4,(3) 4 )

8(1)ct(2)B(3)ct(4) + [,M (14 (2)4,9 (3)4,U(4) - 4,9 (1)4 (2)4,9 (3)4,U (4) + 4, (1)

u(2 U 3) ()- U( 2 U 3 9() 6(1)82)c(3)a(4))
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Denote each space portion by fi and each spin portion by Si.

Then the wavefunction takes the form

(A-4) = - {flsl + f 2s2 + f3s3  f 4 s4 + fs5 + f6s6}

where s I = a(I)a(2)8(3)3(4)

s2 = (i)B(2)a(3)B(4)

s3 = a(1)a(2)8(3)a(4)

s4  B(1)a(2)a(3)B(4)

s= a(1)ca(2)8(3)a(4)

s 6 =(1) 0(2) a(3) a(4)

The f may easily be obtained from direct comparison with the previous
i

form, Eq. (A-3). Thus, in a more compact notation,

1 6
(A-4.1) p - I fist

24 i=1

SInce ,Io* = , for this wavefunction, the ground state energy is

given by

6 6
(A-5) E = q*Hq d I fc fsi)H( I1 f s)dVo i=l j=l

Also,
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(A-5.1) E f s s dV

since the Hamiltonian function H is spin independent. But si s = 6ij ,

so that the double summation reduces to a single sum:

1 ~ 6 61 2 .f~j)id 4 '
(  fiHfi)dV

(A-5.2) E = I J SdV I -l

Within the integral, the electron numbers may be permuted, as

they are only dummy variables, If the order of integration and

summation are interchanged, the result is obtained that

(T4 i=l f fiHfidV

Returning to the fi' electron numbers may be permuted and nuclear

labels a and b interchanged (as they indicate dummy variables in

integrals). Thus

6
24 i=l fiHfidV

or E = f fiHfidV

This is the result desired, and is given in the main body of the text

as Eq. (9), where the Hamiltonian H has been expanded.
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GROUPING OF THE ENERGY INTEGRAL

From Eq. (9),

i I 4 2_ 2 fv
(A-8) E= { ff* (- V - f dV

4~i rai rbi

+ fl ) fldV + f f -dV}i>j=1 rij

Consider first the last term:

(A-9) f ff dV =F(F ) () ())(3)4) (4) -4 l4(2)4) (3)4) (4)
f 1 )) ~u g g u g

+ 4u(l g (2)g(3) g (4) - u(1)4g(2)4u(3)4g(4)l dVVdV dV4

For simplicity, denote these terms as fll' f12, f13 ' and f14

Then

(A=9.1) f f~f\ d f f~dV + f 1 2 dV + f ~dV + f. 1 dV -2ffl 1

f1 2 dV - 2 ff ,dV -2 f f 1 dV -2Jf 1 3 f1 4 dV + 2 f 1f .dV +121-3 31 113

2 f f dV

[ 12 14

The integral of a diagonal term is definitely non zero: explicitly

(A-10) f f21 dV f '[4g (1) )u (2) )u (3) )g (4)] 2dV
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fI g/gl)dV1  (2) (2)dv f c(3) (3) dV3 fg(4) ~(4)dVI U 2 U 3 9 9 4

= (l) (1)(1)() (1

and similarly for the other diagonal terms,

Of the off-diagonal terms, (choosing the first term as represen-

tative)

(A-li) f 1ff1 2 dV W [4glu(2) (3)cI g (0)]1g9lu (2)4 g(3) U (4)]dV

9 = 4 1g~)F )dV, f Ou(2) u(2)dv 2 I u( 3)0 9g( 3 )dV 3 I g( 4 )0 U(4)dV 4

If I'
Now J ( 3 )g (3)dV3  Ng (X - X )(Xa + Xb)dV

=NgN (ey Y ra e-Yrb )(e-a a + e bdV

=N (e-(c+ a)ra -(a+y)r b  -ar -yr b  -yr a -ar b
SNg N Ue -e -e ae e ae b )dV

Ngu 'i e)

i d JdV- e dV+

-yr ae-rb
e ae bd01

In the second and fourth integrals, interchange the labelling of

atomic sites. Then Eq. (A-il) becomes



149
-(a+y) r ad 14 - (a+y)r a -ar a yb

(A-12) N N e dV - e adV - e e-Yrbdv

g u 1T J

+ fe yrbe radV

and it is immediately seen that the first and second sets of integrals

add to zero, pairwise.

