NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

GENERALIZED HELICOPTER ROTOR
PERFORMANCE PREDICTIONS

by

James William Loiselle

September 1977

Thesis Advisor: L.V. Schmidt

Approved for public release; distribution unlimited.
Generalized Helicopter Rotor Performance Predictions

Abstract

The Generalized Rotor Performance (GRP) program is a computer program designed for calculating forward flight performance of a helicopter rotor system at a specific flight condition. It can be used to evaluate either an articulated or a hingeless single rotor system in forward flight or in a wind-tunnel test. The program was...
originally designed by the Sikorsky Aircraft Company and purchased by the United States Navy.

The goals of this thesis were (1) to reinvestigate the theory and logic used in the program, (2) to add selected desirable features to the program, (3) to produce a much needed Users' Manual, and (4) to run an analysis comparing the program's calculated results against manufacturer's data. These goals were accomplished and the results of the analysis indicated that the program produces highly accurate results within the normal cruise range of a modern helicopter.
Approved for public release; distribution unlimited.

Generalized Helicopter Rotor
Performance Predictions

by

James William Loiselle
Lieutenant, United States Navy
B.S., United States Naval Academy, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September, 1977

Author

James William Loiselle

Approved by:

Louis V. Schmidt
Thesis Advisor

Chairman, Department of Aeronautics

Dean of Science and Engineering
ABSTRACT

The Generalized Rotor Performance (GRP) program is a computer program designed for calculating forward flight performance of a helicopter rotor system at a specific flight condition. It can be used to evaluate either an articulated or a hingeless single rotor system in forward flight or in a wind-tunnel test. The program was originally designed by the Sikorsky Aircraft Company and purchased by the United States Navy.

The goals of this thesis were (1) to reinvestigate the theory and logic used in the program, (2) to add selected desirable features to the program, (3) to produce a much needed Users' Manual, and (4) to run an analysis comparing the program's calculated results against manufacturer's data. These goals were accomplished and the results of the analysis indicated that the program produces highly accurate results within the normal cruise range of a modern helicopter.
TABLE OF CONTENTS

I. **INTRODUCTION** ... 9

II. **METHOD OF ANALYSIS** ... 15
 A. **GENERAL COMMENTS** .. 15
 B. **ANGLE OF ATTACK CALCULATIONS** 18
 C. **METHOD OF SOLUTION FOR THE FLAPPING EQUATION** 24
 D. **FORCES, MOMENTS AND RADIAL INTEGRATION** 27
 E. **AZIMUTHAL INTEGRATION METHOD** 27
 F. **MAJOR ITERATION** .. 28
 G. **FLOW CHART** ... 31

III. **GRP USERS' MANUAL** .. 33
 A. **MAIN ITERATION OPTIONS** ... 33
 B. **GRP DATA DECK ORDER** ... 36
 C. **AIRFOIL DATA DECK ORDER** 36
 D. **SPAR DATA DECK REQUIREMENTS** 41
 E. **SAMPLE DATA INPUT FORM** .. 42
 F. **CASE INPUT LISTINGS** ... 48
 G. **CASE INPUT DEFAULT VALUES** 51
 H. **CASE INPUT DATA** .. 52
 I. **CASE INPUT FORMAT** .. 74
 J. **CASE OPTIONAL OUTPUT INDICATORS** 75
 K. **IBM 360 EXECUTION CONTROL CARDS** 77
 L. **SAMPLE PROGRAM OUTPUT** .. 79

IV. **GRP SAMPLE ANALYSIS** .. 106

V. **CONCLUSIONS** ... 113

GRP COMPUTER PROGRAM .. 114

LIST OF REFERENCES .. 137

INITIAL DISTRIBUTION LIST .. 138
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Weight (lbs)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table I</td>
<td>Rotor horsepower</td>
<td>16359</td>
<td>109</td>
</tr>
<tr>
<td>Table II</td>
<td>Rotor horsepower</td>
<td>17321</td>
<td>110</td>
</tr>
<tr>
<td>Table III</td>
<td>Rotor horsepower</td>
<td>19246</td>
<td>110</td>
</tr>
<tr>
<td>Table IV</td>
<td>Rotor horsepower</td>
<td>19658</td>
<td>111</td>
</tr>
<tr>
<td>Table V</td>
<td>Rotor horsepower</td>
<td>20829</td>
<td>111</td>
</tr>
<tr>
<td>Table VI</td>
<td>Rotor horsepower ratio comparison</td>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>BLADE ELEMENT DIAGRAM</td>
<td>16</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>ROTOR BLADE MOMENT DIAGRAM</td>
<td>16</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>SPANWISE FLOW DIAGRAM</td>
<td>19</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>UT DIAGRAM</td>
<td>21</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>UP AND UR DIAGRAM</td>
<td>22</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>RESULTANT GRP FORCE CALCULATION DIAGRAM</td>
<td>30</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>REQUIRED GRP FORCE DIAGRAM</td>
<td>30</td>
</tr>
<tr>
<td>FIGURE 8</td>
<td>GRP FLOW CHART</td>
<td>32</td>
</tr>
<tr>
<td>FIGURE 9</td>
<td>RESOLUTION OF GRAVITATIONAL FORCE</td>
<td>60</td>
</tr>
<tr>
<td>FIGURE 10</td>
<td>SHAFT AND CONTROL AXIS DIAGRAM</td>
<td>60</td>
</tr>
<tr>
<td>FIGURE 11</td>
<td>TIP SWEEP CALCULATION DIAGRAM</td>
<td>73</td>
</tr>
</tbody>
</table>
TABLE OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Sectional Coefficient of Drag</td>
</tr>
<tr>
<td>CL</td>
<td>Sectional Coefficient of Lift</td>
</tr>
<tr>
<td>CM</td>
<td>Sectional Coefficient of Moment</td>
</tr>
<tr>
<td>U</td>
<td>Resultant of UP, UT and UR velocities</td>
</tr>
<tr>
<td>UR</td>
<td>Velocity perpendicular to the plane of rotation</td>
</tr>
<tr>
<td>UR</td>
<td>Velocity in radial direction in plane of rotation</td>
</tr>
<tr>
<td>UT</td>
<td>Velocity tangential to the plane of rotation</td>
</tr>
<tr>
<td>UTUR</td>
<td>Resultant of UT and UR velocities</td>
</tr>
<tr>
<td>c.75</td>
<td>Chord at 75 percent blade radius</td>
</tr>
<tr>
<td>v</td>
<td>Forward flight velocity, feet per second</td>
</tr>
<tr>
<td>a</td>
<td>Lift Curve Slope, rad3</td>
</tr>
<tr>
<td>α_5</td>
<td>Shaft axis angle, degrees</td>
</tr>
<tr>
<td>β</td>
<td>Blade flapping angle</td>
</tr>
<tr>
<td>λ</td>
<td>λ_{MPDA}, Inflow Ratio in shaft axis system</td>
</tr>
<tr>
<td>ω</td>
<td>Blade rotational velocity, radians per second</td>
</tr>
<tr>
<td>Θ_{75}</td>
<td>Pitch angle at the 75 percent radius point at the PSI equal zero azimuthal position</td>
</tr>
<tr>
<td>ϕ</td>
<td>PSI, blade azimuthal position</td>
</tr>
<tr>
<td>μ</td>
<td>Advance Ratio in the shaft axis reference system</td>
</tr>
<tr>
<td>ρ</td>
<td>Air Density</td>
</tr>
</tbody>
</table>

\[\mu = \frac{V \cos \alpha_5}{\omega R} \]
I. INTRODUCTION

The Generalized Rotor Performance (GRP) program is a computer program designed for calculating forward flight performance of a helicopter rotor system at a specific flight condition. It can be used to evaluate either an articulated or a hingeless single rotor system in forward flight or in a wind-tunnel test. The GRP series of programs were originally designed by the Sikorsky Aircraft Corporation with the cooperation of the United Aircraft Research Laboratories. Work began on this series of programs in 1955 and has continued to date. The United States Navy purchased this program in 1964 and has used it in the Naval Air Systems Command as a helicopter performance computer program.

The goals of this thesis were (1) to reinvestigate the theory and logic used in the program, (2) to ensure that the Navy's version of this program performed the calculations according to the design theory, (3) to produce a much needed Users' Manual, (4) to add certain desirable features to and correct errors found in the program, (5) to run an analysis comparing the program's calculated results against manufacturer's data and (6) to document areas that may need further attention. The work was done with the help and cooperation of both faculty at the Naval Postgraduate School and personnel in the Naval Air System Command.

The output available from the program includes rotor shaft horsepower, rotor profile horsepower, main rotor torque, lift, drag, thrust, H force, rolling and pitching moments and other forces and moments calculated in the shaft, control and relative wind reference axis systems. Also available are the azimuthal histories of the blade's flapping angles, rates and accelerations, plus azimuthal and
radial histories of angles of attack, CL, CD, Mach number, sweep angles and air load distribution. In addition, the program will calculate a Fourier coefficient series for flapping angle, radial station air loads and azimuthal Z force distribution.

The program can be divided figuratively into three main routines. The first routine determines a steady state flapping solution. The second routine determines the forces and moments generated by this flapping solution. The third routine compares the calculated results of lift, drag and other options to those desired by the user. If the calculated values are not within a predetermined tolerance, the program will, by use of a first order Taylor series, generate new values to reenter into the blade flapping routine.

The program uses a combined blade element/momentum strip theory. The blade's radius is divided into a maximum of 15 segments. The blade is advanced around the azimuth in a prescribed number of degrees. At each particular azimuthal position, velocities are computed in the perpendicular (UP), tangential (UT) and radial (UR) directions. From these velocities and a known pitch angle distribution, the local angles of attack are calculated. From these angles of attack, the forces at each radial blade segment are determined. Once the forces are known, the local moments can be found. From the summation of these moments at a particular azimuthal position, the blade flapping acceleration is calculated. This acceleration, combined with the calculated flapping angle and rate, is used to advance the blade to the next azimuthal position. A steady state flapping condition is assumed to exist when the blade flapping angle and rate at the PSI equal zero and 360 degree azimuthal position are within a prescribed tolerance of each other.
This method of calculation accounts for retreating blade stall, the reverse flow region and compressibility effects. The program can accommodate a full range of geometric and design variables including flapping hinge offset, elastic flapping hinge restraint, first and second harmonic cyclic inputs and spanwise variations in blade twist, local mass densities, chord and tip sweep. The program uses no small angle assumptions and has no restrictions on tip speed, forward velocity or advance ratio. The rotor system can be oriented in any direction in space and can be given any rotor shaft or aircraft roll, pitch or yaw angular velocities. The program will perform calculations in straight and level flight or a uniform induced velocity may be added to simulate climbs and descents. The GRP will accept up to five different airfoil data decks plus one blade spar characteristics data deck. Lift and drag information is entered into the program in the form of CL and CD versus Angle of Attack Tables for up to 15 different Mach numbers. The user has a choice of six methods of solution depending upon the desired restrictions. The user has available nine printout options, two of which are program debugging options. There are also error printout messages that will assist the user having difficulty with the program.

In the method described above, the flapping motion determined is about a flapping hinge offset, and with the elimination of all assumptions that the flapping angles are small, the rotor control axis (axis of no feathering) and the tip path plane axis (axis of no first harmonic flapping) are no longer considered convenient for reference in the analysis of rotor blade motion. Therefore, the axis selected for use in the analysis is the rotor shaft axis system. All forces, moments and angles are referred to the shaft axis system with the exception of some of the final output forces which are referred to the relative wind and control axis systems.
With the use of the computer, the GRP program eliminated many of the simplifying assumptions of the earlier classical theory originated by Wheatley and Bailey in Ref. 1 and 2. The assumptions of the classical theory did not impose serious limitations in low speed flight, but as helicopter speeds increase, the inaccuracies inherent in the theory seriously limit the usefulness of this method. The assumptions of the Wheatley-Bailey theory which are not present in the GRP program include the following.

1. The flapping and inflow angles are assumed small.
2. The lift and drag coefficients are approximated by a linear and a quadratic variation, respectively, with angle of attack.
3. The effects of Mach number on CL and CD are not considered.
4. Sectional characteristics in the reverse flow region are the same as those in the conventional flow.
5. The sectional characteristics of blade twist, tip sweep, flapping hinge offset and root cut out are ignored.

While the GRP program represents a refined approach to the classical theory, there are still some basic assumptions which make the GRP subject to error. These are:

1. Steady state two-dimensional airfoil data are used.
2. Quasi-static blade analysis is used.
3. The rotational speed about the shaft axis is constant. There is no lead or lag motion in the program.
4. The rotor blade is assumed rigid in bending and torsion.
5. The rotor inflow is assumed uniform unless varied by the user.

6. Spanwise flow is incorporated into the calculation of blade angle of attack; however, it is assumed that the flow at one segment does not affect the flow at any other segment.

It is felt that the errors induced by the above assumptions are relatively small in the normal cruise speed region of a modern helicopter. This is the region from just below the minimum power airspeed to the maximum allowable cruise speed. The program cannot calculate rotor hover power. This is because one of the factors in the denominator in the main routine which estimates new flapping routine reentry parameters is the advance ratio. Since the advance ratio is zero in a hover, the computer would attempt to divide here by the number zero. Highly accurate results are not available in the airspeed region from hover to just below the minimum power airspeed while using the normal uniform inflow assumption. This is a region of highly non-uniform flow. Variable inflow may be input by the user. However, at this time, no information is available on how successful this technique is in accurately estimating the required rotor system horsepower. While the program's required technique for inducing harmonic variable flow is cumbersome, Bramwell in Chapter Four of Ref. 6 describes several methods which could be incorporated into the program.

