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ABSTRACT: Eight Artificial Intelligence programming languages

(SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL and QLISP)
are presented and surveyed, with examples of their use in an
automated shop environment. Control structures are compared, and
distinctive features of each language are highlighted. A simple
programming task is used to illustrate programs in SAIL, LISP,
MICROPLANNER and CONNIVER. The report assumes reader knowledge
of programming concepts, but not necessarily of the languages
surveyed.
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1. Introguction
This report aescribes sone recently developec Artificial
Intelligence proyrammin Langu es in the context of a conputer- 2ided
manufacturing environmen The udges surveyed are SAIL, LISF,
MICROPLANNERy CONNIVER, HLISP. PO -29 ALy and GLISP, These Llanjuaces
are distinct from Llan uaaes previously used in computer-aided
manufacturing environmen Les e?72) in that they provide capabilities
for the development. of high -level symbolic planning and supervisory
control in addition to %he simple numerical control of machine  tocl:.
- The paper incluaes surveys ancd comparisons of the distinctive
features of these lan uages as they might be used in a
computer-automa

tea manutac urin$ environment. (2) a sample automatec
nanufacturi?g task. and how it m ht be expressed as a program in each
Language, discussions of he stancardizatxon status of each
Language, ana (4) counclusions uvth emphasis on the ‘pes of features
which ar: most desirable ano applicatle to automated~-sho;
environment.
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2. §ALL

2.1« Introgyction

SAIL has {Jts origins in a merger of LEAP Cselam¢n693 an
associative Llanguaye, and a version of ALGOL 60 [Nauré0l. Theretore,
unlike most of the other artificial intellijence lqnguages, it is not
LiISP~baseas Insteau, it is a general purpose compiled anEuace with en
extensive run-time [1brary of functions. As befits its A 6CL origins,
SAIL has block structure and explicitly typed statically scofec
variablese. The cata types available include INTEéER, REAL, STRINGs of
arbitrary len3gthy structure, gownter, LIST, SET, 1TEM, and aggregates
of the previous (ie.eey ARRAYS).

Some of the more important features of SAJIL are discussec
separately below. These include the associative data base fac1l1t§.
the capability for usage of SAIL as a host Language in a CODASYL
CCODASYL71] ogata crase management system, the control structures, anc
the system ouilding facilities. Finally, a summary 1is presented of
current stanagardizatiun efforts,

2e2s Associative Data base

SAIL contains an associative data base facility known as LEaP
which s wysed for symbolic computaticns This enables the storaye and
retrieval of informetion nased on partial specification of the dates
Associative dJata is stored in the form of associations which zre
ordered three-tuples ctf ITEMs, genoted as TRIPLES. Examples of TRIPLES
are:

FASTEN XOK NAIL EQV HANMMER;
FASTEN XOR SCREW EQV SCRE#BRIVER;
FASTEN XOKk 50LT EQV PLIER;

?ssociations may be conceptualizec as representing a relation of the
orm

Attrioute XOR Object EQv value
or Attrioute (Cbject) = Value
Most proygramming Llanguages (e.yey, LISP) provide the following

associative-like mechanism:

Given: Attricute,Object

Find: Value

However, SAIL gnaples the programmer to specify any of the components
of the associationy, and then bhave the LEAP interpreter search the
associative store for all triples which have the same items in the
specified positions. For examptle, the following may be wusea tc
retrieve oll items that can fasten a nail:

FASTEN XOR NMAIL

An ITENM is a constant and is similar to a LISP atonm. Items have
names anc may also ve typed so that data can be associateg with thems
An item may be declared, or createc duriny execution from a storage
pool of items by use of the function NEwe. For example:
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REAL 1TEM VIiSE;

declares VISE to ve an item which may have a datum of type recl
associated with it. The datum associated with an item is obtainea Ly
use of the function DATUM, Thus, DATUM(VISE) might be interpreted as

the capacity of the viseo.

.In order to deal with items, the wuser has_ the capability of
storing _them in wvariables (ITEMVARs), SETs, L1STs, and associations.
The Jistinction between SETs and LISTs {s that an explicit orcer s
associatec with 'the Llatter, whereas there is no explicit order
associateoc with the former. 1ln addition, an item may occur more than

once in a Listo.

Associations zre ordered three-tuples of items and may themselves
be considered as items and therefore participate in other associationse.
Triples are added to the associative store by use of a MAKE statement
and erasea from the associative store by use of an ERASE statement.
For example, the following code could be used to detach assemtly 1 frcm

assembly ¢ and attach it to assemoly 3:
ERASE ATTACHEDL XOR ASSEMBLY1 EQV ASSEMBLYC;
MAKE ATTACHED XOR ASSEMBLY? EQV ASSEMELYZ;

The motivation for using an associative store is a flexible search
and retrieval mechanisme Binding Booleans and fForeach statements are
two methods of accomplishing these goalse

The binding Boolean expression searches the associative store fcr
a specified_ triple and returns TRUE if the triple is found ano FALLL
otherwise. _The aim of the search is t?.find an association which meets
the constraints imposed by the specifiea triplee. 1f scme of the
components of the triple are unknown (such components are precedecd Ly
the special item BIND)y then a successful search will result in the
binding of the designated component. For exaaple:

IF FASTEN XOk BIND OBJECT EGV PLIER THEN PUT OBJECT IN PLIEAR'SET;

In this case the store is searcheg for an object that can be fasteneg
by a PLIER and if such an _object is found, it 1s placed in _the set
PLIERYSET. Note the wuse of the item variable OBJECT in the
gssogvation. A successful search will result in this variable beiny
oundg.

The FOREACH statement is the heart of LEAP. It is similar to the
FOR statement of ALGOL in that the body of the staterment is executea
once for each binging of the control variable. Ffor example:

FOREACH X | PART XOR B747 EQV X AND DATUM(X) < 3
DO PUT X IN B747'ORDERI'SET;

In this casey, assuminy that the datum associated with each part denotes
quant1t¥ at hand, the associative store is searched for all parts of a
B747 ot which there are Lless than three on hand. These parts are
placea in the set 874 7'ORDER'ISET,

2.3, Date Management Facility

niLike other «rtificial intelligence Llanguages, SAIL has the
ility of being used with an existing data base management system
10 LDEC])) to handle large data bases stored on external storage.
terface exists [Samet76) which allows SAIL to be used as the oata
Lation languaye in a CODASYL based data base management systeme.
is relatively unique in this respect in that C0BOL (COBOL74] has




almost veen exclusively used as the data anipulat'on language (DNML) of
such systems. This situation is not surprisinc since examination of
the aata  description fac1llt¥ _of the CCDASYL report reveals a very
stron, similarity to the data division of C(JROL., Nevertheless, there
have oeen some attempts to use FORTRAN ([Stacey74], [RAPIDATAZ).
1deall¥, a data manipulation language.should include the following
features. irsty a full procedufe capacility which allows carameter
passing, aynamnic stcrage allocationy, ano recursion. Secondy gprocessing
ot BSoolean requests should not be difficults In a CCBOL-pased system
this task is rather cumbersome as pointed out ty [Parsons74j. In orcer
to avoic currency proolems raised by partial satisfaction of Booleaun
requests (the acktracking problem (Taylor76l), the user must build
collections of pointers to related records. Third, there shoulc be a
capability for u1l01ng an_in-core data base so that operations such as
set UNION and set INTERSECTION can be performec without the overheao of

accessing extendeu storage more than once for any record.

SAIL has a mechanismy, LEAP, for building associative oata oases.
Currently, this only works for internal memory due to implementaticn
decisions. SAIL also has a recorag structure capapility which enables
the user to builc an in-core uata base. In a COEOL-based data tase
management szstem, whenever the user obtains an instance of a recora
type from the data base (i.e., he locates it via a FIND ano fetches it
via a GET), he has no convenient way of keeping it in temporary memory
while obtaining another instance of this record type. Cf course, fe
can allocate temporory storage for the various fields; however, this
becomes rather wunwielay, especially when he wishes to keer track cf
more than two instances of a record type. Alternativelyy, instances cf
certain record types can be refetched from the cata base. 1In fact,
this i1s the strategy that is generally fol loweds However, the cost s
sorohibitive.

sriefly, the SAIL interface provides a SAIL vrecora structure
declaration for eoch record type that hac teen defined in the dates Lase
managerent system. Primitives exist for the creation any mogificaticn
of such records. The dynamic storaye allocation <cagability of SAIL
enables the «creation of several instances of eaci recc-c type each of
which is identified by an entity known oS a recorc pointer.

As an example of the use of >AIL as a host '"navage i+ - data base
manajement system, consider the following proyras /r guent. The task
is to traverse a set named SUPPLIER owned r- & L4 REMCUE; record ana
extract an integer ocata item known as PARTAMUM b eactn [MARET record
which is & member of the set. The exact inst ¢ f th: zet occurrence
is igdentified by the owner recordy, WARE... SE, aaving the wvalue
ELECTRICAL tor the data item INDUSTRY. L ~ce CSAIL has a data
structuring facility (known as a RECORD!CLAS: :nZ similar to o FL/T

Seech?0] structure) we define a data structure xnown as LISTY ano a
function to add items_ _to the front of a LISTX structuree The cata
structure LISTX hos two fields - ELEMENT which is of type INTEGER ana
NEXT which is of type RECORD'POINTER (and gcints to another instance cf
the LISTXx cata structure)l. The function ADDTOLIST has two arguments =
a pointer to the nead of an instance of LiSTX and ¢the integer 1to e
added tc this instance.

RECORD 'CLASS LISTXCINTEGER ELEMENT;
RECORD!POINTER (LISTX) NEXT);
PXOCEDURE AUDTOLISTC(REFERENCE RECORD!POINTER(LISTX) HEAD;
INTEGER VAL);
BEGIN
RECORD'POINTER (LISTX) TEMP,
TEMP := NEW!ELEMENT(LISTX);
LISTX:ELEMENTLTEMP] := VAL;
LISTX:NLXTLTEMP] := HEAD;
HEAD := TEMP;
END;

The COEOL/DML anc SAIL encodinys are given below. The <critical




difference s the step "Add PARTNUM in PART to result Lliste"™ It is
Eggsg1ately obvious how the concegt of a List would be implemented
CO0BOL Program: »
MOVE “ELECTRICAL? TO INDUSTRY IN WAKEHOUSE.
FIND wAREHOUSE RECORD.
1F SUPPLIER SET EMPTY GO TO NONE!SUPPLIED.
: NEXT: FIND NEXT PART RECORD OF SUPPLIER SET.
IF ERROR-STATUS = 0307 60 TO ALL'FOUND.
6ET PART.
Agd PARTNUM in PART to result Lliste
G0 TO NEXT.
ALL'FOUND :
SAIL Program:
INDUSTRY := "elLECTRICAL";
FIND!CALCCWARZHOUSE);
IF EHPTY!SET(SUPPLIE&) GO TO NONE!SUPPLIED;
WHILE TRUE DO BEGIN
FIND'NEXT(PART,SUPPLIER);
R 1F ERROR!STATUS = 0307 TAEN DONE;
1 GET(PART);
i ADDTOLIST(HEAD, PARTNUM);
% END;

2.4 Control Structures

mn

- In aodition to the wususal control ructures associated with
i ALSOL~-like tltanguages (e.ge.y FOR LlooOps, LE loops, case statements
i ties to_ enable paragle(
n
m

processingy backtrackingy, and coroutine
procedure that may be run indepencently of
several jLrocesses may ULe run concurren
proceagure is also a process.

st
WHIL
recursive proceduresy etce)y, SAIL has capabili
Se
the ain procedure.
tlye. Note that the
A process is created with a SPROUT statement as follows:
SPROUT (<{ tem>,<procedure call>,<options>)

SAILy @ process iS5 o
Thus
main

where <item> names the process for future reference, <procedure <call>
indicates what the process is to do, and <options> is used to specify
attributes of the SPROUTed and current process. Unless otherwise
stipulated (in <options>), a SPROUTed process begins to run as soon &S

it is SPROUTed and in parallel with the SPROUTing process.