Thus

(A-13) [ f 1f12dV = 0

and similarly for the other off-diagonal terms.

This gives the result that

(A-14) fI flfldV = 4

Next consider the electron-nucleus interaction terms. Denote

H -V 2  2 2
en i rai rbi

These terms are then

I= r f H f dV
Sen i i

But since the electron number does not affect the result, this is equal to

(A-15) I = 4 J f* Henl f1 dV1

.--!~-----.~_ _ _ _ _ _ _
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(A-15.1) I = 4 J (fil-fi 2+fl3-fl4)Henl(fll-fl2+fl3-fl4)dV1

I= 4 Jf 1 1 Henl(fll-fl2+fl 3-fl4)dVi

4 f12 Henl(fl-fi2+fl3-fl4)dVl

+ 4 f13 Henl1(ffl2+fl3-f 14 )dV1

4 Henlfl fl 2 +f l-f )dV

In this integral, only one electron is affected by the H operator.
en1

In the caaes of off-diagonal terms, such as

f f1 1 Henl f13 dVI

the components in each case break down into integrals of the form

(A-16) I g () (4 Henl u () (2)g (3) u (4_ dV1

9 g(1)H enl4u (l)dV 1 f u(2) g(2)dV 2 f ~u (3) 9g(3)dV 3 Ig4 u40
+ fJ ()4 u (l)dVl f ~u(2)H en? 9g( 2)dV 2 I ~u(3)g 9(3)dV 3 f g(4) u (4)dV 4
+ J 4g(A-16 u(l)dVl f *u(2 )u (2 )dV 2 I ( 3 )Hen? g(

3 )dV 3 Ig( 4 ) u( 4 )dV 4

+ J g(l)u'(l)dVl I ~u(2) g(2)dV 2  u u(3) 9g(3)dV 3 I 9g(4)H enl u (4)dV 4
In each such circumstance, there will always be a pair of component

integrals of the form



f 4g(1)Henlu (l)dVl 4u (2)$g (2)dV 2 ...

One of the two integrals will always be zero. Thus, for the same

reasons as in the first case considered, the off-diagonal terms must

be zero, and

(A-16.2) I = 4 fllHeflldV 1 + 4 f f 2 Hefl 2 dVl

+ 4 f 3 Henl f1 3dV1 + 4 f f 14 Henlf1 4dV 1

This can be further expanded, noting that the integrals over all

electrons except the first are now unity, as

I = 4(l 9 (1)Hen? g()dV 1 + 9 Sg(1)Henl g(1)dV1

+ f 0u(1)H enl u()dVl + f 0u(1)H enlu(1)dV 1

I = 4{2 g(1)Henlg(1)dV + 2 J u(1)Henlu (l)dVl}

(A-17) I = 4{2H + 2H }
g u

Turning finally to the last of the terms in Eq. (A-8),

(A-18) J = { f*( 2 )f dVI
i>j=l ij
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In this integral, unlike the previous cases, there are terms remaining

from many integrals which were previously zero. Equation (A-18) may

be expanded as

(A-18.1) J J (fll-fl2 +f 3 -fl 4 ) + ++-- +--+
f 1 1 13 14 1 2 r 13 r 14 r 23 r 24 34

X (f11-f1 2+f 1 3-f 14)dV1

r f  F r2 + 2 +r2 +r2 + -rL(fll-fl2+fl3-fl4)d1
J 12 13 14 23 34 24

- f12 +- + +2+ + ](fll-fl2+fl3-fl4)dV
13 14 23 24 34

2 f1--- +r +r2+r2 +r (flff 1 2 +f 1 3-f 1 4 )dV+ 13[12+r 13 r 14 r 23 r 24 r 34

2 2 2 (ff+f lf)dv

f13  r14  r2 3  r24  r3 4

This expands into a total of ninety-six terms which must be regrouped.