The quasi-static blade analysis assumption is valid except in the very high speed region where a large percentage of the retreating blade is in a stalled condition. This is an area of aerodynamic hysteresis that is influenced by unsteady aerodynamics. While encountering lift hysteresis, the amount of lift change above the steady state CL is about the same as below. However, the lift distribution on the rotor disc will change. Stall is delayed and occurs at a slightly later azimuthal station.
then predicted by quasi-static analysis. While difficult, complicated and computer-time-consuming procedures can be taken to reduce these assumptions there is no guarantee that the accuracy of the solution will improve. It is felt that the present program produces highly accurate results in the flight range of interest in a modern helicopter.
II. METHOD OF ANALYSIS

A. GENERAL COMMENTS

The GRP uses a combined blade element/momentum strip theory in its calculations. The blade radius is divided into a maximum of 15 segments or strips. Figure 1 illustrates a typical blade element. In order to obtain a steady state flapping solution the program must calculate the time history of the flapping motion. This necessitates a complete knowledge of the flapping angles, rates and accelerations. The time history of this motion must be found by solving the highly non-linear equation for the summation of moments about the flapping hinge. Figure 2 illustrates the forces which produce moments on the rotor system. The blade has aerodynamic forces acting upwards, blade weight acting downwards, centrifugal force acting outwards, an optional elastic hinge restraint acting to return the blade to a zero flapping angle and an inertia force resisting any change in blade flapping. The moment summation equation about the flapping hinge may be written as

\[M_{\text{AERO}} + M_w + M_z + M_{CF} + M_{ER} = 0. \]

The moment due to inertia force can be expressed as \(\ddot{\phi} \), where \(I_b \) is the blade moment of inertia about the flapping hinge. Substituting this into equation 1 and solving for \(\ddot{\phi} \), the following governing equation is obtained.

\[\ddot{\phi} = \frac{M_{\text{AERO}} + M_w + M_{CF} + M_{ER}}{I_b}. \]

If the angle of attack and local Mach number at each blade segment were known, the CL and CD could be obtained.
Figure 1 Blade Element Diagram

Figure 2 Rotor Blade Moment Diagram
from the inputed airfoil information. The local aerodynamic forces and moments can be calculated and the flapping acceleration determined. Equation 2 can be rewritten as

\[\ddot{\beta}_n = \sum_{i=1}^{n \text{ segments}} \frac{dM_{\text{Aero}} + dM_{\text{WQ}} + dM_{\text{CF}} + dM_{\text{ENR}}}{I_b} \]

The flapping angle and rate at the \((N + 1)\) azimuthal position could be obtained from the following expressions.

\[\dot{\beta}_{n+1} = \dot{\beta}_n + \ddot{\beta}_n at \]

\[\dot{\beta}_{n+1} = \dot{\beta}_n + \ddot{\beta}_n at + \dot{\beta}_n \frac{a t^2}{2} \]

However, since the flapping is periodic in nature and has a direct relationship to the azimuthal angle, PSI, the values for flapping are solved with respects to PSI, vice time. The values of \(\Omega, \Psi\) and time are related by the equation \(\Delta \Psi = \omega at\). Therefore

\[\dot{\beta} = \frac{d\beta}{dt} = \Omega \frac{d\Psi}{dt} = -\Omega \dot{\beta} \]

\[\ddot{\beta} = \frac{d^2\beta}{dt^2} = -\Omega^2 \frac{d\Psi}{dt^2} = -\Omega^2 \ddot{\beta} \]

The governing equation for the flapping motion now becomes

\[\ddot{\beta} = \frac{M_{\text{Aero}} + M_{\text{WQ}} + M_{\text{CF}} + M_{\text{ENR}}}{I_b \Omega^2} \]

The flapping solution is based on the assumption that the angle of attack is known. However, it is not and the program must proceed through an iterative process in order to determine the inflow ratio, collective pitch and cyclic input angles required to generate the desired forces.
B. ANGLE OF ATTACK CALCULATIONS

A very important and basic part of this program is the procedure by which the local angles of attack are calculated. While the program will calculate angle of attack with any angular velocity applied either to the rotor system or the helicopter, the development here will describe level flight only. The classical approach ignores radial flow, UR, and the angle of attack would be obtained as shown in Figure 1. However, as the blade rotates about the shaft, it will encounter a large variation in radial flow. The program attempts to compensate for this radial flow in the following manner. Instead of the inflow angle PHI equalling the arctangent of UP/UT, it is set equal to UP/UTUR where UTUR is the resultant velocity in the tangential and radial direction. This is illustrated in Figure 3. The pitch angle is also reduced by the cosine of the sweep angle. The angle of attack is now calculated in the sweep plane. This three-dimensional angle of attack is lower than the classical two-dimensional angle.

The program enters the CL, CD tables with this sweep plane angle of attack and the sweep plane resultant Mach number. The program computes the forces using the velocities in the sweep plane, UP and UTUR, and the blade chord geometry in the normal plane. Once the forces are computed in the sweep plane they are resolved into their respective directional forces.

This three-dimensional angle of attack, due to sweep, will delay stall on the rotor by reducing the angle of attack. This describes what actually occurs on the blade. However, it is felt by previous personnel using the program that there is a point where the sweep becomes so large that it tends to wash out the lift being produced. The program has been modified to reduce CL by one half for sweep angles between 60 to 72.5 degrees and reduce CL to zero for sweep angles between 72.5 and 90 degrees. These high sweep angles occur normally only on the inboard blade segments of the
Figure 3 Spanwise Flow Diagram
retreating blade in and near the reverse flow region.

UP, UT, UR and pitch angle for level flight are shown in Figures 4 and 5. They are calculated in the following manner. The radial velocity, UR, is calculated as

\[UR = (V \cos \phi \sin \psi \cos \theta) \]

The tangential velocity, UT, has two components. The first is the local rotational velocity, \(\omega r \), the second is a sinusoidal component of the forward flight velocity. The general expression for UT is

\[UT = \omega r + (V \cos \phi \sin \psi) \]

This expression contains a small angle assumption in the term \(\omega r \) for blade flapping angle. The program accounts for the fact that the flapping angle does reduce the true radius slightly by using the following formula

\[UT = (E/R + (r - E/R) \cos \theta) \omega + (V \cos \phi \sin \psi) \]

The perpendicular velocity, UP, consists of three terms, the inflow ratio, a flapping velocity and a small component of forward velocity. The inflow ratio is defined as

\[\lambda = V \sin \phi - \frac{V}{R} \]

The second component is a vertical flapping velocity which is a function of flapping rate and radius. This is computed as

\[UP(2) = (r - E/R) \dot{\phi} \]

The third component is due to the fact that there is a small component of the radial flow which acts in the UP direction due to blade flap angle. This is equal to 20.
\[UT = \left(\frac{E}{R} + (r - \frac{E}{R}) \cos \theta \right) \lambda + (V \cos \phi_3) \sin \psi \]

Figure 4 UT Diagram
\[UP = \lambda AR \cos \theta + (r - E/R) \dot{\theta} + (V \cos \delta_s) \cos \psi \sin \theta \]

\[UR = (V \cos \delta_s) \cos \psi \cos \theta \]

Figure 5 UP and UR Diagram
The total formula for UP is

\[\text{(15)} \quad UP = \lambda \Delta R \cos \theta + (r - E/R) \dot{\theta} + (\cos \delta) \cos \psi \sin \theta \]

The pitch angle \(\theta \) is expressed in equation 16. \(\theta_{75} \) is the pitch angle at the 75 percent radius position, \(\theta' \) is the twist depending on the relationship of the location of the blade segment to the \(r = 0.75R \) location. The next four terms are the first and second harmonics of cyclic pitch and \((\tan \delta) \beta \) is the coupled effect of the flapping angle on the pitch angle.

\[\text{(16)} \quad \theta = (\theta_{75} + \theta' - A1 \cos \psi - B1 \sin \psi - A2 \cos 2\psi - B2 \sin 2\psi - \tan(\delta) \beta \cos \omega_{\text{flap}}) \]

The local Mach number is calculated as \(U/a \) where \(a \) is the speed of sound and \(U \) is given in equation 17.

\[\text{(17)} \quad U = (UP^2 + UT^2 + UR^2)^{1/2} \]

The angle of attack can now be calculated. Figure 1 illustrates that \(\alpha = \theta - \phi \). Initially, the program requires estimated values for the inflow ratio, collective pitch at the PSI equal zero position, harmonic cyclic inputs, blade twist and initial flapping angle and rate. The user can either input these values or accept the program's automatic default values of \(-0.02, 5, -1.2, 7.53, 0, 0 \) and \(0 \) respectively. Using these assumed values, the initial angle of attack can be determined as follows.

\[UP = \lambda \Delta R \cos \theta + (r - E/R) \dot{\theta} + (\cos \delta) \cos \psi \sin \theta \]

reduces to

\[UP = \lambda \Delta R \]
\[UT = \left(E/R + (r - E/R) \cos \phi \right) \Omega + (V \cos \phi) \sin \psi \]

reduces to
\[UT = \left(E/R + (r - E/R) \right) \Omega \]

\[UR = (V \cos \phi) \cos \psi \cos \phi \]

reduces to
\[UR = V \cos \phi \]

In the program \(V \cos \phi \) is replaced by the term \(\mu \alpha R \) where \(\mu \) is the advance ratio in the shaft axis system. Since the local pitch distribution and inflow ratio are estimated, the local angles of attack can be determined. The next section describes the method used for calculating flapping angle and rates at the \(N + 1 \) azimuthal position.

C. METHOD OF SOLUTION FOR THE FLAPPING EQUATION

In the preceding section, equation 8 was developed in order to calculate the time history of the flapping motion.

\[(8) \quad \dot{\theta} = \frac{\Delta \alpha \text{aero} + \Delta \alpha \text{w} + \Delta \alpha \text{e} + \Delta \alpha \text{e} - \gamma}{I_b \Omega^2} \]

The relation involves a complicated second order differential equation for establishing the flapping angle as a function of \(\psi \). The numerical solution is accomplished by use of a finite difference equation and a step-by-step procedure. An important characteristic of the solution is that it is periodic in nature. The function which represents a steady state flapping solution has the property \(\theta(\psi) = \theta(\psi + 2\pi) \). Using this fact, a Fourier harmonic series can be written to describe the blade flapping motion.

\[(18) \quad \theta = A_0 - A_1 \cos \psi - B_1 \sin \psi - A_2 \cos 2\psi - B_2 \sin 2\psi - A_3 \cos 3\psi - B_3 \sin 3\psi \ldots \]

By assuming that the first harmonic flapping is much larger
than the other higher harmonics, the series can be reduced to

(19) \[\beta = a_0 - a_1 \cos \psi - b_1 \sin \psi \]

This equation can be differentiated with respect to \(\psi \) to obtain

(20) \[\dot{\beta} = a_1 \sin \psi - b_1 \cos \psi \]
(21) \[\ddot{\beta} = a_1 \cos \psi - b_1 \sin \psi \]

Assuming that the values of \(\beta, \dot{\beta} \) and \(\ddot{\beta} \) are known at some azimuthal position, the following equations must hold

(22) \[\dot{\psi}_n = a_0 - a_1 \cos \psi - b_1 \sin \psi \]
(23) \[\ddot{\psi}_n = a_1 \sin \psi - b_1 \cos \psi \]
(24) \[\dddot{\psi}_n = a_1 \cos \psi - 3b_1 \sin \psi \]

These equations can be solved for the \(N + 1 \) azimuthal position by substituting \(\psi_{n+1} = \psi_n + \Delta \psi \) into the above formulas. The flapping angle equation becomes

(25) \[\dot{\psi}_{n+1} = a_0 - a_1 \cos (\psi_n + \Delta \psi) - b_1 \sin (\psi_n + \Delta \psi) \]

By using the following two identities equation (25) can be rewritten as equation (28).

(26) \[\cos (\psi_n + \Delta \psi) = \cos \psi_n \cos \Delta \psi - \sin \psi_n \sin \Delta \psi \]
(27) \[\sin (\psi_n + \Delta \psi) = \sin \psi_n \cos \Delta \psi + \cos \psi_n \sin \Delta \psi \]
(28) \[\dot{\psi}_{n+1} = a_0 - a_1 \cos \psi_n \cos \Delta \psi \sin \Delta \psi - b_1 \sin \psi_n \sin \psi_n \sin \Delta \psi \]

The terms can be rearranged into equation 29. The same procedure can be used to develop equation 30 for \(\dddot{\beta} \).

(29) \[\dddot{\psi}_{n+1} = a_0 - \cos \Delta \psi (a_1 \cos \psi_n + b_1 \sin \psi_n) \]
+ sin \(\Delta \psi (a_1 \sin \psi_n - b_1 \cos \psi_n) \]
(30) \[\dddot{\psi}_{n+1} = \cos \Delta \psi (a_1 \sin \psi_n - b_1 \cos \psi_n) \]
+ sin \(\Delta \psi (a_1 \cos \psi_n + b_1 \sin \psi_n) \]

Substitution into equations 22, 23 and 24 reduces these two...
expressions to the flapping equations used in the program. The user can either enter the value for $\Delta \Psi$ or accept the program's automatic default value of 15 degrees.

\begin{align}
(31) \quad \beta_{nn} &= \beta_n \cos \Delta \Psi + \beta_n \sin \Delta \Psi \\
(32) \quad \beta_{nn} &= \beta_n + \beta_n \sin \Delta \Psi + (1 - \cos \Delta \Psi) \beta_n
\end{align}

While this integration scheme is not one of the standard methods used, it is very useful in obtaining periodic solutions for differential equations similar to the one used here. Notice that for small values of $\Delta \Psi$ the trigonometric expression can be reduced to an ordinary Taylor series. By assuming $\sin \Delta \Psi$ equals $\Delta \Psi$ and $\cos \Delta \Psi$ equals one equation 29 reduces to

\begin{equation}
(33) \quad \beta_{nn} = \beta_n + \Delta \Psi \beta_n
\end{equation}

By assuming $\sin \Delta \Psi$ equals $\Delta \Psi$ and $\cos \Delta \Psi$ equals the first two terms of the cosine series $1 - \frac{\Delta \Psi^2}{2}$ equation 32 can be reduced to

\begin{equation}
(34) \quad \beta_{nn} = \beta_n + \Delta \Psi \beta_n + \frac{1}{2} (\Delta \Psi)^2 \beta_n
\end{equation}

D. FORCES, MOMENTS AND RADIAL INTEGRATION

The forces acting on a rotor blade may be found by the summation of the elementary forces along the span at any azimuthal position. The forces considered by the program are the resulting aerodynamic forces only, and are initially summed in the shaft reference axis system. The program computes forces in three axis systems. They are the (1) shaft, (2) control and (3) relative wind axis systems.