Similarly, there exist primitives which result in the suspension

of & processy the resumption of a processy and in the blocking of

process until a number of other processes have terminated. These tasks
are accomplished o©y the SUSPEND, RESUME, and JOIN primitives

respectively.

SUSPEND and RESUME have as their arguments single items while JOIN
a

has @ set of items as its argument. These items are the names
have been set up for the process by an appropriate SPRCUT command.

For exampley, @ procedure to tighten a bolt may be defined
follows:

ITEM P1,PC;

SPROUT (P1 ,GRASP (HANDT,SCREWDRIVER) ) ;

R o
: i dale. il i e e s

hat
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SPROUT (P2 yGRASP (HANDZ BOLT));

.
JOIN({(P1,P2));
TURNCHAND 1,CLOCKWISE);
.
.

Since SAIL runs on a sin le processor computer system, true
multiprocessing 1is not possib Instead, the SAIL runtime system
contains o scheduler which dec1des uh1ch process is to run and for hcw
long. The programmer makes use of the <options> field of the SPROUT
statement to specify information which the scheduler uses to determine
the next process to be rune Such information includes time quantum

sizes, priority, whether or not to immediately run the SPROUTedu
process, €tce.

A process may result in the b1nd1ng of ITEMVARs by use of <
MATCHING PRCCEDURc which is basically a toolean procedure. When one ¢t
the fparameters is &n unboundg FOREACH itemvar, then upon success the
parameter will be tcund « The matching proceagure is actually <PROUT c
as a coroutine process and SUCCEED and FAIL are variants of RESUME
which return values of TRUE or FALSE respectively. In addition, FA ;L
causes the process to terminate whereas when the matchiny procedure 1is
callea by the surrounding FOREACH via backupy then the oprocedure s
resunecd where it Left oft on the Last SUCCEED.

For e¢xample, consider a box containing a numter of differeunt
fasteners (nails, regular screws, bolts, nuts, tacks, etce.). The goeal
is to obtain °h1lt1ps screwse This can be achieved by the following
MATCHING PROCEDURE which returns a different Fhillips screw each time

it 1s invoked.

ggggnle PRUCEDURE GET'FASTENER (?2ITEMVAR FASTENER,F!'TYPE);
o FOREACH FASTENER | FAbTENER IN 50X AND
TYPE XOR FASTENER EQV F!TYPE
DO SUCCEED;

FAIL
END;

gotedthat FASTENER is a FOREACH ITEMVAR which wupon success will e
oung.

vacktracking is supported by variables of tgpe CONTEXT. However,
the programmer must sgecify the coints to which backup is_to occur (for
example, recall SUCCEED). State saving and restoring is achievea ty
use of CONTEXT variables which act as fpointers to  storage areas uf
undefined capacity in which are stored the entities to be saved and
restored, Actual state saving anc restoring is accomplisheo by use <cf
the primitives REMEMBER and RESTORE.

Processes may; communicate with each other by use of the SAIL event

mechanisme This 1s a_ message processing system which enables the
programmer to classify the messages and to wait for certain events to
occur, Events occur via the CAUSE construct which has as its arguments
the event type, the actual notice, and instructions with respect to the
disposition of the event. Similarly, there is a construct knoun as
INTERROGATE which specifies a set o% event types and instructions with

respect to the disposition of the event notice assocjated with the

desijnatec event types, A variant of this facility has been usec

E;tfn51v$% in the implementation of the Stanford Hand Eye Project
elaman
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2.5+ Systep uilging Capabilities

.. . SAIL includes many features which are designed to aid in systen
building. Assembly {anguage statements max pe interspersed with
regular SAIL statements by wuse of the START!CODE and GUICK'COCLE
constructs. A number of different files which are to be used with the
prograr can be specified via use of REQUIRE statements,

The statements:

REQUIRE "TOOLS™ LOAD!MODUL
REQUIRE "“CAMLIB[1,33" LIBR

E
Aﬁv;

must Le

will cause SAIL to inform the loader that the file TOOLS
a {1, erves as a4

loadea. In addition, the file CAMLIE on disk are
Library and is searched for needed routines.

m
wr

The statement:
REQUIRE “HEADERLSAI'" SOURCE'FILE;

will cause the compiler to save the state of the current ingut file,
and scan HEADER.SAl for program text. When HEADER.SAI is exhauStecy
scanning of the original file resumes at a point immediately following
the .REEU1RE statement., This feature is particularly wuseful when
dealing with libraries since in this case the REQUIREd file can contain

EXTERNAL oeclarations thereby freeing the application procrammer from
such work and possiole errorse

A rather extensive conditional compilation capability is
associateud with SAIL. This enables the development of large programs
which can be parameterized to suit a particular application without
compiling wunnecessary code and .therebg_ wasting memory for progrem
segments which are never used, This capability is used to enahance &
macro facility to include compile-time type determination;, for loops
while statements, and case statements at compile-time; generation o
unique symbols, anc recursive macros, For example:

DEFINE GRASP(SIZ2E) = [IFCR SIZE > 1 THENC VISE
ELSES PLIERS
ENDCD,
results in the definition of a macro named GRASP having one formel
parameter, SIZE. The result is the name of a tool that is appropriate
for the size of the item that is to be grasped - i.e.y a vise in case
size 1S greater than 1 (assuming size is measured in centimeters, etc.)
and pliers otherwise. For example:
TCOLT1 := oRASP(10.0);
TOOLZ := GRASP((0.3);
will result in the following statements:
TOOLY := VISE;
TooL2 := PLIERS;

Note that the choice is made at compile-time and thus the programmer
need not be concerned with the available yrasping mechanisms Thus the
program compitation step can be used to ai in the writing of the
program. The example illustrates the importance of such a feature when
certain tasks can be achieved by similar, yet not identical, means.

SAIL also provides an excellent dJnterface with the operating

system. This enables its wuse for real-time applications such as

control of external devices. 1In fact, interrupts can be handled ano

the user has at his daisposal all of the 1/0 capabilities that an

assembly Language programmer has. This enables the development of
7
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2.6. Standardizagion

Currentl‘, SAIL nas onlE been imglemented on the PDP-10. It runs
under _both the TENEX CEBNEXEC] ano TOPS-10 [TOPS10]) operating systems.
There is an effort underway at SUMEX to develor a lancuage similar to
SAIL known as MAINSAIL ([wWilcox761]. The goal of that project is to
capture the features that make SAIL an attractive language (in
particular the ease of interaction with the operatinc system) ang to
develop a lanauage that is capable of being run on a large nurmber of
machinese. orientation of the prcject is towards mini-computers.
The lLlanguage is consicerably different than SAIL and existing SAIL
programs will have to be modified in order to be capable of comp1l1n,.
An extensive run_ time Ulibrary 1is tLteing prcvided as is a ecord
structuring facility. It is still uncertain whether the assoc1at1ve
s:§:sbase capability of SAIL (ieeey LEAP) will be incorpcrated 1in




3. 1Ihe LJSP Eamily of Languages

3.1, LISP

LISP (L[McCarthy60l, [LevinéS53, [Weissmané?], [Sikg05sz76]). e list
processinyg language developed by John McCarthy at MIT in the late 5(C7s,
is an implementation of parts of Alonzo Church”s work [Churché41] in the
lambaa calculus. McCarthy®s intention was to recast the elegance cf
recursive function theory as a theor{ of computation. Thus,y the first
implementations of LISP relied exclusivel upon recursion as the
computational paracvi,m (i.e.y no fteration), which, although elegant,
resulted in a first version of LISP which was not competitive with
FORTRAN as a practical programming tool. However, LISP“s character has
changed considerably, so that today LISP is_an extremel powerful arno
general gpurpose programming language which nevertheless retains 1ts
original elegance.

The most interesting features of LISP cre:
(1) The Llanguage _is practically devoid of syntax,; altl

construyctions in LISP fall into two categories: atoms and
compositions of atoms.

(2) Program ana data are interchangeable since they are {
represented 1in the same format. 1here¥ore, in LISP it is
possiole for one function to construct another function as i
data, then execute it by indicating to the LISP system to
regard it as code; alternatively, an existing function”s |
code may be examined, modified or augmented by another
function at run-time. In facty a function is_ capable of
self-modification if appropriate care is exercized.

(3) wremory ollocation anog management are. automatic and

transparent to the user, except where the user exglicitly
3 desires to influence them. With the exception of arrays,
I there are no space declarations to be made, freeinc the
] programmer from_ the detajls of space allocation, and
8enerally allowing for the unlimited growth of any given
ata structure. (For the most part, LISP data structures
have no size or complexity constraints.) Used memory which
2 is no longer involved 1in the coumputation is recycled
' automatically by a garbaye collector e]thir on demand from
the user at specified points or automatically. ]

(4) LISP is an interpreted languaee. The system proper 1is a
function of one argument, (EVAL X), such that calling EVAL
with any LISP data structure as its argument causes that
argument to be reyarded as coge and executed. However, most
ISP systems include a compiler which will produce 4
tand-alone machine code for interpreted functions. '
ypically, compilation provides an order of magnituae
peedup which makes LISP competitive with other compiled
anguages, or even with well-coded assembly language. Since 3
nterpreted and compiled code may be intermixed, it is
ossiole to retain the flexibility and rfower cf the
nterpreter, while obtaining the speed requireg for
roduction applications. ’
1
L

L
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(5) LISP remdins_ recursive, while also accommodating iterative
algorithms via a so-called PROG feature. both recursion and
iterat ive programming are illustrated in subsequent

. Sectionse.

(6) Because of the technique LISP uses 1in storing Llocal and
global .variaples, some very powerful context-switching can

¢ carrieac out, providing a fast way to enter and exit
hypothetical planning environments and to cause the
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behavior of a

pr am to vary as a function of its
environmental con t

3e1e1. LISP Data Structure

LISP’s cata structure,y, called the S-expressiony, 1is simple, yet
extraordinaritly flexibley provicing a substrate upcn which a progranmer
may ue51,n his cwn complex data Structures. An S-expression is either
an "atom"” or a "CONS node”. An atom can be regarded as either &
variaoley a _constent (a passive symbol), or both, There are no j
declaratlons in LISP, new atoms are simply admitted to the system oS -3
they are scanneg at the input level, and atoms with the same name are
guaranteeo by the system to be unique (i.e.y, they have the sane
internal pointer, or address).

