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NOTATION
Polynomial coefficients
Breaath of ship section
Breadth of flat bottom
Diameter or thickness of parallel middle body
Diameter or thickness of flat face
Fullness factor, Equation (26)
Polynomial associatec with ?O
Polynomial associated with El

Curvature

Rate of change of curvature with arc length

=
s3]
[m3
=
il
y—

Polynomial for restraining conditions

Arc length

Axial coordinate

Axial length of forebody
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X Normalized axial coordinate
.Y Offset from centerline
y Normalized offset
Z Vertical distance
Z1 Vertical height cf curved bilge
a, Adjustable conditions
Bj Restraining conditions
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ABSTRACT

Polynomial families that contain a cube-root term
are developed to satisfy requirements of infinite
slope and zero curvature. Adjustable parameters are
used to provide a wide range of curves without in-
flection points. Applications are to flat-faced
underwater bodies and wall-sided ship sections.

ADMINISTRATIVE INFORMATION
This work was authorized and funded by the Naval Sea Systems Command

(Code 03512) Task Area SR 023 01003, Element 61153N.

INTRODUCTION
The inability to cbtain infinite slope with ordinary polynomial
expressions has led to addition of a square-root term in describing round-

nosed bodies. ’

When zero curvature is also required, the square-root
term is inapplicable. It is now proposed to substitute a cube-root term
to provide both infinite slope and zero curvature. This is very useful
since polynomial expressions, even with the addition of a cube-root term,
lend themselves readily to analytical manipulation. Polynomials remain
polynomials under either differentiation or integration.

The requirements of infinite slope and zero curvature occur for under-
water bodies with flat-faced noses and for curves joining ship bottoms to
wall-sided ship sections, among others.

The requirements of infinite slope and zero curvature have also been met
by previously proposed "cubic" polynomials,3 when the dependent variable is

cubed and the independent variable is a polynomial expression. The ''cube

root" polynomial now being proposed may be more convenient to the designer

lGranville, P.S., "Geometrical Characteristics of Streamlined Shapes,"
Journal of Ship Research, Vol. 13, No. 4, pp. 299-313 (Dec 1969). A
complete listing of references is given on page 14.

2

Granville, P.S., "Geometrical Characceristics of Noses and Tails for
Parallel Middle Bodies," International Shipbuilding Progress, Vol. 21,
No. 233, pp. 3-19 (Jan 1974).

3Granville, P.S., "Geometrical Characteristics of Flat-Faced Bodies of

Revolution,”" Journal of Hydronautics, Vol, 7, No. 4, pp. 166-169 (Oct 1973).




since the dependent variable is linear instead of cubed. Usage will deter-
mine the relative merits of these two systems in hydrodynamic applications.

It has been foundl—3 that two adjustable parameters provide a wide
range of geometric families and are still not analyticaliy unwieldly as in
determining geometric limitations. Polynomial expressions for one adjust-
able parameter or for none are also readily obtainable from a two-parameter
system.

Without loss of generality, the curves to be considered start with
infinite slope and zero curvature and end with zero slope and zero curva-
ture. Other conditions may also be considered without difficulty. The
two adjustable parameters to be used are the rates of change of curvature
at each end of a curve.

Normalized coordinates are employed and the resulting polynomial ex-
pressions are examined for suitable ranges of values for the two adjustable
parameters. A particularly stringent geometric requirement is absence of
inflection points. The allowable range of adjustable parameters is ob-
tained by an envelope analysis.

The requirement for zero curvature at both ends of the curve is used
to eliminate discontinuities in curvature at junctions with curves of zero
curvature. Discontinuities in curvature are hydrodynamically undesirable

since they lead to pressure changes which may result in flow separation

and/or cavitation.

CUBE-ROOT POLYNOMIALS

In general, a cube-root polynomial y[x] is

1l n=N
y =a x3 + E a % 1)
3 n=20

where a. and a are coefficients with values to satisfy boundary conditions.
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Derivatives are

_2 a=N
d -
E% =‘% a) x 3 + 2 na X" 1 (2)
3 n=1
9 _ 3 n =N
2
Q_% =-g5a X 3 + E n(n-1) X" 2 (3)
dx 3 n=2
etc.
At x = 0, éﬁ +0 or the slope is infinite as required.
Curvature k may be expressed as
_3
2 2 2
k=42 |1+ (& (4)
2 dx
dx
or 3
dzx [ <dx>2] 2
k=-—5 |1+|= (5)
dy2 dy

1t follows by substitution of Equations (2) and (3) into Equation (5)

that k=0 at x=0 as required.

