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SECTION I

INTRODUCTION

Periodic surfaces are being investigated for use in an ever
widening range of applications such as metallic radomes and re-
flectors. To obtain the desired electrical performance of a
metallic radome, for exanple, it has been found that complicated
surfaces are needed [1]. It is important to be able to calculate
the performance of these complex surfaces. The two variables in-
volved in a periodic array are element geometry and grid structure
(the location of the elements with respect to one another). In the
metallic radome application, the grid structure must be modified in
order to construct the surface into the shape of the radome. This
grid modification makes a modification in the element geometry
necessary in ordet to maintain the desired electrical performance.

Pelton addressed this problem by investigating the effect of
- altering both element shape and grid structure of arrays of gen-

eralized three legged elements. The technique he used is called the
Mutual Impedance Method, which involves summing the mutual impedances
from element to element in order to calculate array performance [2].

While Pelton was using the mutual impedance approach, Munk was
working on another method of calculating properties of periodic
surfaces called the Plane Wave Expansion Method [3]. This method
also results in the mutual impedance sum, however it is obtained in
a completely different manner. In the Plane Wave Expansion Method,
the impedance sum is 'ned by transforming the vector potential
of an infinite array .cremental dipoles into an infinite series
of plane waves by using the Poisson Sum Formula Transformation [4].
From these plane waves, the current induced by the array in a single
reference element is calculated and an equivalent mutual impedance
obtained. Once these impedances are found, it is an easy task to
calculate the performance of the array.

Munk's Plane Wave Epxpansion Method can readily be applied to
arrays of elements of arbitrary shape and to arrays imbedded in
dielectric. However, it has only been applied to arrays with rectangular
grid structure as in Figure 1. The objective of this report is to gen-
eralize this method in order to apply it to arrays with a skewed grid
structure as shown in Figure 2. The results of this application will
be presented, particularly in the case of an array of generalized three
legged elements in a triangular grid structure. Arrays of this type
play an important role in the design of metallic radomes.
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Figure 1. An array of straight dipoles having a rectangular
grid structure.
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~Figure 2. An array of straight dipoles having a skewed grid
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SECTION II

DERIVATION

The first step in this analysis is to set up a skewed grid
which satisfies the conditions necessary to apply the Poisson Sum --

Formula. The first condition is that the structure allows Floquet's
Theorem to be used to determine the currents on each element. This
means, simply, that each element is in the same environment as every
other element or that, as one moves from element to element, all the
surrounding elements are in the same relative locations. The grid
structure in Figure 3 satisifes this condition. Secondly, the
positions of the individual elements must be uniquely defined by
two integer values. Using the integer variables q and m, the array
element locations are uniquely defined by:

x =qD x

z : mDz + q Az

where Dx,Dz, and Az are constants and the array is located in the
x-z plane. It is important to note that a number of arbitrary periodic
grid structures can be realized by adjusting these three constants.

Now that the grid is set up, the spectrum of plane waves
produced by this surface can be calculated. First, assume that dipoles
of incremental length are located at each position in the array. As
Munk has shown, the results can then be applied to more complex ele-
ments of almost any shape [5]. The vector potential from an individual
dipole of incremental length, dt ,an be written as

dA ^ = lqm111dz e-J~r(1

dAqm = P 4i r

where p is the unit vector defining the orientation of the dipole,
lqm is the current on the individual element, and r is the distance
from the individual element to the point where the vector potential
is desired. The propagation constant and permeability of the sur-
rounding medium are denoted by 0 and ji, as usual.

By referring to Figure 3,

r y2 + (qDx X)2 + (mDz+qAz-z)2 (2)

x- - -=- = -
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where (x,y,z) define the observation point.

The currents Iqm can be found by assumin~g they are caused by an
incident plane wave from the direction r(i) Xx + r(i) y+ r(i)zz, where
r(i)x, r(i)y, and r(i)z are the direction cosines of the propagation 4
vector. Since they are caused by a plane wave, they vary only in
phase (Floquet's Theorem). ThusA

Using Equations (2) and (3) in (1), and summing over the
infinite array,

dA= dA (4)
CO- m=-GO qm

p4re e
q=-a' m=-co

e j2+(qD-X) 2 +(mD +qAz-z) 2

y +(qD -X) +(mD +q~z-z)2

To handle this do cS-u~mation, it willI be arranged as the
product of two summations by noting the fact that, while summing
over m, q is constant and vice versa. Thus,

- id CId -jaq(r(i) D +r(i) Az)
eA pX e dAm (5)

where

--j13mr(i) D -J aa+(mD +qAz-z)2

)dA~ (6)
m=~Ja2 + (mO + qAz-.z) 2

z

and a 2  y y2 + (qD -x) 2 is constant for all mn.
X
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Equation (6) will now be transformed into an infinite series
of different form by use of Poisson's Sum Formula and the Frequency
Shifting Theorem [4].

Poisson's Sum Formula: [6]

C jmW 0t 2r (0)
o Fww f (t +n(7)

where f(t) and F(w) are a Fourier Transform Pair.

