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FOREWORD

This report documents wind tunnel test data and nonlinear roll
moment coefficients extracted from test data for a wrap-around fin (WAF)
missile configuration. The work was conducted under a program to inves-
tigate the nenlinear rolling motion of finned bodirs ot both small and
large angles of attack.

This work was supported by the Naval Air Systems Command
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Aeromechanics Branch, Dr. Frankie G. Moore, Head, Aeromechanics Branch,
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Analysis Department.
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INTRODUCTION

The work described herein is the conclusicn of a larger program to
investigate the roll behavior of finned bodies at small and large angles
of attack. The objective of these efforts was to provide a theoretical
and experimental understanding of rolling motion in order to improve

the dynamic stability characteristics of finned missiles.

The stability characteristics of finned missiles are dependent on
the missile's roll behavior. Because of missile asymmetries such as
manufacturing tolerances and bent fing, many unguided missiles are
designed tc spin to avoid large dispersions. When the missile spins,
potential problems of roll/yaw coupling, roll resonance, and Magnus
instability may arise. A thorough understanding of a configuration's

roll behavior is needed to reduce or eliminate these roll problems.

The Naval Surface Weapons Center, Dahlgren Laboratory (NSWC/DL),
Dahlgren, Virginia, was tasked to experimentally determine static and
dynamic aerodynamic roll moment coefficients for a typical wrap-around
fin (WAF) missile configuration. The roll coefficients were to com-
pletely describe the subsonic rolling motion characteristics of the WAF

configuration at both small and large angles of attack.

Rolling motion data for the missile configuration were obtained
from subsonic, free-rolling wind tunnel tests by recording the actual
motion with a movie camera. The data films were then digitized to pro-
vide roll angle versus time data. A "global"” nonlinear least-squares
fitting procedure, which had been previously developed, was used to

extract the roll moment coefficients from the rolling motion data.

The objective of this report is to document the results of the anal-

ysis and to discuss the subsonic roll characteristics of the WAF config-

uration versus the more familiar cruciform configuration.




WIND TUNNEL TESTS

The WAF missile configuration selected for study was similar to the
scandard WAF configuration chosen by The Technical Cooperation Program
*
(TTCP), Panel 0—7.1 This configuration, shown in Figure 1, was selected

because some basic aerodynamic data were known for this standard config-

uration.

Figure 2 shows the 3-in. diameter WAF model installed in the David
W. Taylor Naval Ship Research and Development Center's 7x10-ft subsonic
wind tunnel. The model was free to roll on a low friction air bearing.
The air bearing was attached to a sting that provided yaw only in the

horizontal plane. As a result, the yaw angle was the total angle of
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Figure 1. WAF Missile Configuration Dimensions

* Raised numerals refer to identically numbered references listed at the
end of the text.
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Figure 2. WAF Missile Model Installed in
Subsonic Wind Tunnel

attack. The configuration was tested at a free-stream velocity of about

80 ft/s and at angles of attack of 0 through 90°.

Dynamic pressure during the test was about 8.0 lb/ft2 with a Reynolds
number of approximately 5.lx105/ft. Figqure 3 shows the coordinatc¢ system

and defines several terms used in this report.

Rolling motion of the model was recorded at each selected angle of

attack using a high-speed movie camera. The camera was mounted on the
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Figure 3. Definition of Terms and Coordinates System

sting with the axis of the lens always parallel to the axis of rotation

of the missile. The trailing edges of the fins were coded so that the

roll orientation of the model could be determined from each frame of the
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movie film. A timing light provided reference marks on the film at the
rate of 120 mark/s so that the film frame number could be correlated to

time. Thus, the digitized film provided records of roll angle versus
time.

Different types of rolling motion were obtained from the model by

controlling its initial conditions. A solenoid-actuated pin located at

the base of the model locked the model at a fixed roll angle until the

wind tunnel had stabilized at test conditions. At the beginning of some

data runs, the pin was pulled unlocking the model so it could roll freely.
In other runs, the missile was spun up to high spin rates using an air
jet, which was created by a nozzle on the end of a high pressure pipe.