TWO-PARAMETER CUBE-ROOT POLYNOMIALS
The convenient adjustable parameters are the rates of change of
curvature at the ends of the curves. Normalized coordinates 0<x<1, 0<y<1
are to be used. The case considered here will have zero slope and zero ; j 
curvature at x=1.

From the curvature given by Equatioi. (5), the rate of change of curva- - 3

ture with arc length s, %% = k is fo‘

' .
3 2 2 2 ' 3
@@ EEreT ]
s dy y v )\ ay y
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22 i
where ds = [l + (—§> ] dy is used. ]
dy 3
2
wex-o S g
y dy
Then
3
K =k _=-f4x
ko - kx=0 - ( 3> ™)
dy

For curvature written in the form of Equation (4), there results

3 2472 2 24"
QESE=Q_X 1+ (& YR AV S ARy (8)
s d 3 dx dx 2 dx
X dx
d d2
at x = 1. _2r-)
dx 2
dx
Then
kl = kx=1 = < 3 (9)
dx

x=1

In the case of being considered, the cube-root polynomial has two
adjustable parameters ai, i=1l, 2, the rates of change of curvature at x=0
and x-1, and four boundary conditions Bj, j=1, 2, 3, 4, the two end coordi-
nates and zero slope and zero curvature at x=1. This requires a cube~root
polynomial of the fourth degree

1

_ 3 2 3 4 .
y = a_f + a + a;x +ax” + asx + a,x (10)
3

=
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To evaluate the coefficients, the adjustable parameters o, and boundary
conditions Bj are substituted into the cube-root polynomial equationm,

Equation (10)

1

3
f—) (11)
k

c [y 10 :
azz kl = < 5) or 5= a; + 6a3 + 24a4 = kl (12)
dx =
x=1 3
81: x=0,y=0or aO =0 (13)
82: x=1, y=1or él + a + ay + a, + a, + a, = 1 (14)
3
B.: x=1 dy - 0 or la + a, +2a, +3a, + 4a, =0 (15)
3 * dx 371 1 2 3 4
3
day 2
84: x =1, 5 = 0 or - ) a; + 2a2 + 6a3 + lZa4 =0 (16)
dx =
3
1
6 3
Solving as simultaneous equations results in a; = <:—> s
3 K
L 1
3 3
- =4 22006\ 1 o g 4 386 _x
a = 0, a; 4 81 <~ > g 2" 6 + 7 <~ ) + 7
k k
o 0
1o 1 an
3 k 3
55 (6 s N A
a3 4 - 27 <:—> -5 and a, 1+ 81 <ﬁ > + 5
o o

Substitution of these value- of coefficients and gathering of terms results
in the adjustable parameters as coefficients of independent polynomials of

the form




ale

S A g

where

and

rm
W=

) Eo[x] + El Rl[x] +Q [x]
[o]

-

R

1
=~ _ 3. x_ 3 2 _
Ko = x + 81 (40x 165x~ + 264x - 220)
Kl =% (x 1)
Q=1- (x -

(18)

(19)

(20)

(21)

This is the desired two-rarameter cube-root polynomial satisfying the

specified boundary conditions.

PERMISSIBLE VALUES OF Eo AND El

Not all combined values of io and il result in desired shapes. A

stringent limitation is to have no inflection points. The range of such

values 1s given by a limiting envelope curve which is derived as follows.

2 3
Two conditions are to be satisfied, g—%-= 0 and Q_% = 0, which result in
, dx dx
two simultaneous equations

1
3 _ 2
é—> -2 X 3 + 2 (80x2 - 165x + 88)] + k (2x2 -3x + 1)
i 9 27 1
)
-12 (x-1)=0 (22)
L 8
6 \>[10/73 ~
— — {x + 32x - 33 + k, (4x - 3) =24(x -1) =0 (23)
i 27 1
o
6

)
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A solution by the Cramer rule is

1
3 2 3
‘ko ) 2 2 j
b (22x” - 24x + 5) + 3(30x" - 64x + 33) 3
and
. N _ 3 _
Koo — 12(x-1) Lx (11x + 5) 5x + 11 (25)
1778
3

x O (22x% - 24x + 5) + 3(30x% - 64x + 33)

where x is now an implicit parametzr. For the range of values 0< x < 1,

the result is the envelope curve of Figure 1. Values of the adjustable
1

it sV A WA

<N

parameters <§->3 and El’ which give noninflected curves, are bounded by
k
)

e

the axes and the envelope curve.

