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ABSTRACT

Problems of optimal surveillance and contact information processing are
investigated with ASW applications in view. The optimal allocation of ASW
surveillance resources is investigated, by way of Bayesian statistical analysis,
in a somewhat idealized surveillance situation involving a moving target and the
possibility of false contacts. In the problem considered, the optimal allocation
of surveillance effort is shown to be the solution of a certain dynamic programming
problem. The optimal allocation is determined numerically in a number of special
cases and compared to several simple allocation policies. The properties of
these various policies are investigated through analysis as well as through a number
of numerical examples. Particular attention is paid to asymptotic behavior of
long term surveillance policies. One suboptimal policy, the maximum-information-
gain policy, is shown to have a number of very desirable properties.

Procedures for processing ASW contact information are developed with two
distinct applications in mind. The first application is directed toward estimating
the track of a specified target as well as toward drawing inferences about overall
target behavior patterns from contact data on a number of different targets. The
approach is to combine, using Bayesian methods, contact do +  a scenario-
based parametric model for target motion. Statistical estiri -ocedures are
given for estimating the track of a specified target from contaL ita. Additionally,
methods are given for estimating the parameters of the motion model from contact
data.

The second application is processing ASW contact information in a multi-target
environment where there is ambiguity in assigning contacts to targets. Several
Bayesian statistical methods for the systematic generation and updating of target
location predictions in a multi-target environment are developed. Of the ones
considered, Extended Memory processing is shown to be the only computationally
practical method that makes accurate use of the observational data.
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PREFACE

This is a report by Daniel H. Wagner, Associates to the Naval Analysis
Division of the Office of Naval Research (Code 431) on a research investigation
performed under ONR Contract No. N00014-76-C-0676. This report is directed
towards developing methodologies for processing ASW surveillance information
with the objective of obtaining estimates of target location. It is intended primarily
for use by analysts. The methods have been motivated by actual ASW information
processing requirements. The goal has been to achieve useful and computationally
practical methods which are suitable for real-time assistance to ASW surveillance
operations.

We would like to express our appreciation for the excellent cooperation and
support that has been given to this work by Mr. J. Randolph Simpson and CDR Ronald
James of the Naval Analysis Division of the Office of Naval Research.

Additionally, we would like to recognize the capable efforts of our colleagues
B. D. Wenocur who programmed the ASWIPS model discussed in Chapter IV, and
R. V. Kohn and S. S. Brown who contributed a section to Appendix A.
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SUMMARY

This report is directed towards the problem of providing estimates for a
submarine target's location under various conditions. The objective is to develop
useful and computationally practical tools for obtaining such estimates. The
principal application is the continuous long-term localization of a target or
targets through the utilization of surveillance efforts. Much of this current work
has been motivated by the methods, results, and conjectures contained in
reference [a]. fz

Chapter I provides a brief introduction, and appendices A and B provide
supplementary material. The issue of optimal surveillance in a false contact
environment is explored in Chapter I. Processing ASW contact information so
as to obtain estimates about the track of a specific target as well as overall
long-term behavior patterns is the subject of Chapter III. In Chapter IV, a
computationally practical method for processing ASW contact information in a
multi-target environment is given. Computational results are included in
Chapters II and IV. Unfortunately the work presented in Chapter III has not as
yet progressed to that stage. ,-_

Optimal Surveillance

Chapter II addresses the problem of optimal surveillance against a moving
target in a false contact environment. Although the surveillance situation considered
is somewhat idealized, our results provide practically useful guidelines for considering
adaptive surveillance operations. The goal of this research is to place a practical
and useful theory of surveillance on a sound theoretical basis.

The problem of specifying the location of a target as it arises in surveillance
problems is substantially different from the problem usually considered in search
theory, i.e., the problem of detecting the target with maximim probability. The
difference is a consequence of the fact that search theory generally assumes that a
detection will also provide the desired localization of the target. Thus, the
detection itself is the issue of importance. In surveillance, the issue is localization
and its maintenance over time and this goal may be achievable with or without
detections or contacts. In addition, surveillance also takes into account the fact
that a problem may not end with a contact because of poor localization information.

v
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The surveillance operation considered here involves a moving target located
in one of N cells, C1, C2 , ... , CN. The precise cell containing the target is
unknown, but at the current time a probability distribution for the target's location
has been established. Thus for I 1, 2, ... , N, let x, be the probability that the
target is currently located in cell C1 . Suppose that our best estimate for the
target's location is that cell which contains the target with highest probability. *

Indeed if xk > xj, all l / k, then the target is most likely to be in cell Ck, and the
probability that this estimate is correct is xk. We seek to apply our surveillance
effort so as to maximize, at the end of the surveillance operations, the probability
that the target is in the high probability cell.

The surveillance operation itself is performed in a sequence of discrete time
stages, each of duration A time units, by a single surveillance sensor. We are
permitted only K stages, and we must use the sensor so as to obtain tihe best
possible estimate for the target's position after these K stages. At the start of
the surveillance operation, the fixed time at which we must obtain the best estimate
of the target's position, the horizon, is KA units into the future. Our measure of
effectiveness is the probability that the target is in the high probability cell at the
time of the horizon KA.

At the beginning of each stage, a cell is chosen and is then investigated for
the amount of time A. The choice of cell, in general, depends upon the number of
stages remaining in the operation (i.e., the amount of time remaining until the
horizon), the surveillance capability of our sensor, our target motion assumptions,
and the current target location probability distribution. The sensor response
results are then used to update the target location probability distribution. Target
motion is assumed to take place at the end of each stage, and results in a new
target location distribution. The next stage begins with this new target location
probability distribution and is the beginning of a surveillance operation involving
one fewer stages. The phasing of these various activities is indicated in Figure S-1.

Observe that the surveillance operation described above is dynamic in that
the allocation of effort at each stage depends upon the results of the previous
stage. This is comparable to, say, a VP operation where flights are flown daily.
The results of each day's effort together with the target motion assumptions are
then used to decide the allocation of effort for the next day's flights.

In order to illustrate the concepts involved, consider a surveillance operation
performed on three cells. Figures S-2 and S-3 compare the expected degree of
target localization provided by three surveillance plans against a moving target
in a false contact environment. Figures S-2 and S-3 represent the same target
motion assumptions and the same surveillance capability. The surveillance capability

It is possible to consider other measures of target localization, for example,

the probability that the target is located in the two nighest probability cells.
Such generalizations are discussed in detail in Chapter I.
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is defined by the sensor response matrix R [rij I, where r i , is the probability
of a response from investigating cell i if the target is locate in cell j. Target
motion is assumed to be a Markov chain with the transition matrix M. In both
figures the target is restricted t,. one of three cells. In Figure S-2, however,
the prior target location distribution is assumed to be (1, 0,0) whereas in
Figure S-3 it is (. 5,. 1, .4). The K-stage-optimal surveillance plan is the
optimal policy. The 1-stage look-ahead maximum-information-gain policy
maximizes at each stage the expected information content of the posterior
probability distribution at the end of the stage*. The highest-probability-cell
policy investigates at each stage the current highest probability cell. Both
the 1-stage look-ahead maximum-information-gain policy and the highest-
probability-cell policy are very easy to determine computationally.

In order to understand these figures, consider the situation presented in
Figure S-2. The target is assumed to be localized to a single cell at the start of
the surveillance operation (the initial target location distribution is (1, 0,0)).
Suppose first that no surveillance effort is applied. Because of target motion
the degree of target localization will decrease with time. The no surveillance
curve (the bottom curve in Figure S-2) represents the expected degree of target
localization one can attain after a specified number of stages. The other curves
similarly represent the expected amount of target localization one can expect
after a specified number of stages using the various surveillance plans. The
upper curve is the theoretical maximum expected probability that the target will
be localized to a single cell.

Observe that the 1-stage look-ahead maximum-information-gain policy performs
almost as well as does the optimal policy. This behavior has been observed in
most of the surveillance situations studied to date (see for example Figures 11-2
through 11-9), and so this policy appears to be a reasonably good suboptimal
surveillance policy.

Figures S-2 and S-3 also illustrate, quite dramatically, the conflict between
target motion and the application of surveillance effort. In Figure S-2, for
example, it is assumed that the target is completely localized to a single cell at
the start of the surveillance operation (i.e., the initial target location distribution
is (1,0,0)). Because of this complete localization, a surveillance operation lasting
only a few stages will have a high probability of success, even if no surveillance
effort is applied. Because of target motion, however, the degree of expected
localization decreases rapidly to the limiting values indicated in Table S-1. A
surveillance operation against a moving target gains little after a large number
of stages from the knowledge that at the beginning of the operation the target was
perfectly localized.

The information content of the probability distribution (x1, .... xN) defined in

N-cells is the nonnegative number 2 x. lnx + In N.
I

viii



0

0 C)
Cd It

Cd LO~ LO~

.0

o 0

$4 CdCd 0- H pq4 0
0

- C-1
Cd Cd

x . .0 . ) ?i

0 b

00

040

1- 4 CS-

Q) I

0 X 0

cd
0 P!- Cdz br- E>

o m .0 Q0 10

UOTITSOd s,1uj~ 2uT~4p3.dS Siloazujo jo Alillqeqoz~

ix



H a - I
-h M

- a4

00 -

0 C) J., bb
bf ~ ) Cc

ca >d

bI- -1

- 0

-d C,3

0.

-0 - t n

U0IlO( 0~ajj ujxd loao oAllvoc

x1



Observe that if no surveillance effort is applied, the initial complete localization
to a single cell will decay to a probability of 1/3 that the target is located in any
given cell. The interaction between surveillance and target mution is reflected
in the difference between the prcbability of correctly specifying the target's position
in the no surveillance case and that provided by the various surveillance plans.

In Figure S-3 the target location distribution at the start of the surveillance
plan is (. 5, .1, .4), so that the initial probability of correctly specifying the target's
location is . 5. For surveillance operations lasting less than five stages, the optimal
surveillance policy and the maximum-expected-information-gain policy are able
to overcome the effects of target motion and slightly improve the extent of target
localization. For surveillance plans lasting more than 10 stages, however, the
optimal surveillance plan (and therefore the other plans as well) are unable to
overcome the effects of target motion, and so the initial localization is better than
the expected extent of target localization at the end of the operation.

An extremely interesting aspect of Figures S-2 and S-3 is the rapidity with
which the expected degree of target localization converges to a fixed value. Moreover,
as indicated in Table S-1, for a given surveillance plan the asymptotic expected
target localization depends only on the surveillance plan and not on the initial
target location distribution. This indicates that in the case at hand precise knowledge
of the initial target location distribution is unimportant to the long term ability
of a surveillance system to localize a target.

Because of the speed with which the payoffs for surveillance plans converge to
their limiting value, this value reprecents a good but simple way of comparing
surveillance plans without introducing a tune horizon. The existence of these limits
for the K-stage-optimal surveillance plans are established in Theorems 11-2 through
11-5.

The surveillance system described and illustrated in Figures S-2 and S-3 is an
example of a homogeneous surveillance system. A homogeneous surveillance system
is one in which the sensor response matrix is of the form R = 1rij I where

P if i j ..

r*
S X if i =j

Additionally, observe that the target motion transition matrix has the special form
M [dij where

xi



TABLE S-i

LIMITING VALUES FOR EXPECTED TARGET
LOCALIZATION PROVIDED BY VARIOUS SURVEILLANCE PLANS

CASE I CASE H1

Optimal Surveillance 496 496
Policy

Maximum-Expected-
Information-Gain .464 .464
Policy

Highest-Probability- .440 .440
Cell Policy

No Surveillance .333 .333

xii



if i j

N

Setting 6= 0 yields the special case of a stationary target. Note that the example
discussed in Figures S-2 and S-3 is a homogeneous surveillance system with
A=.1, p=.01, and6= .15.

The optimal whereabouts search, introduced by Kadane in reference [b], is
the special case where p = 0 and 6 = 0. In this situation the target is stationary and a
sensor response can occur only if the target is in the cell being investigated. Thus
a sensor response completely localizes the target to a single cell. The allocation
of surveillance effort in an optimal whereabouts search with discrete effort is always
to deploy the sensor to the second highest probability cell. See, for example,
section 4.4 of reference [c]. Note in particular that the optimal allocation depends
only on the current target location probability distribution and not on the horizon.
The resulting surveillance plan thus yields uniformly optimal probabilities of
localizing the target for any possible horizon.

We now view the K-stage optimal surveillance plan for the homogeneous sensor
as a generalization of the optimal whereabouts search. Remarkably, as shown in
Chapter H, our preliminary theoretical analysis, together with our numerical results,
indicate that the optimal allocation of surveillance effort when p > 0 is the same as
for the optimal whereabouts search, i.e., when 1 =0. Thus for any homogeneous
surveillance sensor and any target motion matrix of the specified form, we conjecture
that the K-stage optimal surveillance plan requires that we allocate all our effort
to the second highest probability cell. 1

If this conjecture can be proven, it will have a number of important consequences.
First note that such a surveillance plan depends only on the current target location
probability distribution and not on the number of stages in the operation and is
thus a 1-stage surveillance plan. This plan results in uniformly optimal probabilities
of localizing the target for each possible choice of horizon. Moreover, we feel that
it is reasonable to model many operational situations with a homogeneous sensor.
Since in this case the K-stage optimal surveillance plan would give optimal results
for every horizon, it has potential for widespread applications. Finally observe
that if this conjecture can be established, then the optimal surveillance plan in the
case at hand can be specified for any number of cells without resorting to complicated
computational optimization methods.

1Since this was written, a counterexample has been found by J. R. Weisinger.
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A Statistical Model for Processing ASW Contact Information to Estimate Target

Patterns of Operation

Two major problems which an ASW planner must frequently face in the presence

of sparse contact data of variouo types and quality are (1) to obtain an estimate for the

track of a specified target, and (2) to make inferences about overall target behavior

patterns on the basis of contact data on several targets. The objective of Chapter II

is to outline a Bayesian method for obtaining these estimates. Unfortunately, this

work has not yet been developed to the point where numerical results can be computed.

The goal in undertaking such a study is to provide ASW information processing
systems with the capability of combining historical data (in the form of prior
estimates on target patterns of operation) with contact data on targets of current
interest. It is hoped that this marriage will provide improved target location
estimates in that it will methodically exploit contact data on all previous targets.

Our approach is based on a parametric model for target motion. The object
is to use the available contact data to obtain posterior estimates for the parameters
which describe target motion. A major consideration here is the development of a
parametric model for target motion which is rich enough to model real world
situations but which is also computationally tractable.

The approach considered here is most applicable in the case of transiting
targets. Since the approach is Bayesian, it requires a general form for patterns
of motion characterized by parameters for which there are reasonable prior estimates.
These prior estimates may be based, for example, on past experience or on certain
operational or geographical constraints. The Bayesian approach, however, enables
one to obtain estimates of target operation patterns in the presence of sparse data.

The parametric model for target motion is based on the notion of weighted
target scenarios. We postulate the existence of a finite number of such scenarios,
or patrol track plans, which a target might follow during a specified phase of its
mission. Each scenario may be thought of as corresponding to a basic geometric
pattern of target motion.

Each scenario is characterized by a mean target track and corresponding covariance
matrix. Once a scenario has been chosen for a given target, the target must move
roughly according to the mean track of the scenario. The target, however, is
permitted to operate with some deviation from the mean track. For example,
the target may move faster or more slowly than the specified mean track, or it
may vary its course along the mean track. The extent of these perturbations in
target motion and their correlation are determined by the covariance matrix
associated with the scenario.

An example of some basic tracks which might be used to define scenarios is
given in Figure S-4. Additionally, two sample target tracks drawn from two different

xiv
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target scenarios are indicated in Figure S-4. In our model we deal with discrete
time and a track is specified by giving the target's location at times t = 1, .... T.

To formulate more precisely our parametric model for target motion, suppose
that there are J possible target scenarios, S1, $2, ... , Sj. Let p. be the probability
that a target will follow scenario Sj. Additionally, assume that the conditional
distribution function of the target's track Z = (z 1, ... , Z T) is a multivariate
normal distribution with mean 1Aj and covariance matrix " . Note that U is
an element of IR2T and that Z71 is a 2r x 2T positive definite symmetric matrix.

Now assume that the parameters in the target motion model described above
are unknown to us. By this is meant, in particular, that the following quantities are
not known:

i) the vector p = (pl P2, ..... pj) which gives the prior probabilities
that a target will move according to a given scenario,

ii) the mean target paths , P2 .., pj of the scenarios, and

iii) the covariance matrices 1, , ... , j of the scenarios.

We do assume, however, that the number of possible target scenarios, J, has
already been established.

The object of our investigations is now twofold. First, the contact data obtained
on a specified target are used to obtain a Bayesian estimate for the track of the
target. Secondly, the contact data are processed to obtain Bayesian estimates for
the parameters p, u1 ... u j, and E ... Z j . Computational methods for
obtaining these estimates are given in Chapter III.

ASW Information Processing in a Multi-Target Environment

In Chapter IV we develop Bayesian statistical methods for processing ASW
information in a multi-target environment. Specifically, suppose that a force of
submarine targets is known to be operating in a particular ocean area and that
periodic location estimates are to be generated for each target. Potential sources
of information to assist in target force localization might include: ocean characteristics
that affect navigability such as water depth; submarine operational characteristics
such as speed range and frequency of course changes; and surveillance information
such as the direct observation of port arrivals and departures and contacts
generated by ASW sensors. This localization problem leads naturally to the
consideration of ASW information processing systems, i.e., systems designed
to accept as input diverse ASW information of the type described and generate
as output periodic estimates of the locations of the target submarines.

xvi



The methods developed under this problem are applicable to issues of vulnerability
to surveillance as well as to Issues of ability to exercise surveillance.

The principal emphasis in Chapter IV is on the development of Bayesian statistical
methods for the systematic generation and updating of target force location predictions.
It should be noted that the surveillance problem considered is an intrinsically multi-
target problem as opposed to a composite of many isolated single-target problems.
This resultb . -st from the fact that except for port departures and arrivals, the
submarine t Is are treated as observationally indistinguishable. Secondly, all
targets are ,,r r med to make potential use of the entire operating area available
to the force s zhat individual targets are not restricted to operate in disjoint
subregions. Under these restrictions it will frequently be the case that there is
considerable uncertainty about the exact identity of the target that generated a
sensor contact. This uncertainty leads to correlation in estimates of the locations
of the targets comprising the force under surveillance even though the underlying
target motions may be statistically independent. It is from this intrinsic multivariate
nature of the problem that the information processing difficulties considered in
Chapter IV arise.

A substantial portion of the discussion in Chapter IV deals with specific multi-
target Bayesian information processing algorithms and their comparative evaluation
based on numerical examples. A particular such algorithm which we call Extended
Memory processing will emerge as the only one of the Bayesian methods we consider
that both accurately reflects the localization information inherent in the observational
data and is at the same time computationally practical.

Examples IV-1 and IV-2 of Chapter IV will show that even when there are as few
as two or three targets involved, Bayesian methods that fail to account adequately
for correlation in target location estimates can break down badly. In particular, two
such methods that we call sequential processing and parallel processing and considered
in Chapter IV may lead to complete permutation of target identities and other
anomalous behavior. These methods also lead to the so-called quiet target problem
that occurs when one of two targets involved in an identity confusion is substantially
more quiet than the other. In such a situation Bayesian processing methods that
treat target locations as independent tend to react to a stream of contacts on the
noisier target by concentrating the target location distributions of both targets in
essentially the same location. As a result, valid representation of the position
distribution of the quieter target is completely lost. Examples IV-1 and IV-2 show
that the Extended Memory method solves the quiet target problem. The theoretical
development of Extended Memory is given in Appendix B.

In order to provide the Bayesian information processing methods with a framework
to be implemented, tested, and evaluated, we have developed a small-scale information
processing system described in Chapter IV called ASWIPS (ASW Information Processing
System) on a Prime 400 mini-computer.

xvii



The processing system ASWIPS is currently configured to handle up to three
targets in a discrete 10 x 10 cellular grid. Time is discretized into information
processinT update stages. Target motion is taken to be a symmetric random walk
with a transition from the curreat cell to any one of the adjacent cells equally
likely. The output of ASWIPS at the end of each update stage consists of estimates
of the current locations of all cargets in terms of probability distributions. These
target location distributions can then be compared with the actual target tracks used
to generate the simulated contact data input to ASWIPS. Such comparisons then
provide the basis for the evaluation of the predictive capability of various processing
approaches. In particular, the calculations involved in Examples IV-1 and IV-2 and
the conclusions these examples support are based on ASWIPS.
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INFORMATION PROCESSING TO MAINTAIN
LOCALIZATION IN ASW SURVEILLANCE

CHAPTER I

INTRODUCTION

The purpose of this report is to develop methods for processing ASW

surveillance information so as to obtain localization estimates on submarine
targets on a continuing basis. Such methods need be obtained as useful and
computationally practical tools. Potential applications include ASW information
processing of surveillance and intelligence data, with an objective of providing
improved tactical ASW mission planning. This report is intended primarily
for use by analysts.