The program radially integrates differently for lift and drag calculations. The drag is calculated from the hinge offset, E/R, to the rotor tip. The lift is calculated from
the hinge offset to the next to last rotor blade segment. The last segment is considered a blade "Tip Loss Factor" segment. It is assumed that the tip trailing edge vortices cause no lift to be produced in this segment. The normal procedure is to define this segment as the last three percent of the rotor blade radius.

The first of the maximum 15 blade segments is considered the spar or cut out segment. This is defined as the area between the hinge offset and the point where the airfoil actually begins. If no spar data are entered, it is assumed that this first segment produces no lift and drag is obtained by using the CD vs Alpha Tables for the first blade airfoil data deck entered. If spar data are entered, the first segment and all other segments designated spar segments will have the lift and drag characteristics of the entered spar data.

E. AZIMUTHAL INTEGRATION METHOD

Once the integration of the rotor forces and moments along the blade is complete, an integration around the azimuth must be performed in order to obtain the average forces and moments. Since the solution of the flapping equation is obtained by a step-by-step method, the integrands of the integrals over Ψ are known only at a certain number of equally spaced points around the azimuth. For equilibrium flapping the integral is a periodic function of Ψ, and for this case integration can be shown to be equivalent to an averaging process. This result makes the azimuthal integration simple. The following method is used where N is the number of azimuthal positions used in the calculations and b is the number of blades.

$$
(35) \quad \frac{b}{2\pi} \int_0^{2\pi} \int_0^R F(x,\Psi) \, dx \, d\Psi = \frac{b}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} dF(\Psi_{ij})
$$
F. MAJOR ITERATION

Once the program has calculated a steady state flapping solution and has determined the resulting forces and moments, a question remains to be answered. Is this the desired solution and, if not, what must be done to obtain this solution? In order to solve the flapping equations certain known or assumed values were used, including inflow ratio (λ), collective pitch ($\theta_{0.75}$) and the cyclic pitch ($\lambda_{1S}, B_{1S}, \lambda_{2S}$ and B_{2S}). One method, first described in Ref. 3, is to iterate on the required lift and drag through modification of λ and $\theta_{0.75}$, where $\theta_{0.75}$ is the pitch angle at the 75 percent radius station at the PSI equal zero azimuthal position. The modified values are then reentered into the flapping routine and the calculation is repeated until it converges to within a specified tolerance on the required lift and drag. Drag is used here in the sense of negative rotor propulsive force. The program procedure is outlined below.

The required rotor lift and propulsive force are expressed in terms of the magnitude and direction of the resultant force in the longitudinal plane. These are shown in Figure 6 where it can be seen that

\begin{align}
(36) \quad a'' &= \alpha_2 + a' \\
(37) \quad R &= (F_{x_2}^2 + F_{y_2}^2)^{1/2} \\
(38) \quad L &= R \cos(a'') \quad D = R \sin(a'')
\end{align}

The required lift and propulsive force and their resultant are shown in Figure 7. In a similar way,

\begin{align}
(39) \quad R &= (L^2 + D^2)^{1/2} \\
(40) \quad a'' &= \arctan(D/R)
\end{align}
The differences between the required and the computed values are defined as:

\[(41) \quad \Delta R_L = R_R - R_L \]

\[(42) \quad \Delta a'' = a''_R - a'' \]

In order to correct \(\lambda\) and \(\theta_{0.75}\) to compensate for the difference between \((R_{LR}, a''_{LR})\) and \((R_R, a'')\), the required values are expanded in a Taylor series with \(\lambda\) and \(\theta_{0.75}\) as variables. The first order equations are:

\[(43) \quad R_{LR} = R_L + \frac{\partial R_L}{\partial \lambda} \Delta \lambda + \frac{\partial R_L}{\partial \theta_{0.75}} \Delta \theta_{0.75} \]

\[(44) \quad a''_{LR} = a'' + \frac{\partial a''}{\partial \lambda} \Delta \lambda + \frac{\partial a''}{\partial \theta_{0.75}} \Delta \theta_{0.75} \]

Solving the equations for the iteration on \(\lambda\) and \(\theta_{0.75}\) yields

\[(45) \quad \Delta \lambda = \frac{\frac{\partial a''}{\partial \theta_{0.75}} \Delta R_L - \frac{\partial R_L}{\partial \theta_{0.75}} \Delta a''}{\frac{\partial R_L}{\partial \lambda} \frac{\partial a''}{\partial \theta_{0.75}} - \frac{\partial R_L}{\partial \theta_{0.75}} \frac{\partial a''}{\partial \lambda}} \]

\[(46) \quad \Delta \theta_{0.75} = \frac{\frac{\partial a''}{\partial \lambda} \Delta R_L - \frac{\partial R_L}{\partial \lambda} \Delta a''}{\frac{\partial R_L}{\partial \theta_{0.75}} \frac{\partial a''}{\partial \lambda} - \frac{\partial R_L}{\partial \lambda} \frac{\partial a''}{\partial \theta_{0.75}}} \]

Now that \(R_{LR}\), \(R_L\), and \(a''_{LR}\) and \(a''\) are known, the corrected values of \(\lambda\) and \(\theta_{0.75}\) can be approximated by:

\[(47) \quad \lambda_N = \lambda + \Delta \lambda \quad \theta_{0.75_N} = \theta_{0.75} + \Delta \theta_{0.75} \]

In order to solve equations 45 and 46, the values of the partial derivatives in these equations must be found. The
Figure 6 Resultant GRP Force Calculation Diagram

Figure 7 Required GRP Force Diagram
procedure used in based on the Wheatley-Bailey method and the formulas can be found on pages 186 and 207 of Ref. 4. Reference 5 outlines the derivation and a complete derivation was performed and verified in conjunction with this thesis.

G. FLOW CHART

The flow chart in Figure 8 is a block diagram showing the relationship between the various parts of the GRP program.
1. Inputs
2. Assumed Values
3. Starting Values

Part I
Flapping Iteration (One Revolution)
Check Convergence of ϕ and $\dot{\phi}$.
Yes
No

Part II
Force and Moment Integration
Check Tolerance on Lift and Drag
Yes
No

Part III
Modify λ and ϕ_{15}

Print Options

Figure 8

32.
III. GRP USERS' MANUAL

The GRP currently has the capability to enter over 200 individual case variables and option selectors. Presently, 170 are available to the users. This manual explains the input and output format of this GRP program. Examples of both input and output are given in order to make the use of this program easier. This manual is divided into the following areas of discussion.

A. Main Iteration Options
B. GRP Data Deck Order
C. Airfoil Data Deck Requirements
D. Spar Data Deck Requirements
E. Sample Data Input Format
F. Case Input Listings
G. Case Input Default Values
H. Case Input Data
I. Case Input Format
J. Case Optional Output Indicators
K. IBM 360 Execution Control Cards
L. Sample Program Output

It is recommended that the user examine the GRP Case Input listing carefully, since a few options require certain variables to be inputed which are not necessarily located in the same general area of the input listings. An attempt has been made to list all input variables concerned with the different options in the discussion of each option and input variable.

A. MAIN ITERATION OPTIONS

The GRP offers the user six different options for determining a solution. They are as follows.
1. **Normal Routine**

In the normal solution to the problem the computer will vary the inflow ratio, LAMBDA, and the pitch angle, 0.75, in order to produce the required lift and drag. The cyclic inputs, A1S and B1S, are considered constants. Uniform inflow is assumed unless the user induces a non-uniform inflow by the use of variables 117 and 118, LAML and UVL. The program will calculate the required shaft axis angle and position of the control axis from the fixed value of B1S. In all of the options, the user has a choice of using either a program calculated first estimate of flapping angle, velocity and acceleration or an initial value of zero for all of the above. Either method usually requires the same approximate amount of computer time. The variable PCNV, item 97, determines the method to be used.

2. **Desired Flapping Angles**

This option allows the user to specify the desired longitudinal and lateral flapping angles with respect to the rotor shaft axis. The program at each intermediate force iteration will vary A1S, B1S, inflow ratio and pitch angle. Variables 100 and 112, 113 and 114 control the use of this option.

3. **Short Iteration Scheme**

This option follows the normal routine with one major exception. The program will make only one pass through the flapping routine on each major iteration. The program may or may not arrive at a steady state solution for flapping in the first few iterations. It is assumed that the first few iterations in the normal routine are only rough estimates of the way the variables should be changed and that an exact flapping solution is not actually required if the user is only interested in transient flapping.
behavior. In order to use this routine, the user must input a negative number for the variable XITLIM, item 73. The absolute value of XITLIM will still determine the maximum allowable number of times the program will enter the major iteration routine.

4. Trimmed Moments

This option will follow the Normal method described in paragraph one. The Normal method will only converge on lift and drag and will not consider the moments produced. If the variable TRIM, item 160, were assigned a non-zero value, the program would attempt to trim out the pitching and rolling moments about the rotor shaft. It is suggested that this be done in a two case run. The first case should be a normal run, with the desired printout. Then, for the second case, input the variable TRIM. This will do two things. First, it will provide a converged solution without consideration of moments. Secondly, it will allow the full number of iterations to be used to reduce the moments. The program does this by a short routine varying A15 and B15. During this process, the whole flapping and force iterations must be repeated, but it will at least start by using a converged solution. The variable PCNV, item 97, should be non-zero to allow the flapping solution from the previous case to be used as a first estimate in this case. Setting the variable SKIPIN, item 91, equal to zero will allow a force and moment summation to be outputted for each major iteration. This will allow the user to see exactly how the program is proceeding.

5. Top Option

In this option, the program iterates upon the required lift but ignores any values inputed for required drag. This option can be used to simulate a wind-tunnel test. The user must input the shaft angle, item 111, and
the pitch angle, item 87. These two inputs will be held constant. The program will iterate on the inflow ratio, LAMBDA, in order to obtain a solution. The variable TOP, item 96, controls the use of this option.

6. ALOPT Option

This option, like TOP, is a wind tunnel option. It also iterates on required lift only. However, here the shaft angle, item 111, and the inflow ratio, item 88, are required inputs and are held as constants. The program will iterate on the pitch angle, item 87, in order to determine a solution. The variable ALOPT, item 110, controls the use of this option.

B. GRP DATA DECK ORDER

Data is entered into this program in the following order.

1. Airfoil Lift Coefficient Table
2. Airfoil Drag Coefficient Table
 (Repeat steps one and two as necessary.)
3. Case Input Data
4. Harmonics of the Inflow Ratio **
5. Spar Lift Coefficient Table **
6. Spar Drag Coefficient Table **
 ** Optional Data

C. AIRFOIL BLADE DECK REQUIREMENTS

The GRP program requires that all CL and CD information be entered into the program in tabular form. Tables for up to 15 different Mach numbers and five different airfoils can be entered. The program currently does not use or require values for the Coefficient of Moment, CM. Since certain segments of the retreating blade are in the reverse flow region, angle of attack tables are required to include
valued from -180 degrees to +180 degrees. If they are not included, an error message will be printed when the program cannot locate a value for CL and CD at these large positive and negative angles of attack. If complete angle of attack information is not available for a particular airfoil, the user can use the values provided in Section E. It is realized that available data on airfoil behavior at large angles of attack are very limited, but so is the region on the rotor disc where the blade operates at these high angles. Since this occurs only immediately around and within the reverse flow region where dynamic pressure is low, little precision is lost in performance calculation by using one common representation for most airfoil behavior.

As a minimum, two values for CL and CD at two different angles of attack and Mach numbers must be supplied. As a maximum, 15 different values of Mach number may be entered. Each Mach number may contain up to 48 different values of CL and 48 different values of CD and their associated angles of attack.

The first Mach number must be equal to zero. This table can be an exact duplicate of the lowest Mach number table the user has available. The highest Mach number table should be high enough in order to prevent the program from stopping because of a local Mach number higher than that in the table. A quick check can be obtained by adding together the rotor tip velocity and the forward flight speed. This combined velocity, divided by the local speed of sound, must be less than the maximum Mach number entered into the program. The program linearly interpolates between Mach numbers and angles of attack in order to determine the value of CL and CD. The subroutine BLIN4 does the interpolation.

Several options are available to help reduce the number of data points that must be entered. If the airfoil is symmetrical, the user only needs to enter values for positive angles of attack. The program will assign the
appropriate sign to the value of CL and CD according to the sign of the angle of attack. This is accomplished by case input variable 107, SYM. This option can also be used for a cambered airfoil where values of CL and CD at negative angles of attack are unknown.

Values for large angles of attack need not be entered for each Mach number by making use of the program's input variables 156 and 157, or their automatic default values. Values for large positive and negative angles of attack need only be entered for the two lowest Mach number tables. The lowest Mach number table must be at a Mach number equal to zero. If an angle of attack is greater than variable 156 (HIALFA) or lower than variable 157 (LOALFA), or the program's default values of plus and minus 30 degrees, the Mach number is set equal to zero. This ensures that only the first two Mach numbers have to carry the whole range of angles of attack from -180 to +180 degrees for a cambered airfoil or from zero to +180 degrees for a symmetrical airfoil.