The other type of S-expression, the CONS node, grov1des a means of
structuring atoms and other CON nodes into jerarchical data
structures._ A CONS node is ordinarily implementes as a single computer

word (say, 26 bits long) which contains a left pointer, caltleo its CAk,

and a rl?nt pointer, called its CDR. CONS nodes are created dynamically

via the function (CON> X Y), where X ano Y are any other S-expressicns, |
or passively (as oata constants) via the cecnstruction (X.Y). CCNS nodes ]
can be composed to form arbitrarily complex hierarchies, the tcottommost :
elements of which are wusually atoms (ieeey pointers to atomic
S-expressions).

To illustrate, suppose we wish to represent a particular tooly Soj
a screworivery, in & LISP oata structure. we first decicde wupon a name
for it, say, SCREwDRIVER-1, and what characteristics of it we wish to
encode, Let us sufpose the characteristics are: type is Phillipsy colur
is yellowy shaft length 1is 10 centimeters, and_  head size 15 (.2
centimeter. There are many ways to encode this in LISP; the external
representat ion of the one we adopt here is:
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Here, all symbols such as NAME, YELLOW, etc. are LISP atomse. (So too
are the numbers, however numbers are not entirely equivalent with
s mbolic atoms.) The gartlcular hierarchy we have adopted is a list of

stsy, where each sub-list consists of an initial atom describing that
sub llst s role in the structure, and a list of the informaticn
associated with that role in the dgescription.

This structure would be graphically represented as follows:
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and could be constructed passively (as a fully constant structure) via
a quoted S-expression:

“C(NAME SCREWDRIVER=-1) (TOOL-TYPE SCREWDRIVER) sse)

or dynamically via CONS:

(CONS (CONS “NAME (CONS “SCREWDRIVER-1 NIL))
(CONS “TOOL-TYPE (CONS “SCREWDRIVER NIL))
g (CONS “HEAD-SIZE (CONS D.3 (CONS “CM NIL)))

Since it would be a rather harrowing experience to construct very large
S-expressions dynamically in this fashion, LISP provides a spectrum of
higher-level functions for constructinf modifying ana accessing
S-expressions. Some highlights of these wi [ be covered briefly in a
subsequent section. For our example, a more concise expression of cooce
which would bufld this structure dynamically woula be:

(LIST (LIST “NAR: “SCREWDRIVER-1) :
(LIST “TOGOL-TYPE “SCREWDRIVER) i
! (LIST “HEAD-SIZE 0.3 “CM)

_ Presumably, havin? defined this tooly, we would want to record it
: as one avatlable tool in a large supply o* tools.. Again, there would te
] numerous nethod{ of doing this. One way would simply be to maintain a

3lobag list of all kmown tools in the system, and to add this entire
escription as a new tool on this Llist:

(SETQ NEW=-TOOL “((NAME SCREWDRIVER=1) (TOOL-TYPE SCREWDRIVER) e0s¢))
(SETQ MASTER-TOOL-LIST (CONS NEW=-TOOL MASTER-TOOL-LIST))
4 y
: (SETQ is one of LISP”S assignment statements.) Alternatively, we wmight
wish to put only the name of the screwdriver on the master tool list,
1 and associate all the remaining information with property DESCRIPTION :
1 on SCREWDRIVER-1"s yroperty List: 3
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ist (ouilt up *from CONS nodes).
he attachment of an a&arbitrary
the atom, thereby serviny to
al-vorld entity represented LYy

X

tom may have a pro
he property list a
ribute-value pair
a
[

perty
Llows
s to
racxer1st1cs of the re

TO e

the atom is a powerful feature for any ﬁrOQrammin? lLan u=ge.
since it allows "micro-agescriptions® of atoms uh1c ordinarily wi nct
be seen by the processes that manipulate the hierarchical structures in
which the atom participates. These m1crodescr1pt1ons can be maintained
and accessed by the functions PUT, GET anc REMPRUOP in case more cetail
atout an atom is oesired,

Properties are attached to an atom via the function (PUT <atcm>
<attribute> <value>), looked wug wvia_ (GCET <atom> <attribute>), anc
removed via (REMPkKOP <atom> <attribute>). wse have seen one way tcC
associjate -the screwuriver information wjth the atom SCREWORIVER-1 using
property Llists. Another, more convenient way would be to split apart
all the various attritutes of this atom, meking each a different entry
on the property list:

(PUT ‘SCREWDKIVER=-1 TTOOL~TYPE “SCREWDRIVEK)
(PUT “SCREWDRIVER-1 STYLE “PHILLIPS)
(PCT “SCREWDRIVER-1 “HEAD~SIZE “(C.J CM))
To deternine SCREWDRIVER-1"s heaqg size, we would then write: (Ct7Y
SCREWDKRIVER-1 “HEAD-SI2t)e If such an attritute of SCREWDRIVER-1
exists, it will be located and returnede.

tructure vanipulpting Functions

n and brief example of several of the
gnctvons that pertain to data structure
TNY e

3.1.3. Representative LISP D

we include here a defini
more stancard, high-level LIS
e

ata 3
tio
P f
creation, m001f1Cat1on and searc

3.1.3.1. CMEMBER X Y)

If S-expression x is a member of S-ex
lList)y return "TRUE', otherwise, return “F
0

EXAMPLE: (MEM3ER SCREUDRIVER-? MASTER-TO
the at (“true”)  if
MASTER- TuOL-LIST, and a pointer
otherwisee

pointer tc
s on the
L ("false"™)
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Tele3e2s (AS8S0QC X X2

Y is a list of Listse Y is scanned, comparing the first item of
each sublist. to X until a match is found, or until Y is exhausted. In
case a.matc s founa, ASSOC returns the entire sublist whose first

item mbtch

h
ed
EXAMPLE: (AS

™)

]
Xe

SOC “HEAD-SIZE “((NAME SCR
)) woulc return the sublis

om
«
~O

[ ¥ (H AD'S!ZE 003
0.2 CM),

3¢1.3.3. (SU3ST x Y 2)
Ay Y and 2 are arbitrary S-exrressionse. SUBST creates a new COpy
of 2, where all occurrences of Y in Z are replaced with X
EXAMPLE: (SUBST 0e2 D3 “C((NAME SCREWDRIVER-1) so e (HEAD-SIZc C.l
tM))) would produce a new structure for our screwdriver,
identical in all resBects to the original, except that its
head width would instead of

301304« (CAPPEND X Y)
X anc Y are Listse A new List is created which is the result of

appending Y onto the end of X.

EXAMPLE: (APPEND “((NAME SCREWDRIVER=-1) (STYLE PHILLIPS)) “((COLOR-CODE
YELLOW) (HEAD=-SIZE 0.3 tM))) would groduce CINANE
§C§Egg§§v€k—1) (STYLE PHILLIPS) (COLOR-CODE YELLOW) (HEAD-SILE
Ue

3ele4e LISP Data Iypes

In addition to atoms and CONS nodes, most LISP systems include the
following other data types:

umbers

(V¥ XVNT VP
0 9 00
v
-

-

-l
=4
w
»

octal numpers (for bit-level manipulations)

Some versions of LISP (notably MACLISP [Moon741) have highly developed
numerical and trigonometric facilities and accompanying opt1m1z1nh
co?gllers geared to the efficient generation of “number crunching
softuare,

3¢1.5. LISP Euwnstigns

A LISP "program® is a collection of functions. No function is
syntact1cally declared as the "main proaram” Funct1ons are enerally
typeless ee g No distinction such as integere™ “real” string”,
etc. s nadef However, each function may be "declared so that its
calling argulents are passed to 1§t either evaluateg (as 1 ?ost
programming languages), or unevaluated. Except for this aistinction,
there is no need for function-related declarations.

13
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unction is regarded as simply another type of data. As such,
one tgpm ally _defines a function by assigning to some atom the funct1on

atom”s value, .Strictlz speakingy, the function {ftselt s
nameless, and is identified by the form:

(LAMBDA <argument~-list> <body>)

when « “lambda expression” is stored as the value of an atom, S
that & function has been defineds Although the implementatijon deta
governing how a lambda expression comes to be associatea with

vary considerably, one common format for defining a functio

is:

(DEFUN <name> <arguments> <tody>)

DEFUN is o macro which creates the appropriate Llambda
assigns it to the atom <name> as the function”s bod K
annihilated or altered simply by reassigning the va
which represents it. Another virtue of this separabili
from its name is that nameless functions can be created
arsuments to other functions without having to pbother
they are needed only once.

expression ana
function may be
alue of the atom
ty of a function
and passed <5
to name them f
To itlustrate L1ISP functions, let us define a_ function of tao
arguments, (LOCATE=-ALL <tool-type> <tool=-list>), which, given the name
of a tool type (eegey SCREWDRIVER), and a master tool Llist, will search
the tcol List for tools of the specified tK ve and report back a Llist of
altt togls of that type it finds. Framing this as a recursive function,
ME wWriItes
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ated, LISP acc
ruction called a "

orm:

(PROG <local-variables> <statement=-1> ... <statement-nd>)

As a PROG is entereu, the Local variables (if gn{) are allocates for
the scope of the PROGy, and each is initialized to NIL. Next, the
statements which comprise the PROG”s bod are sequentially executea
(evaluateo) wuntil execution either "falls off the bottom" of the PROG
(an implicit exit from the PROG), or wuntil a GO or RETURN is
encountered., Statements which are atoms are interpreted as labels
within a PRCG6, ana are 1gnored during sequential execution. When a GO
is encounteredy, a branch to the specified lLabel occurs, and sequential

exgecution proceeds from that point.

Since a PROG introduces some temporary variables which must ve
claimed as the PROG is exited, there must be some uaa of informing
SP that a PROG_1is aoout to be exitede The function RETURN is used for
1S _purposey 1nform1ng the system that a PROG is being exited, and
cifyiny what value the PROG is to return to the calling environment.

PROG“s_may be nested and may appear at any point in a LILP
programe. he PRO6 construction will typically result in a more
efficient implementation of an algorithm than the corresponoing
recursive implementation. Although some feel that PROG makes LIS
“impure®”, it is in _reality the feature which 1is probably most
responsible for LISP"s present widespread acceptance in both the Al
community and elsewhere,

3¢147. LISP Macgreos

.Most LISP implementations support two types of macros:
compile-time macros and scanner macros. A compile-time macro 1S nothing
more than a function whichy, when evaluated computes not a fina
result, but another S-expression which, when eva[uated, will compute a
final result. Thus, when a macro s encountered by the LISP
interpreter, a QQQQ§§ evaluation is performed (the first to compute the
intermediate form, e second to run the intermediate form). when LISP
functions are compiled into actual machine code, the compiler
recognizes macros 3nd evaluates them once to obtain the intermediate
form which it then compiles, This technique is a very general and
powerful implementation of the macro concept.