A predecessor report, reference [al, established much of the framework
for subsequent investigations in ASW surveillance information processing. This
earlier report attacked two issues at the core of ASW information processing.
The first issue concerns a collection of fixed sensors, in a false contact environment,
with known detection capabilities. The problem was to obtain an estimate of target
position on the basis of sensor contact information (both positive and negative). The
approach taken was to determine weighted scenarios for target motion and to compute
posterior target location distributions and scenario weights on the basis of the
contact information. Much of the work contained in Chapter II of this present
report was motivated by this earlier reference.

The second issue concerned a movable sensor with known detection capability
operating in a false contact environment. The problem was to allocate the sensor so
as to serve certain tactically useful purposes, e.g., to localize the target to a
specified number of cells. This issue was examined in an exploratory way using
Monte Carlo techniques. On the basis of this analysis a number of important
conjectures were formulated.

The first such conjecture concerns a concrete connection between information
theory and search theory, i.e., that the optimal detection search extracts information
from the target location probability distribution at the maximum possible rate. Such
an allocation maximizes the entropy of the posterior distribution given failure to
detect. This conjecture was established in reference [d].

-1-



In contrast it was also conjectured in reference [a] that the opposite
connection exists between information theory and surveillance theory, i.e., that
a reasonable surveillance plan is to allocate surveillance effort so as to place
information into the target location probability distribution at the maximum
possible rate. Such an allocation minimizes the expected entropy of the posterior
distribution. (Much additional numerical evidence to support this conjecture is
given in Figures 11-2 through 11-9.)

To understand this difference in allocation of effort it is necessary to
indicate the relationship between search and surveillance. Search and surveillance
are closely related but essentially different acitivites with different goals and
correspondingly different methods of achieving these goals. The principal objective
of search is to obtain a target detection. Moreover, search theory generally assumes
that the detection also provides the desired target localization. In contrast,
surveillance is concerned with localization and its maintenance over time, and this
goal can be achieved with or without detections or contacts. In particular, a
surveillance problem may not end with a contact because of poor localization
information.

Chapter II is an investigation into the optimal allocation of ASW surveillance
resources in a somewhat idealized surveillance setting. The analysis is intended
to establish a practical and useful theory of surveillance on a sound theoretical
basis. The problem considered involves a movable sensor which is deployed in
a sequential fashion against a single stochastically moving target in a false contact
environment. Among our results, we establish that a good suboptimal allocation
of surveillance effort is to maximize incrementally the expected information gained
in the posterior target location distribution. This surveillance policy is called
the maximum-information-gain plan. The advantage of the maximum-information-
gain plan is that it is easily computed in an incremental manner and does not
depend on the time horizon. Finding the optimal plan, on the other hand, requires
the use of techniques such as dynamic programming and quickly becomes impractical
for target distributions with large numbers of cells (say 10 or more).

The objective in Chapter III is to develop a Bayesian method for processing
surveillance contact information so as to obtain probability estimates for a single
target's track and to combine contact data on a number of targets to estimate
general patterns of operation. Our approach is to develop a Bayesian method
for combining ASW contact information with a scenario-based parametric model
for target motion. We assume that, based on past experience and general
operational considerations, we can specify a finite number of general operating
plans or basic tracks called scenarios, which could be followed by a target.
These scenarios may be thought of as corresponding to the basic geometric
patterns of target motion. It may be assumed that these basic patterns are
selected for each target in random fashion and then specified for the target in
its operations order. Once the basic scenario for the target has been specified,

-2-



the target then "chooses" its own particular variation. For example, the target
may move locally faster or more slowly than the basic scenario or it may vary
its track about the basic scenario.

Bayesian methods have been extensively used in developing real-time computer
programs to produce a sequence of updated probability distributions for target
location. The target motion model assumed in Chapter III is closely related to
models developed by H. R. Richardson and T. L. Corwin. However, the emphasis
in this report is on using contact data to revise the motion models or scenarios
in a Bayesian fashion. In previous work, Bayesian methods were employed to
use contact data to predict target locations but not to revise target motion scenarios.

Observations on a single target are assumed to be in the form of contacts with
possibly varying degrees of localization. There are two pieces of information which
we wish to obtain from these contact data: First, what is the best estimate of the
present target's track, and second, what do contact data on this particular target
tell us about general operating patterns. The first question is of interest primarily
in situations where contact data are sparse. We answer these two questions in
Chapter III by devising methods for computing the posterior distributions for the
present target's track and the posterior distribution on scenarios given a series of
contact data. The main effort is devoted to developing a class of prior distributions
or models for target motion which is rich enough to represent real situations but
which is still computationally tractable.

A totally different class of problems in ASW information processing is posed
by a multi-target environment. In Chapter IV the concept of Extended Memory
processing is introduced with the objective of resolving contact ambiguities on
multiple targets. When trying to estimate target location distributions in a multiple
target environment, the amount of computer storage required to retain the probability
distributions can quickly become excessive unless the target distributions are all
mutually independent. However, even when the prior target distributions arc assumed
to be independent, they lose their independence as soon as one obtains an ambiguous
contact, i.e., one which cannot be positively identified as being on a specific target.

In order to resolve this problem the concept of Extended Memory processing
considers all reasonable assignments of contacts to targets and computes the
probability that each of these assignments is correct. For numerical reasons,
assignments with very low probability are excluded from the list. The crucial
point is that conditioned on an assignment of contacts, the target distributions
are mutually independent. The composite target distributions are then obtained
as averages with respect to the assignment probabilities of these independent
distributions. The result is that the storage requirements are roughly linear in
the number of targets rather than exponential.

In addition, by considering single contacts in the context of an assignment of all
the contacts to targets, it often happens that a contact which is ambiguous at the
present time will be resolved by future contacts. Thus, the Extended Memory
processing has the capability of deferring judgment on a contact until more information
is obtained.
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Overall, Extended Memory has shown itself to be an effective Bayesian
statistical technique to support inforin."Ion processing in a multi-target environment.
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CHAPTER II

OPTIMAL SURVEILLANCE AGAINST A

MOVING TARGET IN A FALSE CONTACT ENVIRONMENT

A
A common and important ASW problem is the allocation of surveillance

assets so N to obtain, and maintain over time, a specified degree of target

localization. The purpose of this chapter is to describe an idealized surveillance

situation in which effort is applied in a false contact environment with the
objective of obtaining localization information on a moving target. The problem
is to allocate our surveillance assets so as to obtain by some specified future
time the best possible estimate for the target's location.

The results contained in this chapter can be viewed as an extension of the
approach taken in Chapter III of reference [a]. In reference [a], a number of
single-stage look-ahead surveillance policies were formulated and then compared
using Monte Carlo simulation techniques. In this current work, we develop a
dynamic programming solution for the optimal multi-stage surveillance policy
and compare it with a number of other surveillance policies using analytic

techniques. As a consequence of this we have been able to confirm a number
of conjectures which were made in reference [a] on the basis of Monte Carlo
studies. Additionally, our analytic techniques have yielded new insight into
the moving target problem and have resulted in some new conjectures.

In the first three sections of this chapter we describe the general nature
of the surveillance problem which we consider. The components of the sur-
veillance problem are defined in terms of the sensor response capability and
certain assumptions concerning target motion. The Bayesian updating of
target location probability distributions to process contact data according
to our sensor and target motion assumptions is discussed in the fourth section.

The fifth section is directed toward evaluaing the effectiveness of a given
surveillance plan against a specified target. This section indicates a number
of different surveillance measures of effectiveness, and develops the fundamental
recursion relationships which will be heavily exploited in subsequent sections.

The evaluation of optimal surveillance plans is described in the sixth and
seventh sections. Such plans are shown to be the solution of a certain dynamic



programming problem. Unfortunately, however, the computational effort required
to determine the solution of the dynamic programming problem is immense. For
this reason we consider, in the next section, a class of suboptimal surveillance
plans, called stationary plans, which are in many cases computationally easier
to determine than the optimal plan.

In the ninth section we compare, by way of numerical examples, the optimal
surveillance plan to a number of stationary surveillance plans. One of these
stationary plans, called the 1-stage look-ahead maximum-information-gain
plan, is shown to have a number of very desirable properties. In particular
it appears to provide near optimal target localization over a variety of measures
of surveillance effectiveness.

One striking feature of the numerical examples considered is the rapid
convergence of surveillance effectiveness as the length of time of the surveillance
operation increases. Accordingly, the asymptotic behavior of optimal surveillance
plans is the subject of the tenth section. The existence of a limiting surveillance
effectiveness is established under a number of different hypotheses. Unfortunately
we have as yet been unable to determine explicitly the value of this limit. Although
the asymptotic results contained in section ten are of interest in their own right,
the methods developed here are a particularly important step in placing a
theory of optimal surveillance on a sound theoretical basis.

The next three sections are concerned with a special type of surveillance
sensor called a homogeneous sensor. The importance of such sensors is based
on the fact that it is reasonable to model many operational surveillance sensors
as homogeneous sensors. Moreover, our numerical examples indicate that
the optimal surveillance plan for such a sensor, when employed against a
target which satisfies certain motion assumptions, is in fact a stationary plan
of a particularly simple type.

This chapter concludes finally with a section where our various results
are summarized.

The Tactical Situation

Suppose we are interested in performing a surveillance operation against
a stochastically moving target which is located in one of N cells, C, ... , .
The precise cell containing the target is unknown, but at the beginning of the
operation a probability distribution for the target's location has been estahlished.
We desire to allocate our surveillance assets so as to obtain, at the end of the
surveillance operation, a posterior probability distribution for the target's
position which localizes the target as much as possible.

The surveillance operation itself is performed in a sequence of discrete
time stages, each of duration A, by a single movable surveillance sensor.
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We are permitted only K stages, and we must use the sensor so as to obtain
the best possible estimate for the targe's position after these K stages. At
the start of the surveillance operation, the fixed time at which we must obtain
the best estimate of the target's position, the horizon, is Ki units in the future.

At the beginning of each stage, one or more cells are chosen and then
investigated for a total amount of time at most A. The choice of cell or cells,
in general, depends upon the number of stages remaining in the operation,
(i. e., the amount of time remaining until the horizon), the surveillance
capability of our sensor, our target motion assumptions, and the current target
location probability distribution. The sensor response results are then used
to update the target location probability distribution. Target motion is assumed
to take place at the end of each stage and results in a new target location distri-
bution. The next stage begins with this new target location probability distribution
and is the beginning of a surveillance operation involving one fewer stages. The
phasing of these various activities is indicated in Figure II-1.

Observe that the surveillance operation described above is dynamic in
that the allocation of effort at each stage depends upon the results of the pre-
vious stage. This is comparable to, say, a VP operation where flights are
flown daily. The results of each day's search together with the target motion
assumptions are then used to decide the allocation of effort for the next day's
flights.

Sensor Response Assumptions

Because of the possibility of false contacts, a sensor response in a given
cell does not necessarily imply that the target is in that cell. Similarly the
lack of a sensor response in a given cell does not necessarily mean that the
target is not in the cell being investigated. With this in mind we define
rij, i, j m 1, 2, .. N to be the conditional probability, given that the target
is in cell Ci, that investigating cell Cj for the length of time A will result
in a sensor response. Moreover we will assume that if the target is in cell
Ci, then investigating cell C. for the length of time t, 0 < t < A, will resultJ_
in a sensor response with probability rijt/A.

The N x N matrix

rl1 r 12  r iN

r21 r22 r 2 N

R=

rN1 r N2 rNN
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is called the sensor response matrix; in our model it completely characterizes
the surveillance capability of the sensor. Note that, if there is no possibility of
false contacts, then R is a diagonal matrix.

In order to simplify our calculations we will suppose that there can be at
most one sensor response in any single surveillance stage. Additionally we
will suppose that sensor responses from different time periods are statistically
independent.

Target Motion Assumptions

Target motion is assumed to be a Markov process which takes place at
the end of each surveillance stage. Let dij, i, j = 1, 2 .... N, be the conditional
probability that the target will move to cell i given that it originated in cell j.
The following N x N matrix, called the transition matrix,

d d ... d11 12 iNdl d2 dN

d21 d22 d 2N

dN1 dN2 dNN

completely describes the target motion assumptions. Observe that Ji di = 1
and that in the case of a stationary target, the transition matrix is simply the
identity matrix, M - I.

If* X = (x , x ... x )' is the target location distribution before target
motion, then j = 1 is the target location distribution after a single stage of
target motion. Moreover, assuming that no surveillance is performed between
motion steps, the target location distribution after k-motion steps is Y = MkX.

Mathematical Structure of K-Stage Surveillance Operations

In this section we formulate the mathematical structure of a K-stage
surveillance operation performed on N cells, C1 , C2 ,..., CN. We will
assume that the stochastic structure of the surveillance operation is completely

* We use the notation XI to denote the transpose of a vector X.
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known, that is, that the target motion matrix M and the sensor response matrix
R are known.

It is useful to introduce the positive orthant in N-space

VN ={(xl, x2 .... ,xN)' :x. >0, j 1, 2, ... N}.

For each X (xI ..... XN)' VN. we define JIxI I=Xi+...+XN. Observe
that if xk is the probability that the target is in cell Ck, k 1, 2,. . . , N,
than the vector X z (x1, ..... XN) is an element of the N-i dimensional simplex

X ={XV hxI -1}.
N-1 N 1

We will refer to as the probability state space. Every target location
probability distribution on N cells C 1 , C2 , .... C N can be represented as a
point of the probability state space.

We now define a K-stage surveillance plan on the cells C C . C... Cto
be a functionq:tNX{12 ... .V such that [] (Xk); <1for

(X, k) c YN 1 x {1, 2. ... , KI. In order to explain this definition sluppose that
at stage k of-the surveillance operation, 1 < k < K, the current target location
probability distribution is X E I Let ( (X, k) = (q, (X, k),..., (,N (X, k)).

The surveillance plan ( then requires that we allocate to cell C the amount
of surveillance effort A, l 1, 2,.., N. The condition OIX k)[ < 1
is the constraint that the total amount of surveillance effort available al
state k is A.

We suppose that the response capability of our surveillance sensor is
defined by the N x N response matrix R - [rij ] . Target motion is assumed to
be Markovian and is defined by the transition matrix M - [dij ] . The diagonal
matrices Tj diag(rl, r 2 j, ... . rNP, j = 1, 2,. .. , N, will prove particularly
useful in the following development. Observe that Tj completely characterizes
the sensor capability of investigating cell Cj.

At the beginning of stage k of our surveillance operation let the (prior)
target location probability distribution be X c c 1 N-1 We will now determine
the various (posterior) target location probability distributions possible at
the end of stage k, and indicate the probabilities with which they will occur.
Suppose that qo(X, k) (W01 (X, k),..., WN(X, k)) so that we are to allocate to
cell CI the amount of surveillance effort wl (X, k) A. It follows then that
the probability of obtaining a sensor response from cell 1 is 1 (X, k) T1 I f
Moreover it follows from Bayes' theorem that the posterior target location
probability distribution given a sensor response in cell C is TI X/11 T XII1.

-10-
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Since we are assuming at most one sensor response in each surveillance
stage, it follows that the probability of obtaining no response is
1 - E N oI (X, k) 1l T1 X I1. Additionally the posterior target location
probability distribution given no sensor response is

N N- O IP (X, k) T I )x / ( 1 - z {(pI (X, k) T I )

1=1 1=1

In order to obtain the (posterior) target location probability distributions
at the end of stage k it is now only necessary to apply the target motion matrix M
to each of the above distributions. We thus define

N
(I - E o.(X, k)W.)X3~ J

M 1 0.
N

1 - E 114j(X,k)T.X 1
j=l

U (X, k) (11-1)

T X
M , 1, 2,...N.

1T~ Xl

Note that U (X, k) is the posterior target location distribution at the end of
stage k given that the prior distribution at the beginning of stage k is X and
that there were no sensor responses during stage k. Similarly U (X, k),
1 1, 2,.... N, is the posterior target location probability distrbution at
the end of stage k given that the prior distribution at the beginning of stage k
is X and that there was a sensor response from cell CI . It is interesting
to observe for I : 1, 2,. .. , N that U (X, k) does not depend on the amount
of surveillance effort applied to cell l and so in particular is independent of
the surveillance stage k. This results from the linearity of our sensor response
assumptions.

So as to simplify our notation further, define
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N
Ei j.(X,!-l T.X I~ =0j=iJ

(X, k) - (11-2)

II P (X,k)TI XjI, I = 1, 2,... N.

The quantity o0 (X, k) is the probability of obtaining no sensor response at stage k
given that the prior target location distribution at the beginning of stage k is X.
Similarly, for 1 = 1, 2 .... N, 6 (X, k) is the probability of obtaining a sensor
response from cell C1 at stage k given that the prior target location distribution
at the beginning of stage k is X.

Observe next that if X is the prior target location probability distribution
at the beginning of stage k, then MX is the expected posterior target location
probability distribution at the end of stage k. Indeed we have

N '

MX= n 0 (X,k) U1 (X,k).
1=01 1

Consider now a surveillance operation lasting K stages. Let X0 be the
initial target location probability distribution and let X1 , I = 1, 2, ... , K,
be the target location probability distribution at the end of stage I. Each
X1 is a random vector and the mapping X, V X1 defines a discrete time Markov
process on the probability state space (J'N.I Indeed if for each X c 9 N-1
and each Borel measurable set A C S N-1 we define for k = 1, 2, .. K,

N
pk(X, A) = 2 o(X,k) 1 U (A), (11-3)

where iu y(.) is the unit point mass concentrated at Y, then Pk(-',) is the stochastic
transition function for stage k of the Markov process.

A major question in the theory of surveillance is the distribution of the
random variable X1 , l 1, 2, ... K. Indeed, the distribution of the X l
indicates the relative likelihood of the various target location probability
distributions that can arise from a given surveillance plan. Define inductively

p)(X 0 , A ) pl(0 A)
(1)*

p(l)(x 0 ,A) f, P(I - 1 ) (YA)p (X0,dY), 1 2, 3..., K.

N-1
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It follows that p()(XO ) is the probability distribution for the target location
probability distribution at the end of stage !, given that the initial target
location probability distribution was X0 . It is an immediate consequence of
equation (11-3) that

M-X 0 f Yp PP(X0 , dY),

MN-1

that is the mean target location probability distribution at stage 1 , given that
the initial distribution was X 0 , is M1 X0 .

Evaluating Surveillance Plans

In order to determine the effectiveness of a surveillance operation, it is
first necessary to establish, for each target location probability distribution,
a measure of the localization information implied by that distribution. There
are a tremendous number of possibilities for such a measure of effectiveness.
Suppose for example that X - (x 1 ..... XN)' E 9 N 1 is the current target's location
probability distribution. Our best single-cell estimate for the target location
is that cell which contains the target with highest probability. Indeed if
Xil > xi2 > - -. > xiN , then the target is most likely to be located in cell Cil,
and the probability that this estimate is correct is xil. If this is to be our
measure of effectiveness, it is clear Lhon that our surveillance effort should
be applied so as to maximize, at the end of the surveillance operation, the
probability that the target is in the highest probability cell. Other closely
related measures of effectiveness would be, for n - 1, 2, ... , N, the probability
that the target is located in the first n highest probability cells Xil +. .. + Xin-
We are thus led to define the functions fl . f N on the probability state
space Y!- by fn (X) xi +... x

1 n'

As another example of a possible measure of surveillance effectiveness,
suppose that, at the end of a surveillance operation, we will search for the
target with a specified sensor. The goal of this search is to obtain a target
detection, and we can measure the amount of localization information implied
by a target location probability distribution in terms of parameters associated
with this search. For example we can use the expected time to detect the
target with the search sensor as one measure of the localization provided by
a probability distribution. If the search has a limit on the total available
effort, then we can use as our measure of effectiveness the probability of
obtaining a detection within the specified time limit. Observe that, in the
case of a perfect sensor* which is only permitted to search one cell, the

A perfect sensor detects the target if and only if it searches in the cell which

contains the target.
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maximum probability of obtaining a detection is the probability that the target
is located in the highest probability cell.

As a final example, we can suppose that the goal of our surveillance operation
is to obtain a posterior target location probability distribution which contains

the maximum information possible. Recall that if x, is the probability that
the target is located in cell C1 , l = 1, 2, .... N, the information content of

the probability distribution X = (xI , ... , XN) is

9(X) = lnN + N kbx.

Although we will be chiefly concerned with the measures of effectiveness
given by the functions fl, f2 ... , fN defined above, it is generally useful
to have a larger class of effectiveness measures. For this reason we define
the space of objective functions C to be the space of all convex functions f
defined on YN-1 which satisfy the uniform Lipschitz condition: there is a
constant L > 0 (which depends on f) such that if X 1 , X2 E YN-1 then

If(X 1)-f(X2 ) <L IIX 1 -X 2 1'.

It is interesting to note that the convexity of f E C implies that f satisfies the
above uniform Lipschitz condition on each compact subset of 9N_1" See for
example reference [ e ]. Thus our Lipschitz condition is only a restriction near
the boundary of tN-1"

Because of the convexity assumption observe that for X 1 , X2 .... Xm C N-1
each objective function f ( C satisfies

m m
f( 0 k Xk) <k k f(Xk) whenever 0, 01+... 0 m -1.

