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ABSTRACT

Problems of optimal surveillance and contact information processing are
investigated with ASW applications in view, The optimal allocation of ASW
surveillance resources is investigated, by way of Bayesian statistical analysis, L
in a somewhat idealized surveillance situation involving a moving target and the :
possibility of false contacts. In the problem considered, the optimal allocation
of surveillance effort is shown to be the solution of a certain dynamic programming
problem. The optimal allocation is determined numerically in a number of special
cases and compared to several simple allocation policies, The properties of
these various policies are investigated through analysis as well as through a number
of numerical examples. Particular attention is paid to asymptotic behavior of
long term surveillance policies, One suboptimal policy, the maximum-information-
gain policy, is shown to have a number of very desirable properties.

Procedures for processing ASW contact information are developed with two
distinct applications in mind. The first application is directed toward estimating
the track of a specified target as well as toward drawing inferences about overall
target behavior patterns from contact data on a number of different targets. The
approach is to combine, using Bayesian methods, contact ds* 4 scenario-
based parametric model for target motion. Statistical estin .ocedures are
given for estimating the track of a specified target from conta. ata. Additionally,
methods are given for estimating the parameters of the motion model from contact
data,

The second application is processing ASW contact information in a multi-target
environment where there is ambiguity in assigning contacts to targets. Several
Bayesian statistical methods for the systematic generation and updating of target
location predictions in a multi-target environment are developed. Of the ones
considered, Extended Memory processing is shown to be the only computationally
practical method that makes accurate use of the observational data.
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PREFACE

This is a report by Daniel H, Wagner, Associates to the Naval Analysis
Division of the Office of Naval Research (Code 431) on a research investigation
performed under ONR Contract No. N00014-76-C-0676. This report is directed
towards developing methodologies for processing ASW surveillance information
with the objective of obtaining estimates of target location. It is intended primarily
for use by analysts. The methods have been motivated by actual ASW information
processing requirements. The goal has been to achieve useful and computationally
practical methods which are suitable for real-time assistance to ASW surveillance
operations,

We would like to express our appreciation for the excellent cooperation and
support that has been given to this work by Mr. J. Randolph Simpson and CDR Ronald
James of the Naval Analysis Division of the Office of Naval Research,

Additionally, we would like to recognize the capable efforts of our colleagues
B. D. Wenocur who programmed the ASWIPS model discussed in Chapter IV, and
R. V. Kohn and S. S. Brown who contributed a section to Appendix A.
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SUMMARY

This report is directed towards the problem of providing estimates for a
submarine target's location under various conditions. The objective is to develop
useful and computationally practical tools for obtaining such estimates. The
principal application is the continuous long-term localization of a target or
targets through the utilization of surveillance efforts. Much of this current work
has been motivated by the methods, results, and conjectures contained in
reference [a]. .

. Chapter I provides a brief introduction, and appendices A and B provide
supplementary material. The issue of optimal surveillance in a false contact
environment is explored in Chapter I. Processing ASW contact information so
as to obtain estimates about the track of a specific target as well as overall
long-term behavior patterns is the subject of Chapter III. In Chapter IV, a
computationally practical method for processing ASW contact information in a
multi-target environment is given. Computational results are included in
Chapters II and IV. Unfortunately the work presented in Chapter LI has not as
yet progressed to that stage. & -

Optimal Surveillance

Chapter II addresses the problem of optimal surveillance against a moving
target in a false contact environment. Although the surveillance situation considered
is somewhat idealized, our results provide practically useful guidelines for considering
adaptive surveillance operations. The goal of this research is to place a practical
and useful theory of surveillance on a sound theoretical basis.

The problem of specifying the location of a target as it arises in surveillance
problems is substantially different from the problem usually considered in search
theory, i.e., the problem of detecting the target with maximim probability. The
difference is a consequence of the fact that search theory generally assumes that a
detection will also provide the desired localization of the target. Thus, the
detection itself is the issue of importance. In surveillance, the issue is localization
and its maintenance over time and this goal may be achievable with or without
detections or contacts. In addition, surveillance also takes into account the fact
that a problem may not end with a contact because of poor localization information.




The surveillance operation considered here involves a moving target located
in one of N cells, Cy» Coy ..., Cp- The precise cell containing the target is
unknown, but at the current time a probability distribution for the target's location
has been established. Thusfor!=1, 2, ..., N, let x; be the probability that the
target is currently located in cell C; . Suppose that our best estimate for the
target's location is that cell which contains the target with highest probability. *
Indeed if x > x;, alll # k, then the target is most likely to be in cell Cy, and the
probability that this estimate is correct is x;.. We seek to apply our surveillance
effort so as to maximize, at the end of the surveillance operations, the probability
that the target is in the high probability cell.

The surveillance operation itself is performed in a sequence of discrete time
stages, each of duration A time units, by a single surveillance sensor. We are
permitted only K stages, and we must use the sensor so as to obtain tiie best
possible estimate for the target's position after these K stages. At the start of
the surveillance operation, the fixed time at which we must obtain the best estimate
of the target's position, the horizon, is KA units into the future. Our measure of
effectiveness is the probability that the target is in the high probability cell at the
time of the horizon KA.

At the beginning of each stage, a cell is chosen and is then investigated for
the amount of time A. The choice of cell, in general, depends upon the number of
stages remaining in the operation (i.e., the amount of time remaining until the
horizon), the surveillance capability of our sensor, our target motion assumptions,
and the current target location probability distribution. The sensor response
results are then used to update the target location probability distribution. Target
motion is assumed to take place at the end of each stage, and results in a new
target location distribution. The next stage begins with this new targct location
probability distribution and is the beginning of a surveillance operation involving
one fewer stages. The phasing of these various activities is indicated in Figure S-1.

Observe that the surveillance operation described above is dynamic in that
the allocation of effort at each stage depends upon the results of the previous
stage. This is comparable to, say, a VP operation where flights are flown daily.
The results of each day's effort together with the target motion assumptions are
then used to decide the allocation of effort for the next day's flights.

In order to illustrate the concepts involved, consider a surveillance operation
performed on three cells. Figures S-2 and S-3 compare the expected degree of
target localization provided by three surveillance plans against a moving target
in a false contact environment. Figures S-2 and S-3 represent the same target
motion assumptions and the same surveillance capability. The surveillance capability

* It is possible to consider other measures of target localization, for example,
the probability that the target is located in the two nighest probability cells.
Such generalizations are discussed in detail in Chapter II.
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is defined by the sensor response matrix R = [rij ], where ry; is the probability
of a response from investigating cell i if the target is located in cell j. Target
motion is assumed to be a Markov chain with the transition matrix M. In both
figures the target is restricted to one of three cells. In Figure S-2, however,
the prior target location distribution is assumed to be (1,0, 0) whereas in
Figure 8-3 it is (.5, .1, .4). The K-stage-optimal surveillance plan is the
optimal policy. The 1-stage look-ahead maximum-information-gain policy
maximizes at each stage the expected information content of the posterior
probability distribution at the end of the stage*, The highest-probability-cell
policy investigates at each stage the current highest probability cell. Both

the 1-stage look-ahead maximum-information-gain policy and the highest-
probability-cell policy are very easy to determine computationally.

In order to understand these figures, consider the situation presented in
Figure S-2, The target is assumed to be localized to a single cell at the start of
the surveillance operation (the initial target location distribution is (1,0, 0)).
Suppose first that no surveillance effort is applied. Because of target motion
the degree of target localization will decrease with time. The no surveillance
curve (the bottom curve in Figure S-2) represents the expected degree of target
localization one can attain after a specified number of stages. The other curves
similarly represent the expected amount of target localization one can expect
after a specified number of stages using the various surveillance plans. The
upper curve is the theoretical maximum expected probability that the target will
be localized to a single cell.

Observe that the 1-stage look-ancad maximum-information-gain policy performs
almost as well as does the optimal policy. This behavior has been observed in
most of the surveillance situations studied to date (see for example Figures II-2
through I1-9), and so this policy appears to be a reasonably good suboptimal
surveillance policy.

Figures S-2 and S-3 also illustrate, quite dramatically, the conflict between
target motion and the application of surveillance effort. In Figure S-2, for
example, it is assumed that the target is completely localized to a single cell at
the start of the surveillance operation (i.e., the initial target location distribution
is (1,0,0)). Because of this complete localization, a surveillance operation lasting
only a few stages will have a high probability of success, even if no surveillance
effort is applied. Because of target motion, however, the degree of expected
localization decreases rapidly to the limiting values indicated in Table S-1, A
surveillance operation against a moving target gains little after a large number
of stages from the knowledge that at the beginning of the operation the target was
perfectly localized.

*  The information content of the probability distribution (X4, «+., Xy) defined in

N-cells is the nonnegative number % X; lnxi +InN,
i




uo1jeIad( S0UB]{19AaNG U] SaFe)S JO IDqUINN = Y

; 0S of 0¥ ce 0g ¢z 03 9 01 G 0
i 1 A i 1 1 1 | 1 1
-1°
fonod
dourjlaAIng ON UIEH-T01EULIOFU] | 2

Ao110d 1190
Aiqeqoad -3saysIH

o
/

~WNWIXBW pPEdIYY
~3j00T-95818-1

ix

us(d eour[[eAIng-TemndO-28e18-3]

‘1190 A1qeqoad y3ry jeryul ayj sy o @

uotisod s,1981e], urfjjoads A13100110) jo A311qeqoId

L 6°
“(0 ‘0 ‘1) woyINqIIysIP £3111qeqoad woleoo] JaBae) el  (g)
0°1
6" S0° g0’ 1’ 10° 10°
"1 6o’ 6’ G0~ =N 110° T° 10" | =4
S0’ S0’ 6’ T0° 10° 1°
IX1IJBJA UOIIO|N J0Sael (3) :x1x3eIN 9suodsay aosusg (1) :SALON

SHINITOd AONVITIFAHNS 4O NOSIHVAINOO

Z-§ 491914




[

jexad( souvijlaaing uj sade)s JO JaqunN = 3

0 1YY 0z ST o1 g 0
- ! 1 AL A ]
£o110d 119D Aor10d uten .
1-159Y43TH -UO1}BUWLIOJU] - W WX BIAL 1
{ peogy-y007-a3v)s-1
Lz°
\< \ \\ N
/ i
3 d
\4 B
L e
ueld ooue[lleaang rewdo-28838-
-8 °
‘1190 £111qeqoad YSyy 1euy oY) s1 HU 112D (%) 6"
T
(7 ‘17 ‘¢") uounqruysip AIiqeqoad wonyeoo J9aey feiiul (g
“0°T

G0 ” 0" 1° 10° 10°
6 g0° = A 1107 1° 0 =4
v 5" 10° 10° 1°
By WOLON 10838 (2) 1X1ajely asuodsoy Josusg (1) SIALON

SAIDITOd ADNVTIIHANAS 4O NOSIH VOO

£€-S 40914

o aowpe

ucIsod s,108ae], Suify1oads A1309110D jo LAiqeqoad




Observe that if no surveillance effort is applied, the initial complete localization
to a single cell will decay to a probability of 1/3 that the target is located in any
given cell. The interaction between surveillance and target motion is reflected
in the difference between the prcbability of correctly specifying the target's position
in the no surveillance case and that provided by the various surveillance plans.

In Figure S-3 the target location distribution at the start of the surveillance
plan is (.5, .1, .4), so that the initial probability of correctly specifying the target's
location is .5. For surveillance operations lasting less than five stages, the optimal
surveillance policy and the maximum-expected-information-gain policy are able
to overcome the effects of target motion and slightly improve the extent of target
localization. For surveillance plans lasting more than 10 stages, however, the
optimal surveillance plan (and therefore the other plans as well) are unable to
overcome the effects of target motion, and so the initial localization is better than
the expected extent of target localization at the end of the operation.

An extremely interesting aspect of Figures S-2 and S-3 is the rapidity with

which the expected degree of target localization converges to a fixed value. Moreover,

as indicated in Table S-1, for a given surveillance plan the asymptotic expected
target localization depends only on the surveillance plan and not on the initial

target location distribution. This indicates that in the case at hand precise knowledge
of the initial target location distribution is unimportant to the long term ability

of a surveillance system to localize a target.

Because of the speed with which the payoffs for surveillance plans converge to
their limiting value, this value reprcsents a good but simple way of comparing
surveillance plans without introducing a time horizon. The existence of these limits

for the K-stage-optimal surveillance plans are established in Theorems II-2 through
II-5.

The surveillance system described and illustrated in Figures S-2 and -3 is an
example of a homogeneous surveillance system. A homogeneous surveillance system
is one in which the sensor response matrix is of the form R = [rij ] where

p ifi#]j
Bola ifi=j

Additionally, observe that the target motion transition matrix has the special form
M - [dij] where




TABLE S§-1

a et e b b e g, b et

LIMITING VALUES FOR EXPECTED TARGET
LOCALIZATION PROVIDED BY VARIOUS SURVEILLANCE PLANS

CASE I CASE I

Omeal Surveillance 496 496
Policy

Maximum-Expected-~

Information~-Gain . 464 . 464
Policy

Highest-Probability-

Cell Policy - 440 - 440
No Surveillance . 333 .333

xii




Setting 6 =0 yields the special case of a stationary target. Note that the example
discussed in Figures S-2 and §-3 is a homogeneous surveillance system with
A=.1, p=.01, and 5= .15.

The optimal whereabouts search, introduced by Kadane in reference [b}, is
the special case where p =0 and §=0. In this situation the target is stationary and a
sensor response can occur only if the target is in the cell being investigated. Thus
a sensor response completely localizes the target to a single cell. The allocation
of surveillance effort in an optimal whereabouts search with discrete effort is always
to deploy the sensor to the second highest probability cell. See, for example,
section 4.4 of reference [c]. Note in particular that the optimal allocation depends
only on the current target location probability distribution and not on the horizon,
The resulting surveillance plan thus yields uniformly optimal probabilities of
localizing the target for any possible horizon.

We now view the K-stage optimal surveillance plan for the homogeneous sensor
as a generalization of the optimal whereabouts search. Remarkably, 2s shown in
Chapter O, our preliminary theoretical analysis, together with our numerical results,
indicate that the optimal allocation of surveillance effort when u > 0 is the same as
for the optimal whereabouts search, i.e., when u=0. Thus for any homogeneous
surveillance sensor and any target motion matrix of the specified form, we conjecture
that the K-stage optimal surveillance plan requires that we allocate all our effort
to the second highest probability cell. 1

If this conjecture can be proven, it will have a number of important consequences.
First note that such a surveillance plan depends only on the current target location
probability distribution and not on the number of stages in the operation and is
thus a 1-stage surveillance plan. This plan results in uniformly optimal probabilities
of localizing the target for each possible choice of horizon. Moreover, we feel that
it is reasonable to model many operational situations with a homogeneous sensor.
Since in this case the K-stage optimal surveillance plan would give optimal results
for every horizon, it has potential for widespread applications. Finally observe
that if this conjecture can be established, then the optimal surveillance plan in the
case at hand can be specified for any number of cells without resorting to complicated
computational optimization methods,

lsince this was written, a counterexample has been found by J. R. Weisinger.

xiii




A Statistical Model for Processing ASW Contact Information to Estimate Target
Patterns of Operation

Two major problems which an ASW pianner must frequently face in the presence
of sparse contact data of variou~ types and quality are (1) to obtain an estimate for the
track of a specified target, and (2) to make inferences about overall target behavior
patterns on the basis of contact data on several targets. The objective of Chapter II
is to outline a Bayesian method for obtaining these estimates. Unfortunately, this
work has not yet been developed to the point where numerical results can be computed. i

The goal in undertaking such a study is to provide ASW information processing
systems with the capability of combining historical data (in the form of prior
estimates on target patterns of operation) with contact data on targets of current ;g
interest. It is hoped that this marriage will provide improved target location
estimates in that it will methodically exploit contact data on all previous targets.

Our approach is based on a parametric model for target motion. The object
is to use the available contact data to obtain posterior estimates for the parameters
which describe target motion. A major consideration here is the development of a
parametric model for target motion which is rich enough to model real world
situations but which is also computationally tractable.

The approach considered here is most applicable in the case of transiting
targets. Since the approach is Bayesian, it requires a general form for patterns
of motion characterized by parameters for which there are reasonable prior estimates.
These prior estimates may be based, for example, on past experience or on certain
operational or geographical constraints. The Bayesian approach, however, enables
one to obtain estimates of target operation patterns in the presence of sparse data.

The parametric model for target motion is based on the notion of weighted
target scenarios. We postulate the existence of a finite number of such scenarios,
or patrol track plans, which a target might follow during a specified phase of its
mission. Each scenario may be thought of as corresponding to a basic geometric
pattern of target motion.

Each scenario is characterized by a mean target track and corresponding covariance
matrix. Once a scenario has been chosen for a given target, the target must move
roughly according to the mean track of the scenario. The target, however, is
permitted to operate with some deviation from the mean track. For example,
the target may move faster or more slowly than the specified mean track, or it
may vary it8 course along the mean track. The extent of these perturbations in
target motion and their correlation are determined by the covariance matrix
associated with the scenario.

An example of some basic tracks which might be used to define scenarios is
given in Figure $S-4. Additionally, two sample target tracks drawn from two different
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target scenarios are indicated in Figure S-4. In our model we deal with discrete
time and a track is specified by giving the target's location at timest =1, ...,T.

To formulate more precisely our parametric model for target motion, suppose
that there are J possible target scenarios, S{s S9, ..., 85. Let p. be the probability
that a target will follow scenario S;. Additionally, assume that the conditional
distribution function of the target's track Z = (zl, .+, Zg) is a multivariate
normal distribution with mean Hj and covariance matrix =71, Note that M is
an element of 1R2T and that 25'1 is a 2T x 2T positive definite symmetric matrix.

Now assume that the parameters in the target motion model described above
are unknown to us. By this is meant, in particular, that the following quantities are
not known:

i) the vector p = Py Pys -+ Py which gives the prior probabilities
that a target will move according to a given scenario,
ii) the mean target paths pq, ug, ..., Ky of the scenarios, and
iii) the covariance matrices 211, 2;1, coes 231 of the scenarios.

We do assume, however, that the number of possible target scenarios, J, has
already been established.

The object of our investigations is now twofold. First, the contact data obtained
on a specified target are used to obtain a Bayesian estimate for the track of the
target. Secondly, the contact data are processed to obtain Bayesian estimates for
the parameters p, uq, ..., py, and 2;1, ceey 231 . Computational methods for
obtaining these estimates are given in Chapter III.

ASW Information Processing in a Multi-Target Environment

In Chapter IV we develop Bayesian statistical methods for processing ASW
information in a multi-target environment. Specifically, suppose that a force of
submarine targets is known to be operating in a particular ocean area and that
periodic location estimates are to be generated for each target. Potential sources
of information to assist in target force localization might include: ocean characteristics
that affect navigability such as water depth; submarine operational characteristics
such as speed range and frequency of course changes; and surveillance information
such as the direct observation of port arrivals and departures and contacts
generated by ASW sensors. This localization problem leads naturally to the
consideration of ASW information processing systems, i.e., systems designed
to accept as input diverse ASW information of the type described and generate
as output periodic estimates of the locations of the target submarines.

xvi
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The methods developed under this problem are applicable to issues of vulnerability
to surveillance as well as to issues of ability to exercise surveillance,

The principal emphasis in Chapter IV is on the development of Bayesian statistical
methods for the systematic generation and updating of target force location predictions.
It should be noted that the surveillance problem considered is an intrinsically multi-
target problem as opposed to a composite of many isolated single-target problems.
This results . ~st from the fact that except for port departures and arrivals, the
submarinet  ‘is are treated as observationally indistinguishable. Secondly, all
targets are ,,c :: med to make potential use of the entire operating area available
to the force s. :hat individual targets are not restricted to operate in disjoint
subregions. Under these restrictions it will frequently be the case that there is
considerable uncertainty about the exact identity of the target that generated a
sensor contact. This uncertainty leads to correlation in estimates of the locations
of the targets comprising the force under surveillance even though the underlying
target motions may be statistically independent. It is from this intrinsic multivariate
nature of the problem that the information processing difficulties cmsidered in
Chapter IV arise.

A substantial portion of the discussion in Chapter IV deals with specific multi-
target Bayesian information processing algorithms and their comparative evaluation
based on numerical examples. A particular such algorithm which we call Extended
Memory processing will emerge as the only one of the Bayesian methods we consider
that both accurately reflects the localization information inherent in the observational
data and is at the same time computationally practical.

Examples IV-1 and IV-~2 of Chapter IV will show that even when there are as few
as two or three targets involved, Bayesian methods that fail to account adequately
for correlation in target location estimates can break down badly. In particular, two
such methods that we call sequential processing and parallel processing and considered
in Chapter IV may lead to complete permutation of target identities and other
anomalous behavior. These methods also lead to the so-called quiet target problem
that occurs when one of two targets involved in an identity confusion is substantially
more quiet than the other. In such a situation Bayesian processing methods that
treat target locations as independent tend to react to a stream of contacts on the
noisier target by concentrating the target location distributions of both targets in
essentially the same location. As a result, valid representation of the position
distribution of the quieter target is completely lost. Examples IV-1 and IV-2 show
that the Extended Memory method solves the quiet target problem. The theoretical
development of Extended Memory is given in Appendix B,

In order to provide the Bayesian information processing methods with a framework
to be implemented, tested, and evaluated, we have developed a small-scale information
processing system described in Chapter IV called ASWIPS (ASW Information Processing
System) on a Prime 400 mini-computer.

xvii




The processing system ASWIPS is currently configured to handle up to three
targets in a discrete 10 x 10 cellular grid. Time is discretized into information
processin~ update stages. Target motion is taken to be a symmetric random walk
with a transition from the curreat cell to any one of the adjacent cells equally
likely. The output of ASWIPS at the end of each update stage consists of estimates
of the current locations of all targets in terms of probability distributions. These
target location distributions can then be compared with the actual target tracks used
to generate the simulated contact data input to ASWIPS. Such comparisons then
provide the basis for the evaluation of the predictive capability of various processing
approaches. In particular, the calculations involved in Examples IV~1 and IV-2 and
the conclusions these examples support are based on ASWIPS.

xviii




INFORMATION PROCESSING TO MAINTAIN ]

LOCALIZATION IN ASW SURVEILLANCE

CHAPTER I

INTRODUCTION

The purpose of this report is to develop methods for processing ASW
surveillance information so as to obtain localization estimates on submarine
targets on a continuing basis. Such methods need be obtained as useful and
computationally practical tools. Potential applications include ASW information
processing of surveillance and intelligence data, with an objective of providing
improved tactical ASW mission planning, This report is intended primarily
for use by analysts.