Most LISP scanners are quite wmodular, in the sense that they ca

be conditioned to initiate an arbitrary computation upon encounterin
jven character in_the 1input streams. Fcr example, in Wisconsin LIS
Normané9], there exists a fac1lit{ cal led (READMAC <char> <function>),
| which conuitions the scanner to call <function> (no'ar$uments) whenever
i <char> is detectec in the input stream. <function> is tree to perform
any computation, and whatever <function> returns is spliceo into the
scanner”s input stream. This style of table-driven scanner makes it
possible to superimpose additional syntax on LISP input, even to the
point where LISP can model another language”s syntax (by redefining
delimitersy, etcede MLISP (Smith?0] is an example of thise.

wvw J
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T.1.8. Yoriadple sScopiny

| . LISP variable values are derived as a

i environment rather than as a function o

| program executes, there are twyo times at
introduced, or "Sougd": (1) at function entr

I of the function®s arguments that are

n of the run-time
al environment. As a
new variables are
(these are the names
ned 3in the LAMBDA
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time (i.e., the PROG” s temporary
nd" at the corresponding exfit times:
ROG is exfted.

expression), and (2) at PROG entr
varifables)s Varjables are nb
when a functxon returns or uhen a
1
c

y
ou
P
[

At the "top-level”. of L
executingl, ann variables whi
e

S (when no function is currently
h receive values are thought of ¢s
“global” to systeme Therefore, at any yiven moment auring
execution, there will be a pool of global atoms plus all the atoms
introcucec via LAMBDA or PROG on the current seguence of function
callse ALl these variasbles and their assocfatea values ("bindings") are
recordeo on a structure calleo the ™association Llist® (A-LIST), @&
user-accessible List of CONS nodes. ALl varjable Lookups consult th\s
List, _from most recent to least recent. Since this Llist is dynamically
maintainecu at run-time, the question of what varjables are and are nct
bound (j.e., are on the A-LIST) is exclusively determined vy the
dynamic calling environment, rather than the lexical scope of variatbles
at the time functions were defined. This means that *free” variables
(ones which have no binding at the current level) will assume a value
at run-time which is dependent wupon their definitions in functions
farther ug the calling hierarchy. In this manner, one function "peeks
into"”, or borrows the variables of another.

oy changing the system”s A-LIST pointer while inside a function,
function”s entire environment can be altered. For this reasor,
is a ver{ powerful tool wherever hypothetxcal reasoning (involving
hes to a tered contexts) is necessar ¥ost other languages either
s
X

uch an ability, or make it difficu t to carry In LISF,
t s-vtchxn and "taking snapshots®™ of contexts to which execution
be returned are very natural operationse.
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3.1.9. LISE 1/0

Traditionally, input/output has been LISP“s weakest Linke Most
systems define at least the following I1/0-related functions:

(READ) read an S-expression
(READCH) read an individual char cter
(PRINT X) print S-expression X, sk 1gping to a new line
(PRINT X) print S-expression X on the current output Lline
(TERPR1) skip to beyginning of new Lline on output
While these functions provide adequate formattxng control, most _LISFs
are deficient in file- hand%ina perations. (INTERLISP (Teitelman74] is
the exception, with more highly developed interfaces to the TENEX
virtual operatinyg system). We regard this deficiency as more of a
historical accident than as an inherent problem of LISP (since adding
these features is simply a matter of writing the code). In fact, there |
are efforts underway for improved multiple-file interaction and rancom |
tcgess facilities both at MIT (MACLISP) and at Maryland (Wisconsin
|
' 3.1.10. Garbage tollecgion
jnce LISP data structures <can g row in unrestricted ways,
crucial kart of any LISP system is a conceptual ly asznchronous proce
called the ‘garbage collector”. The role of process . 3
| periodicall

s
3
g to teke control, mark arts of storage that are stil
referenced by the ongoing computatvon. then reclaim all storage that i
not so referenced (garbage) Garbage <collection is an wunavoicdabl
overhead of any s¥ stem with no declarations, and in which ocat
structures can grow in unrestricted ways.

vne gpotentfai disadvantage of garbage collection 1s that, once the
system runs out of free storage, a garbage <collection must occur.
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Since a ba e collect causes current computing activity to te
Suspended. LISP is controlling a real-time process, disastrous
consequencs can accrue. Such problems can normally be avoided vy
forci ing the syste into a premature garbage collect prior to entering
real=time 1t1cal sections of co.putation. Alternatively, there is
jrowing 1nterest in tr g asynchronous (parallel) garbage collection
techniques which could viate the problem altoyether (see [Dijkstra?7:]

for instance).

3e1¢11. LJISP 2as a Self=-Contained Systep

LISP interpreters are tygically 1mplenented in assembly language.
After this basic_ facilit as been brought upy most other suppurting
software can be written in LISP jtself, Typical software includes

(1) A ;gggilg; which will generate (potentially quite 000)
machine code for LAMBDA expressions (i.e.y, functions) and
PRO6sSe. Typically, the LISP compiler will be written in
interpreted LISP, then used to compile itself, The compiled
version is subsequently used as the LISP system compiler.

(c) A debug packa which will permit the tracing and
1nteracf1ve development of functions. Typically, functions
(toyether with their calling argunents) can be traced at
entry time, and (together with their returned values) at
return time. Most LISPS will also accommodate the tracing
of variables (i,e.y inform the user whenever a traced
variable”s value is about to be changed). The debugging
potentials of LISP are essentially unlimited (the INTERLISP

system s the most advanced to date), and are responsible
(in part) for LISP® reputation as one of the best
languages for the efficient and rapid development of
complex software. In particular, there is no time-consuming
interaction with system compilers, loaders and Llinkers to
be contended with; a progyram can be developed and put into
produc tion within the confines of the LISP system itself.,

3 (3) An S-expression editor (or system editor interface) which
4 makes possible the™ onvenient editing of S-expressions and
maintenance of files

3.2 MICROPLANNER
while LISP is generally accepted as the standard for computing in
Al, it ogoes not supply the user with any a-priori conceptions aoout
k intelligence. LISP is simply the blank tablet onto which the user must
1 write is theory of  intelligence or control, Not surprisinaly, this
resulted in numerous reinventions of the wheel in areas Ulike database
organization, groblen solving hypothetical reasoning, and language
understanding. Most reinvention were at a fairly low Llevel, but
i occurred often enouyh to uarrant some investigations into some of the
undercurrents of Al progranning techniques.

t
L

MICROPLANNER [Sussman, wWwinogrady, Charniak 71] is the outcropging
o

of some of these undercurrents, articularlx where automatic pr lem
solving is concernede. MICROPLANNER ? written in 1970-~71
small-scale implementation of ideas or ginally proposed by Heu1tt 1n

k 1969 CHewitt69l). The intent of the language was and is to provide some
auton:tic mechanisms of database organization, context, and heuristic
search.

MICRUPLANNER is implemented entirely in LISP. Because of this, its

syntax is essentially LISP s syntax, and while in the MICROPLANNER q
environment the user has full access to all of LISP. To distinguish
MICROPLANNE (hereafter abbreviated MP) functions from pure LISP |
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functions, the co
about t0 of them) w
notion in MP).

The most sal ient features of MP are these:

(1) Computation in MP is induced by pattern, rather than oy
calling functions by the1r namess In this style of
computation (often calied "pattern-directed invocation’),
whenever a goal requires solution, a pattern, descr1b1ng the
goal is ©posted to the entire system. "Entire system"
normally means a {arge population of problem-solv1ng
experts with patterns which advertise each one”s expertise.
Whenever a need is posted, the system searches through the
database of exgerts Looking for those whose advertised
patterns matc the neea. Each expert so located is then
tried in turn until one succeeds, or until all have faileo.
This is a r¢d1cally a1fferent comput1n, paradigm from the
standaro farad g "name catling®”™, since 1t makes for a
very modulaer system uhere the requestor needn”t know any
experts Ly name;, problems are solved by anonymous excerts
in the population at large.

() MF automatically maintains a context-sensitive database of
both factual assertions and the experts just mentioned. The

factual database is a collection of highly indexed

n-tuples, ex ressed as LISP S-expre551ons. Any one n-tuple
("assertion"), or collection of n=tuples can oe
“"associatively" accessed ty presenting the lookup routines
with a pattern containing 2ero or more variables. Only
those facts that are deemed active in the current
“context", regardless of whether they physically exist in
the memoryy will be located.

(3) MF does all the bookkeepiny required for depth-first,
nondeterministic programming., That isy anytime there is a
decision of any sort in MP, the system makes a choice
(either arbitrarily, or under the control of user-specified
heuristics), records the alternatives for possible future
reference, and then gproceeds. If a failure ever causes a
“gackup® to that decisioun point, the system automatically
discards the current (failing) choice, selects the next
alternative, an then attempts to proceed again. In tne
backup processy all computations performed etween the
initial (bad) choice and the failure point are uncone (a
record of all changes to the database is_ maintaineo), and
the system picks wup from the decision point as though
nothing had ever gone wrong. Thus, MP can be said to
maintain, at least implicitly, an entire goal tree (search
tree) for each problem it attemgpts to solve. As we will
suggest Latery, there are Loth advantages and disadvantages
to such automatic control.

These are the three main contributions of MP. 1In the following
sections we hignhlight and illustrate some of the specific features %
this problem solving language.

3e201. The MLCROPLANNER Database

Conceptuall¥. the MP database is divided in to two segments: facts
and theorems. heorems are further classified into three categories:
"antecedent' theorems, "eras1n?" theorems? and "consequent” theorems.
Theorems are discussed in section IZ.2.2.

Both facts and theorems are entered into the datatase via the
function THASSERT; an item is deleted from the database via the
function THERASE. Facts are fully-constant_ LISP n-tuplese Thus, tc
represent our screwdriver in MP, we might augment the database as
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follows:
(THASSERT (TOOL-TYPE SCKEWDRIVER=-1 SCREwDRIVER))
(THASSERT (STYLE SCREWDRIVER-1 PHILLIPS))
(THASSERT (HEAD-SIZE SCREWDRIVER=-1 0.3 CM))

Datatase lLookups and fetches are accomplished via the functicn
THGOAL . Therefore, if at some point in a MP program, we required a
k?ouked e of SCREWDKIVER-1"s head width, we could write a fetch pattern
of the torm:

(THOOAL (HEAD-SIZE SCREWDRIVER=-1 (THV X) (THV Y)))

his would respond with "success" (i.e., a fact which

For our example, t : o

mnatched this template was located in the database, and it would produce
the side effects of binding the MP variables X and Y to 0.3 and (¥,
respectively. The THV form is used in MP to signal references to
variables (all else is implicitly constant).

Every fact and theorem in_the MP database has a_  context marking.
dhenever o fact or theorem is THASSERTeo, if such a fact is not alreacy
physically fre§ent in the database, it is created and then marxed as
also oeiny _%Q%QQLL§ dpresent. 1t the THASSERTed fact is present

u e

physically, mar as logically gg; present, its logical status is
changed to "present”. If the tact is already loa\cqlly and cghysically
present, THASSERT does nothing, out regorts a "failure” to store a new
copy of the fact. THERASE exerts opposite effects on facts in the
database; it causes a fact to be logically maskedy either by changirg
the fact”s logical context markingy or_by actually physically deteting
the fact (j,e., if the fact is being THERASEd at the level at which it
was originally THASSERTed).
n

Context markings allow MP to keeﬁ track of the history of the
logicael status of each fact and theorem. This enables the system to
back up to prior context levelsy thereby restoring the database to the
correspocnuing prior statees Thus althou?h there are mechanisms for
makin, permanent catavase changes le.g., after some segment of MP cocue
is cunficent that what it has done is absolutely correct), normally
(except at the top level), THASSEKT"s and THERASE®s are not permanent;
instead, they normally exist onty for the duration of some stretch cf
planning or hypothetical reasoning.