Introducing the Frequency Shifting Theorem: [7]

jW t
e f (t)-* F(w-w 1) (8)

where wis anyv real constant, and combining (7) and (8), we get

~ eO~mw~)=?O jw.,(t+n 2"

e~m 0Wl e ~4.~ (9)
0 ~ W

Note the following Fourier Transform Pair: [8]

e 2+w2  j
e. H____ (2)a f 2-t2) POWt

a2~~~ o 2t~2(~~t)

1Ko(a Ft OPM(10)
iT

where the pulse function,

0 Iti > a

7



Comparing Equation (10) to Equation (6) and the left hand side
of (9), the following substitutions are suggested: Let wo=Dz,t=

-ar(i)z, and, since q is constant over the summation on m, l=z-qAz.
Thus:

~2

.H2) -J (z-qAz) (ar(i)z+ni;; -  ZdAm  e- z
M- m: D n=_-

S (2) (a (Or(i) +n . )2) p (2r(i)z+ n  T
z

+]K(a(ar(i)z+n )2 2 (ar(i)z+n L)Dz(1

By noting that 0 = 27r/x, carrying out the multiplication in the
exponent, and combining with Equation (5),

-ildz 21T -sq(Dxr(i)x+AZ r(i )z)dA __ p 4 IDz  e
4Tr DTz q=-o n=-o

+ nAz-)

_z(r(i)zZ r(i) z +

e z e

S (2),as p(t, ) + Ko(aajsl)(l-P5 (t,) (12)

where Sl :11 -(r(i)z +z)2

-(riP2±

Simplifying further,

-jS(i) + n,co (r( +zz

d- = p nI-w e Z dA (13)

= - -- =where- _ -w e re



S dA e X

H. ~- 2 (a~5s )P (t.) + +K 0(af~is1)(l-Pa(t'))

Since n is constant over the summation on q, dA can also be

transformed by Poisson's Sum Formula. Rebrn hta=y +(qD -x)2

-joq Dx{~(*i),- nAzA)

q=-.o q dA = e X

Hj (2) IJ2(0,s y2 + (qD~-x)P (t)

K (js 2 (~))(-P(t)) (14)

Note the following Fourier Transform pairs: [9]

H 22 2a y+2)_) (15)

9



2+2 -+eyt ;(BSl )

t- ( e . (16) 1
2  (Sl)2

Comparing Equations (14), (15), (16) and (9) suggests the following
substitutions:

m=q, ToDx, t - r x n ' = x, and, to change the:x DxDz  I

index of the summation, k=m.

Thus

00COix 0kjA)+-A -2 e Bri -nZ- 2x)XDx D) L

q= x 

+1 [ _jI ((r( (ix 2 ) + k2 x17

°"°~ ~ F - -Br~ nA- 2, Pfl

nAZx 2r 2 .

2]-(M(i)x - + k (BSl)2
+ y < neZ 11 2 2 ( -P' (t '))  (!7 )

This result can be simplified by using the following relationships:

L it s2=l -(r(i)z + and =- B-A
X 1 DII nj- _

10
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d ~Cq 2iTx ~ i r(i) +k n DxD)I

q-ox k=- C O

2y 2 -( 8

(r~i~z +~!) - (ri)x

combnin Eqatos1)8n)(8

+ x2+ kx nzx2

z r x D D

x n ~ z

x z = k=C
3~~ I ~ -x D +D n ) + ?

e xz e

J_- r(i) + k - n -z (r(i)~ + n

x' ~ D L' rD~F zy n=- k=-o

where

~(kCn 00 r kk) 4
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Note that this resulting expression for the vector potential of an
array of incremental dipoles is a doubly infinite sum of plane waves.

The sign of the square root in r(kn) must yet be determined.
Rather than using mathematical arguments, he physical approach makes
it easy to choose the right sign. As can be seen, r(k,n)y can be
either real or imaginary. When it is real, it represents a wave
propagating away from the array. When imaginary, it represents a
wave which attenuates as it moves away from the array. From this
argument, it has been found that, when the quantity under the radical
is positive, the positive root is needed. When the quantity under
the radical is negative, the -j root is needed.

I
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SECTION III

APPLICATION OF RESULTS

A. Straight Dipole Arrays

Comparing Equation (19) to the result obtained by Munk [3] for
a rectangular grid, it can be seen that they differ only in the
expression for r(k,n). For a rectangular grid,

Sr(k,n) = x ((i) x + k L ) Ji - r(k,n) - r(k,n)'

Y Z n.) + n O.(20)

Consequently, the final result of skewing the grid is simply the modi-
fication of the x and y components of the complex vector, r(k,n). This
fact makes the job of calculating the performance of arrays with a
skewed grid structure very easy, since computer programs already exist
for analyzing rectangular grid arrays.