It is readily apparent that the four diagonal terms are combinable,J 2
as are terms of the form fll ( i> X -T)f 2 dV. After one combines

ijl r13 ±

terms, Eq. (A-18.i) may be written as

(A-19) J = 4 f 2 + 2- +1 - + 2 flldV

+ 2 r13 r14  r23  r24  r 34

2 2 2 2i d

11r- + r + r" +- r- + 2+ r f l1 3 d

13 14 2 3 r 2 4 3 4
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f l 2 23 24 23 24 21
211  ,- -+-+ + -+ -+ f, dV

12 r r r1  r., r2  'r34 j 1

+ r f12T L2 +r +- + 2--+ --- r]fl4dV
-' L L 13 r14  r 2 3 r 2 4  r34

+ f f1 3 [F.1-+ rL + r2+ r2+ 2 + 2-] f 14dVi
Ll r13  r14  r23  r24  r34

Proceed by explicitly expanding the diagonal term first:

[Mgl) (2) (3) g(4;]Ll + -.L + -L+2 2L 21-
11 f 3 r14r2 3  r24 34

+ {f -L) (1) ()dV dV ~(2) ()dV J ~()( 4) dV

+ Jf r 1) ~ d 1dV f u~24()V J 4~3)4(3)V 4

+ Jf u (2) u(3)( 2) 4u (2)4 u(3)dV 2 dI3 f Pg(l.)Pg(l)dVl f 4g(4) g(4)dV4
23

JJ u (249(4(L)ug2 9(4)dV 2dV 4 J g(M)4 (1)dV, f () 3d

+ f ()g()-) () g4)dV3dV4 f gl ( l 1dV 1 f u (2)P u(2)dV 2
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Here, all integrals not involving a (2) factor are unity. The
1J

others may then be combined into

( A-') { A ( 1)A4) -- A() g "g r g (4)dVdV4

2

+I JJu(2) u(3) (-)@(2) @ (3)dv2dv3

+~J 4 I@(1 ()(12 (1)@u()dVd 2

Expanding the next term in Eq. (A-19) gives

J1 2  J fl + + r + r + r -- f+2dV
12 3 rl 23 r24 3

= f g( 1 )u( 2 ) u( 3),g( 4  ( 2 +2 + 2+ 2+_+
j u u g j r1 2  r1 3  r1 4  r2 3  r24  r34

9 M~ (3)4 9((4) u(4)dV 4

where the terms involving factors nf the form

(A-13.1) f u(3) g(3)dV3 =0

have been dropped. Similarly, the third term
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11 ( r 2 +r2 +r2 +r2 +r2 +r2)f1V

13 13 r 1 4  r 2 3  r 2 4  r 3 4  13

since there will always be terms of the form of Eq. (A-13.1) remaining.

The fourth term of Eq. (A-19) is

Ill 2 2 2 2 2 2= f f'(--2-+ -- +- + 2-+ 2-+- - )f d

J14 11r 1 2 +13 r1 4  r2 3  r24  34

J1 4 = ff g ( 2 ) r ( ), (1)4 (2)dV1dV
12 u g 1

after cancellation of terms.

The next term in Eq. (A-19) is

S= J f 2(_2 + 2 2 _ + 2__ )f dV
23 12 r12 r13 r14 r23 r24 r34 13

2 '1 ()dV dV
J23 4I g() u(2 )(F12) u'l)4g(2)dlV

J23  9u r12u' g 1

Continuing with the next term of Eq. (A-19),

= f (-.I- + -L + 2 2 + 2_ +22).d

24 f 1 2 ( + r 2r rr +-f 14--- V
24 1 12 13 14 23 r2 4  r34  14

= 0J24 = 0

since each term has a factor of the form of Eq. (A-13.1).