A predecessor report, reference [a], established much of the framework
for subsequent investigations in ASW surveillance information processing. This
earlier report attacked two issues at the core of ASW information processing.
The first issue concerns a collection of fixed sensors, in a false contact environment,
with known detection capabilities. The problem was to obtain an estimate of target
position on the basis of sensor contact infermation (both positive and negative). The
approach taken was to determine weighted scenarios for target motion and to compute
posterior target location distributions and scenario weights on the basis of the
contact information. Much of the work contained in Chapter IT of this present
report was motivated by this earlier reference.

The second issue concerned a movable sensor with known detection capability
operating in a false contact environment. The problem was to allocate the sensor so
as to serve certain tactically useful purposes, e.g., to localize the target to a
specified number of cells. This issue was examined in an exploratory way using
Monte Carlo techniques. On the basis of this analysis a number of important ’
conjectures were formulated.

The first such conjecture concerns a concrete connection between information
theory and search theory, i.e., that the optimal detection search extracts information
from the target location probability distribution at the maximum possible rate. Such
an allocation maximizes the entropy of the posterior distribution given failure to
detect. This conjecture was established in reference [d].

\




In contrast it was also conjectured in reference [a} that the opposite
connection exists between information theory and surveillance theory, i.e., that
a reasonable surveillance plan is to allocate surveillance effort so as to place
information into the target location probability distribution at the maximum
possible rate. Such an allocation minimizes the expected entropy of the posterior
distribution. (Much additional numerical evidence to support this conjecture is
given in Figures II-2 through II-9.)

To understand this difference in allocation of effort it is necessary to
indicate the relationship between search and surveillance. Search and surveillance
are closely related but essentially different acitivites with different goals and
correspondingly different methods of achieving these goals. The principal objective
of search is to obtain a target detection. Moreover, search theory generally assumes
that the detection also provides the desired target localization. In contrast,
surveillance is concermed with localization and its maintenance over time, and this
goal can be achieved with or without detections or contacts. In particular,a
surveillance problem may not end with a contact because of poor localization
information.

Chapter II is an investigation into the optimal allocation of ASW surveillance
resources in a somewhat idealized surveillance setting. The analysis is intended
to establish a practical and useful theory of surveillance on a sound theoretical
basis. The problem considered involves a movable sensor which is deployed in
a sequential fashion against a single stochastically moving target in a false contact
environment. Among our results, we establish that a good suboptimal allocation
of surveillance effort is to maximiz¢ incrementally the expected information gained
in the posterior target location distribution. This surveillance policy is called
the maximum-information-gain plan. The advantage of the maximum-information-
gain plan is that it is easily computed in an incremental manner and does not
depend on the time horizon. Finding the optimal plan, on the other hand, requires
the use of techniques such as dynamic programming and quickly becomes impractical
for target distributions with large numbers of cells (say 10 or more).

The objective in Chapter III is to develop a Bayesian method for processing
surveillance contact information so as to obtain probability estimates for a single
target's track and to combine contact data on a number of targets to estimate
general patterns of operation. Our approach is to develop 2 Bayesian method
for combining ASW contact information with a scenario-based parametric model
for target motion. We assume that, based on past experience and general
operational considerations, we can specify a finite number of general operating
plans or basic tracks called scenarios, which could be followed by a target.
These scenarios may be thought of as corresponding to the basic geometric
patterns of target motion. It may be assumed that these basic patterns are
selected for each target in random fashion and then specified for the target in
its operations order. Once the basic scenario for the target has been specified,




the target then '"chooses' its own particular variation. For example, the target
may move locally faster or more slowly than the basic scenario or it may vary
its track about the bas.c¢ scenario.

Bayesian methods have been extensively used in developing real-time computer
programs to produce a sequence of updated probability distributions for target
location. The target motion model assumed in Chapter III is closely related to
models developed by H. R. Richardson and T, L, Corwin, However, the emphasis
in this report is on using contact data to revise the motion models or scenarios
in a Bayesian fashion, In previous work, Bayesian methods were employed to
use contact data to predict target locations but not to revise target motion scenarios.

Observations on a single target are assumed to be in the form of contacts with
possibly varying degrees of localization, There are two pieces of information which
we wish to obtain from these contact data: First, what is the best estimate of the
present target's track, and second, what do contact data on this particular target
tell us about general operating patterns. The first question is of interest primarily
in situations where contact data are sparse, We answer these two questions in
Chapter III by devising methods for computing the posterior distributions for the
present target's track and the posterior distribution on scenarios given a series of
contact data, The main effort is devoted to developing a class of prior distributions
or models for target motion which is rich enough to represent real situations but
which is still computationally tractable,

A totally different class of problems in ASW information processing is posed
by a multi-target environment. In Chapter IV the concept of Extended Memory
processing is introduced with the objective of resolving contact ambiguities on
multiple targets. When trying to estimate target location distributions in a multiple
target environment, the amount of computer storage required to retain the probability
distributions can quickly become excessive unless the target distributions are all
mutually independent., However, even when the prior target distributions arc assumed
to be independent, they lose their independence as soon as one obtains an ambiguous
contact, i,e., one which cannot be positively identified as being on a specific target.

In order to resolve this problem the concept of Extended Memory processing
considers all reasonable assignments of contacts to targets and computes the
probability that each of these assignments is correct. For numerical reasons,
assignments with very low probability are excluded from the list. The crucial
point is that conditioned on an assignment of contacts, the target distributions
are mutually independent. The composite target distributions are then obtainced
as averages with respect to the assignment probabilities of these independent
distributions. The result is that the storage requirements are roughly linear in
the number of targets rather than exponential,

In addition, by considering single contacts in the context of an assignment of all
the contacts to targets, it often happens that a contact which is ambiguous at the
present time will be resolved by future contacts. Thus, the Extended Memory

processing has the capability of deferring judgment on a contact until more information
is obtained.




Overall, Extended Memory has shown itself to be an effective Bayesian
statistical technique to support information processing in a multi-target environment,




CHAPTER 11

OPTIMAL SURVEILLANCE AGAINST A
MOVING TARGET IN A FALSE CONTACT ENVIRONMENT

®

A common and important ASW problem is the allocation of surveillance
assets so ¥s to obtain, and maintain over time, a specified degree of target
localization. The purpose of this chapter is to describe an idealized surveillance
situation in which effort is applied in a false contact environment with the
objective of obtaining localization information on a moving target. The problem
is to allocate our surveillance assets so as to obtain by some specified future
time the best possible estimate for the target's location.

The results contained in this chapter can be viewed as an extension of the
approach taken in Chapter III of reference [a]. In reference {a], a number of
single-stage look-ahead surveillance policies were formuiated and then compared
using Monte Carlo simulation techninues. In this current work, we develop a
dynamic programming solution for the optimal multi-stage surveillance policy
and compare it with a number of other surveillance policies using analytic
techniques. As a consequence of this we have been able to confirm a number
of conjectures which were made in reference [a] on the basis of Monte Carlo
studies. /A.dditionally, our analytic techniques have yielded new insight into
the moving target problem and have resulted in some new conjectures.

In the first three sections of this chapter we describe the general nature
of the surveillance problem which we consider. The components of the sur-
veillance problem are defined in terms of the sensor response capability and
certain assumptions concerning target motion., The Bayesian updating of
target location probability distributions to process contact data according
to our sensor and target motion assumptions is discussed in the fourth section.

The fifth section is directed toward evalua‘ing the effectiveness of a given
surveillance plan against a specified target. This section indicates a number
of different surveillance measures of effectiveness, and develops the fundamental
recursion relationships which will be heavily exploited in subsequent sections,

The evaluation of optimal surveillance plans is described in the sixth and
seventh sections, Such plans are shown to be the solution of a certain dynamic




programming problem, Unfortunately, however, the computational effort required
to determine the solution of the dynamic programming problem is immense, For
this reason we consider, in the next section, a class of suboptimal surveillance
plans, called stationary plans, which are in many cases computationally easier

to determine than the optimal plan,

In the ninth section we compare, by way of numerical examples, the optimal
surveillance plan to a number of stationary surveillance plans, One of these
stationary plans, called the 1-stage look-ahead maximum-information-gain
plan, is shown to have a number of very desirable properties., In particular
it appears to provide near optimal target localization over a variety of measures
of surveillance effectiveness.

One striking feature of the numerical examples considered is the rapid
convergence of surveillance effectiveness as the length of time of the surveillance
operation increases. Accordingly, the asymptotic behavior of optimal surveillance
plans is the subject of the tenth section, The existence of a limiting surveillance
effectiveness is established under a number of different hypotheses, Unfortunately
we have as yet been unable to determine explicitly the value of this limit, Although
the asymptotic results contained in section ten are of interest in their own right,
the methods developed here are a particularly important step in placing a
theory of optimal surveillance on a sound theoretical basis,

The next three sections are concerned with a special type of surveillance
sensor called a homogeneous sensor. The importance of such sensors is based
on the fact that it is reasonable to model many operational surveillance sensors
as homogeneous sensors, Moreover, our numerical examples indicate that
the optimal surveillance plan for such a sensor, when employed against a
target which satisfies certain motion assumptions, is in fact a stationary plan
of a particularly simple type.

This chapter concludes finally with a section where our various results
are summarized,

The Tactical Situation

Suppose we are interested in performing a surveillance operation against
a stochastically moving target which is located in one of N cells, C_,..., ", .
The precise cell containing the target is unknown, but at the beginning of the
operation a probability distribution for the target's location has been estabiished.
We desire to allocate our surveillance assets so as to obtain, at the end of the
surveillance operation, a posterior probability distribution for the target's

position which localizes the target as much as possible,

The surveillance operation itself is performed in a sequence of discrete
time stages, each of duration A, by a single movable surveillance sensor.
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We are permitted only K stages, and we must use the sensor so as to obtain

the best possible estimate for the targe.'s position after these K stages. At

the start of the surveillance operation, the fixed time at which we must obtain
the best estimate of the target's position, the horizon, is KA units in the future,

At the beginning of each stage, one or more cells are chosen and then
investigated for a total amount of time at most A. The choice of cell or cells,
in general, depends upon the number of stages remaining in the operation,

(i.e., the amount of time remaining until the horizon), the surveillance

capability of our sensor, our target motion assumptions, and the current target
location probability distribution., The sensor response results are then used

to update the target location probability distribution. Target motion is assumed
to take place at the end of each stage and results in a new target location distri-
bution. The next stage begins with this new target location probability distribution
and is the beginning of a surveillance operation involving one fewer stages. The
phasing of these various activities is indicated in Figure II-1.

Observe that the surveillance operation described above is dynamic in
that the allocation of effort at each stage depends upon the results of the pre-
vious stage. This is comparable to, say, a VP operation where flights are
flown daily. The results of each day's search together with the target motion
assumptions are then used to decide the allocation of effort for the next day's
flights.

Sensor Response Assumptions

Because of the possibility of false contacts, a sensor response in a given 4
cell does not necessarily imply that the target is in that cell, Similarly the ’
lack of a sensor response in a given cell does not necessarily mean that the
target is not in the cell being investigated., With this in mind we define
rij, i,j = 1, 2,..., N to be the conditional probability, given that the target
is in cell Cj, that investigating cell C; for the length of time A will result
in a sensor response, Moreover we will assume that if the target is in cell
Cj, then investigating cell C; for the length of time t, 0 <t < A, will result
in a sensor response with probability ry;t/A.

The N x N matrix

11 Tiz o TN
Tor T2z -+ Ton
R =
“Tni Tne ot TNN . 3




o e =4 v ¢ v v = wempe |t T tmeisiam me esmee epmiils s . L
1‘ L - T ——T

; CLUINA
9oUB[[19AINS 2ouB[[]oAINS S0UBI[IOAINS  9OUB[[IOAINS  SOUB[[IPAINS  SOUB[[IoAINS
' q.vH & QAH -I"MV H QANmIVIHVO . - . v . . - . . - L] N—W w Q—m ~ qu H qm ~ OAm
[- -~ ———— ~ _, ~- —— - - A
3 98®s f 1-y o8ws 1 p o8u)s t ¢ oge3s | go8e}s $ 1 a3ejs
U030 UoTjol UO1oIN UoHIOI UOT30IA o“o
_j93aer, j98ae], jodaey 81l sz,

NOILVYI4O IONVITIZAYNS V NI STILIAILOV SNOIUVA JI0 DNISVIId

I-11T 34N9514




oy

is called the sensor response matrix; in our model it completely characterizes i
the surveillance capability of the sensor, Note that, if there is no possibility of
false contacts, then R is a diagonal matrix.

In order to simplify our calculations we will suppose that there can be at
most one sensor response in any single surveillance stage. Additionally we
will suppose that sensor responses from different time periods are statistically
independent.

Target Motion Assumptions

Target motion is assumed to be a Markov process which takes place at
the end of each surveillance stage. Letdj:;, i,j=1, 2, .... N, be the conditional
probability that the target will move to celi i given that it originated in cell j.
The following N x N matrix, called the transition matrix,

BT 4N T
dpy Ay - Aoy
M = . . . ’
Ly, 9y e Ay

completely describes the target motion assumptions. Observe that =;d.. = 1
and that in the case of a stationary target, the transition matrix is simply the
identity matrix, M =1,

*X=(x, X,,..., xN)' is the target location distribution before target
motion, then '} = MX is the target location distribution after a single stage of
target motion. Moreover, assuming that no surveillance is performed between
motion steps, the target location distribution after k-motion steps is Y = MkX.

Mathematical Structure of K-Stage Surveillance Operations

In this section we formulate the mathematical structure of a K-stage
surveillance operation performed on N cells, Cy Co,...,Cn. We will
assume that the stochastic structure of the surveillance operation is completely

*  We use the notation X' to denote the transpose of a vector X,




known, that is, that the target motion matrix M and the sensor response matrix
R are known,

It is useful to iniroduce the positive orthant in N-space

= ': j = ’ 2;--., .
VN {(x11 xzs---ixN) szo’.] 1 N}

For each X = (x;,...,%xy)" € V- we define H XH =Xyt F XN Observe
that if x; is the probability that the target is in cefl Cr, k=1, 2,,..,N,
than the vector X = (xy,...,xy)' is an element of the N-1 dimensional simplex

4 = . ; =
gN—l_{XGVN. 'IXHI 1}'

We will refer to g&_ as the probability state space. Every target location
probability distribution on N cells Cy, C,, ..., CN can be represented as a
point of the probability state space.

We now define a K-stage surveillance plan on the cells Cp Cy,ent Gy to
be a function ¢ : y&_l x{1, 2,...,K} ~ V such that | o (X,k)”z1 <1 for
X, k) € .9;1_ x{1, 2/...,K}. In order to explain this definition suppose that
at stage k of ghe surveillance operation, 1 <k <K, the current target location
probability distribution is X € y&_l. Let ¢ (X,k) = (¢; X,K), ..., oN X, k).
The surveillance plan ¢ then requires that we allocate to cell C, the amount
of surveillance effort ¢ A, 7 =1, 2,..,,N, The condition H (,oix,k) H <1
is the constraint that the total amount of surveillance effort available ag
state k is A,

We suppose that the response capability of our surveillance sensor is
defined by the N x N response matrix R - [rj;]. Target motion is assumed to
be Markovian and is defined by the transition matrix M - [dij]- The diagonal
matrices Tj - diag(rlj, TQfsenes rNj), j=1, 2,...,N, will prove particularly
useful in the following development, Observe that Tj completely characterizes
the sensor capability of investigating cell Cj.

At the beginning of stage k of our surveillance operation let the (prior)
target location probability distribution be X ¢ I;I—l' We will now determine
the various (posterior) target location probability distributions possible at
the end of stage k, and indicate the probabilities with which they will occur.
Suppose that ¢(X, k) (91 X, k),..., oN(X, k)) so that we are to allocate to
cell C, the amount of surveillance effort v; X,k)a. It follows then that

the probability of obtaining a sensor response from cell | is @, X, k) ” Tl X ”1

Moreover it follows from Bayes' theorem that the posterior target location
probability distribution given a sensor response in cell Cl is Tl X/H Tl XHI.

=10~




Since we are assuming at most one sensor response in each surveillance
stage 1t follows that the probability of vbtaining no response is

1- 1 ¢; &K, K) Il T; X Il - Additionally the posterior target location
proba{nhty distribution given no sensor response is

N N
(-2 ¢ ERWTHX/A- Z |lo &KWTX][).
=1 =1

In order to obtain the (posterior) target location probability distributions
at the end of stage k it is now only necessary to apply the target motion matrix M
to each of the above distributions, We thus define

N
-2 o.X,KT)HX
M 1 =0.
TX
o ij(X,k) i ”1
Ul &,K) -
T X
M —t— 1=1,2,...,N.
X

Note that U_(X, k) is the posterior target location distribution at the end of

stage k given that the prior distribution at the beginning of stage k is X and

that there were no sensor responses during stage k. Similarly U, X, k),

! =1, 2,...,N, is the posterior target location probability distribution at

the end of stage k given that the prior distribution at the beginning of stage k

is X and that there was a sensor response from cell C, . It is interesting

to observe for I =1, 2,,..,N that U (X, k) does not depend on the amount

of surveillance effort apphed to cell b and so in particular is independent of
the surveillance stage k. This results from the linearity of our sensor response
assumptions,

So as to simplify our notation further, define
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] )=1
‘ 0, X.k) = (I-2)

||¢Z(X,k)TlX||, 1 =1,2,...,N.

The quantity ¢ (X, k) is the probability of obtaining no sensor response at stage k
given that the prior target location distribution at the beginning of stage k is X,
Similarly, for? =1, 2,...,N, ¢, (X,k) is the probability of obtaining a sensor
response from cell C 1 at stage k'given that the prior target location distribution
at the beginning of stage k is X,

Observe next that if X is the prior target location probability distribution
at the beginning of stage k, then MX is the expected posterior target location
probability distribution at the end of stage k, Indeed we have

N
MX = 2 ¢, &,k U &Kk).
1=0 ? !

Consider now a surveillance operation lasting K stages, Let X0 be the

initial target location probability distribution and let X;,1=12,...,K 1

be the target location probability distribution at the end of stage ! . Each ;

X; isa random vector and the mapping X -1 — X, defines a discrete time Markov

process on the probability state space ,j/ 1 Indeed if for each X ¢ ,?N 1 1

and each Borel measurable set A C SN-1 we define for k=1, 2,,..,K, '
N

where u y() is the unit point mass concentrated at Y, then P (-, +) is the stochastic *

transition function for stage k of the Markov process,

A major question in the theory of surveillance is the distribution of the
random variable Xl , 1 -1, 2,...,.K, Indeed, the distribution of the X
indicates the relative likelihood of the various target location probability
distributions that can arise from a given surveillance plan, Define inductively

)]
Py A p X A)

Decpm g, pDomp g an, 12 sk

N-1
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it follows that p(l )(X 0 +) is the probability distribution for the target location
probability distribution at the end of stage 7, given that the initial target
location probability distribution was X,. It is an immediate consequence of
equation (II-3) that

! @)
MX =] Y X ,dy),
0%, 0

that is the mean target location probability distribution at stage [ , given that

the initial distribution was XO, is M! XO'

Evaluating Surveillance Plans

In order to determine the effectiveness of a surveillance operation, it is
first necessary to establish, for each target location probability distribution,
a measure of the localization information implied by that distribution, There
are a tremendous number of possibilities for such a measure of effectiveness,
Suppose for example that X = (xq,... ,xN)' € .?N_l is the current target's location
probability distribution, Our best single-cell estimate for the target location
is that cell which contains the target with highest probability, Indeed if
Xi1 > Xip >... >Xiy, then the target is most likely to be located in cell Cjq,
and the probability that this estimate is correct is xj.. If this is to be our
measure of effectiveness, it is clear ithen that our surveillance effort should
be applied so as to maximize, at the end of the surveillance operation, the
probability that the target is in the highest probability cell, Other closely
related measures of effectiveness would be, for n - 1, 2,...,N, the probability
that the target is located in the first n highest probability cells Xig oot X
We are tEms led to define the functions fy,..., fN on the probability state
space yN_l by fn X) xi1 oot xin'
As another example of a possible measure of surveillance effectiveness,
suppose that, at the end of a surveillance operation, we will search for the
target with a specified sensor, The goal of this search is to obtain a target
detection, and we can measure the amount of localization information implied
by a target location probability distribution in terms of parameters associated
with this search. For example we can use the expected time to detect the
target with the search sensor as one measure of the localization provided by
a probability distribution. If the search has a limit on the total available
effort, then we can use as our measure of effectiveness the probability of
obtaining a detection within the specified time limit, Observe that, in the
case of a perfect sensor* which is only permitted to search one cell, the

* A perfect sensor detects the target if and only if it searches in the cell which
contains the target,
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maximum probability of obtaining a detection is the probability that the target
is located in the highest probability cell,

As a final example, we can suppose that the goal of our surveillance operation
is to obtain a posterior target location probability distribution which contains
the maximum information possible. Recall that if x; is the probability that
the target is located in cell C;,1=12,..., N, the information content of
the probability distribution X = (x4, ..., xN) is

N
J(X) = InN + k§1):kl.nxk.