It is interesting to note that the principal propagatiig mode

(assuming no grating lobes) reflected by an array with rectangula;-
grid structure is in the direction r(k,n) with k = n = 0 (i.c., r(k,n)y
is :eal). Going back to (k,n) for an arbitrary grid structure
(Equation (19)) and comparing it to that for a rectangular grid
(Equation (20)), it can be seen that, if k = n = 0, the two vectors
are the same. This is a necessary condition which must be satisfied
since the principal propagating mode must travel in the same direction
regardless of grid structure.

When working with arrays of straight dipoles, it has been found
that the real part of input impedance of an element in the array is de-
termined by the k=n=O term only (assuming no grating lobes) [10]. Since
r(k,n) for k=n=O is the same for both rectangular and skewed grids, only
the imaginary part of the input impedance of an element in the array
will differ in the two cases. The impedances shown in Figure 4 were
obtained by modifying existing computer programs for analyzing arrays
with a rectangular grid to include arrays having~various amounts of
skew. This figure depicts arrays consisting of z oriented dipoles.
The real parts of the impedances are independent of grid structure for
each incidence direction, as predicted above. However, a difference
is noted in the imaginary parts as grid structure is varied. More ex-
plicitly, the maximum deviation from a rectangular grid structure is
obtained when Az is one half of Dz. Also, notice that the impedance

13 1
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values obtained when Az .25 jz and AZ .75 Dz coincide. This is
somewhat expected due to the periodicity of the array.

However, since the case where Az = .5 Dz yiele " os. vari-
ation from rectangular grid structure, it will be i, igated
further. Again, referring to Figure 4, it can te se. hat, for
scans in the y-z plane, the imaginary part becomes 1-ss negati;. .
In the x-y plane, the change is negligible. This vari-tion v. rks
to stabilize the resonant frequency of the reflection ct "ient
when scanning in the two planes. The stabilization is a result of u
the imaginary part of the impedance increasing for scans in the y-z
plane, approaching the imaginary parts of the impedances observed
for scans in the x-y plane. The curves in Figures 5 and 6, which,
again, were obtained by adding Equation (19) to existing computer _I =programs illustrate this effect for arrays of loaded z-oriented I
dipoles. In Figure 5, Az=O and in Figure 6, Az=.5Dz. _U

B. Slot Arrays of Generalized Three Legged Elements

1. Background U
Above, the effect of altering the grid structure of straight

dipoles was discussed and possibilities for improved performance noted.
This part of the report will deal with the investigation of slot
arrays of generalized three legged elements. These elements are
identical to those Pelton used in his investigation [11]. The moti-
vation for using these elements is that they yield very good performance
over all incident directions and polarizations. This property is es-
sential in the design of metallic radomes. Briefly, generalized three
legged elements consist of three connected monopoles having arbitrary
length and direction (Zl, Z2, 93, Pl, P2, P3) as shown in Figure 7.
Using this type of element and the arbitrary grid structure now avail-
able will allow the analysis of general periodic surfaces. Although
the discussion which follows considers slot arrays of three legged
elements in metal, the results apply to dipole arrays in free space
having very thin elements (Babinet's Principle).

Before going into the analysis, some background information
will be helpful. The performance of a surface will be rated with
respect to the magnitude of the transmitted field parallel and
orthogonal to the polarization of the incident field. The first
magnitude (transmission) must be maximized and the second (cross
component) minimized at the resonant frequency for all directions
of incidence and polarizations. The appearance of a cross-polarized
signal is the price paid for having good transmission for all in-
cident polarizations. In contrast, for example, a straight dipole
array will have no cross component when the incident field is
aligned with the dipole, but no transmission when the incident field
is orthogonal to the dipole.

15
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Figure 7. Generalized three legged element
showing critical parameters.
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The most obvious advantage of an arbitrary grid structure over
a rectangular grid is that it allows closer packing of generalized
three-legged elements as a result of individual element construction.
Closer packing has been found to delay the onset of grating lobes (see
Appendix A) and to stabilize the resonances for various incidence
directions.

However, analysis beyond this simple physical observation
requires a closer look at the mechanisms effecting the performance
of an array. Munk has investigated the properties of arrays of
generalized three legged elements (slots) having a rectangular grid
structure [12]. Again, his findings can be modified to include
a skewed grid structure simply by employing Equation (19). The
properties of the admittances and element patterns mentioned below
are discussed in detail in the reference cited directly above.