The final term in Eq. (A-19) is

= (2 + _L +__/_ +--2 + 2 + _2_ 1d-+-f-- -)f dV
34 1 3 r r r 4  r 2 3  r 2 4  14

-!2
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33(5 3  ) ( 4)dV 3dV 4

Thus, combining all the non 
zero terms into (A-19) gives

(A-21) 1 4 JlI - 2 1 1 1 2
- J 

1 3 +j 1 4 +j 2 3-J 2 4+J 3 4]

3 = - 2[4 Jl2]

3 4 Pll 2 J 12]

The term J is given, in the notation of 
the main text, as

(A-20.1) Jll =jgg +uu +4J gu

and

(A-22) J 12 = 2 Kgu

The combination of each of these 
terms into the energy, given

as Eq. (A-8), gives Eq. (9) 
in the main body of the text.

r



ArPENDIX D

EVALUATION OF INTEGRALS ENCOU-TERED IN THE GROUND STATE ENERGY

CALCULATION

Much of the material here is also presented in Slater (51), his

Appendix Six in particular containing much background information on

these calculations. One term, Jgg3' will be presented in detail as

representative of the method of solution, and to present the method of

evaluation of one type of problem integral.

CONSTANTS AND PRIMARY INTEGRALS

The wavefunctions P and D are normalized wavefunctions, that is
g u

J g) dV = 1 and P P dV = .

The N and N are the normalization constants. They are given byg u

J gg dV = Ng(Xa+Xb)Ng(Xa+Xb) dV

or N (x+X)(X+ b) dV =1
g jabab

Thus

N2{ XaXa dV +2 XaXb dV +XbXbdV

But the atomic wavefunctions are already normalized, so that

J XaXa dV = XbXb dV = I
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This gives the relation that

N2  1i + 2J-xx dV +1} 1g

So

N2  {1 = 1/2

Denoting fXa b dV = S, then

N2 = 1
N - )(1/2) ,or

g 1+-

(B-i) Ng= 2 ( - "

Similarly,

2
N u { 1 + XaXb dV =/2

These atomic wavefunctions are also normalized. Then

1
(B-2) N

where

T = dV

It still remains to determine S and T.

[ XaX dV = a e-arae-arb dV

(B-3)S 
=  Xa3 dV = - aX7

I i rR

where a conversion to confocal coordinates has been made to facilitate

the evaluation of this integral. Here, it is easily seen that

aR -{ d i JeXd -{i f i d10 1 -1aR

-- R~d d~ e- dX_
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TABLE B-I

FREQUENTLY ENCOUNTERED CONFOCAL INTEGRALS

[ (nLI)e-R +ct + (aR) 2  r nXe dX =  ~ ( 1 + aR+21 + +n
)1(aR)fn+l 2!"""

f2 -kX 1 2e -k  k 1
iX 1 - d 2X ( 1 + k 2 + h-(2 -) )

00i - i2-R (i+R=

( X+p ) e -a R  dX du 2e ( 1+=

1u 22c

[2 d = 2

-i 3

4ii du' = 2

I 2n 2di'2n  
2-5=

2
p dui 2n+l

2n+l

v1+ dp= 0 , n integer

-1
aR -aR

1cRp e - e

aR

aR -aRi1-aRp e a (R +)e - cR +

12e dp e aR + 1 + e aR + 1aR

e2 d = ( ) { e R( 2 - 2aR +a2R2 ) + e-'R (2 + 2aR + a 2R2)}a 3Ri)
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Each of these integrals is easily evaluated; the final value for S is

S = eOR [ 1 + aR + aR .
3

Or, letting w=aR

(B-4) S 1 + w + e -w

In an identical manner,

(B-5) T = JXXb dV = fe - Yra e-yrb dV

It is immediately seen by comparison with Eq. (B-3) that the two

integrals are identical except for the interchange of one constant for

another (i.e., y for a ). The result for Eq. (B-5) is thus given by

Y 2R2  -yR
T 1l+YR + 3 ) e

Letting x=yR, this may be rewritten

(B-6) T= ( + x + -) e

EVALUATION OF Jgg INTEGRAIL

g3

The Jgg3 integral will be worked out in detail, to illustrate the

technique involved in the solution of the terms given in Chapter IV,

and to demonstrate the method of evaluation of the ill-behaved integrals

encountered in this and other terms.

The problem that arises with the J and similar integrals is
gg3

that the integration must be carried out in confocal coordinates, where

the interelectronic separation (12) is a complicated expression.