In particular f attains its maximum at a vertex of 92-I" so that the greatest
return provided by the objective function is when the target is localized to a single cell.

Suppose now that we wish to evaluate the K-stage surveillance plan (o using
the measure of effectiveness given by the objective function f c C. For each
X CN-I our concern is with the function
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expected -lue of f at the end of the
) surveillance operation cp given that

EV(q, f) (X) = the initial target location distribution (U-4)
is X CN-"

The function EV indicates the amount of target localization, in terms of the
objective f, that we can expect at the end of the surveillance operation q.

The most convenient method of computing the function EV is to introduce,
for each k - 0, 1, 2 .... K and each X E YN-I' the functions

expected value of f resulting from following
k the last k stages of plan p given that there

A ((o, f) (X) = are k stages remaining and that the target
location probability distribution at the
current stage (stage K-k) is X.

The function Ak ((, f) indicates the expected target localization that can be
achieved relative to the objective f given that there are k stages remaining
in the surveillance operation. !n particular AK(q, f) = EV(o, f).

We will compute the functions Ak(, f), k - 0, 1, 2, ... , K, inductively.
It is evident that A0 (, f) f. Suppose that Ak(q,, f) is known and that we are
to compute Ak+l(o, f). Let o = ( 1 (X, k) ... , CN(X, k)). If the prior at the
beginning of stage K-k is X, we are to allocate to cell C, the amount of
surveillance effort (p (X, K-k). In the notation of equations (II-1) and (11-2),
we will obtain a sensor response from investigating cell C with probability
0 1 (X, K-k) and in this case the posterior probability distribution is
U, (X, K-k). Similarly, the probability of obtaining no sensor response is
0 0 (X, K-k) and the resulting posterior target location distribution is
U0 (X, K-k). It follows then from the definition of Ak+l((p, f) that

N

Ak+l((p, f) (X)- Z o (X, K-k) A k(p, f) (U (X, K-k)). (11-6)
1=0 I

It is possible to simplify equation (11-6) somewhat by extending Ak (P, f) (.)
to all of VN by defining
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^ ,k (O, f) if YE V , Y/0

Ak f) (Y)

A0 if Y =0.ki

The function Ak(,o, f) (.) defined in this manner is homogeneous in the sense that

Ak(,, f) (AY) - AAk(q,f) (Y), all A >0, Y E gN-* (11-7)

Using now the relation (H-7) and the definitions (II-1) and (11-2), we can
write equation (11-6) in the form

k+1 k N

N k
+ O 1 (X,K-k) A (W, f) (IT X).

The recursion relationships (1-6) and (11-8) are fundamental in that they enable
us to compute analytically the effectiveness of any given surveillance system.
We will heavily exploit these relationships in the subsequent sections.

Optimal Surveillance Plans

The purpose of this section is to provide a method for determining the
optimal K-stage surveillance plan for any objective function f c C. A K-stage
optimal surveillance plan (PK is characterized by the condition

EV(qK, f) > EV(P, f)

for any surveillance plan qp. This is to say that at the end of the surveillance
operation (i. e., at the end of stage K) the optimal surveillance plan yields
the greatest possible expected target localization relative to the measure of
effectiveness f.

In order to determine the K-stage-optimal surveillance plan ,0K consider
the functions Al , 1 0, 1, 2,... K defined by equation (H1-5). The iterative
scheme (11-8) and the fact that AK((K f) EV(K f) force immediately the
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inequalities

Al (K f)> AI (qf), l = 0, 1, 2 .... K, (11-9)

for all surveillance plans q,. With this we can now inductively compute the

functions Al (qK, f), I = 0, 1, 2, .. ., K. Recall first that AO(qK, f) = f. Now

suppose that Ak(q2K, f) has been determined. It follows immediately from

equations (11-8) and (11-9) that

A k+Nl a K, f)(X) max IFk(ala 2  a N' X ) : al'...1 + + +aN<}, (11-10)

where

k kK N N kK
F (a. .... ,aN, X) - Ak(0K, f)( I M(I- a T )X) + 1 a Ak(K f)(MT/ X). (I-1)

N' 1=1 I I1 =

It is important to observe that the functions Al (0K, f)(X). l - 0, 1, 2 .. N,

are convex functions of X E 'N- To see this note first that A0 ((pK, f)(X) - f(X)

is by assumption a convex function of X. We now argue by induction: suppose

that Ak(qK, f) is a convex function on .9 N-1. Then Ak(qK, f) is a convex function

on VN and so, by equation (II-11), Fk(al,..., a , X) is a convex function of

X E ,-. It follows then from (II-10) that Ak-(OK, f)(X) is a convex function
of X E 9YN-1, the desired result.

Suppose now that, for a given X E 9 -' the numbers a o..z * satisfyN-i N

Ak+l( K ,  Fk(a *X), * *
1 1 a 1 + +N / 3 <1.

K

It is evident then that a K-stage optimal surveillance plan qK can be achieved
by allocating, at stage K-k, the fraction a * of the available effort to cell C,

i.e., qK(XK-k) = (a 1 ,... , aN). We claim that the optimal allocation of
surveillance effort can always be achieved by allocating the total available
effort to a single cell. As we shall see, this is a consequence of the linearity
of the sensor detection process.
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Writing now

N N aM(I---N a T )X = (1-)MX+p (MX- N --L T X),

1 -1 1 1=1 1

it follows from the convexity of Ak(4 K, f) (.) that

Fk(a * , X):< (1 - f) A k((pK, f) (MX)1 N'
1 ..... , ,

_L 2 ..... X).

But

k( K ,  < k  KK, f) (

N a i Ak (q ,f)(TX)
1=1 1

= k (a' aN
F X),

and so we conclude that

F k 1N' X)<F ( . N

with equality if and only if

Ak+1 K( K K

13 =lorA (, f)( X)= Ak ( K , f) (MX) (I1-121

In order to interpret the second condition in (11-12). observe that if X E YN - 1
is the target location probability distribution with k+1 stages remaining in
a surveillance operation, then MX is the probability distribution with k stages
remaining assuming that no surveillance was performed. The second condition
in (11-12) says then that the increment in the expected target localization
produced by the optimal surveillance plan (K with kI stages remaining is
the same as if no surveillance is performed at that stage. We conclude then

that the optimal surveillance plan requires that we use the total amount of

-



surveillance effort available at a given stage (83 =1), or else the available
surveillance effort at the stage in questiin is insufficient to affect the result.

Without loss of generality we can now assume that in equation (11-10)

a " + a N 1. Subject to this condition we then have

k k K N
F (al ... aX) =A (Kf) a M(I-T )X)t 1=1 I-TIX

N k K
+ a ( K f) (MT X).

l=1

Bu sneAK Fka 1  
0 'X

But since Ak( oK , f)(X) is a convex function of X, it follows that Fk(a 1, N, X)
is a convex function in the variables a 1 -... a N - and so it achieves its maximum
at one of the vertices of the convex simplex {(a 1 ... aN) : aj > 0, a +... - aN = }.
Thus as claimed the optimal surveillance plan can always be achieved by allocating
the entire available effort to a single cell.

Finally observe that the K-stage-optimal surveillance plan depends only
on the number of stages remaining in the surveillance plan. Thus if K1 < K2
we have

A ( K ,f) - Ak ( o K 2 , f), k= 0, 1, 2,..., K

Evaluating Optimal Surveillance Plans Numerically

In the previous section we described a method for determining a K-stage-
optimal surveillance plan O0K for any objective function f c C and any sensor
response and target motion matrices R and M, respectively. Unfortunately.
the method requires the solution of a dynamic programming problem, and like
such solutions in general, it requires an enormous amount of computational
effort to implement. In particular, as the number of cells increases, the
dimension of the probability state space 9N-1 increases.

For example, consider a surveillance problem on N cells, C 1 , C2 , .... CN.
Recall that, in order to determine Ak+ (( K , f), we must know the values of
Ak((9K, f) on 9N-1. In order to have the values of Ak(0K, f) available on a
computer, we must quantize the state space 9 N-1 into a finite number of
points at which the values of Ak(pK, f) are stored. The values of Ak( K, f)
at other points are then estimated by an interpolation scheme.

Suppose that we decide to partition each coordinate axis of 9N-1 into J
equally spaced points. Our probability state space is then quantized into the
points (il, i 2 ..... iN)J- 1 where i 1 , ... 'N are nonnegative integers such that
i 1  +. i N = J. Observe that 1/J is the coordinate resolution. It is easy to

-19-

Lkm



see that the number of points in such a quantization is

Ideally a coordinate resolution of. 01 or better is highly desirable. Observe.
however, from Table 11-1 that such a resolution is practical for at most three
cells. To solve a four-cell optimal surveillance problem clearly requires a
resolution not much finer than . 05. Unfortunately, such a resolution is barely
adequate to guarantee a good approximation to the functions Ak((PK, f), since
it provides only 1. 5 significant decimal places. Considerable programming care
must thus be exercised to insure valid results, even for as few as four cells.

There are a number of special features of the functions Ak(qK, f) which
can be exploited so as to ease their evaluation. First note that these functions
are convex, so that a piecewise linear interpolation with vertices at the points
(i1 .... iN)J-1 will provide an upper bound. We now would like to estimate the
accuracy of this piecewise linear approximation.

Recall that the space of objective functions C is the space of all convex
functions on YlN_ 1 which are uniformly Lipschitz continuous in the sense that
if f E C there exists L > 0 such that

I f(X1)-f(X2) I <L JJX1 -X 2 11 , all X1 , X2 c .N-l.

Each function f ( C can be extended to a function defined in the positive
orthant in N-space

VN =Y (Y9 . YN) Y 0 , j 1, 2,. N}

by setting

f(Y) f I YYlf I Y E VN , y/0

2Y 00.
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TABLE 11-1

NUMBER OF POINTS IN A QUANTIZATION OFq

Coordinate
Resolution

.1.05 .01

S 2 11 21 101

40' 3 66 231 5,151

4286 1,771 176,851

z 51,001 10,626 4,598, 126

6 3,0OC3 53,130 96,560,646
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Suppose now that

I f(X 1) -f(X2) L I IX 1-X 211I , allX1. X 2 E YN-1"

If YI' Y2 E VNo YI1 Y2 / 0, it is easy to see that

f(Y1)-f(Y,) <L(2+maxff(X) I X E,99, ) Y Y - 2 I 1 :
1' 2 N' 1'12

and so f is also equicontinuous on VN . The smallest constant L such that

f(Y 1)-f(Y 2)<L 
,Y-Y211 all Y1 , Y2 C VN

is called the modulus of continuity of f (on VN). The modulus of continuity
if f provides a usable estimate for the fineness of a quantization of _1
required to achieve a piecewise linear approximation for f with a specified
accuracy. The following theorem relates the modulus of continuity of the
functions Ak( ,)K. f) to that of f. and so provides estimates for the accuracy
of approximations for Ak ( ,K, f).

Theorem 11-1. Let (pK be the K-stage optimal surveillance plan for the
objective function f ( C. If the modulus of continuity of f on VN is L0 , then
Ak(pK, f) is Lipschitz continuous with modulus of continuity Lk, k 1, 2. K.
Additionally

L0  LI >.  L K '

Proof. Suppose that the sensor response matrix is R and the motion
matrix is M. The proof proceeds by induction on k. First note that the result
is trivally valid for k 0. We assume now that the result is valid for 0, 1, 2 .. k;
we must verify it for ki1.

Now since the optimal surveillance plan can always be achieved by allocating
the entire available effort to a single cell, it follows from equation (I-11) that

A k+l(K , f)(X) max Ak( K , f)(MT X) +Ak ((0 f)(M(I-T )X).
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Now let X1 XE V Nand suppose that

A k+1 ( , f)(X 1 )>A k 1 (4 9Kf)QX ).

if

Ak± ( , Nx) A k ( 4O ,Kt(MTX I + AkK, '1'MI- )

it follows that

k1 K k KkK

I Afk+ (qO K, )(X) -A k(qO K,f)(MTIX 2 ) -A k(qO K,f) (M(I-T 1 )X 2 )1

JAk(q; K,f)(MT IX I + A k(W~ K,f) (M(I-T 1 )X 1 )

A AK K, P(MTX) 2 A k (COK, f)(M(I-T )X 2 ) I

Using now our induction hypothesis, we obtain

+ fM(I-T 1 )(Xl-X 2 )j 1}.

1111 NBut 11IMUII: 1<1U111 for any vector UElIR , so that

I Kl(olt)X)l K+1 K+11

11 (1) (X1-X 2)1111
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and the desired result is verified.

It is easy to construct examples in which L = L = . LK Indeed,
consider a two cell surveillance problem against a stationary target involving
a uninformative sensor response matrix

Then for any K-stage surveillance plan o (including the K-stage optimal plan)
Ak(qo,f) -- f, k=0, 1, 2,... K.

Stationary Surveillance Plans

In most cases the K-stage optimal surveillance plan depends strongly on
he horizon. Thus it may happen that the surveillance policy designed to obtain

the best possible estimate at one specified future time is suboptimal for a
different horizon.

Suppose however that we are interested in the maintenance of target
localization over time relative to some objective function fE C. In particular
such a surveillance plan does not end at any specified horizon, but rather
continues indefinitely over time.

K
Since the K-stage optimal surveillance plans p depend on the number of

stages until the horizon and not on the number of stages since the beginning
of the operation, such plans are generally not extendable as optimal plans to
horizons different than the initially specified horizon. It is thus desirable
to find physically realizable surveillance plans which are nearly optimal for
any horizon.

The simplest surveillance plans which are extendable to any possible horizon
are the stationary surveillance plans. A K-stage surveillance plan qO defined
on N cells C 1 , C2 .... CN is stationary if it depends only on the current target
location probability distribution X E9i 1 and not on the current stage of the
operation. Such a plan is a function q9:j 9N-1 x f1, 2,.... K} -' VN such that
IJo I I< 1 which is of the form q,(X, 1) - (o(X,2) = ... = ((X, K).

Such a plan is obviously extendable, as a stationary surveillance plan,
to any number of stages K.

Suppose that o is a stationary surveillance plan and that f r C is our localization
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objective function. If X is the prior target location distribution, the expected
degree of target localization obtained by r after k stages is Ak(q, f)(K). Thus
the expression

I1K k
K Z1 K A (A(, f)(X)K+1 k=0

is the average expected target localization during the first K-stages. If K is
sufficiently large, this expression represents the long term expected target
localization one can expect to maintain with q'.

For each k let q'K be the K-stage optimal surveillance plan relative to
fE C. Observe that

k k KAk((p, f) A A(( Kp f).

K
Thus although the K-stage optimal surveillance plans K may not be physically
realizable for the long-term maintenance of target localization, they do provide
an upper bound for the expected localization that stationary plans can achieve.
This fact is useful in determining how close to optimal a particular stationary
surveillance plan localizes a given target.

Examples Comparing Optimal and Stationary Surveillance Plans

In this section we compare numerically the localization achieved by the
optimal surveillance plan to that which can be obtained by several stationary
plans. The particular surveillance system considered is operating against a
target located in one of four cells.

We assume that our surveillance system has the sensor response matrix

.15 .01 .01 .09 <-._ target in cell C

R .01 .15 .01 .09

.01 .01 .15 .09

.01 .01 .01 .1

investigate in cell C2
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Thus if we investigate cell C2 and the target is located in cell C1, the pro-
bability of obtaining a sensor response . 01. Note that the sensor capability
achieved by investigating any of the first three cells is the same. Additionally,
if the prior target location distribution is uniform, X = (. 25, .25, . 25, .25),
a contact obtained from investigating any of the first three cells will localize
the target to that specific cell with probability. 83.

Investigating cell C with this sensor is not as informative about the target's
location as is investigation of any of the other cells. To see this, observe that
if the prior target lccation distribution is uniform, a contact obtained from
investigating cell C 4 will localize the target to that cell with probability only
.27. This is in comparison with the corresponding value .87 obtained by
investigating any of the first three cells.

We also assume that the target motion matrix is given by

.85 .05 .05 .03

M .05 .85 .05 .03

.05 .05 .85 .03

.05 .05 .05 .91

Thus if the target is located in one of the first three cells it will remain there
with probability. 85 and move to any one of the other cells with probability. 05.
Similarly if the target is located in cell C4 it will remain there with probability
.91 and move to any one of the other cells with probability. 03. It can be shown
that, for each X c 3

lir MkX-- (.214, .214, .214, .358).
k-co

Thus, if no surveillance effort is applied, the target location distribution
will asymptotically approach (. 214, .214, .214, .358). In particular, on
the basis of our target motion assumptions, the target, after a sufficiently
long period of time, is most likely to be located in cell C4 , and this estimate
for the target's position will be correct with probability. 358.

The effect of surveillance is to increase our knowledge about the target's
position beyond that which can be achieved from our target motion assumptions
alone. The amount of increase achieved by a particular surveillance plan is
a measure of the effectiveness of the surveillance system when deployed according
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to the specified plan. To illustrate this point, we compare the effectiveness of
a number of different surveillance planh against four hypothetical targets
which are distinguished only by having different prior probability distributions.
The four prior target location distributions, together with their corresponding
no-surveillance posterior distributions, are indicated in Table 11-2.

The surveillance plans which we consider here are a K-stage-optimal
surveillance plan and the three stationary surveillance plans. The K-stage-
optimal surveillance plan has as its objective function the probability that the
target is located in the highest probability cell. The stationary plans are
referred to as the 1-stage look-ahead maximum-information-gain policy, the
3-stage look-ahead maximum-information-gain policy, and the highest-
probability-cell policy.

The 1-stage look-ahead maximum-information-gain policy, denoted PI
allocates its effort so as to maximize the expected information content 1
of the posterior distribution after 1 stage of surveillance and target motion.
For X = (x1, x2 , x3 , x4)'E93, let 1(X) be the information content of X,

4
J9(X)= Y x. lnx.+In4,

j=1 J J

and let p* be the one stage optimal surveillance plan for the objective function
4. Then q* satisfies

for all 1-stage surveillance plans *qp. We then define the stationary surveillance
plan ,wi by

VI1 (X,k) = ,*(X, 1) for all k = 1, 2, 3,....

The 3-stage look-ahead maximum-information-gain plan, denoted (13 is
defined similarly. Let qp* be the three-stage optimal surveillance plan for
the measure of effectiveness J. The plan q)* then satisfies

A 3(q*,) k A3 ( ,04)

Note that, although ,V fails to satisfj a uniform Lipschitz condition and hence

Wq' C, we can still easily define A(.,4).
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for every surveillance plan p. We then set

013 (X, k) = W*(X, 1), k = 1, 2, 3.

Thus (o0 is the stationary surveillance plan which at each stage allocates
effort according to the first stage of q"".

Finally, because of its great intuitive appeal, we consider the highest
probability-cell policy. This surveillance plan allocates at each stage the
entire available effort to one of the cells which currently contains the target with
highest probability.

For each initial target location distribution and each surveillance plan
under study, we have graphed, in Figures 11-2, 11-3, 11-4, and 11-5, the
probability of correctly specifying the target's location at the end of the
operation as a function of the number of stages in the surveillance operation.
Our measure of effectiveness is the probability that the target is located in
the highest probability cell. Observe that for each K, as expected, the K-stage
optimal surveillance policy yields the greatest probability of correctly specifying
the target's position at the end of the surveillance operation. Similarly, if no
surveillance is performed, \;e achieve the least amount of target localization.
The two maximum information gain policies perform almost as well as does
the optimal policy, and both perform better than the highest probability cell
policy.

In particular, in Case I (see Figure 11-2), the initial target location probability
distribution is (1, 0, 0, 0) so that, with probability 1, the target is initially
located in cell C 1. Thus, as a triviality, any surveillance operation lasting
zero stages can always correctly specify the target location at the end of the
operation. For the surveillance operations considered here, however, the
probability of correctly specifying the target's location decreases if the length
of the operation is between 1 and 10 stages. The reason for this is the conflict
between target motion and the applied surveillance effort. From Table 11-2
we see that, in Case 1, target motion during the first ten stages decreases
rapidly our information about the target's position. During the first ten stages
the available surveillance effort is insufficient to overcome the loss of target
localization caused by target motion.

If no surveillance is applied, observe also, from Table 11-2, that after
about 13 stages of target motion, the most likely cell to contain the target changes
from cell C1 to cell C 4 . Additionally, after 15 stages of target motion the
amount of target localization implied by the motion assumptions above actually
increases. This is reflected in Figure 11-2 by an increase in the localization
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achieved by each of the surveillance plans after 15 stages.