The format of the table input will now be described. The first data card contains the variable WBLADE. This controls whether or not the user receives an echo printout of the Blade Airfoil Data being entered. If the value of WBLADE is equal to zero, the user will not receive an echo printout of the Blade Data. If WBLADE is a non-zero number, the user will receive the echo printout. The read format for WBLADE is F10.0. WBLADE is the only item on the first data card.

The next card also contains only one piece of data, NBLADE. NBLADE is the number of different airfoil data sets to be used and appears on this card in an I2 format. This program will accept up to five different blade airfoil data sets. It will also accept one blade spar data set. If the rotor blade being analyzed were composed of three different types of airfoils, NBLADE would equal three. However, if
the blade consisted of three sections, of which the first and third section were the same, \(N_{BLADE} \) would equal two. It is explained later how the blade segments are assigned their respective airfoil type. This arrangement provides the user with the ability to vary the make-up of the blade while only having to enter into the program once a particular set of airfoil data.

The above two variables, \(W_{BLADE} \) and \(N_{BLADE} \), are only entered once for each complete computer run which uses the same set of airfoil data. The following information will be entered twice for each type of airfoil used. It will be entered first for CL and secondly for CD for each type airfoil. The overall format is summarized below.

Card 1 \(W_{BLADE} \)
Card 2 \(N_{BLADE} \)
Card 3-
 CL's for airfoil number one
 CD's for airfoil number one
 CL's for airfoil number two
 CD's for airfoil number two
Repeat as necessary.

Card number three contains the variable \(NZ \), which is the number of Mach numbers for which CL's will be entered for the first airfoil. This number must be right justified in I2 format. The maximum number of Mach numbers for each CL and CD for one airfoil is 15. This is the only number entered on this card.

Card number four begins the actual Mach number, CL versus angle of attack tables. The format in this paragraph must be repeated for each Mach number. This first card is divided into 11 fields (I2, 10F7.0). The first field is a two-digit, right-justified integer in I2 format. It is equal to twice the number of data pairs for this Mach number plus two. This tells the computer how many numbers are required to be entered for this particular Mach number. A data pair consist of one angle of attack and its associated

39.
CL or CD. The remaining ten fields are each seven columns long in floating point or F7.0 format. These fields begin in columns 3, 10, 17, 24, 31, 38, 45, 52, 59, and 66. On this first card, the field that starts in column three contains the number of data pairs at this Mach number. The field that begins in columns 10 is the actual Mach number. The remaining eight fields on this card are for the first four data pairs starting with the lowest angle of attack and increasing towards the highest angle of attack. If a symmetrical airfoil option is used, the lowest angle of attack is zero. If a non-symmetrical airfoil is used, the lowest value for the first two Mach numbers should be -180 degrees and for all the remaining Mach numbers the value of LOMACH entered or -30 degrees.

All the remaining cards for this particular Mach number will contain the data pairs. These cards contain ten fields each, the first field consisting of nine columns and the remaining nine fields consist of seven columns beginning in column ten and following the same format as the first card. The format is (F9.0, 9F7.0). This card is repeated as often as needed. Columns 73-80 are not read and may be used for comments.

This procedure is repeated until all the CL's are entered. Once completed the program is ready to enter the values for CD. The whole procedure is repeated again, starting with the value for NZ representing the number of Mach numbers for which CD's will be entered. If more than one airfoil data deck is to be used, the above procedure will start over again by reading in the value of NZ for the number of Mach numbers to be entered for values of CL for the second airfoil. The number of data pairs for each Mach number must be between 2 and 48. The number of "twice the data pairs plus two" must be between 6 and 98.

Prior to entering the airfoil data, the user should review the following input variables.
1. SYM (107) - Symmetrical and nonsymmetrical airfoil data input control.
2. HIALFA (156) - The highest angle of attack for which values of CL and CD will be found at all Mach numbers.
3. LOAFLA (157) - The lowest angle of attack for which values of CL and CD will be found at all Mach numbers.
4. SPAR (103) - Number of segments using spar airfoil data.
5. TIPSWP (158) - Amount of tip sweep in degrees.
6. TPSWST (159) - Blade segment number at which the tip sweep begins.
7. BSPL (120) - Input control variable for spar data.
8. RB(I) (161-175) - Controls the blade segment airfoil data assignment.

D. SPAR DATA DECK REQUIREMENTS

The format for spar data are similar to that of the airfoil data with the exception that only one set of spar data can be entered into the program. Before the program will read spar data, input variable number 120, BSPL, must have a non-zero value. In addition, variable 103, SPAR, must indicate the number of blade segments which are using the spar data. The program automatically assumes that the first segment is a spar segment. This is further explained in the Case Input section. The spar data are the last to be entered into the program. This is an optional input and is not required. If spar data are not inputed, the program will assume that the one automatic spar section creates no lift and has the drag characteristics of the first airfoil section entered.
The format for inputting spar data are as follows. The first card contains the variable WRSPAR in F10.0 format. A non-zero value of WRSPAR causes an echo printout of spar data to occur. The remaining spar data are handled the exact same way as the airfoil section data, starting with the variable NZ. There is no input similar to that of the airfoil section stating how many different spar data decks are being entered since only one is allowed. As before, a minimum of two Mach numbers are required to be entered. The blade segment printout indicates spar segments by the use of a "0" for that segment.

Input variables associated with SPAR data are as follows.

1. SPAR (103) - The number of blade segments using spar data.
2. BSPL (120) - Input variable which controls the input and use of spar data.

E. SAMPLE BLADE INPUT

The next several pages illustrates the sample format for a blade which has the following characteristics: (1) an echo printout is not required, (2) there are two airfoil decks to be read in and (3) the first airfoil deck has nine values of Mach numbers for which CL's are to be entered.
F. INPUT CASE LISTING

GRP CASE INPUTS

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>PROGRAM VARIABLE</th>
<th>DIMENSION</th>
<th>REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tip Speed</td>
<td>OMEGAR</td>
<td>FPS</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>Radius</td>
<td>R</td>
<td>FT</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>Speed of Sound</td>
<td>SPSD</td>
<td>FPS</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>Air Density</td>
<td>RHO</td>
<td>SLG/CUFT</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>No. of Blades</td>
<td>XNB</td>
<td>-</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>Forward Speed</td>
<td>VEL</td>
<td>KTS</td>
<td>89, 90</td>
</tr>
<tr>
<td>7</td>
<td>Offset Ratio of Flap Hinge (e/R)</td>
<td>DX(15)</td>
<td>-</td>
<td>YES</td>
</tr>
<tr>
<td>8-22</td>
<td>Delta X</td>
<td>DX(15)</td>
<td>-</td>
<td>YES</td>
</tr>
<tr>
<td>23-37</td>
<td>Local Twist</td>
<td>TW(15)</td>
<td>DEG</td>
<td>92</td>
</tr>
<tr>
<td>38-52</td>
<td>Local Mass Density</td>
<td>XMASS(15)</td>
<td>SLG/FT</td>
<td>78, 79</td>
</tr>
<tr>
<td>53-67</td>
<td>Local Chord</td>
<td>C</td>
<td>FT</td>
<td>YES</td>
</tr>
<tr>
<td>68</td>
<td>Delta PSI</td>
<td>DPSI</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>69</td>
<td>Flap Iteration Limit</td>
<td>FTRL</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>70</td>
<td>Initial Beta</td>
<td>BIN</td>
<td>RAD</td>
<td>**</td>
</tr>
<tr>
<td>71</td>
<td>Initial Beta *</td>
<td>BPIN</td>
<td>RAD/SEC</td>
<td>**</td>
</tr>
<tr>
<td>72</td>
<td>Initial Beta **</td>
<td>BPPIN</td>
<td>RAD/SEC2</td>
<td>**</td>
</tr>
<tr>
<td>73</td>
<td>Lift and Drag Iteration Limit</td>
<td>XITLIM</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>74</td>
<td>Required Lift</td>
<td>RL</td>
<td>LB</td>
<td>YES</td>
</tr>
<tr>
<td>75</td>
<td>Required Drag</td>
<td>RD</td>
<td>LB</td>
<td>95</td>
</tr>
<tr>
<td>76</td>
<td>Lift Tolerance</td>
<td>XLTOL</td>
<td>LB</td>
<td>**</td>
</tr>
<tr>
<td>77</td>
<td>Drag Tolerance</td>
<td>XDTOL</td>
<td>LB</td>
<td>**</td>
</tr>
<tr>
<td>78</td>
<td>First Moment about Flap Hinge (M)B</td>
<td>FMOM</td>
<td>SLG-FT</td>
<td>38-52</td>
</tr>
<tr>
<td>79</td>
<td>Second Moment about</td>
<td>SMOM</td>
<td>SLG-SQFT</td>
<td>38-52</td>
</tr>
<tr>
<td>80-82</td>
<td>Shaft Orientation</td>
<td>AG, BGL, CG</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>83</td>
<td>Pitch-Flap Coupling Angle (Delta 3)</td>
<td>TD3L</td>
<td>DEG</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>Drag Increment</td>
<td>DELD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>Lat. Cyclic Pitch</td>
<td>A1S</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Symbol</td>
<td>Unit</td>
<td>Notes</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>86</td>
<td>Long. Cyclic Pitch Collected Pitch</td>
<td>B1S</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>T75</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>88</td>
<td>Inflow Ratio</td>
<td>LAMBDA</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>89</td>
<td>Advance Ratio</td>
<td>MUL</td>
<td>-</td>
<td>6, 90</td>
</tr>
<tr>
<td>90</td>
<td>VEL Control</td>
<td>UIN</td>
<td>-</td>
<td>6, 89</td>
</tr>
<tr>
<td>91</td>
<td>Iteration Output</td>
<td>SKIPIN</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>92</td>
<td>Linear Twist</td>
<td>TWIST</td>
<td>DEG</td>
<td>23-37</td>
</tr>
<tr>
<td>93</td>
<td>No. of Blade Segments</td>
<td>XNSEG</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>94</td>
<td>Climb Rate</td>
<td>RCPPM</td>
<td>FPM</td>
<td>-</td>
</tr>
<tr>
<td>95</td>
<td>Flat Plate Area</td>
<td>FPAREA</td>
<td>FT**2</td>
<td>75</td>
</tr>
<tr>
<td>96</td>
<td>Thrust Option</td>
<td>TOP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td>Flapping Re-Use Indicator</td>
<td>PCNV</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>100</td>
<td>MTE Iteration Tolerance</td>
<td>ABIT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>101</td>
<td>Beta Tolerance</td>
<td>BTOL</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>102</td>
<td>Beta* Tolerance</td>
<td>BPTOL</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>103</td>
<td>Spar Segments</td>
<td>SPAR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>104-105</td>
<td>Second Harmonic Control Inputs</td>
<td>A2S, B2S</td>
<td>DEG</td>
<td>-</td>
</tr>
<tr>
<td>106</td>
<td>Solidity</td>
<td>RSL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>Symmetric Airfoil</td>
<td>SYM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>Spring Constant</td>
<td>SFH</td>
<td>FT-LB/RAD</td>
<td>-</td>
</tr>
<tr>
<td>109</td>
<td>Damping Constant</td>
<td>FDMP</td>
<td>FT-LB/RAD</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>Lift Only Option</td>
<td>ALOPT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>Shaft Angle</td>
<td>ALL</td>
<td>DEG</td>
<td>-</td>
</tr>
<tr>
<td>112-113</td>
<td>Desired A1 and B1 Flapping</td>
<td>RA1S</td>
<td>DEG</td>
<td>-</td>
</tr>
<tr>
<td>114</td>
<td>A1, B1 Tolerance</td>
<td>TOLAB</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>115</td>
<td>Tangent Delta 3</td>
<td>TD3B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>Phase Angle for Delta 3</td>
<td>PHD3B</td>
<td>DEG</td>
<td>-</td>
</tr>
<tr>
<td>117</td>
<td>Induced Velocities</td>
<td>LAML</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>Induced Velocities</td>
<td>UVL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td>Not Used</td>
<td>BSPL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>Input Spar Data</td>
<td>BSPL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Code</td>
<td>Unit</td>
<td>Notes</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>121</td>
<td>Azimuthal Printout Indicator</td>
<td>PPSI</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>122</td>
<td>Minimum Lift Curve Slope</td>
<td>ATEST</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>123</td>
<td>Iteration Gain Factor</td>
<td>IGC</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>124-125</td>
<td>Not Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Pre-Coning Angle</td>
<td>PCR</td>
<td>RAD</td>
<td>-</td>
</tr>
<tr>
<td>127-137</td>
<td>Not Used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Hub Moment Inplane Aero Forces</td>
<td>INPL</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>139-141</td>
<td>Aircraft Yaw, Roll and Pitch Angular Velocities</td>
<td>PSIS, PHIS RAD/SEC THFS</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>CG Station</td>
<td>FSCG</td>
<td>INCHES</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>Rotor Center Station</td>
<td>FSMR</td>
<td>INCHES</td>
<td>-</td>
</tr>
<tr>
<td>144</td>
<td>CG Waterline</td>
<td>WLCG</td>
<td>INCHES</td>
<td>-</td>
</tr>
<tr>
<td>145</td>
<td>Rotor Waterline</td>
<td>WLMR</td>
<td>INCHES</td>
<td>-</td>
</tr>
<tr>
<td>146</td>
<td>Aircraft Lateral Velocity</td>
<td>VELY</td>
<td>KT3</td>
<td>-</td>
</tr>
<tr>
<td>147</td>
<td>Spar Symmetry</td>
<td>SYMSMR</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>156</td>
<td>Airfoil Tables</td>
<td>HIALPA</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>157</td>
<td>Airfoil Tables</td>
<td>LOALPA</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>158</td>
<td>Tip Sweep</td>
<td>TIPSWP</td>
<td>DEG</td>
<td>**</td>
</tr>
<tr>
<td>159</td>
<td>Sweep Station</td>
<td>TPSWST</td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>160</td>
<td>Rotor Moments</td>
<td>TRIM</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>161-175</td>
<td>Rotor Blade Airfoil Data Assignments</td>
<td>RD</td>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

