
AO-A007 179

UNCLASSIFIED

MARYLAND UNIV COLLEGE PARK OEPT OF COMPUTER SCIENCE F/O 9/2
ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES FOR COMPUTER AIDE—ETC(U)
SEP 77 C RIEOER» H SAMET» J ROSENBERG N0001<t-76-C-0%77

TR-S95 NL

1.0 ;r na UM
12.2

I.I

1.25

Jo

12.0

m
4 III 16

MICROCOPY RESOLUTION TESI CHAR1

wmmmm ^m

•;

A
D

A
04

71
79

 <Z|
*

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

o
UNIVERSITY OF MARYLAND

COLLEGE PARK, MARYLAND
20742

•pp

 •"'-•- ^-.—r-f^r : — -..-.• . —.- -.K^.S:^ — • • mi HI in

TR-595 September 1977

Artificial Intelligence Programming Languages

for Computer Aided Manufacturing

Chuck Rieger, Hanan Samet, Jonathan Rosenberg
Department of Computer Science

University of Maryland
College Park, Maryland 20742

D D C

i«n

^-rr-rrm te®^^

ABSTRACT: Eight Artificial Intelligence programming languages
(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL and QLISP)
are presented and surveyed, with examples of their use in an
automated shop environment. Control structures are compared, and
distinctive features of each language are highlighted. A simple
programming task is used to illustrate programs in SAIL, LISP,
MICROPLANNER and CONNIVER. The report assumes reader knowledge
of programming concepts, but not necessarily of the languages
surveyed.

This report was funded by the National Bureau of Standards,

and by the Office of Naval Research.

— " I, » ''iii.i^ihi"~y i'-"r _J

CON STS

1. Introduction

2. SAIL

2.1. Introduction
2.?. Associative Data Base
2.3. Data Management Facility
2.A. Control Structures
2.5. System Building Capabilities
2.6. Standardization

3. The LIST Family of Languages

3.1. LISP
3.1.1. LISP Data Structure
3.1.2. Property Lists
3.1.3. Representative LISP Data Structure Manipulating Function:.

3.1.3.1. (MEMBER X Y)
3.1.3.2. (ASSOC X Y)
3.1.3.3. (SUBST X Y Z)
3.1.3.4. (APPEND X Y)

3.1.4. LISP Data Types
3.I.D. LISP Functions
3.1.6. The PROG Feature
3.1.7. LISP Macros
3.1.8. Variable Scoping
3.1.9. LISP I/O
3.1.10. Garbage Collection
3.1.11. LISP as a Self-Contained System

3.2. MICROPLANNER
3.2.1. The MICROPLANNER Database
3.2.2. MICROPLANNER Theorems
3.2.3. Heuristic Guidance of Theorem Application
3.2.4. Searching and Backup in MP
3.2.5. Other Representative MP Capabilities

3.2.5.1. (THFIND <mode> <variables> <skel> <body>)
3.2.5.2. (THMESSAGE <variables> <pattern> <bod;'>)

3.3. CONNIVER
3.3.1. Frames, Au-revoir and Adieu

3.4. Efficiency of the LISP Language Family
3.5. Standardization of the LISP Language Family

4. Related Languages

4.1. AL
4.2. MLISP
4.3. P0P-2

5. Examples

5.1.
5.2.

5.3.

5.4.

5.5.

Introduction
SAIL
5.2.1.
5.2.2.
LISP
5.3.1.
5.3.2.

Sample Program
Commentary

Sample Program
Commentary

PLANNER (MICROPLANNER)
5.4.1. Sample Program
5.4.2. Commentary
CONNIVER
5.5.1. Sample Program
5.5.2. Commentary

6. Recommendations

7. Bibliography

8. Summary Chart

••

1« lQi£2&U£lifiO

Intel
manuf
<•IC.RO
are
manuf
for
contr
The
f eatu
compu
manuf
I angu
langu
whi ch
envir

This
l ige
a c tu
PLAN
di st
ac tu
the
ol i
pape
res
ter-
ac tu
age*
age,

a
on me

rep
nee
ri ng
NER,
inct
ri ng
deve

n add
r in
of

auton
H?§>
and

re
nt.

ort at
program
envlron

CONNIV
from

env i ran
lopment
ition t
cluaes
the se
• tea *
tas k i a

d iscu
(4) con
mos t d

sc ribe
mi ng
ment»
Eft, M
langu«
ments

of
o the
(1)

linoua
anufac
nd how
ssions
c I u s i o
«si rab

s s
langu
The

LISP,
ges
LLesl
high-
simpl
surve
?es
urin
it m
of

ns Mi
le a

one
a-es
lang
POP

previ
ie72D
level
e num
ys a
as
?en

äht
I he

them
no a

rece
in th
ua&es
-2. A
ous ly
in t
symb

erica
nd c
they

vi ron
be ex

s tan
phasi
pplic

ntly
e co

su
L, a

u
hat
olic
I co
ompa

m
ment
pres
card
s on
able

d
ntex
rvey
nd t
sed
they
pla

nt ro
ri so
ight

:..'
izat
the
to

eve lope
t of a
ed are
LISP. T

in
provid
nning a
I of m
ns of t

be
2) a sa
as a pr
ion st

types
the

c
c omp

SA
hese
comp
e ca
nd s
achi
he d
use

mple
ogre
atus

of
auto

Artif
uter-
IL,
Ian*

ut er-
pabi I
uperv
ne t
istin
d i
auto

m in
of
fea

mated

i c io I
aiotd
LISP,
uast i
aidto
i t it t
i sor/
oo I - .
et ive
n a
ma tec
each
each

torts
-s he».

•-- ••L-aa-iT?:^:....-.::.-!--.-.. I,.,,.'., . .
• M imi *Lktu • A

'•• •»-!••'MI11 i« HU -^-mm^mmmmmm

2. SAH.

2.1. IntroSyctisD

SAIL has Its origins
associative Language* and a
unlike most
LISP-Dasea. Instead
extensive run-time

in a merger of
version of ALGOL 60 ngL.aae, and a version or ALtcL ö'J iNaureu]. Therefore«

of the other artificial intelligence languages» it

LEAP CF
lNaur60

e loman69j

• it is a general
library of functi

purpose
ons. As

cotnp i led
befits

is net
with on language

its ALGOL ori gi ns t
SAIL has block structure and explicitly typed, statically seoptc
variables. The cata types available include INTEGER, REAL, STRINGS of
arbitrary length, structure, pointer, LIST, SET, ITEr", and aggregates
of the previous (i.e., ARRAYs).

Seme of the more important features of SAIL are discussec
separately below. These include the associative data base facility,
the capability for usage of SAIL as a host language in a CODASYL
CC0DASYL71] data fcaie management system, the control structures, ans
the system cuilding facilities. Finally, a summary is presented of
current s tanaa rdi zati t»n efforts.

!

2.2. Associative Data base

SAIL contains an associative data base facility
which is used for symbolic computations This enables
retrieval of information oased on partial specification
Associative data is stored in the
ordered three-tuples cf ITE*s» denoted
a re :

known as LEMP
the storage and
of the date.

form of associations which are
as TRIPLES. Examples o* TRIPLES

FASTEN XOR NAIL EflV HAMMER;
FASTEN XOR SCREW EQV SCREWDRIVER;
FASTEN XOR oOLT EäV PHER;

Associ ati ons
form

may be conceptualizee as representing a relation of the

or
Att rioute
Att rioute

XOR Object
(Object) •

EQV Value
Value

Most programming languages Ce.a
associative-like mechanism:

Given: Attrioute,Object
F ind : Va lue

LISP) provide the following

However, SAIL enaoles the programmer to specify any of the components
of the association, ana then have the LEAP interpreter search the
associative store for all triples which have the same items in the
specified positions. For example, the following may be useo to
retrieve all items that can fasten a nail:

FASTEN XOR NAIL

An ITEK is a constant and is similar to a LISP atom. Items have
names ana may also oe typed so that data can be associated with them.
An item may oe declared, or created durin» execution from a storage
pool of items by use of the function NEw. For example:

••*--- hiHtiiiii ii i ,--•-.---

 1 •'—'•"-•- -• »"-'I • •»••• ••• I 1111,111 ••• H »^i»^————^M

REAL ITEM VISE;

declares VISE to be an item which may have a datum of type reel
associated with it* The datum associated with an item is obtainea ty
use of the function DATUM. Thus, DATUM(VISE) might be interpreted äs
the capacity of the vise*

In order to deal with items, the user has the capability of
storing them in variables (ITEMVARs). SETs, LISTS, and associations.
The distinction between SETs and LISTs is that an explicit order is
associateo with the latter, whereas there is no explicit order
associateo with the former« In addition, an item may occur more th*n
once in a List •

Associations ere ordered three-tuples of items and may themselves
be considered as items and therefore participate in other associations.
Triples are added to the associative store by use of a V.*KE statement
and erased from the associative store by use of an ERASE statement.
For example, the following code could be used to detach assemtly 1 from
assembly 2 and attach it to assembly 3:

ERASE ATTACHED XOR ASSEMBLYI EQV ASSEMBLY?;
MAKE ATTACHED XOR ASSEMBLY1 EQV ASSEMbLYZ;

The motivation for using an associative store is a flexible search
and retrieval mechanism. Binding Booleans and Foreach statements are
two methods of accomplishing these goals.

The binding Boolean expression searches the associative store fur
a specified triple and returns TRUE if the triple is found and FALüL
otherwise. The aim of the search is to find an association which meets
the constraints imposed by the specified triple. If seme of the
components of the triple are unknown (such components are preceded ty
the special item BIND), then a successful search will result in the
binding of the designated component. For example:

IF FASTEN XOfc BIND OBJECT EQV PLIER THEN PUT OBJECT IN PLIEh'SET;

In this case the store is searched for an object that can be fasteneo
by a PLIER and if such an object is found, it is placed in tne set
PLIER'SET. Note the use of the item variable OBJECT in the
association. A successful search will result in this variable being
bound.

The FOREACH statement is the heart of LEAP. It is similar to the
FOR statement of ALGOL in that the body of the statement is executed
once for each binding of the control variable. For example:

FOREACH X I PART XOR B747 EQV X AND DATUM(X) < 3
DO PUT X IN B747!0RDER !SET;

In this case, assuming that the datum associated with each part denotes
quantity at hand, the associative store Is searched for all parts of a
B747 of which there are less than three on hand. These parts are
placed in the set 3747!ORDER!SET.

2.3. gals Manaaement Facility.

Unlike other artificial intelligence languages, SAIL has the
capaDility of being used with an existing data base management system
(D3MS-10 LDEC]) to handle large data bases stored on external storage.
An interface exists LSamet76J which allows SAIL to be used as the oata
manipulation language in a CODASYL based data base management system.
SAIL is relatively unique in this respect in that COBOL CCCB0L74] has

i^^.^Mt^^.LlitlMMaaa^Mi»«^ , •••••- -. •^fctoA- "N- . A*

——

almost ceen exclusively used as the data manipulation language (DKL) of
such systems. Til i s situation is not surprising since examination of
the oata description facility of the CCDASYL report reveals a very
stron, similarity to the data division of COBOL. Nevertheless, there
have oeen some attempts to use FORTRAN ([S t acey 7*. 3 , [RAP1DATA3).

fea
pas
of
thi
to
req
col
cap
set
ace

Idea
ture s.
sing,
Soole

s t a sk
avoic
ues t s
lectio
abi lit

UNION
ess i ng

11 Ur

Curren
dec i s i
t he u
manage
type
via a
while
can a I
become
more t
certai
this i
3 rohi b

AIL
tly
ons
ser
men
fro
GET

ob
loc
s
han
n
s t
i ti

aynan
an r
is r

curre
(the

ns of
y for

and
e xte

has
, th
. SA

to
t sys
m the
), he
ta ini
ate t
rathe

t WO
re cor
he st
ve .

a d
st,
ic
equ
ath
n°l

§u
set
nde

a m
i s
IL

bu
tern

da
ha

ng
emp
r
ins
d
rat

ata
a f

stcr
ests
ere

pro
ackt
inte
i loi

INT
a st

echa
onl

al so
ilo
, »h
ta D
s no
ano

or»r
unwi
tanc
type
eg/

manip
ull p
age a
shou

umber
c I ems
racki
rs to
ng an
fcRSEC
orage

ni sm»
y wo
has
an i

en eve
dse (
conv

ther
y sto
elay,
es of
s ca
that

ulation language should include the following
rocedure capacility which allows parameter
llocation, ana recursion* Second, processing
Id not be difficult. In a CCBOL-pasea systtx
some as pointed out by CParsons7&j. In order
raised by partial satisfaction of Boolean

ng problem [Tay lor7bD) , the user must build
related records. Third, there should be a
in-core data base so that operations such as

TICN can be performec without the overheao of
more than once for any record.

LEAP
rks f
a rec
n-cor
r the
i.e.,
enien
inst

rage
esp

a re
n be
i s ge

, for
or int
ora st
e oat a
user
he lo

t way
anc e o
for th
ec i al I
cord t
ref et

ne ral I

bui Id
ernal
ru ctu
base

obtai
ca tes
of ke
f thi
e var
y wh

ched
y fol

ing
mem

re c
. I
ns a
it

epin
s re
i ous
en h
Alt

from
lowe

asso
ory
apau
n a
n in
via
g ft
cord

f i
e w i
erna
the

a.

ciat
due
ilit
COEO
stan
a FI
in

elds
shes
t i ve

ciat
Howe

i ve
to i
y w
L-ba
ce
\D a
temp
e.
; n
to

aba
ver ,

oata
mp lern
hich
sed d
of a
na f e
orary
Of CO
owe ve
keep
insta
se .
the

ja
ent a

ena
ata

re
tcne

me
urse
r»
t rac
nee s
In f
cost

ses .
t icn
b Us
base
c ora
sit
mory
i he
this
k cf

of
act,

i s

Briefly, the SAIL interface provides a SAIL reco'O structure
declaration for each record type that has been defined in the data La^e
management system. Primitives exist for the creation anj modification
of such records. The dynamic storage allocation capability of SAIL
enables the creation of several instances of each recco type each of
which is identified b> an entity known as a recorc pointer«

mana j
is t
ext ra
which
is i
ELECT
s true
Caeec
f unct
s true
NEXT
the
a poi
aaded

As a
emen
o t
ct a

i s
a ent
RICA
t uri
h?C3
ion
t ure
wh ic
LIST
nt er

to

n ex
t sy
rave
n in
a me
if ie
L f
ng
str
to
LIS

h is
X oa
to

th is

ampl
stem
r se
t ege
mber
d b
o r
f aci
uctu

add
TX h

of
ta s
the

i ns

e of
t co

a
r oa
of

*,. x
the
lity
re)

it
aS t
type
t rue
dead
tanc

t he u
ns ide r
set na
ta ite
the se
he ow
data

(kno
we def
ems t
wo fie

RECOR
ture)•
of an

e.

se o
the

med
m kn
t.
ner
ite

wn
ine
o t
Ids
D'PO

Th
ins

f oAlL a
fo llowi

SUPPLIER
own as P
The exac

re cord,
m INDUS
as a RE
a data s
he front
- ELEMEN
INTER (a
e functi
tance of

s a
ng

ow
ART
t i

w
TRY
COR
tru

of
T w
nd
on

L:

host
p roy r?n
ned t •>
NUM
n s t i.
ARE , i

D!CLAJ
c t u - e *

a LIST
hich is
points
AOOTCLI
STX and

ng
Pr

* ge
3». an
iSEhO
ea» n
th:
luv »
SAIL

.T» d s i m
nown as
X struct
of type

to anoth
ST has t

the i

i»
t •
US

ng

- d
T

re
ART
oc
th

has
i lar t
L1STX

ure •
INTE

er ins
• o arg
nteger

ata
he
cor

r
cur
e
a

o a
a

The
GER
tan
ume

t

base
task

d ana
ec ord
rence
va lot
data
FL/1

no a
cate
ana

ce of
nt s -
o oe

RtCORDfCLASS LiSTX(INTEGER ELEMENT;
RECORDlPOINTER (LISTX) NEXT);

PKOCEDURE Ai,DTOLIST(REFERtNCE R E CO RD !P0I NT ER (L I ST X) HEAD;
INTEGER VAL);

BtGIN
RE
TE
Ll
LI
HE
EN

CORDFPOINTER (LISTX) TEMP;
MP := NEW!ELEMENT(LISTX);
STX :ELEMENTCTEMP] := VAL;
STX :NLXTCTEMPD := HEAD;
AD := TEMP;
D;

The COEOL/DML ana SAIL encodings are given below. The critical

:•-*». ;*-<< jrw.

~ • " ""•"" ii im ii m
••

d if fere nee
immedi ate ly
COBOL.

is the step
obvious how

"Add PARTNUM in PART to result
the concept of a list would bs-

list." It is not
implemented in

COBOL Program:

NLXT:

ALL!FOUNO

MOVE 'ELECTRICAL' TO INDUSTRY IN WAREHOUSE.
FIND WAREHOUSE. RECORD.
IF SUPPLIER SET EMPTY 60 TO NONE!SUPPLIED .
FIND NEXT PART RECORD OF SUPPLIER SET.
IF ERROR-STATUS = 0307 GO TO ALL?FOUND.
6ET PART.
Add PARTNUM in PART to result list.
60 TO NEXT.