One very remarkable aspect of Figure 11-2 is that, after 13 stages of
surveillance effort, the highest probability cell policy performs only slightly
better in localizing the target than does no surveillance at all. The reason
for this is that after 13 stages, the target is most likely to be located in cell
C4 , and so the highest probability cell policy will allocate most of its effort
to cell C4 . But we have already indicated that the sensor response matrix
implies that investigating cell C 4 is comparatively unproductive. Indeed the
effectiveness of such a search is so low that each increment of effort adds
little to the success probability. The K-stage-optimal surveillance policy
and the maximum-information-gain policies compensate for this by almost
never investigating cell C 4 . Indeed the high probabilites of correctly specifying
the target's location attained by these policies are due, in large measure, to
exploiting the differences in response probability achieved by applying effort
to the various cells. These policies investigate cells C 1 , C2 . and C 3 , and
use a lack of sensor responses to localize the target in cell C4. The highest
probability cell policy, on the other hand, incorporated no information about
the sensor response capability and is thus independent of the response matrix R.
It performs correspondingly poorly.

It is also interesting to note in Figures 11-2. 11-3. 11-4. and 11-5 that
both the 1-stage and 3-stage look-ahead maximum-information-gain policies
perform much better than th, highest probability cell policy, and nearly
as well as the K-stagt-optimal surveillance plan. These features are common
to all of the cases studied to date. A somewhat surprising observation
is that the 3-stage look-ahead maximum-information-gain policy does not
perform significantly better than does the 1-stage look-ahead maximum-
information-gain policy. Thus, in terms of stationary plans, a well-chosen
1-stage look-ahead policy appears to be almost as good as a policy which looks
further into the future. We have yet to find an example which violates this
conjecture.

Recall that the K-stage-optimal surveillance plan depends strongly on the
horizon, and thus this pian may be quite different for different horizons. The
1- and 3-stage look-ahead maximum-information-gain policies are particularly
attractive because they depend only on the present target location probability
distribution and not on the number of stages remaining in the operation.
Additionally, as illustrated by Figures 11-2 through 11-5, these policies
incorporate sensor response characteristics sufficiently well to give pro-
babilities of success reasonably close to the theoretical maximum determined
by the K-stage optimal surveillance plan.

One particularly important feature of the maximum -information-gain
policies is that they are not only independent of the number of stages in the
surveillance operation. but since they maximize the information content
of the posterior distribution, they also do not depend on the measure of effectiveness.
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Moreover, they appear to give good target localization for a number of different
measures of effectiveness.

To illustrate this point, we have graphed in Figures 11-6, 11-7, il-8, and
11-9 the degree target localization attained, in each of the previous four cases,
when the measure of effectiveness is the probability that the target is located
in the two highest probability cells. In these figures, the K-stage-optimal
surveillance plan is chosen so as to maximize, at the end of K stages, the
expected probability that the target is located in the two highest probability
cells. Thus the upper curve in Figures 11-6 through 11-9 indicates a theoretical
upper bound for the amount of target localization possible for this surveillance
objective function. The 1- and 3-stage look-ahead maximum-information-gain
policies and the highest-probability-cell policy are exactly the same allocations
of effort used in Figures 11-2 through 11-5.

Note that, in each case presented, the maximum-information-gain policies
yield near optimal two cell target localization. Also, after about 13 stages,
the highest-probability-cell policy performs only slightly better than if no
surveillance effort was expended at all. Again the reason for this is that after
about 10 stages the highest probability cell policy is allocating most of its
effort to the comparatively uninformative cell C4 .

It is thus apparent, at least in the cases at hand, that the maximum-
information-gain policies provide robust estimates for target location over
a variety of measures of effectiveness. This conjecture has been verified in
each case studied to date. This is an important result because such plans
are computationally easy to determine, and since they require neither a prior
specification of the number stages involved in the surveillance operation nor
knowledge of the surveillance objective function.

Finally, it is of interest to observe the asymptotic behavior of the various
surveillance plans as the number of stages becomes large. In Figures II-10
through 11-13, we have graphed the functions

max A k(O,f 1 )(X), and nin Ak (0,fl)(X)
XE S3  XcS,

for k 0, 1, 2,..., 20, where f (X) = probability that the target is located
in the highest probability cell, and (W is respectively the K-stage-optimal
surveillance plan, the 1- and 3-stage look-ahead maximum-information-gain
policies, and the highest-probability-cell policy. By definition, the range
of possible payoffs resulting from the surveillance plans o lies between the
upper and lower bounds given by the above functions. The striking feature here
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is the apparent rapid convergence in each case to constant values which depend
on the surveillance plan but not on the prinr target location probability distribution.
This indicates that precise knowledge of the initial target location distribution
is unimportant to the long term ability of a surveillance system to localize
a target. In view of this apparent rapid convergence of the expected localization
to the limit values, it is valuable to be able to characterize the limit values
in terms of the surveillance plan, the sensor response matrix, and the target
motion matrix. Unfortunately we have not yet been able topush matters that
far. In the next section, however, we establish the existence of the specified
limit for the K-stage-optimal surveillance plans under a variety of different
hypotheses.

Asymptotic Behavior of the K-Stage Optimal Surveillance Plan

One of the most striking features common to the examples discussed in
the previous section is the rapid convergence, as K-a:, of the functions
AK(u, f)(.). Additionally, it is of interest to note that, in all of the previous
examples, the limiting values

lim A K((, f)(X) (11-13)
K-co

depend only on the surveillance plan ,) and the measure of effectiveness f and
not on the initial target location probability distribution X. The purpose of
this section is to discuss various issues related to the asymptotic behavior
of the functions AK(WK, f)(.) for K-stage optimal surveillance plans PK.

First note that the limit (11-13) need not always exist for the optimal
surveillance plan, and indeed it is quite easy to construct counterexamples.
To see this, consider a two-cell surveillance problem involving a completely

uninformative response matrix R: for some c, 0 < c < 1,

c e

Also suppose that the Markovian target motion matrix M is given by

M [0 1]

1 0
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Such a motion matrix interchanges the position of the target between the two
cells in a single stage.

Suppose now that, for X = (xl, x2 )' E91, our objective function f is given
by

f(X) = ax +bx 2

where a and b are positive real numbers, a/b. Since our response matrix is
completely uninformative, any surveillance plan is optimal, and we will thus
assume that the surveillance plan (K is given by (,K(X, k) = (2, 1) for all
X E1 and all K - 1, 2, 3 ... , k= 1, 2,..., K.

Using now the definitions for the posterior distributions U given in (II-1)
we see, for = 0, 1, and 2. that

U 1 (X,K) = MX, K = 1, 2, 3,.

Similarly, if o (X, K), I 1 0, 1, 2, are the event probabilities defined in
equation (11-2), we have, for all X c S,, and K = 1, 2, 3, ... that

1-c if l = 0
o1 (X K) c/2 if I 1, 2.

It follows then from equation (11-8) that

hk(W k, f) f(MkX).

But note that M2 K+ 1  M and that M2 K 1, K - 1. 2, 3 ..... Thus if X = X,) '

K K ax + bx2  if K is evenA ((p ,f)(X) z

a&x2  bx 1  if K is odd,

so that the limit (111-13) will exist if and only if X - (1, 1),
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In spite of this counterexample, observe that, in the case at hand, every
subsequence of {AK( K, f)(.)}K -1 contain, a uniformly convergent subsequence.
Similarly the Cesaro limit of the functions Ak(f, q)(.) exists for X E 91.
Indeed

1n K Ak(f,0k)x) = a+ b.
K k~ f klX

lira Z Ak O a b
K-* k-

Recall that the Cesaro limit here indicates the long-term average target
localization obtainable using the objective function f and the surveillance
parameters R, M, and q)k. In Theorems 11-2 and 11-3 below we establish
these two facts for an arbitrary surveillance objective function.

In the remainder of this section we will consider a surveillance operation
on N cells C 1 , C2 , ... , CN. Recall that our space of objective functions C
is the space of all convex functions on 9 9N_1 which are uniformly Lipschitz
continuous onlN1. We assume that each function f E C has been extended
to a function defined on the positive orthant VN of 1N, by setting

1 Yill f y if YE VN, Y /0

f(Y)

0 ifY = 0.

Recall that if f c C then there exists L > 0 such that, for all Y1, Y 2 V N '

f( I 2)1:L JJY 1 - Y 2111f(Y 1) - f(Y2)~ L 1 1"

Theorem 1I-2. Let q K, K - 0, 1, 2, 3,... be the K-stage optimal surveillance

plans for the objective function f E C. Then the family {AK(4 K, f)} -o is an
equicontinuous family of functions and so every subsequence from this family
contains a uniformly convergent subsequence.

Proof. Suppose our sensor response matrix is R and that our target

motion matrix is M. Choose a constant L > 0 such that if X 1, X2 ( VN then

f( 1)- f(x2 )I :5L x 1-x 211
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It then follows from Theorem II-1 that if X1 , 'X 2 E N' then

IAk( k , f) (X ) - Ak( k , f) (X 2 )
I <L JJx 1 - X 2 1

and so the family Ak ( k , f)} is clearly equicontinuous.

As an immediate consequence of this theorem observe that every convergent
subsequence of {Ak(qk, f)} is in fact uniformly convergent.

The following theorem establishes the existence of the Cesaro limit in
general. Note that this theorem is valid for every sensor response matrix B
and every target motion matrix M. The theorem states that there is a long
term average expected target localization for every prior target location
distribution.

Theorem U-3. Let k = 0, 1, 2,... be the k-stage optimal surveillance
policy for the objective function f E C. Then the sequence of functions

1 k Ak( k , }lc

R k=1 K

is uniformly convergent.

To establish this result we need first the following lemma.

Lemma. Let qp be the stationary surveillance on N cells given by

(p(X,k) (l/N, 1/N, ... , l/N) X E S k 0, 1, 2,.

N-1'

If f c C then the sequence of functions

K  k
k-1

is uniformly convergent.

Proof of Lemma. We first show that the family {Ak(q,, f)} is an equicontinous
family. Choose a constant L such that

f(x1) -f(x)I:L Xl -x2-1 X2 v N
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We will show, by induction on k, that

IA k (q,,f) (X 1) - A k (W, f X2 )1 :L 11X 1 - x2j'!1 '

The result is clear for k -~ 0. Using equation (11-8), we obtain

A k+1 qW, f) (X) - Ak1 (A' 2)1

1N Y Ak ((, f)(MTX) A A( p, f) (MT IX 2 )1
1 =1

+ klf) N k(O fM I N
N T~~)[~- I. )X 11- A N4 ff(- E TI )X 21

It follows now from our induction hypothesis that

A k A 1(,)X f))( ) 1+ N
I A ((0 W2 )I:SLN Z 11 Xl2)1

t= 1

It is easy to see that, for any vector Y E IRN, I1M Y 1 < !1Y 1 , whence we h ve

k+1 k+1

N2:f- E IT (X1-X ) 1 +11(I- T)(X1-X2)1

Now recall that T diagrjrl r adlt(l
Since 0 < rjl < 1, itfollows thatNI21 Y)X -
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iiTl (X1 -X 2 )1 1 
+  (I-TI )(X 1 -X 2)0 1

N
L Ir y [ + '(- r )yj HX1-X2j.

j~j jl j j

Thus we conclude that

Ak+1 (0(O ) - Ak~ (pf(X2) <, 1 Hx 1 -x 2 V1,

and so {A k(, f)} is an equicontinous family.

Now set

1  K k
G K M NX)K= Ak( 9, f)(X).

k=l

The family of functions {G K(f)} is clearly also an equicontinous family, and
so every subsequence contains a uniformly convergent subsequence. We thus
need only show that every convergent subsequence from the family {GK(f)}
converges to the same limit

Suppose now that the sequences {GK.1 ( ) }0 l l and {GK 2 (f)}. are uniformly

convergent. Set j2 12

,5/-fgE C :j G. (g)} and {G (g)} are uniformly convergent sequences}.

1J2 q

Clearly f ,J, and -o,_i/is nonvoid.

For each g P ,deiine functionals 1tl and 112 on ..d'lby

111(g) lir GK (g), and H 2 (g) lim GK (g)

For g c pithe functions 1l1,g) and 112 (g) are convex uniformly Lipschitz
continuous functions on SN_ 1 and hence in C. Additionally, for each
X YN-1, 1l(.)(X) and H2 (.)(X) are linear functionals on, P.
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Define now an operator on the spaceJdas follows: for each g (/set

N N
4) (g) (X) - I . g(MT X) + g(M ~ - I T )X.

Note that 4) is a linear operator on..Yland that

A k(Q),g9) - b (g) 'b - ..4)P(g), g.d

We now claim that 4,(g) c, q/ whenever g ( c1. Clearly, 4)(g)c C. and we need only
show thiat the sequences {GK. (41)g)}T are uniformly convergent. But, for i -1, 2,

ii ji 1

1 K. +1 1
G (4) g) = G (g) -[A 3 (Qo,g) - A (o, g).

K. K. K .

Thus 4) (g) cJd, and indeed T 1i(g) 11i(4ig), i 1, 2. It follows then that
G~j(g) c/,for i 1, 2, 3,.

We also claim that Hig c.7c/and indeed that Hi is a continuous operator
of. 5iinto itself. To see that H1(g) c dj whenever g E W, note that since GI. i(g)
converges uniformly to H1(g) it follows from the linearity of 4) that DGK. (g)
converges uniformly to 4),Hi(g). But 4)GK. (g) zGK- (b), and so ji
Dfi-(g) -- Hi(4)g) IHi(g); whence, G1 (,(Hi(g9 - Hi(g), " = 1, 2, K 1, 2,3,.
Thus clearly H1(g) , '.

Leted7have the topology induced by the supremum norm. To see that i.
is a continuous mapping of..dinto itself, let gl, g2 c td satisfy1

1~ gI sup Ig (X) -g X)~ I '<

Note that if X V Nthen I g1 (X) - g2 (Xj <(/3)!1X I , so that



It follows then that

JG (g )-G G(g 2)l< K -1, 2,3.

Now choose K 0so large that if Kj > K. then

H- (. G g)IC: 1, 2.

Using the triangle inequality it follows immediately that

fl H.(g) I H .(g2 ) 1 la S-

and so as claimed H. is a continuous map of dlinto itself.

Now observe that

11 1(f) H I(G K (f) rn H 1(G K (f')) = 1 1(H 2(M)

since H. is continuous on ~.Similarly

11(f) = GK. (H 1 (f)) - H 2(H 1 (f)).

Interchanging the role of H11 and 112 above we obtain

H 1 (f) -= H IH 2 (f) -- H2 H 1 (f) cv 12 (f)

and so every convergent subsequence from the family fG K} has the same

limnit, as claimed. This completes the proof of the Lemma.
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Proof of Theorem 11-3. For k 1, 2, 3.... let k be the k-stage optimal
surveillance plan for the measure of effnctiveness function f. Recall that
each pk is determined entirely by the number of stages remaining in the
surveillance operation, so that, for all X E Y)-I

N-i'

Pk1(x, k 1) k2(X, k2 - ) = 0, 1, 2.... min {k k }.

For each j 1, 2, 3,... let ti, be the k-stage surveillance plan defined by

k jk

(X, l) if k < j

L11 (X,/) ( 1 1 .. .- IL) I l f , 2.....k-j

OJ(X, l-k+j), I k-j.-1, k if k > j.

Thus if k > j, 4 'jk allocates, during the first k-j stages of the surveillance
plan, the same amount of effort to each cell. During the remaining j stages
of the plan, V jk allocates effort according to the optimal surveillance plan oJ.

Now define an operator (D : C - C by

N N
I(I)M(X) N Z f(MT/X) + f(M(I - I T1 (X))

It is easy to see that

k k~kAk(( k f) k j ,2. . .
Ak( jk'

4 k-J (AJ ((PJ, f)), k j+l1, j 2 . ..

Whence if

GK 1K k
K K L 1 A Q( jk, f), k 1, 2, 3, ..
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it follows that the sequence {GKjK=I converges uniformly to a function H E C,

1,2,3 .K

Suppose now that j, < j2 ' It follows then that

AJ2 (d J2 D2 - j I(A 1,(op] ,f)

<A ( J2,f)=A Q. f)
j2j2

In particular, for j < j2 < k, we have, by induction on k, that

Qk( jl k ' f) _< (d j2 k ' f)

whence Hl < ILj Since H. < jjfjj. max I f(x)I it follows that the sequencei- J2" J -xE

1j converges uniformly to a unction Hc C. N-1

Consider now the diagonal sequence of functions

_I K  kk

KK K k 1 K, k ki

It is easy to see now that this sequence converges uniformly to H and we
have thus obtained the desired result.

The following two theorems establish limit results for the sequence of
functions {Ak(b,,k, 1)}1 I under various hypotheses concerning the target motion
matrix. The first theorem is most useful in the case of a stationary target,
for then the target motion transition matrix is the identity matrix. The second
theorem is applicable to many moving target 3ituations, in particular to
those presented in the previous section.

Theorem 11-4. Let K, K - 0. 1, 2.... be the K-stage-optimal surveillance
plan for an objective function f c C. Let M be the target motion transition
matrix and suw)pose that U: {X E YN-,: MX X}. Then the sequence
fxK((IK' t)}K 1 converges uniformly on U.
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Proof. Let X E U.; then
I

K+l K, I K K
A ( Kp f) (X)> (, f) (MX)

K K
>A (( K f) (X),

K Kand so the sequence { A ( K , f)r} is an increasing sequence and so uniformly
convergent on U. 1

Theorem 11-5. Letp K , K = 0, 1, 2,... be the K-stage optimal surveillance
plan for the objective function f E C. If the target motion matrix M has a row
with no zero entries and if every entry of the sensor response matrix is less
than 1, then the sequence {AK(PK, f)} 1  converges uniformly to a constant.

Proof. Let M [d,. ] and suppose that dioj > a > 0, j - 1, 2, ... , N.
If X =(X 1, ... XN) and (Yl . YN) Y 9 N-1, consider

Observe that

2 di o(Xj-yj)1 12 (di j- a )(xj-y) iJ j 1 o

_ J(dlo .a)Ix-.

0

< o Y d.. (x -yjj 103

for some o, 0 < o < 1, whence

II MX-MY 1 <22(l-d. +od. )Ix I

<_. (1-(1-0)a)X-Y11
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But 1-(1- O)a < 1 so that M is a contraction mapping of 'N-I. Thus there is
a unique X 0 ctA-1 such that

lirn MKX Xo, all X e -r

K- co

Now observe that MX o  X , whence from equation (11-12) we obtain0

A K+I(wKp , f)(X A (( f)(MIXo) AK( oK , ( f)(Xo).

K K
Thus the sequence of numbers {A (o , f)(Xo)} converges.

We will now show that

K ('PK , f)(X) - AK(q K, f)(Y) : X, Y E
K-a'

To see this, define for K 1, 2, 3,... numbers LK such that

IAK((K,f)(X ) -AK((K ,f)(Y ) I< LK IIX-YIIt X, Y c V N .

The existence of the numbers LK was established in Theorem 1I-1. Suppose
now that K

A K+I((PK + I, f)(X)= AK ((P , f)(MT/X) + AK(PK , f)(M(I-TI)X)

A KI(W K + I f)(Y).

We then have

---



K+1 K -I - K+1 K+1'A (q, ,f)(X)- Mq,)Y)

A I ~, f)(MT 1X) - AKKof ( TY

K K K K
+ IA(y f)(M(I-T )X) - A (q f)(M(I- )Y)j

:SLKIIIMT (X-Y)II 11 M(I-T )(X-Y)11 1}.

But if R [riji, then by our assumption on R, there is a g3 > 0 such that

We then obtain, as above, for some appropriately chosen pi, 0 < pi < 1,

Fl M(I-T1)(X-Y) Z1: ~ .(1-r 1 )(X-y)

Again using our asstumption that r 1< 1, we have

Ak±1 k+ 1,f X A k+1 Gk+ .f)(11

oL K flX-YHI1

for some appropriately chosen constant 0 , 0 <~ 0 < 1. Observe that 0 is
independent of K, whence, by induction 0 00

L<K L-LK- t~ 1,- K-c)
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Now since the sequence of numbers .AK(¢, f)(XK) is convergent and
since LK-0, (K- o), it follows as clai:.'! that A is uniformly
convergent to a constant.

An Important Special Case: The Homogeneous Sensor

In this section we describe an important special surveillance sensor
whicn is similar to that encountered in a number of operational situations.

Consider a sensor which is only able to detect a target if it investigates
the cell which contains it. Occasionally, however, the sensor will produce a
non-target-generated contact. These contacts may occur, for example, because
of random acoustic fluctuations, electronic instabilities, or sensor operator
error.

Suppose that, if the sensor investigates the cell which contains the target,
the probability that the sensor will obtain a target-generated contact is i3.
Additionally, suppose that the probability of obtaining a non-target-generated
contact, pi. is independent of the cell investigated.

We seek the sensor response matrix for the case at hand. Since, if we
search in a cell which does not contain the target. the only possible sensor
response must be non-target generated, it follows from the definition of
rij that rij - A when i/j. On the other hand, if we investigate the cell which
does contain the target,then we assume a -ensor response may be obtained
in two mutually exclusive ways: either a sensor response may be target
generated or it may be non-target generated. Setting X A3 p. it follows
that rii A, i - 1. 2 ..... N. The sensor response matrix is thus the N x N
matrix

At p p ... p-

II A. p ...