** Program has automatic default value.
G. GRP INPUT DEFAULT VALUES

<table>
<thead>
<tr>
<th>ITEM NO</th>
<th>PROGRAM VARIABLE</th>
<th>DEFAULT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>DPSI</td>
<td>15.0</td>
</tr>
<tr>
<td>69</td>
<td>FTRL</td>
<td>15.0</td>
</tr>
<tr>
<td>73</td>
<td>XITLIM</td>
<td>15.0</td>
</tr>
<tr>
<td>76</td>
<td>XLTOL</td>
<td>100.0</td>
</tr>
<tr>
<td>77</td>
<td>XDTOL</td>
<td>50.0</td>
</tr>
<tr>
<td>81</td>
<td>BGL</td>
<td>90.0</td>
</tr>
<tr>
<td>85</td>
<td>A1S</td>
<td>-1.2</td>
</tr>
<tr>
<td>86</td>
<td>B1S</td>
<td>7.53</td>
</tr>
<tr>
<td>87</td>
<td>T75</td>
<td>5.0</td>
</tr>
<tr>
<td>88</td>
<td>LAMBDA</td>
<td>-0.02</td>
</tr>
<tr>
<td>91</td>
<td>SKIPIN</td>
<td>1.0</td>
</tr>
<tr>
<td>93</td>
<td>XNSEG</td>
<td>15.0</td>
</tr>
<tr>
<td>97</td>
<td>PCHV</td>
<td>1.0</td>
</tr>
<tr>
<td>101</td>
<td>BTOl</td>
<td>0.001</td>
</tr>
<tr>
<td>102</td>
<td>BPTOL</td>
<td>0.001</td>
</tr>
<tr>
<td>114</td>
<td>TOLAB</td>
<td>0.25</td>
</tr>
<tr>
<td>121</td>
<td>PPSI</td>
<td>DPSI</td>
</tr>
<tr>
<td>122</td>
<td>ATEST</td>
<td>5.0 **</td>
</tr>
<tr>
<td>123</td>
<td>IGC</td>
<td>1.0</td>
</tr>
<tr>
<td>156</td>
<td>HIALFA</td>
<td>30.0</td>
</tr>
<tr>
<td>157</td>
<td>LOALFA</td>
<td>-30.0</td>
</tr>
<tr>
<td>159</td>
<td>TPSWST</td>
<td>16.0</td>
</tr>
<tr>
<td>161-175</td>
<td>BB</td>
<td>1.0</td>
</tr>
</tbody>
</table>

* 0. if ABIT, item 100, is non-zero
** -50 is TOP, item 96, is non-zero
H. CASE INPUT DATA

Many of the case inputs are self-explanatory by their name listing alone, however, many are not. This section will explain the input variables and case options available to the user.

The program enters all the variables into a 200 element array called V(I). Prior to entering case data, the program will automatically do two things. It will initialize the array V(I) to a value of zero. It will assign the default values listed in the previous section to those particular variables.

The V(I) array is associated with the variable names by equivalent statements. The user needs only to enter values for the variables that are different from the default or initialized values. In a multiple case computer run, the user need only enter variables that are different from the preceding case. If no new value is enter for a variable, the value from the previous case is carried over.

1. Item 6 - Velocity - VEL

The computer program will accept forward velocity in one of two ways. The user will input either VEL, item 6, in knots or advance ratio MUL, item 89. The value of UIN, item 90, determines which variable will be used. If UIN is zero, VEL will be used. If UIN is non-zero, MUL will be used. If VEL is used, the program calculates the advance ratio by the following expression.

\[\mu = \left[\left(\frac{V}{\kappa} \right)^2 \right]^{1/2} \]

If MUL is used, the program will calculate the flight velocity by the following expression.
\[V = \left[\left(\mu^2 + \kappa^2 \right) R^2 \right]^{1/2} \]

2. **Item 7 - Hinge Offset - ER**

The offset ratio of the flap hinge, E/R, is the distance from the center of the rotor shaft to the vertical flapping hinge, normalized by the rotor radius, item 2.

3. **Items 8-22 - Delta X - DX**

Delta X is the non-dimensionalized width of each individual blade segment starting with segment number one. There may be up to 15 segments entered. The number of widths entered here must equal the value of Item 93, XNSEG. XNSEG is the number of segments into which the blade is divided. This can range from two to fifteen. It is recommended that a value of ten or more be used for XNSEG. If XNSEG were equal to 12, values of Delta X would be entered for items 8 to 19 and no values would be entered for items 20 to 22. The sum of ER plus the summation of the Delta X's must equal one. ER is the non-dimensional width between the rotor shaft and the flapping hinge offset. Item number 8, which is the first segment width, represents the width between the flapping hinge offset and the point where the actual rotor blade airfoil begins. This area is known as the spar or cut out segment if no spar data were entered. If item 103, SPAR, is zero, the program will assume that this first section creates no lift and has the drag characteristics of the first inputed airfoil data section. Since this area experiences relatively low dynamic pressure, the calculations in this segment do not have an appreciable effect on the outcome of the program. The area between the shaft and the hinge offset, ER, produces neither lift nor drag in the program's calculations. The last segment is
considered a tip loss factor segment. The lift is assumed to be zero, but drag is calculated in the normal manner. In previous runs, the width of this section has been set equal to three percent of the rotor radius, or Delta X equal to 0.03.

4. **Items 23-37—Twist—TW**

The program has two options for entering geometric twist into the calculations. If the blade has linear twist, item 92, TWIST, can be used. If the twist is non-linear, the twist can be entered in items 23-37, TW. If a number is entered for item 92, the program will assume linear twist and ignore all values entered for TW. The local twist at the center of each segment can be entered starting with item 23. If the blade contains ten segments, items 23-32 would be entered and no values for items 33-37 would be entered.

A word of caution is necessary regarding the linear twist option, item 92. The twist is considered to be zero at the 75 percent chord point. The twist is calculated assuming that the twist starts at the rotor shaft and varies linearly out to the rotor tip. If the actual rotor blade airfoil started at the 25 percent radius point with a twist value of -9 degrees, a value of linear twist equal to -12 degrees would have to be entered in order for the correct twist distribution to be calculated by the program.

5. **Items 38-52—XMASS**

The program provides two methods for entering the local mass density or the moment of inertia information. The individual mass density for each section can be entered in items 38-52, or the First and Second Moment, FMOM and SMOM, about the Flapping Hinge, c', be entered in items 78 and 79. If data are entered for item 79, the Second Moment about the Flapping Hinge, the program will use the information provided by items 78 and 79. If variable 79 is
equal to zero, the program will calculate the First and Second Moments for items 38-52 and ignore any value entered for items 78 and 79.

6. **Items 53-57 - Chord**

 The program has two methods for entering local chord data. The local chord at each segment can be entered starting with segment number one. If the chord is a constant chord, the amount of data to be entered can be reduced to only items 53 and 54. If items 53 and 54 are equal, the program assumes that the chord is constant throughout the radius and will ignore any information entered in items 55-67. Therefore, for constant chord, only enter values for items 53 and 54. If the rotor solidity is not inputed in item 106, the program will compute solidity as follows.

 \[\sigma = \frac{b \phi}{\pi R} \]

7. **Item 68 - DPSI**

 DPSI, or Delta PSI, is the incremental azimuthal value by which the program advances in its blade flapping and force summation routine. This number must divide evenly into 360 degrees. A minimum value of five degrees is permitted. It has been found that for most cases decreasing the value of DPSI below 15 degrees does not improve the accuracy but does increase the computational time. As an example, the rotor horsepower required for one particular run was 1096 RHP for DPSI equal to 15 degrees, 1095 RHP for DPSI equal to 10 degrees and 1097 RHP for DPSI equal to 5 degrees. DPSI has a default value of 15 degrees.
8. **Item 69 - FTRL**

FTRL is the maximum limit on the number of times that the program will enter the flapping iteration routine in search of a steady state flapping solution. The program has an automatic default value of 15 iterations. The program usually arrives at a steady state flapping solution within three to four iterations. The only method by which the user can actually determine the number of flapping iterations required would be to use one of the debug output options. However, these options will create a huge amount of output and the user is cautioned about their use.

9. **Items 70-72 BIN-BPIN**

The program has three options on how to assign the values for the initial flapping angle, velocity, and acceleration at the PSI equal zero position. The user may (1) input the values, (2) have the program itself calculate initial values, or (3) accept the default values of zero. Option three is the most used option. It has been discovered that there is little or no difference in solution time between option two and three. Variable number 97, PCNV, controls which option is to be used. If PCNV is non-zero, the program will use either option one or three. The program initially assigns values of zero to BIN, BRIN, and BPIN before the initial case data are entered. PCNV is assigned the default value of one. Therefore, with no values entered by the user for items 70-72 and 97, the program will start with an initial value for flapping angle, velocity and acceleration at the PSI equal zero position of zero.

If the user sets PCNV equal to zero, the following formulas are used for determining the initial values. These formulas are derived from page 194 of Ref. 4.

56.
\[\beta = \frac{\gamma}{2} \left[\frac{\mu (1 + \mu^2) + \frac{1}{3}}{1 - \mu^2} \right] - \frac{\mu \left[\frac{\mu^3 - 2\gamma}{1 - \mu^2} \right]}{1 + \frac{\mu^2}{2}} \]

\[\dot{\beta} = -\frac{\mu^2}{2} \left[\frac{\mu (1 + \mu^2) + \frac{1}{3}}{1 + \frac{\mu^2}{2}} \right] \]

\[\ddot{\beta} = \frac{\mu \left[\frac{\mu^3 - 2\gamma}{1 - \mu^2} \right]}{1 - \mu^2} \]

The term \(\gamma \) is referred to as the Lock number where

\[\gamma = \frac{C_{\alpha} \rho \alpha R^4}{I} \]

In a run where more than one case is executed at a time, a non-zero value for PCNV allows the previous case values for flapping angle, velocity and acceleration to be used as the initial estimate for these variables in the next case. If PCNV is equal to zero, the initial values will be calculated by the above formulas. Most cases are run by accepting the default value of one for PCNV.

10. **Item 73 - XITLIM**

After the program calculates a steady state flapping solution for its estimated values of inflow ratio, pitch angle and shaft tilt angle, the program determines the forces and moments generated by this solution. If the forces and, optionally, moments do not meet the required amounts entered by the user, the program will calculate new values to re-enter the flapping routine. XITLIM determines the maximum number of times the program will compare the calculated values to the desired values. The program has a default value of 15 for XITLIM. A majority of the solutions require approximately five iterations to converge. Once the XITLIM limit is exceeded, the program will stop and printout an "Exceeded Limit" statement. The program automatically prints as output the number of Major Iterations it uses in calculating the solution.
The sign of XITLIM controls the Short Iteration Option. If XITLIM is a negative number, the program uses this option. A complete description can be found in the section entitled Main Iteration Options.

11. Item 74 - Required Lift

The required lift, RL, should equal the actual weight of the helicopter that the rotor system is supporting.

12. Item 75 - Required Drag

The required drag can be entered in one of two ways. It can be entered directly in item 75 or it can be calculated by the program by entering the aircraft's flat plate area in item 95, FPAREA. The drag is equal to the flight path force that the rotor system must overcome to sustain level flight at a certain velocity. Items 75 and 92 can be entered either as positive or negative numbers and the program will provide the correct forward flight solution by assigning the proper sign value internally. If a value is entered for FPAREA, the program will ignore any value assigned to RD. The drag for FPAREA is calculated as follows.

\[D = \frac{1}{2} \rho u^2 (FPAREA) \]

If item 92 is not entered, the user must supply the value for the required drag by using the above formula. There are certain options for which the program ignores or does not iterate on drag. An example of this would be when the program is used to estimate wind-tunnel test results. If these options are desired, see variables 96, TO, and 110, ALOPT.
13. **Items 76-77 - Tolerances**

XLTOL and XDTOL are the lift and drag tolerance. The program will iterate until both the lift and drag are within the tolerances given by variables 76 and 77. The program has automatic default values of plus and minus 100 pounds for lift and 50 pounds for drag.

14. **Items 78-79 - Moments**

Information regarding the use of FMOM and SMOM can be located in paragraph five on XMASS.

15. **Items 80-82 - Shaft Axis**

The gravitational or weight vector must be oriented to the shaft axis of the rotor system. Figure 9 shows the positions of these angles. The shaft can be oriented in any desired direction. The program will automatically assign the proper values for normal helicopter flight. The default values for AG, BGL, and CG are 0, 90, and 0 degrees, respectively. This orients the shaft in the vertical direction for normal flight. If any other orientation is desired, the user must enter the appropriate values for items 80 to 82.

16. **Item 83 - Delta_3**

Delta three inputs are controlled by variables 83, 115, and 116. These are TD3L, TD3B, and PHD3D, respectively. If the flapping hinge is connected in such a manner as to cause the blade to change pitch due to flapping, this is referred to as a Delta Three hinge. Item 83 is the pitch-flap coupling angle; 115 is the tangent of the Delta Three Bar; and 116 is the phase angle for the Delta Three Bar. The program reduces the pitch angle at a particular azimuth and segment by the quantity TD3 where
Figure 9 Resolution of Gravitational Force

Control Axis =
SHAFT AXIS - BIS
BIS = 7.53°
α₃ = -2°
∴ Control Axis = -9.53°

Figure 10 Shaft and Control Axis Diagram
\[TD3 = TD3L + TD3B \cdot \sin(\text{PSI} + \phi D3D) \]

Normally, variables 83, 115, and 116 are zero.