In his investigation, Munk assumes that two voltage modes are
present on a slot when illuminated by a plane wave (symmetric and
asymmetric modes), as shown in Figure 8. AssLing these modes, four
admittances characteristic of the array are assumed: the mutual
admittance of the all symmetric modes Yss, the mutual admittance
of all asymmetric modes, Yaa, and the admittances between the modes,
Yas and Ysa. Munk found that the performance of an array in free space
depends on the admittance sums obtained when the y-component of the vec-
tor u(k,n) (Equation (19))is imaginary, (i.e., k and n both not equal to
zero and no grating lobes) and on the pattern factor of an individual
element. Because of this fact, each admittance is broken up into two
terms:

YS: oo + rest
ss ss ss

Sy00 + Yrest
aa aa aa

a oo+ rest
as as as

sa o rest
sa sa sa

Here, the superscript "oo" denotes the admittance obtained from the
k=n=O term and the superscript "rest" denotes the sum of admittances
for all other values of k and n. Munk's investigation determined that to
obtain perfect transmission with no cross component for a specific
frequency, polarization, and incidence direction it was necessary and
sufficient to impose the following conditions:

19

----------- ------- U



7-I

J

Vs Vs

Figure 8. The voltage modes induced on a generalized
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For H-field parallel to plane of incidence a--

-- vrest yrest Is ;
a) r = (21a)ss sa P I
b) yrest -rest - (21b)

aa as P U
for perpendicular polarization of the H-field,

a) Yrest = rest ii s (22a)ss sa Pa

aI
rest rest IIPab)Yaa =as P (22b)

where I

denotes the component of the element pattern perpendicular/parallel _

to the plane of incidence resulting from the asymmetric/symmetric
voltage mode.

Analytically and by computer, certain relationships between the
quantities in Equations (21) and (22) have been found to exist when
the array is in free space [13]. The admittances yrest and yrest are
always imaginary, while yrest yrest, and ss aa

as 'sa

are, in general, complex. This means that the complex quantities on
the right hand sides of these equations must have a composite phase
of -900 before unit transmission with no cross component can be ac-
hieved for a given frequency, polariation, anJ incidence direction.
Further, it has been found that yrest resL

as a are negative complex
conjugates when the array is in free space. Using this and the fact
that the reciprocal of a complex number has the negative phase of the
original number, it can be seen that, when the right hand side of
21a (22a) has a phase of ±900, the right hand side of 21b (22b) also
has a phase of ±900. Moreover, as the right hand side of 21a (22a)
approaches ±90' from one direction, the right hand side of 21b (22b)
approaches ±900 at the same rate from the opposite direction in the
complex plane.
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Since the parallel and perpendicular components of the patterns
are quite independent of each other in magnitude and phase, it
becomes evident that, even though both parts of Equation (21) can be
satisfied, it is not possible to satisfy Equation (22) at the same
time, except in the trivial case of broadside incidence.
Therefore, by this analysis, it can be seen that unit transmission
with no cross component cannot be obtained for both polarizations given
a specific frequency (resonance) and incidence direction. Up to now,
no mention has been made of the magnitudes of the quantities in Equation
(21) and (22). Here, it will suffice to note that once the correct
phase is obtained, the magnitude of the left hand side can be
changed relative to that of the right hand side, with little effect
on the phase, by adjusting the length of the element legs. Again,
this change will only yield perfect performance for one polarization.
Consequently, the best over-all performance will be a compromise with
"acceptable" values of transmission and cross components for all
polarizations and incidence directions.

Having set forth this background for the problem at hand, the
objective of this part of the report can now be explored; that is,
to find the effect of grid structure on the performance of arrays
of generalized three legged elements. An additional restriction
placed on this objective is that it lead to a family of grid/element
combinations yielding good performance as described above.

To date, the best performance has been obtained from an array
of closely packed elements with 120' between the legs arranged in
an equilateral triangular grid as shown in Figure 9 [14]. An array
designed in this manner produces a transmitted field with a low
cross component when scanning in planes which coincide with the

legs, (a = 30° , 90, etc.) and higher, but not unbearable cross com-
ponents when scanning in planes which bisect the legs(a = 00, 60°,
etc.) Also, closely packed grid structure tends to stabilize the
resonances of transmission with respect to frequency, polarization,
and direction of incidence. Figure 10 depicts the performance of such
an array for an incidence angle of 600 with the normal. It is evident
that the parallel and perpendicular resonances are not very stable. As
mentioned above, stability is obtained by close packing of the elements.
In real life, the elements may be packed closer together, but on the
existing computer analysis, any closer packing will result in erroneous
results, due to certain assumptions made about the voltage modes
existing on the elements. In practice, closer packing may also be
obtained by using loaded three legged elements [15], and by imbedding
the array in dielectric [16]. The mutual admittances in Equations
(21) and (22) have been calculated for this array, and will be dis-
cussed later in this report.
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Figure 9. Portion of an equilateral triangular grid array
with 120' between the element legs. Also, the

~angle a which defines the plane of incidence.
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The author has found that, given an equilateral triangular grid,
a 120' leg angle yields the best performance yet obtained. Since
this array yields favorable and predictable results, it will serve as
a benchmark against which to compare other arrays.

Here a question arises. If this grid/element combination is
so good, why change it? The problem stems from the fact that an
equilateral triangular grid is not compatible with current radome
designs [17]. Therefore the grid structure will depend on each indi-
vidual radome, and the element configuration must be changed to optimize
the performance of the surface.