SR pt p A ... /ii

p p p .-. A

Such a sensor is called a homogeneous surveillance sensor with parameters
(N, A),A > p. The quantity X -p is the target-generated contact rate and p
is the non-target-generated contact rate. In terms of valid contacts (i.e.,
conatacts coming from the cell containing the target regardless of whether

L l 
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they are target generated), X is the valid contact rate and M is the false contact
rate.

For 1 1, 2, .... N we now compute U (X, k), the posterior target location
probability distribution at the end of stage k given that the location distribution
at the beginning of stage k is X (x1 , .. . ,XN) and that there was a sensor
resoonse from cell C1 . Let e l = (0, 0, ... , 0, 1, 0... . , 0), where the 1 occurs
in the I th coordinate. It follows then from equation (II-1) that

U(Xk) P)x

(X IAX 1+ P 1 + XP)x I+ P

and it is instructive to interpret the terms on the right-hand side of this identity.
Observe that

(- 1 )x/+A

is the conditional probability, given that a contact occurred from investigating
cell C, , that the contact was target generated; also e l is the posterior target
location probability distribution given that the contact was target generated
(for then the target must be in cell C,). Also,

Ah- )x/ +P

is the conditional probability, given that a contact occurred from investigating
cell C1 , that the contact was non-target generated. In this case, the posterior
target location probability distribution is X, the same as the prior, since no new
information has been gained.

Similarly, we can compute Uo(X, k), the posterior target location at the
end of stage k given that the prior distribution at the beginning of stage k is X
and that there were no sensor responses during stage k. For j - 1, 2 ,.... N,
let cj(X, k)A be the amount of surveillance effort allocated in cell C. during
stage k, and set K s (X - p) (1 -P). We then obtain, from equation (11-1). that
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N

U (X, k) A = M
0 N,Z (pj(X,k)[1-Kxj]

and the probability of obtaining no sensor response is

Ni

(1-4) 1~ W°J(X k)[1- K x "

Consider now a surveillance sensor with the response matrix

0 0 ... 0

0 0 E 0
o o . 0

o o E ... 0

'0 0 0 ... E

Such a sensor is a homogeneous surveillance sensor with parameters (E, 0). Every

contact for such a sensor is target generated, and the occurrence of such a contact

completely localizes the target to a single cell. If for j -- 1, 2, ... , N, (Pj(X,k)%
is the amount of surveillance effort allocated to cell Cj during stage k by such
a sensor, the posterior distribution at the end of stage k given no contact is

N
2 J(Xk) [X-(x ej

N
%' , (X .k) [1 x j

anNand the probability of obtaining no sensor response is . 1 °p.QX, k) [1-f xj.



It follows now that a homogeneous surveillance sensor with parameters

(X, p) achieves the same posterior distribition given no contact as does a

homogeneous surveillance sensor with parameters ((X - p)/(1 - p), 0) when

both are used in the same surveillance plan. Moreover the ratio of their

probabilities of obtaining no contact is 1- p.

The K-Stage Optimal Surveillance Plan for a Homogeneous Sensor

Consider a homogeneous surveillance sensor with parameters (X, P), X> p,

which is attempting to localize a target located in one of N cells C 1 , C2 .  CN.
Suppose also that the target motion matrix M is given by the circulant matrix

of the form, with 0 < 6 < 1,

N-i 6 6 6
N N N N

6 1-N-16 6 6
N N 1- N N

M 6 6 N i _-_16
N N N N

66 6N-
NN NN

Such matrices were originally considered as target transition matrices for
surveillance problems by Richardson, reference [a].

The parameter 6 is called the dispersion constant of the target motion

matrix. Observe that if 6 - 0, then the target is stationary, whereas if
6 1 the target distribition disperses to the uniform distribution in one
step. Additionally if X - (x1 ... ,xN)' is the initial target location pro-

bability distribution, assuming that no surveillance effort is expended,
the posterior target location distribution after k stages is

MIX (1_6 )k (X( ..... ))+(.....

In particular, if 6 > 0, the target location probability distribution converges
uniformly to the uniform distribution.
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The optimal whereabouts search introduced by Kadane in reference [b I
is the special case where X > 0, i = 0, . -- 0, and the surveillance objective
function is the probability that the target is located in the highest probability
cell. Thus, in the situation considered by Kadane, the target is stationary
and a sensor response can occur only if the target is located in the cell being
investigated (i.e., there are no false contacts). Kadane was able to show
that the optimal allocation of surveillance effort in an optimal whereabouts
search is always to investigate the second highest probability cell. See,
for example, section 4. 4 of reference [c 1. Note in particular that this
optimal allocation depends only on the current target location probability
distribution and not on the horizon, and is thus a stationary surveillance
plan. Because of this, the resulting surveillance plan yields uniformly
optimal probabilities of localizing the target for any possible horizon.

We now view the K-stage-optimal surveillance plan for the homogeneous
sensor and circulant target motion matrix as a generalization of the optimal
whereabouts search. Remarkably enough, our numerical results appear to
indicate that the optimal allocation of surveillance effort when P > 0, 6 > 0,
and the objective function is the probability that the target is located in the
scighest probability cell is the same as for Kadane's optimal whereabouts
search. Thus for any homogeneous surveillance sensor, when used against
a target whose motion matrix is circulant. we conjecture that the K-stage-
optimal surveillance plan is the stationary plan which allocates the available
effort at each stage to the second highest probability cell.

Another possible generalization of Kadane's optimal whereabouts search
is to consider a different surveillance objective function. Suppose for example
that we have a homogeneous surveillance sensor with parameters (X,p).
A _ . > 0, which is attempting to localize a target whose stochastic motion
matrix is circulant with dispersion constant 6 > 0. If the surveillance problem
involves N cells, C 1, C2 ... . CN, we can consider,for 1 < n < N-1,the surveillance
objective function given by the probability that the target is located in the n
highest probability cells. In this case, our numerical results indicate that
the K-stage-optimal surveillance plan is the stationary plan which allocates
at each stage the entire effort to the (n+l)th highest probability cell.

On the basis of these numerical results, we conjecture that in the general
case of a homogeneous surveillance sensor and a target whose stochastic
motion matrix is circulant, the K-stage-optimal surveillance plan, relative
to the objective function which gives the probability that the target is located
in the n highest probability cells, is the stationary plan which allocates at
each stage the available effort to the (nil)th highest probability cell.1 If this
conjecture is established theoretically, it will have a number of important
consequences. First note that such a surveillance plan depends only on the
current target location probability distribution and not on the number of stages

Sinc(, this has been written, a counterexample to this conjecture has ',een found

ffr n 2 bY J. I?. Weisinger.
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in the operation. This plan would then result in uniformly optimal probabilities
of localizing the target for each possibl2 choice of horizon. Moreover, we feel
that it is reasonable to model many operational situations with a homogeneous
sensor. Since in this case the K-stage-optimal surveillance plan would give
optimal results for every horizon, it has potential for widespread applications.

In order to understand this conjecture, recall that the goal of surveillance
is target localization rather than target detection. The surveillance objective
function defines what is meant by target localization. Thus for example if
we need only localize the target to n out of N cells, then the appropriate objective
function is the probability that the target is located in the n highest probability
cells, for if we use our surveillance sensor so as to maximize this quantity,
we will maximize the chance of localizing the target to the specified number
of cells. If we now allocate our surveillance effort at each stage to the (n+l)th
highest probability cell, we are effectively using our effort to minimize the
chance that our best estimate of n cells which contain the target is wrong.

Examples Involving a Homogeneous Surveillance Sensor

Suppose that a homogeneous sensor with parameters (X, p) is used against
a stochastically moving target located in one of four cells C 1 . C2 , C3 , C4 .
We assume that the target motion matrix is a circulant matrix with dispersion
constant 6.

In Figures 1-14 and 1-15 we compare the effect of the dispersion constant 6
on the K-stage-optimal surveillance plan using a homogeneous sensor with
parameters (. 1, . 01). In Figure 11-14 the initial target location probability
distribution is (. 7, .1, .1, .1). Observe that, in the case of a stationary target
(6 0), the probability of specifying the target's location to a single cell increases,
as surveillance effort is expended, monotonically to 1, 0. On the other hand,
if 6 > 0 then

lim MkX (.25, .25, .25, .25),
k- co

so that if no surveillance is performed the target distribution aymptotically
becomes uniform. Again, the parameter 6 determines how rapidly this
convergence occurs and if 6 1, then the target location distribution disperses
to a uniform distribution after a single stage. This is illustrated in Figure 11-14
by the fact that, if 6 1, the probability of correctly specifying the target's
location after one or more stages of surveillance is . 25. The other two cases
considered correspond to dispersion constants of .2 and. 4.
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In Figure 11-15 we have graphed the influence of target motion on the
K-stage-optimal surveillance plan usini, th- same sensor parameters as in
Figure 11-14 but assuming that the prior probability distribution is (. 3, . 3, 2, .2).
The cases considered correspond to dispersion constants of 6 0 (stationary
target), 6 - 2, 6 = 4, and 6 1 (complete dispersion in a single stage).

Final-y. in Figures 11-16 and 11-17, we indicate the influence of the false
contact rate on the K-stage-optimal surveillance plan. We consider three
cases involving homogeneous surveillance sensors with parameters (X,, p)
where X . 1 and p takes the values . 001, . 01, and . 05, respectively. We
also suppose that the target motion matrix is a circulant matrix with dispersion
constant 6 = . 2. In Figure 11-16 we assume that the prior target location
probability distribution is (. 7, . 1, . 1, . 1) whereas in Figure 11-17 it is
(.3, .3, .2, .2).

Conclusion

Our investigations have established the K-stage-optimal surveillance plan
,ts the solution of a particular dynamic programming problem. Unfortunately
solving this dynamic progranuning problem generally requires a tremendous
amount of computational effort. Moreover, except perhaps in the case of a
homogeneous surveillance sensor, the K-stage-optimal surveillance plan
depends strongly on the time horizon. Thus in general there exists no uniformly
optimal surveillance plan.

Our numerical examples have shown that the 1-stage look-ahead maximum-
information-gain plan, in addition to being easily determined, is a good suboptimal
surveillance plan over a wide variety of surveillance objective functions. Moreover,
since this plan is a sationary plan, it can be trivially extended to a surveillance
plan of arbitrary length.

Other surveillance policies, such as the highest-probability-cell policy,
can provide substantially less target localization than either the K-stage-optimal
surveillance policy or the 1-stage look-ahead maximum-information-gain policy.
The reason for this is that the highest probability cell policy ignores all
knowledge concerning the response characteristics of the surveillance sensor
as well as knowledge concerning the target's motion. Thus the highest probability
cell policy may allocate its effort to an unproductive cell, with a corresponding
penalty in target localization.

Our asymptotic results have established the existence of the limiting average
payoff for the K-stage-optimal surveillance plan. Additionally, under certain
assumptions concerning the target motion matrix, the expected target localization
achieved by the K-stage-optimal surveillance plan converges to a limit which
is independent of the initial target location distribution. Thus, in this case,
the K-stage-optimal surveillance plan asymptotically produces estimates
for the target's location which arc robust against errors in the prior distribution.
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Similar results are apparently valid, from our numerical examples, for stationary
surveillance plans.

Another consequence of our numerical examples has been to show that if
a homogeneous surveillance sensor is deployed against a target whose motion
matrix is of a special type, then the resulting K-stage-optimal surveillance
plan is stationary and of a particularly simple type. For example, if the
surveillance objective is to localize the target to k cells, the optimal plan
appears to be to investigate that (k+l)th highest probability cell.
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A STATISTICAL MODEL FOR PROCESSING ASW CONTACT INFORMATION

TO ESTIMALTE TARGET PATTERNS OF OPERATION

In this chapter we consider two major problems which an ASW planner must
frequently face in the presence of sparse contacts of various types and quality.

The first is to obtain an estimate for the track of a specified target, and the

second is to make inferences about overall target behavior patterns on the basis

of contact data from a number of different targets. The purpose here is to

describe a Bayesian method for obtaining both of these types of estimates.

Unfortunately, the methods in this chapter have not yet been developed to the
point where numerical examples have been computed, and so none are included.

Our approach is based on a parametric model for target motion. The object

is to use the available contact data to obtain posterior estimates for the target's

track as well as the parameters which describe target motion. A major consideration

in what follows is the development of a parametric model for target motion which

is rich enough to model real world situations but which is also computationally
tractable.

The approach outlined below is most applicable to the case of a target in

transit. Additionally, since we are obtaining Bayesian estimates we are
required to assume the existence of patterns of motion for which we have a

reasonable prior knowledge. This prior knowledge may take the form of past
operational experience, or may be a consequence of certain operational or
geographical constraints.

In the first section of this chapter, we describe our parametric model target

motion. The model is based on the notion of a number of different target scenarios

or basic target tracks. It is assumed in this section that the parameters for

the motion model are complete? T known.

In the second section we suppose that the parameters for the target motion

model are unknown but that prior information about their possible values has been
quantified in the form of a probability distribution. This probability distribution

is the key item required to perform the Bayesian updating for the parameters of

the target motion model.
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We describe in the third and fourth sections the calculations necessary to
perform the Bayesian updating on the pr:bability distributions for the target
motion parameters so as to account for the information provided by a completely
known target track. Although it is unlikely that such high quality information
would ever be available, this is the simplest case to consider, and the calculations
are suggestive of the direction taken in subsequent sections.

The fifth section describes our model for target contacts. We assume that
each contact provides us with an estimate for the target's actual position together
with a covariance matrix which represents the uncertainty in the contact data. The
next section describes the calculations necessary to marry the parametric target
motion model with contact data so as to obtain a Bayesian estimate for the track
of the specified target. This estimate consists of posterior scenario weights, a
mean target track for each scenario, and associated covariance matrices.

The calculations necessary to perfotn the Bayesian updating for the distribution
on parameters of the target motion model so as to account for contact information
on a given target are described in the last two sections of this chapter. The
calculations here are strongly motivated by those given in the third and fourth
sections.

A Parametric Model for Target Motion

In this section we describe a parametric model for target motion. This
model is based on the notion of target scenarios. We postulate the existence of
a finite number of such scenarios, or operating plans, which a target might follow
during a specified phase of its mission. Each scenario may be thought of as
corresponding to a basic geometric pattern of target motion. We assume that
each target chooses one of these basic patterns and follows it throughout the
specified mission phase.

Each scenario is determined by a mean target track and corresponding
covariance matrix. Once a scenario has been chosen for a given target, the
target must move roughly according to the mean track of the scenario. The
target, however, is permitted to operate with some deviation from the mean track.
For example, the target may move faster or more slowly than the specified mean
track, or it may vary its course along the mean track. The extent of these
perturbations in target motion is determined by the covariance matrix associated
with the scenario.

An example ,:f some basic tracks which might be used to define a scenario
is given in Figure IH-1. Additionally, a number of target tracks drawn from the
target scenarios are indicated in Figure 111-1.
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In order to formulate precisely our parametric model for target motion,
suppose that there are J possible tai.gct scenarios: S1 , S2 , .... Sj. Let be
the random variable with range in the set { 1, 2, .. ., J} which specifies the
scenario a target will follow. Thus the event f 6 - j} represents all target
tracks which follow scenario S . We let pj be the probability that a target will
follow scenario Sj:

Pr 4~= j) = p..

We now suppose that a target track is specified by the position of the target
at times ti< t2 <... <t T. Thus each target track is a sequence Z = (z1, . . . ,)

of target positions z c IR2 . Let Z be the 2 r dimensional random vector which
specifies a target's track. The conditional distribution function of Z, given that
it represents the track of a target operating according to scenario Sj, is assumed
to be a multivariate normal distribution with mean pj and covariance matrix Ij1

In order to simplify the following discussion, we will use the notation
f(. bp, 2) to indicate a normal density function with mean p and covariance
matrix Z- 1 . The matrix Z is called the precision matrix of the distribution.
In this notation we have, for a measurable subset U of IR2 r ,

Pr {ZEUIK= j} =ff(zLpJ, zj)dz.

The Parametric Target Motion Model in the Face of Uncertainty

We now assume that the parameters in the target motion model described
above are uncertain, but that we have prior knowledge about their possible values
which we will quantify as probability distributions. In particular, we assume
imprecise knowledge about:

i) the vector of probabilities p = (p1 9 P2 , ... , Pj) which describes
the distribution of the random variable(/,

ii) the mean target paths p 1. p 2 .. . pj,, and

iii) the covariance matrices Z 1 1

do assume, however, that the number of possible target scenarios, J, has
ali 2ady been established. Our goal now is to use contact data on a number of
different targets to improve our knowledge of these parameters.
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We now replace each of the above parameters with a random variable. Let
Q be a random vector with values in tL.. T-fold Cartesian product [0, 1x.. . x[0, 11,
such that the coordinates of Q sum to 1. Let F1 , ... , Yj be random vectors with
values in IR2T, and let A1 ,... ,Aj be random matrices with values in the cone of
positive definite, symmetric 2 T x 2 7 dimensional real-valued matrices. We will
use Q to represent our state of knowledge concerning the vector of probabilities
p; r 1 ..... rj to represent our state of knowledge concerning the mean target
tracks j 1, ... , pj; and A1, ... , Aj to represent our state of knowledge concerning
the precision matrices Z1, . I... j. Note that, although our primary interest is
in obtaining estimates for the covariance matrices 2:1 1 , . .. , E for technical
reasons we use the random variables A1, . . , Aj to represent our state of
knowledge about the precision matrices Z1,... Zj.

Now let pr be the prior joint probability density function for the random
quantities Q, 1 1 , ... , rj,and A 1, . .. ,Aj. The prior density function pr must be
chosen with considerable care. Indeed the ease with which we will ultimatelyobtain estimates for p, Pl, .. ., pj,and Z 1 , . .... Zj depends strongly on the form

of the density function pr. In particular, it is important that the posterior distribution
for Q, r 1 ..... Fj, and A1 , ... ,Aj, given a certain collection of contact data,
be of the same form as the prior density pr. Finally, to facilitate computations,
it is necessary that the density function pr have a simple form which can be
completely described with as few parameters as possible.

We have yet to find a dcnsity function pr which completely satisfies all of
the above described constraints. It is possible, however, to formulate a prior
density function pr which fulfills our denands reasonably well.

We will assume that the parameters which describe a specified scenario
are independent from one another as well as independent from the scenario
weights. If we then let pr o be the marginal density function for Q, and prj,
j - 1, 2, .... , J, be the joint marginal density function for P, and Aj,
by our independence assumption we can write pr as the product

J
pr(q, .... j, a ,...., aj) pr(q) 11 pr. (y., a.). (1I1-1)

We now assume that pro, the density function for Q, is a Dirchlet distribution
with parametric vector a - (al, ..... aj), oj > 0, j =- 1, 2, .... , J. Using the
notation g(. a c) to indicate such a censity function, g(q av) then has the form

o'(I " " ) cl-iv-1-
g(qc c ) q 1  q2 ... qjJ , with 0< q.< 1,

1<i<J.

We now describe the density functions pr- j - 1,2, . . ., J. We assume that
the conditional distribution of 13, given that Aj a, is a multivariate normal
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distribution with mean vector -y. B- and covariance matrix (v. a)-1 where v. > 0.
Additionally we assume that the marginal distribution of A.- is a Wkishart distritution
with mj degrees of freedom, m. > 2T-1, and precision marix V., where V. is a
2_r x 2Tr positive definite symmetric matrix. The Wishart distritution is extensively
discussed in references [f] and 'g].

We will use the notation h(. j m, V) to represent the density function of a Wishart
distribution with m degrees of freedom and precision matrix V. In general then,
for some appropriately chosen constant c, we have, for all 2T x 2T positive definite
symmetric matrices a,

h(aI m,V) ci uIVm/2Ia[ (m-2T-)/2exp{-tr(Va)}

where [ V determinant of V. Thus, the joint density function for r. and A. has the
form

prj(-, a) = f( y'., v ia) h (aI m., V), j = 1,2,.. ., J.

We now indicate the significance of the parameters which define the prior
joint density pr. Note that the prior choice for the values of these parameters
must be based on past experience or operational and geographic constraints.

The choice of the prior parametric vector av is governed by our prior
estimates on the relative likelihoods of the scenarios S 1 , ..... Sj. Indeed if

a c 1 +.. . +a J then

E(Q) - f qpr (q) dq = -

and so the components of a are precisely our prior estimates for the relative
likelihoods of the various scenarios.

In order to obtain the proper prior values for the parameters and V.,
wc consider the prior conditional density, pr, on target tracks Z given that they
are samples from scenario Sj. Observe that

pr(zl/- j) f fpr (l j, r y -', A. a) pr. (, a) d y da

f f(zI y, a) f ( j, (vj a)) h (a Iin, V.) dy da (111-2)

V.
f(z a) h (al V.) (Ia.
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To evaluate this last integral we need to define the t distribution with m > 0
degrees of freedom, location vector a c 1R21,and positive definite symmetric
2-r x 2T precision matrix T, t(x I ra, a, T). This density is defined for all xE IR
by the formula

t(xIm, , T)= cIT [1+ -1 (x-or)' T (x-0r)] - ( I

where c is a constant cho-7en so that the density integrates to 1. Observe that,

for all sufficiently large m, the t distribution is approximately a normal distribution:

t(xl m, cr, T) -- f(xI a. T).