SAIL Program:
INDUSTRY := "ELECTRICAL";
FIND!CALC(WAR£HOUSE);
IF EMPTY!SET(SUPPLIER) 60 TO NONE!SUPPLIED;
WHILE TRUE DO BEGIN

FIND!NEXT(PART,SUPPLIER);
IF ERRORfSTATUS = 0307 THEN DONE;
GET(PART);
ADDTOLI ST(HEAD,PARTNUM);
END;

2.4. Control §Jr yc|y re.s.

In audition to the ususal control structures associated with
ALSOL-like languages (e.g., FOR loops, WHILE loops, case statements,
recursive procedures, etc.), SAIL has capabilities to enable parallel
processing, backtracking, and coroutines. In SAIL, a process is »
procedure that may ue run indepenoently of the main procedure. Thus
several processes may ue run concurrently. Note that the main
procedure is also a process.

A process is created with a SPROUT statement as follows:

SPROUT(<item>,<procedure call>,<options>)

where <item> names the process for future reference, <procedure call>
indicates what the process is to do, and <options> is used to specify
attributes of the SPROUTed and current process. Unless otherwise
stipulated (in <options>), a SPROUTed process begins to run as soon as
it is SPROUTed and in parallel with the SPROUTing process.

Similarly, there exist primitives which result in the suspension
of a process, the resumption of a process, and in the blocking of a
process until a number of other processes have terminated. These tasks
are accomplished oy the SUSPEND, RESUME, and JOIN primitives
respec t ively•

SUSPEND and RESUME have as their arguments single items while JOIN
has a set of items as its argument. These items are the names that
have been set up for the process oy an appropriate SPROUT command.

For
follows:

example, a procedure to tighten a bolt may be defined as

ITEM P1,P2;

SPROUT(P1 , GRASP(HAND1,SCREWDRIVER));

ÜÜ.I

mm •-II •!• • I «nil Öl— .• .in

SPROUT (P2 t6RASP(HAND 2» BOLT));

J0IN(<P1,P2>>;
TURh(HAND 1,CLOCKWISE);

single
le.

Since SAIL runs on
multiprocessing is not possib.
contains a scheduler -hich decides
long. The programmer makes use
statement to specif/ information
the next process to be
sizes, priority» whether
process, etc.

processor computer system, true
Instead, the SAIL runtime system

which process is to run and for he.
of the <options> field of the SPROUT

»hich the scheduler uses to determine
run. Such information includes time quantum
or not to immediately run the ' SPKOuTtu

A process may result in the binding of ITE.PVARs by use of <.
HATCHING PRoCEDURc which is basically a Boolean procedure. When one of
the parameters is an unbound FOREACh itemvar, then upon success the
parameter will be bound . The matching procedure is actually SPROUTtC
as a coroutine process and SoCCEED and FAIL are variants of RESUL
which return values of TRUE or FALSE respectively. in addition, FAIL
causes the process to terminate whereas when the matching procedure is
called by the surrounding FOREACH via backup, then the procedure is
resumed where it left off on the last SUCCEED.

a box
screws ,

cont a in i ng For example, consider
fasteners (nails, regular
is to oDtoin »hillips screws. This can be achieved by
MATCHINo PROCEDURE which returns a different Phillips
it is invoked.

number of different
bolts, nuts, tacks, etc.). The goal

the following
sc rew each t ime

Note t h,
bound.

MATCHING PROCEDURE GETfFASTENER (7ITEMVAR FASTENER,F!TYPE) ;
BEGIN

FOREACH FASTENER I FASTENER IN BOX AND
TYPE XOR FASTENER EQV F!TYPE

DO SUCCEED;
FAIL;
EMD;

>t FASTENER is a FOREACH ITEMVAR which upon success will oe

backtracking is supported by variables of type CONTEXT. However,
the programmer must specify the points to which backup is to occur (for
example, recall SUCCEED). State saving and restoring is achievea ty
use of CONTEXT variables which act as pointers to storage areas uf
undefined capacity in which are stored the entities to be saved and
restored. Actual state saving ana restoring is accomplished by use of
the primitives REMEMBER and RESTORE.

Processes ma $ communicate with each other by use of the SAIL event
mechanism. This is a message processing system which enables the
programmer to classify the messages and to wait for certain events to
occur. Events occur via the CAUSE construct which has as its arguments
the event type, the actual notice, and instructions with respert to the
disposition of the event. Similarly, there is a construct known as
INTERROGATE which specifies a set of event types and instructions with
respect to the disposition of the event notice associated with the
desijnatec event types» A variant of this facility has been usec
extensively in the implementation of the Stanford Hand Eye Project
t Fe laman7 1 j .

'• ' •L' •• ' -'•"• ' • —"'-"—•""

2*5. Sy.ste.rn. äuüsiDä £iBftfeilili£ft

SAR includes »any features which
language

designed
may oe i
START »CODE

to aid in system
De interspersed with

and CUICK'CODE
be used with the

- . - • » «re
building. Assembly language statements
regular SAIL statements by use of the
constructs» A number of different files which art to
prograir c»n be specified via use of REQblRE statements

The statements:

RtQUIRE "TOOLS" LOAD'MODULE;
REQUIRE "CAKL1BC1.33" LIBRARY;

will cause SAIL to inform the loader that the file TOOLS.PEL must te
loadeü. In addition, the file CAMLIL on disk area [1,33 serves as a
library and is searched for needed routines.

The state men t:

REQUIRE "HEADER.SAI" SOURCE'.FILE;

will cause the compiler to save the state of the current input filt,
and scan HEADER.SAI for program text. When HEADER.SAI is exhausted
scanning of the original file resumes at a point immediately following
the REQUIRE statement. This feature is particularly useful when
dealing with libraries since in this case the REQUIREd file can contain
EXTERNAL aeclarations thereby freeing the application programmer from
such work and possiole errors.

A rather extensive conditional compilation capability is
associated with SAIL. This enables the development of large programs
which can be parameterized to suit a particular application without
compiling unnecessary code and thereby Masting memory for progr^ir.
segments which are never used. This capability is used to enahance a
macro facility to include compile-time type determination; for loops,
while statements, and case statements at compile-time; generation of
unique symbols, ana recursive macros. For example:

DEFINE GRASP(SIZE) = CIFCR SIZE

F Mt CD;

> 1 THENC VISE

results in
parameter,

the definition of a macro named GRASP having one formal
SIZE. The result is the name of a tool that is appropriate

for the size of the item that is to be grasped - i.e., a vise in case
size is greater than 1 (assuming size is measured in centimeters, etc.)
and pliers otherwise. For example:

TC0L1 := oRASPCIO.O);
TO0L2 := GRASP(Q.5>;

will result in the following statements:

T00L1 := VISE;
T00L2 := PLIERS;

Note that the choice is made at compile-time and thus the programmer
need not be concerned with the available grasping mechanisms Thus the
program compilation step can be used to aid in the writing of the
program. The example illustrates the importance of such a feature when
certain tasks can be achieved by similar, yet not identical, means.

SAIL also provides an excellent
system. This enables its use for
control of external devices. In fact.
the user has at his disposal all
assembly language programmer has. Thi

interface with the operating
real-time applications such as

interrupts can be handled ano
of the I/O capabilities that an

s enables the development of

L. —•_ -^.^_:—i—^L^^^L^^^+^tma**L*M~***^~A~*. mmk iiw± '••*?•'

r n.....i .».mm., ••I...i.p..i,,.iini im mi ii iji.n

programs ranging from scanners to mechanical arm controllers. In
addition to compatibility with assembly language deouggers, SAIL has a
high-level breakpoint package known as LAIL CReiser75J.

2.6. Sjandardiiaiign

unde
Ther
SAIL
capt
part
deve
mach
The
prog
An e
stru
data
*AIN

Curr
r bo
e is

k no
are
icu la
lop a
ine s.
langu
rams
x tens
ct uri

base
SAIL.

tnt ly
th th
sn ef
wn a
the
r th
Ian •a

age i
will

ive r
ng f

c apa

, S
e T
for
s
fea
e
uag
e
s c

ha
un
aci
bil

AIL na
LNtX C
t unde
MAIN SA
ture s
ease
e that
orient
onsi ce
veto

time
lity .
ity of

s only
bBNEXEC
rwoy at
IL [Wi
that

of inte
is cap

ati on
rably d
be modi
li brar
It i

SAIL

been
3 an
SUM

I cox
make
rac t
able
of t
iffe
f ied
y i
s st
(i.e

impl
o TOP
EX to
763.

SAI
ion w
of b

he pr
rent

i n o
s be
ill u
.» L

emen
S-1G
de v
Th

L a
ith
eing
c je c
th«.

rde r
ing
nee r
LAP)

ted o
CTOP

eloc
e goa
n at
the o
run

t is
n SA
to b
prcv

tain
wil

n th
S103
a la
I of
t rac
pera
on a
t owa
II
e ca
i ded
whet
I b

e POP-
opera

ncuage
that

t i ve
ting s

I ar§
rds mi
and e
pable

as
her th
e inc

10.
ting

s 1
proj
lang
ystc
e n
ni -c
xi s t
of c
is
e as
or pc

It r
syste

rr i la r
e ct is
uage
m) ana
umbe r
ompute
ing S
ompiIi
a rec
soci at
rated

uns
ms.
tc
to

(ir,
to
of

rs.
AIL
na.
crd
ive

i n

•i

L
—- •--

wi -'• • •••'-» "-' "

IÖ£ USE £2li±X Si LäDayages

3.1 LISP
LI

P racess
i s an i
Iambaa
recurs i
i mplerne
conput a
resulte
FORTRAN
changed
genera I
origina

SP (C
in„ I
mp le m
ca leu
ve f
nt at i
tiona
d in

as
cons

pur
I ele

McCar
angua
entat
lus •
uncti
ons o
I pa
a fir
a pra
idera
pose
gance

thy60D
ye dev
ton of
McCart
on t he
f LIS
raui sm
st ver
ctical
bly, s
proyr

, CLevin
eloped b
parts o

hy's int
ory as a
P relie

(i.e.,
sion of
program

o that t
a mm i ng

65^, [Weissman67D , CS i k los sy763) , a list
y John McCarthy at MIT in the late 5C i»
f Alonzo Church's work Cchurch41j in the
ention was to recast the elegance of
theory of computation* Thus» the first

d exclusively upon recursion as the
no iteration), which, although elegant,

LISP which was not competitive with
ming tool. However, LISP's character has
oday LISP is an extremely powerful ar.o
language which nevertheless retains its

The most

(1)

interesting features of LISP «re

(Z)

<3)

U)

(5)

(6)

The language is practically devoid of syntax;
constructions in LISP fall into two categories: atoms
compositions of atoms.

all
and

Program ana
represent ed
P os s io I e for
data, then
regard it as
code may be

data are interchangeable, since they are
in the same format. Therefore, in LISP it is
one function to construct another function as
execute it by indicating to the LISP system to
code; alternatively, an existing function s

examined, modified or augmented by another
function'at run-time. In fact, a function is capable
self-modification if appropriate care is exercized.

Memory allocation ana management are. automatic and
transparent to the user, except where the user explicitly
desires to influence them, with the exception of arrays,
there are no space declarations to be made, freeing the
programmer from the details of space allocation, ana
generally allowing for the unlimited growth of any given
data structure. (For the most part, LISP data structures
have no size or complexity constraints.) Used memory which
is no longer involved in the computation is recycled
automatically by a garbage collector either on demand from
the user at specified points or automatically.

LISP i s a
function
with a ny
a rgume nt
LISP sy
s tand-a lo
Typica lly
speedup w
I engages
i nterp ret
possio le
i nte rp ret
p roduc tio

n in
of

LliP
to b
stem
ne
, c
hich
, or
ed
to

er,
n ap

te rpr
one a
data

e rey
s 1
machi
ompil
make
even

and
reta
whi

pl i ca

eted
rgume
st ru

arded
nc lud
ne c
ation
s LIS
with

comp i
in t
le
t ions

langu
nt, (
cture
as c

e a
ode

pro
P com
well

led
he f
obtai

ace • T
EvAL X
as it

ooe an
compi
for

vides
pet iti
-coded
code
lex ibi
niny

he
), s
s a
d ex
ler
int
an

ve
ass

may
lity
the

system
uch tha
rgument
ecuted*
wh i ch
erprete
order

with o
embly I
be int
and

speed

pro
t ca

ca
HOW
wil

d
of

ther
angu
e rmi
p owe

rea

per i
I ling
uses
e ve r,
I pro
functi

magni
comp

aae . S
xed , i
r of
uirea

s a
EVAL
that
mos t
djc e
ons .
tude
iled
ince
t i s

the
for

LISP
a Igori thms
i terat ive
sect ions.

while
vi a a
prog ramming are

accommodat i ny
iture. bo' '

iI lust rated

remains recursive, while also duumiuuduny iterative
so-called PROG feature, both recursion and

iterative

in subsequent

Because of the technique LISP uses in storing local and
global variables, some very powerful context-switching can

e carriea out, providing a fast way to enter and exit
hypothetical planning environments and to cause the

^ ^» •......-V,«--^..

behavior of a program
environmental context.

to vary as function of its

3.1.1. LISP Baia suu£iur.£
LlSP's Oata structure, called the S-expression, is simplet yet

extraordinarily flexible« providing a substrate upcn which a programmer
may oesian his own complex data structures. An S-expression is either
an "atom" or a "CONS node". An atom can be regarded as eitner a
variaott, a constant (a passive symbol), or both. There are no
declarations in LISP; new atoms are simply admitted to the systeir «• s
they are scanneo at the input level» and atoms with the same name are
guaranteeo by the system to be unique (i.e., they have the san.e
internal pointer* or address).

The other type of S-expression. the CONS node« provides a means of
structuring atoms and other CONS nodes into hierarchical data
structures. A CONS node is ordinarily implemented as a single computer
word (say« 36 bits long) which contains a left pointer, callea its CAH,
and a rignt pointer, called its CCR. CONS nodes are created dynamically
via the function ICON» X Y), where X ano Y are any other S-expressiens«
or passively (as oata constants) via the construction (X.Y). CCNS nooes
can be composed to form arbitrarily complex hierarchies« the bottommost
elements of which are usually atoms (i.e., pointers to atomic
S-express ions).

To illustrate« suppose we wish to represent a particular tool« it)
a screworiver« in a LISP data structure, tare first decide upon a narre
for it« say« SCREwDKIVER-1« and what characteristics of it we wish to
encode. Let us suppose the characteristics are: type is Phillies, coLr
is yellow« shaft length is 10 centimeters, and head size is C.3
centimeter. There are many ways to encode this in LISP; the external
representation of the one we adopt here is:

((NAME SCREWDR1VER-1)
(TOOL-TYPE SCREWORIVER)
(STYLE PHILLIPS)
(SHAFT-LENGTH 10 CM)
(COLOR-CODING YELLOw)
(HEAD-SIZE 0.3 CM))

Here« all symbols such as NAME« YELLOW« etc. are LISP atoms. (So too
are the numoers; however numbers are not entirely equivalent with
symbolic atoms.) The particular hierarchy we have adopted is a list of
lists« where each sub-list consists of an initial atom describing that
sub-list's role in the structure, and a list of the information
associated with that role in the description.

This structure would be graphically represented as follows:

10

•••*»"'»-'••••"•"• --•- -----

• • • 4 4-—4 4-—+
1*1*1 >l*l*l >l*l*l- >l*l*l- 4 —-4 •_ — • 4.-4 4 4

I I I
• 4 4 4 4 • • 4 • • 4- 4
l*l*|->l*l/l l*t*|->l*t/l I * I * I->I *I /I
+ ——f 4—- 4 «...4 «-..4 •-— 4 4 —-4

MA«t TOOL-TYPE STYLE PHILLIPS

SCfcEWDRIVER-1 SCREWDRIVER

4_- -4
•>l*l*l-
4-—4

4 4
>l*|/|
4---4

COLOR-C

4 4 4 4
l*l*|->l*|/|
4---4 4---4

0CIN6

YELLO'-

I
4 — * •- 4 4—4 4-~4 4 4 4 — -4
|*M->M*|->|*|/| l*|*l->l*l*l->l*l/l
4 -• 4 • • • • • 4 4 4 4

iHAFT-LENGTH 19 CM I 0.3
HEAD-SIZE

CM

and could be constructed passively (as a fully constant structure)
a quoted S-exoression :

vi,

'((NAME i>CREWDRIVER-1) (TOOL-TYPE SCREWDRIVER) •••)

or dynamically via CONS:

(CONS (CON;,
(CONS

'NAME (CONS 'SCREWDR1VER-1 NIL))
'TOOL-TYPE (CONS 'SCREWDRIVER NIL))

(CONS 'HEAD-SIZE (CONS 0.3 (CONS 'CM NIL)))

Since it «ould be a rather harrowing experience to construct very lar*,e
S-expressions dynamically in this fashion, LISP provides a spectrum of
higher-level functions for constructing» modifyinq ano accessing
S-expressions. Some highlights of these will be covered briefly in a
subsequent section. For our example, a more concise expression of coae
which would build this structure dynamically would be:

(LIST (LIST 'NAm : 'S CREWDRI VER-1)
(LIST 'TOOL-TYPE 'SCREWDRIVER)

(LIST 'HEAD-SIZE 0.3 'CM)

Presumably*
as one availaole tool
numerous

description

having defined this tool
ol i
of doing th

wn to
as a new tool on this

method;
lobal list of all known tools in

•• a large supply of
Is.

we would want to record it
tools. Again, there would be

One way would simply be to maintain a
the system, and to add this entire
list:

(SETQ NEW-TOOL '((NAME SCREWDR IVER-1) (TOOL-TYPE SCREWDRIVER)
(SETO. MASTER-TOOL-LIST (CONS NEW-TOOL MASTER-TOOL-LIST))

.))

