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1. INTRCDUCTION

The overall goal of this combined experimental and theoretical pro-
gram is to successfully and efficiently convert using scalable techniques the
output of a high power KrF laser into longer wavelengths so as to vastly im-
prove its propagation characteristics.

Since the first reported lasing of an inert gas halogen laser, a nun-
ber of similar systems have demonstrated lasing characteristics. Opera-
ting at various wavelengthe, with different efficiencies, a major class cf
electronic transition lasers came into existence. Recently, analogous
mercury halide compounds showing similar formation kinetics have been

{ 2
(1:2) heit in high temperature (~275°C) cells

shown to lase in the visible,
(see Figure 1), However, the most efficient laser reported to date in this
group is the KrF laser operating at 248 nm. It has also produced the highest
energy outputs reported utilizing e-beam pumping and e-beam controlled
discharge pumping and has a demonstrated capability for being scaled to
high average power. In certain applications, especially those requiring
transmission through the a‘mosphere, its short wavelength severely limits
its usefulncss. The limitation in atmospheric propagation at short wave-
lengths arises due to absorption by ozone in the atmosphere and to Rayleigh
scattering which increases as )\-4 as the wavelength gets shorter. Ozone
absorption is severe for wevelengths < 3000 R.

Figure 2 shows vertical transmission from a height of 3 km as a
function of wavelength. Also plotted are quantum efficiency of conversion

from KrF wavelengths and the total percentage transmission of converted

(1) Parks, J.H., private communication.

(2) Parks, J.H., private communication,
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Figure 1 Demonstrated Potentially Scalable Electronic Transition
Lasers
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KrF radiation. From the figure, it is apparent that to efficiently u ilize
KrF laser radiation, its conversion wavelength should be between 340 and
400 nm to maximize its atmospheric transmission with minimal loss from
quantum yield considerations. Xenon fluoride lasers, while possessing a
morc attractive wavelength for propagation, have not yet demonstrated the
combined efficiency and energy density comparable to KrF. Any optical
coaversion scheme for altering the wavelength of KrF laser radiation to the
340 to 400 nm wavelength range could have higher overall efficiency than the
XeF laser if the photon conversion efficiency is > 40%. Such cfficiency

for conversion is a reasonable goal for the program we are discussing

here. For supporting evidence, one can look over the past year at a
number of milestones that have been reported relevant to the optical con-
version of UV excimer lasers. With regard to overall conversion efficiencv,
XeF laser output has been converted, at near unit photon conversion eff-

(3)

ciency, using barium vapor. Also KrF conversion to a series of UV-
visible lines due to 6 Stokes and 2 «nti-Stokes transitions in high pressurce
molecular hydrogen was reported showing good overall conversion effi-

(

ciency. 4) In view of the above, it seems reasonable and important to
develop scalable techniques that could efficiently convert KrF laser output
to longer wavelengths. Two non-lincar optical conversion tcchnigues that
we have considered to achieve this goal arce the stimulated Raman and the
parametric conversion processcs.

For the stimulated Raman process, phenomenologically, the acceptor
atom can be thought of as absorbing the incident KrI" photon thereby making

the transition to an excited virtu. ' state and then, with the emission of a

Raman photon at longer wavelengths, proceeding to a level near the ground

(3) Djeu, N. and Burnham, R., Park City, Utah (Feb, 1977).
(4) Loree, T.R., Sze, R.C. and Barker, D, L., Park City, Utah (Fcb., 1977).
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(initial) state. Through gollisions with an efficient quenching gas, it can
return to the initial state for subsequent re-excitation by the KrF laser
field, . c., exhibit high efficiency by recycling the metal atoms. The
Raman process is enhanced when the virtual state is close to a real state.

Another method of ""down conversion'' to lower energy, loager wave-
length photons applicable to UV laser light is parametric down conversion.
In this process, conversion is achieved by the utilization of non-lincar
properties of the medium (the acceptor atom or molecules). Here an atom
in state 0 upon exposure to KrF laser light of frequency v, goes to a virtual
state | and re-emits three photons of frrequencies Vo Vg and Vg such that
v, = vy vyt vy At the end of this process, the atom returns to its
initial state entirely by optical transitions. Once again, if the various atomic
transitions (vly Vo, Vg and v4) in the acceptor are allowed and the dipole
moments are large, near resonance effects enhance the overall process such
that efficient down-conversion should be likely.