It is now an easy matter to evaluate the integral on the right hand side of
equation (111-2) to obtain

v

pr (zIj= j) =t(zI m.-27-+1, yJ' - (m-2ir+1) V.
J

(111-3)i ' j ( j-2r+ 1 j-)

j' 1+v.3

where the last approximation is valid provided m is sufficiently large. Thus,
*k

our prior estimate for the probability distribution on target tracks which are
assooiated with scenario Sj is approximately a multivariate normal distribution
with mean track / and covariance matrix

V -r+1) V.- 1

jv.±l (mj- -- 1V

In the theory of Bayesian statistical analysis the Bayes estimate for a parameter
is the expectation of the random variable representing that parameter. Thus, the
prior Bayes estimate for the vector of the probabilities p is

E(Q) - a J- 1, l ., i

and the prior Bayes estimate for the mean target track pj, of scenario Sj is
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j - E ( 1 j ) ,- 1 , 2 , . . . J .

It is also possible to show that the prior Bayes estimates for the covariance
matrix Z?1 and precision matrix Ij are respectively

E - (A1 V.,
E(A m -2 1 J

V.
_.__ V- and

-1
E (A) ..V.-

See for example reference [g ].

Estimating Target Motion Parameters When the Track and Motion Scenario Are Known

In this section we indicate how to perform a Bayesian update on the probability
distribution for the parameters of our target motion model so as to reflect the
information provided by a completely known target track. We thus assume that
we are considering a target

1) which is following scenario S l (so that I), and

2) whose track is z ( Z, ).... z
1T

In this case we will be able to compute precisely the posterior distribution for
the parameters of our target motion model. In the other cases which we will
consider, it will be necessary to make a number of approximations to perform
the updating.

Let

J
pr (q, y ..... , a .. a ) pr (q )I pr -yi.a

be the joint prior probability distribution for the rndw
and A 1.  A respectively. We are assmin. in ti

EL1



pr0 (q) = g(ql a), and

prj(-y, a) = f(v I), v a)h(a mj, V)

We seek the joint posterior density

pr(q, T19... , J, a,, ... ,ajl,.,j=Z

pr (z.I q, yl""' ' .....ya , ajJ= I )Pr Iq- I q, -y"" .... yJ, al," .,aj}

pr(zlc=l) Pr {m=-4
J

xpr0 (q) 11 pr.(-j,aj).

In order to evaluate this quantity, recall from the previous section that

pr(z Iq, T1' "" " y J, l.. aj, I(=l f(z [l, a,),

Pr( ; Zq, yI,...,J, a,,..., aj)=q ,
(M-5)

pr(z ) an , V, and

1 X1Pr{($= >= a 1 /P3, f3=o e 1+... +oaj.

Substituting these quantities into equation (111-4) we obtain

Kpr(q,yl -, .... j, a,,... aj Z' a- q= l)" qf(z 1-yl a/)p o ()kIPkTa

Observe now that

a 1 q, Pro(q)= a3 11 qI g(qla) = g(qf ce*)

where a* (a a + 1, ... ,a). Thus, the posterior distribution for the random
variable Q is a Dirichlet distribution which depends only on the scenario followed
by the target in question.
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We now consider the product

f (z ly, a) pr, (,y, a) = f(zlY, a) f (y JA v, a) h (alIm V,
(v,~ ~ ~ ~ + j)f 6

V,

where

A (A -1
1yI V Y, 1 +Z) (VI+1)

Using the identity

V AA A A
(z 1a (z-'y )= (z-,y, ,) a,

-+V-1 tr, Y) (zy

we can write the second normal density which occurs on the right hand side of
equation (111-6) as

( 2 r VIv tr {ZA ) (ZA )f a)
(2 -aV e v+1 ^1 Y

1+v

Combining this with the expression for the Wishart density function which appears
in (111-6), we thus obtain

where

vI* V + f+v Y1 Y
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We conclude finally that the posterior joint distribution for the random
variables Q, r 1 , ... , rK, A1, ... fAK, given that the target's track is
z = (z, ... , z ) and that it is following scenario S1 , is

Dr(q,y ...... """yJ' a,, .. .,a iI z, = I

(11-7)

A**
=g(qla*) 1 f( I a, v h(a I V.

where

a*= a + (0,0, ... , 1,...0), (1 appears in the Ith component)

A* Vj ifj I

V. =
m1 +z ifj =l,

v. = i+f j =l ,

m/~v+1 ff jr=l,

V ifjll

v v - -j

I (Z_ (ZA if j = 1.

In particular observe, in this case, that the posterior distribution for the target
motion parameters has precisely the same form as does the prior.
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Estimating Target Motion Parameters When the Track Is Known but the Motion

Scenario Is Unknown

Suppose that we consider a target whose track z = (zl, z2 , ... , z T ) is

completely known, but we have yet to determine which of the motion scenarios

Si1 $2,..., Sj the target is following. In this case we would like to estimate the

joint posterior distribution for the target motion parameters given the target

track z. Observe that we can write

pr(q, 1/,.. /,al, ... , a J  I z)

=jI 1 pr(q,vy,..., , a 1, ... ,ajIz,=l)Pr zl).

The first factor of each term appearing on the right hand side of equation (111-8) has

already been determined in equation (111-7). We thus need only evaluate the

conditional probability that the target is following scenario S, given that the target's

track is z. To do this we employ Bayes theorem to write

r 9 ,- pr(z ci l) Pr{ {69=}

: pr(zj = j) Pr{Jt j)

Using now our parametric model for target motion, we can evaluate the quantities
which appear on the right hand side of this identity. We thus obtain

PrfkI )= zA A K A A -

Pr{(9'oil I z}: o1 f(z-' 1, VI)[ kXl o k f(z vk, Vk) (-

Combining equations (111-7), (111-8), and (111-9), we are able to compute

the joint posterior distribution for our target motion parameters given only the

target track z. Observe, however, that this posterior has a different form than

the prior. Additionally, this posterior involves many more parameters than does
the prior, and this unfortunate state of affairs can rapidly make the necessary
calculations impractical.

The cause of this problem, of course, is the impossibility of assigning,
without additional data, a given track to a unique scenario. One possible solution

would be to use equation (111-9) to determine the highest probability scenario,

and then assign the target track z to that scenario. The calculation of the
posterior joint distribution for the target motion parameters would then be carried out

as in the previous section. Such a scheme is particularly meaningful when the
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scenarios are widely separated in space and the target track z fits one scenario
significantly better than any other scenazio.

Although we are unable to compute the posterior joint distribution
pr(q, yi, ... , y , al, ... aj I z) without either an Increase in the number of
parameters or some maximum likelihood estimating scheme, nevertheless
we can give a useful approximation for the marginal posterior distributions
pr0 (qI z). Suppose that pr0 (q) = g(q a). We then have

pro(qi z) = 2- pr (qI z,'= j) Pr l rjj z)

(11- 10)

= M g(q IaJ)Pr { 9 Zj ,}j=l

where

aJ =a +(0,0,..., 1,...,0) (1 appears inthe
jth coordinate).

Observe, however, that if we set

J k
a*= 7,a r{ jz)j=1kr{gjz

then the Dirchlet distribution g(. I a*) has the same mean as does the sum of
Dirchlet distributions (111-10). Thus, in man applications, it may be reasonable
to approximate the posterior distribution pr0 (q[ z) with the Dirchlet distribution
g(q Ir *). This approximation of course prevents the increase in the number of
parameters that occur in equation (III-10).

Target Contacts

It seldom happens that the complete track of a target is available for analysis.
Indeed it may not even be known which of the various scenarios S1,..., Sj a given
target is following. Rather, it is much more common to have available a collection
of target contact data on which all conclusions about target motion must be based.
The purpose of this section is to describe our model for target contacts.

2-rSuppose that the track of a specified target is z = (zl, ... , zr) c R , and let
Dtk be the kth contact event on the target at time t. Each contact event consists of
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an estimated position for the target at time t and a known covariance matrix Atk.
We assume that the estimated position ,Itk for the target, given that the contact occurred,
is a random vector which depends only on the actual position zt of the target at time
t. Moreover, the distribution of the random vector dtkis a bivariate normal
distribution with mean zt and precision matrix Atk. Additionally, we assume that
the random vectors dtk are all mutually independent. Thus the joint probability
distribution of the random vectors dtkgiven that Z (z 1 , z 2 , ... , ZT) is

T)

t9 k tk )" !Atk

2
Here, for zE IR and A a 2 x 2 positive definite matrix, we use f(. I z, A) to represent
the bivariate normal density function.

Estimating the Track of a Target from Contact Data

Suppose that we are interested in obtaining an estimate for the track of a
specified target from contact data. Recall that the track of this target is a
random vector Z with values in IR2 T. Our prior estimate for the distribution
of Z depends on the parameters which describe the uncertainty in our model
for target motion. Thus let Q,rII,..., rjand A 1,...,Aj are the random quantities
which represent our state of knowledge about the vector of scenario weights
P = (Pl, ... , pj), the mean target paths Pl ... , and the scenario precision
matrices El, .. , j respectively. We assume that the joint distribution for
these quantities has the density function pr given by equation (111-1) where
prq) = g(q Ia) and, for j = 1, 2,..., J,

A

pr (y ,a) = f(YI 'Y, (. a)) h (a IMY, V).

It follows from equations (I-2) and (I1-3) that our prior estimate for the
distribution for the track Z is given by the density function pr:

J
pr (z) X pr (zIJ9= J) Pr{4 ,(:j }

j=l

J

where P a ( 1 +" oj and
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A V.V J M 2,r + 1)-.

Suppose now that we have obtained contact events Dtk on the target. We
thus have the position estimates dtk = tk, with corresponding precision matrices
Atk, at various times t, 1< t < r. In order to simplify our notation, let D be the
joint contact event

D ={ dtk tk, all t, k).

We seek then the posterior distribution

J

pr (z I D) = pr(D) __Pr(Dz (zl 69=J)Pr{9=J1. (III-1i)

Since the distribution of dtk depends only on the actual position of the target
at time t, and not on the target scenario, we have

pr (Dt z,J=J) = pr(D Iz) = I f (tk't, k k1z'A)

For each time t at which we have at least one contact on the target, we can write,
by the process of completing the square, described in Appendix A,

k( kzt)' t tk ( tk-Zt) (zt-at)' At (zt-at) +Lt

where Lt is a constant independent of z = (zl, ... , zr), At Is the 2 x 2 positive
definite symmetric matrix

At = k &tk,

and at is the 2-vector, independent of z, given by

a= A (2 Atk tk) "
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Note that these calculations require nothing more difficult than inverting a 2 x 2
matrix. Also if there are no contacts' at time t, let At be the 2 x 2 zero matrix,

at=(0 ) and L = 0.

Now let A be the 27- x 27r block diagonal matrix

A =diag (A1 , A 2, .. ,A

let uEIR 2rbe the vector

U =(a' a O1' 2'" T

and let L =L 1 1-. .. .L We can then write

-.I(z-u)'A (z-u)
pr(DZJ j) C tk 'AtkI

where C is the constant (2Tr)- e L, and p is the total number of contacts. Observe
that C is independent of the target track z as well as the scenario followed by the
target.

At this point it is convenient to compute the probability of obtaining the
collection of contact data D given that the target is following scenario Si.-
Indeed, from equation (111- 12) we have

pr (D I J=j) f pr(D I z,j.'= j) pr(z jj(-j) dz

A tA A -1 A (1-3
12(cr-T.) V. (V. +)A-.

where

C.= V.! V. +A 1 JA C c.
j tk tk

Also, since the prior probability that the target will follow scenario Si is
Pr{f/I J) ce P 1 , (P = (11+.. . +a,) we have

pr(D)r - r( V
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Consider now the product

pr(D I z,,= j) pr(z I J)= C A eA(z-o)f(z IV V).
3 3

In order to compute this density note that again by completing the square of a
quadratic form, we can write

A
(z-V),V. (z-V.) + (z-a),A(z-)

AA A - A
(Z-6 )' U (Z-6 + (a-)''V (V +A) A(a

where

A AA
61 =(V +A) (VV y+A a).

'en have

pr(D I z, c j) pr (z Ie9 j)
(III- 14)

A A A A

=C f(z 16 U) e - ( v.) j V +A)

where C1 is the constant defined above.

Finally we can compute the posterior distribution on target tracks given
the collection of contact data D. Indeed combining equations (III-11) and
(111-14) we obtain

p J A A A -1 A

pr(z ID) =pr(D)' f f(z 1 6 U) e -j-y) VA(1-15)i__l.( ~ , 9)c Ce V (V +A) A(-j.(I-5

Estimating Target Motion Parameters from Contact Data When the Motion Scenario
Is Known

Let the prior probability density function for the random quantities Q,
1. ,, A1 , ... ,A be given, as before, by
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J

pr(q, al.... .j, a,..., aj) = Pro(q) .If1 pr.(j, a.)

where

pr0 (q) = g(q Ic), and

pr.(y,a) = f(,y I, v.a)h (a m, V.), j =1,2,...,J.

Consider a target which is known to be following scenario S, (so that 9'= 1).
Suppose, however, that the target track z = (zl, ... , -) is unknown but that we
have obtained the contact events Dtk at various times t, 1< t< r. Each contact
event consists of a mean target position estimate dtk = tk together with a
corresponding covariance matrix Atk. Let D be the joint detection event

D:= (d tk: = tk, all t, j).

We seek the joint posterior distribution for the target motion parameters conditioned
on the joint contact event D:

pr(q, ^1''' 3', 1 .. j D,J= l ) = ..

pr(D Iq,,v1, ... ,V,,al,.-..,aj,J/=l)Pr{,/=l I ci, y,..,J~l ,aj } (111-16)

pr(D 1,=) pr I )

J
pr 0 (q) fl pr.(v, aj).

j=1 3

We have already established the values of two of the factors which appear on the

right side of (Ifl- 16). Indeed,

Pr { l, q,-, .... aaK q' and

Pr -- ( = e1 ""e
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Also, since each estimated position for the target dtk is a random vector which
depends only on the actual position zt of the target at time t, the likelihood function
pr(D I q, 1, . . -, ,J, a,..., aj,,= 1) is independent of the parameters j and aj
for j / I. We thus can write

pr(D Iq, yl1,...., J , a , ,..., a j, =( )pr(D I -Y, a/, '=)

Substituting these quantities into equation (111-16) we obtain

pr(q, Y1 ,,j, a 1 ,-.., ajID,6=/)

J ~(11-17)

pr(D I )q, a-' P pro(q) II pr.(V, a.).
j=1 I j ).

But observe that

P j q/ pr 0 (q): a, q, g(qla)=g(ql a*),

where a* = (al, ... , a + 1,... ,oj). Thus the posterior distribution for the
random variable Q is a Dirchlet distribution which depends only on the scenario
followed by the target in question.

In order to complete the evaluation of 4III- 17) we need to compute the
likelihood function pr(D 1 ly, a l ,1 - 1). Since the distribution of each dtk depends
only on the actual position of the target at time t, we have

pr(D 1-, a = p)zfpr(DIz)pr (zlv/, a 13,9' )dz

(1II-18)

=fpr(D z) f (zv, a) dz.

Recall now from equation (I-12) that we can find a constant L, a vector
ac 2T and a 2 r x 2-r block diagonal positive semidefinite matrix A such that

-7 1 e-

pr(DI z) C II 1 I
t, k tk
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where C is the constant (2yr) pe and IA is total number of contacts. By the
process of completing the square described in Appendix A, we can find a vector
V IR2 T such that

(z-o')'A(z-ar) + (7-y) a, (z--y)

-1

- (z-y)' (A+aI) (z-y) + (c-,y)'A(al  +A) a1 (a -'Y).

Thus, evaluating the integral in Equation (Ill- 1 , we obtain

pr(Dj7l, a - l) C Ia, I Ia+hAi- A ItI e--2(u-Vl)'aI(aI+A) A(u-yl ).
't k t

In order to complete our evaluation of the posterior ,,ensity given in (111-17),
we must consider the product

pr(Dl, al,'j l-) pr, (vl, a,)

pr (D I-Y1,ao 1) f(tl , v a) h (at I i, V).

Note that, again by the process of completing the square of a quadratic form, we
have

A A
(u-yl)'a, (a1 / l) A(v-- 1 ) ( 1 - 1 I a, (-Y 1 )

A A A A
(-Y1  ly1

1 ) (v-1 1) a, T(-,' _ Y1  (U-Y I) a1  U(U-y ) (III- 19)

O t - *)'(v 1 1) aI r(y - ill + tr {U(--%) (a- )' a1 1)

where

-1 v

T- (a 1 4A) (v- a A),
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U 'I T - 1 (a+A)- 1 A, and

A 1

v +i IvI T Y +  aI + A A a.

Thus for an appropriately chosen constant C1, we can write

pr(Dl l / l pr (,y,, a,)

rCf I A ( 1 T) I!~ h(a I ,V1V +UU A ,(
1 a±a tj 'AtjI
Ia +(l+l/v ) A I

In order to continue our calculations, it is necessary at this point to make
a number of important approximations. First, note that for each positive definite
matrix a I we can find a number 0 (a/) such that

V
[O(a)-- ] tr a l  [1-0(a)] tr A.

Observe that if v is sufficiently large we then have

-1 v
T = (a +A) (- a +A) 0(a )I.

V, +11

1-
Here Is the 2 r x 2 7 identity matrix. It is easy to see that vl (v I+ 1) <o(a)< 1.
The quantity 0(a,) is important in that it provides a measure for the amount of
target localization information provided by the contact data D relative to that
provided by the precision matrix al. Indeed if no contacts were obtained, so
that A = 0, then 0(a 1 ) = v (vj +1)-1 . Similarly, if we obtained a contact at each
time t, t = 1, 2, ...- r, then 0(a/)-1 as the precision of the target contact data
converges to the target's actual track.

Using now this approximation we can write

T 0 (a,) I,
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a 1  ±-1
U -1 0(a ) +A) A, and

v, 1 __a, 1 _ 11
v -Ia vY + - al vAo+ .A

Next note that, for each positive definite matrix a1 , there is a number
(p(a1 ) such that

I aa n I(a l
I t~j tI oa

la +A(1 ) I
11

Since Ia +A(I+W', ) 1.+ 4qAti , it follows that 0< 9(al)< 1. The quantity tp(a 1 )
is a second measure for 'he amount of target localization information provided
by the contact data D relative to that provided by the precision matrix a l . Indeed,
if there is no contact data then (a/) = 0. Also if a contact was obtained at each
time t, t = 1, 2, ... , -r, then (p(a)-1 as the precision of the target contact data
converges to the target's actual track.

In order to obtain computationally useful results it is necessary to obtain
estimates for the quantities T, U, *, 0, and (p which do not depend on the precision
matrix a l . To obtaiY such estimates, we will replace al with a certain expectcd
va~le. Note that Al is a random matrix which represents the covariance matrix
M. Thus, the quantity

-1 1
E(A I In- 2

- + I  V

-1 .

is the Bayesian estimate for the matrix Z We will approximate the matrix a1
with the matrix

V I = E(A1 I =(m -2-+1) V,

Observe that V/= v1 (v1 -1)-1 Vf.
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Now set 0l  O(VI) and (p I V(Vj). We then have the approximations

T 0 0 I,

U vvl + 1  1-1 ( l+A -l A
A , 1 -1 -1

0 1 + A A ]and

Y* Vl +1 Iv/ 017 V A]Aa] n

91 (at ) , PI

Substituting these approximations into equation (II-17) we conclude finally that
the posterior distribution for the random quantities Q, rI ..... rj, and A 1 , .... Aj,
given the joint contact data D on a target and the fact that the target is following
scenario Sl , satisfies

pr(q, Y12,...,I /j, a,,... ,aJ [DJ= 1) z

(111-20)

g(q I a*) 1_ f(.yk " , ak) h(ak Italy, V),
k=1 k kk

where

a*= a (0, 0,..., 1..., 0), (1 appears in the I th component),

A Y. if j /1

V , +1)0 +f j = ,

J if j 1 1

Inj +  o ifj=l, and
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V. ifj/l

6.1 0 -1 A Al1
I. +1 [V1I +A] -  ta--y) (u-I)

Estimating Target Motion Parameters from Contact Data

Suppose now that we have obtained the joint contact event D on a given target,
but we have yet to determine which of the motion scenarios Si, S 2,..., Sj the target
is following. This is the most likely form that the available data will take. We
would like to estimate the joint posterior distribution for the target motion
parameters from the contact data D. Observe that we can write

pr(q, y1 , ... j, a 1 , ... , aj ID)

J pr Ia. .... , a D, J= ) Pr lID]. (111-21)
=1

The first factor of each term appearing in (111-21) has already been evaluated
in equation (MI-20).