Jecede MICROPLANNER Iheorems

ALl reasoning (in fact, a c
THANTE, THERASING, and THCON
e

rather than by name. The thre

omputation) in MP is carried out Ly
"theorems" which are called bty pattern
rath ypes of theorem . are 1ndistingqishable
in internal form, except with regard to the type of event to which each
responds. A  THANTE theorem is triggered by the THASSERTion into the
factual database of any pattern which matches its invocation pattern. A
THERASING theorem is tr1gﬁered by the THERASEure from the database of
any factual pattern which matches its invocation pattern. In the sense
that these two c¢lasses of theorems resgond spontaneousl{ (not 1in
response to any ?artlcular request), they represent a general interrurt
capabilityes A THCONSE theorem responds to THGOAL requests whose goel
patterns match its invocation pattern.

L
E
t
e
i

Because of this last interaction between THGOAL”s and THCONSE, o

THGOAL can amount to consideracly more than a simple database fetch.
In MP, when a THGOAL is issued, the system first attempts to locate the
desired goal directly as a fact in the database. If this fails, and
: the THGUOAL request has_indicated that it is permissible to do so, MP
[ will begin searchiny for THCONSE theorems whose invocatfon patterns
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match the desired g oal. If any are found, each is executed in turn
until one ne?orts succtess (in which case the THGOAL is satisfiecd), or
until all HCONSE theorems have failec (in which case the THcCnl
fails), It is 1n this manner that more complex knowledce (i.€.,
theoremsy problem solving techniques, etc.) <can be automatically
brought tu bear on sowe goal if that goal 1is not alreacy explicitly
present in the factual database.

The forms of these three MP theorem types are:

(THANTE <optional-name> <variables> <invocation-pattern> <kbcdy>)
(THERAS ING <optional-name> <variables> <invocation-pattern> <touy>)

(THCONSE <optional-name> <variacles> <invocation-pattern> <Loly>)

As a briet

) y illustration of the uses of each c¢cf these, suppose ae
wish to implement the following three capabilities in MP: (a) whenever
a new screwdriver is oefined to the system, automatically cause its
name to be added to the master tool Llist; (t) whenever a screwdriver is
deleted from the systemy, automatically remove its name from the master
tool list, and_ also remove all 1its accompanying information,; (c)
whenever, during some assembl; task, a TH50AL of the form: ¢ SICRBiv =3
<some screw> <some threaded hole>) is announcead, automatically search
fory and return the ndme of an appropriate screwdriver for the task
(basea on the screw”s style and heac size). Task (a) will be modelea ac
a MP THANTE theorem rart (b) vty a THERASING theorem, and part (¢) Cy &
THCONSE thecrem as %o lows:

(THAKTEe (X) (TOUOL-TYPE (THV X) SCREWDRIVER
(SETQ MASTEKk=TOOL~-LIST (CONS (THV X) MASTER=-TOOL=-LIST)))
(THERASING (X) (TOOL-TYPE (THV X) SCHEWDRIVER)
(THPROG (ST CC s.. HS HSU)
(SET@ MASTER-TOOL-LIST (DELETE (THV X) MASTER-TOOL-LIST))
(THAND (THGUAL (STYLE (THV X) (THV ST)))
(THERASE (STYLE (THV X) (THV £T1))))
(THAND (ThGOUAL (COLOR=-COUDEe (THV X) (THV C()))
(TnEkASE (COLOR-CODE (THV X)) (THV CC))))
CTHAND (THGUAL C(HEAD-SIZE (THV X) (THV HS) (THV HSU)))
(THERASE (HEAD-SIZE (THV X) (THV HS) (THV HSUY)))))
(THCONSE (SCREWw HOLE) (SCREW=-IN (THV SCREW) (THV HOLE))
(THPROG (ST HS HSU DRIVER OST DHS ODHSU)
(ThGOA. (STYLE (THV SCREW) (THV ST)))
(THGOAL (HEAL-5IZE (THV HOLE) (ThHV HS) (THV HSU)Y))
(THGOAL (TUCL-TYPE (THV DRIVER) SCREWDRIVER))
(THAND (THGOAL (STYLE (THV DRIVEK) (THV DST)))
(EQUAL (THV DST) (ThV ST)))
(THAND (THGOAL (HEAD=-SIZE (THV DRIVER) (THV DHS) (THV DHSU)))
(EQUAL (THV DHS) (THV HS)))
(THRETURN (THV DRIVER))))
3e2e3s Hguristic Cuigance of Theorem Application
lt_is possibley, by includin special 1indicators in THGOAL,
THASSERT and THERASE callsy to influence the order in which theorems
are applied, or in fact to indicate whether or not they should be
aﬁplied at  all. Sgecifically. a THGOAL (similar remarks apply to
THASSERT oend THERASL) with np indicators will fail unless the requestec
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1 goal ¢an Le satisfied exclusively by oatabase fetches (no theorems will
be applieo). (This is the form we ave 'been using for illustration
purposes,) 1f there is an indicator present, it has either the form of
a “filter" or a specific "recommendation List" of theorems (referenceo
bz name). when & filter is included in a THGOAL request, only those
theorems whose properties pass the filteriny test (theorems can possess
roperty Llists) will ve candidates for application. 1f the 1indicatcr
as the form of a specific recommendation listy all theorems on that
list will be appliec tirst (in order) before any other theorems fronm
the general theorem base are attemptea. Eoth forms allow the programmer
to nsert limiteo heuristic influences. Also, since one MP theorem can

create or modify another MP theorem, the filter facility proviges
setting in which 3 collection of theorems themselves can evolve into 3
more structured confiyuration on the pasis of ast experience (e.g.,
who in the past has proven to Le the most reliable expert). Althcuyn
filtering and recommendations are a step in the right directiony, &s ¢
will discuss Llater, CONNIVER provides a more flexible environment in
which to encode heuristic knowledye.

le2eb. Searchipg and Backup in ME

Search and backup in P can occur four two reasons: (1) sone
THCONSE theorem which was run to accomplish a THGOAL fails,y, and another
theorem must be 1invokeo (restoring the environment to the state at
which the first theorem took over), or (2) some object to which_  the

! system has committec itself is ogiscoverec to be inappropriate, giving

rise to the need of locating another candicate object and retryinc.
The THGOAL-THCONSE mechanism_ underlie the selection and backup where
theorems are concerneo, but object selection 1is hancled dgifferently,
via the THPROG MP constructione.

1

n the previous THCONSE example, the ?oal was _to locate some
screwdriver which satisfied some set of teatures (in that case,» the
correct STYLE and HEAD-S5IZE). This was accomplished by a THPROG which
"conjectures”" that such an object, say X, exists, then froceeds to
determine whether or not this tonjecture i1s true. In the examEle above,

the THPROG searchecd for a screwdriver of tyﬁe and size  whic matched
the type anu size of the particular screw which was to be inserted. Ffor
the sake _of illustration, suppose the screw was of type Fhillips of
head size U.3. Then, the THPROG 3in the example _above would _have
performed essentlally the same scarch as the following, more specific,
THPROG :
(THPROG (X)
(THGOAL (TOOL=-TYPE (THV X) SCKE«DRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))
ﬁ (THGOAL (MEAD=SIZE (THV X) G.3))
(THRETURN (THV X)))
ie€sy introduce an initially uncommitted variatle, X, to represent the
object being searched for. First, ovtain a candidate for ty finding
an ooject which is of TOOL-TYPE SCREWDRIVER .(the first THGOAL does
this)e At that pouint, X will be tentatively bouno to the first such an
object found. Continue with this candidate wuntil either all THGOALs
have been satisfied <(in which case, the candidate is a success), or
until some THGO0AL fails (in which case, the system must back wup _and
choose another candidate). Since some objects may pass the first
' THGOAL, or even two, but not all three, the system must automatically
! keep track of whait object it is currently considering, and what other
: objects remain to be tested. This is the source of backups which are
1 propagatec because of bad object selections.
. To xeep track of theorem_ ang object selection backups, MP
maintains a decision tree, THTREE, which is essentially a record of
every decision maoce, ano uh?t to do in ,case the decision |leads to a
tailure. The strength o THTKEE i of course, that 1t frees the
programmer from having to worry aoout fa*lures: it there is a solutior,
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it will eventually pe found by an _exhaustive search. The fatal weakness
of THTREE is that it imposes an oft.n undesirable depth-first ordering
on the search (i.e., one subgoal must be solved in its entirety pefcure
any other subgoals can be attacked). This makes it difficult, if not
1mgoss1ble, to fabricate complexly intertwined solutions, since
subgoals cannot communicate_latgrallg in the tree, The MP organizatiogn
is also quite awkasard in its ackup technigue vpecause of the

depth-first organization of THTREE. Often, one small failure will cauce
an entire branch ot THTREE to be undone, when in fact most of it wasS
correct. It woula be more desirable to be able to discard only the tacl
part of the tree, retainino the oarts which are correct, so that
wholesale resynthesis otf large parts of the THTREt does not_  have 1t¢
occur. Unfortunately, this is, again, very difficult, 1f not impossible
to do in kPe. CONNIVER has a better control structure in these respects.

[ ]

€s
CROPLANNER, we include two
available in this lanjuage,

Ze2+45. Ciher Representative MP Capabilit
n

To complete our description of MI
s of the other functicns
a

representat? !
brief example of each.,

tive
together «ith

TeZ2e5e1e (THEIND <moge> <variables> <skel> <pody>)

. THFIND provides a way of finding all_objects in the system which
satisfy o <certain set of criteria. A THFINL is essentially a THPRGC
which is made to fajl artificially after each successful location of an
object which s.,tisfies the criteria. <mode> indicates how many oojects
are to be locatea (eegey "ALL", "(AT-LEAST <count>)”,.ee); <variables>
serve the same rote as THPROG variables, <skel> specifies what form to
return as each outject is found; <body> contains the THGOALTs, etc.
which define the criteriae THFIND returns either a faijlure (in case
<mode> number of objects could not be found), or a List of <skel>"s,
each <skel> corresponding to one successful object thus founde.

EXAMPLE: (THFIND ALL (X) (THV X)
(THGOAL (TOOL-TYPE (THV X) SCFEWDRIVER))
(THGOAL (STYLE (THV X) PHILLIPS))

would return a Llist of all tools which were Phillips screwdrivers.

30245420 (THMESSAGE <variables> <pattern> <bogy2)

As subgoals are descended into (ie.es "on the way down" the goul
tree)y THMESSAGE statements have no effect. They are essentially
"hooks"™ which will intercept failures benesth them in the goal tree s
such failures propagate back up to the THMISSAGE wvia a (THFAIL
THRESSAGE <pattern>)s Upon bein; backed up to by a THFAIL, anr
THMESSAGE whose pattern matches the THFAIL pattern will take contro
(1ts.;body> will cefexeCugeq). Thus, theibIH"ESSAG%-THFA;Lh COMb1natITn
provides a way o ntic iny poss e problems without actually
qheckin? for them befo%eﬁanégiiTngll Joes well peneath the THMESSAG:,
it wil never run; however, if someone gets into trouble teneath the
THMESSAGE (in some ua{ the THMESSAGE is prepared for), the THMESSAGE
can correct the prublem and then cause the part of the tree beneath it

to be reattempted.
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EXAMPLE:

-~ X3

would anticipatey detecty, report, and correct  problem, then retry.