2. Optimum Grid-Element Combinations

The discussion which follows will assume a fixed incidence
angle of 600 with the normal and the performance will be noted
with respect to plane of incidence (a in Figure 9), frequency, and
polarization. It has already been pointed out that perfect per-
formance cannot be expected for all incidence planes and both
polarizations at the same frequency.

Figure 11 depicts the structure of an array of generalized
three legged elements. The points in this figure represent the
centers of the elements (a repretatative element is shown). For
the equilateral triangle case described above, the side grid angle
(SGA) is 60', the top grid angle (TGA) is 600, and the leg angle
(LA) is 1200. The grid angle is the quantity which must be
changed for universal radome applications. Appendix B shows the
relationship between the top and side grid angles.

The investigation will proceed as follows. First a particular
grid angle is picked. The inter-element spacing adjusted in such a
way that the product DxDz is the same as in the equilateral triangular
grid case (see Equation (19)). Then the leg angle will be adjusted to
optimize the array performance. It has been found that having a leg
aligned along the z axis yields the best performance, therefore
the leg angle will be the only element structure variable.

The first grid angle investiqated was a top grid angle of 55'.
Figures 12 through 14 illustrate the performance of arrays with TGA=55'
and LA = 1200, 1100, 105. By comparing the transmission curves,
it can be seen that there is minimal change in the broad resonance
for perpendicular polarization. Table 1 summarizes transmission and
cross components for parallel polarization. (By reciprocity, the
cross component ,or both polarizations is the same.) By consulting
Table 2 and the transmission curves (note the scale!), it can be seen
that the transmission performance of the arrays is relatively un-
effected. However, the cross components tell a different story. In
the equilateral case, the cross component was -22.5 dB in both the

= and 600 planes, and for all purposes nonexistant in the c=300

25 j
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Figure 11. Grid structure depicting the variables involved with

the investigation: top grid angle (TGA), side grid
angle (SGA), leg angle (LA), and D, D and Az, the
cirray parameters.
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and 90' plane. As soon as the grid angle is changed, the cross at
a=60' rises to -18 dB. At a=30', it goes up to -22.5 dB and at a=00

it was down to -37 dB (at a=90 0, it will always be zero). By in-
creasing the leg angle, the cross at a=60' can be brought back down,
at the price of moving the cross at a=00 up. The optimum performance
then, was decided to be where the cross for a=0* and c=60° is the
same, at the resonance for parallel polarization. From Figure 14,
this occurs when the leg angle is 1050, where the cross is -21.5 dB
in both cases

Figures 15 and 16 anJ Table 2 summarize the results of the
same test for T.G.A. = 650. In this case, when the grid angle is
changed and the leg angle remains at 120', the cross in the a=00~~plane rises drastically, while that in the a=60' plane is decreased. _By making the leg angle 135', the cross components in both planes

may again be equalized at -21.5 dB. Earlier, it was mentioned that
adjusting the leg length miqht be advantageous when trying to achieve
optimum performance. This possibility has not been investigated at
this time.

Accordingly, a family of three grid/element combinations leading
to good performance has been found: (TGA/LA), 60/120, 55/105, 65/135.
In the course of finding this family, many important effects of grid
structure on array performance have been found. First, as has been
expected, the 60/120 combination involves a certain symmetry which
cannot be repeated for any other array design. This symmetry is
evident in the array's performance since the array repeats itself
every a=60*. Changing the grid has a slight effect on the resonant
frequency and the loss in transmission at resonance. The real dif-
ference is seen by observing the cross component. Of course, in the
a=90° plane, the cross component is always zero due to the symmetry of
each element. However, in the other planes of incidence, the
change in cross component is very evident. When the TGA is increased,
the cross component increases in the c=30* and a=O planes and de-
creases in the a=60 ° plane. When the TGA is decreased, the cross
component increases in the a=300 and a=60* planes and decreascs in
the c=00 plane. The leg angle, then, is adjusted to equilize the
cross in both planes and achieve the optimum performance. The change
in cross component is also evident in the transmitted field. When the
cross component in a particular plane of incidence increases, the meg-
nitude of the transmitted field falls further below unity. Finally,
the slight shift in resonance frequency in the a=0* and c=900 planes
can be explained. In order to optimize performance, the leg angle must
be changed. As the leg angle is increased, each element appears longer
in the .=0° plane (resonance frequency decreases) and shorter in the
a90' plane (resonance frequency increases). The opposite is true
when the leg angle is decreased.
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Arrays yielding good performance are centered about the 60/120
array. It can be seen in the cases cited above and has been found
in other cases that, when the top grid angle deviates from 600,
optimum performance is maintained by changing the leg angle by approxi-
mately three times as much, i.e.,

LA 1 1200 + 3 (TGA-60°) (23)

To date, top grid angles between 550 and 650 have been investigated.
In this range, the above equation is valid. For deviations of more
than 50, the factor of three tends to become closer to 3.2. The upper
limit of allowable deviation has not been investigated.