Although we will be chiefly concerned with the measures of effectiveness
given by the functions fy, f3...., fN defined above, it is generally useful
to have a larger class of effectiveness measures. For this reason we define
the space of objective functions C to be the space of all convex functions f
defined on ng_l which satisfy the uniform Lipschitz condition: there is a
constant L > 0 (which depends on f) such that if X, X5 € .5‘1’N_1 then

It is interesting to note that the convexity of f ¢ C implies that f satisfies the
above uniform Lipschitz condition on each compact subset of %_1. See for
example reference [ e ]. Thus our Lipschitz condition is only a restriction near
the boundary of &} _;.

Because of the convexity assumption observe that for X;, Xo,...,X ¢ %__1
each objective function f ¢ C satisfies

m m
- 1 -
f( = Oy Xk) < k%l Oy f(xk) whenever 0y 2 0, Oy *-- - HO = 1.

In particular f attains its maximum at a vertex of .? _4- So that the greatest

return provided by the objective function is whenthetarget is localized toa single cell.

Suppose now that we wish to evaluate the K-stage surveillance plan ¢ using
the measure of effectiveness given by the objective function f ¢ C, For each
X ¢ F-; our concern is with the function




expected alue of f at the end of the
surveillance operation ¢ given that
the initial target location distribution
isX ¢ ,?N_l.

EV(p, ) ) = (L-4)

The function EV indicates the amount of target localization, in terms of the
objective f, that we can expect at the end of the surveillance operation .

The most convenient method of computing the function EV is to introduce,

for eachk = 0, 1, 2,...,K andeach X € .?N ,» the functions

expected value of f resulting from following
K the last k stages of plan ¢ given that there
A (o, f) X) = ( are k stages remaining and that the target
location probability distribution at the
current stage (stage K-k) is X,

The function Ak(w, f) indicates the expected target localization that can be
achieved relative to the objective f given that there are k stages remaining
in the surveillance operation, In particular A (g, f) = EV(g, f).

We will compute the functions Ak((p, f), k=0, 1, 2,...,K, inductively.
It is evident that AO((p, f) - f. Suppose that Ak((p, f) is known and that we are
to compute AK*1(p,f). Let ¢ = (01K, K)...., on&K k). If the prior at the
beginning of stage K-k is X, we are to allocate to cell C ! the amount of
surveillance effort ¢; (X, K-k). In the notation of equations (II-1) and (II-2),
we will obtain a sensor response from investigating cell C, with probability
0, (X, K-k) and in this case the posterior probability distribution is
U; X,K-k). Similarly, the probability of obtaining no sensor response is
7 X, K-k) and the resulting posterior target location distribution is
Ug&X, K-k). It follows then from the definition of AK+1(p, f) that

i

k N
A oD 00 - ) 6 &, K-k Ao, D (U K, K-K). (i1-6)

It is possible to simplify equation (II-6) somewhat by extending Ak((p, f) ()
to all of VN by defining




I
I

i

k
A(p, D) (Y) =
0 ifY =0,
The function Ak(q;, f) (-) defined in this manner is homogeneous in the sense that

A, 5 AY) = anfe,H (0,  allazo, Ye S .

Using now the relation (I-7) and the definitions (1I-1) and (II-2), we can
write equation (II-6) in the form

N
A0 @) - A0,0 (2 o) K, K-l M @-T)) %)

+

"Mz

0, &, K-k) A(p, 0 (MT, X).

1-1 !

The recursion relationships (II-6) and (II-8) are fundamental in that they enable
us to compute analytically the effectiveness of any given surveillance system,
We will heavily exploit these relationships in the subsequent sections,

Optimal Surveillance Plans

The purpose of this section is to provide a method for determining the
optimal K-stage surveillance plan for any objective function f ¢ C, A K-stage
optimal surveillance plan ¢K is characterized by the condition

EV(eK, 1) > EV(p, )

for any surveillance plan ¢. This is to say that at the end of the surveillance
operation (i.e., at the end of stage K) the optimal surveillance plan yields
the greatest possible expected target localization relative to the measure of
effectiveness f,

In order to determine the K-stage-optimal surveillance plan o& consider
the functions Al .1 0,1, 2,,..,Kdefined by equation (II-5), The iterative
scheme (II-8) and the fact that AK(¢K f) - EV(¢K f) force immediately the
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inequalities
JTPLS ! = K -
A (07,0 2 A (o, 1), 1=01,2,...K, 1-9)

for all surveillance plans ¢. With this we can now mductnvely compute the
functions Al (¢K f), 1=0, 1, 2,...,K. Recall first that A%(oK,f) -~ f. Now
suppose that A ((pK f) has been determmed It follows immediately from
equations (II-8) and (II-9) that

k+1 K - . -
,HX) = max {F (al,az,...,aN,X).al,...,ozNzo,a1+...+aN§1}, (I-10)
where
k kK, K N N kK, K
Foa.,...,0 ,X)=A (0,0 Ml-a T)X)+ 2 a A (o, HMT, X), (m-11)
1 N 1=1 11 1=1 ! l

It is important to observe that the functions A’ (oK, f)X). 1 -0, 1, 2,...,N,
are convex functions of X ¢ ,?N_l. To see this note first that A0 ((ph HEK) = £X)
is by assumption a convex function of X. We now argue by induction: suppose
that Ak(q)K f) is a convex function on »%_1. Then Ak(q)K f) is a convex function
on Vy and so, by equation (II-11), Fk(oz H ,X) is a convex function of
X e %_1. 1t follows then from (II-10) tbat A (¥X, H(X) is a convex function
of X € N1, the desired resuit.

Suppose now that, for a given X ¢ yN_l, the numbers o, ... ,aI\’; satisfy

ANK D Fef e X, et e re=psL,

1 N

It is evident then that a K-stage optimal surveillance plan <pK can be achieved
by allocating, at stage K-k, the fraction o * of the available effort to cell C Ix
i.e.. wK(X, K-k) = (o 1*, cee ,aN*). We claim that the optimal allocation of
surveillance effort can always be achieved by allocating the total available
effort to a single cell. As we shall see, this is a consequence of the linearity
of the sensor detection process.
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Writing now .

N 0* T )X = (1-8)MKX+8 (MX Nal*TX)
ME- 2o T X = (MK (X - S S T ),

it follows from the convexity of Ak((pK, f) (+) that

k * k, K :
Fraf,....,0,X)(1=8) A (¢, 0) (MX) :,
L
o o Q.. 1
+8 Fk(_L,_Z....,_I‘, X).
3 B B
But ;
k, K Kk ¢
AN, HMX) < A (K, HMA -2, 25 T)) X)
N «.
+ x L AR,
=13
k %1 N
=F = ey , X),
( 5 3 )
and so we conclude that
af o |
k * * k __l_ N 5
Fafi o X <F (5,0, X, i
with equality if and only if ]
!
8 = 1or A 1K n ®) = A¥K, 1 (V). (11-12)

In order to interpret the second condition in (II-12), observe that if X € g’N_l
is the target location probability distribution with k+1 stages remaining in
a surveillance operation, then MX is the probability distribution with k stages
remaining assuming that no surveillance was performed. The second condition
in (II-12) says then that the increment in the expected target localization
produced by the optimal surveillance plan X with k+1 stages remaining is
the same as if no surveillance is performed at that stage, We conclude then
that the optimal surveillance plan requires that we use the total amount of
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surveillance effort available at a given stage (3=1), or else the available
surveillance effort at the stage in question is insufficient to affect the result,

Without loss of generality we can now assume that in equation (1I-10)
oqr---+aN = 1. Subject to this condition we then have

N
Fa,...,0,X) = AF (05,0 ( = @ MI-T,)X)
1 N 1=1 l l

N
+ = a AF (65 ) MT, X).
1=1 ¢ !

But since Ak(wh, f) X) is a convex function of X, it follows that Fk(al, v, X)

is a convex function in the variables o y,...,ay. and so it achieves its maximum

at one of the vertices of the convex simplex {(al, e ) oy > 0, ooy +...+ay = 1}.
Thus as claimed the optimal surveillance plan can always be achieved by allocating
the entire available effort to a single cell,

Finally observe that the K-stage-optimal surveillance plan depends only
on the number of stages remaining in the surveillance plan. Thus if K < Ko
we have

K

K k
lfy=na (o 2,0, k=0,1,2,,. . ,K

k
A (¢ 1

Evaluating Optimal Surveillance Plans Numerically

In the previous section we described a method for determining a K-stage-
optimal surveillance plan (,DK for any objective function f ¢ C and any sensor
response and target motion matrices R and M, respectively. Unfortunately.
the method requires the solution of a dynamic programming problem, and like
such solutions in general, it requires an enormous amount of computational
effort to implement. In particular, as the number of cells increases, the
dimension of the probability state space .%_1 increases,

For example, consider a surveillance problem on N cells, Cys Coyens CN'
Recall that, in order to determine Ak+1(<pK, f), we must know the values of
AR(oK, f) on %_1. In order to have the values of Ak(q)K, f) available on a
computer, we must quantize the state space '?N-l into a finite number of
points at which the values of Ak((pK, f) are stored. The values of Ak(wK, f)
at other points are then estimated by an interpolation scheme,

Suppose that we decide to partition each coordinate axis of .%_1 into J
equally spaced points, Our probability state space is then quantized into the
points (i, ig,..., iN)J‘1 where i;,...,iy are nonnegative integers such that
iy *...+ iy =J. Observe that 1/J is the coordinate resolution, It is easy to
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see that the number of points in such a quantization is

J+N-1
J .

Ideally a coordinate resolution of . 01 or better is highly desirable. Observe.

however, from Table II-1 that such a resolution is nractical for at most three
cells, To solve a four-cell optimal surveillance prohlem clearly requires a
resolution not much finer than . 05, Unfortunately, such a resolution is barely
adequate to guarantee a good approximation to the functions Ak(wK, f), sirnce

it provides only 1.5 significant decimal places. Considerable programming care
must thus be exercised to insure valid results, even for as few as four cells.

There are a number of special features of the functions Ak((pK, f) which
can be exploited so as to ease their evaluation. First note that these functions
are convex, so that a piecewise linear interpolation with vertices at the points
(i1,...,0N) -1 will provide an upper bound, We now would like to estimate the
accuracy of this piecewise linear approximation,

Recall that the space of objective functions C is the space of all convex
functions on %_1 which are uniformly Lipschitz continuous in the sense that
if f ¢ C there exists L > 0 such that

|
[f -t | <L [ XXl allX), Xp e K.

Each function f ¢ C can be extended to a function defined in the positive
orthant in N-space

VN={Y=(y1,-..,yN):yj30, i=1,2,....N}

hy setting
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TABLE II-1

NUMBER OF POINTS IN A QUANTIZATION OF ¥,

k2] 2

3

— 3

o

o

2 4

g

Z 1 9
6

e

Coordinate

Resolution
e '
.1 .05 .01 |
—|
11 21 101 |
66 231 5,151 |
|
286 1,771 176,851 |
1,001 10,626 4,598, 126 ‘{
3,003 53,130 96, 560, 646 |
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_ Suppose now that ?
[t )-te,) [ < LIIX X, [, allX), X, € & .

If Yl’ Y2 € VN’ Yl’ Y2 # 0, it is easy to see that

| £0¢ )-£(Y,) | < Levmax{t®) | X «F_ D 1] ¥,-Y, |l

and sofisalso equicontinuous on VN. The smallest constant L such that

‘f(Yl)-f(Yz)fs_L HYI—YZH, all Y , ¥, € Vy

is called the modulus of continuity of f (on V). The modulus of continuity
of f provides a usable estimate for the fineness of a quantization of &, _
required to achieve a piecewise linear approximation for f with a specified
accuracy, The following theorem relates the modulus of continuity of the

functions AK(oK, f) to that of f. and so provides estimates for the accuracy
of approximations for Ak (‘(,/}\, f).

PR A

Theorem II-1. Let wK be the k-stage optimal surveillance plan for the
objective function f ¢ C. If the modulus of continuity of f on V N is Lg, then
Ak((pK, f) is Lipschitz continuous with modulus of continuity Ly, k1, 2,,..,K,

Additionally
L0 > L1 2.2 LK'
3 Proof. Suppose that the sensor response matrix is R and the motion

matrix is M. The proof proceeds by induction on k. First note that the result
is trivally valid for k 0. We assume now that the result is valid for 0, 1, 2,....k;
we must verify it for k+1,

Now since the optimal surveillance plan can always be achieved by allocating
the entire available effort to a single cell, it follows from equation (I-11) that

WS am max AR xR G pera-T px).

. R




Now let Xl’ X2 € VN and suppose that

A8 ey 2 AR nex,).

A" ey = A58, DT X)) + 4" DME-T, )X )

it follows that

| AN nxy - AR ey |

< | A5 ey - 565 narr %) - A5G nonaT x|

- A% .f)(MTX)+A(<p H(M(-T))X )

- AN", DT X,) - AN HMa-T X |

2) =

Using now our induction hypothesis, we obtain

| A5 00 )-n K ney) <l M & X))

+ [ Ma-T )& )1}

1< H UH1 for any vector Ue lRN, so that

’AK+1 Klf)(X)- K+l K+l D(xz)l<L{”T(X X2)”

Fllaety) & -xpll 3

LXKl
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and the desired result is verified, i

It is easy to construct examples in which L _ = L1 =... = L_. Indeed,
consider a two cell surveillance problem againsg a stationary target involving .
a uninformative sensor response matrix i
(o] C
R = , 0<ec< 1.
c c

Then for any K-stage surveillance plan ¢ (including the K-stage optimal plan) 1
MK, B = £, k=0, 1, 2,...,K.

Stationary Surveillance Plans

In most cases the K-stage optimal surveillance plan depends strongly on
the horizon, Thus it may happen that the surveillance policy designed to obtain
the best possible estimate at one specified future time is suboptimal for a
different horizon.

Suppose however that wc are interested in the maintenance of target
localization over time relative to some objective function fe C. In particular
such a surveillance plan does not end at any specified horizon, but rather
continues indefinitely over time,

Since the K-stage optimal surveillance plans (pK depend on the number of
stages until the horizon and not on the number of stages since the beginning
of the operation, such plans are generally not extendable as optimal plans to
horizons different than the initially specified horizon, It is thus desirable
to find physically realizable surveillance plans which are nearly optimal for
any horizon,

The simplest surveillance plans which are extendable to any possible horizon
are the stationary surveillance plans., A K-stage surveillance plan ¢ defined
on N cells Cy, Ca,..., CN is stationary if it depends only on the current target
location probability distribution X €$4.1 and not on the current stage of the
operation. Such a plan is a function (p:,?N_l x11,2,...,K} » VN such that
lrwjj < 1 which is of the form ¢(X,1) -~ o(X,2) = ... = oX,K).

Such a plan is obviously extendable, as a stationary surveillance plan,
to any number of stages K,

Suppose that ¢ is a stationary surveillance plan and that f ¢ C is our localization
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objective function. If X is the prior target location distributicl)(n, the expected 1
degree of target localization obtained by .- after k stages is A" (¢, f)(X). Thus '
the expression

o Ak(w. HEX)

~

+1

|.-
M

- is the average expected target localization during the first K-stages. If K is
) sufficiently large, this expression represents the long term expected target
? localization one can expect to maintain with ¢,

For each k let (pK be the K~stage optimal surveillance plan relative to
fe C. Observe that !

A¥0, 1) < 2¥5, 9.

Thus although the K-stage optimal surveillance plans (pK may not be physically
realizable for the long-term maintenance of target localization, they do provide
an upper bound for the expected localization that stationary plans can achieve.
This fact is useful in determining how close to optimal a particular stationary
surveillance plan localizes a given target.

Examples Comparing Optimal and Stationary Surveillance Plans

In this section we compare numerically the localization achieved by the
optimal surveillance plan to that which can be obtained by several stationary
plans, The particular surveillance system considered is operating against a
target located in one of four cells.

We assume that our surveillance system has the sensor response matrix

.15 .01 .01 ,09 J¢—=_ target in cell C1
.01 .15 .01 .09

.01 .01 .15 .09

L.01 .01 .01 .1 ]

investigate in cell 02
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Thus if we investigate cell Co and the target is located in cell Cl' the pro~
bability of obtaining a sensor response is .01, Note that the sensor capability
achieved by investigating any of the first three cells is the same, Additionally,
if the prior target location distribution is uniform, X = (.25, .25, .25, ,25),

a contact obtained from investigating any of the first three cells will localize
the target to that specific cell with probability . 83,

Investigating cell C, with this sensor is not as informative about the target's
location as is investigation of any of the other cells. To see this, observe that
if the prior target iccaiion distribution is uniform, a contact obtained from
investigating cell C4 will localize the target to that cell with probability only
.27. This is in comparison with the corresponding value . 87 obtained by
investigating any of the first three cells.

We also assume that the target motion matrix is given by

F.85 .05 .05 .03 7 l
.05 .85 .05 .03

.05 .05 .85 .03

[ o5 .05 .05 .91 |

Thus if the target is located in one of the first three cells it will remain there :
with probability . 85 and move to any one of the other cells with probability . 05.

Similarly if the target is located in cell C 4 it will remain there with probability

. 91 and move to any one of the other cells with probability , 03. It can be shown
that, for each X ¢ %

lim M = (214, .214, .214, . 358).

k-

Thus, if no surveillance effort is applied, the target location distribution
will asymptotically approach (. 214, .214, ,214, ,358). In particular, on
the basis of our target motion assumptions, the target, after a sufficiently
long period of time, is most likely to be located in cell C 4, and this estimate
for the target's position will be correct with probability . 358.

The effect of surveillance is to increase our knowledge about the target's
position beyond that which can be achieved from our target motion assumptions
alone, The amount of increase achieved by a particular surveillance plan is 1
a measure of the effectiveness of the surveillance system when deployed according
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to the specified plan, To illustrate this point, we compare the effectiveness of '
a number of different surveillance plans against four hypothetical targets ‘
which are distinguished only by having different prior probability distributions. g
The four prior target location distributions, together with their corresponding

no-surveillance posterior distributions, are indicated in Table II-2,

The surveillance plans which we consider here are a K-stage-optimal
surveillance plan and the three stationary surveillance plans, The K-stage-
optimal surveillance plan has as its objective function the probability that the
target is located in the highest probability cell. The stationary plans are
referred to as the 1-stage look-ahead maximum-information-gain policy, the
3-stage look-ahead maximum-information-gain policy, and the highest-
probability-cell policy.

The 1-stage look-ahead maximum-information-gain policy, denoted <p1 ,
allocates its effort so as to maximize the expected information content
of the posterior distribution after 1 stage of surveillance and target motion.
For X = (x1, X9, X3, x@'e%, let ﬂ(X) be the information content of X,

4
FX)= = x,Inx_+1n4,
j=1 J ]

and let (p* be the one stage optimal surveillance plan for the objective function
&F. Then ¢* satisfies

Al ) > AL, F)

for all 1-stage surveillance plans *¢, We then define the stationary surveillance
plan «pll by

2 X,k) = o*&X, 1) forallk=1, 2, 3,....
1
The 3~stage look-ahead maximum-information-gain plan, denoted ¢14 is

defined similarly. Let ¢* be the three-stage optimal surveillance plan for
the measure of effectiveness #. The plan @* then satisfies

20" ) > 0. F)

*  Note that, although .¥ fails to satisf: i’ a uniform Lipschitz condition and hence
& ¢ C, we can still easily define ALl(.,. 7).
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3

for every surveillance plan ¢. We then set

o Xk=¢*'& 1, k=1,23,....
3

Thus ¢, is the stationary surveillance plan which at each stage allocates
effort aécording to the first stage of ¢*.

Finally, because of its great intuitive appeal, we consider the highest
probability-cell policy. This surveillance plan allocates at each stage the
entire available effort to one of the cells which currently contains the target with
highest probability,

For each initial target location distribution and each surveillance plan
under study, we have graphed, in Figures II-2, I-3, II-4, and O-5, the
probability of correctly specifying the target's location at the end of the
operation as a function of the number of stages in the surveillance operation.
Our measure of effectiveness is the probability that the target is located in
the highest probability cell. Observe that for each K, as expected, the K-stage
optimal surveillance policy yields the greatest probability of correctly specifying
the target's position at the end of the surveillance operation. Similarly, if no
surveillance is performed, v e achieve the least amount of target localization,
The two maximum information gain policies perform almost as well as does
the optimal policy, and both perform better than the highest prohability cell
policy,

In particular, in Case I(see Figure I1-2), the initial target location probability
distribution is (1, 0, 0, 0) so that, with probability 1, the target is initially
located in cell C;. Thus, as a triviality, any surveillance operation lasting
zero stages can always correctly specify the target location at the end of the
operation, For the surveillance operations considered here, however, the
probability of correctly specifying the target's location decreases if the length
of the operation is between 1 and 10 stages. The reason for this is the conflict
between target motion and the applied surveillance effort., From Table II-2
we see that, in Case I, target motion during the first ten stages decreases
rapidly our information about the target's position. During the first ten stages
the available surveillance effort is insufficient to overcome the loss of target
localization caused by target motion,

If no surveillance is applied, observe also, from Table 1I-2, that after
about 13 stages of target motion, the most likely cell to contain the target changes
from cell C4 to cell C4. Additionally, after 15 stages of target motion the
amount of target localization implied by the motion assumptions above actually
increases, This is reflected in Figure II-2 by an increase in the localization
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achieved by each of the surveillance plans after 15 stages.