3.3. CONNIVER

The most recent stage in the evoluticn of the LISP family of
languages was the result of Mcbermott”s and Sussman”s develogment of_ a
language callec CONNIVER (McCermott, Sussman 73], CNNIVER s
development was principally motivated by the control structure
deficiencies of MP, as suggesteoc 1n the earlier discussion of TnTKEE.
Although _ there  were  some improvements in the database and
pattern-directed invocation control (e.y ., the pattern matcher is more
sophisticated), the mcst significant feature of CONNIVER is its avility

to maintuin numerous computations 1in states of suspended animation,
then to switch amony them, working or m®many subgoals or altcrnate
strategaies in unison rather than one at a time. In Such an environment
partial computations need not be undone simply tecause some small
aspect of the problem solving has gone awry.

. CONNIVER is Lless a programming languaze than it is a collection of
ideas about control structure. (The lanyuace agparently has never been
used for more than one or two significant pqo?ramm1o tasks
[Fahlman?3]). Because of this, our discussion wil omi most
references to syntuxy, and highlight only the aspects of CONNIVER"s
control structure which are unusual or unigue to it.

3.3.1e Framess Auc-reyvoir and Adiey

In a conventional proﬁramminn language (MP included), one fyncticun
calls another function either by name or pattern and waits wuntil the
called function returns control. 1In a conventional lancuage, once a
function returns, that copy of it dies; the function may Fte calleo
anewy but the new call will cause a new "copy" of the function to
begine No memory of a function®s current status can be Treserveq across
call-return sequences. This type uf control is usual { carriea out
under the control of push-down stacks which record callina arguments
and return addresses; calling a function causes stacks to e pushec,
while returning rom a function causes stacks to be poppec,
annihilating all control information.

; In CONNIVER, things are quite a bit different. To call a _ function
in CONNIVER s to create a so-called "frame™ for the called function,
rather than to push information onto a  central stacke A function”s
frame will contain all the <information needed to characterize the
function at an¥ moment (e.gey from what A-LIST it derives values for
its free wvariablesy_ to whom it 1is to return when it has finisheag,

etce)e There are twu important features of a frame. First, it 1is a
user-accessible LISP data strugtures This means that a function may
alter its own or another function s frame in arbitrary ways, causing

free variables to oe looked up on some other function”s A-LIST, or
causing the identity of the function to which control is to be returned
to be altered. Second, because there is no central stack which is
chronologically pushed and popped at function entry/exit, executicn
control is free to meander from one _function to the next without
permanently closiny any function. Thus, at any moment, there can te
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numerous susegndeq functions which may te resumed at the point at
they last relinguisheu controly or in fact, at an erbitrary
point witnin them,

w
dab

As one might c¢cxpect, this ability makes the context marxin_
technique for items 1in the database more <complex than in 4P, .in
particular,y, since control may eventually be returned to &ny suspended
function (the slstem in general has no way of knowinc whether or not it ]
actually will be), every fact in the datatase must have markincs which
specify fur every suspended function, F, whether or not that tact
supposed to be loyically present while F ic running. To accomplisn th
tyre of markingy, the MP context scheme was jeneralizeu fron
stack-like arrangenent to a tree of contexts. Taslcally, every foact
lives on some branch of the tree, and functions have access to limbs ot .
the tree. Although there is considerable overhesd, the system mansgces K
to mask and unmask facts in the gatabase in synchrony witn the 3
meanderiny of executiun control from one function to the next. '

!
j

To distinguish the permanent return of a function from the ce
where a function merely relinquishes control, reserving the option

continuey CONNIVER cefines two methous of _returninc: ADIEU (fine
permanent return) and AU-REVOIR (suspension). One wvery importe
application of the AU-REV feature is 1in_ the (otten costl
%eneratlon of alternat1vef Rather than calling a function (such
e
d

st O

b4
-

<
L
L
r
y
o

t

R
HFIND in MP) to gjenerate a rossible candicdates fore any detailec
tilterin tests ore applied (a
amount of time in the initial ¢
possiole to <call a "generato
candigates one at a time,y, suspe
for a more _intimate orm o

0
L
L ro

procedure which may waste an inoroinate
L collectiny phase), in CONNIVER it i
r* function which will locate and return
nding itself across calls. This makes
f i?terqction bpetween the generating anc
s

i

testing functions than s possitle in_ MP, anzs can ead to more
efficient searches because of this intimacy. To facilitate the use cof
generatorsy CONNIVER has some rather elaborate machinery for
maintaining "“possioitities lists", including a function, TRY-NEXT,
which controls the extraction of gossibilities from such listse
Comgutation in CONNIVER s similar _in most other reoarcs to
computation in MP., The counterparts of THANTE, THERASINEG anc TnlON:L
| theorems are, resgectively IF-ADDED, IF-REMOVED and 1F-NELDED
i "methods"., E&xcept for .alf¥erences in syntax anc a more genercl
psttern-directed invocation scheme, these three functions are the sane
as the MP versions.  CONNIVER counterparts of M™MP“s Ggatabase &ano
goal-staetement functions, THASSERT, THERASE and THGOAL are,
respectively, ADD, REMOVE ana FETCH.
]
; 3.6 Efficiency of tne LISP Langyaye Femily
Beiny an interpreted language,y LISP is slower than, say, FOKTRAN,
by obetween one and two orders of magnitude. However, ﬁgEQi §S LISP can
be competitive with a good FORTRAN compiler, se feel that [I provides
the best of both worlcs, in the sense that the interpreter gprovides fcr
: easy program deve lopment and debugygcing, while the LISP ccmpiler con
| transform debuygea coage into production-level efficiencye.
MICRCPLANNER ano CONNIVER, on the other hand, are inherently less
efficient, ?rimarlly vecause o{ the control structures they superimpose
1 on LISP. he fatal flaw with MP is its backup system, which can te
extremely slow; compilation will not typically remedy the oproblem.
CORRIVER™ is slow for similar reasons; however, in addition to data
structures, QLQEQ%EQ& must also be garbage collected, and an elaoorate
context tree must vLe maintained. Lthough these two languaces contain
4 many noteworthy featu[es. we feel that neither (as currently
: implemented) is approgpriate for production applicaticns.
] 24
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3.5. §Standardization of the LISP Language Eamily

There are LI3P s‘stens for the following machines: POP-1C, PDP-11,
UNIVAC 1106, 1108, 1110, cbC 6500, 66CI), 1Er 360, 370 SIGFMA 5, anu
others. cein3 a vrelatively easy Llanguaye to 1mp[enent. we woulc
anticipate no sionificant develognent problems for any machine,
including microcomputers. Since LISP“s syntex is nearly non-existent,
there is wvxactly one cialect, Although there are minor differences in
the semantics of how functions are defined, and how variables” values
are accessec, such "incompatibilities” can normally be ameliorated 1in
about one day”s worth of macro-writing. iecause of this, LISP can uUe
characterizea as a Language which is fairly standard and transportatle.
Finally, most LISr systems have an accompanying compiler, wusuell: ;
written in LISP jtselt, é
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4o, AL

a hign-level programm1ng system for specification cf
manvpulator{ tasks, develored at anford Artificial 1Intelligence
Lacoratory (Finkel7«]., It s 3 SAIL-tike language and incluoces arye
runtime support for controllvng devices.

Trajectory «calculation 1is a crucial feature of manipulatory

control . AL contains a wide range of primitives to support efficient
trajectory calculations. As much computation as possible _i¢ done =t
compiiLe-time ana celculations are modifiec at run-time only o5

necessarye.

pesices a aimensionless scalar data tgoe (i.€049 FEALJ, AL
recognizes and manvpulates TIME, MASS and ANGLE SCALARs, dimensionless
and typed VECTORs, KOT otation FRAME (coordinate system), PLALL
(region separator) ano TRANS ttransformat1on) data t pes. Proper
conpositiun of variaties of these types gives a simp reans of
performin, calculations of any type of movement.

Also inclucded are PL/1-like GN-conaitions, which allow wronitorirng
of the outside worluy, and concurrent processese.

PLANE P1;

. { statements initializing g1 )
SEARCH yellow { SEARCH is a primitive which causes
move over 2 spec1f1ec
low is a hand )

gcross plane )

E Xt

do at every iteration )

AN AN AN

yellow is also coord system of hand J

move hand 1 cm down from current
position along Z-axis
c(Z) > 3000*DYNES ]
TERMINATE; { keep in touch with real world )}
w T0 set IRECTLY, { mcve the hanc back to where
= & it was in a straight line )
= ,
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be2e MLISP

MLISP (meta=-LISP) is a high=leve
develored at Stanford University [Sm
translatec into LISP programs which are t
MLISP translator itself 1s written in LI

l list-processing language
ith?01. MLISP oprograms are
gen executed or compileds The
[ ]

t
MLISP is an attempt to improve the readability of LISP programs as
as alleviate sume inconveniences in the control structure of LISF
’ E fcit diterative <construct)e. Since run-time errors are
detected y the LISP system (when actually executing the proyram),

frequently tind themselves debugging he  translated LISP code.
somewhat defeats the purpose of any high-level languaoce.

ALl LISP functicns are recogn1zed and translated in MLISF, but the
Cambricce prefix notation of LISP has been laced by standard infix
anc prexix function notation. Instead of (P US X Y) one may write X +
Y, anc (FUO0 “A B C) becomes FOO(“A, 8, C).

MLIS+ also prov1ues a powerful set of iterative statements d4nd &

large number of "vector operators.“ Vector operators are used to aprly
standard operators in a stra ightforward manner to Llists. Thus, 1in
”L:SP' <1' C' 3> +3 <é' 5' 4> y1elos <7 7' 7). +9 is the vector
aagdition cvperator and <A, B, C> is equivalent to (LIST A B C) in L1ISP.

Exampie:

Given @ List of the form <ob)1y Obj2y see okjn>, this functicun
will return a list of the form <<obji, holderd>, oe.y <otjn, holaern>>
where holderi is either PLIERSy VISE or NOTHING accordingly as needed
to hold the objectes X seeX is an MLISP comment.

EXPSEggLD -LIST(OBJ=-LIST); 4 EXPR sterts a regular func %
N

NEW S, % local declaration 3
RETURN RETURN is a unary operator X

FOR NEW GEJ IN 05J-LI1ST

COLLECT .
» 0BJ is local to the FOR Loop. 2%
% 0BJ will be bound in turn %
~ to each element of 0BJ-LIST. X
% COLLECT indicates that thg X
% result cf each iteration is 4
4 to be APPENDed to the previous X
» result and this whole Llist %
% returnec as the result of %
» £ the FOR., %
IF (S _GET(0BJy “SIZE)) LEQUAL S
THEN >
<<0BJy “PLIERS>>
ELSE
IF S LEGUAL 10
THEN
<<0BJy “VISE>>
ELSE -
<<0BJy “NUTHING>>
END;
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4.3. POPZ¢

POP-¢ is a conversational lanQua?e desianeo bg Re M, Eurstall ano
Re Jo Popplestone at the uUniversity of Edinburgh [Burstall?71].