At AERL during the current reporting period, theoretical and ex-
pe rimental research have been carried out on potentially efficient scalable
schemes for converting KrF photons to longer wavelengths., By theoretical
calculations, we have identified a number of promising candidates *o convert
th: Krl' lascr radiation to longer wavelengths (see Table 1). Experimentally
we have investigated metal atom production techniques to produce acceptor
candidates for stimulated Raman scattering experiments. In particular,
we have produced metal atoms (Pt, Pb) in the gas phase at room temperature
using flash photolysis techniques and discharge dissociation. The results of
these ¢ombined theoretical and experimental cfforts are summarized in the

following sections of this report.




TABLE 1. POTENTIAL RAMAN DOWN CONVERSION CANDIDA 'ES
AND THEIR OUTPUT WAVELENGTHS

Output Wavelength
Candidate A, nin
Iron 300, 304
Calcium £44
Palladium 232
Platinum 332
Lead 309
Z Hydrogen 277, 313, 304

10
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II THEORY

The stimulated Raman process is one of the earliest discovered non-
linear optical processes since the advent of high power lasers. A schematic
sketch of the Raman process is shown in Figure 3. Energy Levels 1 and 3
of the atomic or molecular meditm are assumed to be connected through an
allowed intermediate level 2. If light of energy close to the energy difference
between levels | and 2 tr_vels in the medium, on~ observes signals at the
Raman frequency whose energy differs from that of the incident light by the
energy diffecrence between levels 1 and 3. Phenomenologically, the atom can
be thought of as absorbing the incident photon, making a virtuzl transition to
an excited state and then returrirg to the level 3 by emitting a Raman photon.
Energy is conserved in the Ran. . process, the difference in energy betw=en
the incident (pump) photon and Raman photon being taken up (see Figure 3) or
given by the atom. In the case where the atom gains energy, the process is
called a Stokes process, while in the anti-Stokes process, the atom gives up
some eneryy. The Raman process can be stimulated with an electromagnetic
field at the Paman frequency. The Raman process is also enhanced consid-
erably when the virtual state coincidec or lies close to a real allowed state.
When the virtual state coincides exactly with a real allowed state, both
direct optical pu uping and resonance Raman scattering will take place. At
low intensities of pump power, optical pumping and lasing (stepwise single

quantum transitions) dominates, while at high intensities, the Raman

1l
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Figure 3 Schematic of Raman Process
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scattering which is a double jquantum transition is predominant. In the latter
case, the output pulse spectrum will closely follow that of the pump spectrum.

Theoretical efforts under the present contract were concentrated in
obtaining the stimulated Raman emission cross sections for the vaiious atomic
systems, A knowledge of the maximum density of metal atoms that one could
produce and the Raman cross section enables one to calculate the maximum
single dass gain of the Raman laser. A theoretical estimate of the gain for
the various candidates will help the experimental program choose the best
species .

The stimulated Raman emission cross section, OSRE ' is related to

(3)

the third order nonlinear Raman susceptibility, Xy o by the foriaula

3
_ barn (3) ~
PSRE T ' X_¢ Xr L (1)

where )‘s is the wavelength of the Stokes photon and Tp is the pump laser

flux in ergs/cmz/sec. The calculation of the nonlinear susceptibility, xf’) .

is usually a tedious exercise. It is given by the expression,

(3) _ -i
Xp = 3 Z (paa h pcc)

4 h Fca a, C

—

Z—(C e:.5|b><b|€p.0|a>+<c|€p.5|b> <b|e:.Q|a>

= +
b pa wp Ypa Ys

where Paa and P are the fractional populations of initial and final states
of the «tom, Q is the dipole operator (= e r ), Qba = (Eb = Ea)/}l, wp and
w_  are the pump and Stokes frequencies respectively and r‘ca 1s the recipro-

cal of the dephasing time between levels ¢ and a, €p and €, are the spherical

unit polarization vectors of the pump and Stokes fields respectively, Yuratich

13
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(5)

and Hanna'~’ have used Racah algebri to sum over the intermediate state
M values and write the nonlinear susceptibility in a form that can be factored

into two parts, in one of which the rc¢lation between the fields is explicitly

§
:
E

displayed; the other contains the physics of the atom in the form of reduced

(MR

matrix elements (which can be related to oscillator strengths) and 6j sym-
bols. Interms of the total angular moment, J,, of the initial, final, and in-
termediate states and the reduced matrix elements, the Raman susccptibility

(3)

xr' can be written as

(3) _  -i Paa  Pcc Z oK)
Xy P 27 +1 27, +1
ca K

AL

1

T KT,

Z <V J1“QHY232><V2 Yl 2| vs 757

YZJZ 1 le
_ 2
] + (- ¥ | (3)
] 0 To. 0 T
g YT, Vi dy P Veds Yy dly E

(K)