(SETQ is one of LISP'S assignment
wish to put only the name of t'
and associate all the remaining
on SCREWDRIVER-1's kCflB££t* Hit*

t statements.) Alternatively« we might
he screwdriver on the master tool list,
information with property DESCRIPTION
•

11

M^^aMkmimMmdmAHtfMMi .JLm,

um .11 iiiiipijiiiiii ..' !"••' •• m •"• "

(PUT 'SCREwDRIVER-1 'DESCRIPTION
'((TOOL-TYPE SCREWDRIVER) ... (HEAD-S

ISETQ MASTtR-TOOL-LIST (CONS 'SCREWDRIVER
SIZE G.3 er«)))
-1 KASTER-TOOL-LIST))

.1 . c . £l2E£££X kill!
Any LlbP atom may have a property list (built up *roir CONS nodes).

Conceptually, the property list allows the attachment of an arbitrary
number of attribute-value pairs to the atom, thereby serving to
describe the characteristics of the real-world entity represented Ly
the atom. This is a powerful feature for any; prog ramm ing language,
since it allows "micro-oescriptions" of atoms which ordinarily will net
be seen by the processes that manipulate the hierarchical structures in
which the atom participates. These microdescriptions can be maintained
and accessed by the functions PUT, GET and REMPRüP in case more aetail
about an atom is aesired.

Properties are attached to an atom via the function (PUT <atcm>
<öttritutfe> <value>), looked up via (GET <atom> <attribute>) , ar.u
removed via (REMPKÖP <atom> <attribute>)• We have seen one way to
associate the screwuriver information with the atom SCREWDRiVER-1 usin*
property lists. Another, more convenient way would be to split apart
all the various attributes of this atom, making each a different entry
on the property list:

(PoT 'SCREWDRI VER-1 'TOOL-TYPE 'SCREWDRIVER)
(PUT 'SCREWDRI VER-1 'STYLE 'PHILLIPS)

(PoT 'SCREWDRI VER-1 'HEAD-SIZE '(CT CM))

To determine SCRfcWDRIVER-1's heaa size, we would
'SCREWDKIVER-1 'HEAD-SIZC). If such an attribute
exists, it will be located and returned.

then «rite: (ClT
of SCREWDfilVER-1

3.1.3. ReB£e.S£ni£t iye LIS.P fcata. Struc.£yre. HaDiBUialiDfl £u.n£tio.QS.

«e include here a definition and brief example of several of the
more standard, hi^h-level LISP functions that pertain to data structure
creation, modification and searching.

3.1 .3.1 . (H£3&£R I 11

If S-expression X is a member of S-expression Y (assumed to be «
list), return "TRUE", otherwise, return "FALSE".

EXAMPLE: (MEM3ER 'SCREWDR1VER-1 MASTER-TOOL-LIST) returns a pointer tc
the atom T ("true") if SCREWDR1VER-1 is on the
hASTER-TOOL-LIST, and a pointer to the atom ML ("false")
otherwise•

12

— ttUtm '•^ "- Mtmmmm

•"•^•

.1.3.2. iÄ£S2£ £ 12
of Y is a list of lists. Y is scanned, comparing the first item cf

ejch sublist to X until a natch is foand, or until Y is exhausted, in
case a match is founo, ASSOC returns the entire sublist whose first
item matched X .

EXAMPLE: (ASSOC 'HE*D-SIZE '((NAME SCREWDR 1vER-1) ...
CM))) uoulc return the sublist (HEAD-SIZE 0.5

(HEAD-SIZE C.3
CM).

3.1.3.3. (§yasT £ Y Z)

creates a
with X*s.

new co».y At Y and 2 are arbitrary S-expressions. SU&ST
of Z, where all occurrences of Y in Z are replaced

EXAMPLE: (SUBST 0.2 3.3 '((NAME SCREWDRIVtR-1) ... (hEAD-SIZc C.2
CM))) would produce a new structure for our screwdriver«
identical in all respects to the original» except that its
head width would be 0.2 instead of 0.3.

3.1.3.4. (A.eeEU& X I)

X anc Y a re
appending Y onto

lists. A new
the eno of X

list is created which is the result of

EXAMPLE: (APPEND '((NAME SCREWDRIVER-1) (STYLE PHILLIPS)) '((COLOR-CODE
YELLOW) (HLAD-SIZE 0.3 CM))) would produce ((NAME
SCREWDRI VER-1) (STYLE PHILLIPS) (COLOR-CODE YELLOW) (HEAD-SUE
Ci.3 CM))

3.1.4. Ui£ Uli

In addition to
following other data

IY.B££
a tons and

types:
CONS nodes» nost LISP systems include the

1. integer numbers
2. real nunbers
3. strings
4. arrays
5. octal nunDers (for bit-level manipulations)

Some versions
numeri cal
compile rs g
softwa re.

ns of LISP (notably MACLISP LMoon743) have highly
and trigonometric facilities and accompanying
eared to the efficient generation of "number

developed
optimi zin-
crunchinc,"

3.1.5. LI5E EyQ£tjons

of functions. No
program". Functions

function is
are generally

A LISP "program" Is a collection
syntactically declared as the "main .
typeless (i.e.. no distinction such as "integer"« "real"« "string «
etc. is made). However« each function may be declared so that its
calling arguments are passed to it either evaluatea (as in most
programming languages)« or unevaluated. Except for this distinction«
there is no need for function-related declarations.

13

-« '.. J

•»••*"• ' ' "

A function is regarded as simply another
one typically defines a function by assigning
as the «torn s value« Strictly speaking.
nameless, and is identified by the form:

type of data. As such«
to some atom the function
the function itself is

(LAMBDA <argument-list> <body>)

When * "lambda expression" is stored as the value of an atom, we say
that a function has oeen defined. Although the implementation details
governing how a lambda expression comes to be associated with an «tern
vary considerably» one common format for defining a function in LISP
i s :

(DEFuN <name> <arguments> <body>)

DEFUN is o macro which creates the appropriate lambda expression ana
assigns it to the atom <name> as the function's body. A function may De
annihilated or altered simply by reassigning the value of the atom
which represents it. Another virtue of this separability of a function
from its name is that nameless functions can oe created and passed *.s
arguments to other functions without having to oother to name them if
they are needed only once.

To illustrate LISP functions« let us define a function of t»c
arguments« (LOCATE-AcL <tool-type> <tool-l ist>) , which« given the name
of a tool type (e.g.« SCREWDRIVER)« and a master tool list, will search
the tool list for tools of the specified tvve and report back a list of
all tools of that type it finds. Framing this as a recursive function«
we write:

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(CQND ((NULL MASTER-LIST) NIL)

((EQUAL (GET (CAR MASTER-LIST)
(CONS (CAR MASTER-LIST)

(LOCATE-ALL TYPE (CDR MASTER-LIST))))
(T (LOCATE-ALL TYPE (CDR MASTER-LIST))).))

'TOOL-TYPE) TYPE)

that is« if (C0ND) the master list is (or has been reduced to) NIL«
then report back "nothing"; otherwise« if the next item on the master
list (its CAR) is of the correct type (as determined by the GET), then
add this tool to the list to be reported (i.e., CONS it onto the front
of this list) and proceed with the search on the remainder of the list
(its CDR); otherwise (T...)« simply proceed« without recording the
current tool.

via
A Ite rnati veIy« we

the PnOG feature:
could express this algorithm in iterative form

(DEFUN LOCATE-ALL (TYPE MASTER-LIST)
(PROG (RESULT)

LOOP (COND ((NULL MASTER-LIST) (RETURN
((EQUAL (GET (CAR MASTER-LIST) *T00L-TVPE) TYPE)

(SETQ RESULT (CONS (CAR MASTER-LIST) RESULT))))
(SET«. MASTER-LIST (CDR MASTER-LIST))
(GO LOOP)))

"ESU.L.T))

i.e.« enter a PROG (akin to an ALGOL begin-end block)« defining one
temporary local variable, RESULT; then, while the master-list remains
non-nil« repeatedly examine its next item, collecting those with the

type on the RESULT list (via SETQ, LISP's "assignment
*') , scanning to the next tool on the master list (SETQ

(CDR MASTER-LIST)).

correct
statement
MASTER-LIST

14

'-- "'-"- - ammrn. M*.

'-• '" • •»•"——~^m*^imm^a^mmmmmmm—mmt

3.1.6. The PR.OG Ffätyre.

As just illustrated. LISP accommodates iteratively-phrasto
algorithms via a construction called a "PROG". A PROG has the form:

(PROS <local-variab les> <statement-1> ... <statement-n>)

As a PROG is entereu, the local
the scope of the PROG, and

variables (if any) are
each is initialized t<

a Uocatej
NIL. Next,

for
the

statements which comprise the PROo's body are sequentially executed
either "falls bottom" of the PROG

a GO or RETURN is
interpreted as labels

execution. When a GO
occurs, and sequential

(evaluated) until execution either "falls off the
(an implicit exit from the PROG), or until
encountered. Statements which are atoms are
within a PROG, ana are ignored during sequential
is encountered, a branch to the specified laoel
execution proceeds from that point.

Since a PROG introduces some temporary variables which must te
reclaimed as the PROG is exited, there must be some way of informing
LISP that a PROG is aoout to be exited. The function RETURN is used for
this purpose, informing the system that a PROG is being exited, and
specifying what value the PROG is to return to the calling environment.

in
in

LILP
more

PROG's may be nested and may appear at any point
program. The PROG construction will typically result
efficient implementation of an algorithm than the
recursive implementation. Although some feel that PROG makes
"impure", it is in reality the feature which is probably most
responsible for LISP s present widespread acceptance in both the AI
community and elsewhere.

cor re sponainj
LISP

3.1.7. L..S.P SäfiEflS

M
compiI
more
result
f inal
interp
interm
functi
recogn
form
powerf

ost
e-t
tha
• b

r
ret
edi
ons
i ie
whi
ul

be co
given
[Norm
whi ch
<char
any
scann
possi
poi nt
del im

Host
ndit

ch
an69
con

> is
comp
(P $
ble
whe

itcr

LIS
ime n
n a
ut an
esult
er, a
ate f

ar
& mac
ch i
imp le

LISP
ioned
aract
J, th
ui tio
dete
utati
inpu
to

re LI
s, et

P
acr
fu

oth

'is
orm
e
ros
t
men

sc
to

er
ere
ns
cte
on,
t s
sup
SP
c.)

iiriHl em
os and
nction
er S -e
Thus,

compi
?nd e

then
tati on

anne rs
ini ti
in t
exi st

the sc
o in t

ana
t ream.
erimpo
can mo
. MLI

entations
scanner ma
which, w

xpression w
when a

valuation i
second to r
led into
valuates th
compiles.
of the mac

support two types of macros:
cros. A compile-time macro is nothing
hen evaluated. computes not a final
hich, when evaluated, will compute a
macro is encountered by the LISP
s performed (the first to compute the
un the intermediate form). When LISP
actual machine code, the compiler
em once to obtain the intermediate
This technique is a very general and
ro concept.

are
ate
he
s a
anne
he i
wha
Thi

se
del
SP C

quite
an arb
input
facili
r to c
nput s
tever
s styl
additi
anothe
Smith?

mod
itra
stre
ty c
all
t rea
<fun
e of
onal
r I
03 i

ul ar»
ry co
am . F
ailed
<f unc
m. <f
ct ion

tab
synt
angua
s an

in
mput
er e
(RE

tion
unct
> re
le-d
ax o
Se's
exam

the
at io
xamp
AD*A
> (n
ion>
turn
rive
n LI

Pie

sens
n up
le,
C <c
oar

i s
s is
n s
SP i
ntax
of t

e that
on enc
in W is
har> <
?ument

ree
spl ic

canner
nput ,

(by
his .

they
ounter
consin
functi
s) whe
to pe
ed int

make
even t

redef

can
ing a
LISP

on>) ,
never
rf orm
o the
s it
o the
ining

5.1.8. y-rjaßlg Sfifißinu,

LISP variable values are derived as a function of the run-time
environment rather than as a function of lexical environment. As a
program executes, there »re two times at which new variables are
introduced, or "bound": (1) at function entry time (these are the names
of the function s arguments that are mentioned in the LAMBDA

15

«*»**. «dill ii- - ii • #.„*.•«•

expression)« and (2) at PROG entry time (i.e., the PROG s temporary
variables)« Variables are "unbound" at the corresponding exit times:
when a function returns or when a PROG is exited.

A
eiecut
"glob,
execut
i nt rod
calls*
record
user-a
l ist,
mai nta
bound
dynami
at the
(ones
a t run
farthe
into",

t
i ng
I"
ion
uce

Al
ea
c ce
fr

ine
(i

c c
ti
wh

-ti
r

or

the
)f a
to

t th
Q via
I the
on

ss ibl
om mo
cat
• ••i
al lin
me f u
ich
me wh
up t

bor?

"top-le
ny var
the sy
ere wi

LAMBDA
se vari
a stru
e l ist
st rece
run-tim
are o

g envir
net ions
have no
ich is
he call
ows the

vel"
iable
stem*
11 b
or P

ables
ct ure
of CO
nt to
e, th
n th
onmen
were
b ind

depen
ing h
vari

of
s w

Th
e a
ROG
and
ca

NS n
lea

e qu
e A
t t r
def

ing
dent
iera
able

LIS
hich
eref

po
on
the

lleo
odes
st r
esti
-LIS
athe
ined
at t

up
rchy
s of

P (when
receiv

ore, at
ol of gl
the cu

ir assoc
the "

. All va
ecent. S
on of wh
T) is
r than t
• Thi s m
he curre
on thei
. In thi
another

no
e val

any
obal a
rrent
late a
a ssoci
riable
ince t
at var
exclus
he lex
eans
nt lev
r def
s mann

f unc
ues

vjiv
t oms

sec;
va lu
at io
loo

his
iabl
i vel
i cal
that
el)
ini t
er,

t i on
are

en mo
p lus

uence
es ("b
n list
kups
list i
es are
y det e

scope
"f re

will a
i ons
one f u

is c
thoug
me nt
all t
of

indin
" (A-
consu
s dyn
and

rmi ne
of v

e" v
ssume
in f
nc t io

urr e
ht o

au
he a
f unc
gs")
LIST
It
ami c
are
d oy
aria
ari a

a v
unc t
n "p

nt ly
f cS
ring
t oms
t icn

are
>j « this,
a [\.y

nc t
the

bits
D It S
a lue
i ons
eexs

by changing the system's A-LIST pointer while inside a function,
that function's entire environment can be altered* For this reason,
LISP is a very powerful tool wherever hypothetical reasoning (involving
switches to altered contexts) is necessary. Most other languages either
lack such an ability, or make it difficult to carry out. In LISF,
context switching and "taking snapshots" of contexts to which execution
is to be returned are very natural operations*

3.1 .9. L.JSP 1/0

Traditionally* input/output has been LISP'S weakest
systems define at least the following I/O-related functions

link. Most

(READ) read an S-expression
(READCH) read an individual character
(PRINT X) print S-expression X, skipping to a new line
(PRIN1 X) print S-expression X on the current output line
(TERPRI) skip to beginning of new line on output

While these functions provide adequate formatting control, most LISFs
are deficient in file-handlino operations* (1NTERLISP CTeite l«an?4j is
the exception, with more highly developed interfaces to the TENtx
virtual operating system)* We regard this deficiency as more of a
historical accident than as an inherent problem of LISP (since addinc
these features is simply a matter of writing the code). In fact, there
are efforts underway for improved multiple-file interaction and ranoom
access facilities both at MIT (MACLISP) ana at Maryland (Wisconsin
LISP).

3.1.10. Gir.fea.3e. Co.llec.iifin

Since LISP data structures can ,ro. in unrestricted ways, a
crucial part of any LISP system is a conceptually asynchronous process
called the "garbage collector". The role of this process is
periodically to take control, mark parts of storage that are still
referenced by the ongoing computation, then reclaim all storage that is
not so referenced (garbage). Garbage collection is an unavoidable
overhead of any system with no declarations, and in which aat*
structures can grow in unrestricted ways.

une potentia i
system runs out of

disadvantage of
free storage,

garbage collection is that, once the
a garbage collection must occur.

16

- •••-•• -'••'•• •• • - ...

S ince garbage
suspended, if LISP

collect causes current computing activity to be
is controlling a real-time process» disastrous

consequencs can accrue. Such problems can normally be avoided by
forcing the system into a premature garbage collect prior to entering
real-time critical sections of computation. Alternatively, there is
growing interest in truly asynchronous (parallel) garbage collection
techniques which could obviate the problem altogether (see COijkstr«7S3
for instance).