Its value is given as Eq. (23) in Chapter IV.
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The terms it will be necessary to deal with using this expansion

are of the form

Jfdl)[ f(2)( 1 dVI dV1

so one must first evaluate the integral

(B-7) I f(2)(-) dV2
gg r12  2

Only the case of

a )x(2) 3 _a(ra2+rb2)f(2) X (2) (2) = r

need be considered, as

f(2) = Xa(2)Xb(2) = (ra2+rb2)

is adequately treated by the interchange of y for a. Using the

expansion of Eq. (23), Eq. (B-7) becomes
2w (1 2

(B-7.1) I =-( 2 -a2( (-1)m(2k+l)

gg 0 11 k=O mk

[(k-lm) 1rn PImI [A(a1 QlmIl[X(blIiml)Pmai)e-m 2- )eaRX2

dX2dp2d42 }

The integration over 42 will yield zero except when m70, since

21S-ikx 1 0 e-217)

e dx = (tj)(e)
0

Physically, the vanishing of Eq. (B-7.1) except for m=0 arises from the

fact that an S-type wavefunction has no dependence on azimuthal angle.

Thereby, Eq. (B-7.1) simplifies to
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3R2 (( 1 aR2P[ (.

(B-7.2) I 3 1 (2k+i) (XI 2 e- )ce XPkC(alIk X(b~ j
gg k=0 ! 1  1 2 2

nj,'. pk.2 -"=.

IUA UFZ
kOPl) k(12 3 P2

Now the factors involved in the Pi integration are expressable2

in terms of Legendre polynomials by use of tabulated values:
2

(X2 _p2 )  ( _2 X2_ p 2 ) _ e(2

2 2 2 3 0 12 3P2

Making use of the orthogonality properties of the Legendre polynomials,

I becomes
gg

(B-7.3) I R2f(X 2 _ -)e aRX2P [(a)-IQo[(b) eo(1/) dX
(B-7.3) =Ex e 0 gg JI 2 2

CO

_4__ f'2 [X (a)] Q2 X(b)] P2 (u l )e - RX2 dX2 I
1Q

Substitution of tabulated values fo P0 ' P2' Q0, and Q2, and reexpression

of the integral in terms of the actual functions X, and X2 in place of

the dummy functions X(a) and X(b) yields

= ct3R2 { 1n( (02 1 )e -aRX2dX2
(B-7.4) I =__

2) 3 X2-

gg 1

+ J(X2 - 1 1(X)e-RRld1
11

0. ( 2.'.) {(x - 2) (X ) -2X,} e .) dX24 3 3 x- f1 2 3

9~a 1 X X2-I-

W" (. 2 -) (X2 - ) - 3) Ln(X9_1) -2X2] e
- R 2 dX2 )

where the subscript on p has been supressed as superfluous.

;- - ,
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The process of solution which will be followed is one of breaking

these integrals up for separate handling. The first of these is

(B-8 I iX e-aR'.2 X(B-B) I I = ( 2 - 1) ea dk 2

1

This integral may be evaluated easily as

2 e-a(1R +' 2R2  -aRA
1 -(- ( + - e (l+

2 3)  }

Continuing,

(B-9) I2= A - aRXZ tn( X9i) 2
2 2 3 2-1 2
Al

From the symmetry of the logarithmic term, it is obvious that there are

two integrals of identical form to be considered, each depending only

on the sign of the constant in the argument. It is therefore possible

to replace the constants +1 and -1 in this term by the single constant

-a, and by later setting a=+l or a=-l obtain the specific form desired.

Integration by parts, followed by a change of variables in Eq. (B-9)

gives

(B-9.1) 12 R { tn(X,-a)eaRA1[l +cRXI+ --- (Xj -3

+ e -aaR(l-aaR + 1) EZ(-aR(XI-a)) + R-aaZe -aR(Xl-a )

3aR

+ a R e-aR(Xl-a) (1 + aRXI + aaR) }

Evaluating Eq. (B-9.1) for the two values of a allows the result to be

obtained for 12 that
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-aRX 2p
(B-9.2) 12 = 2e {1 +aRX + -2_ {tn(+l) (X-l)

2 JR 3

2e
-aR (+aR 2 - 2 eIR

S(I +aR + = (-aR(-l)) - ( -R

a2R2  2e-aRX

+ --- ) E(-cR(x+1)) -

Substitution of the values of the integrals I1 and 12 into

Eq. (B-7.4) for I is now possible. Note that the coefficient of thegg

Ei(-aR(X-I)) term is just the overlap integral S.