17. **Item 84 - Drag Increment**

The drag increment is a value of delta CD that is added to the value of CD obtained from the airfoil input data decks. This is added as a roughness factor that naturally occurs on blades that are used on production aircraft. A value of .002 is normally used. The value is not added to the drag calculations for spar data.

18. **Items 85-86 - Cyclic Pitch**

The lateral and longitudinal cyclic pitch is controlled by four variables. The program allows the user to enter both first and second harmonics of cyclic input. The variables \(A1S \) and \(B1S, 85 \) and \(86 \), control the first harmonic inputs. The variables \(A2S \) and \(B2S, 104 \) and \(105 \), control the second harmonic inputs. The \(A \)'s correspond to the lateral inputs and the \(B \)'s correspond to the longitudinal inputs. The program has automatic default values for \(A1S, B1S, A2S \) and \(B2S \) of -1.2, 7.53, 0 and 0 degrees, respectively. The user may enter different values if desired. Unless other options are indicated, the program will keep these cyclic values constant throughout the run and will vary inflow ratio and pitch angle to obtain a final solution. The program will automatically calculate the position of the shaft axis by the momentum theory and will use the value of \(B1S \) to determine the position of the control axis. Figure 10 demonstrates this fact.

There is a different option available which allows the program to seek specific values of longitudinal and lateral flapping. This requires the use of variables 100 and 112 - 114. If this option is taken, the values of \(A1S \) and \(B1S \) are set equal to zero initially and will be changed by the computer in its iteration of the required flapping.
angles. The program also has an option to remove hub rolling and pitching moments. Once a solution is obtained that meets the lift and drag tolerances, the values of \(\alpha_1 \) and \(\beta_1 \) are varied to reduce the moments. This option is controlled by variable 160. Normally, runs are made with the user not inputing values for items 85, 86, 104, 105, 100, 112, 113, 114 and 160.

19. Item 87 - Pitch Angle

Variable 87 is the initial value of the collective pitch at the 75 percent radius station at PSI equal zero azimuthal station. The program has a default value of five degrees. This value is used only to initiate the program. The program, under the normal run option, will vary this value in the process of iterating for a convergent solution. There is an option where the pitch angle remains fixed as in a wind-tunnel test. This is the TOP option, variable 96.

20. Item 88 - Inflow Ratio

The variable LAMBDA controls the initial estimate of an uniform inflow. Since the equations of the program are done in a gyrocopter mode, inflow is negative when air flows down through the rotor. This is the normal forward flight mode. The program has a default value of \(-0.02\) for LAMBDA. The program will iterate on LAMBDA in its normal iteration routine. The ALOPT, variable 110, option will hold LAMBDA constant.

21. Items 89-90 - MUL

Information regarding the use of KUL and UIN can be found in paragraph one on Flight Velocity.

22. Item 91 - SKIPIN

Information regarding the use of SKIPIN can be found in the section of Case Optional Output Indicators.
23. **Item 92 - Linear Twist**

Information regarding twist can be found in paragraph four on local twist.

24. **Item 93 - XNSEG**

Information regarding XNSEG can be found in paragraph three on Delta X.

25. **Item 94 - Rate of Climb**

The program can be made to calculate a complete solution for any given rate of climb or descent. Climb or descent rate must be entered in units of feet per minute, with positive values for climbs and negative values for descents. The program assumes a uniform down or up flow across the entire rotor surface equal to the rate of climb or descent. This value is added as an incremental correction into the calculations of UP and will effect PHI and angle of attack.

26. **Item 95 - PPAREA**

Information regarding the use of PPAREA, flat plate area, can be found in paragraph twelve on Required Drag.

27. **Item 96 - TOP**

The TOP option is one of the wind-tunnel options. If TOP is a non-zero number, the program iterates to obtain the required lift of variable 74, but will ignore the required drag of variable 75. Item 87, the collective pitch at the 75 percent radius at PSI equal zero, will be held constant. Item 88, the inflow ratio, will be varied in the major iteration routine. A non-zero value of TOP will result in a value of -50 for item 122, ATEST. ATEST is the minimum acceptable value for the lift curve slope when option
96 or 110 is executed. If non-zero values for both TOP and ALOPT are entered, the program will do the TOP option. Shaft angle, item 111, must be input by the user.

28. **Item 97 - PCNV**

Information concerning the use of PCNV, the Flapping Solution Re-Use Indicator, can be found in paragraph nine on Initial Flapping Conditions.

29. **Item 98 - PRINT**

Information concerning the use of PRINT, the program's main output indicator, can be found in the section entitled Case Optional Output Indicators.

30. **Item 99 - XEND**

Item 99 is the End of Case signal card. It is the last data variable that will be entered for each case. If XEND is a negative number, the program will stop after it determines a solution for that particular case. However, since an infinite number of cases can be entered for each computer run, XEND also tells the program if there are more cases to go. If XEND is equal to 2.0, the program will assume that the next case will begin by reading in new airfoil data. If XEND is any other positive real number, the program assumes that the next case will use the present airfoil data and will enter only case input data and any of the options which normally follow the case input data. Each time that the variable XEND is entered, be especially careful to follow the format for NNUM for this card. NNUM is the number of inputs per data card. NNUM must be a negative number for this XEND card. It is this negative sign on NNUM which actually keys the computer to stop reading data cards for a particular case.
31. **Item 100 - ABIT**

Information regarding the use of ABIT can be found in paragraph 40.

32. **Items 101-102 - BTOL**

In the blade flapping routine, the program searches for a steady state flapping solution for the given conditions of inflow ratio, pitch angle, and cyclic input. The program compares values of flapping angle and velocity at the PSI equal zero azimuthal position on each revolution. If at this position, the difference between the n-th and the (n - 1)th revolution values for flapping angle and velocity is less than BTOL and BPTOL, respectively, the program assumes that it has determined a steady state solution. BTOL and BPTOL have default values of 0.000001 radians and radians per second, respectively. If other values are desired, the user may enter those values for items 101 and 102.

33. **Item 103 - SPAR**

The number of blade segments using spar data can be inputed in item 103. If no spar data are available, no value for SPAR should be entered. For this case, the program assumes that the first segment is the area between the flapping hinge and the point where the actual airfoil begins on the rotor blade. This area is also referred to as the "cut out" segment. In this case, the program assumes that this cut out area produces zero lift and uses CD information from the first airfoil section for drag calculations. If a non-zero number is entered for SPAR, spar airfoil data must be available. Case input variable 120, BSPL, controls the spar input option. If spar data are to be inputed, BSPL should be assigned a non-zero value. In a multiple case run, where spar data are initially entered,
the variable BSPL is set equal to zero as soon as the spar data are entered. If the program did not do this, the user would have to enter a zero for BSPL for the next case if no new spar data are to be entered. If in a multiple case run, the user decides to enter new spar data, the variable BSPL must be assigned a non-zero value for that particular case.

34. **Items 104-105 - A2S B2S**

Information regarding the use of the second harmonic control inputs can be found in paragraph 18 on Lateral and Longitudinal Cyclic Inputs.

35. **Item 106 - Solidity**

Information regarding the use of RSL, rotor solidity, can be found in paragraph six on local chord.

36. **Item 107 - SYM**

SYM is the non-symmetrical airfoil input control. If the user assigns a non-zero value for SYM, the program will assume that all blade airfoil data are non-symmetrical. The user must enter values for CL and CD for the complete range of angles of attack from -180 to +180 degrees. If the value of SYM is zero, only tabular values from zero to +180 degrees need to be entered. The above holds true also for variable 147, SYMSPR. SYMSPR applies to the spar data exactly in the same manner as SYM applies to the airfoil data.

37. **Items 108-109 - SFH FDMP**

Values for the spring constant, SFH, and damping constant, FDMP, about the flapping hinge can be entered if known. These variables can be entered to simulate a hingeless rotor system or a system with flapping springs.
38. **Item 110 - ALOPT**

This is one of the wind-tunnel options. If ALOPT is a non-zero input, the program will iterate to obtain the lift required of variable 74 but will ignore the required drag, variable 75. In this option, variable 87, collective pitch, will be varied, but not variable 88, inflow ratio, in the program calculations. This is the opposite of the TOP, variable 96, option.

If a lift curve slope less than ATEST, item 122, is calculated while using this option, the program will stop and produce the following message. "Stall Criterion has been violated -- will go to next case, if any." Item 111, the shaft angle, must be inputed. If non-zero values are entered for both TOP and ALOPT, the program will do the TOP Option.

39. **Item 111 - Shaft Angle**

Item 111, the shaft angle, must be inputed whenever the TOP or ALOPT options are used.

40. **Items 112-114 - RA1S**

If variable 100, ABIT, is non-zero, the program will iterate the blade flapping solution in an attempt to obtain the desired lateral and longitudinal flapping angles indicated by variables RA1S and RB1S, respectively. The program will iterate to the accuracy indicated by TOLAB, item 114. Item 112 is RA1S and item 113 is RB1S.

41. **Items 115-116 - Delta 3**

Items 115 and 116 are the tangent and phase angle of a Delta 3 Bar. Information regarding the use of TD3B and PHD3B can be found in paragraph 16 on the Pitch-Flap Coupling Angle.
The program allows the user to induce a velocity of any form onto the rotor system. This is done in a harmonic series of the form \((A_0 + A_1 \cos(\text{PSI}) + B_1 \sin(\text{PSI}) + A_2 \cos(2 \times \text{PSI}) + B_2 \sin(2 \times \text{PSI}) + \ldots.)\) for each segment that the blade is divided into. If variable 117, LAML, is a non-zero number, the program will enter the harmonics of the induced velocities. During the Read routine, LAML, will be assigned a value of zero. Therefore, for each case where different values for the harmonics are desired, LAML will have to be set to a non-zero number. Variable 118, UVL, controls the use of the induced velocities. If UVL, is zero, the induced velocities will all be set equal to zero.

A short example will now be given on the use of the control variables in a multiple case run. Assume that no harmonic induced velocities are desired for the first case. The user would make no inputs for LAML and UVL. For the second case, assume that harmonic induced velocities are desired. LAML and UVL would be set equal to a non-zero number. The harmonic variables would follow the case input data for this particular case. For the third case, it is desired that the same induced velocities be used. The user would not enter any values for LAML and UVL since (1) LAML has been automatically set to zero and hence no new harmonic data will be entered and (2) UVL is still equal to a non-zero number. It is desired for case four to use no induced velocities. The user now would enter the value of zero for UVL and program will zero out all the induced velocity variables.

This paragraph will describe how to use the variable induced velocity option. The inputs \(A_1, B_1, A_2, B_2, \ldots\) are numbers in units of feet per second. If the direction of the velocity is down, a negative sign is associated with the \(A\)'s and \(B\)'s. A negative sign will decrease the angle of
attack for an element originally at a positive angle of attack. It will increase the amount of negative angle of attack for a blade element originally at a negative angle of attack. The values of A's and B's do not effect the uniform inflow ratio, LAMBDA, that the program iterates upon. The format for using the variable inflow velocity is as follows.

1. A value for NHARM is entered in I3 format. NHARM is the maximum degree of the harmonics that is to be used. If the maximum degree used is A3*cos(3*PSI), then NHARM is three. The next three paragraphs are repeated for each blade segment.

2. The value for AO is entered in E15.6 format. The IBM 360-67 at the NPS will accept F15.0 format.

3. The values for A1, A2, A3, ..., up to NHARM are entered on the next data cards in format 5E14.6.

4. The values for B1, B2, B3, ..., up to NHARM are entered on the next data cards in format 5E14.6.

5. Three cards are required for each blade segment whether or not the values are equal to zero. If the user has 15 blade segments, a minimum of 45 data cards are required.

43. Item 120 - BSPL

Information concerning the use of BSPL can be found in paragraph 33 entitled Number of Spar Airfoil Data Segments.
44. **Item 121 - PPSI**

PPSI represents a delta PSI for printout purposes. PPSI has a default value equal to DPSI, variable 68. PPSI shall never be a smaller increment than the incremental DPSI used to calculate the solution.

45. **Item 122 - ATEST**

ATEST is the minimum acceptable value of the lift curve slope when option TOP or ALOPT is used. If no value is assigned, ATEST has a default value of 5 (1/rad). When the TOP option is used it has an automatic value of -50 (1/rad). The lift curve refers to the increase in rotor lift with the tilting back of the tip path plane. A check on it for a minimum is for convergence purpose only.

46. **Item 123 - IGC**

IGC is the Iteration Gain Control factor. If the major iteration fails to converge, choosing a fractional value for IGC can greatly speed convergence. This may be especially helpful when parts of the rotor are in stall. The amounts by which the convergence algorithm changes the independent variables is multiplied by IGC. Setting item 91, SKIPIN, equal to zero may help the user decide if this IGC option might be useful.

47. **Item 126 - PCR**

The pre-coning angle in radians may be entered here.

48. **Item 138 - INPL**

Input 1.0 for INPL in order to remove hub moment inplane aerodynamic forces from the calculation of aerodynamic pitch and roll moments about the shaft axis.
49. **Items 139-141 - PSIS**

Variables PSIS, PHIS and THPS represent aircraft angular velocities. The aircraft can be given any angular velocity in yaw (PSIS), pitch (PHIS), and roll (THPS) in radians per second by the use of these variables. They affect the calculations of UP, UT and UR. Paragraph 50 contains additional information.

50. **Items 142-145 - CG**

If the angular velocities, Items 139 - 141 are entered, they are used in the calculations of UP, UT and UR. If no values for items 142 - 145 are entered, the program assumes that the rotor system rotates due to the angular velocities about the center of the shaft. If values are entered for items 142 - 145, the calculations will assume that the entire rotor shaft is rotating about the center of gravity. Variables 142 - 145 are RSCG, PSN, WLCG and WLMR. RSCG is the longitudinal CG position while PSN is the longitudinal position of the main rotor. WLCG is the CG 'waterline station while WLMR is the main rotor's watertight, or vertical position. All of these values must be entered in units of inches.