3. Analysis of Results

As inspection of Equations (21) and (22) show, the keys to the
performance of an array of generalized three legged elements are
the admittances, yrest, yrest yrest yrest, and the pattern
factors, aa I as I sa

Changing the grid structure of an array has no effect on the pattern
factors, but changing the leg angle changes the pattern factors and
the admittances. Figures 17 through 20 show the pattern factor for
elements having leg angles of 1050 and 135 ° . The patterns shown are
for various incidence planes at a 600 incidence angle. Although some
variation can be seen, note that the two sets of curves-represent the
two extremes of leg angles which were used. Figures 2i and 22 show
the magnitude of the admittances yrest and yrSt for 60/120, 55/120,
and 65/120 arrays. In these figurg, the incidence angle is 600 with
the normal and the frequency is slightly below resonance. The phase
is -900 for all cases. In addition, the admittances for 60/105 and
60/135 arrays fall in the same range as those in the figures, but
were omitted to preserve the clarity of the tigures. The relative
invariance of the admittances Ys and Yaa and the patterns for
the extreme case considered above leads to the assumption that the
admittances yreSL and Yres are the primary factors affecting array
performance. Accordingly, these admittances will be studied in
depth in the pages to follow.

Figure 23 shows the admittance as for the 60/120
array slightly below resonance. This admittance is related to
Yrs by: yrest = -yaest* for an array in free space [18]. These
figures are quite a shock, since up to this point it was thought
that the mutual admittance had to be zero for optimum performance.
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For the 60/120 array, optimum performance is obtained in the cF30 °

and c=90* planes (note that physically these planes look the same).
While yrest is zero in the o;90 ° plane, it is not in the o=30 0
plane. a.he performance in both planes is the same, however. Equation
(21) provides the answer to this quandary. At resonance (qO.8
GHz), for the cF30 0 and c;90 ° planes, the parallel transmission is
-.02 dB and the cross is negligible. For this to be true, Equation
(21) must be satisfied in both cases. In the w-30' case at 10.8 GHz,
Equation (21) becomes; (see Appendix C)

a) .00302/-90 .00329/-90 (24a)

b) .00028/-90 .000368/-90 (24b)

As can be seen, the quantities are very close. The trend is such
that, at resonance (410.75 GHz), both equalities hold and the parallel
transmission is unity. In the a=900 plane at 10.8 GHz; (from Appendix
C)

? 0.0
a) 0.0 1 0.0 .811-165.3 (25a)

.81/-165.3

b) .0014/-90 0.0 (25b)

The resonance mechanism illustrated above exemplifies the case
where yrest = 0. It has been mentioned that, at one time, con on
belief Us that yrest being zero was a necessary and sufficient con-
dition for perfeclsperformance for both polarizations. The reason
for this assumption can be seen by observing Equations (21) and (22).
Since the quantities

and lips

J-Pa 1 Pa

are quite independent, it seems logical that one way to make all
equalities hold under the same conditions is to have both sides of
the equations go to zero. However, the quantities shown in 25b)
directly above show that, when yrest is zero in the a=900 plane,
Ps is also zero, yielding the indeterminate form 0/0. Also, byObserving Figures 21 and 22, it can be seen that yrst approaches

-1
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zero only in the a=90 ° plane while Y approaches zero only in
the a=0 ° plane.

The a=90' plane is a very special case in the study of arrays
of generalized three legged elements, due to the symmetry of the 1
voltage modes observed when scanning in this plane. The (x=30' plane
is a better example of the resonance mechanism involved when optimum
performance is achieved in a 60/120 array of generalized three legged
elements.

In the a=0 ° plane for the 60/120 array, at 10.8 GHz, Equation
(21) becomes; (see Appendix C)

a) .0034/-90 .0063/-90 (26a)

b) .00014/-90 - .00013/-90 (26b)

Both equalities do not hold, and, as seen in Figure 10, the per-
formance is not optimum. There is no chance of achieving optimum
performance in this plane with equi-length leg elements. However,
since the phases of both sides of the equations are the same, modi-
fications can be made to achieve optimum performance. The magnitude I
of yrest may be changed with minimal effect on the other quantities
by aalusting the length of the top leg. However, this improvement _

would be achieved at the price of the performance in the other planes.

At 10.8 G~iz in the a=60 0 plane, where the performance is the
same as in the a=0 ° plane, Equation (21) becomes: (Appendix C)

a) .0012/-90 .0013/-70.9 (27a)

b) .0009/-90 .0011/-109.1 (27b)

Here it appears that there is no way to obtain optimum performance
since the phases are not even the same. However, using the insight
from the a=00 plane (physically the same) shows that optimum can be
obtained by adjusting the length of the leg orthogonal to the a=600
plane (the lower right hand leg), again at the expense of performance
in the other planes. Apparently this would change the magnitude and
phase of both sides of the equalities.
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Using these examples, the truth of Munk's equations ((21) and
(22)) may be seen. Now, the admittances for other grid/element com-
binations will be investigated. When the top grid angle is changed,
the change will be such that the product OxDz remains the same for
all combinations (see Equation (19)).