Define a new fu.,ction

S' = e+aR (I-aR+ -)

as the coefficient of the E(-aR(X+l)) term. Substitution of values for

1 and 12 then gives

(B-7.5) 1 2 (1 - lw- .')}{S n ' EZ(-aR(X+I))

gg R 4 3 -l
-aX 9 21 e-aRX cR aRX2

+ i(-aR(X-l)) - aRe - aRX} + R (p2- 3) {XS - (-R+ X +-a --2

Equation (B-7.5) is the initial integral for a good many of the

integrals involved in the ground state energy calculation.

Next, consider

(B-10) Jgg3 = JXa(1)Xb(l)Igg dVI

= a3 e-a(r +r )I

gg3 7 gg dV1

Transformation to confocal coordinates gives the form
=3R M2 1 W 1 e-aRl

(B-10.1) Jgg3 ) I2_) 3 I dx dp
4 1 i 3 3 2 )

z- '
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1

where ! has been added and subtracted in the ( 2  ) term in order to
3

obtain the factor (2 - ), which is directly proportional to P20).

This allows the orthogonality properties of the Legendre polynuuz'ls to

be fully exploited in simplifying the result. Using the relation that

3 = 2 2

a nonzero contribution to the integral over P arises only from the

products between terms not involving 11 with like terms and from products

between terms proportional to p2 . Then, noting
1

( 2- I ) 2du =fi 3 45

(B-10.2) J 63R3 (X2- j e - 6(X) dX:,gg3 5 1

2a3R3  00 -aRX -2ciRX aR caRX2
2-R-i { e X S- e * -- X- ) dX

where

6(X) = S IN£n-i) -S' EZ(-aR(X+I)) +S Ei(-aR(X-))-aRe- R

It is desirable to investigate the improper integrals first. Ccnsider

the integrals over the Ei(x-l) functions. It is necessary to proceed

by an integration by parts, with the lower limit replaced by 6 , since

each integral is improper at the lower limit. Again let -a be used in

place of the +1 and the -1, and investigate the integral

(B-I ) e(X- i(-aR(X-a)) dX

Integration by parts gives
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(Bl~) 2 Ei C aR(6-a))eaR6 {l+aiSR + 52 2 1)

2 a2R2  -a
-= Ei(-2aR(6-a)){l + acR + -} e

+ e-aaR ( aR -aa-R
2) e 2aR(6-a)

1 -aaR -2aR(6a)
+ --- Re e (1 + 2cR -2aaR)

.X+I,
Combination of Eq. (B-11.1) with the integral over __£') of Eq. (B-10.2)

(noting the difficulty with the lower limit in both cases), and taking

the + 1 where this limit is well-defined, gives

(B-10.3) J 12 {S[S tn(2) -S n(6 1) -S' Ei(-2aR) -Re - aR

gg3 5R

+S Ei(-uR(6-l))] - S'[S Ei(-2aR) -S' L&i(-4aR) +.! e 3 ajJ
5 R, -aR+S[S EU(-aR(6-l)) -S Ei(-2aR(6-l)) +(t + )e

- R -2aRX(X2 1) d -2Sa 3R2 ( -aRX5 4R f l ,oe ( 2 - 3 5 J I

2_ RRX 2  -2aRX
+ (--+ X ++- ) e dX

1

Since the terms for which are not well-defined all have the same

2
coefficient, S2 , they may be grouped together, as

(B-12) A {- Zn(6-l) +2 Ei(-aR(6-l)) - Ei(-2aR(6-l))}

By expressing Lhe Ei funcLion in Lerms of the integral which serves to

define it, and rearranging, it may be demonstrated that this term

behaves in an acceptable fashion in the limit S-- 1.

r dx
(B-12.1) A{ -n(6-l) -2 e dx + e dx

fc+ x x
aR(6-I) 2aR(6-I)
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Transform the integrals in Eq. (B-12.1) by adding and subtracting

the same quantity to the equation:

(B-12.2) A =n(6-l) -2 e dx -

{ R(6-1) xR(6e1) x

1 == -x ~

dx + f e dx dx dx

+2 dx e dx xctR(S-I) 2aR(6-1) 2aR(6-1) 2aR(6-1)

Next, combine the terms into single integrals, giving

(B-12.3) A (1n(6-) +2 (I-e-x) dx

( 2.3) =1-eaR( -) x X

2 e- x dx (1-e-X) dx +J +2 Ut(c R)
I 2R(6-I)

+2 Zn(6-1) - l-n(2) - Wn(R) - ln(6-l)

Since the terms Zn(S-l) add out, then

(B-12.4) A = dx - J e  + 2n(aR) - n(2)

0 1

The first two integrals serve as a definition of Euler's constant, C.