The jet blew against the missile's fins spinning the missile. At the
beginning of a data run, the jet was removed and the camera was then
turned on. The initial conditions used on runs at a particular angle of

attack depended on the type of rolling motion that was exhibited. At-

tempts were made to record all of the modes of motion at each of the

angles of attack tested.

EQUATION OF MOTION

The "global" nonlinear least-squares fitting procedu. used to ex-~
tract the roll moment coefficients required an equation of motion which

could adequately describe the roll characteristics of the test configura-

tion in order to fit the observed test data. The equation used in this

analysis was one which had been previously developed for cruciform con-

figurations. The general form of the equation allowed consideration of

coefficients for the WAF missile which, because of symmetry considerations,

would be identically zero for a cruciform missile.

The equation of motion for the cruciform-finned missile was developed

from observation of its basic free-rolling motion characteristics.
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Nicolaidesz'a’4 labeled these characteristics as "linear" rolling motion,

roll "slowdown," roll "lock-in," roll “break-out," and roll "speed-up."
These phenomena occur as the missile increases in angles of attack from
0 to 90°. Figure 4 shows these roll characteristics (steady-state roll
rates) as a function of the angle of attack for a typical cruciform-~

finned missile with/without fin cant at low subsonic speeds.
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Figure 4. Characteristic Rolling Motion Regions
of Cruciform-Finned Missiles With/
Without Fin Cant




Detailed discussion of this characteristic rolling motion and the
evolution cf the differential «quation describing it are contained in
References 5 through 9 and will not be repeated here. The complete

equation of motion, taken from Reference 7, is:

3 . K
s - ]
= Ya ,
Y=90 X (2V) Py (cjk cos 4KY + S, sin 4kY) (1)

+ C cos Y + S sin Y
ac as

Y(0) = ¥ Y0) = Y

0

Equation (1) was believed to be adequate for fitting the rolling motion
of the WAF configuration since it appeared that the motion observed in
the tests could be described by the equation. The correspondence between
the aerodynamic coefficients used in Equation (1) and more conventional
coefficient nomenclature is shown in Table 1. The 15 coefficients shown
in Table 1 were considered in fitting the roll data. Fourteen of these
coefficients were considered in previous work done by Cohen, Clare, and
Stevens7 waen they applied the analysis technique to a cruciform-finned
configuration. In the present analysis, an additional coefficient,

Cy o Was considered because of possible differences in the damping
torque in the positive and negative spin directions because of WAF fin
curvature, Because of the similarities in the roll data between WAF

and cruciform-finned missiles, the techniques used by Cohen, Clare, and

Stevens7 were applied directly to the WAF configuration data.

DISCUSSION OF WIND TUNNEL DATA

Figures A-1 through A-28 show plots of roll angle versus frame
number which were obtained by digitizing film data from the wind tunnel

tests. The roll angle scale was plcotted on a scale from 0 to 360° in




Table 1. Aerodynamic Roll Moment Toefficients
Considered in Data Fits

Nomenclature
Standard Equation Description
c, 6 c Static roll moment coefficient
16 00
C2 8 COl Variation of static roll moment coefficient with
3(4Y) roll angle (Y)
C 8 o
£
$(8Y) 02
Cy C10 Linear roll damping moment coefficient
P
C2 Cll Variation of linear roll damping moment coefficients
p(4Y) with roll angle
C C
12
p(8Y)
Cy 2 C20 Quadratic roll damping moment coefficient
P
C, 3 C30 Cubic roll damping moment coefficient
P
C2(4Y) 501 Induced static roll moment coefficients
% (81 So2
% (12m) So3
e (16M) S04
2 (20m) Sos
Cac C06 Aerodynamic/mass asymmetric roll moment coefficients
s
as SO6
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order to make usable~sized plots. There are two data runs with different

initial conditions for each angle of attack that were tested.