To complete the evaluation of (III-21), we need only compute the conditional
probability that the target is following scenario S given the contact data D. To
do this we employ Bayes theorem to write

Pr{J= lIID E r(D J= 1) Pr 1] . (111-22)
J

.z Pr(D I,--j) Pr ,= j)j=l

Recall now that Pr{ 6; - a1 P-l. I P al+. +aj. Also the probability of
obtaining the contact data D given the target is following scenario S1 has been
evaluated in equation (111- 13). Thus combining equations (111-20), (111-21),
(IH- 22), and (III- 13) we are able to estimate the joint posterior distribution
for our target motion parameters given only the target contact data D. Observe,
however, as in the case where the target track is known but the motion scenario
is not, this posterior has a different form than the prior and involves many
more parameters than does the prior.

The cause of this problem is, much as before, the impossibility of determining
solely from contact data which scenario a target is following. A possible solution
to this problem would be to use equation (111-22) to determine the highest probability
scenario, and then assign the target to that scenario. The calculation of the
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posterior joint distribution for the target motion parameters would then be carried
out as in the previous section. Again, such a scheme is particularly meaningful
when the scenarios are widely separated in space and the contact data fit one
scenario significantly better than any other scenario.
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CHAPTER IV

ASW INFORMATION PROCESSING IN A MULTI-TARGET ENVIRONMENT

In this chapter we develop Bayesian statistical methods for processing ASW
information in a multi-target environment. A potential application of this work
is in ASW information processing systems designed to accept ASW information
from diverse sources, including direct surveillance, in an effort to initiate and
maintain simultaneous localizations on a number of submarine targets. Such
systems can be used both to carry out ASW surveillance and to assess vulnerability
to such surveillance by others.

The chapter is divided into a number of sections. The first section is an
introduction and provides the necessary background to place the current work on
information processing in perspective. The second section provides a brief
description of ASWIPS (ASW Information Processing System), a small scale
system developed as a testbed for information processing methodology. The third
section involves a theoretical discussion of information processing algorithms.
Finally, the fourth section presents some numerical results based on ASWIPS
comparing a number of alternative information processing algorithms. Extended
Memory processing is described in detail in Appendix B.

Background and Introduction

Suppose that a number of submarine targets are known to be operating in a
more or less well defined ocean area and periodic estimates are to be generated
for each of their positions. Potential sources of information to assist in target
force localization include: water depth contours; submarine speed limitations;
direct surveillance information such as observations of port arrivals and depar-
tures and ASW sensor detection data; geographic constraints imposed by submarine
missions; and so on. We treat this localization problem In terms of ASW surveillance
information processing systems, i. e., systems designed to accept as input information
of the type described and produce as output estimates of the locations of the target
submarines.

Our principal Interest in this chapter is in Bayesian statistical methods for the
systematic generation and updating of target location predictions in a multi-target
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environment. By a multi-target environment we mean one in which, in general,
there are situations in which it is not possible to determine the target that
generated a given sensor contact. For example, it may be that the submarine
targets are acoustically indistinguishable. In addition, it is assumed that
individual targets are not confined to operate in disjoint subregions. Under
these restrictions it is not possible to treat the multi-target surveillance problem
as a composite of many independent single target problems even though the
underlying target motions may be statistically independent. It is the information
processing dir -ulties arising from this intrinsic multivariate nature of the
problem tha the concern of this chapter.

A substantal portion of the discussion below will deal with specific multi-
target Bayesian information processing algorithms and their comparative evaluation.
A particular such algorithm called Extended Memory processing will emerge as
the only one of the Bayesian approaches we consider that both makes accurate
use of the observational data and is computationally practical.

In order to provide the Extended Memory methodology with a framework within
which it can be implemented, tested, and compared with other processing approaches,
we have put together a small scale developmental information processing system
called ASWIPS (ASW Information Processing System). We next proceed to describe
ASWIPS.

Structure of ASWIPS (ASW Information Processing System)

ASWIPS is a small scale information processing system of computer programs
currently implemented on a PRIME 400 minicomputer designed to accept as input
contact data on a small number of targets and using Bayesian statistical methods
to generate target location estimates. The principal output of ASWIPS at the end

of each processing update stage consists of probability distributions for the
location of each active target.

0 0
Target locations are assumed to be discretized into 1 x 1 cells within a

100 x 100 overall planar grid. Target locations are thus specified in terms of
probability distributions on this 100 cell grid. During the time between two
successive updates a target can either remain in its initial cell or move to one
of the eight adjacent cells (five cells, if the initial cell shares an edge in common
with the region boundary; three cells, if it is a corner cell) in the two-dimensional
grid. Each of these possible transitions is assumed to have equal probability.
Thus the motion model has a very simple Markovian structure.

Observational information is input to ASWIPS in the form of probability dis-
tributions on (target-like) objects detected. Thus, the raw contact data are
effectively assumed to have been preprocessed before being input to ASWIPS.
Each object location distribution is assumed to correspond to an observation on
one of the targets in the operating area.

-96-



The targets are assumed to be effectively indistinguishable in that sensor contacts
cannot be uniquely associated with the target causing them. It should be noted,
however, that in some cases such an identification may be possible by statistical
inference. This would be the case when an object location distribution is out of
sensor contact range of all but one of the prior target location distributions.
In general, however, an object location distribution may overlap with more than
one prior target location distribution in which case the identity of the target that
caused the underlying responses is ambiguous. In such a case we will refer to the
object location distribution (and the underlying response pattern) as unresolved.

The updating of target locations distributions is performed at the end of each
update stage. First, the target location distributions as produced by ASWIPS
at the end of the preceding processing stage are updated for target motion. This
is done by applying the one-stage Markov transition operator for the motion model
that we described earlier. The effect of this motion updating is to make the target
location distributions more diffuse, reflecting the fact that target motion since
the last update has increased the degree of our uncertainty about target locations.

The second phase of processing at the end of each update stage involves revising
the target location distributions for the contact information obtained since the last
update. We will reserve our discussion of the specifics of the updating algorithms
used for the next section of this chapter.

It should be observed that just as target motion tends to diffuse the target
location distributions, contact information tends to concentrate them. It is this
continuing tug of war between the loss of information resulting from target motion
and the gain of information resulting from contact information that contols the
dynamics of the target localization capability of ASWIPS. Factors which control
the direction that this information struggle will take include the number of targets,
target speed, the size of the operating area, contact data rate, sensor detection
ranges, etc. and of equal importance, the processing algorithms themselves.
This brings us to the topic of the next section.

Discussion of Information Processing Algorithms

In this section we will discuss some of the mathematical aspects of information
processing algorithms. This discussion will lay the groundwork for a comparison
in the next section of a number of processing algorithms using ASWIPS.

Target location distributions. Suppose we use k to index processing update
stages and assume that at the ktn update stage there are N submarines actively
deployed in the operating area of interest. We then define

X(k) - grid cell location of the nth target at the end of update stage k.
n
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In the case of ASWIPS, target loations are discretized into cells so that X(k) is the
n

index of the cell containing the n target at stage k. Under the presumption that
these target locations are uncertain, the objective of information processing is to
estimate these locations in terms of probability distributions. Thus we can think of

x(k) (x(k), x(k) x(k) (k)
(1 , .3 ' N

as a random N-vector whose probability distribution we seek. Specifically, using
all available information, we would like the information processor to estimate the
joint frequency function

p(k) 1x 2 ' ," Pr {X(k) (x2 ., XN) 1, (IV-l)

where x E I for n = 1, 2, ..... N with I being the collection of all cell indices.n

Before pursuing the question of how P(k) is to be estimated we consider
the question of how many values it takes to specify this location frequency function.
Consider a case in which the operating area grid contains approximately 1, 000
10 x 10 cells and the number of targets, N equals 10. The number of possible
states of the system, each of which corresponds to a joint location of the 10 targets,
is 1, 00010 = 1030 which is obviously prohibitively large from a computational
standpoint.

Suppose now that it can be assumed that the N targets are operating independently.
If we define the marginal target location distributions

(k) X (k ) =x
Pn (x)=Pr{X n=X}

then, assuming independence, we obtain the relationship,

(k) N (k)()
p() _(k) (Xn) (IV-2)

(l' x2' ... XN) n=I Pn

If the relationship in equation (IV-2) were valid and remained valid throughout
information processing, the numerical size of the problem of estimating target
location distributions would be sharply reduced. Going back to our example, we
observe that each pk), I = 1, 2, ... , 10 involves the specification of up to 1, 000
values. Thus the total number of values required to specify all target location
distributions would be only 10, 000, well within the capability of modern computers.
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A problem unfortunately arises from the fact that even if the relationship
in equation (IV-2) were valid at the outset of processing, i. e., before any sensor
contacts were processed, and even if the individual target motions were statistically
independent, equation (IV-2) in general would not continue to hold during the course
of processing. A very simple example serves to illustrate this fact.

Suppose we consider a case in which the operating area consists of only two
cells, each containing a single sensor which can detect a target only in its own
cell. Suppose there are two targets operating independently each of which is a
priori initially equally likely to be in either of the two grid cells. By assumption,
then equation (IV-2) holds initially. Now suppose that during the first update
period each of the two sensors reports a contact. Designate the two targets as
T 1 and T and the two grid cells as C and C . Then it is easily seen that there
are only wo possibilities: target T 1 is in ceil C1 and target T 2 is in cell C or
vice versa. Based on our observational data alone, we cannot conclude with certainty
which of these two equally likely possibilities is the correct one, although we can
with certainty eliminate the possibility that the two targets are in the same cell.
One now observes an interesting phenomenon. Whereas before the contacts were
reported the target locations were statistically independent, after the contacts
C1 and C2 occur, the target locations are completely correlated. Specifically,
knowledge of the location of one target implies deterministic knowledge of the
location of the other target. If target T 1 is in cell C1, then necessarily target
T is in cell C -- thus the complete correlation between the two targets. We
will refer to th problem of properly incorporating this contact-induced correlation
between targets into information processing as the target coupling problem.

One might reasonably argue that the example we have given is extreme and
that in more realistic cases the degree of correlation among target location
distributions induced by the sensor data is likely to be small. Suppose for the

time being we assume that the target location distributions can in fact be treated
as approximately independent and we proceed naively on the basis of this assu3 ption.
This means that we will deal only with the individual marginal distributions p n for
target location. The problem then becomes one of devising a procedure for updating
these marginals to reflect sensor data. A standard and well-studied procedure
for this kind of updating is based on Bayes' theorem on conditional probabilities.

In the next two subsections below we describe two possible target location
distribution updating schemes based on the independence assumption and Bayes'
theorem.

Sequential processing. We assume that the sensor contacts reported during
an update stage have been clustered into sensor response patterns each generated
by a single target. We associate with each response pattern the presence of a
(target-like) object. Under sequential processing the target location distributions
are collectively updated once for each such response pattern. Let Pn (x) can be
obtained recursively from pk, I -1)(x).

Assume L response patterns were observed during the kt h stage and let
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X(k) (x) = Pr{th observed target-like object is in cell x at stage k},

I = 1, 2... ,L

be the associated observed object location distributions. We then let

xV (k 1) -)k, (x) A k (x), n=1, 2 .... N (IV-3)

and

V(k, 1)
(kl) Vn

(kn I thThe quantity Vi is a measure of the fit between the 1 object location
ditribution in kth stage processing and the target location distribution for the
n target based on processing the first I -1 object location distributions.
Probabilistically, V(k, 1) is an estimate of te likelihood that the 1 th object andth A th k
the n target are in the same cell at thl k stage. The quantity a(k, 1) is then

h th n
an estimate of the probability that the I object and n target are one and the
same.

Now there are two possibilities: either the nth target is the same as the 1 th

object or it is not. If it is not, then there is no reason to modify our current
estimate of the location of the nth target based on Xl ; if the nth target and the
I th object are the same, then a composite revised estimate of the location of the
nth target should be made combining the information contained in the prior
distribution for the location of the nth target with the information contained in
the I th object location distribution.

In mathematical terms, using Bayes' theorem we then obtain

(k, 1 -1) (k)
pk )( , ) Pk - 1 (X a(, 1) Pn Xk ()IV 5Pn )(x) : 1-_( k  n -n(x V (kk,

n

The expressions in equations (iV-3) through (IV-5) provide the promised recursion.
One proceeds in this fashion iteratively updating for each object location distribution
associated with a given update. The entire series of updates for sensor information
during a processing stage is carried out following an update for target motion at
the beginning of each such processing stage.
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Parallel processing. Under sequcnt'al processing the object location distributions
during a processing stage lead to a series of updates to the target location distributions.
An alternative mode of processing, which we call parallel processing, would attempt
to perform a single update for all such object location distributions simultaneously.

To carry out the processing of target location distributions in parallel we
introduce the notion of an assignment function. This is a map f such that

f:{1, 2, ... , L}-{1, 2, ... , N},

where L is the number of object location distributions being processed in parallel.
In general an assignment function need not be one-to-one since more than one object
location might have been generated by the same target. In the current presentation,
for simplicity, we will assume that assignment functions are one-to-one, so that in
particular L< N. We then define

= the class of all possible one-to-one
assignments of kth stage objects to
targets.

Parallel processing is then carried out as follows. First set

S(k) L (k-1) (k)
II n E(x)A 1 M, (IV-6)

f =lxES Pf(l) I

where p(k-1), as defined earlier, is the location distribution of the nth target
through n(k-1)st stage processing and A (k) Is the I th object location distribution

Iobserved during the kth stage. Next nornalize to obtain

A (k)
wtk) __ wf

f E (k) wfk) (IV-7)

The quantities wfk) given In equation (IV-7) are direct analogues of the quantities
(k, 1 ) defined by equation (IV-4) except that whereas in sequential processing object

locations were matched with targets one at a time, under parallel processing a
simultaneous assignment of all objects to targets is made.
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The update of the target locations is then based on the following relationship:

(k-i) N (k) .
p (k)(x N W" k)Pn ()f*tn)((VX 8

n f (k)w f  p (k-1). W (k) ( (V-)
yES Pn (Y) f*(n) (

where f* is the inverse function of f, and

(k)

Af*() = 1, if f*(i) is not defined.

Considerable experimentation has been carried out using both the sequential and
parallel methods of processing. Experience has shown that both approaches
function reasonably well when the actual locations of the targets remain spatially
separated so that there is little possibility for confusion of their identities.
However, as the number of targets increases and correspondingly the likelihood
that unresolved object location distributions will be generated also increases,
the assumption that the target locations can be treated even approximately as
independent seriously degrade! target location prediction performance, the problem
being more acute in the case of sequential processing than parallel processing.

The specific symptoms of the breakdown in processor performance include
(1) possible permutation of target identities and (2) the doubling up of target
location distributions. The permutation of target identities occurs when the
estimated location distribution of target T 1 , for example, corresponds closely
to the true position of target T , and vice versa. The doubling up phenomenon
occurs when estimated location distributions on two targets appear to be virtually
identical when in fact there is only one actual target whose position is compatible
with these distributionc. In such a case, for example. the computed location
distributions of both targets T and T may accurately fit the actual location of

1tally 2
target T while target T is a off in another part of the operating area
with a location not covered by any of the computed target location distributions.

The two pheromena of target identity permutation and doubling up arc related
in that one may lead to the other- both are exti emely damaging to proper prediction
performance. Typical examples illustrating this kind of anomalou-s behavior using
ASW[PS will be given in the next section.

In sunmnary, ir work has shown that it appears impossible to obtain a completely
satisfactory information processing model based on the assumption of target location
independence. As a result we have developed a third form of processing, called
Extended Memory processing, which is based on the key observation that while the
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target locations are, in general, not -ixiependent, they are conditionally independent
given a specific assignment of all past sensor responses to the targets. This simply
says that if one knew which object location distributions (or more fundamentally
which raw sensor responses) were caused by which targets, i. e., if one knew the
correct response pattern to target association, then the correlation in target
locations induced by such observational data would disappear. In general, the
correct such association is not known. However, the target locations can be
effectively uncoupled by first conditioning on a possible response pattern to target
association, then performing a conditional update of target locations based on such
an association, and finally removing the conditioning by averaging over all
possible such associations.

Observe that under Extended Memory processing, conditional target location
distributions must be retained in processor memory for each association assigned
a nonzero weight. Extended Memory processing thus requires a substantially
expanded memory capability over the other processing algorithms and this, as
we shall see in the next section, principally accounts for its improved prediction
capability.

We remark that Extended Memory processing is a form of generalization of
parallel processing. Under parallel processing the conditioning is based on an
assignment to the targets of the response patterns observed during a single update
period. Under Extended Memory processing the conditioning is based in effect
on a simultaneous assignment to the targets of all response patterns observed to
date.

The mathematical description of Extended Memory processing is somewhat
more involved than that of sequential or parallel processing. Thus a detailed
theoretical development of Extended Memory processing is relegated to Appendix
B which also includes some comments on the computing and memory storage
requirements imposed by this method of processing.

Comparison of Processing Algorithms Using ASWIPS

This section will be devoted to a series of numerical examples and comparisons
of the various updating algorithms we described in the preceding section. All such
numerical results have been obtained using the computer model ASWIPS.

Example 1. In our first example we assume that there are three targets
operating in a 10 x 10 cellular grid according to the motion model described
earlier under which during a given update stage a target is equally likely to
move from its current cell to any one of the adjacent cells.

The assumed target tracks are shown in Figure IV-1 and the prior distributions
for the three target locations are shown in Table IV-1 below. Circled target locations
in Figure IV-1 indicate target detections at those locations. We assume that near
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FICURE IV-1

ACTUAL TARGET TRACKS

(Example 1)

Note: k indexes update stages witi the corresponding target locations as indicated.
Circled target locations indicate detections

1 2 3 4 5 6 7 8 - 9 10

2

3 =1 Ck=2

4 k=0 T2  k=O

T

)k=1 l

k=2 =

T3

7~ k=0

8I

9

10

-104-



0 C

0.

$ -4

-E
14 ~ ~ 0' 1- 0 0- - m0 0 0 0 c0

bl mw

1 od
E- H) .0

IE. 
; C

C'i 0co0 0
Q)o.

i-~ b E
cu H .

cbo)
H .1Z

H. 4

m ~ - f - 0 0 0 0 0;

CD 14 m t

-105-



c; 0; 0; 0 4 '-4 -4 0; 0; 0

1:- c0 0; 0 4 C 4 r4 '4 0; 0

ot

>j1

] tC ;C C c
cli 4I

c; 0; c0 0; 0; C; '-4 C0

'-4 C1 C; C f; C; C; 0;

-106-



C c;C4 ~4 t; 4 C

C; ; ; 4 4 t: 4 C

0 0 0; 0; 0 c; 4 t- 4 C

C; c; ; c;C4 ~4 t; C4

W C4 '4 t: 4 C4I

E- t-0 0 0 0

~zJo

~~0C 0; 0C00 0 0

-1070



the end of the first update stage, two contacts are observed: one in the cell (5, 5)
and a second in the cell (6, 6). The sc:. rs involved are assumed to have very
short range and, therefore, a contact guarantees the presence of a target in the
cell containing the sensor. Thus two object location distributions are observed
during stage 1: the first placing a target with unit mass in cell (5, 5), the second
placing a target in the cell (6, 6).

After an update for motion during the first stage and processing for the first
stage contacts, the posterior target locations under Extended Memory processing
are as shown in Table IV-2.

One observes from Table IV-2 that both of the contacts are unresolved. The
contacts in cells (5, 5) and (6, 6) could each have been caused by any of the three
targets. Consequently, Table IV-2 shows a sharp concentration of target mass
in cell (5, 5) in the location distribution of each target and a similar peak in cell
(6,6).

We now turn to the second processing stage. We assume that during this
stage a single contact was obtained in cell (3, 8). Referring to Table IV-2 one
observes that even allowing for target motion only T2 could have caused this contact,
and therefore it is known with certainty that T is located in cell (3, 8) at the end
of the second update. (Again we assume that t-e contact occurred at ur near the
end of the update period.) Now it becomes possible to fit some pieces of information
together. T 2 is known to bc in cell (3, 8). Since T could have moved at most one
cell since the last update, T could not have causes either of the contacts in cells
(5, 5) or (6, 6). Thus, virtuaily all of the ambiguity in the problem has retroactively
been resolved by the latest contact. In particular, T probably caused the contact
in cell (5, 5), and T 3 , the contact in (6, 6), although there is a small chance of the
alternative assignment. Allowing for one update period of additional target motion
the locations of the three targets at the end of the second update period must be
as shown in Table IV-3.

As noted earlier, this example is based on the use of Extended Memory processing
in performing the updates for sensor contacts. Substantially different results are
obtained using either sequential processing or parallel processing. These results
are shown in Table IV-4 and IV-5. One observes that, while in all three types of
processing, perfect localization is obtained on target T the degree of localization2'
on the other two targets depends on the method of processing, and the correct
degree of localization, as supported by the contact data, is given only by Extended
Memory processing.