One very remarkable aspect of Figure II-2 is that, after 13 stages of
surveillance effort, the highest probability cell policy performs only slightly
better in localizing the target than does no surveillance at all. The reason
for this is that after 13 stages, the target is most likely to be located in cell
C4, and so the highest probability cell policy will allocate most of its effort
to cell C4. But we have already indicated that the sensor response matrix
implies that investigating cell C4 is comparatively unproductive. Indeed the
effectiveness of such a search is so low that each increment of effort adds
little to the success probabiiity. The K-stage-optimal surveillance policy
and the maximum-information-gain policies compensate for this by almost
never investigating cell C4. Indeed the high probabilites of correctly specifying
the target's location attained by these policies are due, in large measure, to
exploiting the differences in response probability achieved by applying effort
to the various cells. These policies investigate cells C;, Cg. and C3, and
use a lack of sensor responses to localize the target in cell C4, The highest
probability cell policy, on the other hand, incorporated no information about
the sensor response capability and is thus independent of the response matrix R,
't performs correspondingly poorly.

It is also interesting to note in Figures 1i-2, II-3. 1I-4. and II-5 that
both the 1-stage and 3-stage look-ahead maximum-information-gain policies
perform much better than the highest probability cell policy, and nearly
as well as the K-~stage-optimal surveillance plan, These features are common
to all of the cases studied to date. A somewhat surprising observation
is that the 3-stage look-ahead maximum-information-gain policy does not
perform significantly better than does the 1-stage look-ahead maximum-
information-~gain policy. Thus, in terms of stationary plans, a well-chosen
1-stage look-ahead policy appears to be almost as good as a policy which looks
further into the future. We have yet to find an example which violates this
conjecture.

Recall that the K-stage-optimal surveillance plan depends strongly on the
horizon, and thus this pian may be quite different for different horizons, The
1- and 3-stage look-unhead maximum-information-gain policies are particularly
attractive because they depend only on the present target location probability
distribution and not on the number of stages remaining in the operation.
Additionally, as illustrated by Figures II-2 through 11-5, these policies
incorporate sensor response characieristics sufficiently well to give pro-
babilities of success reasonably close to the theoretical maximum determined
by the K-stage optimal surveillance plan.

One particularly important feature of the maximum-information-gain
policies is that they are not only independent of the number of stages in the
surveillance operation, but since they maximize the information content
of the posterior distribution, they also do not depend on the measure of effectiveness,




Moreover, they appear to give good target localization for a number of different
measures of effectiveness,

To illustrate this point, we have graphed in Figures I11-6, 1I-7, II-8, and
O -9 the degree target localization attained, in each of the previous four cases,
when the measure of effectiveness is the probability that the target is located
in the two highest probability cells. In these figures, the K-stage-optimal
surveillance plan is chosen so as to maximize, at the end of K stages, the
expected probability that the target is located in the two highest probability
cells. Thus the upper curve in Figures 1I-6 through II-9 indicates a theoretical
upper bound for the amount of target localization possible for this surveillance
objective function, The 1- and 3-stage look-ahead maximum -information-gain
policies and the highest-probability-cell policy are exactly the same allocations
of effort used in Figures II-2 through II-5,

Note that, in each case presented, the maximum-information-gain policies
yield near optimal two cell target localization, Also, after about 13 stages,
the highest-probability-cell policy performs only slightly better than if no
surveillance effort was expended at all, Again the reason for this is that after
about 10 stages the highest probability cell policy is allocating most of its
effort to the comparatively uninformative cell C 4

- L . . R sl Zay Rk e R Tl - 7L, T
R T I o BRI T o SR ST ssnddichilie O

L

It is thus apparent, at least in the cases at hand, that the maximum-
information-gain policies provide robust estimates for target location over
a variety of measures of effectiveness, This conjecture has been verified in
each case studied to date. This is an important result because such plans
are computationally easy to determine, and since they require neither a prior
specification of the number stages involved in the surveillance operation nor
knowledge of the surveillance objective function,

Finally, it is of interest to observe the asymptotic behavior of the various
surveillance plans as the number of stages becomes large. In Figures 1I-10
through 1I-13, we have graphed the functions

max Ao, 1)(X), and min (0, 1))
X683 X653

fork - 0, 1, 2,...,20, where f_(X) = probability that the target is located

in the highest probability cell, and ¢ is respectively the K-stage-optimal
surveillance plan, the 1- and 3-stage look-ahead maximum-information-gain
policies, and the highest-probability-cell policy. By definition, the range

of possible payoffs resulting fram the surveillance plans ¢ lies between the
upper and lower bounds given by the above functions, The striking feature here
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is the apparent rapid convergence in each case to constant values which depend
on the surveillance plan buf not on the prior target location probability distribution,
This indicates that precise knowledge of the initial target location distribution

is unimportant to the long term ability of a surveillance system to localize

a target. In view of this apparent rapid convergence of the expected localization
to the limit values. it is valuable to be able to characterize the limit values

in terms of the surveillance plan, the sensor response matrix, and the target
motion matrix. Unfortunately we have not yet been able topush matters that
far. In the next section, however, we establish the existence of the specified
limit for the K-stage-optimal surveillance plans under a variety of different
hypotheses.

Asymptotic Behavior of the K-Stage Optimal Surveillance Plan

One of the most striking features common to the examples discussed in
the previous section is the rapid convergence, as K—x, of the functions
AK(w, f)(.). Additionally, it is of interest to note that, in all of the previous
examples, the limiting values

. K
lim A (o, D(X) (O-13)
K—w

depend only on the surveillance plan » and the measure of effectiveness f and
not on the initial target location probability distribution X, The purpose of
this section is to discuss various issues related to the asymptotic behavior
of the functions AK(wK, f)(-) for K-stage optimal surveillance plans cpK.

First note that the limit (II-13) need not always exist for the optimal
surveillance plan, and indeed it is quite easy to construct counterexamples.
To see this, consider a two-cell surveillance problem involving a completely
uninformative response matrix R: for somec, 0 <c < 1,
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Such a motion matrix interchanges the position of the target between the two
cells in a single stage.

Suppose now that, for X = (xl, xz)' e.?i, our objective function f is given
by

fX) = a.x1 + bx2

where a and b are positive real numbers, a#b. Since our response matrix is
completely uninformative, any surveillance plan is optimal, and we will thus
assume that the surveillance plan X is given by ¢¥(X, k) = (4, 3) for all
XedandallK - 1, 2,3,..., k=1, 2,...,K

Using now the definitions for the posterior distributions Ul given in (II-1)
we see, for ] =0, 1, and 2, that

U & K=MK, K=1,23,...,

Similarly, if 0, X,K), {=0, 1, 2, are the event probabilities defined in
equation (II-2), we have, for all X ¢ Sl' and K=1, 2, 3,... that

1-c if 1

]
(=1

0, X, K) -
c/2  ifl =1, 2,

It follows then from equation (II-8) that

A" 1),

K .
But note that M2 1 M and that le‘ =1, K=1,2,3.,,.., ThusifX = (xl,xz)'e'ylz,

K K axy +bxg  if Kis even
A (o DHX) =
axg * bx1 if K is odd,

so that the limit (I1I-13) will exist if and only if X - (3, }).




In spite of this counterexample, observe that, in the case at hand, every
subsequence of {AK (oK, £)(1}2; contaizs a uniformly convergent subsequence.
Similarly the Cesaro limit of the functions AK(f, ¢)(-) exists for X € ;.
Indeed

lim Ak(f, cpk)(X) =a+b,

K—-o

M

1
K k=1

Recall that the Cesaro limit here indicates the long-term average target
localization obtainable using the objective function f and the surveillance
parameters R, M, and (pk. In Theorems II-2 and II-3 below we establish
these two facts for an arbitrary surveillance objective function,

In the remainder of this section we will consider a surveillance operation
on N cells Cj3, Co,..., CN. Recall that our space of objective functions C
is the space of all convex functions on yN_l which are uniformly Lipschitz
continuous on #’N_j. We assume that each function f ¢ C has been extended
to a function defined on the positive orthant Vi of RN, vy setting

: Y ,
||Y]|1f HYHI ifYe Vg, Y#0O
() -

0 ifY - o,

Recall that if f ¢ C then there exists L > 0 such that, for all Yl’ Y2 € VN’

FCARSGAIES NI R AR AN

Theorem 1I-2, Let wK, K-0,1, 2, 3,... be the K-stage optimal surveillance ? !
plans for the objective function f ¢ C. Then the family {AK((pK, 0(.)}?20 is an '
equicontinuous family of functions and so every subsequence from this family
contains a uniformly convergent subsequence.

Proof. Suppose our sensor response matrix is R and that our target
motion matrix is M. Choose a constant L. > 0 such that if Xl, Xz ¢ Vy then

[t - 1@, <L [[X - %] .

et e i
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It then follows from Theorem II-1 that if Xl,‘X2 € y , then
k k
| A%, D&,y - MK D&, | <L [1X =%, []

and so the family { Ak(wk, f)} is clearly equicontinuous.

As an immediate consequence of this theorem observe that every convergent
subsequence of {Ak(gok, f} is in fact uniformly convergent.

The following theorem establishes the existence of the Cesaro limit in
general, Note that this theorem is valid for every sensor response matrix R
and every target motion matrix M. The theorem states that there is a long
term average expected target localization for every prior target location
distribution,

Theorem 1I-3. Let <,ok, k=0, 1, 2,,.. be the k-stage optimal surveillance

policy for the objective function f ¢ C. Then the sequence of functions
K
1 k k ©
(- COt) v
is uniformly convergent,
To establish this result we need first the following lemma,

Lemma, Let ¢ be the stationary surveillance on N cells given by

oX, k) - (1/N, 1/N,...,1/N) X k=0,1,2,,...

€ SN—l’
If f € C then the sequence of functions
K

1 k, oo
{5 Z. AN, ) 2O

is uniformly convergent,

Proof of Lemma, We first show that the family { AK(¢, )} is an equicontinous
family., Choose a constant L such that

1} - f& )| <L [[X, - X, ] X, Xy eV

r 1" 72 N°
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We will show, by induction on k, that

| A0, 0& ) - 450,00, < L (X - X, [l

The result is clear for k - 0, Using equation (II-8), we obtain

v o -

k
| o0 ) - 2o, x|

7 5 i AT g i

1 2 k k
<y 2, |4 @ DMTX) - A (0, HMT X,) |
e - 2 T x - e amma -+ Forox )
@, N T @, N, To%l

It follows now from our induction hypothesis that

SR P PT84 3 9 1P

k+1 k+1 1 N
(A 0@y - A )] <Ly = llur e, -Xo)il

1
s Ima -5 zl:lecl—xz)Ill}.

whence we have

It is easy to see that, for any vector Y e ]RN, HMY Hl < HYI v

k 3
4" 0.0 - A (0, D) | ,
1 N

N'ow recall that Tl_ diag(rll s Topaees Ty ) and let (y4, Y9s¢..5¥N) = X1 - X,.
Since 0 < ry < 1, it follows that
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Thus we conclude that

k+1 k+1
1A+(0JNXQ—A5 W%D@Q’ST'HXI-XZNF

and so {Ak(w, f)} is an equicontinous family,

Now set
G :“ X) = 1 b Ak 42 f)(X
17( ( ) o I; ( ’ )-

The family of functions {G ()} is clearly also an equicontinous family, and
so every subsequence contains a uniformly convergent subsequence, We thus
need only show that every convergent subsequence from the family {G (f)}
converges to the same limit

@®

. are uniformly
Io~ 1

Suppose now that the sequences {Gg (O} _, and Gk )}
convergent. Set ip N ig

[ee]

eod-{geC:] Gy ()}
j]

1 and {GK ®} are uniform!ly convergent sequences}.

o]
1
ig J2

Iy
Clearly f ¢.of. and so s nonvoid.
For each g <. =/ deiine functionals H 1 and H2 on esd] by
B Lm G . @), andHyg = lim G, (g).

PR jg=® iy

For g« &/ the functions Hqg) and Hy(g) are convex uniformly Lipschitz
continuous functions on Sy .1 and hence in C, Additionally. for each
X € 'y/N—L H; (-)(X) and Hy(:)(X) are linear functionals onerd,
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Define now an operator on the space %4 as follows: for each g ¢ of set

X)) - T £ gMT X)+gMI-33 > T )X).
N ! Ny !

Note that @ is a linear operator one#fand that

Ao - o2, gl

We now claim that &(g) c. ¢/ whenever g ¢ 578 Clearly, &(g)e C. and we need only
show that the sequences {G. («!)g)}oi0 L are uniformly convergent. But, fori-1, 2,
5 i~

Kj_+1 1
Gx, (®g) - GK (8 K [A 7L (0,8 - A (0, 8)].

Thus ®(g) €2/ , and indeed il;(g) H;(®g), i 1, 2. It follows then that
Kj(g)c,/ fori -1, 2, 3,

We also claim that H;(g) €. 2f and indeed that Hj is a continuous operator
of . 2/ into itself. To see that H;(g) c(,dwhenever g € ,j/ note that since G}\ )
converges uniformly to H;(g) it follows from the linearity of & that Gy (g)
converges uniformly to <I>H i(8). But ®GK. (8) = G, (#g), and so Ji
®H;(g) = Hy(®@g)  11;(g); whence, Gg(HjEM - Hi@, Y i=1, 2, K -1, 2, 3,
Thus clearly H;(g) « .ﬂ

Ji

Let .2/ have the topology induced by the supremum norm, To see that H
is a continuous mapping of. o into itself, let gy, go ¢ .,dsatmfy

e, -8l o g, - g, < ¢
“e/N-1

Note that if X « V_ then ]gl(X) -g2(X)| 5((/3)HXH1, so that

eE)X) - 2@ < T X HK -




It follows then that
G ) -G )]l <5, K 1,2 3....
K 1 K 2 © - 3 ’ ' ' ...
Now choose Ko so large that if Kji > Ko, then

Ine) -6 Epllocs, 112

)

Using the triangle inequality it follows immediately that

H, ) - Higll, < <

and so as claimed Hi is a continuous map of o/ into itself,

Now observe that

HyO H, Gy O jum 1, Gy ®) = H_ (Hy(®)
2 - 2

since Hi is continuous on ._% . Similarly

1,0 - Gy (1,0 - H,(H, (D).
2

Interchanging the role of H1 and Hy above we obtain
H, (0 - H Hy( = HH (0 = Hy(®

and so every convergent subsequence from the family {G,.} has the same
limit, as claimed. This completes the proof of the Lemma.




Proof of Theorem 11-3. Fork -1, 2, 3,... let q;k be the k-stage optimal
surveillance plan for the measure of cffrctiveness function f. Recall that
each X is determined entirely by the number of stages remaining in the
surveillance operation, so that, for all X € ¢

/)
N-1’
kq ko ~ .
0 X, kl- )= 0 *X, k,-1) 1=0,1, 2,..,mm{k1.k2}.

Foreachj=1, 2, 3,... lety ik be the k-stage surveillance plan defined by

k
¢ X, 1) ifk<j
1 1 1 .
d'jk(xvl) Nt Nv---yN) l - 19 2:---9k-.]
WX, 1-k+j), 1 k-j¢l,... K ifk > i,

Thus if k > j, ¥k allocates, during the first k~j stages of the surveillance
plan, the same amount of effort to each cell, During the remaining j stages
of the plan, g ik allocates effort according to the optimal surveillance plan o),

Now define an operator & : C - C by

1 N . 1 N 1
(N X) = E b t(MTlX) + f(M(L _f\]- T T'X)).
l=1 11
It is easy to see that
k k
Kk A (o, D, k=1, 2,....j
A .0
jk kej i ;
LSO TP PR S TS T S
Whence if
K
1 k
G, = Z AW,,Dh, k-1, 2, 3, ...,
kj K k1 ik
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it follows that the sequence {GKj};Z:l converges uniformly to a function HjeC,
i 1, 2: 3’--- .

Suppose now that j; < j2. It follows then that

j c i
2 AP
A (wj . ’D = & 2 1

iy i
TNRITE )
12

iy i j
<A%2.0=N%@, . .0

Ialg

In particular, for j 1< j2 < k, we have, by induction on k, that

k k
A D AW 0D

whence Hj < “'2' Since H, < H f”m ' maxxgg) ]f(x)l it follows that the sequence
Hi converges uniformly to aXunction HeC. N-1

Consider now the diagonal sequence of functions

K
Rk 1
k‘" A (d, K, k’ f) K

=

KK 1

It is easy to see now that this sequence converges uniformly to H and we
have thus obtained the desired result,

The following two theorems establish limit results for the sequence of
functions {AK(K, Dhe 1 under various hypotheses concerning the target motion
matrix. The first theorem is most useful in the case of a stationary target,
for then the turget motion transition matrix is the identity matrix., The second
theorem is applicable to many moving target situations, in particular to
those presented in the previous section,

Theorem I1-1. Let wk, K=10. 1, 2,,.. be the K-stage-optimal surveillance
plan for an objective function f ¢ C. Let M be the target motion transition
matrix and suppose that U - {X ¢ ,9'N_1: MX - X}. Then the sequence

K K m .
TAR (R, D} | converges uniformly on U.
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Proof. lLetX ¢ Ui; then

A5 LR ey > AR GK, Do)

> AR5, pe),

and so the sequence { AK ((p t)} | s an increasing sequence and so uniformly
convergent on U,

Theorem II-5. Let q;K, K=0, 1, 2,,,. be the K~stage optimal surveillance

plan for the objective function f ¢ C. If the target motion matrix M has a row
with no zero entries and if every entry of the sensor response matrix is less
than 1, then the sequence {A ((p f)} | converges uniformly to a constant,

Proof, Let M ;] and suppose that dlo >2a>0,j=1,2,...,N
X =(...,XN) and Q 1 .... 9N € yN-l' consider

MX- = - .
eyl = [z 46, -5y
Observe that

[zd ool = [z -yl
it i o

<T@ -a)lx yI
it

IA
5

d, . Y.
i 10J [xJ yJ!

for some 9, 0 < ¢ < 1, whence

| mx-my || ST (1 prod, j)lxj-yjl

<(1-(1-p)o) || x-v]] .
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But 1-(1-¢)x < 1 so that M is a contraction mapping of -9/N_1. Thus there is
a unique X, €,6f}_1 such that

. ) q
lim M!S( Xo, allXe./)N_l.

K+ o

Now observe that MXo XO, whence from equation (II-12) we obtain

{ K
A ) > AN N e ) = 45" D).

Thus the sequence of numbers {AK(wK, I)(Xo)} converges,

We will now show that

K, K K
lim sw{ | A", 060 - A (S, DY) - X, ¥ «Sng O

K-

To see this, define for K - 1, 2, 3,,.. numbers LK such that

< K
|A%K 000 - AR om L e Ix-vll, X vevy

The existence of the numbers LK was established in Theorem 1I-1, Suppose
now that

, - ,
ARG 00 - AR pou x) + A% DMa-T )X)

K+1l, K+1
(¢

2 A D).

We then have




+ K
ARG ney - A5 R now

< 12565, porr 3 - A%6", nonr v |

+ [ %65, poua-1 )% - a56", poma-, v | t
sty M, @-nll | + [ Me-T)E-n)l]}.

But if R = [rij], then by our assumption on R, there is a g8 > 0 such that

d .(A-r.)>8 >0, j=1,2,3,...,N.
lOJ lj =

We then obtain, as above, for some appropriately chosen u, 0 < p < 1,

Ima-tpe-v) [l 212dij<1—rlj>(xj—yj>l

< uZ (1-r X.-y.).
SHE lj)<JyJ)

Again using our assumption that r, < 1, we have

]

l

’Ak+1 k+1 k+ 1(g7k+1

(0 D) - A D= £ twery, d-an | x-y, |

] i

< ()0 LK ”X_YHI

for some appropriately chosen constant g , 0 < 90 < 1. Observe that 00 is
independent of K, whence, by induction

L. —-0 (K = @),

b adie 4 L e o
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is convergent and

Now since the sequence of numbers {Ah(wh, HEN_
since LK—’O, (K— @), it tollows as clui::e that -.'AK(w*éf fﬁl(-)} is uniformly
convergent to a constant,

An Important Special Case: The Homogeneous Sensor

In this section we describe an important special surveillance sensor
which is similar to that encountered in a number of operational situations,

Consider a sensor which is only able to detect a target if it investigates
the cell which contains it, Occasionally, however, the sensor will produce a
non-iarget-generated contact, These contacts may occur, for example, because
of random acoustic fluctuations, electronic instabilities, or sensor operator
error,

Suppose that, if the sensor investigates the cell which contains the target,
the probability that the sensor will obtain a target-generated contact is j3.
Additionally, suppose that the probability of obtaining a non-target-generated
contact, p . is independent of the cell investigated,

We seek the sensor response matrix for the case at hand. Since, if we
search in a cell which does not contain the target. the only possible sensor
response must be non-target generated, it follows from the definition of
T that rjj = M when i#j. On the other hand, if we investigate the cell which
does contain the target,then we assume a sensor response may he obtained
in two mutually exclusive ways: either a sensor response may be target
generated or it may be non-target generated, Setting A 3 + u. it follows

that rij A. i=1, 2....,N. The sensor response matrix is thus the N x N
matrix
A M u . ©ol ]
KA u
R K I A M
N A

Such 4 sensor is called a homogeneous surveillance sensor with parameters
(A,u). A > p. The quantity A -p is the target-generated contact rate and p
is the non-target-generated contact rate, In terms of valid contacts (i.e., i
contacts coming from the cell containing the target regardless of whether




they are target generated), A is the valid contact rate and p is the false contact
rate,

For! 1, 2,...,N we now compute U (X, k), the posterior target location
probability distribution at the end of stage k given that the location distribution
at the beginning of stage k is X - (L ST »XN) and that there was a sensor
resnonse from cell Cl . Lete, =(, 0,...,0, 1, 0.,..,0), where the 1 occurs
in the I th coordinate, It follows then from equation (II-1) that

A =p)x;

y E —_— X
v &k =M A-p)x, +p et A-p)x, +u ’

and it is instructive to interpret the terms on the right-hand side of this identity.
Observe that

/

Az p)
(l-u)xlw

is the conditional probability, given that a contact occurred from investigating
cell C,, that the contact was target generated; also e; is the posterior target
location probability distribution given that the contact was target generated
(for then the target must be in cell C; ). Also,

Y S
A= u)x; +p

is the conditional prohability, given that a contact occurred from investigating
cell C;, that the contact was non-target generated. In this case, the posterior
target location probability distribution is X, the same as the prior, since no new
information has been gained,

Similarly, we can compute U,(X, k), the posterior target location at the
end of stage k given that the prior distribution at the beginning of stage k is X
and that there were no sensor responses during stage k, Forj -1, 2,...,N
let G(X, k)A be the amount of surveillance effort allocated in cell C. during
stage k, and set x = (A - u) (1-u). We then obtain, from equation (I1-1), that

*
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N
> o —KXE.
= 95, k)[X-«kx;e;]

~nc J
Uo(X,k)—Ih N ,
z 0. -
i1 (p](X,k)[l Kxj]

and the probability of obtaining no sensor response is

N
(1-u) 0. X, K)[1-kx,]
i1 J ]

)

Consider now a surveillance sensor with the response matrix

Such a sensor is a homogeneous surveillance sensor with parameters (¢,0). Every
contact for such a sensor is target generated, and the occurrence of such a contact
completely localizes the target to a single cell. If forj- 1, 2,...,N, 0jX, k)a

is the amount of surveillance effort allocated to cell Cj during stage k by such

a sensor, the posterior distribution at the end of stage k given no contact is

N
Y g).(x,k) [X“( x,e_]
i1 ] )]
N
~
l‘—‘] y I(x.k) [1 € x]l

and the probability of obtaining no sensor response is L? 1 mi(X, K) [1-¢ xj].
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It follows now that a homogeneous surveillance sensor with parameters
(A, p) achieves the same posterior distribution given no contact as does a
homogeneous surveillance sensor with parameters ((A -p)/ (1 -u), 0) when
both are used in the same surveillance plan. Moreover the ratio of their
probabilities of obtaining no contact is 1-pu.