3.1.11 . LISP as o SeLfrConiä|ne<i JnUS

LISP interpreters are typically implemented in
fter this basic facility has been brought up* mo
oftware can be written in LISP itself. Typical soft

assembly language.
St other supporting
ware i ncludes

(1)

(Z)

* £fiSßÜS£ which will generate (potentially quite gooa)
machine code for LAMBDA expressions (i.e., functions) and
PftOGs. Typically, the LISP compiler will be written in
interpreted LISP, then used to compile itself. The compiled
version is subsequently used as the LISP system compiler.

i nt era
(toyet
ent ry
return
of va
variab
potent
system
(in p
langua
comple
i ntera
be co
produc

bug
Hi
her
ti
ti

le*
ial

i
art
ges
X s
cti
nte
tio

ve
wit

me,
me.
bles
s va
s of
s t
) f

fo
oftw
on w
nded
n wi

ckage
3eveT
h the

and
Most

(i.
lue i
LISP

he mo
or L
r th
are.
ith s
with

thin

which
opment
ir call
(toget

LISPs w
e.» in
s about
are es

st adva
ISP s
e effi
In part
ystem c
; a pro
the con

wi
of f
i ny
her
i U
form
to

sent
need
repu
c ien
i cul
ompi
u ram
fine

11 S- uncti
arg urn
with
al so

the
be
ially
to d

tat io
t an
ar , t
le rs,
can

s of

ermi t
ons. Ty
ents) c
their r
accommo

user
changed
unl imi

ate) , a
n as
d rapi
here is
loader

be deve
the LIS

the
pica
an
etur
date
whe

>.
ted
nd a
one
d d
no

s an
lope
P sy

tra

be
ned

th
neve
The
(the
re r
of

eve I
time
d I
d an
stem

c ing
func t

t raced
values
e tra
r a t r

debug
INTER

espons
the

opment
-consu
i nkers
d put
itsel

and
ions

at
) at
cing
aced
ging
LISP
ible
best

of
ming

to
into
f .

(3) An S-expression editgr (or system editor
makes possible fRe'cönvenient editing of
maintenance of files.

interfac e) which
S-expressions and

3.2. 51CkgPL.AÜ«E.R

while LISP is generally accepted as the standard for computing in
AI, it ooes not supply the user with any a-priori conceptions aoout
intelligence. LISP is simply the blank tablet onto which the user must
write his theory of intelligence or control. Not surprisingly, this
resulted in numerous reinventions of the wheel in areas like database
organization, problem solving, hypothetical reasoning, and language
understanding. Most reinventions were at a fairly low level, but
occurred often enough to warrant some investigations into some of the
undercurrents of AI programming techniques.

MICROPLANNER CSussman, winograd, Charniak 713 is the outcropping
of some of these undercurrents» particularly where automatic problem
solvina is concerned. MICROPLANNER was written in 1970-71 as a
small-scale implementation of ideas originally proposed by Hewitt in
1969 CHewitt691. The intent of the language was and is to provide some
automatic mechanisms of database organization, context, and heuristic
search •

MICROPLANNER is implemented entirely in LISP. Because of this, its
syntax is essentially LlSP's syntax, and while in the MICROPLANNER
environment! the user has full access to all of LISP. To distinguish
MICROPLANNER (hereafter abbreviated MP) functions from pure LISP

17

- - -1 am i _£.„:-.. "\-

11,1

functions» the convention
about 50 of them) with "TH"
notion in MP).

is to prefix all MP functions (there art
(standing» we presume, for "theorem", a kty

The most salient features of MP are these:

(1)

(Z)

(3)

Comp
Cell
c omp
when
goa I
norm
e xpe
W hen
data
Pott
trie
This
stan
very
e xpe
in t

ut at i
ing
ut a t i
ever

i s
ally
rt s w
ever
ba se
er ns
d in

i s a
da rd

n odu
rt s
he po

on i
fun

on (
a so

pos
mea

ith
a n

of e
mat

turn
rad
par

ler
by
pula

n MP i
ct ions
often
a I req
ted t
ns a
patter
eed is
xpe rt s
ch th
unti I

ically
ad igm
system
name;
ti on a

s indue
by t

called
ui res s
o the
large

ns wni c
posted
looki

e need
one su
differ
of "na
where

prob lern
t large

ed by
hei r
"pat

oluti
enti
popu

h aav
, the
ng f
• Ea
cceed
ent c
me ca
the r
s a re

P
na

ter
on,
re
lat
ert
sy

or
ch
St
omp
Hi
equ
so

attern,
mes. I
n-di rec
a pat t
system

ion of
ise ea c
stem se
those

e xpe rt
or unti
utin; p
n s"» si
estor
I wed by

r a
n t
ted
em

•i

P
h on
arch
who

so I
I al
a rad
nee
need

ano

ther t
his st

invoca
tiesc r it
Entire
r obi ein-
e's exp
es t h ro
se adv
ocat ed
I have
i qm f r
it ma ke
n't kn
nymous

ban uy
y le of
tion"),
ing the
system"
solving
e rt i se .
ugh the
ert i sed
is then
failea .
om the
s f or a
ow any
experts

Mr automatically maintains a context-sensitive database of
both factual assertions and the experts just mentioned. The
factual database is a collection o,f highly indexed
n-tuples. expressed as LI3P S-expressions . Any one n-tuple
("assertion"), or collection of n*tuples can oe
"associatively" accessed by presenting the lookup routines
with a pattern containing zero or more variables. Only
those facts that are deemed active in the current
"context", regardless of whether they physically exist in
the memory, will be located.

MP o
nono
dec i
(tit
heu r
ref e
"oac
disc
a Ite
back
init
reco
the
not h
mai n
t ree
sugc,
to s

oe s
et erm
si on
he r a
is t ic
re nee
kup"
ards
rnati
up pr
ia I
rd of
syst

ing h
ta in,
) for
es t
uc h a

all
inis
of a
rbit
s),
, an
to

the
ve,
oces
(b«d
all

em
od e

at
eac

late
uto»

the
tic p
ny sor
ra rily
recor

d then
that

cur ren
and

s, a I
) cho

c hang
pi cks
ve r JO
least

h prob
r, the
at ic c

book
rogr
t in

ds
pro

dec i
t (f
then
I c
i ce
es t
up

ne w
imp

lem
re a
ont r

kee pi ny
amming.

MP, t
under t

the alte
ceeds. I
sion poi
ail ing)

attemD
omputati
and the

o the da
from t

rong.
licitly,
it attern
re both
ol.

requi r
That i

he sys
he cont
mat ive
f a fai
nt, the
choice

ts to
ons pe
fa ilur

tabase
he dec
Thus ,
an ent

L. ts to
advanta

ed for
s, anyt
tern ma
rol of
s for p
lure e
sys tern

, se'.e
proceed
rf ormed
e point
is ma i
i s i on p
KP can
ire goa
soIve .

ges and

de
i me
kes
user
ossi
ve r

aut
c t s

aga
be

are
ntai
oint

be
I tr

As
dis

pth
the

a
-sp
b le

ca
oma

th
i n.
t we

un
neo

as
s

ee
w

adv

-f i
re

ch
eci

fu
use
tic
e

In
en
don

»l.
aid
(se
e
ant

rst ,
is a
oice
f ied
ture
s a
ally
nex t

the
the

e (a
and

oujh
t o

arch
wil I
ages

These are the three main contributions of "P. In the following
sections we highlight and illustrate some of the specific features of
this problem solving language.

3.2.1. The MICRO PINNER Database

Conceptually, the MP database is divided into two segments: facts
and theorems. Theorems are further classified into three categories:
"antecedent" theorems, "erasing" theorems,? and "consequent" theorems.
Theorems are discussed in section 3.2.2.

Both facts and theorems are entered into the database via the
function THASSERT; an item is deleted from the database via the
function THERASE. Facts are fully-constant LISP n-tuples. Thus, to
represent our screwdriver in MP, we might augment the database as

18

•' I-1 ' UUIIMJII IIIII.JI.BI ..I I .11, .1 in "IK")« • i i • i i inn • - » " *

follows:

(THASSERT (TOOL-TYPE SChEWDRIVER-1 SCREwDRI V ER))
(THASSERT (STYLE SCRE«DRIVER-1 PHILLIPS))

(THASSERT (HEA0-SI2E SCREWDRIVER-1 0.3 CM))

Database lookups and fetches are accomplished via the function
THGOAL. Therefore, if at some point in a MP program« we required a
Knowledge of SCREwDRIWER-1 s head width, we could write a fetch pattern
of the Tor«:

(THbOAL (HEAD-SIZE SCREWDRI VER-1 (THV X) (THV Y)))

For our example, this would respond with "success" (i.e., a fact which
Hatched this template was located in the database, and it would produce
the side effects of binding the MP variables X and Y to 0.3 and Cr,
respectively. The THV form is used in MP to signal references to
variaoles (all else is implicitly constant).

Ever
whenever

also of in
oh/sic all
changed t
present ,
copy of t
databa se:
the fact*
the fact
was arisi

K
y fac
a fac
t
•b

o "pr
THAS

he fa
it

s log
(i.e

Dili*

t and t
t or th
esent

ut mark
esent".
SERT Oo
ct. THE

ca uses
icaI co
., if t

THASSE

heorem
eorem
in th

pres
ed as
If th

es not
RASE e

a fac
ntext
he fac
RTed).

in the
is THAS
e datab
ent. 1
log i ca I
e fact
hing, c
xerts
t to be
marking
t i s be

MP database has a context
SERTeo, if such a fact is not
ase, it is created and then m
f the THASSERTed fact is
ly QP.1 present, its logical s
is already logically and ph
ut reports a "failure" to sto
opposite effects on facts
logically masked, either by

« or by actually physically
ing THERASEd at the level at

mar
al

art
pr

tat
ysi
re
in

cha
del
whi

ki n3 .
reacy
ed as
esent
us is
ca I ly
a nti

the
n«jir. ä
et ing
ch it

Context markings allow KP to keep track of the history of the
logical status of each fact and theorem. This enables the system to
back up to prior context levels, thereby restoring the database to the
c or resoonui ng prior state. Thuj>« although there are mechanisms for
makin9 permanent oataoase changes (e.g., after some segment of MP cooe
is cunfiuent that what it has done is absolutely correct), normally
(except at the top level), THASSERT's and THERASE's are not permanent;
instead, they normally exist only for the duration of some stretch cf
planning or hypothetical reasoning.

3.2:.2.

A
THANTE
rather
in int
r espon
factua
THERAS
any f
that t
respon
cap»Di
pat ter

tU£RCjP.LA*b£& Iheoremi

11 reaso
, THERA

than by
ernal fo
ds. A
I databa
IMG theo
act ua I p
hese two
se to an
lity. A
ns match

nine (i
SINS,

name .
rm, exc

THANTE
se of a
rem i s
att ern

c lass
y parti

THCON
its in

n fac
and T
The t
ept w

the
ny pa
trigu
wh ich
es o
cu lar
SE t
vocat

t, a
HCON
hree
ith
orem
tter
e red

mat
f t

req
heor
ion

11 c
SE "
typ

rega
i s

n wh

ches
heor
ues t
em r
patt

omput
theor
es of
rd to

ich m
the T
its

ems
), th
espon
ern.

ati
ems
th
th

ere
ate
HER
inv
res
ey
as

on)
" wh
eore
e ty
d by
hes
ASEu
ocat
pona
repr
to T

in MP
ich ar
n . are
pe of
the T

its in
re fro
ion pa

spon
esent
HGOAL

i s ca
e cal

ind
event
HASSE
vocat
m the
ttern
t aneo
a gen
reque

r ried
led by
i sting
to wh

RTion
ion pa
data

. In t
usly
eral i
sts wh

out
pa t

uish
ich
into
tter
base
he s
(not
nte r
ose

Ly
tern
able
each
the

n . A
of

ense
in

rue t
gOkl

THGOAL's and because of this last interaction between . _ _
THGOAL can amount to considerably more than a simple database fetch.
In MP, when a THGOAL is issued, the system first attempts to locate the
desired goal directly as a fact in the database. If this fails,
the THGOAL request has indicated that it is permissible to do so,
will begin searching for THCONSE theorems whose invocation patterns

THCONSE,
ase fe
locate

and
MP

19

-atti mllmVJlimTfclftjmiMlttfMI

" "W wim

match the desired aoal. If any are found, each is executed in torn
until one reports success (in which case the THGOAL is satisfied), «r
until all THCONöE theorems have bailee (in which case the THcC*;.
fails). It is in this manner that more complex knowledge li.e.,
theorems, problem solving techniques, etc) can be automatically
brought to bear on some goal if that ^oal is not alreaoy explicitly
present in the factual database.

The forms of these three KP theorem types are:

(THANTE <opt ion a l-n0me> <variables> < i nvocat ion-pa t tern> <bcc;y>)

(THERAS1N6 <optional-name> <variables> <invocation-pattern> <Louy>)

(THCONSt <op t iona l-name> <variailes> < in voca t i on-pa t ter n> <Lo3y>)

As a brief illustration of the uses of each cf these, suppose -t
wish to implement the following three capabilities in KP: (a) whenever
a new screwdriver is oefined to the system, automatically cause its
name to be added to the master tool list; (b) whenever a screwdriver is
deleted from the system, automatically remove its name from the master
tool list, and also remove all its accompanying information: (c)
whenever, during some assembly task, a THGOAL of the form: (SCREw-i;>
<some scrtw> <some threaded hole>) is announced, automatically .earth
for, and return the name of an appropriate screwdriver for the task
(basea on the screw's style and heaa size). Task (a) will be modelea os
a MP THANTE theorem, Lart (b) by a THERASIKO theorem, and part (c) cy a
THCONSE theorem as follows:

(THANTt (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(SETQ MASTEk-TOOL-LIST (CONS (THV X) »ASTER-TOOL-LIST)))

(THERASING (X) (TOOL-TYPE (THV X) SCREWDRIVER)
(THPROG (ST CC ... HS HSU)

(SETQ MASTER-TOOL-LIST (DELETE (THV X) MASTER-TOOL-LIST))
(THAND (THGOAL (STYLE (THV 1) (THV ST)))

(THEKASE (STYLE (THV X) (THV ST))))
(THAND (Th&üAL (COLOR-CGDt (THV X) (THV CO))

(TnEKASE (COLOR-CODE (THV X) (THV CO)))

(THAND (TriGOAi. (HEAD-SIZE (THV X) (THV HS) (THV HSU)))
(ThERASE (HEAD-SIZE (THV X) (THV HS) (THV HSU))))))

(THCONSE (SCREW HOLE) (SCREW-IN (THV SCREW) (THV HOLE))
(ThPROG (ST hS HSU DRIVER OST DHS DHSU)

(ThGOA.. (STYLE (THV SCREW) (THV ST)))
(THGOAL (HEAD-iIZE (THV HOLE) (THV HS) (THV HSU)))
(THGOAL (TOOL-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THGOAL (STYLE (THV DRIVER) (THV DST)))

(EQUAL (THV DST) (ThV ST)))
(THAND (THOOAL (HEAD-SIZE (THV DRIVER) (THV DHS) (THV

(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DRIVER))))

DHSU)))

3.Z.3. HjyMstic Guidance of Iheorem A^gl jc.at ion

it is possible, by including special indicators in THGOAL,
THASSERT and THERASt calls, to influence the order in which theorems
are applied, or in fact to indicate whether or not they should be
applied at all. Specifically, a THGOAL (similar remarks apply to
THASSERT and THERASL) with no. indicators will fail unless the requesttü

20

i ilium« i im i—

i.nmiwl'Mi- i... —I i-min

goa I c
be app
purpos
a "fil
by na
t heore
proper
has t
l ist w
the ge
to In
create
settin
more s
who i
filter
will
which

an be sa
lieo). (
es.) If
ter" or
me) . 4
«s whose
ty lists
he for»
i It be a
neral th
sert lin

or nodi
g in wh
t ructure
n the
i ng and
dis cuss
to encod

tis f ied
This is
th ere

a speci
hen o
pr oper

) will
o f a

pplieo
eorem b
iteu he
fy anot
i ch a c
d confi
past ha
rec omme

la tert
e heun

e xcl
the

is an
fie "
f i Ite
ties
oe ca
speci
first
ase a
ur i st
her N
ol lee
«u rat
s pro
ndati

CON
stic

US1V
form
ind

reco
r is
pass
ndid
fie
(in

re a
i c i
P th
tion
i on
ven
ons
NIVE
know

ely
we

i cat
mmen
inc
the

ates
reco
ord

t tern
nf lu
eore
of

on t
to u
are
R pr
led3

by aatab
have b

or prese
dat ion I
luded in
f i Iteri
for app

mmendati
er) befo
ptea. bo
ences . A
m, the
theorems
he Da sis
e the mo
a step i
ovides a
e.

ase
een
nt,
ist"
a T

n^ t
I i ca
on I
re a
th f
I so,
filt
the
of

st r
n th
«or

fete
US i

it h
of
HGOA
est
tion
ist,
ny
orms
sin

er
mse I
pas

el i a
e r i
e fl

hes
ng
as e
theo
L re
(the
. I
all
othe
all

ce o
f aci
ves
t e
ble
ght
ex i b

(no
for
i the
rems
ques
orem
f t
the

r t
ow t
ne M
lity
can
xpe r
expe
dire
le e

theor
i I lu

r the
(re

t, on
s can
he i
o r e • s
heore
he pr
P the

pro
evol v
ience
rt).
ct ion
nv i ro

ems
stra
for

fere
ly t
pos

ndi c
on

ms
ogr a
orem
viae
ein

le
Alth
» «s
nmen

will
t ion
m of
nctu
hose
sess
a tcr
t hot
f roir.
mmt r

can
s a
to a
• 9*i
oubn

•e
t in

?.2.<». Starchjng and §a.£kuß ic ÜE

Search and backup in PP can occur for two reasons: (1) sent
THCONSE theorem which was run to accomplish a THGOAL fails, and another
theorem must oe invokeo (restoring the environment to the state a«
which the first theorem took over), or (2) some object to whicn the
system has committeo itself is Discovered to be inappropriate, giving
rise to the need of locating another candidate object and retryint.
The THGOAL-THCONSE mechanism underlie the selection and backup where
theorems are concernea, but object selection is handled differently,
via the ThPROG MP construction«

the In the previous THCONSE example, the goal was to locate some
screwdriver which satisfied some set of features (in that case, the
correct STYLE and HtAD-SIZE). This was accomplished by a THPROG which
"conjectures" that such an object, say X, exists, then proceeds to
determine whether or not this conjecture is true. In the example above,
the THPROG searched for a screwdriver of type and si2e which matched
the type ana size of the particular screw which was to be inserted. For
the sake of illustration, suppose the screw was of type Phillips of
head size 0.3. Then, the THPROG in the example above would have
performed essentially the same starch as the tollowina, more specific,
THPROG :

(THPROG (X)
(THGOAL (TOOL-TYPE (THV X) SCRE-OR IVER))
(THGOAL (STYLE (THV X) PHILLIPS))
(THGOAL (HEAD-SIZE (THV X) G.3))
(THRETURN (THV X)))

i.e.,
objec
an öD
this)
obj ec
have
unt i I
choos
THGOA
keep
objec
propa

int
t b
j ect
« A
t fo

bee
so»

e a
L, o

t ra
ts r
gate

roduc
eincj

whic
t tha
und.
n sa
e TH3
nothe
r eve
ck o
«main
o bee

e a
se

h i
t p
Con
tis
OAL
r
n t
f w

to
aus

n in
arch
s of
uint
t inu
fied
fai

cand

hat
De

e of

itial ly
ed for.