Figure 24 shows Yas for a 550/1200 array C:ightly
below resonance. Again, a seemingly shocking development arises.
The phase for a 300 incidence angle attains 1800 for the a=O plane
instead of 0'. Figure 25, a polar plot of Yas fc. an incidence angle
of 300 for 60/120 and 55/120 arrays, clarifies this seeming dis-
continuity. Apparently at some grid angle between 550 and 60',
Yas is identically zero for a 30' incidence angle in the a=0 °

incidence plane. The same is true for higher incidence angles as
the top grid angle is decreased more. However, it is now known that
yrest being zero does not automatically indicate that optimum per-
formance will be the result. For this case in particular, the
performance, although good, is not quite optimized in the a=0 °

plane as shown in Figure 12.

Equation (21) will now be applied to the a=600 plane of the
55/120 array. At 10.8 gigahertz, which appears to be the resonant
frequency of the parallel field from this incidence direction, the
parailel transmission is -.14 dB and the cross is -18.5 dB, and
Equation (21) becomes:

a) .00093/-90 .0013/-57.4 (28a)

b) .00092/-90 .0011/-122.6 . (28b)

The quantities differ in magnitude and phase, reaffirming the poor
performance. If leg lengths could be adjusted to produce good per-
formance in this (a=60°) plane, the performance in other planes
would suffer.

estFurther inspecting Figure 24, it can be seen that the change in
Yas. v. th respect to the 60/120 array is very small except in the
regon -450 < a < 450, where the magnitude of Yares for the 55/120
array becomes smaller for all incidence angles.

Figure 26 shows YreSt for a 65/120 array. The change in
Yas again exists in tRe region -45 < a < 45, but here in contrast
to the 55/120 array, the magnitude for all incidence angles becomes
larger.
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From the preceding discussion, it becomes evident that the
admittance curves of the 60/120 array (Figure 23) must be reproduced
in order to obtain optimum performance for other array configurations.
This will involve altering the magnitude in the -45 < a < 45 region
only. Figure 27 shows yrest for a 60/105 array. Notice that these
curves 13ok very similaraio those for a 65/120 array, both resulting
in a larger magnitude for the region -45 < a < 45 than the 60/120
array. Thus, it appears that combining the 55/120 and the 60/105
array might produce the desired curves for yres . Figure 28 shows
yrest for the 55/105 array. Comparing thesea1o the curves for the
6N120 array (Figure 23) show a great similarity, thus creating the
"optimum" performance of the 55/105 array.

rest _

Figure 29 shows Vas for a 60/135 array. The curves here are
similar to those in Figure 24 for the 55/120 array. Combining the
65/120 and 60/135 arrays into the 65/135 array produce the admittances
shown in Figure 30. Again these admittances are similar to the admit-
tances exhibited by the 60/120 array (Figure 23) and lead to the
"optimum" performance of the 65/135 array.
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SECTION IV

CONCLUSIONS

The introduction of arbitrary grid structure to the Plane

Wave Expansion Method of calculating performance of periodic arrays
requires a simple modification to the rectangular grid case. This
modification has been successfully integrated into computer programs

which could previously only calculate the performance of arrays
with rectangular grids.

The results of the investigation in this report may also be
used to calculate the onset of grating lobes in arrays with
arbitrary grid structure.

To date, the prime use of the ability to calculate the per-
formance of arrays with arbitrary grid structure has been to investi-
gate the performance of arrays of generalized three legged elements.
Arrays of this type will find wide use in the development of metallic
radomes. It has been found that various grid geometries are re-
quired to "fit" a radome with an array of slots. By using the method
developed in this report, a family of grid/element geometries has been
found which yields optimum performance. The grid/element combinations
are centered about an array with an equilateral triangular grid and
1200 between the legs of the elements. The equilateral triangular
grid results in a basic grid angle of 60'. If the grid angle must
be changed by a particular amount in order to "fit" the radome surface,
the angle between the legs of each element must be changed by approxi-
mately three times that amount.

In the course of obtaining the optimum grid/element combinations,
it was found that the key to the performance of an array of generalized
three legged elements is the mutual admittance between voltage modes
which exist on the elements. Munk has predicted the relationship
between the performance of arrays of generalized three legged elements
and the mutual admittances mentioned above [19]. The work performed
in this report shows the validity of Munk's predicted relationship for

arrays in free space.

Although this repor- ieals strictly with arrays in free space,
the results have been applied to arrays imbedded in dielectric. It
has been found that the presence of dielectric can actually enhance
the performance of an array. A grid/element combination which has
been optimized-in free space also performs well when imbedded in
dielectric. This fact is an important observation, as radome appli-
cations require that the array be imbedded in dielectric.
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APPENDIX A
GRATING LOBES IN ARRAYS HAVING A SKEWED GRID

In the text, it was mentioned that the only difference between im-
pedances of dipole arrays having rectangular and arbitrary grid structure
(assuming no grating lobes) is in the real part. As it stands, this state-
ment violates the property of analytic functions which state that the real
and imaginary part of an analytic function are not independent. From this
property, it follows that, if the real part of the impedance changes, the
imaginary part must also change for the two cases. The answer to this ap-
parent flow is explained by the following development concerning the onset
of grating lobes. This development shows that grating lobes appear at
different frequencies for the two cases, which explains the difference in
the imaginary parts of the impedance functions.