The K-Stage Optimal Surveillance Plan for a Homogeneous Sensor

Consider a homogeneous surveillance sensor with parameters (A, u), A>u,
which is attempting to localize a target located in one of N cells Cl, Co,.... CN.
Suppose also that the target motion matrix M is given by the circulant matrix
of the form, with 0 < 6 <1,

N-1 ) b 5
1-=%6 N N N
5 N-1 5 8
N -7 N N
8 5 N-1 5
5 5 6 N-1
= ~ = 1-=-6
N N N N
L : _j

Such matrices were originally considered as target transition matrices for
surveillance problems by Richardson, reference [a].

The parameter 6 is called the dispersion constant of the target motion
matrix. Observe that if § = 0, then the target is stationary, whereas if
6 1 the target distribntion disperses to the uniform distribution in one
step. Additionally if X = (xq,...,Xy)' is the initial target location pro-
bability distribution, assuming that no surveillance effort is expended,
the posterior target location distribution after k stages is

k 1 1
MY (1605 K BN B,

In particular, if 6 > 0, the target location probability distribution converges
uniformly to the uniform distribution.
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The optimal whereabouts search introduced by Kadane in reference [b ]
is the special case where A > 0, u =0, & - 0, and the surveillance objective
function is the probability that the target is located in the highest probability
cell. Thus, in the situation considered by Kadane, the target is stationary
and a sensor response can occur only if the target is located in the cell being
investigated (i.e., there are no false contacts), Kadane was able to show
that the optimal allocation of surveillance effort in an optimal whereabouts
search is always to investigate the second highest probability cell. See,
for example, section 4, 4 of reference [c]. Note in particular that this
optimal allocation depends only on the current target location probability
distribution and not on the horizon, and is thus a stationary surveillance
plan. Because of this, the resulting surveillance plan yields uniformly
optimal probabilities of localizing the target for any possible horizon,

We now view the K-stage-optimal surveillance plan for the homogeneous
sensor and circulant target motion matrix as a generalization of the optimal
whereabouts search., Remarkably enough, our numerical results appear to
indicate that the optimal allocation of surveillance effort when u > 0, § >0,
and the objective function is the probability that the target is located in the
aighest probability cell is the same as for Kadane's optimal whereabouts
search. Thus for any homogeneous surveillance sensor, when used against
a target whose motion matrix is circulant. we conjecture that the K-stage-
optimal surveillance plan is the stationary plan which allocates the available
effort at each stage to the second highest probability cell.

Another possible generalization of Kadane's optimal whereabouts search |
is to consider a different surveillance objective function. Suppose for example
that we have a homogeneous surveillance sensor with parameters (A,u). :
A > p >0, which is attempting to localize a target whose stochastic motion !
matrix is circulant with dispersion constant 6 > 0, If the surveillance problem '
involves N cells, Cy, Co,..., Cns we can consider,for 1 < n < N-1the surveillance
objective function given by the probability that the target is located in the n
highest probability cells. In this case, our numerical results indicate that
the K-stage-optimal surveillance plan is the stationary plan which allocates
at each stage the entire effort to the (n+1)th highest probability cell,

On the basis of these numerical results, we conjecture that in the general
casce of a homogeneous surveillance sensor and a target whose stochastic
motion matrix is circulant, the K-stage-optimal surveillance plan, relative
to the ohjective function which gives the probability that the target is located
in the n highest probability cells, is the stationary plan which allocates at
each stage the available effort to the (n+1)th highest probability cell.l If this
conjecture is cstablished theoretically, it will have a number of important
consequences. First note that such a surveillance plan depends only on the
current target location probability distribution and not on the number of stages

I Since this has been written, a counterexample to this conjecture has “een found

forn 2 by J. R, Weisinger,

|
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in the operation. This plan would then result in uniformly optimal probabilities
of localizing the target for each possiblz choice of horizon, Moreover, we feel
that it is reasonable to model many operational situations with a homogeneous
sensor, Since in this case the K-stage—optimal surveillance plan would give
optimal results for every horizon, it has potential for widespread applications.

In order to understand this conjecture, recall that the goal of surveillance
is target localization rather than target detection. The surveillance objective
function defines what is meant by target localization. Thus for example if
we need only iocalize the target to n out of N cells, then the appropriate objective
function is the probability that the target is located in the n highest probability
cells, for if we use our surveillance sensor so as to maximize this quantity,
we will maxim:ize the chance of localizing the target to the specified number
of cells. If we now allocate our surveillance effort at each stage to the (n+1)th
highest probability cell, we are effectively using our effort to minimize the
chance that our best estimate of n cells which contain the target is wrong.

FE xamples Involving a Homogeneous Surveillance Sensor

Suppose that a homogeneous sensor with parameters (A, 1) is used against
a stochastically moving target located in one of four cells C3. Cy, C3, Cy4.
\We assume that the target motion matrix is a circulant matrix with dispersion
constant 6 .

In Figures II-14 and [I-15 we compare the effect of the dispersion constant §
on the K-stage-optimal surveillance plan using a homogeneous sensor with
parameters (.1, .01), In Figure II-14 the initial target location probability
distribution is (.7, .1, .1, .1). Observe that, in the case of a stationary target
(6 =0), the probability of specifying the target's location to a single cell increases,
as surveillance effort is expended, monotonically to 1.0, On the other hand,
if 6 > 0 then

lim MYX - (.25, .25, .25, .25).

k-

so that if no surveillance is performed the target distribution aymptotically
becomes uniform, Again, the parameter 6 determines how rapidly this
convergence occurs and if § - 1, then the target location distribution disperses
to a uniform distribution after a single stage. This is illustrated in Figure I1-14
by the fact that, if § = 1, the probability of correctly specifying the target's
location after one or more stages of surveillance is , 25, The other two cases
considered correspond to dispersion constants of ,2 and , 4.

~62-




Ve
(~
o

1

..
'
'
b

1193181 Advuoner-

(L ‘1L ‘1 ‘L) uennglnstp Aigeqoad aoiadg

(

UOAUNY 241103l Iaun | IINInNg (¢

9o Ajiqeqoxd jsoydiy oy ut s1oafaer sjpiqeqoad
TO JUBISUCD UolsTadSip yilw XLOBW tonow 198ae) juejn.

(o= 19 saopweled (1w J0SUIS I2URITISAINS SNOJUISC W]

e

]

NV Td ANV TITIAG R IVINLLAO=10OV TS Y T0L NONOLLOIW TAONVLE A0 AN T 14

FT-11 4 v 0T

()

—

™

P TUIS B 0] UOTHSO] sodae], v duisgloodg AI9aI0) jo A\'u“qp,qmd -63-




SEARM Cack Mt ke

" s i 3 o ia e Loadinen i s i ¢ ica A S Gl oA
[2A00% Ul Sodigs Je doquuny oy
e 61 5l Ll 91 ¢l bl el el il (IR b ~ L ; ¢ i3 !
1
10
IS S - —_

oo ar=0
- A
- - ’ R
o i (193.a0%) AaRUGHIEIS) (-0

) uennglusip anigeqodd Lol g

N S

1199 s31iqeqoad jsoydy ut st joSael Ajiqeqoad  uonouny 2Annafqo 0auB({1aAINg

©O IUBISUeD Uolsaadsip yitw Xlajeuwr uopc Wo8Ies juejnaa)

(L0 ‘L 7)) saorowreded yiim JesUos dIUR[[I0AINS sNOQUATC WU

R TN

NVTId ANV TITIAYAS IVINLLdO=ADVIS-N AL 10 NOLLOIX LIV

CT-II T ADTA

O IINTVTANT AL

'~

1
~3¢
?

L & Buisgioadg A[309120) jo AHigeqoad

»
»

[12) 2duls v o) sonisug s3940t




In Figure II-15 we have graphed the influence of target motion on the
K-stage-optimal surveillance plan usin; the same sensor parameters as in
Figure 11-14 but assuming that the prior probability distribution is (.3, .3, .2, .2).
The cases considered correspond to dispersion constants of 6 = 0 (stationary
target), 6 - 2, 6 = ,4, and 6 1 (complete dispersion in a single stage).

Final.y. in Figures II-16 and II-17, we indicate the influence of the false
contact rate on the K-stage-optimal surveillance plan, We consider three
cases involving homogeneous surveillance sensors with parameters (A, p)
where A = .1 and u takes the values . 001, ,01, and .05, respectively. We
also suppose that the target motion matrix is a circulant matrix with dispersion
constant 6 = .2. In Figure II-16 we assume that the prior target location
probability distribution is (.7, .1, .1, .1) whereas in Figure 0-17 it is
(.3, .3, .2, .2),

Conclusion

Our investigations have established the K-stage-optimal surveillance plan
as the solution of a particular dynamic programming problem. Unfortunately
solving this dynamic programming problem generally requires a tremendous
amount of computational effort. Movreover, except perhaps in the case of a
homogeneous surveillance sensor, the K-stage-optimal surveillance plan
depends strongly on the time horizon., Thus in general there exists no uniformly
optimal surveillance plan.

Our numerical examples have shown that the 1-stage look-abead maximum-
information-gain plan, in addition to being easily determined, is a good suboptimal

surveillance plan over a wide variety of surveillance objective functions. Moreover,

since this plan is a stationary plan, it can be trivially extended to a surveillance
plan of arbitrary length.

Other surveillance policies, such as the highest-probability -cell policy,
can provide substantially less target localization than either the K-stage-optimal
surveillance policy or the 1-stage look-ahead maximum-information-gain policy.
The reason for this is that the highest probability cell policy ignores all
knowledge concerning the response characteristics of the surveillance sensor
as well as knowledge concerning the target's motion. Thus the highest probability
cell policy may allocate its effort to an unproductive cell, with a corresponding
penalty in target localization.

Our asymptotic results have established the existence of the limiting average
payoff [or the K-stage-optimal surveillance plan. Additionally, under certain
assumptions concerning the target motion matrix. the expected target localization
achieved by the K-stage-optimal surveillance plan converges to a limit which
is independent of the initial target location distribution, Thus. in this case,
the K-stage-optimal surveillance plan asymptotically produces estimates
for the target’s location which are robust against errors in the prior distribution.
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Similar results are apparently valid, from our numerical examples, for stationary
surveillance plans,

Another consequence of our numerical examples has been to show that if
a homogeneous surveillance sensor is deployed against a target whose motion
matrix is of a special type, then the resulting K-stage-optimal surveillance
plan is stationary and of a particularly simple type. For example, if the
surveillance objective is to localize the target to k cells, the optimal plan
appears to be to investigate that (k+1)tb highest probability cell.
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CHAPTER 111

A STATISTICAL MODEL FOR PROCESSING ASW CONTACT INFORMATION
TO ESTIMATE TARGET PATTERNS OF OPERATION

In this chapter we consider two majcr problems which an ASW planner must
frequently face in the presence of sparse contacts of various types and quality.
The first is to obtain an estimate for the track of a specified target, and the
second is to make inferences about overall target behavior patterns on the basis
of contact data from a number of different targets. The purpose here is to
describe a Bayesian method for obtaining both of these types of estimates.

Unfortunately, the methods in this chapter have not yet been developed to the
point where numerical examples have been computed, and so none are included.

Our approach is based nn a parametric model for target motion. The object
is to use the available contact data to obtain posterior estimates for the target's
track as well as the parameters which describe target motion. A major consideration
in what follows is the development of a parametric model for target motion which
is rich enough to model real world situations but which is also computationally
tractable,

The approach outlined below is most applicable to the case of a target in
transit. Additionally, since we are obtaining Bayesian estimates we are
required to assume the existence of patterns of motion for which we have a
reasonable prior knowledge, This prior knowledge may take the form of past
operational experiencc, or may be a consequence of certain operational or
geographical constraints.

In the first section of this chapter, we describe our parametric model target
motion, The model is based on the notion of a number of different target scenarios
or basic target tracks. It is assumed in this section that the parameters for
the motion model are complete! - known,

‘ In the second section we suppose that the parameters for the target motion
model are unknown but that prior information about their possible values has been
_ qguantified in the form of a probability distribution. This probability distribution

} is the key item required to perform the Bayesian updating for the parameters of
the target motion model.
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We describe in the third and fourth sections the calculations necessary to
perform the Bayesian updating on the prubability distributions for the target
motion parameters so as to account for the information provided by a completely
Kknown target track. Although it is unlikely that such high quality information
would ever be available, this is the simplest case to consider, and the calculations
are suggestive of the direction taken in subsequent sections,

The fifth section describes our model for target contacts. We assume that
each contact provides us with an estimate for the target's actual position together
with a covariance matrix which represents the uncertainty in the contact data. The
next section describes the calculations necessary to marry the parametric target
motion model with contact data so as o obtain 2 Bayesian estimate for the track
of the specified target. This estimate consists of posterior scenario weights, a
mean target track for each scenario, and associated covariance matrices.

The calculations necessary to perform the Bayesian updating for the distribution
on parameters of the target motion model so as to account for contact information
on a given target are described in the last two sections of this chapter. The
calculations here are strongly motivated by those given in the third and fourth
sections,

A Parametric Model for Target Motion

In this section we describe a parametric model for target motion. This
model is based on the notion of target scenarios. We postulate the existence of
a finite number of such scenarios, or operating plans, which a target might follow
during a specified phase of its mission. Each scenario may be thought of as
corresponding to a basic geometric pattern of target motion. We assume that
each target chooses one of these basic patterns and follows it throughout the
specified mission phase,

Each scenario is determined by a mean target track and corresponding
covariance matrix. Once a scenario has been chosen for a given target, the
target must move roughly according to the mean track of the scenario. The
target, however, is permitted to operate with some deviation from the mean track.
For example, the target may move faster or more slowly than the specified mean
track, or it may vary its course along the mean track., The extent of these

perturbations in target motion is determined by the covariance matrix associated
with the scenario.

An example of some basic tracks which might be used to define a scenario
is given in Figurc IlI-1. Additionally, a number of target tracks drawn from the
target scenarios are indicated in Figure ITI-1,
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In order to formulate precisely our parametric model for target motion,
suppose that there are J possible ta.;ct scenarios: Sy, Sg,...,5;. Let 7 be
the random variable with range in the set {1, 2,...,J} which specifies the
scenario a target will follow. Thus the event { ¥ = j} represents all target
tracks which follow scenario Sj. We let Pj be the probability that a target will
follow scenario Sj:

Pr{f-i} =w,

We now suppose that a target track is specified by the position of the target
at times ty<tp<...<ty. Thus each target track is a sequence Z = (2y,...,27)
of target positions z ¢ R2. Let Z be the 2r dimensional random vector which
specifies a target's track. The conditional distribution function of Z, given that
it represents the track of a target operating according to scenario §;, is assumed
to be a multivariate normal distribution with mean 1 and covariance matrix Zj' 1,

In order to simplify the following discussion, we will use the notation
f(. Iy , Z) to indicate a normal density function with mean y and covariance

matrix T~1, The matrix I is called the precision matrix of the distribution,
In this notation we have, for a measurable subset U of IRZT,

Pr {ZEUIJ: i} :[f]f(zlpj, Ej)dz.

The Parametric Target Motion Model in the Face of Uncertainty

We now assume that the parameters in the target motion model described
ahove are uncertain, but that we have prior knowledge about their possible values
which we will quantify as probability distributions, In particular, we assume
imprecise knowledge about:

i) the vector of probabilities p = Py, P2s--.s pJ) which describes
the distribution of the random variable {7 ,
ii) the mean target paths u 1 Hore-oobp and
. -1 -1 -1
iii) the covariance matrices 21 , 22 yeeos ZJ .

Wi~ do assume, however, that the number of possible target scenarios, J, has
ali cady been established, Our goal now is to use contact data on a number of
different targets to improve our knowledge of these parameters,
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We now replace each of the above parameters with a random variabie. Let
Q be a random vector with values in tl.c T-fold Cartesian product [0, 1]x- - -x{0, 1],
such that the coordinates of Q sum to 1. Let I'y,..., Ty be random vectors with
values in IR27, and let Aj,...,Ajybe random matrices with values in the cone of
positive definite, symmetric 21 x 2 + dimensional real-valued matrices. We will
use Q to represent our state of knowledge concerning the vector of probabilities
p; T'1,..., TJ to represent our state of knowledge concerning the mean target
tracks pq,..., Ky and Aj,...,AJ to represent our state of knowledge concerning
the precision matrices Z1,...,Z;. Note that, although our primary interest is
in obtaining estimates for the covariance matrices Zil, ceey 231, for technical
reasons we use the random variabies Ay, ..., Ay to represent our state of
knowledge about the precision matrices Zy,...2Zj.

Now let pr be the prior joint probability density function for the random
quantities Q, Ty,..., I';;and Ay, ...,Ay. The prior density function pr must be
chosen with considerable care. Indeed the ease with which we will ultimately
obtain estimates for p, uj,...,uyand Z;,...,Z  depends strongly on the form
of the density function pr, In particular, it is important that the posterior distribution
forQ, Ty,..., Ty and Ay,...,Ay given a certain collection of contact data,
be of the same form as the prior density pr. Finally, to facilitate computations,
it is necessary that the density function pr have a simple form which can be
completely described with as few parameters as possible.

We have yet to find a dcnsity function pr which completely satisfies all of
the above described constraints. It is possible, however, to formulate a prior
density function pr which fulfills our demands reasonably well,

We will assume that the parameters which describe a specified scenario
are independent from one another as well as independent from the scenario
weights. If we then let pry be the marginal density function for Q, and pr;,
j-1, 2, ..., J, be the joint marginal density function for T3 and A;,
by our independence assumption we can write pr as the product

J

pr(q, Yyreeo Yy al, .. .,aJ) = prO(q) El prj (yj, aj). (III- 1)

)

We now assume that prg, the density function for Q, is a Dirchlet distribution
with parametric vector o - (@1,..., ay), aj> 0, j=1, 2, ..,, d. Using the
notation g(. { «) to indicate such a density function, g(ql «) then has the form

‘~
sl @) - A AR U ap-l 97l with0<q. < 1
= T(a,) ... T(ay) 90 9= e 9 <gp< 1,
1<i<d.
We now describe the density functions pr;, j - 1,2,...,J. We assume that

the conditional distribution of I}, given that AJ- = a, is a multivariate normal




distribution with mean veetor + . ¢ R>T and covariance matrix (via)"1 where v, > 0,
Additionally we assume that the’margina)l distribution of A. is a 6Vishart distrii)ution
with m; degrees of freedom, m, > 27-1, and precision magrix V., where V. is a

27 x 27 positive definite symmetric matrix. The Wishart distri{)ution is extensively
discussed in references [f] and ig].

We will use the notation h(- I m, V) to represent the density function of a Wishart
distribution with m degrees of freedom and precision matrix V. In general then,
for some appropriately chosen constant ¢, we have, for all 2T x 271 positive definite
symmetric matrices a,

h@|m, vy - c| v m/2 la] (m-27-1)/2 exp{ -itr(va)},

where [ V’ = determinant of V. Thus, the joint density function for r]- and A]. has the
form

pr(7,3) - f('yl?j, v,a)h @l m, Vo), i=1,2,...,3. 1

We now indicate the significance of the parameters which define the prior
joint density pr. Note that the prior choice for the values of these parameters ]
must be based on past experience or operational and geographic constraints.