51. **Item 146 - VSH**

The aircraft's lateral speed in knots can be entered here.

52. **Item 147 - SYMSPR**

If the spar data are symmetrical, do not enter a value for SYMSPR. The program will only use values for CL and CD between zero to +180 degrees. If the spar data are non-symmetrical, enter any non-zero value for SYMSPR. The program will require values from -180 to +180 degrees.
53. \texttt{Line-156-157-_HIALFA}

In order for the program to properly calculate the region in and around the reverse flow region, the values of C_L and C_D are required to be known at high and low angles of attack approaching 180 degrees. However, in order to save the user from having to enter a whole range of angles of attack for all Mach numbers, the program has an option where for angles above HIALFA, 156, and below LOALFA, 157, the Mach number is set equal to zero for table lookup purposes. The user is only required to enter large angles for the first two Mach number tables. HIALFA and LOALFA have default values of $+30$ and -30 degrees, respectively.

54. \texttt{Line-158-159-_Tip_Sweep}

The GRP program will properly calculate the airflow sweep angle, UT, UR, and pitch angle of a swept tip airfoil. TIPSWP is the amount of sweep of the tip measured in degrees. TPSWST is the blade segment number at which the sweep begins. The program assumes that the remaining outboard segments starting with TPSWST are swept the number of degrees indicated by TIPSWP. UT and UR are modified for these segments as shown in Figure 11.

55. \texttt{Line-160-_TRIM}

If TRIM is a non-zero value, the program will attempt to adjust ATS and B1S in order to reduce the rolling and pitching moments to less than plus or minus 100 pounds. It will first obtain a solution which will satisfy the required lift and drag, then it will adjust ATS and B1S to reduce the moments.

56. \texttt{Line-161-175-_RB}

Variables 161 - 175 assign the proper airfoil data to blade segments one through fifteen. The program will
Figure 13 Tip Sweep Calculation Diagram

\[U_R = U_R \cos \alpha_t + U_T \sin \alpha_t \]

\[U_T = U_T \cos \alpha_t - U_R \sin \alpha_t \]
accept up to five airfoil data decks. The RB array is initialized with the value of one for all 15 segments. If only one blade airfoil deck is used, there is no need to enter any values for RB. Only enter values for the segments which will use airfoil data sets two through five. If no spar data are entered, SPAR equals zero, segment number one is considered the cut out segment and is assigned the value of RB(1) equals one for calculation purposes and the value of RB(1) equals zero for printout identification. In this case, segment one produces only drag but no lift. If SPAR is greater than zero, RB(I), I = 1, SFAR, will be assigned the value of zero for printout identification. These segments will use the spar data entered and will calculate both lift and drag.

I. CASE INPUT FORMAT

Below is located the format that is used to input case data to the program. All input data cards are of the format (I2, I4, 5F12.0). The input cards contain seven fields which are called NNUM, NLOC, C(1), C(2), C(3), C(4) and C(5). An example of a data input card is as follow.

```
5 1 700. 26.8 1148.6 .002246 4.0
```

1. **NNUM** is the number of inputs on this card, where C(N) are the inputs. NNUM must appear in either column one or two. NNUM has a minimum of one and a maximum of five. In the above example NNUM is five.

2. **NLOC** is the item or variable number of input C(1). This refers to the item numbers that are found in the section on Case Input Listing. NLOC is in I4 format and must be right justified in columns four through six. In the example NLOC refers to item number one, the Rotor Tip Speed.

74.
3. C(1) through C(5) are the values corresponding to the input items NLOC through NLOC + NNUN. Each value must contain a decimal point and be in columns 7 - 18 for C(1), 19 - 30 for C(2), 31 - 42 for C(3), 43 - 54 for C(4) and 55 - 66 for C(5). In this example, values are entered for variables one through five, the Tip Speed, Radius, Speed of Sound, Air Density and Number of Blades.

4. Omission of NNUN will cause program termination with an error explanation statement. NNUN greater than five will cause unknown problems. Omission of NLOC will cause the present card's values of C(N) to be entered into the items indicated by the previous card's NLOC. Failure to right justify NLOC, or NLOC greater than 200, will cause unknown problems. Failure to properly locate correctly any input value within its own field on the card will cause errors in both that input and the number whose field it encroaches on.

J. CASE OPTIONAL OUTPUT INDICATORS

The program has two variables that control the output printout, variable 91, SKIPIN, and 98, PRINT. The program will automatically produce a printout of the case input data for each case and a one-page summary of the initial conditions and iteration limitations the user placed upon the program. It will also produce a one-page summary of the resulting forces, moments and calculated rotor horsepower for the final converged solution. The user can also receive an echo printout of the airfoil and spar data decks. If this echo printout is desired, the user will find the correct printout indicators described in sections C and D.
entitled Blade and Spar Data Deck Requirements.

The main optional printout variable is variable 98, PRINT. PRINT can be a number from 1 to 1,111,111 depending upon the option desired. If no value is enter for PRINT, the user will receive the printout described above. Below, is listed the PRINT Options. If, for example, PRINT is assigned a value of 111, the user will receive printout options 1, 10 and 100.

OPTIONAL OUTPUT INDICATORS

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td>Angle of attack, Mach number, section lift and drag coefficients, inflow angle, lift, and sweep angle at each azimuthal position for each radial blade segment. Only for converged flapping solution.</td>
</tr>
<tr>
<td>Option 10</td>
<td>Converged flapping angle, rate, and acceleration at each azimuthal position.</td>
</tr>
<tr>
<td>Option 100</td>
<td>Converged integrated forces on blade at each azimuthal station.</td>
</tr>
<tr>
<td>Option 1000</td>
<td>Harmonic analysis of blade forces for converged case.</td>
</tr>
<tr>
<td>Option 10000</td>
<td>Harmonic analysis of air loads for converged case.</td>
</tr>
</tbody>
</table>

DEBUGGING OR TRANSIENT OPTIONS

| Option 100000 | Transient flapping angle, rate, and acceleration at each azimuthal station. |
| Option 1000000 | Option 100000 plus blade velocities, angles, Mach number, section coefficients, and lift for each blade segment at each azimuthal station. |

76.
The user is cautioned that the debugging options can give a huge amount of output data.

The second printout option is the variable SKIPIN, number 91. This variable controls the summary force, moment and horsepower output discussed in the first paragraph. If SKIPIN is greater than zero, this summary will be printed only for the final converged solution. If SKIPIN is equal to zero or a negative number, this summary will be printed for each loop through the major iteration (force summation) routine. SKIPIN has a default value of one. If the program is not converging to a solution, the user can see immediately, with very little extra printout, exactly what intermediate solutions the program is producing by setting SKIPIN equal to zero. This may help the user in deciding whether or not to use the Iteration Gain Factor, IGC, variable 123.

K. IBM 360 EXECUTION CONTROL CARDS

This section illustrates the control cards required to execute the GRP program using the IBM 360 at the Naval Postgraduate School. The program may be run under OS or CP/CMS. There are two ways of running the program under OS. The first is to run the entire program and data through the computer at the same time. The second way is to store the main program on a disk as a library program and enter only the data through the card reader for each desired case. The second method has the two advantages of (1) not requiring the user to enter the entire 1100 card main program through the card reader for each run and (2) the amount of CPU time required can be reduced since the main program does not have to be recompiled for each run. The program requires approximately one minute and forty seconds of CPU time to compile. The normal run time for each case is approximately
20 CPU seconds. This can vary with the amount of printout data requested. If the program is compiled on the CP/CMS, the user will have to request 344K bytes core size on the login message. The standard 256K bytes core size is not large enough for compiling. However, once the program has been compiled, it can be executed within the 256K normally available.

The following cards are required to execute the entire program through the card reader at one time.

Standard Job Card

// EXEC FORTCLG,REGION,FORT=150K
// REGION.GO=180K
// FORT.SYSIN DD *
Main GRP Program
/*
//GO.SYSIN DD *
Case Input Data
*/

The following two programs are used to reserve space and load the program onto a disk.

Standard Job Card

// EXEC FGM=IEPBHR14
// LOAD DD DSN=S1395.HELO,UNIT=3330,VOL=SER=Disk01
// DISP=(NEW,KEEP),LABEL=RETPOD=150,SPACE=(CYL,(1,1,1))
/*
Standard Job Card
// EXEC FORTCL,REGION,FORT=180K
// FORT.SYSIN DD *
Main GRP Program
/*
// LINK.SYSLMOD DD UNIT=3330,VOL=SER=Disk01,
// DSN=S1395.HELO(GRP),DISP=CHR

The S1395 used above and below must be change to S for student or P for faculty with the appropriate user number instead of 1395. The following cards must be used to
execute the program once stored on a disk.

Standard Job Card

//GO EXEC PGM=GRP,REGION=160K
//STEPLIB DD UNIT=3330,VOL=SER=DISK01,DISP=SHR,
// DSN=S1395.HELO
//FT06F001 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZ=E=3325
//FT05F001 DD *
Case Input Data
/*

J. Sample Program Output

This section describes in detail the output available from the GRP program. In addition, a sample computer output is included with each description. The program will print up to ten different tables. Seven of these tables are optional and are not automatically printed. The ten tables are as follows.

1. Echo Printout of Rotor Blade and Spar Data
2. Case Input Data Card Listings
3. Summary of Input Data
4. Debugging or Transient Information (Options 100,000 and 1,000,000)
5. Summary of Forces, Moments and Horsepower
6. Converged Flapping Solution (Option 10)
7. Converged Integrated Forces (Option 100)
8. Harmonic Analysis of Z Force (Option 1000)
9. Converged Blade Analysis (option 1)
10. Harmonic Analysis of Air Loads (Option 10,000)

The input variable PRINT, item 98, controls the output of items four and six through ten. Items two, three and five are always outputed. Item one is controlled by the first data card on the rotor blade and spar section input decks.
1. **Echo Rotor Blade Printout**

The next page contains a partial sample Echo Printout of Rotor Blade Input Data. This printout illustrates that (1) the printout was requested (WELADE = 10.), (2) there are two airfoil decks to be entered, (3) there are nine Mach numbers for which CL's are to be read in and (4) the remaining portion of the printout is the values of Mach numbers, angles of attack and lift coefficients for the first airfoil deck.
2. **Input Data Card Listing**

The next page contains a sample Case Input Data Card Listing. This is one of the automatic printouts. It is an echo printout of the input data cards.
3. **Summary of Input Data**

The next page contains the automatic Summary of Input Data printout. The following information can be seen on this sample output.

a. The blade was divided into 15 segments starting from the hinge offset and proceeding outward.

b. No values were entered for the local mass density, input variables 38 - 52. Instead, values for the First Moment, \(M(M) = 85 \), and the Second Moment, MOM - INERTIA = 1450, about the Flapping Hinge, input items 78 and 79, were entered.

c. The I row indicates the calculated centers of each segment expressed in a percentage of the distance out the rotor blade.

d. The BLADE DECK row indicates that the first blade segment was considered a Spar segment. Segments two through five and twelve through fifteen belong to airfoil data deck number one, while segments six through eleven belong to airfoil data deck number two.

e. The rest of the information, with one exception, is a summary of the case input data. The exception is the term THRUST FACTOR. This is the value used to nondimensionalize all the calculated forces in the program. The THRUST FACTOR equals \(\frac{Q}{P} R^2 (Q R)^2 \). Moments are nondimensionalized by the THRUST FACTOR times the radius.

f. The program checks to see if all the blade segment, delta X's, plus the distance from the shaft to the hinge, E/R, add up to one. If, on the printout, SUM/DX + E/R does not equal one, the user has made a mistake somewhere with the delta X's or in the E/R number.
PERFORMANCE SECTION

AERIAL DRONE PERFORMANCE

**AERIAL DRONE PER
4. Debugging or Transient Information

The next page illustrates the Debugging or Transient Printout. This is PRINT Option 1,000,000. The information available includes flapping angles, rates and accelerations at each azimuthal position with a radial position display of UP, UT, U, PHI, Angle-of-Attack, Mach Number, CL, CD and Lift Per Inch produced.