22
r(k,n) - r(k,n)z = 0 (Al)

k,n f 0

Realizing that grating lobes first occur for grazing incidence set

2 2
ri r(i) = 1 (A2)

Substituting Equation (A2) and Equation (19) from the text into (Al);

f (r(i )x + ri)z r(i)x Az

2 k D n D D az
Dx xz x

At this point two grating lobe occurances will be investigated.

rix (iz r(i)x )-x
1 Az2

x 'D z DZI zI
xz x

=2r(i) D =2D D ( x 2A

xx ~ X 4 D~ + _Az
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Thus, it can be seen that, with the addition of Az (skewing
the grid), the grating lobe associated with the n=-l, k=0 term
occurs at a different frequency (waveleigth) than with a rectangular
grid (Az=0). For example, assume grazing incidence such that
r(i)x = r(i)z F2/2 Dx=Dz = 2 cm., and Az = Dz/2 = 1 cm.

4 2 T8 cm

or 26.52 GHz.

However, for a rectangular grid (Az=0), ]
= 1=2 cm

or 10.61 GHz. I
It can be seen that making the grid arbitrary delays the onset of
this particular grating lobe. However, in both arrays, other grating
lobes will occur dt other values of k and n for other incidence planes.
When all are considered, the skewed grid array grating lobes will not
be delayed as much as this particular one. The point being made here
is that grating lobes do occur at different frequencies for a skewed
grid as opposed to a rectangular grid.

551

-N=- ? _



APPENDIX B
ARRAY GRID ANGLE RELATIONSHIPS

The purpose of this apDendix is to establish the relationship
between the two grid angles of an array (top and side). Figure Bl
depicts the grid structure of an array. The points represent
element centers. Choosing the angles A and B on the figure:

2A : TGA (Top G'id Angle)

2B SGA (Side Grid Angle).

By geometry:

Dx 1

tanA 3(Dxtan B) 3 tdn B

With this relationship, the following table may be obtained:

TGA SGA

50 71.12
55 65.26
60 60.00
65 55.24
70 50 92

This result can be of great utility when fitting an array to a
radome. For example, some regions of a particular radomL may require
a basic grid angle of 55', and others an angle of 65'. Both angles
may be realized with arrays having identical elements. When fitting
any radome with a periodic surface however, care must be exercised
in order to minimize the number of elements lost on the boundaries of
regions having different grid angles.
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Figure BI. General skewed grid structure showing the relationship
between the top and side grid angles.
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APPENDIX C

SAMPLE CALCULATIONS OF ADMITTANCE RELATIONSHIPS

This appendix supports the admittance relationships for various
planes of incidence cited in the analysis portion of the third
chapter.

I. 60/120 array

A. a= 30

Y = "00302/-90 Y = "0011/-90 __

ss sa

Yaa = .00028/-90 Yas = "001/-90

P = 405/165.3 P =1. 21/165. 3

7 1.21/165.3
24a) .00302/-90 .0011/-90 40553

.00329/-90

02- .405/165.3
24b) .00028/-90 .0011/-90 . 6

- - 1.21/165.3

.000368/-90

B. a = 900

Y = 0.0 Y = 0.0
ss sa

Yaa = "0014/-90 Yas = 0.0

±Pa .81/-165.3 Ps 0.0
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? 0.0
25a) 0.0 0.0 .811-165.3

.8i/-165.3

25b) .0014/-90 -00 0.0

C. =0 °

.ss 0034/-90 s= .00091/=180

Yaa = .00014/-90 Yas = .00091/0

P : .195/90 1Ps = 1.358/180

i. 358/1 8026a) .0034/-90 - .00091/-180 .358/18

.195/90

= .0063/-90

.195/180
26b) .00014/-90 .30091/0 1.358/180

= .00013/-90

D. 0 = 01

Y ss = 0012/-90 Ysa = .0012/-39.3

Yaa = .0009/-90 Yas = .0012/-140.7

P = .686/-171.8 Ps = .739/156.6
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.739/156.6
27a) .0012/-90 .0012/-39.3 .6/-n8

=.0013/-70.9

.686/-171.8A
27b) .0009/-90 =.OOU/-140.7 .739/'156.E

=.0011/-109.1

11. 55/120 array

a=600

Yss *00093/-90 Ysa ' 0012/-25.8

Yaa D .0092/-90 Yas * 0012/-154.2J

a .686/-171.8 P = .739/156.6

28a) .00093'-90 =.0012/-25.8 .686/-171.8

=.0013/-57.4

.7 .686/-171.8
28b) .00092/-90 .0012/-154.2 .739/156.6

=.0011/-122.6
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