RELATIVE FULLNESS OF SHAPE

T -

A simple measure of fullness is a prismatic coefficient F

For constant values of F, straight lines are drawn in Figure 1. Fuller

f 1 5
- F = ydx (26) =
% &
A ==
b which for the cube-root polynomial, Equation (18), becomes 'j§
L 3
" R
2 L 5
£ | 1 (6 K i |
(S — e ——— - —_— -
: F =33 <~) nts (27) ¥
o ks §
;K:. e

;, shapes are in the lower right-hand part of the figure.
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ONE-PARAMETER CUBE-ROOT POLYNOMIALS

A one-parameter family of cube-root polynomials may also be developed

1
\3
/ , for example, is designated as the only adjustable parameter. The

o

X result is a cube-root polynomial, one degree less or a cubic cube-root

?:‘e‘o\
o

polynomial. In this case a, is zero, and Equation (17) gives

1
3

k
40 (6 1 B
81 <E > + 5 " 1=0 (28)

(o)

Figure 1 shows the equation., It is to be noted that the permissible values

of ko and kl for the two-parameter system are much greater than those for

the one-parameter system. Substitution of Equation (28) into the two-

parameter polynomial, Equation (18), produces the one parameter system

1
6\ =
y = <:—> K _[x] + Q[x] (29)
k
)
where
1
K = x - 5x - 16x + 20) (30)
and
3
Q=1+ (x-1 (31)
d2
A study of the inflection point condition ——% = 0 indicates a per~
missible range of values of io given by dx
1
2 (s 8 (32)
16 —\ 7 — 40
kO

for no inflection points. Figure 2 shows the curves with these limiting

values.




ZERO SLOPE
ZERO CURVATURE

N

04

ONE PARAMETER,Eq (29)
~—== ZERO PARAMETER,Eq (33)
0.2 — -
— INFINITE SLOPE —
ZERO CURVATURE
I 1 T N N A S Y O
0 0.2 0.4 0.6 0.8 1.0

X
Figure 2 - One- and Zero-Parameter
Cube-Root Polynomials

(Normalized Coordinates)

ZERO-PARAMETER CUBE-ROOT POLYNOMIAL

~

A nonadjustablie cube-root polynomial may also be designated where ko

and kl are not adjustable parameters. In this case a, and a, are zero,

3 4
1

6\ 9 .- 2
and from Equation (17) it follows that {—] = 5 and kl = 3; this point is

ko
plotted in Figure 1. The cube-root polynomial then reduces to

9 % x2
y=g5x -x+5 (33)

which does not have an inflection point for x < 1. A plot of the zero-

parameter cube-root polynomial is shown in Figure 2.
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FLAT-FACED NOSES
The cube-root polynomial developed here may be used to bridge a flat-
faced nose and a parallel middle body as shown in Figure 3. Both two-

dimensional and axisymmetric bodies may be accommodated. If Df is the

width or diameter of the flat face, and D is the width or diameter of the

parallel middle body, the normalized coordinates are
- X
x =3 (34)

and

== (35)

where X is longitudinal or axial distance from the flat face
Xn is length of the nose
Y is normal or radial distance from the centerline

The origin of the bridging curve is at the outer edge of the flat face,
and the terminal is the junction with the parallel middle body. At both

junctions, zero curvature is satisfied.

K{— CUBE-ROOT POLYNOMIAL
)L P
74
/ |y
/
m
} Q
=
<
. |
4 F
\ PARALLEL MIDDLE BODY
\
\
A
\\ ——————
—— X, —————-1

Figure 3 — Geometry of Flat-Face Noses

t1




WALL~-SIDED SHIP SECTIONS
The cube-root polynomials developed here may also be used to bridge
wall sides and flat bottoms of ship sections as shown in Figure 4. Here

the normalized coordinates are given by

* _B -
X =3T3 (36)

f

and
Z,. -2
i 1
y=—3 (37)
1

i where Y is the offset from the center plane

T

; B is the breadth of the ship section

! B_ is the breadth of the flat bottom
Z is the vertical distance

Z. is the vertical height of the bridging curve

The origin is the junction with the wall side, and the terminal is the

junction with the bottom. At both junctions, zero curvature is satisfied.

¢
~————— HALF BREADTH B/2 ————=|
Q
&
! -
-l
<
=
[ A
CUBE-ROOT POLYNOMIAL :
24
| Y ]
| I :
- /
| FLAT BOTTOM -2 1%
. —-—-—.{
; Figure 4 ~ Geometry of Wall-Sided Ship Sections s
!
& 12




. 4 . . . .
Previous efforts to use ordinary polynomials to fit wall sides
resulted in approximate expressions with terms to the 200th power. The
cube-root polynomial serves the same purpose quite readily in an exact

fashion.

4Kerwin, J.E., "Polynomial Surface Representation of Arbitrary Ship
Forms," Journal of Ship Research, Vol. 4, No. 1, pp. 12-21 (Jun 1960).

13
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