T00L-T
, X wil
e with

(in
Is (in
idate).
but not
objec t
tested.
bad ob

unc
Fir

YPE
I be
this
whi c
whic

S
all

it i
Thi

ject

ommi t te
St, Out
SCREwD
tentat
candid

h case,
h case,
ince s
three,

s curre
s is th
select

ova
ain
RIVE
ive I
ate
the
the

ome
the

ntly
e so
ions

r i a 11 e
a cand
R (th
y boun
unti I
candi
syst e
objec
syst e
consi

urce o

idate
represent

for X by fi nd
e first THGOAL d
a to the first such

either all THGO
date is a success),
m must back up
ts may pass the fi
m must automatica
dering, and what ot
f backups which

the
tng
oes
an

ALs
or

and
rst

he r
are

To Keep track of theorem and object selection backups, NF
maintains a decision tree, THTREE, which is essentially a record of
every decision maoe, ana what to oo in case the decision leads to a
failure. The strength of THTkEE is. of course, that it frees the
programmer from having to worry aoout failures: if there is a solution,

21

- ~-;.-r, ... - _- J^±-

it
of
on
any
i mp
sub
i s
dep
an
cor
par
who
occ
to

wil
THT
th
ot

oss
goa

a
th-
ent
rec
t
Us
ur .
do

I e
REE
e s
her
ibl
Is
I so
fir
i re
t.
of
ale
ün

i n

ventuall
i s that

tarcti (i
s ubg oal

fc» to
cannot c

qui te
st organ
b ranch
It WOUl
the tr
resynth

fortjnat
HP. CONN

y .be
it

.e.,
s ca

fa
ommu
a»k

i zat
of T
o be
"i
e sis
ely,
iVcR

f oun
impos
one

n be
or ica
ni cat
-a i d
ion o
HTREE
more
reta
of I
this
has

d by
es a
subg
atta
te
e la
in

f TH
to
des
inin
arge

a be

an
n of
oal
eked
comp
te ra
its

TREE
be u
i rab
o t
par
aga

tter

exhausti
t n unde
must be
). This
lexly i
lly in t

bac Kup
• Often,
ndone, -
le to be
he oart
ts of th

con
very
t rol

ve sea
s irabl
solved
makes
ntertw
he t re

tech
one s

hen in
able

s whi
e THTR
diff i
struc

rch.
e dep
in i

it d
i ned
e . Th
n i que
moll
fact

to di
ch ar
Et d
cult ,
t ure

The f
t h-f i
t s en
i f f i c
solu

e M»
oec

tai lu
most

scar d
e cor
oes
if n

in th

atal
rst
ti ret
ult ,
t i ons
o rga
ause
re w i

of
only

re c t,
not
ot im
ese r

wed kn
orae r
y De f

i f
t si
ni eat
of

11 Co
it
the
so t

have
pos s i
espec

ess
ing
ore
not
nee
ion
the
ute
WoS
to J
hot
tc

ble
ti.

3.2.5. Sibgr RgB£§S£Qiätiü£ ?!?. £sC§£ U i j.i es

To complete our description of MICROPLANMER,
representotives of the other functions available
together with a brief example of each.

we i nc I ude t >o
in this lang uagt»

3.2.5.1. ilütlND <mog.e> <yariab±es> <skel> <oody.>)

which THFIND provides a way of finding all objects in the syste
satisfy a certain set of criteria. A THFIND is essentially a INPHOL
which is made to fail artificially after each successful location of an
ooject which satisfies the criteria. <mode> indicates how many oojects
are to be located (e.g., "ALL", "(AT-LEAST <count>)",...); <variables>
serve the same role as THPROG variables; <skel> specifies what form to
return as each object is found; <body> contains the THGOAL's, etc.
which define the criteria. THFIND returns either a failure (in case
<mode> number of objects could not be found), or a list of <skel>'s,
each <skel> corresponding to one successful object thus found.

EXAMPLE (THFIND ALL
(THGOAL
(THGOAL

(X) (THV X)
(TOOL-TYPE (THV X) SCFEUDRIVER))
(STYLE (THV X) PHILLIPS))

would return a list of all tools which were Phillips screwdrivers.

3.2.5.2. (IHJIESSAGE <variables> <£attern> <bogy.>)

t ree)
"hook
such
THKES
THME5
(its
provi
check
it w
THMES
can
to De

As s
t T
s" w
fai

SAGE
SAGE
<bod
des
i no i it
SAGE
c orr

rea

ubooa
HMcSS
hich
lures
<p«it

who
y> wi

a »
for t
neve
(in

ect t
tt emp

Is
AGE
wil

P
ter
se
11
ay
hem
r
son
he
ted

a rt
st

I in
roja
n>).

pat
De e

of
bef

run;
e wa
prob

de see
oteme
te rce
jate

Upo
te rn
xe tut
§Dli

oreha
ho we

y the
lern a

nded
nts

bac
n b

mat
ed).

na?*'
ve r,

THM
nd t

int
hav

ai lu
k u
ein3
ches
Thu
log
if

ESSA
hen

o (i.
e no
res b
p to

bac
the

s, th
pos

11 ao
someo
GE is
cause

e .
e

ene
t

ked
THF
e
sib
es
ne pr th

"on
f fee
oth
he

up
AIL
THME
le
well
gets
epar
e pa

the way
t. The
them in
TH*IISSA

to b
pattern
SSAGE-T
pröD lern
Deneat
into t

ed for
rt of t

dow
y a r
the

GE v
y a
will

HFAIL
s wit
h th
roub I

2' * he t r

n"
e es
goa I
la
THF
tak
cc

hout
e T
e be
he
ee b

the
sent
tre

a (T
AIL,
e co
mbin
act

HMES
neat
THMt
enea

.90.il
ia lly
e as
HFAIL

any
nt rol
at ion
ua 11/
SAGL ,
h the
SS AGE
th it

22

:.•._•:....-—sAif-.r ^..:—*~—
-• - • •

„i^ —...... „..., #.*.-

-r^-•-~- - "- •" m '•'• • " i

EXAMPLE: ... (anticipate difficulty in insertin
(THMESSAbE (X V) ((THV X) WILL NOT TURN IN (

(THGOAL (LUBRICATE (THV X))) (attempt a
(THSOAL (SCREW-IN (THV X) (THV Y)))) (retry)

?a screw
HV Y)>

)

r emeoy)

... (attempt to insert some screw in some hole)

... (report a failure back up to the THHESSAGE)
(THFAIL THr.ESSAGE ((THV SCREw) WILL NOT TURN IN

(THV HOLE)))

would anticipate, detect, report» and correct a problem, then retry.

T
I angua
I angua
deve lo
def ic i
A Ithou
pat ter
sophis
to ma
then t
sträte
par t i a
aspect

CQNNIVER

he most
aes was
ge call
Pment
encies o
gh the
n-d irect
t icated)
i nt «i n
0 switch
gie s in
1 compj
of the

rec
th

ed
was
f N
re
ed
t t
num
am

uni
tat
pro

ent st
e re su

CONN
pri

P t as
we re

i nvoca
he mos
e runs
on^ t
son ra
ions
b lern s

age
It o
IVER
nci p
sugg

s
tion
t si
com

hem,
ther
need
olvi

in the
f McDer

CMcD
ally m
esteo i
ome i
cont ro

g n i f i c a
putat i o

work i
than o
not

ng has

evol
mott'
ermot
ot i va
n the
mprov
I (e.
nt fe
ns
ng
ne
be

l
o

at
u

gone

ut i en
s anJ
t,
tea
earl

e m e n t
a . , t
ature
n s ta
n it, a
a t i

ndone
awry.

of th
Sus sman

S u s s m a n
by t he
ie r disc
s in
he patte
of CONN

tes of s
ny subg
me. In s

si mply

e LI
's de

cont
us sio
the

rn ma
IVER
uspen
oa Is
uch a
ceca

SP fa
ve lopm

CO
rol s
n of
4atab

t eher
is its
deo an
or a

n e n v i
use so

mi ly
ent o
NNIVE
trjet
TnTR

ase
is m
aoi I

ima t i
Ite rn
ronme
me sm

cf
f a
R's
ure
it .
ana
ore
ity
on ,
ate
nt ,
all

CONNiVfcR is less a programming lanbua~-e than it is a collection of
ideas about control structure. (The language apparently has never been
used for more than one or two significant programming tasks
CFahIman7j]). Because of this, our discussion will omit most
references to syniux, and highlight only the asoects of CONNIVtR's
control structure which are unusual or unique to it.

3.3.1. EtaiEssi ftyriExfiii and *fli£u

calls
cal led
funct i
anew,
begin.
call-r
under
and re
while
ann ihi

in C
rathe
f rame
fund
its
etc.)
user-
a Iter
f ree
c aus i
to be
c hron
contr
perma

In C
ONNI
r th

wi
ion
f ree
. Th
acce

its
var

ng t
alt

0 log
01 *
nent

CNNIV
VER
an to
II c
at an

var
ere a
ssibl

own
iab le
he id
er ed.
icall
s Ire
ly c

ER»
is

pu
ont
y m
iab
re
e
or
s
ent

Se
y
e t
los

thi
to c
sh i
ain
omen
le»,
triU
LIl>P
anot
to
ity
cond
push
o me
ina

ng s a
reate
nf orm
all

t (e.
to

impor
oat

her f
ue I
of th
, bee
ed a
ander

any

re q
a s

at io
the

who
tant
a s
unct
ooke
e fu
ause
nd

fr
fun

ui te
o-ca
n on

in
f ron
m i

fea
t rue
ion*
d u
net i

the
popp
on
c t io

a bi
lied
to a
forma
what

t is
tures
ture.
s f ra
p on
on to
re i
ed a
one
n. T

t d
"fr

c
tio
A-
to
of

T
me
som

wh
s
t f
fun
hus

iffe
ame"
ent r
n n
LIST

ret
a

his
in
e ot
ich
no
unct
ctio
» at

rent. T
for th

al sta
eeded t
it de

urn whe
frame,
means t
arbitra
her fun
cont rol
cent ra I
ion ent
n to

any mo

o ca
e ca
ck.
0 eh
r i ve
n it

Fir
hat
fy.
c 110

is
st

ry/t
the
ment

II a
lied

A f
a ract
s va

has
st,
a fun
ways,
n s A
to be
ack
x it ,

ne xt
, the

f unc t
func t i
unct i o
e rize
lues
finish
it is
c t ion

caus
-LIST,

ret ur
which
exec ut

wi th
re can

ion
on,
n's
the
for
eo,

a
may
in^
or

ned
i s

icn
out
te

23

U44I >«>t—HIIMitut • 1 u.

IM

numerous suspendeo functions which may te resumed at the point at which
they last relinquishes) control» or in fact, at an arbitrary labeled
point w it ni n t hem .

A
t ec hni
Partie
funct i
actual
speci f
suppos
type
stack-
lives
t he t
to mas
meanae

T
whe re
c onti n
per man
a p p I i c
genera
THFIND
f iIter
amount
possio
c andio
for a
t es t i n
e ff ic i
gener«
mai nta
which

s one
que
uUr,
on (t
I y w
y f or
ed to
of m
like
on so
r ee .
k and
r ins

o d is
a f

ue, C
ent
ati on
t ion

in M
ing

of t
le t
ate s

mor
g f un
ent
t or s,
i ni ng
c on tr

mi
for

si
he
ill

ev
be

ark
arr
me

Al
u

of

t in
unc
ONN
ret

o
of

P)
tes
ime
o
one
e
cti
sea

C
•I

ols

ght
i

nee su
ery
lo

i ng
ang
bra
tho
nma
exe

gui
tio
IVE
urn
f

a
to
ts
in

cal
at

int
ons
rch
ONN
pos
th

txpe
terns
con t r

tern in
), eve
suspe

alca I I
• t he
em en t
nch of
ugh th
sk fa
cuti on

ct,
in t
o I ma
gene

ry fa
nded
y pre

MP
to a
the

ere i
cts
cont

this
he
y e v
ra I
et i
f unc
sent
con

tree
tree
s co
in
rol

abi li
da tabas
entuall
has no
n the d
t i on. F
while

text s
of co

, and f
ns ide ra
the aa
from on

sh t
n me
K oe
) a
the
Iter
jene
0 re
the

1 a
a t

imat
tha

es
IVtR
sioi
e tx

he pe
re ly
f i nes
nd A
AU-R

nat iv
rate
appli

i nit
"gen

ime ,
e fo
n is
becau

has
li t ie
tract

rman
re I i
two

U-RE
EVOI
es.
all
ed (
ial
e rat
susp
rm

po
se o

so
s I
i on

ent
nqui

me
VOIR
R f
Rat

poss
a pr
coll
or"
endi
of i
ssib
f th
me
i st s
of p

ret ur
shes
thocs

(su
eat ur
her
ible
ocedu
ect in
f unct
ng it
ntera
le i
is in
rath

". ,J
oss lb

ty
t
y b
way
o t a
t w
F l
ehe
nte
unc
ble
tab
e f

n o
con

o
spe
e
tha
can
re
U
ion
sei
cti
n
t im
e r
ncl
i li

mak
more
e re
of

base
heth
s ru
me
x t s.
t ion
ove

ase
unct

es the
c omp I

turned
know inc
must h

er or n
nn i ng.
wa s je
faSH

s have
rhead.
in sy

ion to

co
e x
to
whe

a ve
ot
To a
nera
<• I ly
a cce
the
nchr
t he

nte xt
than in
a ny s u
t he r or
mar k i nc
t hat
c c o m p I
I i<teo
, eve
ss to
system
ony w
next«

ma r K
*p.

spen
not

s wh
act
sn t
fron.
>. i

ubs
rr. J n o
tn

in
in

dt J
it

ich
i L

hi <
u

oC t

»<• s
the

f a fun
t rol| r
f ret u
ns ion).
is in
n ca 11 i
didates
which m
phase) ,
whi ch

f acros
on oetw
NP, an
acy. To

e I abo
uding
t ies f r

c 11 o
e se r
rni n

On
the

ng a
Sef

ay w
in

»ill
s c
een
J c

f ac
rate
a f
om s

n f r
v ing
- : A
e ve

(of
* unc

ore
äste

CON
loca

alls,
the g
an I
i lita

TI a
unct i
uch I

om t
the o
D1EU
r> i
ten
t i on
any
an in
Ml VE"
te an

Tpi
ene ra
ead
te th
chine
on , T
is t s .

he
pti
(f

mpo
co

(su
det
ora

i
d r
s
tin
to
e u
ry
RY-

cetf-
on t c
i na 11
r t ant
St I/)
c h fes
a i le w.
i na 11
t i s
(turn
make t
g and
more

se of
for

NEXT ,

C omc_ ut at i on in CONMVER is similar
computation in MP. The counterparts of
theorems are, respectively. IF-ADDED,
"methods". Except for differences in
pattern-directed invocation scheme, these
as the hP versions. CONNIVER counterparts of
goal-statement functions, THASSERT, THERASE
respectively, ADO, REMOVE ana FETCH.

in most other reoarus to
THANTE, THERASIM6 anc TnCüN.L

IF-REMOVEO and IF-NEi.D£0
synt
thre

ntax. anc a
e T one t i ons

MP'S
and

more general
are the sane
oataba^e ar. j
THGOAL art,

3»*» Lili£i£Q£v. 2l lB£ kI§P Lanaya^e. Fjjmiii.

beina an interpreted langua
by between on
be compet it ive

between one and two orders of magnitude.
a*.,
f m,

LISP is s lowe r

with a good FORTRAN compiler,
the best of both «cries, in the sense that the
easy program development and debugging, while
transform debugged cooe into production-leveI

than, say, FOKTRAN,
However, CQmp.ilec LlaP c.n
«e feel that CT" provides

interpreter provides fcr
the LISP compiler can

efficiency.