Example 2. Figure IV-2 below shows the actual track of two targets which form
the basis of our second example. As in Example 1, the circled target locations
correspond to sensor contacts on that target. Thus in the example there were five
contacts on target T , one each for five successive update periods. In contrast
there Is only one contact on target T , that occurring during the first processing
stage. Once again we assume that alI sensor contacts occurred sufficiently close
to the end of an update stage so that subsequent target motion during that stage is
negligible.
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FIGURE IV-2

ACTUAL TARGET TRACKS

(Example 2)

Note: k indexes update stages with the corresponding
target locations as indicated.
Circled target locations indicate detections.
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We assume that at the initiation of processing essentially nothing is known
about the prior locations of the two targets. Consequently, it is assumed that the
prior location distribution of each target is uniform over the 10 x 10 cell grid
with each target initially having probability. 01 of being in any cell.

As shown in Figure IV-2, contacts are observed on each of the two targets during
the first update stage: one placing a target in cell (7, 3) and the other placing a
target in cell (4, 8). Because the prior target location distributions are uniform,
there is no basis on which to show a preference in deciding which target caused
which response. As a result, under either parallel processing or Extended Memory
processing, .5 of the mass of each target would be assigned to each of the critical
cells after processing these two contacts. Sequential processing, however, would
introduce an artificial asymmetry into the problem and assign a total of somewhat
more than a unit target mass to the cell containing the second contact processed
and correspondingly somewhat less than a unit mass to the cell containing the sensor
contact processed first. This behavior is simply another intrinsic flaw in sequential
processing.

Table IV-6 shows the target location distributions after the fifth processing
update using the Extended Memory processing technique. One first observes that the
location distributions for targets T j and T2 are identical, as in fact they should be
in view of the complete symmetry in the nature of our information about their locations.
A contact was observed in cell (4, 3) at the end of the fifth update period and Table IV-6
shows that this contact has been allocated equally to the two targets. No responses
have been observed on target T since the first processing stage. Thus each target
map shows a second mode whicK is quite diffuse in contrast to the mode induced by
the contact in cell (4, 3).

An overall assessment is that, at the end of the fifth update, a target (we do not
know which one) can be placed with certainty in cell (4, 3). In addition, there appears
to be a second target somewhere in the general northeastern portion of the operating
area. One concludes that the results produced by Extended Memory processing are
quite consistent with the underlying sensor contacts and appear to represent about
the best localization that the available information supports.

Table IV-7 shows the analogous results for Example 2 based on parallel processing
after the fifth update (the results under sequential processing are quite similar). Again
the two target location distributions are identical because of the basic symmetry in the
problem. In addition, each distribution shows a sharp mode in cell (4, 3) corresponding
to the recent contact there, although parallel processing predicts an expected number
of targets of approximately 1. 07 In contrast to the 1. 00 predicted by Extended Memory
processing.

The most dramatic difference between Tables IV-6 and IV-7, however, lies in
the distribution of mass outside cell (4, 3). Parallel processing predicts that a second
target is likely to be found in the general vicinity of cell (4, 3) with extremely little
likelihood given to the possibility that either of the two targets is to be found in the
eastern half of the operating region.
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Example 2 demonstrates what we have come to refer to as the quiet target
problem. The quiet target problem arises from the propensity of an information
processor employing either sequential or parallel processing to overreact to a
string of responses on a noisy target spanning a number of update stages when,
at the outset, the initial location distribution for that target had significant overlap
with the location distributions of one or more other targets that did not generate
sensor responses during the same period. The overreaction that takes place is
the gradual buildup in the area of the contact string of the probability mass not
only of the target that is actually causing the contacts, but also of all other "quiet"
targets that initially had some chance of being the responsible target. The net
result Is that the processor attempts to explain the string of contacts by placing
with virtual certainty the locations of all of the targets it can in the area, rather
than by simply attributing the chain of contacts to a single target.

Exactly this sort of situation typically arises in applications when one target
is intrinsically more noisy than another. In this case the noisier one tends to
produce a higher frequency of contacts and eventually the doubling up phenomenon
described earlier takes place. This means that little or no overall probability
is assigned to the area near the quieter target. Eventually this quiet target,
however, will cause a contact, in which case the decision of the processor about
the identity of the quiet target may be driven by extremely small tail probabilities
in the distributions of a number of targets whose actual locations may be far
from the location of the contact. The result is a very dramatic shift in the predicted
location of such targets. This then is a typical source of the permutation problem
which we also described earlier.

In short, it should be clear from our two examples that Extended Memory
processing shows substantially improved target location prediction performance
over the other two processing algorithms. Future developmental work on
Extended Memory processing will concentrate on generalizing its use to include
negative information and false targets.
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APPENDIX A

AUXILIARY FORMULAS FOR EVALUATING GAUSSIAN INTEGRALS

This appendix gives the formulas of multivariate Gaussian analysis and matrix
relations which are needed in the analysis. Reference [h] is a standard reference
for the Gaussian analysis.

Expressions for Multivariate Gaussian Quantities

The multivariate Gaussian density function on N-dimensional 3pace is

f(x) = k exp -if{x'p-x} (A-I)

where P is the covariance matrix of x, and k is a constant so chosen that the
integral of f over RN equals 1. It is well known that

f N exp -2{x'P- 1 x}dx = (27r)N/2 [P7 (A -2)

where I PI is the determinant of P. Clearly, it is true that for any N-vector d,

fRN exp -2{(x-d)'P-l(x-d)}dx = fRN exp -I {x'P-Ix} dx, (A-3)

as can be seen by a simple change of variables.

Matrix Identities

Some useful identities for symmetric square matrices will now be given.

A-i



Completing the square.. The first one is known as completing the square. Let

F(z,-y,u) = (z--y)' A(z-y) + (z-o)' B(z-u)

be a second order homogeneous relationship in z where A is a positive definite
matrix and B is a positive semi-definite matrix.

We claim that

F(z,-,,u) (z-6)1 C(z-6) + (,y-a~)' D(-y-u)

where

C = A+B,

D = B-B(A+B) 1IB

= A-A(A-)B) 1A

= A(A Br 1lB,

6 = CI(Ay+Ba)

- y + (A+B) 1'B(u-y).

In order to establish the relationship, note that

F(z,-y,u) (z-6)'C(z-6)+L

where L is independent of z. Setting z 6 we then have

L =(6 --y)' A (6 -y) + (6 -u)1B (6 -a)

(y -a)' B(A+B)-1 A A-1 A(A+BY 1i B(,y-a)

+ (-y-u)' A(A+BY 1i B(A+B)-l A(y-u).

A -2



But observe that

B(A+B)-I A =(I-A(A+BF 1l) A

= A - A(A+B)-l A

SA(A+Bf 1lB,

whence we obtain, as claimed,

L (y -u)' A(A4B-Y(B+B A-1 B) (A+B)-l A(-y-ur)

=(-)'A(A+B-lB(I+A
1lB) (I+A 1lB) 1 (-y -u)

in particular, if B is invertible, then

L (yu'(A 1 +B')'-l )

Inverse of a partitioned matrix. Let a matrix M and its inverse M1be
p~artitioned into submatrices

M [B ----- (A -9)

[1D i El------ ] (A -10)

where the dimensions of A and D are the same, but possibly different from the
dimensions of C and F. Define auxiliary matrices S and T by

S A1B, (A-Il)

T = C - B'S. (A-12)
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Then

D -AI +ST- 1 St, (A - 13)

E =-ST 
1 . (A - 14)

Note also that

IMI IAI /IFI = Al- TI. (A -16)

Equations (A-13) to (A-16) can be used directly to find M-1 and I M-1 I given
A- 1 , B, C, and IA I . Alternately,' given M-1 (i.e., D, E, F) and I M-1 jthese
same relations can be solved to yield I A I and A- 1 . For this latter purpose,
observe from (A-14) and (A-15) that

T F-1

S -EF 1I

so that

A D-E(EF )'=D-EF E, (A -17)

I A-'1  1/ 1MI / j I - I F1 (A -18) I

Dimension reduction .Let

g~)= (y -a)' M (y-a) (A -19)

where M and a are given. Using the partitioning of (A-9), let M, M , a, and y
be partitioned as:

-------------- 3 a=[j- y 4 :
where the dimensions of D, A, o', and y CYare compatible. Then (A-19) can be
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re-expressed as:

, -U)' (y -a) 4 Tr (A-20)

where
-1

Z=D -EF- IE, (A-21)
-1

u= + EF (y -/), (A-22)
-1

T = R + (y - t)' F (Ye- A) A-23)

Z I = I M I /i FI. (A-24)

These are all in terms of entries in M and a.
The point of recasting (A-19) into the form (A-20) is to reduce the dimension of

the variable y (prior to integrating over y.). Observe that u is linear and T is quadratic
in y. /3 -1

Another matrix inverse result. * Let a matrix A and its inverse B A be partitioned
into submatrices as follows:

Al A1 A13

A11 A12 A13

21 A22 A23

A31 32 33/

B B B

11 12 13

B=A B B B
( 21 22 23

I31 B32 B33

* This section is based on work done by R. V. Kohn and S. S. Brown.
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Let

/0 0 0

A K0  A 22 0
(0 0 0

If B and IB Iare known, what is (A IA)- and its determinant? Now

(A+A)- = (A (I+A A)) - = (I+ BA)- A-1, (A-25)

where I is the identity miatrix. Furthermore,

111 B 12 A220

(+B)0 122 1322 A22 0 (A-26)

32 22 33

where 1I1, I 2 and 1I3 are identity matrices.

Let

13 =(1 2+ B A2 22 (A-27)

By direct evaluation

(P+ BA) 1

so that

IA+ Al 1
=~ IB. (A -2 8)
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The inverse of (f)is, by inspection

'I 0B 0 -B A 011 122012 22~

Now

' 122 '22 H )3=B 2 2z 2 0.

Hence,

0 B 12 A220

(I+A 1iA) 1 = I - 0 B 2 2 A2 2 0 0

0 133 2 A2 2 9

and A2 21 0 ((12 + B2 2 2 2 )A 2 2 )- (A 4 2 2 +-B 2 2 ) so that (A-25) becomes

(A +A) -1 B-(B ) (A- 1 +B 2)1l (B 1 2 B2 2 B3 2 ). (A -2 9)
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APPENDIX B

EXTENDED MEMORY PROCESSING METHODOLOGY

In this appendix we develop the mathematical theory underlying the information
updating algorithm we have called Extended Memory processing.

As the examples in the fourth section of Chapter IV clearly demonstrated, a
Bayesian updating scheme, assuming target location independence in a multi-target
environment and operating solely on the marginal target location distributions,
generally runs into serious trouble when confronted with unresolved sensor responses.
A sensor response (or response pattern when preprocessing is employed) is said
to be resolvable if one can, at least in a Bayesian statistical sense, infer uniquely
the identity of the target that generated the response. In ASW applications the
resolvable responses may be limited to port arrivals and departures and any sen-
sor response such that the prior target location distributions at the time of the
response place only one target within possible detection range of the associated
sensor(s).

In the first section below we introduce the notion of a response pattern-to-target
association distribution and describe the use of such distributions in updating target
location distributions. The updating of the response pattern-to-target association
distributions themselves is described in the second section.

Response Pattern-to-Target Association (Scenario) Distributions

We begin by indexing the response patterns C 1 , C2 ... in order of processing
(usually approximate chronological order). Included in this list are all target port
departures and arrivals. Also index the targets T1 , T2 , ... in order of port departure.
We assume here that all contacts are on valid targets. The generalization to false
targets is reasonably straightforward.

We next define the random variables

Ni =index of the target that caused response pattern
Ci , i 1,2, ..

B-1



and the random vector

Si = (Ni , N ... N.).
1 2'

Suppose for the moment that the Ni were not random variables but deterministically
known at the time each response pattern was reported to the processor. Assume, for
example, that the radiated noise characteristics of the various targets are sufficiently
different to permit this degree of target identification. The target coupling problem
would then completely disappear since the target location distributions updated for
both motion and responses, but conditioned on a specific association of responses with
targets, would be conditionally mutually independent. In making this statement,
we of course assume that the targets may be treated as moving independently.

Unfortunately, there are many cases in practice in which the identity of the
target that generated a specific response pattern cannot be unambiguously inferred.
Nevertheless, our statement about the conditional independence of the target location
distributions given an assignment of all past responses to targets points the way
toward a possible solution to the target coupling problem. The fundamental idea in
Extended Memory processing is simply to produce a separate estimate of each
currently active target's location distribution for each possible scenario, i. e., for
each specific assignment of all past response patterns to targets. Weighted averages
of these conditional location distributions, the weights being the probabilities
associated with each scenario, would then give current estimates of each target's
(unconditioned) location distribution.

To make all of this more precise requires some work. The first step is to
define the probability distribution on scenarios after processing the ith joint response
pattern:

Fi(n , n2 , ... , ni) Pr{N1 =n, N2 =n, . N.i = n i }. (B-1)

We suppose that by one means or another, estimates of the F. are available for each
index i. A Bayesian procedure for generating such estimates will, in fact, be described.
in the next section. We now describe a recursive procedure for developing posterior
estimates of (i. e., updating) the target location distributions. This procedure makes
use both of the current distribution on scenarios and the prior target location distri-
butions.

Associated with each response pattern index i, there is the index ki of the
information processing update stage at which Ci is processed. In current ASWIPS
processing, ki is simply the index of the first update following the occurrence of Ci.
Also define ik to be the index of the last response pattern processed through the
end of the kth stage. Thus, Cik+1, Cik+2, ... , Cik+i is the sequence of response

B-2
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st

patterns processed during the (k+) stage update. If ik+1 = ik, then no response
patterns were observed during the period netween the kth and (k+l)st updates.

We now define the conditional target location weights

(k) target n is in cell x at N .P ) xSik = (nln 2 ... ) =Pr timeof the kth stage update N1 1 nlN2N2 ..... Nk-nik (B-2)

(k)
where it is to be understood in this definition that these weights pn reflect target
motion through the end of the kth update stage as well as all response patterns through
Cik .

The key to Extended Memory is the following identity expressing the conditional
independence of the target locations given the scenario:

Pr X(k) =(xlx 2 )... XN)ik n=l 1=X 4 (B-3)

where, as in Chapter IV

X (k )  grid cell location of nth target at end of update k,
n

(k) - k)..., .

Suppose now that ik+1 > ik so that at least one contact wys reported between the
kth and (k+l)st updates and we wish to update the weights P to a revised set pnk+ )

accordingly. The case ik+1 = ik requires only target motion and negative information
(not considered here) updates.

Let pk' (. Si) denote the conditional target location distributions obtained from the

Pn ) (- I Sik ) updated for (k+l)st stage motion and negative information. The next step
is to generate the p(+l) (. I Sik+1) from the pk ( I Sik).

Fix a target index n and suppose

S nl, n2, . , n. )

and

S. = (ln, ., n.kl
k+1  

.... 
ni2nk+

B-3



is eual o n, (k+1)
If none of the indices nik+1, ... nik 4 is equal to n, then Pn (. j Sik (nl,n 2 , ... nik)) =

4~+') (- I Sik+l = (nl, n2, .... nik nik+1 ,.. nik+l)). If one or more of these indices is

equal to n, then denote the ordered list of such indices by v in), V4n) .... () . Thus,

the given association Sik1l assigns to target n precisely the m response patterns

C ,C .. I vn
Vin), 4 n' mc )

n

out of those observed between the kt h and (k+1) s t updates.

Let

xv(n)

VP~)' T ,)3 " mn

be the object location distributions corresponding to the response patterns

1 2 m
n

Then

(k x Si (n1 , n2 ... n.k, n +.. n )

(B-4)

I V(n ) • ( ; (n1 ,n 2 , n. )I: P) ( I S
Euto n (3)). p(k+)(y I (n,,.....y (=1 vn n ni = " 'i k )

Equation (B-4) gives the updating formula for the conditional target location dis-
tributions. It remains to show how the unconditioned target location distributions are
obtained. For this we define

Pnk) (x) = Pr ftarget n is in cell x at time of k th stage update,

where, as in the conditional target location distributions, it is to be understood that

the pVk) reflect target motion through the end of the kth update as well as all response

patterns through Cik. Then, lettingeAk denote the set of possible k-vector values

B-4
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ofS. , we set

Pn () N F n 2n .. ,n. )(k+l) (x I  n 2 , . ,n .nkn 2$') E/I'k + 1""1 1 ik+ I  Pn =n1 ' "" 2 i4

(B-5)

Thus, the unconditioned target location distribution for target n is an overlay of
the conditional target location distributions weighted by probabilities Fik,] of the
corresponding scenarios. Observe that equation (B-5) has the effect of relating the
current assessment of the location of target n to the scenario weights not just of the
latest round of response patterns, Cik+l ..... Cik+ , but to those of all past response
patterns. Thus, changes at the (k+l)st update in the scenario weights of response
patterns first recorded at earlier updates can have significant impact on the (k' 1)st
stage target location distributions. This memory feature is an essential advantage
of Extended Memory processing over both sequential processing and parallel rrocessing.

Before turning to the Bayesian updating of the scenario distribution, a few
comments are in order on the computational feasibility of the target location distribution
updating procedure we have just described.

It would appear superficially that the number of conditional target location
distributions which must be stored in computer memory and updated at stage k is on
the order of N • 2

ik, where N is the number of active targets at stage k and, as
defined earlier, ik is the number of response patterns processed through stage k.
Since ik grows more or less linearly with time (assuming a roughly constant data
rate), 2 1k can become quite large for a lengthy processing period. With N = 7 and an
average of 2 response patterns per u date, N . 21k = 7 • 2100 after 50 updates. This
number is even larger than the (1000)v elements of the state space associated with
the multivariate joint location distribution for 7 targets in a grid of 1000 cells, making
the situation look grim, indeed.

Fortunately, the situation in ASW application is not nearly as bad as the extreme
we have described. First af all, many response patterns are resolvable, i. e., uniquely
assignable to an identifiable target. Those response patterns which are unresolved
generally are associable with one of two targets or, perhaps on rare occasions,
with one of three or four targets. Another factor is that it frequently happens that
even when a response pattern Cj is unresolved, it is uniquely associable with an
earlier response pattern Ci(i - j) in the sense that Ci (within the accuracies of Bayesian
inference) must have been caused by the same target (whatever its true identity) that
caused Cj. This situation arises when F3 (. .. ,n,. . ... n) = 0 for n i / nj. In such
a case C? is more or less redundant and can be effectively dropped (by summing on ni)
from the list of response patterns in favor of Cj.

B-5



A final factor in reducing the dimensionlity of the problem relates to target
motion. Suppose response pattern Ci was observed and processed at time tk. Then
as time passes, the current location distribution of the target that generated C. diffuses
until a point in time is reached at which that distribution is spread over such a large
part of the target operating region that its usefulness in target localization is virtually
nil. At this point Ci can reasonably be discarded from the list of active response

1
patterns (again by summing over n. in the current scenario distribution).

To put all of this in perspective, consider a situation with 7 active targets in
which only the last 8 response patterns are carried in the scenario distribution, say
C 1 , C2 ... ,. C8 . Suppose C4 , C 7 , and C8 are resolvable with N4 

= 3, N7 = 6, and
N8 = 1. In addition, assume C1 , C2 , and C 5 are unresolved relative to T2 and T5 .
Finally suppose that C3 and C6 are unresolved relative to T4 and T7 but that Cq and
C6 are necessarily due to different targets. The number of conditional target location
distributions carried in computer memory would then be: 3 +2 • 23 4 2 • 2 = 2:, which
is a far cry from 7 • 28 = 1, 792. While this is only a representative case, it does
tend to support the conclusion that the updating scheme we have described is computa-
tionally practical.

We now finally turn to the problem of the Bayesian updating of the distribution
on scenarios.

The Bayesian Updating of the Distribution on Scenarios

We assume that the first response pattern C1 is a port departure by target 'I

and that C1 is the only pattern processed at the first update. These restrictions
can be modified to correspond to any initial conditions including the allowance for
holdover targets from earlier (prior to the start of the processing period) port
departures. However, the case FI(1) = 1 corresponds to the current setup in
ASWIPS, so we make the stated specialization.

Suppose, inductively, that, the Fik (n1 , n2 $..... nik) have been computed for every
(nln 2 , ... nik) LEAk • We now wish to generate Fik 1. If ik +I ik, so ihat no
response patterns were observed between the kth and (k+l)s t updates, then Fil, 1 , Fik'
their domains of definition, in particular, being identical.

Suppose then that ik 1 > ik with (following our earlier notation) the response
patterns Cikq , Cik+2, ... Cik+l generated between the kth and (k #4)st updates.
Consider a particular assignment of these i1c' 1-ik responses to the active targets,
i. e., assume

N. =n. fori < i< "
i k - k+l"

11-6



Let X be the object location distribution for C., i k< i < i .~l Then

1k+i 1 2 1 k+1

N ( 'k+1 (k+)( Si (nln 2 ... ,n ))F 'n~ ,n B6
n=I x i1 ik+1 n k k k 12

where, as earlier, the Pfl) (xi I ik) are the conditional target location weights prior
to the processing of Ci, ik < i < ik+4 but current to the end of the (k+l)st update stage
for target motion. In equation (B-6), a is a renornialization constant to insure that

EF (n, n,2...,n. )1
(nil n 2 ... n k+l +

'k+l)

This completes our description of the basic Extended Memory Bayesian processing
procedure.
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