Examination of the data in Figures A-1 through A-28 allows some
relevant comparisons of the rolling motion between WAF and cruciform-
finned configurations. (Steady-state roll rates of a cruciform missile
versus angle of attack are shown qualitatively in Figure 4. Reference 8
presents actual roll angle history data for a cruciform missile at high
angles of attack.) The WAF rolling motion data at angles of attack of
0 and 5°, Figures A-l1 through A-4, show that if the missile was initially
spun up the roll rate damped to a zero steady-state rate. Figures A-2
and A~4 show small roll rates at the end of the data runs, Because the
csiera film magazine was small, the camera stopped before the motion
reached a zero steady-state rate. Small static roll moments at a 0°
angle of attack have been measured at various Mach numbers for the WAF
configuration. These moments have been small and appear to be due to

the WAF curvature.l Because there was no intentional fin cant and the
asymmetry moment may have been larger than the static roll moment, the

model did not exhibit a steady-state roll rate at a 0* angle of attack.
B cruciform-finned configuration with no fin cant would exhibit similar
motion at low angles of attack. At these small angles of attack, oscil-
lations in the roll angle, vy, indicate that the model has a slight aero-

dynamic asymmetry orx mass imbalance.

At angles of attack from 10 through 30°, Figures A-5 through A-12,
the WAF configuration exhibited a positive steady-state roll rate that
increased with increasing angle of attack. A cruciform~finned missile
with fin cant would have exhibited a "slowdown” or decrease in the spin
rate with increasing angle of attack. At each angle of attack, two
different initial conditions were used. When the model was spun up to a
high negative spin rate, it reversed the roll direction to a positive
steady-state rate. When the WAF model was released at a fixed roll angle

with zerc roll rate, it spun up again to a positive steady-state rate.

9
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This type of motion at a particular angle of attark is similar to motion

of a cruciform wissile with large fin cant.

The WAF missile's rolling motion showed strong nonlinearities that
are evident in the angular roll data at angles of attack above 30°. At
a 35° angle of attack, Figures A-13 and A-14, the missile exhibits
motion similar to the motion at lower angles of attack except for fluctua-
ticns in the roll rate at low roll rates. These fluctuations indicate
the presence of the induced roll moment which is dependent on the missile
roll angle, Y, and on the angle of attack. Roll "lock-in," which can
be attributed to the induced roll, was also observed at a 35° angle of
attack during the test. However, irregularities in the run showing
"lock-in" at a 35° angle of attack precluded its analysis. Dual modes
of motion are possible at a 35° angle of attack depending on the initial

conditions, YO and Y Similarly, dual modes may be exhibited by a

cruciLform-£finned misgile with fin cant at a 35° angle of attack.

At a 40° angle of attack, the damping is no longer a linear function
of the spin rate. At moderately negative spin rates, Figure A-15, the
damping torgque is nearly zero. In Figure A~16, the damping is positive
at low spin rates near zero and negative at the positive steady-state
spin rate. These same damping characteristics are exhibited by a
cruciform~-finned missile with fin cant in the beginning of the roll

"speed-up” region.

At a 45° angle of attack, Figures A~17 and A-18, the roll oscilla-~
tion amplitude grows, "breaks-out," indicating that the damping is posi-
tive at low spin rates when the model is released. However, at this
angle of attack, the WAF missile has both positive and negative steady-
state spin rates that are nearly equal. These characteristics are again
similar to a cruciform-finned missile with no fin cant in the roll "sgpeed-~
up" region where the damping has a cubic form., It is also important to

notice that slightly different initial roll angles can cause the model

.

10
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to "break-out" in either positive or negative spin direction; a charac-

i

teristic of a nonlincar system.

Above a 45° angle of attack, Figures A-19 through A-28, the WAF
configuration exhibits roll "break-out" and roll "speed-up” only in the
positive direction. Similar characteristics are exhibited by cruciform-
finned missiles with large positive fin cants at angles of attack in the

bFeginning of the roll "speed-up” region.