; where O contains all the information about the angular dependence be-

tween pump and Raman fields and <ya Ja “Q ”Yb Jb > is the reduced matrix
element. Ina near-resonant Raman process, the factor (Q ?_JzY wp)

is very small for a particular state '~{2J2 and the summation in (3) is usually
dominated by a single term. We can also assume that P, = 1 and Pec = 0

at the beginning of the pulse. Combining (1) and (3), the stimulated resonant

Raman cross section can be written as

= 2 P~
osng rcz vs\ 12 (gf)3g by
8 7% hc™ \'23) v, (Av) Y
2 2
J. K J
% Z . 1 oK) (4)
13,0

K=0

(5) Yuratich, M.A, and Hanna, D.C., J, Phys. B: Atom Molec. Phys. 9,
729 (1976).
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In the above, r. is the classical electron radius (= 2.818 x 10-13 cm), fab

is the absorption oscillator strength from a to b, g is the degeneracy of the

. -1 .
lower state and Vb is the transition frcquency from a to b in cm . r, in (3

has been replaced by 27rcy£ where \7, is the laser line width in cm-l, since

at thest frequencies, the laser line width is usually larger than any line

= width o the atom. Av (= v ) is the amount of detuning of the laser line

- v
21 P

from tlte resonance line.

5 The total gain, goL, for a single pass system is equal to N OSRE L,

where VN is the density of atoms and L is the active length of Raman medi-

um. For a diffraction limited beam, the maximum value of the intensity-

length product is equal to P/)tp where P is the pump laser power and }‘p is

the punip wavelength. Thus, goL can be written as,

g,L = ANP/y, (5)

= where

14 Vs f12(8f)3; (5 K J : (K) 2
A=z 9.55 x 10 (VS> 5 Z ;3 1}9 em®/W
23/ (Av) L 5

and P is in watts. The quantity A\ is an atomic parameter for a given pump

ik

wavelength and given pump and Raman field polarizations. In what follows,

we shall assume for convenience, that both pump and Raman fieids are linear-
ly polarized and are traveling in the same direction.

In Figure 4, a map of constant gOL is plotted in the coordinates of
A and N, Each atomic system is represented on this map by a horizontal
line, whose position depends upon the density of the medium that may be pro-
duced in the gas phase and extent represents the degree of uncertainty i~ r~xperi-
mentally achievable atom production. The lines of constant goL have been

plotted on the assumption that P/YQ of the pump laser equals 10° W/cm,

15

£
[
£
£
=




10 l T
FLASH Pt HEAT , ROOM TEMPERATURE s
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Figure 4 Anticipated Stimulated Raman Gain ¢f Various Acceptor
Candidates
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l'or example, the specifications for a commercial Tachisto KrF laser are
near 5 MW output over a bandwidth of ~ 100 cm—l, P/yﬂ is then half of this
number, For a high power laser system, P/YQ is expected to be greater
than 105 W/em. For larger P/YQ’ the lines of constant goL shift towards
the left. High gain systems fall to the right of the goL ~ 20 line. The map
ciin be conveniently divided into three operating density regions based on the
production of atoms or molecules. Low density atoms in the gas phase can
be produced by photodissociation of organometallic compounds. Medium
densitics (1016 to 1019 cm'3) are conveniently produced in a heat pipe or
oven, -while high densities usually correspond to room temperature liquids
or high pressure gases., The division is not very rigid as low density gases
cin be produced by variety of techniques. A number of potential atomic sys-
tems are displayed on the map as well as molecular hydrogen.

For KrF down conversion, the most promising conversicn systems,
in terrs of ease of demonstration of principle, are molecular hydrogen,
atomic iron in the gas phase, and calcium vapor in a heat pipe. Although
platinum does not show as large a projected high gain as does atomic iron,
it has the advantage of potentially shifting the KrF output to propagating
wavele1gths., One aspect many of these systems have in common is the ef-
fect of direct optical pumping as a competing process to near resonant or
resonant Raman processes. It was useful therefore to consider these effects
ucing iron as an example.

The resonance absorption cross section % bs is given by

- i
Oabs = ™Ye Av

where f is the absorption oscillator strength and A v is the width of line.