The choice of the prior parametric vector « is governed by our prior

estimates on the relative likelihoods of the scenarios Sy,...,S J- Indeed if ]
B = C¥1+, .. +C(J then

-1
EQ - Japr (@ dg=-ap ",

and so the components of « are precisely our prior estimates for the relative
likelihoods of the various scenarios,
In order to obtain the proper prior values for the parameters . and V;,

we consider the prior conditional density, pr, on target tracks Z given that %hey
are samples from scenario Sj. Observe that

prizly- i - S Spr g5 n- A; aypr(v,a)dyda

- [1@zly, ) £ (3, (v;a)h (almj, v)) dy da (111-2)

v,
i
! f(zlfyj, —IT a)hqa| m, Vj) da,




To evaluate this last integral we need to define the t distribution withm >0
degrees of freedom, location vector ¢ € IRZT, and positive definite symmetric
21 X 27 precision matrix T, t(xl m, o, T). This density is defined for all xeIR
by the formula

1 N
t(le, o, T) = cl TI 2 [1+‘11:T x-0)' T (x-0)] (m +2‘r)/2 ’

where ¢ is a constant chosen so that the density integrates to 1. Observe that,
for al! sufficiently large m, the t distribution is approximately a normal distribution:

tx|m, o, T) = tx| o, T).

It is now an easy matter to evaluate the integral on the right hand side of
equation (III-2) to obtain

V-

J
1+v,
]

pr (z| = ) = t(z] m, 27 +1, %, (m, 27 +1) vj’1>

(IT-3)
AN
~ 5 —d —2r+1y VL
fel3, = (my =27 +1) V7,

where the last approximation is valid provided m, is sufficiently large. Thus,
our prior estimate for the probability distribution on target tracks which are
assooiated with scepario Sj is approximately a multivariate normal distribution
with mean track 'yJ and covariance matrix

- Vo
V= m, -2r+1) VL
] Vj +1 j j

In the theory of Bayesian statistical analysis the Bayes estimate for a parameter
is the expectation of the random variable representing that parameter. Thus, the
prior Bayes estimate for the vector of the probabilities p is

E@ - ap, B-a

and the prior Bayes estimate for the mean target track His of scenario Si is




’Yj:E(F)» j?l,Z,...,J.

It is also possible to show that the prior Bayes estimates for the covariance
matrix =1 and precision matrix Ej are respectively

J
-1 1
L(Aj ) - m, -2r+1 j’
V.o
Iyt und
v.rl j
}
-1
EA)= m,V, ",
J J ]

See for example reference [ g .

Estimating Target Motion Parameters When the Track and Motion Scenario Are Known

In this section we indicate how to perform a Bayesian update on the probability
distribution for the parameters of our target motion model so as to reflect the
information provided by a completely known target track. We thus assume that
we are considering a target

1) which is following scenario Sl (so that (7 1), and
2) whosetrackisz=(z_,7_,...%2 ).
1" 2 T

In this case we will he able to compute precisely the posterior distribution for
the parameters of our target motion model. In the other cases which we will
consider, it will be necessary to make a number of approximations to perform
the updating.

Let

i)

i
pr (q, Yireeer Yy al. . ..,aJ) pro(q) i prj M’i' n.l\

be the joint prior probability distribution for the random oot
and A, ..., AI respectively,  We arce assuming, aeoan the oo

1




3 - PN . ANy EEX ™ T
& . . [, R . .

pry(@ = g(al @), and

A
pry(v,8) = f(y Ivj. Y ajh(a| ms, ).

We seek the joint posterior density

pr(q, ')’19---9'YJ’ al,...,aJ’Z,g=l)

pr (zlq,'yl,...,'yJ, al....,aJ,(Z=l)Pr{g=l|q, Yoo Yy al,...,aJ}

= (I1-4)
pr(z|g=l) Pr {g=l}
J
xpr I pr. (vy.,a.).
Pr,@) j=1p J('yJ ])
In order to evaluate this quantity, recall from the previous section that
( = =
pr(z,q, Yy ¥y al,....aJ,J l) f(Zl'yl.az), i
Pr{¥=llq,7.....v,a,...,a}=q , :
1 1 3 (I11-5) ;

pr(z| = 1) = f(zlfy, : ‘A/, ), and

pr{f1}= @, /B, B=a +..+a.

Substituting these quantities into equation (III-4) we obtain

-1 K
Pr(d Yyreees ¥y 8yyeeeydy |2, #=1)= Ba, q, f(z lvl 3;) Pry(@ I pry (7, 2)).

Observe now that

- -1
ﬁallql pro(@ =PRa; q; g@alo = gal e

where a* = (a_,...,a,+1,..,,a3). Thus, the posterior distribution for the random
variable Q is 4 Dirichlet distribution which depends only on the scenario followed
by the target in question.
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We now consider the product

t(zlv, 2 pry(y, 2) = ezl v, ) £ (¢ |9, v, b @l my, V)

=ty 3% o+ v E ey, o v b elmpv), (I1-6)

!
1+ Vl
where

A A -1
'yl (vl -yl +2) (vl +1) .

Using the identity :

{ Vl _A ' _/\ _ Vz ¢ _A _A ,
-.1 W(z 'Yl)a(z yz)"m;r(z ‘Yl)(z 'yl) a,

we can write the second normal density which occurs on the right hand side of
equation (III-6) as

\'Z
=27 v, 1 A _/\
@m T _1_ . iy trizy) @yptal.
1+vl l !

Combining this with the expression for the Wishart density function which appears
in (III-6), we thus obtain

A A
tz|y,2) pr; (v,2) < f(y [vl*, (v, +1)a) h (a | m, +1, Vi),

where

v

* =
Vl Vl * 1+vl

(2-9;) (z=9))".
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We conclude finally that the posterior joint distribution for the random
variables Q, T1,..., TK, A1,...,Ag, Ziven that the target's track is
z= (zl, vees z_r) and that it is following scenario Sl , 18

pr(q’ 'yl, co'!'yJ’ all . O’aJ| z’g= l)

n-7)
- gale® i f(v. |9, v¥a) b @ | m*, V)
R = Sk R R B s R M
5 where
th
‘ a*=a+(0,0,...,1,...0), (1 appears in the I component)
2 41
: A*
j . R -
v—l'ﬁ("l Yy +2) ifj=1,
]
1
) v if j #1
*
3 v, =
! ] v +1 ifj=1,
m, if j # 1
m* =
j ml+1 fj=1,
Yi if j#1
v = v
i l A A _
Vl+vl+1 (Z ')’z)(z 'Yl) ifj l.

In particular observe, in this case, that the posterior distribution for the target
motion parameters has precisely the same form as does the prior,
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Estimating Target Motion Parameters When the Track Is Known but thc Motion
Scenario Is Unknown

Suppose that we consider a target whose track z = (z1, 29,...,2;) I8
completely known, but we have yet to determine which of the motion scenarios
S1,82, ...,SJ the target is following, In this case we would like to estimate the
joint posterior distribution for the target motion parameters given the target
track z. Observe that we can write

pr(q, .yl’ ""'YJ’ al’ -..,aJ l z)
(II1-8)

J
= lEIPr(q,‘Yl,---.'YJ, al,....aJlZ,j:l)Pr{g=l IZ}.

The first factor of each term appearing on the right hand side of equation (II[-8) has
already been determined in equation (III-7). We thus need only evaluate the
conditional probability that the target is following scenario S ! given that the target's
track is z, To do this we employ Bayes theorem to write

pr(z

J-1) pr{f-1)
pr{ =11z} = 3 _
21 pr(z| J=j) Pr{4=3}

Using now our parametric model for target motion, we can evaluate the quantities
which appear on the right hand side of this identity, We thus obtain

A A K A A -1
pri{f-1l2}=0a, taly, V) [ 2, o fely, ¥17. (IT1-9)

Combining equations (III-7), (III-8), and (IlI-9), we are able to compute
the joint posterior distribution for our target motion parameters given only the
target track z. Observe, however, that this posterior has a different form than
the prior. Additionally, this posterior involves many more parameters than does
the prior, and this unfortunate state of affairs can rapidly make the necessary
calculations impractical,

The cause of this problem, of course, is the impossibility of assigning,
without additional data, a given track to a unique scenario. One possible solution
would be to use equation (I1[-9) to determine the highest probability scenario,
and then assign the target track z to that scenario, The calculation of the
posterior joint distribution for the target motion parameters would then be carried out
as in the previous section., Such a scheme is particularly meaningful when the
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scenarios are widely separated in space and the target track z fits one scenario
significantly better than any other scerario,

Although we are unable to compute the posterior joint distribution
Pr(d, ¥1s..-5 7y 21,...,37| 2) without either an increase in the number of
parameters or some maximum likelihood estimating scheme, nevertheless
we can give a useful approximation for the marginal posterior distributions
pro(qi z). Suppose that pro(q) =g(q Ia). We then have

d
pryaln = 2 eroalz g= 9 pr (F-ila)

5 (ITI- 10)
= % sald) pr (F-il 23,

where

o = a+(0,0,...,1,...,0) (1 appears in the
jth coordinate).

Observe, however, that if we set

J
a* = jflak Pr {g=j| z},

then the Dirchlet distribution g(- Ia*) has the same mean as does the sum of
Dirchlet distributions (ITI-10). Thus, in many applications, it may be reasonable
to approximate the posterior distribution pr(q| z) with the Dirchlet distribution
g(a]l a*). This approximation of course prevents the increase in the number of
parameters that occur in equation (III-10),

Target Contacts

It seldom happens that the complete track of a target is available for analysis,
Indeed it may not even be known which of the various scenarios S1s...,85 a given
target is following. Rather, it is much more common to have available a collection
of target contact data on which all conclusions about target motion must be based.
The purpose of this section is to describe our model for target contacts,

Suppose that the track of a specified target is z = (zy, ..., z )€ leT, and let
Dix be the kth contact event ou the target at time t. Each contact event consists of
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an estimated position for the target at time t and a known covariance matrix &y,.

We assume that the estimated position "‘tk for the target, given that the contact occurred,
is a random vector which depends only on the actual position ¢ of the target at time

t. Moreover, the distribution of the random vector d;i is a bivariate normal

distribution with mean ¢ and precision matrix Ay,. Additionally, we assume that

the random vectors d¢k are all mutually independent. Thus the joint probability

distribution of the random vectors d¢i given that Z = (z . z_r) is

1%

I
t k f“tk' Zer By

Here, for ze IR2 and A a 2 x 2 positive definite matrix, we use f(- l z, &) to represent
the bivariate normal density function.

Estimating the Track of a Target from Contact Data

Suppose that we are interested in obtaining an estimate for the track of a
specified target from contact data. Recall that the track of this target is a
random vector Z with values in IR27, Our prior estimate for the distribution
of Z depends on the parameters which describe the uncertainty in our model
fortarget motion, ThusletQ, T, ..., I'y,and Al’ ...sAy are the random quantities
which represent our state of knowledge about the vector of scenario weights
P = (Pys...,Py), the mean target paths p,,..., Ky and the scenario precision
matrices Z;, ..., Zj respectively. We assume that the joint distribution for
these quantities has the density function pr given by equation (I1I-1) where
préq) = g(q[a) and, forj=1,2,...,d,

A
bry(7,2) = f(y |7j, (v a)h @l my, V).

It follows from equatinns (ITI-2) and (I1I-3) that our prior estimate for the
distribution for the track Z is given by the density function pr:

J

pr (2) =j§1 pr | J= 1) Pr{f-j}
J A
b A -1
i =1 f(zl'yj' v_‘])a] B,

where B = o, +...+a_and -
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-27+1) vj'l.

A Y
ijiTq‘mj

Suppose now that we have obtained contact events Dy on the target, We
thus have the position estimates dtk = & tk, with corresponding precision matrices
Atk, at various times t, 1< t< 7. In order to simplify our notation, let D be the
joint contact event

all t,k}.

D= {dy = £y

We seek then the posterior distribution
_1 J
= z = b= = -
pr (z| D) = pr() j=1pr(Dlz,;{ per @l fener{g=1. -1y

Since the distribution of di) depends only on the actual position of the target
at time t, and not on the target scenario, we have

pr @ |z, f=i) = pr@l 2 = 1 s, [z, 0.

For each time t at which we have at least one contact on the target, we can write,
by the process of completing the square, described in Appendix A,

Zlyn) By By = o' Ay (2m0p + Ly

where L, is a constant independert of z = (z3,..., z.), A4 is the 2 x 2 positive
definite symmetric matrix '

Ag=E Bge
and o is the 2-vector, independent of z, given by
o=AtEa, £
t Tt Y Ttk Gtk
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Note that these calculations require nothing more difficult than inverting a 2 x 2
matrix, Also if there are no contacts at time t, let Ay be the 2 x 2 zero matrix,
Ut = (0, 0), and Lt =0,

Now let A be the 27 x 27 block diagonal matrix
A = diag (Al, Az, couy AT),
21
let ceIR " be the vector
- 1 1 Tyt
o (Ul! 0.2"..’0'7') L]
and let L = L1 ... +-LT. We can then write

pro |z, F=1)=cV g la, | o 2(270)'A (z70), (III- 12)

where C is the constant (21r)_“ e~L, and u is the total number of contacts, Observe
that C is independent of the target track z as well as the scenario followed by the
target.

At this point it is convenient to compute the probability of obtaining the ‘
collection of contact data D given that the target is following scenario 85. J
Indeed, from equation (III-12) we have ~

pr®@| J= =/ pr@|z,J=j) prezl J-j) dz

A A 1 A

A (U1-13)
1 ! =
-z3(oc-y) V. (V.+A A(g -,
= Cpe 20 V; (VA Ay,

where

1
_ -l1q
cj-/lvjl lvj+Al Ba,l c.

Also, since the prior probability that the target will follow scenario Sj is
Pr{j:j} = a -1l (B = @p+...+ay), we have

J
pr@) - 871 Z pro| S~ ;.
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Consider now the product
-1 Z- 'A 2 -
pr| 2, f=1 prizlf=5) = ¢ VI [ag] e =m0y "’f(zl’&j, \Arj>.

In order to compute this density note that again by completing the square of a
quadratic form, we can write

A
(Z'Vj)' Vj(Z'Vj) +(z-0)' A(z-0)

A A A -1 A
= (z-6,)' U, (z-6,) + (0-v)'V, (V, +A) A(o-'yj).

| M | i y i
where
AL AA
8 = (Vy+A) " (V, % +A 0).
“en have

pr@| z,J= pr | =)

A A A . (ITI- 14)
I -1 _
= Cj f(z| 6j’ Uj) e 20 'Vj) VJ (Vj+A) A (o 'vj),

where Cj is the constant defined abeve,

Finally we can compute the posterior distribution on target tracks given
the collection of contact data D, Indeed combining equations (I1i-11) and
(IlI-14) we obtain

Jd

T
:lf(zloj, u)C

N A , A A -1 A
j e -Z(G—Yj) ‘Ij (‘J}+A) A (0'-71).

-1
pr(z| D) = pr()

TII-15
j (tr-15)

j

Estimating Target Motion Parameters from Contact Data When the Motion Scenario
Is Known

Let the prior probability density function for the random quantities Q,
Tyreees TJ, Al‘ cee ,AJ be given, as before, by
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E

J
pr(q, Yyreeo Yy al,...,aJ) = pro(q) j1=11 prj(yj. aj) )

where
pr (@) = g(ale), and
A .
prjw,a):f(vlvj,vja)h(almj, v, j=1,2,...,d.

Consider a target which is known to be following scepario S; (so that g =1).
Suppose, however, that the target track z = (z3, ..., 2;) is unknown but that we
have obtained the contact events D¢y at various times t, 1<t< 7. Each contact
event consists of a mean target position estimate dtk = £tk together with a
corresponding covariance matrix Atk. Let D be the joint detection event

D={ allt, j}.

Ay = e

We seek the joint posterior distribution for the target motion parameters conditioned
on the joint contact event D:

pr(q, 71"""YJ’ als---:aJlD:j'_‘l):

e q- -
pr(DIq"yl’".’YJ’al,...’aJ’(/ Z)PI‘{/ llq,')’l,...,')’J,al,...,aJ} (111 16)

pr@| J=1) pr {F-1}

J
‘pr II r, -93'. .
p 0(q) i p J(v] J)

i,

We have already established the values of two of the factors which appear on the
right side of (I[1-16), Indeed,

7. =
Pr{/llq,'yr---.‘y}{. als---’aK} ql’and

Pr {le}=alﬁ_1 ([3=a1+...+aK).
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Also, since each estimated position for the target dy; is a random vector which
depends only on the actual position z¢ of the target at time t, the likelihood function
L A (g 1) is independent of the parameters Y and a
forj#1. We thus cdn wrlte

pr®| q, Vyrooor Yy al,...,aJ,j=l)=pr(D|yl, a, g0

Substituting these quantities into equation (III-16) we obtain

pr(q, 'Yl’ ---a'YJa al,...,aJlD,g= l)
(IT1~17)
°Cpr(D|'yl B ;{ l)ql Bpr (q)jnlpr(v a)

But observe that
Ba;lq pr@=p o) q g(qla)=j(q| a*)
1 1o 1 i

where a* = (¢,...,0p +1,...,05). Thus the posterior distribution for the
random variable Q is a Dirchlet distribution which depends only on the scenario
followed by the target in question,

In order to complete the evaluation of III-17) we need to compute the
likelithood function pr(D ]-y , 4], / l). Since the distribution of each di) depends
only on the actual positlon of the target at time t, we have

Pr(DI'Y,’ al,g: 1):jpr(D|2) pr (Zl'yl, al,gs 1) dz

(III-18)
:fpr(DI Z) f (zl‘yl' al) dz'

Recall now from equation (III-12) that we can find a constant L, a vector
oeR%T and a 2 x 27 block diagonal positive semidefinite matrix A such that

pr(DI z)=C m e-%(Z-a)'A(z-o)
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where C is the constant (27r)— “e-L, and p is total number of contacts. By the

process of completing the square described in Appendix A, we can find a vector
ye R2T such that

(z-0) A(z-0) + (7—-yl) a, (z—'yl)
= (z-9)" (Aem)) (2= + (@-7) Ay +A) T ay (o).

Thus, evaluating the integral in Equation (II-1°* we obtain

T 7 _lig- 1y
pr(Dl‘yl, a, - l):CJIaZI lal”\l ltnk |Atk| e 2(0 ‘yl)'al(alm) Ao 'yl).

In order to complete our evaluation of the posterior ' .ensity given in (III-17),
we must consider the product

pr®ly,, 2, & - Dpr, (v a) -
A
pr @y, 2, 7= 0t0, vy, 2apha,lm, V).

Note that, again by the process of completing the square of a quadratic form, we
have

(0-71)'31 (al'AflA(o-vl)*(vl-/v\',)vl a, wl-%)
S DAy T, Y, f 0=y 8, Ue-3) (ITI- 19)
= (v, =% ¥ D ay Tiyy =80 vtr {U@-9) @-3)'a, ),

where

-1 1
T (az+A) (VI—+1al+A), {

~§8=

-




SRR

FRp A T TS E

8] =———T_1 (al+A)-1 A, and

v =1
A 1 -1A 1
71*=v+1{vlT yl+|:—v+1al+A:| Ao}
l l
Thus for an appropriately chosen constant Cl , wWe can write

pr(D|vz, a,, J=hry (v, 2

Iall t,ﬂj |Atj|

Ial +(1+1/vl) A |

_ A _A _A '
- Gy, |34 wrna, T ha, lm,, v, +U@-%) @-%)".

In order to continue our calculations, it is necessary at this point to make
a number of important approximations, First, note that for each positive definite
matrix a, we can find a number e(al) such that

\/

[e(al) - ]tral =[1—9(al)]tr A.

Vl +1

Observe that if v, is sufficiently large we then have
-1, %
T = (al+A) (-——-—aZ +A) = O(al)I.

vl+1

Here I is the 27 x 27 identity matrix. It is easy to see that vj (vj+ 1)-156(al)5 1,
The quantity 6(a;) is important in that it provides a measure for the amount of
target localization information provided by the contact data D relative to that
provided by the precision matrix aj. Indeed if no contacts were obtained,so

that A = 0, then 6(a;) = v (v +1)~1, Similarly, if we obtained a contact at each
timet, t=1, 2, ..., 7, then 6(a;)—1 as the precision of the target contact data
converges to the target's actual track,

Using now this approximation we can write

T~ 6@, I,
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v, +1 G(al)

U= L @, +A)'1 A, and

l

A* 1 Vl vl -1
LA v +1 o(al)"z * vl+1al+A Aol

Next note that, for each positive definite matrix a
<p(al) such that

7 there is a number

|all tflj IAtjl

,al l(o(az) .
1
1az+A(1 +Vl—) I

Since Ial +A(1+%) | >m, j(Atj [, it follows that 0<@(a;)< 1. The quantity ¢(a;)
is a second measure for the amount of target localization information provided

by the contact data D relative to that provided by the precision matrix a;. Indeed,
if there is no contact data then ¢(a;) = 0. Also if a contact was obtained at each
timet, t=1, 2, ..., 7, then ¢(a;)—1 as the precision of the target contact data
converges to the target's actual track,

In order to obtain computationally useful results it is necessary to obtain
estimates for the quantities T, U, 4}*, 6, and ¢ which do not depend on the precision
matrix aj. To obtain such estimates, we will replace a; with a certain expectcd

valile. Note that A7~ is a random matrix which represents the covariance matrix
Z; . Thus, the quantity

1

-1
E(Al ) ‘ml~2-r+1 Vl

is the Bayesian estimate for the matrix Z‘ll. We will approximate the matrix a

with the matrix !

(o} -1 -1 -1
Vl = E(Al ) =(ml -2r+1) Vl .