All of the rolling motion data shown in Figures A-1 through A-28
were repeatable and, therefore, are predominantly a steady aerodynamic
phencmenon. The”ﬁdtion is nonlinear in nature and requires a nonlinear
cquation to completely describe the dynamics throughout the 0 to 90°
angle of attack range. However, the WAF motion and its nonlinearities
were found to be quite similar in many respects to those observed pre-

viously for a cruciform-finned missile.

EXTRACTION OF AERODYNAMIC ROLL MOMENT COEFFICIENTS

A "global” nonlinear least-squares procedure formulated by Cohen
and Clare6 was used to extract roll moment coefficients from the observed
angular roll data. This procedure fits Equation (1) to observed data

and extracts a set of roll moment coefficients for a particular angle of

attack.

The fitting process requires the variation of the sum of the squares
of the residuals (between observed and computed roll angle) with respect
to each of the perturbed (fit for) coefficients to vanish. The coeffi-
cients are incremented in an iterative fashion until the sum of the
gsquares of the residuals converge. All of the observed data for a par-
ticular angle of attack are fit at the same time. The observed data are
divided into segments because the sum of the squares of the residuals

may bocome too large for convargence when all the data are fit in a

11
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single segment. Large residuals may be due to truncation of the equation
of motion, unmodeled turbulence, or other unmodeled transients in the

wind tunnel.

Estimates of C , C 0’ and S were used to begin the fitting

0o’ €10* 3 o1
process. Estimates of the initial roll angle and roll rate were deter-
mined from observed data. Equation (1) was fit "locally" to each of the
observed data segments using the constant estimates of the roll moment
coefficients to determine the initial conditions (YO and ;0) for that
segment independently of the other segments. Then, all of the segments
of observed data were f£it "globally" to obtain a new set of roll moment
coefficients and new segment initial conditions. Once a fit was obtained,
additional coefficients were included in an iterative fashion until all

of the desired coefficients were obtained or until the fitting process
would not converge if additional coefficients were introduced. Because
the data were segmented, jumps or discontinuities occurred in Y and }

at the beginning of each segment. Segmenting the data allowed restart

of the motion in regions where the roll motion was sensitive to accumu-
lated error in Y or Y. 1In order to improve the accuracy of extracted

roll moment coefficients, the segments were made as large as possible
while allowing for convergence. These techniques were applied to each

data run until a set of roll moment coefficients were obtained at each

angle of attack tested.

The methods and equations employed in the "global"” nonlinear least-
squares fitting procedure are contained in detail in References 6 and 7.
A description of the computer program utilizing the fitting technique

is presented in Reference 10.

DISCUSSION OF RESULTS

Table 1 shows the roll moment coefficients which were introduced in

the extraction process. Attempts were made to extract all 15 coefficients

12
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at each angle of attack. However, some of the higher order terms which
varied with roll angle, vy, could not be extracted at all angles of attack
because the fitting technique would nect converge when these coefficients
were introduced. There may not have been sufficient rolling motion data
of the particular nature required to extract all of the coefficients at
each angle of attack. Analysis of extraction statistics also indicated
that most of the high order terms which varied with roll angle did not
improve the fits significantly. Values of some higher order terms are
believed to be fit to system noise, and those results wer. not considered
to be reliable. However, the most important, first-order roll moment
coefficients were extracted at all angles of attack and those results

are presented. These four basic coefficients are (1) static roll

moment coefficients, Cgﬁé, (2) linear roll damping moment coefficient,
Cgp, {3) cubic roll damping, C2P3, and (4) induced roll moment coeffi-
cient, CQ(4y). These coefficients appear to adequately explain the roll-

ing motion characteristics of WAF at all angles of attack tested.

Figures B~1 through B-27 show comparison plots of the observed roll
data and the computed roll angular data. The observed data corresponds

to the data shown in Figures A-l through A-28 after the frame numbers

have beén converted intco time. The computed data were generated at each

angle of attack using Equation (1) and the entire set of roll moment
coefficients. The roll moment coefficient sets used to make the compari-

son plots included all of the higher order terms.