MICROPLANNER ano CONNIVER, on the other hand, are inherently Ieas
efficient, primarily because of the control structures they superimpose
on LISP. The fatal flaw with MP is its backup system, which can ie
extremely, slow; compilation will not typically remedy the problem.
tüRRIvFR is sloa for similar reasons; however, in addition to data
structures, processes must also be garbage collected, and an elaoorate
context tree must oe maintained. Although these two languaoes contain
many noteworthy features, we feel that neither (as currently
implemented) is appropriate for production applications.

24

"•"* •"-'ifrl TiliYT •-•=!-'*••-- -..-•'• i *•••

TBPiWIF-J "^ P>»W"P«"J"' PP -*• • Hill • *W^WP"W*»i»^ ^••«•••l

3.5. äiandacjiuiisQ si ibt LliE Liosuiflfi Uoiix
T

ÜNIVAC
others
ant ic i
i nclad
there
the s
are ac
about
c ha rac
Finall
wri tte

here
11 G<

• c
pate
i ng
ist
ema n
ces s

one
t er i
y t.»
n i n

are
t 1

e inj
no

mic
xact
tics
ec,

da
zea
ost

L1S

LI
108

a
s

roc
ly

o
sue
y s
as
LIS
P i

SP s
. 11

re
ioni
ompu
one
f ho
h "i

wo
a la
f s
t St I

ystems for the following machines: PDP-1C, P
10, CDC 6500, 66CD, IB* 360, 370, SIGPA 5
latively easy language to implement, we
ficant development problems for any ma
ters. Since LISP's syntax is nearly non-exi
oialect. Although there are minor different
w functions are defined, and how variables
ncompatibilities" can normally be ameliorat
rth of macro-writing, because of this, LISP
nguage which is fairly standard and transpor
ystems have an accompanying compiler, u
f •

DP- 11,
, an j
wou;

th i ne ,
stent,
es in
values
ed in
can b«
t at It.
su.ll;

25

WM. ..,.-**> ^, .*-

.-..-. - -,.. „ immmpniii

R£ i.at ed Languages

4.1. AL

AL is a hign-level programmin
manipulatory tasks, developed
Laooratory LFinkel7«,3. It is a
runtime support for controlling devices.

system
„ford

SAIL-Uke language

for specification cf
ial Inte Hi gence

and i ncluoe s larbt
at Stanford" Artificial Intelli

Trajectory calculation is a crucial feature
AL contains a wide range of primitives to

as possible is done at
run-t ime only

As much computat ion
are mod i fiec

of mani pula t or/
support efficient

at

c ont ro I •
trajectory calculations*
c ompi ie-t ime ana calculations
necessary.

besiaes a uinie ns i on less scalar data type (i.e., ctAi), AL
retOjjnues and manipulates TIME. MASS and ANGLE SCALARs. di mensi on 11 ss
and typed VECTORS. ROT (rotation). FRAME (coordinate system), PLAt._
(region separator) ano TRANS (transformation) data types. Proper
composition of variables of these types gives a simple ireans of
performing calculations of any type of movement.

Also includeJ are PL/1-like GN-conaitions,
of the outside worlu, and concurrent processes.

which allow monitor inn

Examglez

PLANE P1;

i statements initializing p1 }

SEARCH yellow

ACROSS
«1TH I
REPEAT

3 EG

P1
NCRE*
1NG
IN
FRAME
set _
MOVE

ENT = 3*CM

< SEARCH is a primitive which cause
a hand to move over a specifiec
area. yellow is a hand }

{ hand moves across plane)
f eu.rv '. e • }

set;
ye How;

ON

MOvc

END,

v iio'iu inwvc s a'
•C every 3 cm >

< do at every iteration >

•. c-» , < yellow is also coord system of hand i
el low XOR - Z*C*

•C move hano 1 cm down from current
position alon, Z-axis)

FORCt(Z) > 3000*DYNES
DO TERMINATE; { keep in touch with real world >
el Low TO set DIRECTLY; <. move the hanc back to where

it was in a straight line >

26

•— - •-•- • -

-
•••mmmmi

4.2. MtISP

MLISP (meta-LISP) is a high-level I ist-processing
developed at Stanford University CSmith703. HLISP
translatec into LISP programs which are then executed or
MLISP translator itself is written in LISP.

Droc
compiled.

language
rams art

The

HLISP is an attempt to improve the readability of LISP programs as
well as alleviate some inconveniences in the control structure of LISP
(e.g.« no explicit iterative construct). Since run-time errors bri

detected by the LISP system (when actually executing the program), only
user«
This so me »hat defeats the purpose of any

executing
tg the trans'
high-level I

system
users frequently find themselves debugging the translated LISP code.

"anguaoe.

translated in f.LISF, but the
replaced by standard infix
(PLUS X Y) one may write X •

All LISP functions are recognized and
Cambridge prefix notation of LISP has been
anc prexix function notation.
Y, ana (FüO 'A B C) becomes

Instead of
FOOCA, 9, C).

MLlSr also proviues a powerful set of iterative statements and ft
large number of "vector operators." Vector operators are used to apply
standard operators in a straightforward manner to lists. Thus, in
«ILISP, <1, 2, 3> *3 <6, 5, 4> yields <7, 7, 7>. *3 is the vector
addition operator and <A, a, C> is. equivalent to (LIST A 6 C) in LISP.

§££8!ul£i

of the form <obj1» obj2, •••*
list of the form <<obj1» holderi>.

Given a list
will ret urn a
where holderi is either PLIERS« VISE or
to hold the object. * ...X is an KLISP

objn>» this function
..., <oojn, holjern>>

N0THIN6 accordingly as needed
comment.

EXPR HOLD-LIST(OBJ-LIST);
BEGIN

NEW S;
RETURN

FOR NEW GPJ IN OoJ-LlST
COLLECT

* EXPR Starts a regular func

A local declaration
* RETURN is a unary operator

IF

A
X
'M

X
%
X
*
X
%

SIZE))

END

(S GtTCObJ,
THEN

«OBJ, 'PLIERS>>
ELSE

S LEwUAL 10
THEN

«OBJ, 'VISE>>
ELSE

«OBJ, 'NuTHlN6>>

OBJ is local to the FOR loop.
OBJ will be bound in turn
to each element of OBJ-LIST.
COLLECT indicates that the
result cf each iteration is
to be APPENOed to the previous
result and this whole list
returned as the result of
the FOR.
LEwUAL 5

%
X

I
X
X
X
X
X
X
X
X

IF

27

-"—»---••—•- •-- •• - •--»- •• *,.«.»•• J

' • •

4 »3« E2Ez2

POP-t is a conversational language desianeo by R. M. Burstall anu
fc. J. Popplestone at the university OT fcdinburgh LBurstalI 71J .

POP-i features an Algol-like syntax and draws heavily from LISF.
Integers, reals» LlSP-like lists and atoms (callea 'names), function
constants (lambda expressions)* records» arrays, extensible data types,
and run-time macros are supported. A unique feature of the POP--
system is the heavy use of a system stack, which the user may easily
control to enhance the efficiency of programs*

A full complement of Iist-manipulation, numeric ant
storage-management functions are available»

Suppose we wish to ootain a list of all machinery not currently
functioning. A useful function would be,

COMMENT sublist returns a list of all elements of argument list xl
which satisfy argument predicate p ;

FUNCTION subli St xl p;
V AR £ x *
IF null(xl) THEN nil

{ arguments are xl and L >
< declaration of local, no type >
< just like LISP)

FLSt hd(xl) -> x; { ha(a) = (car a) >

CLOSE
END;

IF p(x)
THEN x: rsublist(tl(xl), p)

{ tl(a) = (cdr a), x::l = (cons x I) >
ELSt sutlist(tl(xl), p)

CLOSE

A call mibht then look like,

suolist(machine-list,
LAMBDA m; not(functioning(m)) ENO);

which right return,

Cpunch-pressl drill-press? unittCD

which is a POP-2 list.

4.4. 3L.1SE

«LISP is an extended version of BA4 (a PLANNER-like LISF
derivative) CRulifson 19733 embedded in the sophisticated INTCRLISP
system. «LISP supports a wide variety of oata types designed to aic in
the flexible handling of large t_ata cases. Among the data types
supported art "TUPLt," "BAG" ano "CLASS." A TUPLE is essentially . LISF
list that can ce retrieved associatively (see below). A BA« is a
multiset, an unoroereo collection of (possibly duplicated) elements.
Bags have been found to be useful for describing certain commutative
associative relations. A CLASS is an unordered collection of

28

• - ^ " —......

•"•"

non-duplicated elements (i.e.» basically a set)*

Arbitrary expressions may be storeo in the system data base ano
manipulated associatively. The QLISP pattern matcher is used to
retrieve expressions in a flexible manner« The system function MATCHUi
may be used to invoke the pattern matcher explicitly, as in:

(hATCHQQ (<-X <-Y) (A B>>

which causes X to be oound to A and
for d binding"). The patterns to
as in:

Y to B ("<-" indicates this "need
MATCHGQ may be arbitrarily complex,

(HATCHQQ (A (<-X <-Y>) (<-X (A (B C))))

in which X is bound to A and Y to (B C) .

QLISP expressions are represented uniquely in the data base,
unlike LISP where only atoms are unique. To distinguish between
"identical" expressions, "properties" may be associated with any
expression by QPUT.

(wPUT (UNION (A B)> EfcUIV (UNION (B C))>

The above puts the expression (UNION (B C>) unoer the property EQL'IV
for the expression (UNION A B).

QLISP provides facilities for backtracking and pattern-directed
invocation of functions, as illustrated by:

(«LAMBDA (FRIENDS JOE (CLASS <-F <-5 <-<-REST))
(IS (FATHER fS $F))
BACKTRACK)

This function will find an occurrence of a CLASS denoting FRIENDS of
JOE. F and S will be bound to the first two elements of the CLASS and
REST will be bouna to the remainder of the CLASS (indicated by "<-<-").
If S is a father of F, then the function succeeds. ("$" causes the
current binding of its argument to be used.) BACKTRACK causes
re-invocation of the function with new bindings for S, F and REST until
the function succeeos or there are no untried bindings.

The user may collect teams of functions to be invoked under
desired circumstances. Many QLISP data base manipulation functions may
have optional arauments which denote a team of routines to be used to
perform antecedent-type functions (as in PLANNER).

QLISP provides a general context and generator mechanism similar
to that of CONMVEft. Also provided is a smooth, readily accessible
interface to the underlying INTERLISP system which aids in the
development and maintenance of large systems.

1,
multiprocessing Future plans fur QLISP include

semantic criteria for
syntactic information), and the atility for the pattern
return more information than a simple match or fail.

pattern matching (as opposed to
primit1ves,
the current
matcher to

29

»-•-»• - - '•-•W,I.-^-,;TI

1 ••'•'," "—'

5« E*äEßi£5

5.1. lotrefiyclifio

Problem statement:

Given two distinct assemblies (say A1 and A2), attempt to unscrew »-. 1
from AZ, and inoicate success or failure accordingly. The "worlo" if
the example is assumed to include:

(1) Two hdnos, LEFT and RIGHT, capable of moving, araspinb, twisting
and sensing force and motion.

(2) A fixed number (possibly zero) of PLIERS

(3) A fixed number (possibly zero) of VISES

(O A fixed number of "assemblies"

For each PLIfcRS .no VISE, the data base contains an assertion if
the form. "PLIERS (VISE) # n is «t location (X, Y, 2) and is of
capacity C cm." In addition, for each assembly the data base contains
an assertion of the form« "assembly A is at location (x, Y, Z) and is
of size S cm." As we shall see, the languages are distinguished in part
by the methods each uses to represent such knowledge.

iach example assumes the existence of the routines described be U*
in ALöOL-like notation.

ATTACHED(A1, A2> - TRUE if and only if the assembly represented ay Al
(her»after referred to as A1) is attached to the assembly
represented oy A2 (referred to as A?). The routine has no
side effects.

MOVE(HAND, LOCATION) - Moves HAND* (LEFT or RIGHT) to LOCATION (but
PLANNER'S oescription of MOVE).

ste

TwlST(HANO, DIRECTION) - Twists HAND (LEFT RIGHT) 0. DIRECTION; - Twists HAND ILEFT or RIGHT; in the given
DIRECTION (CLOCKWISE or COUNTER-CLOCK*ISE). The DIRECTION is
oriented looking down the length of the arm. Except for SAIL,
all programs assume a routine called TwIST-BOTh, which causes
both hanos to twist at once.

GRASP(HAND, OBJECT) - Causes HAND (LEFT or RIGHT) to grasp OoJtCT,
whici must De within some fixed r»ni* of HAND (i.e., the hano
must MOVc to the OBJECT first).

ATTEMPT (0bJ1, OBJi, A1, A2) - Attempts to do the actual unscrewing of
assembly A1 from A2 using objects nBJT and 0EJ2 (which, in our
examples, are either VISES or PLIERs). ATTEMPT returns TRuE
if and only if the attempt is successful.

tach program applies the following sequence to solve the proolem:

(1) Attempt to unscrew the assemblies using the hands. This entails
ootaining the location of the assemblies, moving the hands to their
respective locations, grasping« and then twisting.

30

..„**•.

_..... . i. minvmniHi

(2) If the objects are no longer attached, then return "success*1

(3)

U>

(5)

At this point, it is assumed that the hands weren't strong enough.
It is proDoseo to try two pairs of PLIERS next. A search ensues
for a suitable set of available PLIERS (i.e., large nough to hole
the assemblies). If one set of PLIERS fails, the search is
continued for another sett with the hope that the differences among
PLIERS (grip» size? etc.) will eventually lead to success.

An attempt to use PLIERS has failed,
holding one of the assemblies in
appropriate VISE. This search proceeds
in (3).

Try to solve the problem Ly
a VISE. Perform a search for an

1n a fashion similar to thöt

All attempts
"failure".

nave failed. Output an appropriate message and return

31

^ — rx~r.:
-=3r-- '"• ,.-iL..~'».-

5.2. jAU

5.2.1. SiBBl£ £EfiS£&!fi

c
I
4
5
6
7
8
9

10
11

ji
14
15

\S
18
19
20
21
2c
23
24
25
26
27
2i
29
30
31
32
33

B

INTEGER PROCEDURE ßIGENOUGH (ITEKVAR HOLDER, MOLDEE);

BEGIN

• RETURN TRUE IFF OBJECT HOLDER IS LARGE
ENOuGH TO HOLD OBJECT HOLDEE "

INTEGER ITEMVAR C, S;

C COPCCAPACITY XOR hOLDER);
S " COPCS1ZE XOR HOLDEE);
R ETuR.\i(DATUM(C) GEG DATUK(S))

END;

INTEGE

" A

BtGIN

DEFI

ITEM

INTE

IF N

MOVE
GRAS

R PROCEDURE UNSCREW(ITEMVAR A1, AZ);

TTEMPT TO DISASSEMBLE ASSEMBLY A1 FROM A2, E» Y UNSCRcWINC "

NE RUN«

VAR V1,

GER FLA

OT ATTA

(LEFT,
P(LEFt,

= 1;

L1, PL2, P1, P2;

E

PI

«»;

CHED(A1, A2) THEN RETURNd); " DON'T BOTHER "

LOCATION XOR A1); MOVE(RIGHT, LOCATION XOR A«.);
A1); GRASP(RIGHT, A?);

" GET BOTh HANDS TWISTING AT ONCE "

SPRO
SPRO
JOIN
IF N

" HA

FORE

UT(P1,
UT(P2,
(<P1, P
OT ATTA

NDS NUT

ACH PL1
IS

AND IS
AND (B

DO RETURKd

• El
OR
VI

THER TH
THE PL

SE &N 0

FOREACH VI.
IS

AND IS
AND (A

ETURNd

TW1ST(LEFT, COUNTEk!CLOCKwISE) , RUNME);
TWIST(RI6HT, COUNTER!CLOCKWISE) , RUNME);
2>);
CHEDCA1, A2) THEN RETURNd);

STR0N6 ENOUGH, TRY PLIERS •

t PL2 I
A XOR PL1 EQV PLIERS AND (BI6EN0UGHC PL1 , AD)
A XOR PL2 EQV PLIERS AND (PL1 NEG PL?)
IGEN0UGH(PL2, A2)) AND (ATTEMPT(PL1, PL2, A1, A2))
>;

tRE -EREN'T ANY PLIERS LARGE ENOUGH,
IERS WEREN'T STRONG ENOUGH. TRY A
NE SIDE •

PL1 |
A XOR V1 EQV VISE AND (BIGENOUGH (V1. AD)
A XOR PL1 EQV PLIERS A;,D (BIGENOUGH(PL1 , A2))
TTLMPT(V1, PL1, A1 , AZ))
>; DO Rl

• ALL ATTEMPTS FAILED "

32

*M

-~""r •i—...