POP~¢ features an Algol-like syntax and draws heavily _from LISF.
Intejers, realsy, LISP~like lists and atomc (callec “names”), functicn
constants (lambda exprQSSIOOS). records, arrays, extensible data types,
and run-time macros are supported. A unique feature of the POP=-C
system is the heavy use of a3 system stack, which the user may easily
control to enhance the efficiency of programs.

A full complement of list-manipulation, numeric anu

storege-management functions are ovailable.
Example:

Surpose we u s? o obtagn a

t f all machinery not currently
functioning. A useful functio €

COMMENT sublist returns a List of all elements of argument Llist xl
which satisfy argument predicate r ;
UNCTION sublist xl p, { arguments are xl and ¢ )
VARS x; ] { declaration of local, no type )
IF not{Cx) THEN nil ¢ just Like L1SP )
ELSt halxl) =-> x; { hata) = (car a) 2
1F ?(x)
HEN x::sublist(tldxtl), p)
{ tl(a; = (ccdr a)y x::l = (cons x L) 2
ELSE sublist(tl(xl), p)
CLOSE
CLOS
CN;

A call might then look Like,

sublist(machine~list
LAM D‘ m,; not{functioning(m)) END);

which might return,
Cpunch-press? drill-press2 uniti0)

which is o POP~2 Llist.

4ebe 3LISP

version of uA4 (a3 PLANNER-
empedded in the sophisticate

«lLlSP is an exte 3 é
de variety of cata txpes desIQneg
rg

F

nded
derivative) CRul ifson 1973

stem. GLISP supports a wi
t e flexiole handling of Lla

s D

uata Lases. mong a
supported are "TUPL: » "BAG®™ ano YCLASS."™ A TUPLE 1is essential
list that can te retrieved associativelg (see below). A

o

N0 u-tn

multisety, an unorcereac collection of (possi dupl1cated)
Bags _have been found to be useful for descrtbing certain ¢
associative relationse. A CLASS 1is an unordered collec

tJarrarr
et (N 4Ty (S 1]
o<y

o
“Me Y MVIDVT
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non-duplicated elements (i.eey basically a set)de.
. Arbitrary expressions may be storec in the system data base ano
manipulated 3ssociatively. The QLISP pattern matcher dis wused to

retrieve expressions in a flexible manner. The System function MATCHGG
may be used to invoke the pattern matcher explicitly, as in:

(RATCHQQ (<=X <=Y) (A B))

which causes X to be tound to A and ¥ to B ("<-" indicates  this ‘“need
for a binding”)e The patterns to MATCHGQ may be arbitrarily complex,
as in:

(MATCHQQ (A (<=x <-Y)) (<-x (A (B €))))

in which x is bound to A and Y to (B C).

. QLISP expressions are represented uniquely_ in_ the data basey
unlike LISP where only atoms are unigue, To distinguish between
“identical® expressionsy "properties” may Le associated with any

expression by QPUT.

(«PUT (UNION (A _B)) EGUIV (UNION (B C)))

The above puts the expression (UNION (B C)) uncer the property EQUILV
for the expression (UNION A B).
: QL1SP provides facilities for backtracking and pattern-directed
invocation of functions, as illustrated Lty:
(GLAMBDA (FRIENDS JOE (CLASS <~=F <=5 <=<=REST))
(1S (FATHER $S SF))
BACKTRACK)

This function will find an occurrence of a CLASS denoting FRIENDS of
JOE. _F and § will be bound to the first two elements of the CLASS and
REST will be bouna to the remainder of the CLASS (indicated by "<-<-"),
1f S is a father of F, then the function succeeds. ("$" causes the
current binding of its argument to_ be wuseds) BACKTRACK causes
re-invocation of the function with new bindings for Sy F and REST until
the function succeeas or there are no untried ‘bingingse.

. The user may collect teams of functions to be invoked under
desired circumstances. ManK QLISP data base manipulation functions may
have optional arguments which denote & team of routines to be used to
perform antecedent-type functions (as in PLANNER).

GLISP provides a general context and generator mechanism similar
to that ot CONNIVER. Also provided is o smoothy, readily accessible
interface to the underlying INTERLISP system which aids in the
development and maintenance o% large systems.,

future plans for QLISP idnclude multiprocessing primitives,
semantic criteria for pattern matching (as opposed to the current
syntactic information), and the atility or the pattern matcher to
return more information than a simple match or fail. 3
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S.1. Introgductiop e

A common example will be useo to illustrate the distinguishin,
features of SAIL, LISP, MICROPLANNER anc CONNIVER. With only mincr
variations the rogram se?ments use the same algorithm.  The
program-segments appear ou of context and are not meant to inuicate
the most eficient (or preferred) implementation of the problem in each
Llanguage, but merely to illustrate the lLanguages” major attritutes.

Problem statement:

Siven two distinct assemblies (say A1 anc A2), attempt to unscrew 1
from AZ, and incicate success or failure accordingly. The "worlc" cf
the example is assumed to include:

(1) Two hanos, LEFT and RIGHT, carable of moving, grasping, twisting
and sensing force and motione.

() A fixed number (possivly zero) of PLIERS
(Z) A fixed number (possibly zero) of VISEs

(4) A fixed number of "assemblies"

For each PLIERS ano VISE, the data base contains an assertion f
the form "PLIERS (VISE) # n 4is &t location (X, Y, 2) and is of
capacity ( cme"” In addition, for each assembly the data base contains
an assertion_ of the form, “assembl{ A is at location (X, Y, 2) ana is
of size S cmo" As we shall see, the languages are d\stlngu1sﬁed in part

by the methods each uses to represent such knowledgee.

tach example assumes the existence of the routines describeo belcw
in ALGOL-like notation.

ATTACHED(AY, A2) - TRUE if and only it the ass
(her>after referred to as A1) is
representeo oy A2 (referred to as A2)
side effectse.

ly represented oy A1l
tached to the assembly
The routine has no

MOVE (HAND LOCAT;ON) -~ Moves HAND® (LEFT or RIGHT) to LOCATION (but sce
ﬁLANNER s oescription of MOVE).

TWIST(HANDy, DIRECTIUN) =~ Twists HAND (LEFT or RIGMT) in the Blven
DlgECTION (CLOCKWISE or COUNTER-CLOCKWISE)., The DIRECTION s
oriented looking down the tength of the arm. Except for SAIL,
all programs assume 2 routine calied TwIST=-BOTh, ich causes
toth hanos to twist at once.

GRASP(HANLy O3JECT) - Causes HAND (LEFT or RIGHT) to grasp OoJECT,
whicy must be within some fixed range of HAND (1.e., the hanc
must MOVe to the OBJECT first).,

ATTEMPT(ObJT1, OBJcy A1, A2) - Attempts to do the actual_ unscrewing of
assembly A1 from A2 usiny objects UBJ1 ana 0EJ2 (which, in our
examples, are either VYSEs or PLIERS). ATTEMPT returns TRUE

if and only if the attempt is successful.

tach program applies the following sequence to solve the proolem:

(1) Attempt to unscrew the assemblies using the hands. This entails
obtaining the location of the assemblies, moving the hands to their
respective locations, graspiny, and then twisting.

EWRTY vEa

Db ie it
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3)

(%)

3)

I1f the objects are no longer attached, then return “success."

At this point, it is assumed that the hands weren“t strong enough.

It s proposeo to try two pairs of PLIERS next, A search ensues
for a suitable set of available PLIERS (i.e., larie nough to holc
the assemblies). I1f one set of PLIERS the search is
continued for another set, with the hoge that the d{fferences among
PLIERS (gripy size, etce) will eventually lead to success.

An attempt to use PLIERS has failed. Tr¥ to sol the problem Ly
holding one of the assemblies in SE. Per orm a search for an
apn?ggrtate VISE. This search proceeds in a fashion similar to that
in

ALL attelpts nave failed. Output an appropriate message and return
“*failure" .




Se2. SAlL

5.2.1. Ssmple Progren

!
i
!
|
:
1

INTEGER PhOCEODURE BIGENOUGHCITEMVAK HOLDER, HOLDEE);

* RETURN TRUE IFF OBJECT HOLDER I8 LARGE
ENOUGH TG HOLD UBJECT HOLDEE

BEGIN

[ ]

OO m
~TVD >
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b 1% el
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cNY m
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~ O
QX
wO-4 o
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MIX =
[2 el
~o u
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»mY
-“mo
Cwrr
N O
~ m
(£,) xr
~
BV e e

END;

Sl alale: anet ol

INTEGER PROCEDURE UNSCREWCITEMVAR A1, AZ);
“ ATTEMPT TO DISASSEMBLE ASSEMBLY A1 FRkOM A2, BEY UNSCRcWINC "
Be6GIN
DEFINE RUNME = 1;
ITEMVAR V1, PL1, PL2y P11, P2;
INTEGER FLAG; :
IF NOT ATTACHEDC(AT1, AZ) THEN RETURN(1); * DON’T BOTHER *“ 1
HOVE(LEFT} LOCATION XOR A1), MOVE(RIGHT. LOCATION XOR Ac),;

NN=OCOONO NS RN = OO NOMAS RN SO N O NS LN =IO G NOMAS IR OV 00 NOMNE NN b OO0 N O NS LU N b

OO O\ AU UNUNUAWNWAWE SN 8 S 8 8 88 8 8 LR LSRN R LI I N W R NI NS PN PO N PO NN b ad od od b od b od =-d b

GRASP(LEFT, A1); GRASP(RIGHAT, Al); s
" GET BOTH HANDS TWISTING AT OUNCE * b
SPROUT(P1, TWISTC(LEFT, COUNTER'CLOCKWISE), RUNME). ]
SPROUT(R2, TWIST(RIGHT, COUNTER! VCLOCKWISED, RUNMES; |
10IN0T ATTACHEECAT, A2) THEN RETURNC1); f
1 " HANDS NOT STRONG ENOUGH, TRY PLIERS "
FOREACH PL1, PL2 | ]
ISA XOR PL1 EGV PLIERS AND (BIGENOUGH(PL1, A1)) ‘
AND 1SA XOR PL2 EQV PLIERS AND (PL1 NEG PL2) ) :
: AND (BiGENOUGH(PL2, A2)) AND (ATTEMPT(PL1, PL2, A1, AZ)) :
i b0 RETUARK(T); :
] " EITHER THtRE wEREN’T_ANY PLIERS LAKGE ENOUGH,
] OR THE PLIERS WEREZN“T STRONG ENOUGH. TRY A
' VISE ON ONE SIDE "
FOREACH V1, PL1 | :
18A XOR V1 EGQV VISE AND (BIGENOUGH(V1, A1)) ]
g ANG ISA_XOR PL1 EQV PLIERS AuD (BIGENOUGHEPLY, a2)) 4
3 AND (ATTEMPT(V1, PL1, AT, AZ)) :
b0 RETURN(T);
" ALL ATTEMPTS FAILED "
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FLAG) §

AN°T UNSCREW * & C
CVIS(AZ2,

(' L4
g CV
RETURN(L)

OUTSTR("™
End;
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<. Commentary

In SA L, FALSe = Uy TRUE <> 0. BICENOUGH is o 30OLEAN procedure.
C and S are items whose DATUM is assumed to be of INTEGER type.