The small lines normal to the computed plots indicate where segments
occurred in the computed data. RBoth data runs at each angle of attack
were fit simultaneously. Figures B-l1 through B-27 show the portions of
the observed data that were actually used in the fitting process to deter-
mine the roll moment coefficients. The deleted data exhibited motion
that appeared to be due to unmodeled wind tunnel transients. No compari-
son plot is presented for data Run 23 (a = 90°) because only a few small

13
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segments of this run were included 1in the fitting process.l In general,
Figures B-1 through B-27 show that the computed data match the observed

data well.

Figure 5 shows comparison plots of the computed steady-state roll
rate and the last observed spin rates versus angle of attack for the
WAF configuration. The computed steady-state roll rates were calculated
using the entire extracted set of roll moment coefficients at each angle
of attack. The agreement between the computed and observed rates is
good. The last observed rates were taken from the data runs and were
not considered to be actual observed steady-state rates because the camera
magazine size limited the data run recording time, and the motion may
not have completely reached the steady-state motion in that time period.
As a result, the last photographed spin rate at a 70° angle of attack
was much less than the actual observed steady-state rate. It should be
noted that observed rates at a 45° angle of attack indicate both positive
and negative steady-state spin rates. The roll "lock-in" observed at a
35° angle of attack is denoted by the darkened bar on the angle of attack
axis.

< PREDICTED STEADY STATE ROLL RATE
X LAST OBSERVED SPIN RATE

®

02+
S
Lo,

o4 &

<
OQl £
1geel® = X

X

e L
-0t ROLL SPEED UP

STEADY STATE SPIN RATE (pd/2V)

UINEAR

1 i i

1

L] 1 ¥

0 20 40 60 80 166
ANGLE OF ATTACK, o {dag)

4

Figure 5. Comparison of Computed and Observed
Steady-State Roll Rates for WAF
Missile Configuration
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By comparing Figures 4 and 5, the qualitative differences in roll-
ing motion characteristics between a cruciform-finned missile and the
WAF missile can be seen. The WAF missile has "linear," "lock-in," "break-
out," and roll "speed-up" regions similar to the cruciform-~finned missile
with significant differences in these regions. These differences can be
explained by examining the variation in the four, first-order roll moment
coefficients with angle of attack. Figures 6 through 9 show plots of

these four basic coeffic.ients versus angle of attack.

The WAF configuration's "linear" region occurs between a 0 and 5°
angle of attack. As discussed in Reference 5 for the cruciform-finned
missile, the linear damping moment and the static roll moment (fin cant
moment) are the predominant moments acting on the missile in the "linear"
region. Because the WAF configuration had no intentional fin cant and
the static roll moments were smaller than the asymmetry moments, the
steady-state roll rates were zero. Although the steady-state rates are
zero in this region, the region is not truly "linear" because the magni-
tude of the linear damping moment increases with the angle of attack.

The other roll moment coefficient values are insignificant in this region.

As the angle of attack increases from 5 to 30°, the steady-state
roll rates of the WAF missile increase rapidly. The static roll moment
coefficient, shown in Fiqure 8, is increasing almost exponentially with
the angle of attack in this region. However, Figure 6 shows that there
is an increase in the negative damping torque with an increasing angle
of attack. Because the static moment increases more rapidly than the
damping moment, the steady-state roll rate increases with the angle of
attack. A cruciform-finned missile with fin cant would exhibit a constant
or decreasing static moment in this region while the damping moment
increased; thus, a roll "slowdown" region occurs at these angles of attack.
Increases in the cubic damping coefficient in this region indicate that

the damping moment is becoming more nonlinear at higher spin rates. The
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amplitude of the induced roll moment is increasing with the angle of
attack in this region. Because the static roll moment is always large,

no oscillatory motion is possible.