Thus A = C + en(w) - Zn(2)

The terms not yet evaluated are elementary; the final result for

J is

(B-10.4) J =1 { S2 (C + tn(w)) + (S')2 Ei(-4aR) -2SS' i(-2aR) }
gg3 SR

+ e-2w( 5 23w 6w2  2w3

4 e0 l 5 1-5



APPENDIX C

COMPARISON OF RESULTS OBTAINED WITH THOSE OF HUZINAGA FOR He-He

In the paper of Huzinaga (51), detailed values are given for

the individual integrals only for the case of R = 1 Bohr, and are

given for three sets of alpha and gamma values. These have been

tested explicitly for agreement, as have other values given by

Huzinaga in the form of the energy of the state for a given R.value.

The following table presents the comparison of the results obtained

by both methods, for the value R = 1 Bohr. The results of Huzinaga

have been converted to Rydbergs from Hartrees (each equal to two

Rydbergs).

168
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TERM HUZINAGA THIS CALCULATION

Alpha = Gamma 1.75

H -8.080478 -8.08132 (alpha=l. 7505)

Huu -5.3238 -5.3238

Jgg 1.800708 1.90114

1.970024 1.970024uu

Jgu 1.871924 1.872140

Kgu -0.513378 -0.513482

Etotal -8.476912 -8.47750

Alpha = 2.25; Gamma = 1.25

Hgg -8.63269 -8.632688

H -4.97937 -4.97937uu

Jgg 2.29911 2.299109

Juu 1.49188 1.491879

Jgu 1.72451 1.724513

Kgu  0.438298 0,38693

Etotal -9.41168 -9.37126
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TERM HUZINAGA THIS CALCULATION

Alpha = 2.5; Gamma = 1.0

H -8.69146 -8.6914597

gg

Huu -4.55023 -4.550229

Jgg 2.47925 2.479253

Juu 1.22889 1.228894Igu 1.53580 1.535799

Kgu 0.33758 0.21041

Etotal -9.29956 -9.18196

All values given are for an internuclear separation R of R;1.00 Bohr.

_L
--"



APPENDIX D

CHARACTERISTICS AND PRODUCTION OF Vk, H, AND F COLOUR CENTERS

There exists extensive literature dealing with colour centers,

principally the F center (39-41), but also dealing with the Vk and

H centers (38, 59-65). These are not the only types of colour cen-

ters observed experimentally, even in alkali halides, but these are

the centers of immediate interest in relation to the breakdown problem.

These centers are the prototype colour centers; many of the other

identified types are related directly to these centers, and are clus-

ters of two or more simple centers. Ivey (66) has written a monograph

on electroluminescence and related effects which is also of interest

in this connection. In this section, the interest will be focussed

principally on the characteristics of the Vk, H, and F centers and

their production mechanisms which are most directly related to the

breakdown problem. For a more complete treatment, the work of Town-

send and Kelly (41) and that of Schulman and Compton (40) make

excellent starting points for the recent literature, while the paper

of Dienes (38) is an excellent short discussion of the production

mechanism of both V and the paired H and F centers. The discussion
k

which follows will follow, in large measure, the works of both

Dienes (38) and that of Townsend and Kelly (41'. Additional information

171
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concerning the dynamics of the interactions of these centers with

the host lattice is given by Stoneham (68).

The F center consists of a negative ion vacancy, in which an

electron is trapped to neutralize the charge of the region. The

center is normally produced as an F (also known as an a center), and

then traps an electron. It is optically the least energetic of the

centers mentioned, and has the longest lifetime at room temperatures.

The F center is the dominant colour center in the alkali halides.