The rate of pumping the upper level is given by crd;v where ¢ v is the photon

17
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flux in a bandwidth of Av centered around v. If ¢ is the total laser flux

and Y is its width,

-4 Qv
d)V_d’Y?
£
ﬁr(‘f
Caped, = — ¢

For the Fe transition from 0 to 40257 cm-l, the rate of pumping the upper
state is 3.8 x 10° I /yﬁ sec”™ ' where I, isin W/cm2 and vy, is in e

Taking I. to be 100 W/cm“ and Y, to be 100 cm'l, the pumping ra ¢ is

-1

L

larger than 109 sec This rate is much larger than the spontanco is cmis -

sion rate from the upper state, and so we can expect the ground state and upper
state populations to come into equilibrium within 1 nsec, which is n-uch
shorter than the KrI' laser pulse {~ 20 nsec). The normal 2-level laser

gain is given by

2% AAN -1

86 T 8r "Av

where AN is the inversion density. If the pump laser intensity is not very
high, the lasing transition is broadened only by collisions and doppler effects.

14 -3
cm -,

Taking N = 10 AN = N/2 and L = 30 ¢cm, we find that

(goL)Z—lcvel >~ 750 while

(goL)Raman 3 for this case.

It thus appears that the gain due to direct pumping of the upper state, when-

ever the KrF laser line overlaps the resonance transition will be much larger

18
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than the Raman gain. The converse will be true, if the KrF laser line is
narrow and its frequency spectrum does not overlap the transition to the
upper state, These conclusions are not general however because the line
widths depend on pressure and temperature of the medium as well as pump
laser intensity. One should therefore calculate for each system which gain
would e dominant. In the case of the Fe and Pt, an un-narrowed KrF laser
line will overlap the transition to the upper state and so in these two cases,
one m: y expect direct optical pumping and lasing to be a dominant mechanism

for down conversion,

19
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III. EXPERIMENTS

Experimental efforts during this reporting period have been concen-

L RE

trated on metal atom production and KrF laser procurement for use as a

source for conversion and stimulated Raman experirnents, We will briefly
describe the significant milestones accomplished in each of these areas.

In that most of the identified acceptor candidates for efficient conver-

sion were refractory metals, our initial program involved quantified mea -

surements of the achievable densities we could produce in a scalable way in

the gas phase. Two techniques were developed and measurements made

Ll

which indicate that platinum atom densities in excess of 1013 atoms/cnf
could be produced in low pressure discharge devices and greater than 10“
atoms/cm3 of metastable lead atoms in our existing flash photolysis device
developed under prior ARPA contracts. (See Table 2.) As an example, for

platinum these densities correspond to operating a platinum thermal source

at temperatures in excess of 2000°K,

TABLE 2. METAL ATOM DENSITIES DEMONSTRATED

Technique
Candidate Flash Photolysis Discharge
Platinum Inconclusive > 513 atoms /cc

Lead (3PO) >113 atoms /cc

(3P1) > 5ll atoms /cc

These two experimental techniques, flash photolysis and glow discharge
dissociation, are described schematically in Figures 5 and 6 respectively.
21 , R —
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By using a number of hollow cathode sources to perform absorption
measurements, we were able to show qualitatively that we could produce atomic
platinum by either technique (see Figu:e 7). The flash t:chnique, however,
seemed to also produce an absorbing fragment which persisted lor several
seconds (see Figure 8). This may introduce complicatioas for later lasing
experiments., These experiments clearly demonstrated that needed metal
atom densities as described in our proposal can be produced for use as ac-
ceptor candidates to perform optical conversion lasing experimunts,

To provide a pump laser to perform these experiiments, we have taken
delivery of a dye laser (Phase-R Corp, New Durham, N,H.) which puts out
~ 1/2 J at 5050 R light in 500 nsec using Coumarin 504 dye (Exciton Corp,
Dayton, Ohio). This laser is partial delivery of a doubled dye s ystcm which
will utilize a potassium pentaborate doubling crystal to provide tunable output

in the ultraviolet for use as a pump to perform conversion experiments.

24
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IV. SUMMARY

To meet the long range goal o ARPA of producing high power lascr

radia ion in the visible wavelenyths, heoretical and experimental research

have jcen carried out on potentially efficient scalable schemes for convert-

ing K-F photons o longer wavelengthis, Experimental investigation of
metal atom production techniques to produce acceptor candidates for stini-
ulated Raman scettering experiments have been carried out. In particular,
we have producec metal atoms (Pt, Fb)in the gas phase at room tempera-

ture vsing flash photolysis technique ind discharge dissociation of organo-

metallic compounds. By means of theoretical calculations, a number of
i prom sing candidates for the Raman conversion of KrF laser radiation have
been dentified.
; Actual de nonstration of down conversion will be carried out iu the

comii.g months. Theoretical research will be carried out on parametric

down conversion, emphasis being pla:ed on the aspects of phase matching,

calcu.ation of the nonlinear susceptib.lity and conversion efficiency.
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