(OP(<set>) returns the first jitem of <set>., We are assuming that
there exists only one triple of the form CAPACITY XOk <cbject> EGV
<capacity> for each <object>.

C anc S are necessary because DATUM(COP(<set>)) is illegal. SAIL
must know at canpi{e-time what the type of a DATUM is, GEu 18 o
numeric test for greater than or egual.

UNSCREW is a BUGOLEAN procecure which returns TRUE (nun~-zero) if it
succeeas in unscrewing the objects.

Whenever RUNME is encountered by

This is a macro aefinit o
i be replaced vy the constant 1. (Sce

SAIL compiler, it w
for its use,)

jon the
L 5.
SPROUT is a 5AIL function which causes activation of its seccno
argument (a jprocedure/function <call) &s a process. The first
arjument is an item whose DATUM will be set b{ SPROUT te¢ contain
information «bout the SPROUTed process (see 41, for its use). The
thira argument to SPROUT aetermines_the status of the current anc
the created process. RUNME (bit 35 set) indicates that 1the
cu;ren{ and new processes are to be run in parallel by the SAIL
scheculer.

bOOLEAN tests in a FOREACH must be enclosed in parentheses,

Notice (PLT NEW PLZ2) to insure that two distinct pairs of gliers
are found,

It the body of the FOREACH is entered, then all went well and we
return success.
cter string

Cvis is a SAlL function which will return a ch ter st
¥ i c to inuicate

name associated with an iteme FLAG is set by
the presence of an error.

ara
VIS
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? RAN OUT

ETURN NIL)D)

LOOPYT -

(SETQ@ TeMP1 (EVAL L1ST1))
T
R
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E
E

? FAILED 1ST TEST

(GC LOOP1)YD)

LOOP2

? IT WORKED
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MACRO VERSION OF FORcACH
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5.3.2. (CuammeDntary

13,

18.

15.
34,

35.
47,
55.

£3.

66,

m ~ o
~noo~
. [

no
o

iS$CRew is the main function, It returns T if and only 1f
isa

SAIL, LISP does not sugport concurrency. WYe thus assume ' o
ive function to get both hands twisting.

s
e

it

CH is an iterative special form which mimics a simple SAlL
hC h FURCACH will try pairs of_ pliers until the given
cates succeed or it runs out of pliers (and returns NIL).
Note that the arguments to a special form need not be quoted.
Check to insure that distinct pairs of pliers are found.

PRINT is a LISF function which lLloads its argument into the strecm
output buffer,

TERPRI is a LISP function which dumps the output buffer.
Return T if cagacity >= size.

DEFSPEC defines a special form (sometimes called a FEXPR),
special form 1is 1identical to @ LISP function except that its
arguments are passed unevaluated,

EVAL s necessary since the argument was gassed unevaluated.
Note the use of SET rather than SETQ. O056J1 needs to be evalua
to et the intenced atom (SET evaluates its first argument,
does not).

Note the use of EVAL (see 63.).

Note the use ot SET (see 66.).

This is an alternat1ve macro version of FOREACH. It expand
@ PROG which is s1m1lar in nature to the special form F
Note the absence of SET or EVAL.
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5.602. Compentary

LV B N
L ]

ro
-
L 4

~
[ ]

24.
45.

‘9.

Defines and asserts a consequent theorem with name UNSCREW,

This is the pattern on which ¢to invoke this theorem 1if needeo
(eeQey (UNSCKkEw ASSEMBLY1 ASSEMBLYZ)).

THGR sequentiall executes each of its araum
succeeosy, and then the THOR succeeds. The THOF
prevent undesirea vackupe

CTHNOT p) is aefinea as (COND [p (THFAIL)I LT (THSUCCEED)I) ,

THAND succeeds if and only if all of its arguments succeeCc. ounlike
THOR, tackup may occur among the arguments of a THAND.

ents unt
is

il cn
used here t

ocm

There may be severol
will try as manz_as it
se "filter® whichk is

Atteapt to move the left hano to object A1,
experts (thecrems) on moving hands, PLANNER
needs. (THTBF THTRUE) 1s & theorem b
satisfied by every theorem.

3

THFROG behaves in @ similar manner to THANL except that Llocel
variables may be declared.

Attempt to fina a pair of pliers.

See if the pair of Rliers is large encugh. (THNODS) dindi
PLANNEK not to tother searching the data base. ( £
inoicates to try <theorem> first.

Make sure that we have two distinct pairs of pliers.

THDO executes its aryuments and then succeeds, however, : at this
point we know that we have faileo, anc THNOT is used tc wenerate &
failure from THDO. This is necessary because PRINT returns its
first argument as its result, which (teing non-niIlL) would cause
the THOR to succeede.

Generate explicit failure of the theorem.

T ATy
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TOR TO RETURM NEXT OLJECT OF “TYPE®
SATISFIES “PREL

“AUX™ (0BJ TEMP)
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(TRY-NEXT TEMP “(ADIEU))
(CoONe L(CVAL (SUBST 0BJ “s PRED))
(NOTE 00J)
(AU-REVOIK)ID)

(60 “L00P)

GO WO (DO NNNNNNNNNNC 0000000
QS WP el (O NO AP WWIN S0 OO NS W
9




2o
€.

13.

-—d
(4 7]
[

: 24
5“.
65,

—

Se5.¢s Commentary

COEFUN cefines a function to CONNIVER.

“"AUX" <list> sefines lLocal variables.

PRESENT s a CGNNIVER function which searches the cata base for un
jtem which matches fts pattern argumente. If one is founo, PRESENT
sets the indicated varjables (marked with !< or !> ) ano returns
the itea. 'yA1 indicates the current CONNIVER wvalue cf A1,

>LOC1 indicates that LOCT1 is to be bound if possicle.

GEN1 is peiny assigned @ TRY-NtXT possibilities Llist., 1", rells
CONNIVER to do a "skeleton expansion” of the following Llist (which
is necessary to CONNIVER”s internals), The (+«FOSSIFILITIES) an.
*IGNGRE are syntatic markers to TRY-NEXT whose function we can
ignore. (*GENERATOR <func-call>) indicates to TRY-NEXT to use
<tunc-call> to generate additional possicilities if needed.
NEXT-0BJ will continue to generate objects of type FLIERS which
satisfy the predicate (Znd arﬂumenta. It will generate one PLIERS
at a_ timee (BIGENOUGH $ “A1) s a skeleton predicate which
MEXT-0BJ witl use to screen each possioility. The current
candidate is substituted for $ before the predicate is CVALuateo
(CONNIVER®s form of EVALuation).

when GEN1 cont¢1ns no more Bossibilit1es. TRY-NEXT will execute
(E0 “TRY-VISE)e. Unlike LIS 60 evaluates its argument here.
Check to insure that two distinct pair., of pliers will be founc.
See 10.

RETURN is not necessary since the value of a3 CONNIVER function is
the last expression evaluatec.

Define the generator, NEXY-OrJe Note that NEXT-CDJ looks Llike a
recular function to EONNIVER until it is called.

FETCH is a CONNIVER grimitive which returns a possib1l1ties lList
of all ftems in the data base which match its _pattern argument.,
!'>0eJ indicates that CBJ should be Lbtound by TRY-NEXT to each
possibility in turne.

TRY-NEXT binas OoJ from the ,ossibilities List TEMP anc removes
the current possibilitye. 1 there 1is no current possibility,
(ADIEU) is evaluated which causes termination of the generator.
The cesired predicate is CVAL_Luated after subst1tutin$ the current
ot ject 1into tne skeleton, (SUBST A B €) is @ LISP tunction which
returns a8 list which is the result of substituting A for every
occurrence of ¢ in Llist C,

(NOTt 0O@d) is o CONNIVER function which places the current value
of Oud o0vto the current possibilities Lliste. .
(AU-REVOIR) returns control from NEXT-0BJ vut Leaves the generator
in a3 suspended state. when TRY-NEXT returns control to NEXT-OEJ,
execution will resume at (GO “LOGP).
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6. Conclysions

Either SAIL or LISP could provide an excellent basis for real-time
planning and execution control of a large automated shop. However, each
language possesses features which facilitate certain tyces ot
operationss In particular, SAIL is generically better at the low level
control of 1/Q devices, and has more exlensive abilities for
interacting with the operating system (especially where file
manipulations are concerned). LISP, on the other hand, is more flexitle
at the higher pleanning Llevels and where system development and

debugging are concerned.

. we envision an "ideal" system as one which merges all tne
desirable features of these two language classess Such a merger woulc
incorporate LISP’s program and data structure format, ausmented where
necessary to accommouate SAIL-like file operations, and possibly LiAF.
SAIL features would be implanted 1in this environment, anc, at trne
implementor”s discretiony, an ALGOL-like syntax (such as MLISP) coulu te
grafted onto the tront of the system to make it more tractable.

in acdition, such a merger should take <care to preserve tne
following desirable features of SAIL anc LISP:

(1) _vata structures should accommodate complex symbolic
infornation as well .as primitive types. As in LISP, data
structures should be free to grow in unrestricted ways, and
storage declarations should be optional to the user.

(c) Proaram and data should, s in LISP, be in the same format.
Such a vrepresentation,  underlijes  (a) a strong _macro
facility, (b) rapid editingy modification ano debugging of
programs, anu (c) self-modifying and self-extending
systems. _The last capavility, for example, enables the
system, given the description of a new type of tool,
automatically to synthesize the programs for controlling
the tool from a library of sub-functions.

(3) Strong 1/0 anu file manipulation facilities, as are found

n SAIL, must be included. A good rancom-access file system
imperative for even moderately Llarge databases. The

tem should have both high and Low Llevel control over

ut, and output formatting which provides control down to
bit lLlevel of the machine.

) =doad

(4) pt subsystem would be desirable.
s bit-wise interrupt control, and
e

Sy such a system as is described

s

p

e

highly-oeveloped interru

; the merger of SA;%‘
i

s symbol ic capabiliti

®D -

]

Rieger 761 could be efficiently imflemented. This would
e i as the network protocol for a arge collection of
a
s
L

autonomous processes where the synthesis and control

("o By |

y parallel events is importante
(s)

VN OTVSITLIP rw

FO

y
n
r software development and debugging, an interpreter
ould exist for the language. Nevertheless, the languaje
should be have a compiler for procduction wusage. LISP
currently satisfies these requirements,

(6) The system should provide for a lar?e, context-sensitive,
associative database, This would involve some new
engjnger1ng to coordinate a MP-like database with an
eftficient random-access file system. [McDermott75al surveys
sume fdeas on this topice

(7) There shoulo be some degree of automatic problem-solving
control which includes a CONNIVER-like context-switching
and process-suspending mechanism., Accommodations should be
made for SAIL-like parallel process controly and emphasis
should be placed on inter-process communications protocols.
Most of the ideas already exist in CONNIVER and SAIL, but
they need to bLe synthesjzed into a unified system.
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