65
66
67
6b

OUTSTR("CAN'T UNSCREW • £ CVJS (A 1 ,,FLAG)
l> & (15 6 i c)) i

RtURN(
& CV1SCA2, FLAG:

E.ND;

33

•'t--r-' -•"-:: ------ I, ' '

5.2 • c . CCBÜlDläti

2.

9.

11.

13.

23.

47.

4S.

50.

64.

In SA*L, FALSt • ü, TRUE <> 0. BICENOuGH is «i BOOLEAN procedure.

C and S are items whose DATUM is assumed to be of INTEGER typt*

C0P(<set>) returns the first item of <set>. We are assuming thot
there exists only one triple of the form CAPACITY XOfc <object> E*.v
<cap«city> for each <object>.

C «no S are necessary because DATUK(CCP(<set>)) is illegal* SAIL
must know at compile-time «hat the type of a DATU»* is. GE- is d
numeric test for greater than or equal.

UNSCKEW is a BOOLEAN procecure which returns TRUE (non-zero) if it
succeeos in unscrewing the objects*

This is a macro definition. whenever RUNME is encountered by the
SAIL compiler, it will be replaced t>y the constant 1. (See Zi•
for its use.)

sc hecu ler .

bOGLtAN tests in a FOREACH must be enclosed ir, parentheses.

Notice (PL1 NEW PL2) to insure that two distinct pairs of pliers
are found.

If the body of the FOREACH is entered, then all went well and »«
return success.

CVIS is a SAIL function which will return a character string
'name" associated with an item. FLA6 is set by CVIS to indicate
the presence of an error.

34

"" Tl
5.3. use

5.3.1. 5i«fei£ P£ßfl£äi

I !

c
3
4
5
o
7
8
9

1Ü
11

\i u
15
16
17
18
19

i!
22
23
24
25
26
27
26
29
3D
31
32
33
34
35
36
37
38
39

a
42
43
44
45
46
47
4b
49
53
51
52
53
i4
55
56
57
5a
59
60
61
62

(liEFUN UNSCkta (Al

? ATTEMPT iJlSAS

(PROG (PL1 PL.: V1

(COND C(NOT

(MOVE 'LEFT
(MOVE 'MIGHT
(GRASP 'LEFT
(TW1ST-EOTH
(COND [(NOT

A2>

SEMBLY OF OBJECT A1 FROM A2, BY UNSCREWING

IN)

(ATTACHED A1 A2)) (RETURN T>3)

(GET A1 'LOCATION))
(6ET Ac LOCATION))
AD (GRASP 'RIGHT A2)

'COUNTER-CLOCKWISE)
(ATTACHED A1 A2)) (RETURN T)3)

HANDS NOT STRONG ENOUGH, TRY PLIERS

(COND [(FORE

DO
(RETU

PLIERS NOT
TRY A VISE

ACH PL1
PL2

(ATTEMPT
RN T)3

LARGE EN
ON 1 SID

C(FOREACH V1 I
PL1

DO (ATTEMPT
(RETURN T)J

IN PLIERS-LIST (BIGENOUGH PL1 A1)
IN PLIERS-LIST (AND (NOT (EG PL1 PLZ))

(BIGENOUGH PL2 A2))
PL1 PL2 A1 A2))

OUGH OR NOT STRONG ENOUGH.
E

N VISE-LIST (BIGENOUGH V1 A1)
IN PLIERS-LIST (BIGENOUGH PL1 A2)

V1 PL1 A1 A2))

))

ALL ATTEMPTS FAILED

CT (»RIN1 "CAN'T UNSCREW ") (PR1N1 A1)
(PRIN1 M S M) (PRIN1 A2) (TERPRI)
(RETURN NID3)

(DEFUN BIGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS LARGE ENOUGH TO
? HOLD OeJECT HOLDEE

(NOT (LESSP (GET HOLDER 'CAPACITY)
(GET HOLDEE 'SIZE)))

(DEFSPEC FOREACH (LAMBDA (OBJ1 IM LIST1 PRED1
OBJ2 IN2 LIST2 PRED2
DO TRY)

? MIMIC SAIL FOREACH IN SIMPLE CASE

(PROG (TEMPI TEMP2)

4

35

- -?--•'.- -•"-" T": — 'i ..r.T - •^..rjJ.^ZL^Z?^. •'• • I •-"•-- »-..-.»•• ••
*<•** T

63
5«.
65

»
6t
69
70
71

H
74
75

??
7b
79
S3
31
32 il
it.
85
36
i>7
iti
89
90
91
92
93
94
95
96
97
96
99

100
101
132
103

LOOP1

LOOP2

)))

(SETO T£MP1 (EVAL L1ST1))

(COND C(NULL TEMP1) (RETURN NIL)]) ? RAN OUT
(SET 05J1 (CAR TEMPI))
(SETQ TEMPI (CDR TEMPI))
(COND [(NOT (EVAL PRE01)) (GC LOOPD3) ? FAILED 1ST TEST
(SETQ TLMP2 (EVAL L1ST2))

(COND C(NüLL TEMP2) (60 LOOP1)])
(SET OBJ2 (CAR TEMP2))
(SETQ TEMP2 (CDR TEMP2))
(COND C(NOT (EVAL PRED2)) (GC LOOP2)3

C(EVAL. TRY) (RETURN T) 3
IT (CO LOOP2)!)

? IT FORKED

(DEFMAC FüRtACH (LAM6DA (oBJ1 IN1 LIST1 PKED1
OBJ2 IN2 LIST2 PRED2
DO TRY)

? MACRO VERSION OF FORcACH

(LIST

'LOOP1

'PROG '(L1 L2)
(LIST *iETQ *L1 LIST1)

LOOP£

))

(COND C(NULL L1) (RETURN NIL)])
(LIST 'SETQ OBJ1 '(CAR L1))
(SETQ L1 (CDR L1))
(LIST 'COND (LIST (LIST 'NOT PRED1) '(GC LOOP1)))
(LIST 'SETQ 'L2 LIST2)

(COND C(NULL L2) (GC LOOPD3)
(LIST 'SETQ 03J2 '(CAR L2))
(SETQ LL (CDR L2))
(LIST 'COND (LIST (LIST 'NOT PRED2) '(GO LOO«>2))

(LIST TRY '(RETURN T))
'(T (GO LOOP2))))

36

mm^^WT»mmm+i i

5.3.2. £u||tQlä£x

••''•••' " m

13,

18,

19.

34.

35.

47,

55.

63.

66.

66.

72,

UNSCRoJ is th
a i sa ssemDly

Unlike SAIL,
primitive fu

FOREACH i s a
FOREACh. F
predicates s
Note that th

e main function. It returns T if and only if
«as successful.

LISP does not support concurrency. We thus assume a
nction to get both hanas twisting.

n iterative special form which mimics a simple SAlc
OKtACH will try pairs of pliers until the given
ucceed or it runs out of pliers (and returns NIL),
e arguments to a special form need not be quoted.

Check to insure that distinct pairs of pliers are found.

PRIM is a L
output buffe

TERPfcl is a

Return T if

DEFSPEC defi
special for
arguments ar

ISP function which loads its argument into the stream
r.

LISP function which dumps the output buffer.

capaci ty >• size .

nes a special form (sometimes called a FEXPR). A
m is identical to a LISP function except that its
e passed unevaluated.

EVAL Is necessary since the argument was passed unevaluated,

Note the use
to s,et the
does not) •

Note the use

Note the use

This is an a
a PROG whi
Note the abs

of SET rather than SETQ. ObJl needs to be evaluated
intenoed atom (SET evaluates its first argument, SETQ

of EVAL (see 63.).

of SET (see 66.).

Iternative macro version of FOREACH. It expands into
ch is similar in nature to the special form FOKEACH.
ence of SET or EVAL.

37

" —*^—- -•- -^•-i .. Jb^awa^

1
5.4, PLi&Nkfi iBItES£L*NNtR)

5.4.1. ä£Bfii£ E£üJ£äS

1
2
3
4
5
6
7
&
9

13
11 n
13
14
15
16
17
1s
15
23
<:1

IS
24
25

I?
28
29

!?
32
33
34
35
36
37

it
H
42
43
<*4
45
46
47
4S
49
50
51

is
54
55
5o
57

II
63
61
62

(THCONSE UNSCREW (A1 A2)
(UNSCREW (THV A1) (THV A2))

? ATTEMPT DISASSEMBLY OF 09JECT A1 FROM A2, EV UNSCREWING

(THOR
(THNOT (ATTACHED (THV AD (THV AZ>>>
(THAND

(THGOAL (MOVE LEFT (THV A1>) (THT^F THTRUE))
(THGOAL (MOVE ÄI6HT (THV A2>> (THTBF THTRUt))
(SRASP 'LEFT (THV AD) (GRASP 'RIGHT (THV A2D
(TwIST-BOTH 'COUNTER-CLOCKWISE)
(THNOT (ATTACHED (THV AD (THV A2)))

)

i HANDs NOT STRONG ENOUGH, TRY PLIERS

(THPROfa (PL1 PL2)
(THGOAL (ISA (THV PL 1) PLIERS) (THTSF THTRUE))
(ThGOAL (BIGEN0U6H (THV PLD (THV AD) (THNODB)

(THUiE BIGENOUGH) (THTBF THTRUt))
(THGCAL (ISA (THV PL2) PLIERS) (THTßF THTRUE))
(THNOT (EC (THV PLD (THV PLZ)))
(THGOAL (BIGENOUGH (THV PLZ) (THV A?)) (THNODB)

(THUSE EIGENOUGH) (THTbF THTRUD)
(ATTEMPT (THV PLD (THV PL2) (THV AD (THV A2))

)

? NO PLIERS LARGE ENOUGH, OR NO PLIERS STRONG ENOUGH.
? TRY M VISE ON 1 SIDE

(THPROG (V1 PL)
(TtiGOAu (ISA (THV V1) VISE) (THTBF THTRUE))
(THGOAL (BIGENOUGH (THV VD (THV AD) (THNCDB)

(THUSE BIGENOUGH) (TMTBF ThTRUD)
(THGOAL (ISA (THV PL) PLIERS) (THTEF THTRUE))
(THGOAL (BIGENOUGH (THV PL) (THV A2D (THNCDB)

(THUSE LUGENOUGH) (THTBF THT&L'E))
(ATTEMPT (THV Vl) (THV PL) (THV AD (THV *2))

)

? NOTHING «ORKED, JUST FAIL

(THNÜT (THDO
(PR1N1 "CAN'T UNSCREW ") (PRIN1 (THV AD)
(PC1N1 " ") (PR1N1 (THV A2)) (TERPRI)

))
(THFAIL THEOREM)

))

(THCONSE oIutNOUGH (HOLDEK HOLDEE C S)
(BIGENOUGH (THV HOLDER) (THV HOLDEE))

SUCCtEwS ONLY IF ObJtCT HOLDER IS LARGE ENOUGH TO HOLD
OBJECT HOLDEE

(THGOAL (CAPACITY (THV HOLDER) (THV C>> (THTBF THTRUE))
(THGOAL (SUE (THV HOLDEE) (THV S)) (THTBF THTRUE))

38

rw II....H i l Jl. ,. . .11 I I •• •! | l». . .J.UI .»HL.I.HHI.I III »II I.DWMII I" -•• ' •• • »•••i —r- —, I W—p——

63 (1HC0ND C(NoT (LESSP (THV C) (ThV S>>)
64 ITHSJCCEEO)]
65 CT (ThFAlL THEORE?.)})
06)

39

• '- - - - - ^..-^^. *m*ä . J

5.4.2. £fiiB£Q*i£X

3.

7.

9.

10.

19.

Z J.

Z1.

24.

45.

49.

Defines and asserts a consequent theorem with name UNSCREW»

This is the pattern on which to invoke this theorem if needeo
(e.g., (UNSCkEw ASSEMBLY1 AS S EMRLY 2)) .

THOR sequentially executes each of its arguments until cne
succeeds* and then the THOR succeeds. The THOR is used here to
prevent undesireo uackup.

(THNOT p) is defined as (COND Ip (THFAIL)] CT (THSUCCEFD)1) .

THAND succeeds if and only if all of its arguments succeeo. onlikt
THOR, backup m«y occur among the arguments of a THAND.

Attempt to move the left hana to object Al. There may be several
experts (theorems) on moving hands, PLANNER will try as many as it
needs. (THTBF ThTRUE) is a theorem base "filter" which is
satisfied by every theorem.

THPROG behaves in a similar manner to THANU except that locil
'arpH. variables may be declared.

Attempt to fino ö pair of pliers

See if the pair of pliers is large encugh. (THNODe) indicates to
PLANNER not to LOther searching the data base. (THUSE <theoretr>)
indicates to try <theorem> first.

Hake sure that we have two distinct pairs of pliers.

THDO executes its arguments and then succeeds, nowever, ! at this
point we know that we have failed, and THNOT is used to generate e
failure from THDO. This is necessary because PRIN1 returns its
first argument as its result, which (being non-ML) would cause
the THOR to succeeo.

Generate explicit failure of the theorem.

40

ZiL_

5.3. taNNIittS

5.5.1. £2Bfci£ £rfi£räO!

1
2 x
i
5
t
7
t

i5
11

H
14
15
16
17
16
19
20
21
22
23
2-
25
26
27
26

SS
31
32
33
34
35
36
37
36
39

41
42
43
44
45

tf
46
49

1?

i
56
57

S
H
62

(CDEFuN U

? ATTE

(CO

(PR
(PR
(MO
(GR
(CO

l.SCRdrf (A1 A2>

MPT TO DISASSEMBLE A1 FROK A", BY UNSCREwIUC

"AUX" (L0C1 L012 6EN1 GE,\2 V1 PL1 TL2)

>\0 [(NOT (ATTACHED Al A2>) (RETURN T)])

EStNT '(LOCATION !,A1 !>L0C1>>
ESLNT '(LOCATION !,A2 >>LOC:))
VE 'LEFT L0C1) (MOVE 'RIGHT LCC2)
ASP 'LEFT A1) (GRASP 'kIGhT A2)
ND KNOT (ATTACHED A1 A2>) (RETURN T)3)

? nA,\DS NOT STRONG ENOUGH« TRY FLIERS

(CS

»-L00P1
(es
(CS

tT«. V.EN1 '"((»POSSIBILITIES) »1GNG*F
(»GENERATOR (NEXT-OLJ 'PLIERS '(PIGfc^CUGH S »1)))>>

:PL00P2
(CS
(CO

7
?

.•TRY-VISE
(CS

tT« PL1 (TRY-NEXT GEN1 '(GO 'TRY-VISE)))
tT>. oEN2 !"((*POSSIElLlTIti) »I6U0RE

(•GENERATOR (NEXT-OBJ 'PLIERS
'(AND (NOT (E« PL1 \\\

(ältENOuCh $ At))))))

cTu PL2 (TRY-NEXT GEM '(£0 'PL00P1)))
NC [(ATTEMPT PL1 PL2 Al A2) (RtToRN T) j

[T (GO 'PL00P2)J)

!>0 PLIERS LARGE ENOUGH, OR »LIERS NOT STRONG
^NUUGH. TRY A ViSE GN ONE SIDE.

:VLOOP
(CS
(CS

: r-L00P3
(CS
(CO

LTV. bEhl !"((*POSSIBILITIES) «IGNORE
(»GENERATOR (NEXT-OLJ 'VISE '(PIGENOUG* % A1)))))

£Tt V1 (TRY-NEXT CEN1 '(GC 'NC-CAN-DO)))
LT* «EN2 «"((»POSSIBILITIES) «IGNORE

(»GENERATOR (NEXT-OBJ PLIERS '(PIGENUU6H I At)))))

cT». PL1 (TRY-NtXT GEN? '(GC 'VLOCP)))
til [(ATTEMPT VI PL1 A1 A2) (RtTURN T)D

[T (GO 'PLOOP3)3)

ALL ATTEMPTS FAILED

:NO-CAN-D
(PR
(PR
(RE

)

IM "CAN'T UNSCRcW ") (PRIN** Al)
IN1 " ") (PRIM A2) (TERI-RI)
TURN NIL)

(CDEFJN BiGENOUGH (HOLDER HOLDEE)

? RETURN T IFF OBJECT HOLDER IS
? ENOUGH TO HOLD OBJECT HOLDEE

"AUX" (C S)

.ARGE

41

-:i.?.:?:-r;?-Ta..r.- ... — •-"--• • -—•—>•!-- MH

—- —mmmm

(PRESENT '(CAPACITY !,HOLDER !>C))
(PRESENT '(SIZE !,H01DEE »>S))
(NOT (LESiP C S))
> /

75

(CDEFUN NtXT-OBJ (TYPE PRcD)

LOOP

3ENERAT0R TO RETURN NEXT ObJECT OF 'TYPE'
aHICh iATISFIES 'PREü*

••AÜX" (OBJ TEMP)

(CStT*. TEKP (FETCH '(ISA !>0tJ %TYPE)>>

(TRY-NEXT TEMP '(AOIEü))
(COND KCVAL (SUBST OBJ '* PFEO))

(NOTE ObJ)
(AU-REVOlk)3)

(60 'LOOP)

42

•*-•,

—•»•••••w

5.5.£. £fiBB£Qlä£X

2.

6.

1C.

15.

CDEFUN Defines function to CONNIVtR.

1?.

21.

24.

6 H .

66.

79.

51.

22.

S3«

'AUX" <list> aefines local variables.