However, at a 35° angle of attack, the induced roll moment is
larger than the static roll moment and the linear damping torque is
negative. Because these two conditions are satisfied, it is possible to
have dual modes; (1) a steady-state roll rate and (2) roll "lock-in"
motion. The linear roll damping coefficient is very small and the cubic
damping coefficieat is large indicating that the roll damping torque is

a nonlinear function of spin rate even at moderate spin rates.

At a 40° angle of attack, the linear damping coefficient is slightly
positive and the cubic damping coefficient is negative indicating the
beginning of the roll "speed-up" region. There is no negative steady-
state roll rate because the positive static roll moment drives the
missile in the positive spin direction after roll "break-out." However,
at a 45° angle of attack, the static roll moment is nearly zero and the
WAF configuration exhibits both positive and negative steady-state rates.
This motion is characteristic of a cruciform-finned missile with no fin

cant in the roll "speed-up" region.

At angles of attack from 50 to 90°, the damping moment is a cubic
function of the spin rate. The WAF configuration "breaks-out" and
"speeds-up" only in the positive direction because there is a positive

static roll moment driving the motion.

By examining the average roll moment coefficient, the nonlinearity
of the roll danping moment and the effect of the static roll moment may
be seen at particular angles of attack. Neglecting the coefficients
that vary with roll angle, Y, the =verage roll moment coefficient may be
defined as:

C ==C9‘

a i\ 2 i)
) §+cy (zv) *C 2 (5'\7) *C o3 (2v) (2)
P P P

18

$




m@%ﬁ%@ﬁg}}w?“#v,‘-‘*,ﬂgaw'g"sf{w

Y

i

Figures C-1 through C-14 show plots of Cﬁ versus nondimensional spin
rate (&d/zv) at all of the angles of attack tested. Steady-state roll
rates can be determined from these figures. When E; = 0 and 65;76(Yd/2v)

< 0, then a steady-state solution exists.

Figures C-1 through C~-6 show that the roll damping moment is nearly
linear at angles of attack from O to 30°. dote that at a 20° angle of
attack, C2P2 and C2p3 were not included in the calculatiocn of EZ because
the extracted values of these coefficients were incorrect. The incorrect
coefficient values would have predicted infinite steady-state rates.

Spin rates may not have been high enough to extract these higher order
damping coefficients correctly. The cubic damping coefficient appears
to contribute little to the damping moment at these low andles of attack,
especially at low spin rates. Also, the cubic damping coefficient 1s

not needed at low angles of attack to explain the WAF rolling motion
characteristics.

At 35 and 40° angles of attack, Figures C-7 and C-8 show that the
roll damping moment is nonlinear. This is a region of transition from
a negative linear damping coefficient at a 30° angle of attack to a
positive linear damping coefficient with a negative cubic damping coeffi-
cient at a 45° angle of attack. The cubic damping coefficient (C£p3)
becomes important in this region and at higher angles of attack. At
35°, only one steady-state roll rate is shown in Figure C-7; however,
two steady-state roll rates were observed (dual modes). The other steady-
state condition is roll "lock-in" caused by the large induced roll moment
coefficient (Cg(479 that was neglected when calculating the average roll
moment coefficient. Figure C-8 shows that at a 40° angle of attack there
is a large spin rate region where the roll damping moment is nearly zero.
In the region where the damping is small, the motion may not be repeat-
able because of the high susceptibility to wind tunnel transients. Both

the linear damping coefficient and the cubic damping coefficient are

19




needed to explain the rolling motion at these angles of attack, even

though the WAF missile is not in its roll "speed-up" region.

At a 45° angle of attack, Figure C-9, the roll damping moment has a
cubic form similar to the cubic form shown for the cruciform-finned
missile with no fin cant.7 Both pcsitive and negative steady-state
rates are predicted in Figure C-9 At angles of attack above 45°, the
roll damping moment is cubic in nature; however, the static roll moment
is large and only a positive steady-state solution exists. Figures C-10
through C-14 show that the major difference in WAF configuration and a
typical cruciform-finned missile in the roll "speed~-up" region is the

WAF's large static roll moment.