Observe that V= v v+ 1)_1 Vl°.
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Now set 6, = e(vl° ) and @ = <p(VlO ). We then have the approximations

l

l -1
= Vl+1 el
A 1

* 2
'Yl vl+1

Vv, +0) " A,
v, 6 +[<\7 +A]—1A0] and
1t MM ’

Substituting these approximations into equation (III-17) we conclude finally that
the posterior distribution for the random quantities Q, I'y,..., Iy, and Ay,...,Ay,
given the joint contact data D on a target and the fact that the target is following
scenario S;, satisfies

pr(q"}’ls--.,‘YJ, al,,.,’aJ lD,g: l)ﬁ

J . (I1I-20)
¥ I kg * VK

gl ) kg f('yklyk, v¥a,) h@, l m¥, V%),

where

a*=¢ +(0,0,...,1,...,0), (1 appears in the lth component),

if 1
Ax _ -yj i?
‘Yj - A
1 -1 -1 .
72-+—1{vl 6, " vy +IVy +A] Ao} ifj=1,
\A :
wk= | ifj#1
J -
(vl+1)()l ifj=1,
m, ifj#£1
m* = )
J m, +¢, ifj=1, and




\'A ifj#1
3 V* J
= v
j l -1__0 -1 A Al
Vj +Vl+1 ol [Vl +Al a0 'yl) (o 'yl)

Estimating Target Motion Parameters from Contact Data

Suppose now that we have obtained the joint contact event D on a given target,
but we have yet to determine which of the motion scenarios Sy, S, ..., Sy the target
is following. This is the most likely form that the available data will take, We
would like to estimate the joint posterior distribution for the target motion
parameters from the contact data D. Observe that we can write

PTG Vyseees Vys al,...,aJlD)

= J = (: -
= E Pr(q,‘)’l,---,‘)’J, alv---’a‘JID’ d= l) Pr {J llD}- (III 21)

=1

The first factor of each term appearing in (Il1-21) has already been evaluated
in equation (III-20).

To complete the evaluation of (III-21), we need only compute the conditional
probability that the target is following scenario Sl given the contact data D, To
do this we employ Bayes theorem to write

Pr{(]=zlp}= pro|f - 1) Pr (J=1} . (IT1-22)

J

Z Prol F =i e {f=3)

Recall now that Pr{ #=1} =a, B™}, B = aj+...+;. Also the probability of
obtaining the contact data D given the target is following scenario S; has been
evaluated in equation (I1-13)., Thue combining equations (I1I-20), (III-21),
(IlI-22), and (IlI-13) we are able to estimate the joint posterior distribution
for our target motion parameters given only the target contact data D, Observe,
however, as in the case where the target track is known but the motion scenario
is not, this posterior has a different form than the prior and involves many
more parameters than does the prior.

The cause of this problem is, much as before, the impossibility of determining
solely from contact data which scenario a target is following. A possible solution
to this problem would be to use equation (III-22) to determine the highest probability
scenario, and then assign the target to that scenario. The calculation of the
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posterior joint distribution for the target motion parameters would then be carried

out as in the previous section. Again, such a scheme is particularly meaningful
when the scenarios are widely separated in space and the contact data fit one
scenario significantly better than any other scenario.
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CHAPTER IV

ASW INFORMATION PROCESSING IN A MULTI-TARGET ENVIRONMENT

In this chapter we develop Bayesian statistical methods for processing ASW
information in a multi-target environment. A potential application of this work
is in ASW information processing systems designed to accept ASW information
from diverse sources, including direct surveillance, in an effort to initiate and
maintain simultaneous localizations on a number of submarine targets. Such
systems can be used hoth to carry out ASW surveillance and to assess vulnerability
to such surveillance by others.

The chapter is divided into a number of sections. The first section is an
introduction and provides the necessary background to place the current work on
information processing in perspective, The second section provides a brief
description of ASWIPS (ASW Information Processing System), a small scale
system developed as a testbed for information processing methodology. The third
section involves a theoretical discussion of information processing algorithms.
Finally, the fourth section presents some numerical results based on ASWIPS
comparing a number of alternative information processing algorithms. Extended
Memory processing is described in detail in Appendix B.

Background and Introduction

Suppose that a number of submarine targets are known to be operating in a
more or less well defined ocean area and periodic estimates are to be generated
for each of their positions. Potential sources of information to assist in target
force localization include: water depth contours; submarine speed limitations;
direct surveillance information such as observations of port arrivals and depar-
tures and ASW sensor detection data; geographic constraints imposed by submarine
missions; and so on. We treat this localization problem in terms of ASW surveillance
information processing systems, i.e., systems designed to accept as input information
of the type described and produce as output estimates of the locations of the target
submarines,

Our principal interest in this chapter is in Bayesian statistical methods for the
systematic generation and updating of target location predictions in a multi-target
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environment, By a multi-target environment we mean one in which, in general,
there are situations in which it is not possible to determine the target that
generated a given sensor contact. For example, it may be that the submarine
targets are acoustically indistinguishable. In addition, it is assumed that
individual targets are not confined to operate in disjoint subregions. Under
these restrictions it is not possible to treat the multi~target surveillance problem
as a composite of many independent single target problems even though the
underlying tarset motions may be statistically independent., It is the information
processing dir -ulties arising from this intrinsic multivariate nature of the
problem tha : the concern of this chapter.

A substariwal portion of the discussion below will deal with specific multi-
target Bayesian information processing algorithms and their comparative evaluation.
A particular such algorithm called Extended Memory processing will emerge as
the only one of the Bayesian approaches we consider that both makes accurate
use of the observational data and is computationally practical,

In order to provide the Extended Memory methodology with a framework within
which it can be implemented, tested, and compared with other processing approaches,
we have put together a small scale developmental information processing system
called ASWIPS (ASW Information Processing System), We next proceed to describe
ASWIPS,

Structure of ASWIPS (ASW Information Processing System)

ASWIPS is a small scale information processing system of computer programs
currently implemented on a PRIME 400 minicomputer designed to accept as input
contact data on a small number of targets and using Bayesian statistical methods
to generate target location estimates., The principal output of ASWIPS at the end
of each processing update stage consists of probability distributions for the
location of each active target,

o Target locations are assumed to be discretized into 1° x 1° cells within a
10" x 102 overall planar grid, Target locations are thus specified in terms of
probability distribytions on this 100 cell grid. During the time between two
successive updates a target can either remain in its initial cell or move to one
of the eight adjacent cells (five cells, if the initial cell shares an edge in common
with the region boundary; three cells, if it is a corner cell) in the two-dimensional
grid. Each of these possible transitions is assumed to have equal probability.
Thus the motion model has a very simple Markovian structure.

Observational information is input to ASWIPS in the form of probability dis-
tributions on (target-like) objects detected, Thus, the raw contact data are
effectively assumed to have been preprocessed before being input to ASWIPS,
Each object location distribution is assumed to correspond to an observation on
one of the targets in the operating area,
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The targets are assumed to be effectively indistinguishable in that sensor contacts
cannot be uniquely associated with the target causing them, It should be noted,
however, that in some cases such an identification may be possible by statistical
inference. This would be the case when an object location distribution is out of
sensor contact range of all but one of the prior target location distributions,

In general, however, an object location distribution may overlap with more than
one prior target location distribution in which case the identity of the target that
caused the underlying responses is ambiguous. In such a case we will refer to the
object location distribution (and the underlying response pattern) as unresolved,

The updating of target locations distributions is performed at the end of each
update stage. First, the target location distributions as produced by ASWIPS
at the end of the preceding processing stage are updated for target motion. This
is done by applving the one-stage Markov transition operator for the motion model
that we described earlier. The effect of this motion updating is to make the target
location distributions more diffuse, reflecting the fact that target motion since
the last update has increased the degree of our uncertainty about target locations.

The second phase of processing at the end of each update stage involves revising
the target location distributions for the contact information obtained since the last
update, We will reserve our discussion of the specifics of the updating algorithms
used for the next section of this chapter.

It should be ohserved that just as target motion tends to diffuse the target
location distributions, contact information tends to concentrate them. It is this
continuing tug of war between the loss of information resulting from target motion
and the gain of information resulting from contact information that contols the
dynamics of the target localization capability of ASWIPS. Factors which control
the direction that this information struggle will take include the number of targets,
target speed, the size of the operating area, contact data rate, sensor detection
ranges, etc, and of equal importance, the processing algorithms themselves,
This brings us to the topic of the next section.

Discussion of Information Processing Algorithms

In this section we will discuss some of the mathematical aspects of information
processing algorithms, This discussion will lay the groundwork for a comparison
in the next section of a number of processing algorithms using ASWIPS,

Target location distributions. Suppose we use k to index processing update
stages and assume that at the k"" update stage there are N submarines actively
deployed in the operating area of interest. We then define

X:lk) = grid cell location of the nth target at the end of update stage k.
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In the case of ASWIPS, target lo%xtions are discretized into cells so that Xl(lk) is the
index of the cell containing the n™ taiget at stage k. Under the presumption that
these target locations are uncertain, the objective of information processing is to
estimate these locations in terms of probability distributions. Thus we can think of

(k) k)

Cx® x® ()
1

X ? 2 9 3 ""’xN )

as a random N-vector whose probability distribution we seek, Specifically, using
all available information, we would like the information processor to estimate the
joint frequency function

k k
P( ) (lexzy...,xN) = Pr {X( ) = (xl’xz"'.,,LN)}’ (IV"I)

where xneI forn=1,2,...,N with I being the collection of all cell indices,

Before pursuing the question of how P(k) is to be estimated we consider
the question of how many values it takes to specify this location frequency function,
Consider a case in which the operating area grid contains approximately 1, 000
1° x 1° cells and the number of targets, N equals 10. The number of possible
states of the system, each of which corresponds to a joint location of the 10 targets,
is 1, 00010 = 1030 which is obviously prohibitively large from a computational
standpoint,

Suppose now that it can be assumed that the N targets are operating independently,
If we define the marginal target location distributions

p:lk) x) = Pr{X:lk) = x},

then, assuming independence, we obtain the relationship,

N
(k) -1 <k
P (x19 x2’ co 0y XN) - n=1 pn (xn)’ (Iv-z)

If the relationship in equation (IV-2) were valid and remained valid throughout
information processing, the numerical size of the problem of estimating target
location distributions would be sharply reduced, Going back to our example, we
observe that each pﬂq, i=1,2,...,10 involves the specification of up to 1, 000
values, Thus the total number of values required to specify all target location
distributions would be only 10, 000, well within the capability of modern computers.
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A problem unfortunately arises from the fact that even if the relationship
in equation (IV-2) were valid at the outset of processing, i.e., before any sensor
contacts were processed, and even if the individual target motions were statistically
independent, equation (IV-2) in general would not continue to hold during the course
of processing. A very simple example serves to illustrate this fact,

Suppose we consider a case in which the operating area consists of only two
cells, each containing a single sensor which can detect a target only in its own
cell, Suppose there are two targets operating independently each of which is a
priori initially equally likely to be in either of the two grid cells, By assumption,
then equation (IV-2) holds initially. Now suppose that during the first update
period each of the two sensors reports a contact. Designate the two targets as
T1 and T_and the two grid cells as C1 and C_. Then it is easily seen that there
are only ?wo possibilities: target T_ is in ce C1 and target T2 is in cell C_, or
vice versa, Based on our observational data alone, we cannot conclude wit}% certainty
which of these two equally likely possibilities is the correct one, although we can
with certainty eliminate the possibility that the two targets are in the same cell,
One now observes an interesting phenomenon. Whereas before the contacts were
reported the target locations were statistically independent, after the contacts
C, and C_ occur, the target locations are completely correlated. Specifically,
knowledge of the location of one target implies deterministic knowledge of the
location of the other target, If target T, is in cell C_, then necessarily target
T_ is in cell C_ -- thus the complete correlation betwWeen the two targets. We
wrﬁl refer to the problem of properly incorporating this contact-induced correlation
between targets into information processing as the target coupling problem.

One might reasonably argue that the example we have given is extreme and
that in more realistic cases the degree of correlation among target location
distributions induced by the sensor data is likely to be small., Suppose for the
time being we assume that the target location distributions can in fact be treated
as approximately independent and we proceed naively on the basis of this assmﬂgption.
This means that we will deal only with the individual marginal distributions p’ " for
target location. The problem then becomes one of devising a procedure for urp')dating
these marginals to rellect sensor data. A standard and well-studied procedure
for this kind of updating is based on Bayes' theorem on conditional probabilities.

In the next two subsections below we describe two possible target location i
distribution updating schemes based on the independence assumption and Bayes'
theorem,

Sequential processing, We assume that the sensor contacts reported during
an update stage have been clustered into sensor response patterns each generated
by a single target. We associate with each response pattern the presence of a
(target-like) object. Under sequential processing the target location lf{iistributions
are collectively updated once for each such response pattern. Let pl(1 !l )(x) can be
obtained recursively from pg" ! '1)(x).

Assume L response patterns were observed during the kth stage and let
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A k) x) = Pr{l th observed target-like object is in cell x at stage k},

l=12,...,L

be the associated observed object location distributions. We then let

n Xe I n (x) Al (x), n:17 2:-. . ’N (IV-3)
and

k, 1)
L Va -t
no TN k1) )

= V),

=l

k, 1)

The quantity V; is a measure of the fit between the I th object location
distribution in kth stage processing and the target location distribution for the
n target based on processing the first I -1 object location distributions,
Probabilistically, Vg »4) is an estimate of gle likelihood that the ! th object and
the nt target are in the same cell at th kt stage., The quantity oK h is then
an estimate of the probability that the I ™ object and nt target are Bne and the
same,

Now there are two possibilities: either the nth target is the same as the th
object or it is not. If it is not, then there is no reason to modify our current
estimate of the location of the nth target based on )\ ; if the nth target and the
rth object are the same, then a composite revised estimate of the location of the
nth target should be made combining the information contained in the prior
distribution for the location of the nth target with the information contained in
the 1 th object location distribution.

In mathematical terms, using Bayes' theorem we then obtain

ol 1), )

k,1) “n
“n & D
n

(%)

Dy = {1-0

n

(x) (IV-5)

The expressions in equations (IV-3) through (IV-5) provide the promised recursjon.
One proceeds in this fashion iteratively updating for each object location distribution
associated with a given update. The entire series of updates for sensor information
during a processing stage is carried out following an update for target motion at

the beginning of each such processing stage.
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Parallel processing, Under sequcntial processing the object location distributions
during a processing stage lead to a series of updates to the target location distributions,
An alternative mode of processing, which we call parallel processing, would attempt
to perform a single update for all such object location distributions simultaneously,

To carry out the processing of target location distributions in parallel we
introduce the notion of an assignment function. This is a map f such that

f:{1, 2, ..., L}—~{1, 2, ..., N},

where L is the number of object location distributions being processed in parallel.
In general an assignment function need not be one-to-one since more than one object
location might have been generated by the same target. In the current presentation,
for simplicity, we will assume that assignment functions are one-to-one, so that in
particular L< N. We then define

,~(k) = the class of all poss1ble one-to-one
assignments of kth stage objects to
targets,

Parallel processing is then carried out as follows, First set

Ak)_ L (k)
w,'=1 X -6
£ 12 pf(l) (X)ll (x), (TV-6)
(k-1) th
where p , as defined earlier, is the location distribution of the n~ target

through n(k 1) st stage nrocessing and A (k) i5 the 1 th object location distribution
observed during the kth stage. Next normalize to obtain

A
k)
w1
A(k) (Iv-7)
fe S
K ’lI‘he quantities wfk) given in equation (IV-7) are direct analogues of the quantities
o ¥+ %) defined by equation (IV-4) except that whereas in sequential processing object

lo%ations were matched with targets one at a time, under parallel processing a
simultaneous assignment of all objects to targets is made.
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The update of the target locations is theun based on the following relationship:

p Ve ® ()
p:lk)(x): Z;‘(k)wgk) n (k_l)f*(nl(k) , (IV-3)
feH y‘z‘s P (y)'/\f*(m )

where f* is the inverse function of f, and

(k)

— H * s .
}\f*(i) =1, if f*(i) is not defined,

Considerable experimentation has been carried out using both the sequential and
parallel methods of processing. Experience has shown that both approaches
function reasonably well when the actual locations of the targets remain spatially
separated so that there is little possibility for confusion of their identities.
However, as the number of targets increases and correspondingly the likelihood
that unresolved object location distributions will be generated also increases,

the assumption that the target locations can be treated even approximately as
independent seriously degrades target location prediction performance, the problem
being more acute in the case of sequential processing than parallel processing.

The specific symptoms of the breakdown in processor performance include
(1) possible permutation of target identities and (2) the doubling up of target
location distributions, The permutation of target identities occurs when the
estimated location distribution of target T , for example, corresponds closely
to the true position of target T_, and vice Versa. The doubling up phenomenon
occurs when estimated location distributions on two targets appear to be virtually
identical when in fact there is only one actual target whose position is compatible
with these distributions. In such a case, for example. the computed location
distributions of both targets T_and T_ may accurately fit the actual location of
target 'I‘1 while target T_ is ac]tually off in another part of the operating area
with a location not covered by any of the computed target location distributions.
The two pheromena of target identity permutation and doubling up are related
in that one may lead to the other; both are extremely damaging to proper prediction
performance. Typical examples illustrating this kind of anomalous behavior using
ASWIPS will be given in the next section,

In summary, tr work has shown that it appears impossible to obtain a completely
satisfactory information processing model based nn the assumption of target location
independence. As a result we have developed a third form of processing, called
Extended Memory processing, which is based on the key observation that while the
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target locations are, in general, not independent, they are conditionally independent
given a specific assignment of all past sensor responses to the targets, This simply
says that if one knew which object location distributions (or more fundamentally
which raw sensor responses) were caused by which targets, i,e., if one knew the
correct response pattern to target association, then the correlation in target
locations induced by such observational data would disappear. In general, the
correct such association is not known. However, the target locations can be
effectively uncoupled by first conditioning on a possible response pattern to target
association, then performing a conditional update of target locations based on such
an association, and finally removing the conditioning by averaging over all

possible such associations,

Observe that under Extended Memory processing, conditional target location
distributions must be retained in processor memory for each association assigned
a nonzero weight. Extended Memory processing thus requires a substantially
expanded memory capability over the other processing algorithms and this, as
we shall see in the next section, principally accounts for its improved prediction
capability,

We remark that Extended Memory processing is a form of generalization of
parallel processing. Under parailel processing the conditioning is based on an
assignment to the targets of the response patterns observed during a single update
period. Under Extended Memory processing the conditioning is based in effect
on a simultaneous assignment to the targets of all response patterns observed to
date.

The mathematical description of Extended Memory processing is somewhat
more involved than that of sequential or parallel processing, Thus a detailed
theoretical development of Extended Memory processing is relegated to Appendix
B which also includes some comments on the computing and memory storage
requirements imposed by this method of processing.

Comparison of Processing Algorithms Using ASWIPS

This section will be devoted to a series of numerical examples and comparisons
of the various updating algorithms we described in the preceding section. All such
numerical results have been obtained using the computer model ASWIPS.

Example 1. In our first example we assume that there are three targets
operating in a 10 x 10 cellular grid according to the motion model described
earlier under which during a given update stage a target is equally likely to
move from its current cell to any one of the adjacent cells,

The assumed target tracks are shown in Figure IV-1 and the prior distributions
for the three target locations are shown in Table [V-1 below. Circled target locations
in Figure [V-1 indicate target detections at those locations. We assume that near
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FICURE IV-1

ACTUAL TARGET TRACKS

(Example 1)

Note: k indexes update stages witn the corresponding target locations as indicated.
Circled target locations indicate detections
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the end of the first update stage, two contacts are observed: one in the cell (5, 5)
and a second in the cell (6,6). The scusccs involved are assumed to have very
short range and, therefore, a contact guarantees the presence of a target in the
cell containing the sensor. Thus two object location distributions are observed
during stage 1: the first placing a target with unit mass in cell (5, 5), the second
placing a target in the cell (6, 6).

After an update for motion during the first stage and processing for the first
stage contacts, the posterior target locations under Extended Memory processing
are as shown in Table [V-2,

One observes from Table IV-2 that both of the contacts are unresolved. The
contacts in celis (5, 5) and (6, 6) could each have been caused by any of the three
targets. Consequently, Table IV-2 shows a sharp concentration of target mass
in cell (5, 5) in the location distribution of each target and a similar peak in cell
(6,6).

We now turn to the second processing stage. We assume that during this
stage a single contact was obtained in cell (3, 8). Referring to Table IV-2 one
observes that even allowing for target motion only T_ could have caused this contact,
and therefore it is known with certainty that T_ is located in cell (3, 8) at the end
of the second update. (Again we assume that a-ne contact occurred at or near the
end of the update period.) Now it becomes possible to fit some pieces of information
together, T_ is known to be in cell (3, 8), Since T, could have moved at most one
cell since the last update, T_ could not have causeg either of the contacts in cells
(5,5) or (6,6), Thus, virtua%ly all of the ambiguity in the problem has retroactively
been resolved by the latest contact, In particular, T_  probably caused the contact
in cell (5, 5), and T3, the contact in (6, 6), although thére is a small chance of the
alternative assignment, Allowing for one update period of additional target motion
the locations of the three targets at the end of the second update period must be
as shown in Table IV-3.

As noted earlier, this example is based on the use of Extended Memory processing
in performing the updates for sensor contacts. Substantially different results are
obtained using either sequential processing or parallel processing, These results
are shown in Table IV-4 and IV-5. One observes that, while in all three types of
processing, perfect localization is obtained on target T_, the degree of localization
on the other two targets depends on the method of processing, and the correct
degree of localization, as supported by the contact data, is given only by Extended
Memory processing.