At temperatures above about 150 K, it is possible in some materials

for an additional electron to be trapped at the F center, giving

rise to an excess local negative charge within the region of the

center.

The Vk center is of much more interest in the discussion of

breakdown. This center consists of a hole trapped by a pair of

negative ions. After trapping the hole, the combination of atoms

relaxes toward a common center, in effect forming a molecular ion;

this molecular ion is perturbed by the presence of the lattice. In

the conditions encountered before breakdown, the Vk center can be

formed directly in the perfect lattice by impact ionization. To

quote Dienes (38):

Ionizing radiation knocks off an electron from a Cl
ion in (KC) with the electron pushed off into the conduction
band. The original C1- becomes a neutral chlorine atom (Clo).
This configuration is unstable, however, with respect to a C1 2-
molecule. _This, the Cl0 grabs part of the electron of the
nearest Cl and forms a Cl - molecule [as illustrated in Fig. 51.
Thus, the Vk center is a C 2- ion sharing two normal lattice
sites.

As shown in Fig. 5, the molecular ion will orient itself along [110]

directions in the normal lattice. Under the influence of a strong

-......... .
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electric field, however, this orientation will be perturbed by the

electric field.

The H center is the complement of the F center; it consists of a

Cl molecular ion occupying a single Cl site. This center, illustrated
2

in Fig. 21, is oriented similarly to the V center, along the [110]
k

direction. Quantum mechanical calculations by Dienes (57) give the

right configuration of the center but the wrong orientation. The orien-

tation of the H center is apparently stabilized by interaction between

the center and the halide ions lying at either end of the H-center's

axis. Dienes (38) indicates that the H center can move easily along the

[110] direction with an activation energy in the range of 0.1-0.2 eV.

This motion may be significant in the breakdown process. The analagous

motion of the Vk center does not seem to have been studied, but it might

be expected to be similar to that of the H center, but probably having

a somewhat higher energy of activation, as the interaction of the H

center with neighboring ions would tend to reduce that activation energy

for motion in an axial direction.

A formation mechanism for the paired F and H centers has been

suggested by Pooley (43) whereby the energy available from electron-Vk

recombination is used to produce the pair of centers. Dienes (38)

describes the process as follows.

The energy available for the formation of the pair of centers due

to the recombination of the V with an electron is about 9 eV (for KCI).
k

This energy is the sum of the direct electron-hole recombination energy

of about 6.4 eV and the potential energy of the two ions once the recom-

bination has taken place (2.6 eV). If the energy is distributed

(---- ~ -~ ------- -- - - - - - - -~*-
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Fig. 20. The F center in an alkali halide crystal. This center

consists of a halide vacancy, occupied by a free electron.

(After Townsend and Kelly)
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Fig. 21. The H center in an alkali halide crystal. Note that

four halide atoms are occupying the lattice spaces normally occupied

by three halide ions. (After Townsend and Kelly)
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asymmetrically between the two atoms, it is possible to initiate a

replacement chain of collisions, moving the Cl with the greater kinetic

energy into the next cell, thus forming a closely linked F and H pair.

As indicated earlier, the energy of activation for motion of the H center

once created is small, so the motion will continue along several cells,

leading to a displacement of the H center by several unit cells from the

F center. It is necessary that the F center retain the excess electron,

as the energy of formation of the pair of H and F+ centers requires

additional energy. The replacement sequence will occur along a [110]

direction within the crystal. It appears likely that the mechanism

leading to the formation of the H and F centers will dominate other

defect production mechanisms for higher temperatures (above 150 'K).

The effect upon the H center of the application of an electric field

of the magnitudes involved in breakdown should be similar to that

described above for the Vk center, but H center mobility is probably

higher than that of the Vk center. Motion of an H center entails only

a slight displacement of the added Cl0 atom to an adjoining Cl- site.

Thus mobility along crystallographic directions close-packed with Cl

ions is favored over other directions in highly perfect crystals. In

crystals with high elastic stress or high dislocation densities, other

paths might be preferred. This provides perspective on the directional

effects seen by Davisson, Cooper, and others (mentioned earlier) in

breakdown studies.

There exists one other polarization effect which calls for mention

in connectio.L with these centers. Both the Vk and the H centers

ik