The static induced roll moment coefficient (C2(4Y)) extracted for
the WAF configuration showed trends similar to a cruciform-finned missile.
Figure 10 shows a comparison plot of the induced roll momer: coefficient

versus angle of attack for the WAF and cruciform-finned missile.

O WAF CONFIGURATION
—— CRUCIFORM s
CONFIGURATION
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* Danisls, P “A SRudy of the Womlinear Rullify Motion of a Four-Firewd Missile,™
Journal of Spacerreft ard Rockats, Volume © Mo &, Mpeil, 1970

Figure 10. Comparison of WAF and Cruciform-Finned
Missile Induced Rolling Moment Coeffi-
cient
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Insufficient quadratic damping coefficients (Cng) were extracted
to detemine differences in the roll damping moment in the positive and

negative spin directions.

Phase planes of ; versus Y were generated at various angles of
attack by integrating the roll equation of motion, Equation (1), using
the four, first-order roll moment coefficients and the two roll asymmetry
terms. Different initial conditions were used to start each trajectory.
The phase planes exhibited the game general characteristics of motion
observed in the wind tunnel data runs. Figures 11 through 15 show the
types of motion exhibited at 0, 30, 35, 45, and 70° angles of attack.

The phase planes show all of the general types of motion exhibited in

the different roll regionmns.

SUMMARY AND FUTURE PLANS

Four basic roll moment coefficients were extracted from dynamic
subsonic wind tunnel test data of a WAF missile configuration at angles
of attack from O to 90°. A set of coefficients was extracted at each
angle of attack tested. These four basic coefficients were static roll
moment, static induced roll moment, linear roll damping, and cubic roll
damping. They were shown to be adequate to explain the rolling motion
characteristics of the WAF missile over the entire angle of attack range.
A comparison of the basic coefficients for a cruciform-finned configura-
tion and the WAF configuration shosed that the primary difference in the
configurations is the WAF's static roll moment coefficient. This static
roll moment is thought to be due to the curvature of the WAF. The damp-
ing roll moments and induced roll moments appeared to be similar to the
moments for a cruciform-finned missile. The variation of the roll damp-
ing moment with spin rate was presented for angles of attack from 0O to
90°. The roll damping moment was nearly a linear function of spin rate

up to angles of attack of 30°, At higher angles of attack, the damping

21
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required both linear and cubic coefficients to describe its variation
with spin rate. Extracted induced roll moment coefficient (C2(4Y))

results were similar to those measured statically for a cruciform-finned
missile.

!
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APPENDIX A
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Figure A-1l. Observed Roll Angle Versus Frame Number
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APPENDIX D

NOMENCLATURE
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NOMENCLATURE

Body reference area (ft)

Aerodynamic/mass asymmetry roll moment coeffi-
cients

Roll moment coefficient, defined in Equation (1)
(see Table 1)

Average roll moment coefficient per revolution,
defined in Equation (2)

Linear roll damping moment coefficient
Quadratic roll damping moment coefficient
Cubic roll damping moment coefficient

Variation of the linear roll damping moment
coefficient with voll angle

Induced static roll moment coefficients

Static roll moment coefficient

variation of the static roll moment coefficient
with roll angle

Body reference diameter (ft)

Axial moment of inertia, slug (ftz)
Roll rate (rad/s)

Dynamic pressure, pV2/2 (lb/fﬁz)
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NOMENCLATURE (Continued)

Time (s)
Velocity (ft/s)

Coordinates of wind tunnel axis system, defined
in Figure 3

Coordinates of model body axis system, defined
in Figure 3

Angle of attack (rad or deq)

Roll orientation angle (rad or degq)
Roll rate, y= p (rad/s)

Roll angular acceleration,;==§ (rad/s)

Fin cant deflection angle (rad or deg)
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