Example 2. Figure IV-2 below shows the actual track of two targets which form
the basis of our second example, As in Example 1, the circled target locations
correspond to sensor contacts on that target. Thus in the example there were five
contacts on target T_, one each for five successive update periods, In contrast
there is only one contact on target T, that occurring during the first processing
stage, Once again we assume that aﬁ sensor contacts occurred sufficiently close
to the end of an update stage so that subsequent target motion during that stage is
negligible,
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TARGET LOCATIONS DISTRIBUTIONS AFTER lst UPDATE

(Example 1 Extended Memory Processing)

Target T1

Note: The entry in each cell divided by 1000 gives the probability of finding

the target in that cell.
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TABLE IV-3

Target T3
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Target T3

TABLE IV-4
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FIGURE IV-2

ACTUAL TARGET TRACKS

(Example 2)

Note: k indexes update stages with the corresponding

target locations as indicated.

Circled target locations indicate detections.
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We assume that at the initiation of processing essentially nothing is known
about the prior locations of the two tarycts. Consequently, it is assumed that the
prior location distribution of each target is uniform over the 10 x 10 cell grid
with each target initially having probability .01 of being in any cell,

As shown in Figure IV-2, contacts are observed on each of the two targets during
the first update stage: one placing a target in cell (7, 3) and the other placing a
target in cell (4, 8). Because the prior target location distributions are uniform,
there is no basis on which to show a preference in deciding which target caused
which response. As a result, under either parallel processing or Extended Memory
processing, .5 of the mass of each target would be assigned to each of the critical
cells after processing these two contacts. Sequential processing, however, would
introduce an artificial asymmetry into the problem and assign a total of somewhat
more than a unit target mass to the cell containing the second contact processed
and correspondingly somewhat less than a unit mass to the cell containing the sensor
contact processed first. This behavior is simply another intrinsic flaw in sequential
processing,

Table IV-6 shows the target location distributions after the fifth processing
update using the Extended Memory processing technique, One first observes that the
location distributions for targets T_ and T_ are identical, as in fact they should be
in view of the complete symmetry in the nature of our information about their locations.
A contact was observed in cell (4, 3) at the end of the fifth update period and Table IV-6
shows that this contact has been allocated equally to the two targets, No responses
have been observed on target T_ since the first processing stage. Thus each target
map shows a second mode whicﬁ is quite diffuse in contrast to the mode induced by
the contact in cell (4, 3).

An overall assessment is that, at the end of the fifth update, a target (we do not
know which one) can be placed with certainty in cell (4, 3). In addition, there appears
to be a second target somewhere in the general northeastern portion of the operating
area. One concludes that the results produced by Extended Memory processing are
quite consistent with the underlying sensor contacts and appear to represent about
the best localization that the available information supports.

Table [V~7 shows the analogous results for Example 2 based on parallel processing
after the fifth update (the results under sequential processing are quite similar). Again
the two target location distributions are identical because of the basic symmetry in the
problem, In addition, each distribution shows a sharp mode in cell (4, 3) corresponding
to the recent contact there, although parallel processing predicts an expected number
of targets of approximately 1, 07 in contrast to the 1, 00 predicted by Extended Memory
processing.

The most dramatic difference between Tables V-6 and [V-7, however, lies in
the distribution of mass outside cell (4, 3). Parallel processing predicts that a second
target is likely to be found in the general vicinity of cell (4, 3) with extremely little
likelihood given to the possibility that either of the two targets is to be found in the
eastern half of the operating region.
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TARGET LOCATION DISTRIBUTIONS AFTER Sth UPDATE

(Example 2 Parallel Processing)

Target T1
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TABLE IV- 7 __

Target T2
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Example 2 demonstrates what we have come to refer to as the quiet target
prublem. The quiet target problem arises from the propensity of an information
processor employing either sequential or parallel processing to overreact to a
string of responses on a noisy target spanning a number of update stages when,
at the outset, the initial location distribution for that target had significant overlap
with the location distributions of one or more other targets that did not generate
sensor responses during the same period, The overreaction that takes place is
the gradual buildup in the area of the contact string of the probability mass not
only of the target that is actually causing the contacts, but also of all other "quiet"
targets that initially had some chance of being the responsible target. The net
result is that the processor attempts to explain the string of contacts by placing
with virtual certainty the locations of all of the targets it can in the area, rather
than by simply attributing the chain of contacts to a single target.

Exactly this sort of situation typically arises in applications when one target
is intrinsically more noisy than another. In this case the noisier one tends to
produce a higher frequency of contacts and eventually the doubling up phenomenon
described earlier takes place. This means that little or no overall probability
is assigned to the area near the quieter target. Eventually this quiet target,
however, will cause a contact, in which case the decision of the processor about
the identity of the quiet target may be driven by extremely small tail probabilities
in the distributions of a number of targets whose actual locations may be far
from the location of the contact. The result is a very dramatic shift in the predicted
location of such targets, This then is a typical source of the permutation problem
which we also described earlier,

In short, it should be clear from our two examples that Extended Memory
processing shows substantially improved target location prediction performance
over the other two processing algorithms. Future developmental work on
Extended Memory processing will concentrate on generalizing its use to include
negative information and false targets,
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(b]

[c]
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APPENDIX A

AUXILIARY FORMULAS FOR EVALUATING GAUSSIAN INTEGRALS

This appendix gives the formulas of multivariate Gaussian analysis and matrix
relations which are needed in the analysis. Reference [h] is a standard reference
for the Gaussian analysis.

Expressions for Multivariate Gaussian Quantities

The multivariate Gaussian density function on N-dimensional space is
f(x) = k exp ~{x'P"Ix}

where P is the covariance matrix of x, and k is a constant so chosen that the
integral of f over RN equals 1. It is well known that

-‘1; = IRN exp —%{x'P-lx} dx = (27r)N/2 J_l;_l—
where ,Pl is the determinant of P. Clearly, it is true that for any N-vector d,
[~ exp -H{-d)' P x-d)} dx = [N exp - {x'PIx}dx,
as can be seen by a simple change of variables.

Matrix Identities

Some useful identities for symmetric square matrices will now be given.

(A-1)

(A-2)




ey

Completing the square. The first one is known as completing the square. Let

F(z,v,0) = (z-y)' Az~y) * (z~0)' B(z-0)
be a second order homogeneous relationship in z where A is a positive definite
matrix and B is a positive semi-definite matrix.
We claim that

Fz,y,0) = (z-6)' C(z~8) + (y-0)' D(y~0)

where

C = A+B,

D = B-B(A+B)"!B
= A-A(A+B)" 1A
= AA+B)" !B,

6 = C"l(ay+Bo)

v + (A+B)"1B(0-y).

In order to establish the relationship, note that
F(z,v,0) = (2-6)'C(z-6)+L
where L is independent of 2. Setting z = 6§ we then have

L= (6-y)'A(6-y) + (6~-0)'B(6-0)
= (y-0) BA+B)"l A A7 AA+B)"! B(y-0)

+ (y-0)' A(A+B)"1 B(A+B)™! A(y -0).




But observe that

B(A+B)"l A = (1-A@A+B)"1) A

A -A@A+B)"1 A

1

A(A+B)~1B,

I

whence we obtain, as claimed,

(v-0)' A(A+B)"1(B+B A71B) (A+B)"1 A(y-0)

-
1

™~
1

(y-0)' A(A+B)"1Ba+A"1B) 1+A1B)1(y-0)

(v-0)' A(A+B) 1B(y-0).

In particular, if B is invertible, then
L= (y-o) OB (y-o).

Inverse of a partitioned matrix. Let a matrix M and its inverse M'1 be
partitioned into submatrices

A ! B

M= |----- o , (A-9)
B'{ C
D | E

Mlo |- T , (A-10)
E'! F

where the dimensions of A and D are the same, but possibly different from the
dimensions of C and F. Define auxiliary matrices S and T by

S = A'l B, (A-11)
T =C -B'S, (A-12)
A-3




Then

D - A test sy, (A-13)
E = -ST !, (A-14)
F=T1l (A-15)
Note also that
Im| = Tal/lF] = [a] - |1]. (A-16)

Equations (A-13) to (A-16) can be used directly to find M~1 and IM-1 , given
A-1, B, C, and |A|. Alternately, given M~! (i.e., D, E, F) and |M~1| these
same relations can be solved to yield l AI and A~l. For this latter purpose,

observe from (A-14) and (A-15) that
T =F!
S = -EF ! t
so that f%
Al - p-EEF Y - D-EF lE, (A-17) 3
i
Al =1/|ml - |F|] = MY /|F]. (A-18) i
Dimension reduction . Let i
-1
Fy) = y-a)'M  (y-a) (A-19)

where M and a are given. Using the partitioning of (A-9), let M, M-l, a, and y
be partitioned as:

where the dimensions of D, A, ¢, and Y, a%e compatible. Then (A-19) can be




re-expressed as:

HFO) = tky—a)'z'lwa-or*T (A-20)
where
T =D-EF ‘E', (A-21)
o =a+£m’1w3-pp (A-22)
TR, B - h), (A-23)
=] = |m|/|F]. (A-21)

These are all in terms of entries in M and a.

The point of recasting (A-19) into the form (A-20) is to reduce the dimension of
the variable y(y (prior to integrating over ya). Observe that ¢ is linear and T is quadratic
iny . ‘

Another matrix inverse result. * Let a matrix A and its inverse B = A_1 be partitioned

into submatrices as follows:

Ar Az Ao
A =

Ba1 ez By

A, A
831 a2 fg3
B Bz By

B=al- B B B
3 21 22 23
3 Ba1 Byp By

* This section is based on work done by R. V. Kohn and S. S. Brown.




0 0 0
i If B and | B l are known, what is (A + A)—l and its determinant? Now
@a+a)t = ag+alan™ = @+ Baylal, (A-25)
where 1 is the identity maatrix. Furthermore,
I11 B12A22 0
+BA) =
(I+BA) 0 122+B22A22 0 , (A-26)
0 B A I
32 22 33
where Ill’ 122, and I33 are identity matrices.
Let
p=a,+B s ) (A-27)
2 2222
By direct evaluation
-1
lavsay™ [ = |81,
so that
-1
|a+al ™ = |p] - |B]. (A-28)




The inverse of (8) is, by inspection

Ly "Biahpf O 0 -Byphy,B
-1, -1
= 0 = + -
(I+A” A) 0 8 I 0 B-1,,
-B -
0 32%2f 33 0 Bygfaab
Now
1. =@_.-gYg=-B A
B 22 22 A 22 223 )
Hence,
0 A
B1a%00P 0
“1a.-1
NS 0 A ,
ad+A =2 : Booto0f 0
0 B A
32" 22P 0
and A__B = ((I,+B )A—l)-1 = (A_l +B )_1 so that (A-25) becomes
22 2 T22 22722 22 22
B
a+nt=B{B_ Jot+B )@ B B )
22 22 12 22732
22
B3y

(A-29)




APPENDIX B

EXTENDED MEMORY PROCESSING METHODOLOGY

In this appendix we develop the mathematical theory underlying the information
updating algorithm we have called Extended Memory processing.

As the examples in the fourth section of Chapter IV clearly demonstrated, a
Bayesian updating scheme, assuming target location independence in a multi-target
environment and operating solely on the marginal target location distributions,
generally runs into serious trouble when confronted with unresolved sensor responses.
A sensor response (or response pattern when preprocessing is employed) is said
to be resolvable if one can, at least in a Bayesian statistical sense, infer uniquely
the identity of the target that generated the response. In ASW applications the
resolvable responses may be limited to port arrivals and departures and any sen-
sor response such that the prior target location distributions at the time of the
response place only one target within possible detection range of the associated
sensor(s).

In the first section below we introduce the notion of a response pattern-to-target
association distribution and describe the use of such distributions in updating target
location distributions. The updating of the response pattern-to-target association
distributions themselves is described in the second section.

Response Pattern-to-Target Association (Scenario) Distributions

We begin by indexing the response patterns Cl’ Cy,... in order of processing
(usually approximate chronological order). Included in this list are all target port
departures and arrivals. Also index the targets Ty, Tg,... in order of port departure.

We assume here that all contacts are on valid targets. The generalization to false
targets is reasonably straightforward.

We next define the random variables

N; = index of the target that caused response pattern
C,,i=1,2, ..
l! ’ ’




and the random vector ! :

[ 8. = (N, Ny - s N).

Suppose for the moment that the N; were not random variables but deterministically
known at the time each response pattern was reported to the processor. Assume, for
example, that the radiated noise characteristics of the various targets are sufficiently ;
different to permit this degree of target identification. The target coupling problem
would then completely disappear since the target location distributions updated for i
! both motion and responses, but conditioned on a specific association of responses with
targets, would be conditionally mutually independent. In making this statement,
we of course assume that the targets may be treated as moving independently.

Unfortunately, there are many cases in practice in which the identity of the
target that generated a specific response pattern cannot be unambiguously inferred.
Nevertheless, our statement about the conditional independence of the target location
distributions given an assignment of all past responses to targets points the way
toward a possible solution to the target coupling problem. The fundamental idea in
Extended Memory processing is simply to produce a separate estimate of each
currently active target's location distribution for each possible scenario, i.e., for
each specific assignment of all past response patterns to targets. Weighted averages
of these conditional location distributions, the weights being the probabilities
associated with each scenario, would then give current estimates of each target's
(unconditioned) location distribution.

To make all of this more precise requires some work. The first step is to
define the probability distribution on scenarios after processing the ith joint response
pattern:

Fi(nl’ n ,n) = Pr{N1 =n,, Ny =n

gr s o Iy , N, =n}. (B-1)

2 2t i i

We suppose that by one means or another, estimates of the F, are available for each
index i. A Bayesian procedure for generating such estimates will, in fact, be described
in the next section. We now describe a recursive procedure for developing posterior
estimates of (i. e., updating) the target location distributions. This procedure makes
use both of the current distribution orn scenarios and the prior target location distri-
butions.

Associated with each response pattern index i, there is the index k. of the
information processing update stage at which C; is processed. In current ASWIPS
processing, k; is simply the index of the first update following the occurrence of Cj.
Also define iy to be the index of the last response pattern processed through the
end of the kth stage. Thus, Cik+1, Cik*z’ cee s Cik+1 is the sequence of response




patterns processed during the (k+1)St stage update. If igx+1 = ik, th'e:m no response
patterns were observed during the period petween the kth and (k+1)S" updates.

We now define the conditional target location weights

k) _ 3 target n is in cell x at _ - _ B-
Py x| St - By ’“ik) PT ) ime of the k' stage update |1 1" Na g7t Nik_nik »(B-2)

where it is to be understood in this definition that these weights p(k) reflect target
motlon through the end of the kth update stage as well as all response patterns through

lk

The key to Extended Memory is the following identity expressing the conditional
independence of the target locations given the scenario:

Pr xa‘)=(x1,x2,--.,xN)|Sik§ = ﬂl Pr; ) =x_ Is s (B-3)
'k

where, as in Chapter IV

Xx(lk) = grid cell location of nth target at end of update k,

. 9

k) _ k) L&) k)
X (K] Ky e X0,

Suppose now that i ,; > iy so that at least one contact ‘Yka)s reported between the
kth and (k+1)St updates and we wish to update the weights p, ° to a revised set pl(.‘k+1
accordingly. The case i 41 = ik requires only target motlon and negative information
(not considered here) updates.

Let p,(,kﬂ) ( l Sji ) denote the conditional target location distributions obtained from the
(k) Sik) updated for (k+1)s stage motion and negative information. The next step
xs to generate the pﬂ, 1) (. Sik+1) from the pg‘ ) (* l Siy ).

Fix a target index n and suppose

S = (nl, n

: U

k 2 L

and




+1
If none of the indices njg+1, ..., Njg4 iS equal to n, then k )(- | Sig = @1,N2,...,N4)) =

pk+) (. | Sik+1 = (11,02, . .+, Djj» Nig+1 s+ - -, Njj47)).  If one or more of these indices is

equal to n, then denote the ordered list of such indices by v{®), v, L v(,gzl Thus,

the given association Sji,; assigns to target n precisely the m response patterns

C , C y «eey C
g S O

out of those observed between the kth and (k+1)St updates.

Let

Avgn), Avgl), s e ey Avf‘gi

be the object location distributions corresponding to the response patterns

Cv§n), Cvgﬂ)’ ey Cv(n) )

m
n
Then
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“ k1 12 R Rl k+1
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7\ R e o )-p (vl ) o,n, nik)

Equation (B-4) gives the updating formula for the conditional target location dis-
tributions. It remains to show how the unconditioned target location distributions are
obtained. For this we define

p(:) (x) = Pr{target n is in cell x at time of kP stage update},

where, as in the conditional target location distributions, it is to be understood that

the pg‘) reflect target motion through the end of the kth update as well as all response
patterns through Cik . Then, lettingo/' g denote the set of possible k-vector values
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p(k"l)(x) - F. (@ (k+1)

" TR ) p (xIS, =(n_,n_,...,0N, ))-
..,nik )€ A k+1 k+1 12 kep O +1 12 e

(n,,n
1 +1

2"
(B-5)

Thus, the unconditioned target location distribution for target n is an overlay of
the conditional target location distributions weighted by probabilities Fij 4q of the
corresponding scenarios. Observe that equation (B-5) has the effect of relating the
current assessment of the location of target n to the scenario weights not just of the
latest round of response patterns, Cjp+1,.. C1k+ , but to those of all past response
patterns. Thus, changes at the (k+1)st update in the scenario weights of response
patterns first recorded at earlier updates can have significant impact on the (k*])qt
stage target location distributions. This memory feature is an essential advantage
of Extended Memory processing over both sequential processing and parallel rrocessing.

Before turning to the Bayesian updating of the scenario distribution, a few
comments are in order on the computational feasibility of the target location distribution
updating procedure we have just described.

It would appear superficially that the number of conditional target location
distributions which must be stored in computer memory and updated at stage k is on
the order of N - 21k, where N is the number of active targets at stage k and, as
defined earlier, iy is the number of response patterns processed through stage k.
Since i grows more or less linearly with time (assuming a roughly constant data
rate), 2lk can become quite large for a lengthy processmg period. With N = 7 and an ,
average of 2 response patterns per up7date, N . 2%k = 7. 2100 5ger 50 updates. This ;
number is even larger than the (1000)' elements of the state space associated with
the multivariate joint location distribution for 7 targets in a grid of 1000 cells, making
the situation look grim, indeed.

Fortunately, the situation in ASW application is not nearly as bad as the extreme
we have described. First af all, many response patterns are resolvable, i.e., uniquely
assignable to an identifiable target. Those response patterns which are unresolved
generally are associable with one of two targets or, perhaps on rare occasions,
with one of three or four targets. Another factor is that it frequently happens that
even when a response pattern CJ is unresolved, it is uniquely associable with an
earlier response pattern Ci(i < j) in the sense that C; (within the accuracies of Bayesian
inference) must have been caused by the same target (whatever its true identity) that
caused C;. This situation arises when F;(...,n;,...,n;) = 0 for nj # n;. In such
a case Cy is more or less redundant and can be effectively dropped (by summing on ny)
from the list of response patterns in favor of C




A final factor in reducing the dimension=lity of the problem relates to target
motion. Suppose response pattern Ci was observed and processed at time ti.. Then
as time passes, the current location distribution of the target that generated Ci diffuses
until a point in time is reached at which that distribution is spread over such a large
part of the target operating region that its usefulness in target localization is virtually
nil. At this point C can reasonably be discarded from the list of active response
patterns (again by summmg over n, in the current scenario distribution).

To put all of this in perspective, consider a situation with 7 active targets in
which only the last 8 response patterns are carried in the scenario distribution, say
Cy, Cg, ..., Cg. Suppose C4, C7, and Cg are resolvable with Ny = 3, N7 = 6, and
Ng = 1. In addition, assume Cj, Cg, and Cg are unresolved relative to Ty and I‘-
Finally suppose that C3 and Cg are unresolved relative to T4 and Ty but that Cg and
C¢ are necessarily due to different targets. The number of conditional target location
distributions carried in computer memory would then be: 3 +2 + 23 42+ 2 = 23, which
is a far cry from 7 - 2° = 1,792. While this is only a representative case, it does
tend to support the conclusion that the updating scheme we have described is computa-
tionally practical.

We now finally turn to the problem of the Bayesian updating of the distribution
on scenarios.

The Bayesian Updating of the Distribution on Scenarios

We assume that the first response pattern C1 is a port departure by target \'y
and that Cy is the only pattern processed at the first update. These restrictions
can be modified to correspond to any initial conditions including the allowance for
holdover targets from earlier (prior to the start of the processing period) port
departures. However, the case F{(1) = 1 corresponds to the current setup in
ASWIPS, so we make the stated specialization.

Suppose, inductively, that, the Fi @, Ngss s Ny )} have been computed for every
(ng, N9, ..., nj) e N k- We now w1sh to generabe F1k+1 If ig+7 = 1), so that no
response patterns were observed between the kth and (k+1)St updates, then F; TR Fik'
their domains of definition, in particular, being identical.

Suppose then that ig+1 > i with (following our earlier notation) the responsc
patterns Cll\ 1 ]\+2 , oo ClkJr generated between the kth and (k +1)St updates.
Consider a particular aqs1g'nment of these i, 1-igx responses to the active targets,
i.e., assume

Ni = nl. for lk <icx 1k+1'
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Let A be the object location distribution for Ci’ i <i<i . Then

F_ (o,

i 1"

N
a1l
n=1 x

where, as earlier, the p, (xl Sik) are the conditional target location wexghtq prior
to the processing of C, i? ik < 1 < ig+1 but current to the end of the (k+1)s update stage
for target motion. In equatlon (B 6), « is a renormalization constant to insure that

This completes our description of the basic Extended Memory Bayesian processing
procedure.

k -~ "k+1
o5, ) =
k+1

o k+1) = (n,n n )})F, (n,n n, ) (B-6)
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