Pftfc.St.NT is a CONNIVER function which searches the data base for «n
item which matches its pattern argument« If one is founo, PRESENT
sets the indicated variables (marked with !< or !>) ana returns
the ite.D. !,A1 indicates the current CONNIVER value cf Al.
!>I0C1 indicates that L0C1 is to be oound if possible.

SEN1 is oeina assigned ä TRY-NtXT possibilities list. !" tells
CONNIVtR to do a "skeleton expansion" of the followinq list (which
is necessary to CONNIVER's internals). The («POSSIBILITIES) .n.
•IGNORE are syntatic markers to TRY-NEXT whose function we can
ignore. (*t»ENERATOR <func-call>) indicates to TRY-NEXT to use
<func-call> to generate additional possioiIities if needtd,

NEXT-ObJ will continue to generate objects of type PLIERS which
satisfy the predicate (2nd argument). It will generate one PLIERS
at o time. (bIGENOUGH $ AD is a skeleton predicate which
NExT-OBJ will use to screen each possibility. The current
candidate is substituted for $ before the predicate is CVALuatto
(CONMVER's form of EVALuation).

when GEN1 contains no more possibilities» TRY-NEXT will execute
(GO 'TRY-VISE). Unlike LISP, GO evaluates its argument here.

Check to insure that two distinct pair, of pliers will be fOunc .

See 13.

RETUfcN is not necessary since the value of a CONNIVES function is
the last expression evaluates.

Define the generator, NEXT-OtJ. Note that NEXT-G?J looks like a
regular function to CONMVER until it is called.

FETCH is a CGNNlvER primitive which returns a possibilities list
of all items in the data base which match its pattern argument.
!>0BJ indicates that CBJ should be bound by TRY-NEXT to each
possibility in turn.

TRY-NEXT binas OoJ from the possibilities list TEMP and removes
the current possibility. If there is no current possibility
(AOIcU) is evaluated which causes termination of the generator.

The oesired predicate
object into tne skeleton. (SUBST
returns a list which is the result
occurrence of fa in list C.

is CVALuated after substituting the current
A B C) is a LISP function which
of substituting A for every

(NOTt OoJ) is a CONNIVER function which places the
of OuJ oito the current possibilities list. .

current value

(AU-REVOIR) returns control from NEXT-OBJ out leaves the generator
in a suspended state. when TRY-NEXT returns control to NEXT-OBJ,
execution will resume at (GO 'LOOP).

43

J^ -1"*- lllUlfc J

•»^ ••••'. iiii.iiiinnii'inii •' ••"' in"

Either SAIL or LISP could provide an excellent basis for real-time
Dlanning and execution control of a large automated shop. However, each
language possesses features which facilitate certain types cf
operations. In particular, SAIL is generically better at the low levtl
control of I/O devices, and has «ore extensive abilities for
interacting with the operating system (especially where file
manipulations are concerned). LISP, on the other hand, is more flexible
at the higher planning levels and where system development ana
debugging are concerned.

nie envision an "ideal" system as one which merges all tr.t
desirable features of these two language classes. Such a merger woulc
incorporate LISP's program and data structure format, augmented where
necessary to accommodate SAIL-line file operations, and possibly LtAfr-.
SAIL features would be implanted in this environment, and, at tr.e
implementor s discretion, an ALGOL-like syntax (such as MLISP) coulu te
grafted onto the front of the system to make it more tractable.

in aodition, such a merger should take
following desirable features of SAIL anc LISP:

care to preserve

(1)

(«.)

(3)

CO

(7)

uata structures should accommodate complex symbolic
infornation as well.as primitive types. As in LlSF, data
structures should be free to grow in unrestricted ways, and
storage declarations should be optional to the user.

Program and data should, as in LISP, be in the same format.
Such a representation underlies (a) a strong macro
facility, (b> rapid editing, modification ano debugging of
programs, ano (c> seIf-modifying and se If-ex tending
systems. The last capability, for example, enables tne
system, given the description of a new type of tool,
automatically to synthesize the programs for controlling
the tool from a library of sub-functions.

Strong I/O ana file manipulation facilities, as are found
in SAIL, must be included. A good ranoom-access file system
is imperative for even moderately large databases. The
system should have both high and low level control over
input and output formatting which provides control down to
the bit level of the machine*

highly-aeveloped interrupt subsystem would be desirable,
ith. the merger of SAIL's bit-wise interrupt control, and

A
if
LISP's symbolic capabilities, such a system as is described
in [Rieger 763 could be efficiently implemented. This would
serve as the network protocol for a large collection of
highly autonomous processes where the synthesis and control
of many parallel events is important.

(5) For software development and debugging, an interpreter
should exist for the language. Nevertheless, the language
should be have a compiler for production usage. LIi>P
currently satisfies these requirements.

(6) The system
a ssociative

should provide
database,

engineering to coordinate
efficient random-access file
some ideas on this topic.

for a large
This would

a MP-like database with an
system. [Wc0ermott75a3 surveys

, context-sensitive,
involve some new

There shoulo be some degree of automatic problem-solving
control which includes a CONNIVER-like context-switching
and process-suspending mechanism. Accommodations should be
made for SAIL-Iike parallel process control, and emphasis
should be placed on inter-process communications protocols.
Most of the ideas already exist in CONNIVER and SAIL, but
they need to be synthesized into a unified system.

tne

kk

Mtw ttmäiii^m^^mmmttmmitimätiimaimamn\\tm\\\ nimin *h;y **.*•••

7« kitiiwäcäßbx

[boutija rt 723 Baumgart, o. G. "Micro-Planner Alternate Refe rence
Manual," Stanford AI Lab Operating Note No* 67, April
1972.

CßBNcXEC3

[£eech7C3

[E>obrow74

bol

deec

J LOO

t. Eeranek and Newman. "TENEX Executive ^anu-l,"
Cambridge* Massachusetts» April 1973.

h, 0. "A Structured Viet» of FL/1," ACM Computing Surveys,
March 1970» pp. 33-64.

row» D. G. and Raphael» B.
for Artificial Intell"
September 1974» pp. 153

[burst a 11713 b

CChurch4l

CC0B0L7*,j

CC0DASYL7

COECi DEC

3 Chu

C03

13 CO

. "DE

CDijkstra753 D

LFahlman7

CFelanan6

33 Fa

93 F

"New Programming Languages
for Artificial Intelligence," A£M CSBEytlDfi lu.r.yey.s»

* ""*-"74 .

urstall, R. M.» Collins» J. S. and Popplestone» n. j.
Programming in P0P-2» The Round Table and Edinburgh
OniversTTy Prfss» T97T.

rch | A. The £a.l£uli gf kamfeÖä Convgrsipn, Princeton
UnIversiTy~Press» Princeton, New JerseyT T951 .

0L. "American National Standard Programming Language
CODOL»" X3.32 - 1974» American National Standards
Institute» Inc.» New York» 1974.

DASYL Data Base Task Group. "April 1971 Report»" ACil» Nth
York, 1971.

C System-10 Data Base Management System Programmer's
Procedures Manual»" Document DEC-1O-APPMA-B-P, Maynaru»
Ma ssac nusetts.

iikstra» E.W.D.» Lamport, L., Martin, A.J., Schölten,
C.S.» Steffens» t.F.M. "On-the-fly Garbage Collection:
An Exercise in Cooperation," Burroughs* Plataanstraat 5,
NL-4565 NUtNEN» The Netherlands» EWD496-G.

hlman» S. "A Planning System for Robot Construction
Tasks," MIT AI Memo 283, 1973.

eld man

CFeldman713 Fe

Idman. J. A. and Rovner» P. D. "An ALGOL-Based
Associative Language»" Communications of the AC*» August
1969, pp. 439-449.

loman* J • A. and Sproull, R. F. "System Support for the
Stanford Mana-Eye System," Second International Joint
Conference on Artificial Intelligence, London, September
1-3, 1971.

CFinkel743 Finkel, *•» Taylor» R.» Bolles, P., Paul, R. and Feldman, J.
"AL. A Programming System for Automation," Stanford
Artificial Intelligence Laboratory, Memo AIM-24I,
November 1974*

itt, C.» "PLANNER: A Language for Proving Theorems in
Robots," Proc. IJCAI-1, 1969

slie, w.H.P. (editor)* Numerical £o.nt£2i ElßSIäEliDä
L2Cgu£i4£S» North-Hoi lane Publishing Company, London,

n, M.I. "LISP 1.5 Programmer's Manual," The M.I.T.
Press, Cambridge, Massachusetts, 1965.

cCarthy, J. "Recursive Functions of Symbolic Expressions
ano their Computation by Machine," Communisatjoo* y* IbS
Ä£ö» April 1960, pp. 164-195.

[Hewitt69

[Leslie7Z

CLevin653

CM.c Car thy

3 Hew

3 Le

Levi

oOD 1

45

iüä.

[He Der mot

[Moon743

CNaur603

t7Z3 McOermott, D. V.
Reference Manual»1

1972.

and Sussman, 6* J. "The Conniver
AI Memo No. 259, HIT Project MAC, May

Moon, D.A. "MACLISP keference Manual," Project MAC
Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1974.

Naur, P. (tditor). "Revised Report on the Algorithmic Language
ALUOL 60," Communications of the ACM, May 1960, ct. 299-314. *»••»«*«***«*« *- *--

CNormanfc9J Norman, t.

CParsons7

LISP," University of Wisconsin Computing Center,
Madison, Wisconsin, April 196°.

43 Parsons, F. G. , Dale, A. 6« and Yurkanan, C. V. "Data
Manipulation Language Requirements for Dataoase
Management Systems," Computer Journal, May 1974, cp.

CRAPIöATA:

CReise r75i

C R e i s e r 76'.

CRiege r7t.

LSamet?63

RAPIDATA Corporation. "A FORTRAN DML Imnlementation for
DBMS-1ÜV* Fairfield, New Jersey.

Reisert J. F. "BAIL—A oebubger for SAIL," Stanford
Artificial Intelligence Laboratory, Memo AIM-27C,
October 1975.

Reiser, J. F. (Editor). "SAIL," Stanford Artificial
Intelligence Laboratory, Memo AIM-289, August 1976«

Rieger, C.J. "Spontaneous Computation in Cognitive Mooels,"
Department of Computer Science, University of Marylanc,
TR-459, July 1976.

Samet, h. "The SAIL Data Base Management System," Computer
Science Department, University of Maryland, College
Park, Maryland, Unpublished, 1976.

CSiklossy763 Siklossy, L. IfiJ^s läiM LI5E» Prentice-Hall, Inc., 1976.

CSmith7G3 Smith, D. C. "MLISP," Stanford Artificial intelligence
Project, Memo AIM-135, 1970.

Cstacey74j Stacey, b. M. "A FORTRAN Interface to the CODASYL Dataoase
Task oroup Specifications," Computer Journal, May 1974,
pp.12 4-129.

CSussman7

CTaylor76

CTeiteIma

CTOPS103

Cue issman

Cuilcox76

pp

ii.1 Sussman, <*•, dinograd, T., and Charniak, E.» "MICROPLANNER
Reference Manual," M.I.T. AI-TR-203a, 1071

j Taylor, R. w. and Frank, R. L. "CODASYL Data-Base Rana.ement
Systems," A£M tfiSEyllDS &UEX£y.s., March 1976, pp. 6?-lCi.

n743 Teitelman, *, "INTERLISP Reference Manual." XEPOX Palo
Alto Research Center, Palo Alto, California, 1974.

DEC. "DECSYSTEM-10 Operating Systems Command Manual,"
DEC-1G-0SCMA-A-D, Digital Equipment Corporation,
Maynaro, Massachusetts, May 1974

673 rfeissman, C. "LISP
Company, 1967.

j Uilcox. C. R. "MAINSAIL Language Manual," SUMEX,
University, May 1976.

1.5 Primer," Dickinson Publishing

Stanfore

46

-——-' • ••ii -'—-'"-' ' -"•-••*- - U—A ».-#*•• . JM

8. Summary Chart

M • »-J«

* ••• •
-»- •• f
-•• M

• jh * -c •
{•-•a-c >•*

? tnp! _ is*v*ft
- a— * —

i

1
5

-•

i
5

i

i!
i!
3

!?
!•;
HI m

c-c -

us-*
sfsj*
•-•23

zsztatt .«*;

: u

::s

; K~ • •*->•»
.::: =

• »

.*:

=•*

i I

H:

§
.tin |KI|
hir • *» »
;:~r»

|=
•a *

L
H

5. : f uJ • -- •
;r: ^ 1

: •VMS •
•»- • i

si:!
* •

•
.. . : * •
•>*.•-••• EM • • •*. * • rtu

mm ••
c • *> • »• * •••.••«• • *» •••

»rw-:r J:i ;.
SZiliil
issttil

n • •> •*
RSI ü

I

I
i

• i

it!:: rfifi
mit

! !

tp.1«
iinsM
llisrli

y
;:
t:

47

'I~r •—r-—

r — , i >-m. i i ,
" ••

VMCUSSIFIEO
SCCUHITV CLASSIFICATION OF THIS PAGE (Wh.n Oaf« Bnlorod)

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER 2. COVT ACCESSION NO

*• T

\^J
ITUE (ltd Subtltlo)

QJArtificial Intelligence Programming Languages
for Computer Aided Manufacturing^ ^

Cd
AUTHORO;

/t^Jchuck Aieger, Hanan/Samet. Jonathan/Rosenberg i

•• PERFORMING ORGANIZATION NAME AND ADDRESS

Computer Science Dept.
Univ. of Maryland
College Park. Md. 2Q742

II. CONTROLLING OFFICE NAME AND ADDRESS

Informations Systems Branch
Office of Naval Research
Wash., P.C. 20305

BE MONITORING AGENCY NAME » AOORESSfff dlltoront from Controlling Ottleo)

READ INSTRUCTIONS
BEFORE COMPLETING KORM

3 RECIPIENT'S CATALOG NUMBER

S^YPEOF*

(T/Technical /bgj<f»-*C>

«• -eefiEOBtUMG ORG. REPORT NUMBER

'/JgR-595 \
!! ZCfllHMCT ft« ORANT NUMBERf«;

HOjb0i4-76Jc^ -,0477

10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UNIT NUMBERS

NUMBER OF PAGES

47
ASS, fo/ Inl« r«jVoHT-» IS. SECURITY CLASS, (of (hl« r.pört

Unclassified

IS«. DECLASSIFICATION/OOWNGRAOING
SCHEDULE

I«. DISTRIBUTION STATEMENT fa/ III«« Roport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tho afeatract onto rod In Black 20, If different from Roport)

I«. SUPPLEMENTARY NOTES

It. KEY WORDS (Conilnuo en »vor«« olio It noeooomry and Identity by black numbor)

20.

Artificial Intelligence
Programming Languages
Computer Aided Manufacturing

Systems Control

RACT fConilmio on tovotmo «Id« It noeooomry and Identify fey Mock numbor)

ight Artificial Intelligence programming languages (SAIL, LISP,
MICROPLANNER, CONNIVER, MLISP, P0P-2, AL and QLISP) are presented and
surveyed, with examples of'their use in an automated shop environment.
Control structures are compared, and distinctive features of each
language are highlighted. A simple programming task is used to
illustrate programs in SAIL, LISP, MICROPLANNER and CONNIVER. The
report assumes reader knowledge of programming concepts, but not
necea«-rilv of thi language» «nrvpved

DO ,SM- '4?3 EOli'lON OF I NOV «S IS OBSOLETE
'\ irNCTASSTTTRT) JTOJ O &) qk %>

SECURITY CLASSIFICATION OF THIS PAGSTfWh.n Dal« EtSMJt) • V '

at*.

^^^mmm»

Off of Naval Research
Branch Office, Boston
495 Summer St.
Boston, Mass. 02210

New York Area Office
715 Broadway-5th Floor
New York, N.Y. 10003

Mr. E. H. Gleissner
Naval Ship R+D Center
Computation and Math Department
Code 18
Bethesda, Maryland 20084

Capt. Grace M. Hopper
NAICOM/MIS Planning Branch
OP-916D
Off, Chf. of Naval Op.
Washington, D.C. 20350

Mr. Kin B. Thompson
Technical Director
Information Systems Div. 0P-91T
Off., Chf. of Naval Op.
Washington, D.C. 20375

Naval Research Lab.
Technical Info. Division
Code 2627
Washington, D.C. 20375

Dr. A.L. Slafkosky
Scientific Advisor
Commandant, USMC
Code RD-1
Washington, D.C. 20380

National Security Agcy.
Attn: Dr. Maar
Fort Meade, Maryland 20755

Off. of Naval Research
Code 1021P
Arlington, Va. 22217

Asst. Chief for Tech.
ONR Dept. of Navy
Code 200
Arlington, Va. 22217

Off. of Naval Research
Information Sys. Program
Code 437
Arlington, Va. 22217

Off. of Naval Research
Code 455
Arlington, Va. 22217

Off. of Naval Research
Code 458
Arlington, Va. 22217

Defense Documenta. Cent.
Cameron Station
Alexandria, Va. 22314

Off. of Naval Research
Branch Office, Chicago
536 South Clark St.
Chicago, 111. 60605

Off. of Naval Research
Branch Off., Pasadena
1030 East Green St.
Pasadena, Calif. 91106

Naval Electron. Lab. Ctr.
Adv. Software Tech. Div.
Code 5200
San Diego, Calif. 92152

-.—rreir-
• It M —