This option is generally outputed only when the user is experiencing unknown difficulties with the GRP program. The program will output all of the above information for every revolution and iteration until a converged solution is obtained or the program runs out of allowable computer time. If desired, the variable SKIPIN, item 91, will provide a printout of the Forces, Moments and Horsepower Summary after each major iteration.
5. **Force Summary**

The next printout illustrates the Summary of Forces, Moments and Horsepower. This page is automatically outputed for the converged solution. A printout of this summary can be obtained for each loop through the major iteration routine by the use of the input variable SKIPIN, item 91. The following information can be observed from this sample printout.

a. The cyclic lateral and longitudinal inputs, A1S, A1S, A2S and B2S are printed at the top of the page. This example indicates that there were no second harmonic inputs for A2S and B2S, which is normal.

b. Theta .75 is the pitch angle of the blade at the 75 percent radius station at the PSI equals zero azimuthal position. In most options the program will iterate upon the values for Theta .75 in its search for a converged solution.

c. Lambda refers to the converged value for the uniform inflow ratio. If a rate of climb or descent was used in the case, that rate divided by the tip speed would have to be subtracted from or added to this value of Lambda, respectively.

da. Mu(X) and Mu(Y) are the advance ratios in the longitudinal and lateral directions with respect to the shaft axis.

e. CT, CQ, CH, CL and CB are the calculated overall coefficients of Thrust, Torque, H Force, Lift and Drag. All of these items are nondimensionalized by the value of the Thrust Factor.

f. Lift and Drag forces are calculated with respect to the relative wind axis. Thrust and H forces are calculated with respect to the control axis. Z forces are calculated with respect to the shaft axis. X and Y forces are calculated perpendicular to the shaft axis.

g. The Equivalent Drag is the total drag force created by the fuselage, flat plate area times dynamic
pressure, plus the profile drag created by the turning rotor system.

h. The Equivalent P. A., or Equivalent Flat Plate area is obtained by dividing the Equivalent Drag by the dynamic pressure.

i. Alpha(S) is the shaft axis orientation while Alpha(c) is the control axis orientation. The program uses momentum theory to calculate Alpha(S). Alpha(C) is determined from the following relationship, Alpha(S) = Alpha(C) + DIS.

j. LAT. DIS. and LONG. DIS. are the lift vector offset as a percentage of the rotor radius from the rotor shaft to create the program's rolling and pitching moments.

k. PM and RM are the calculated aerodynamic pitch and roll moments about the shaft axis. The SHEARS Hub Pitch and Roll Moments are calculated from summing the aerodynamic, inertia and elastic hub restraint moments.
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A15</td>
<td>B15</td>
<td>A35</td>
<td>B35</td>
<td>P25</td>
<td>P25</td>
<td>T+FTA</td>
<td>LEMPBA(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.56</td>
<td>-0.3166</td>
</tr>
<tr>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
<td>CL*SIGMA</td>
</tr>
<tr>
<td>5.8640E-03</td>
<td>3.8804E-04</td>
<td>3.6905E-04</td>
<td>1.8905E-03</td>
<td>8.7005E-04</td>
<td>1.3056E-03</td>
<td>1.3056E-03</td>
<td>1.3056E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFT</td>
<td>ERAC</td>
<td>PERSEFOER</td>
<td>ECLIV ERAC</td>
<td>ALPHA(s)</td>
<td>PFFLT</td>
<td>LAT. CIS.</td>
<td></td>
</tr>
<tr>
<td>2602.74E-06</td>
<td>-412.15E-06</td>
<td>1265.14E-06</td>
<td>4402.75E-06</td>
<td>-7.723 DEGREES</td>
<td>-1.067 DEGREES</td>
<td>-0.512 PERCENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X FORCE</td>
<td>Y FORCE</td>
<td>Z FORCE</td>
<td>EQUIV L/D</td>
<td>THRUST</td>
<td>P FORCE</td>
<td>VICT(IAL)</td>
<td></td>
</tr>
<tr>
<td>1764.64E+01</td>
<td>-275.14E+01</td>
<td>-20753.54E+01</td>
<td>3.212E+01</td>
<td>20307.52E+01</td>
<td>976.13E+01</td>
<td>66.000 KACTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESLTIANT</td>
<td>FCLL MCP</td>
<td>FCLL MCP</td>
<td>ECLIV F.A.</td>
<td>TCNGLE</td>
<td>PFRFLE MP</td>
<td>SHEARS PUS PITCH MCPET</td>
<td></td>
</tr>
<tr>
<td>2683.71E+01</td>
<td>1.3056E+03</td>
<td>562.11E+01</td>
<td>25644.51E+01</td>
<td>434.46E+01</td>
<td>-1.61E+01</td>
<td>-1.61E+01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAJOR ITERATIONS USEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Flapping Solution

The next page contains a sample printout of the converged flapping solution. The first item to appear are the flapping values at the PSI equal zero azimuthal position for each revolution prior to the converged revolution on the final iteration. The values for flapping angle and its first two derivatives are expressed in radians.

The second part of this printout is the actual flapping values for the converged revolution. The difference between the flapping angles and rates between the PSI equal zero and 360 degree position must be less than the tolerances entered in variables 101 and 102. The numbers here are also in radians. The last item is a Fourier coefficient series for the flapping angle and it is calculated in degrees. All calculations are done in respects to the shaft axis. This is PRINT Option 10.
7. **Force Integration**

The next table is a sample Force Integration Output. This is PRINT Option 100. The forces are a printout for one blade only at a particular azimuthal position. CQ, CQL and CQD are the Coefficients of Torque, Torque due to Lift and Torque due to Drag. CQ is calculated from $CQ = CQD - CQL$. CX, CY and CZ are all related to forces in the shaft axis reference system. CMHS is the Coefficient of Pitching Moment due to aerodynamic, inertia and hub elastic restraint moments about the Shaft Axis and CLHS is the Coefficient of Rolling Moment due to these same forces. In the printout the (B) character is the number of blades, which in this example is four. SIG is the solidity of the rotor system. MAX B*CQD/SIGMA is a blade stall indicator. It is calculated by determining the first azimuthal station between the PSI equal 180 degree and 360 degree position that has a value of CQD greater than the value of CQD at the PSI equal 180 degrees azimuthal position.
8. Harmonic Analysis of Z Force

The following is a harmonic analysis of the forces in the Z or shaft axis direction. Z force is positive in the downward direction. This is PRINT Option 1000.
HARMONIC ANALYSIS OF DIMENSIONAL CZ

\[CZ = A_0 + A_1 \cos(\psi) + B_1 \sin(\psi) + A_2 \cos(2\psi) + B_2 \sin(2\psi) \]

\[
\begin{array}{cccccccc}
A_0 & A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \\
-4.7E 02 & -2.3E 02 & -2.4E 02 & -1.7E 01 & 8.8E 00 & -1.1E 00 & 3.0E 00 \\
B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\
-3.9E 02 & -5.7E 00 & -4.1E 01 & -2.7E 00 & -3.5E-01 & 6.5E 00
\end{array}
\]
9. **Converged Blade Analysis**

The next four pages contain the sample overall summary of events occurring on the blade at each azimuthal and radial position. This is PRINT Option 1. Variable 121, PPSI, controls the azimuthal intervals that are printed out. The output items are as follows.

- a. \textit{X} - Center location of the blade segment
- b. \textit{ALPHA} - Angle-of-Attack
- c. \textit{MACH} - Local Mach number
- d. \textit{CL} - Local Coefficient of Lift
- e. \textit{CD} - Local Coefficient of Drag
- f. \textit{PHI} - Local Inflow Angle
- g. \textit{L} (LB/IN) - Lift produced per inch on segment
- h. \textit{Sweep} - Sweep Angle of airflow
<table>
<thead>
<tr>
<th>X</th>
<th>ALPHA</th>
<th>MACP</th>
<th>CL</th>
<th>PH</th>
<th>LLE/IN</th>
<th>SWEEP</th>
<th>ALPHA</th>
<th>MACP</th>
<th>CL</th>
<th>CC</th>
<th>PJ</th>
<th>LILE/IN</th>
<th>SWEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.093</td>
<td>0.001</td>
</tr>
<tr>
<td>0.103</td>
<td>0.002</td>
</tr>
<tr>
<td>0.113</td>
<td>0.003</td>
</tr>
<tr>
<td>0.123</td>
<td>0.004</td>
</tr>
<tr>
<td>0.133</td>
<td>0.005</td>
</tr>
<tr>
<td>0.143</td>
<td>0.006</td>
</tr>
<tr>
<td>0.153</td>
<td>0.007</td>
</tr>
<tr>
<td>0.163</td>
<td>0.008</td>
</tr>
</tbody>
</table>

PSI = 155 DEGREES

PSI = 210 DEGREES

PSI = 255 DEGREES

PSI = 276 DEGREES
10. Harmonic of Air Loads

The next printout contains the harmonic analysis of the lift generated per inch on each rotor blade segment. This is PRINT Option 10000. The airloads are computed in two harmonic forms, both containing terms out to and including the tenth harmonic. The forms are:

\[\text{Lift per Inch} = A_0 - A_1 \cos \psi - B_1 \sin \psi - A_2 \cos 2\psi - B_2 \sin 2\psi - A_3 \cos 3\psi - B_3 \sin 3\psi \ldots \ldots - A_{10} \cos 10\psi - B_{10} \sin 10\psi \]

And

\[\text{Lift per Inch} = A_0 - C_1 \sin (\psi + \phi_1) - C_2 \sin (2\psi + \phi_2) - C_3 \sin (3\psi + \phi_3) \ldots \ldots - C_{10} \sin (10\psi + \phi_{10}) \]

The Ratio column is determined from the coefficients in Column C. From this ratio, one can immediately determine which airload harmonic is dominant and the relative relationship of this to the other harmonic coefficients.
<table>
<thead>
<tr>
<th>Station</th>
<th>AO</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10.8414097</td>
<td>0.6164446</td>
<td>-6.7262754</td>
<td>6.754622</td>
<td>174.7635345</td>
<td>1.0000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.2930883</td>
<td>0.1327320</td>
<td>0.3217429</td>
<td>-65.6354218</td>
<td>0.0476241</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0419007</td>
<td>-0.0340860</td>
<td>0.0540141</td>
<td>230.8716888</td>
<td>0.0079968</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0247872</td>
<td>-0.0128548</td>
<td>0.0279222</td>
<td>422.5802416</td>
<td>0.0041339</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0008707</td>
<td>-0.0201105</td>
<td>0.0201293</td>
<td>182.4791412</td>
<td>0.0029802</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0141912</td>
<td>0.0019092</td>
<td>0.0143330</td>
<td>85.5607963</td>
<td>0.0021702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0009653</td>
<td>-0.0089413</td>
<td>0.0089933</td>
<td>-6.1615915</td>
<td>0.0013315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0037353</td>
<td>-0.0011640</td>
<td>0.0039125</td>
<td>252.6913845</td>
<td>0.0007920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0008729</td>
<td>0.0002412</td>
<td>0.0009056</td>
<td>74.5502472</td>
<td>0.0001341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0035800</td>
<td>0.0006888</td>
<td>0.0036457</td>
<td>-75.1098633</td>
<td>0.0005397</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>AO</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>16.1947784</td>
<td>0.3626662</td>
<td>-7.1265459</td>
<td>7.1357670</td>
<td>177.0865173</td>
<td>1.0000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3114024</td>
<td>0.194090</td>
<td>0.3671053</td>
<td>-58.0233765</td>
<td>0.0514858</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.1032558</td>
<td>-0.0126060</td>
<td>0.1040224</td>
<td>263.0393064</td>
<td>0.0145776</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0755618</td>
<td>-0.0150281</td>
<td>0.0770417</td>
<td>101.2484741</td>
<td>0.0107966</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0024715</td>
<td>0.0039472</td>
<td>0.0106383</td>
<td>-13.4337721</td>
<td>0.0014908</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0033176</td>
<td>0.000382</td>
<td>0.0319176</td>
<td>89.9314423</td>
<td>0.0044729</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00184862</td>
<td>0.0059217</td>
<td>0.0061056</td>
<td>-14.0892754</td>
<td>0.0008556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0184920</td>
<td>0.0094020</td>
<td>0.0184964</td>
<td>105.7545776</td>
<td>0.0025921</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0018298</td>
<td>0.0026334</td>
<td>0.0032068</td>
<td>-34.7934418</td>
<td>0.0004494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0134738</td>
<td>0.001376</td>
<td>0.0134745</td>
<td>89.4146423</td>
<td>0.0018883</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>AO</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>23.7709961</td>
<td>0.0274429</td>
<td>-7.6236906</td>
<td>7.6237392</td>
<td>179.7936707</td>
<td>1.0000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.9006391</td>
<td>0.2562434</td>
<td>0.9363821</td>
<td>-74.1181966</td>
<td>0.1228245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.1355020</td>
<td>-0.1138743</td>
<td>0.1769975</td>
<td>229.9566080</td>
<td>0.0232166</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0095282</td>
<td>-0.0167787</td>
<td>0.0192953</td>
<td>150.4087830</td>
<td>0.0025310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0000880</td>
<td>-0.0094386</td>
<td>0.0094390</td>
<td>179.4659424</td>
<td>0.0012381</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0118955</td>
<td>-0.018567</td>
<td>0.0120395</td>
<td>261.1286621</td>
<td>0.0015792</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0002423</td>
<td>0.0052868</td>
<td>0.0052924</td>
<td>-2.6245661</td>
<td>0.0006942</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0065136</td>
<td>-0.0006836</td>
<td>0.0065494</td>
<td>264.0087891</td>
<td>0.0008591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0002131</td>
<td>0.0050558</td>
<td>0.0050603</td>
<td>-2.4134903</td>
<td>0.0006638</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0033125</td>
<td>-0.0002771</td>
<td>0.0033241</td>
<td>94.7816010</td>
<td>0.0004360</td>
</tr>
</tbody>
</table>
STATION 7

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3485193</td>
<td>-6.2323513</td>
<td>6.2890759</td>
<td>183.1970215</td>
<td>1.0000000</td>
</tr>
<tr>
<td>1.3407177</td>
<td>-0.3121706</td>
<td>1.3759508</td>
<td>-76.8867188</td>
<td>0.2201847</td>
</tr>
<tr>
<td>0.1670687</td>
<td>-0.1379979</td>
<td>0.2166919</td>
<td>230.4433441</td>
<td>0.3467509</td>
</tr>
<tr>
<td>-0.0059609</td>
<td>-0.0201869</td>
<td>0.0210486</td>
<td>196.4511414</td>
<td>0.0336638</td>
</tr>
<tr>
<td>0.0012575</td>
<td>-0.0021948</td>
<td>0.0025295</td>
<td>150.1083545</td>
<td>0.0004048</td>
</tr>
<tr>
<td>0.0163611</td>
<td>-0.0005068</td>
<td>0.0116471</td>
<td>92.4938660</td>
<td>0.0018638</td>
</tr>
<tr>
<td>0.0024073</td>
<td>-0.0083405</td>
<td>0.0086809</td>
<td>163.9004822</td>
<td>0.0013891</td>
</tr>
<tr>
<td>0.0011396</td>
<td>-0.0004327</td>
<td>0.0012190</td>
<td>110.7918243</td>
<td>0.0001951</td>
</tr>
<tr>
<td>0.0031200</td>
<td>-0.0029015</td>
<td>0.0029182</td>
<td>173.8625031</td>
<td>0.0004670</td>
</tr>
<tr>
<td>0.0004716</td>
<td>-0.0002716</td>
<td>0.0005442</td>
<td>119.9330750</td>
<td>0.0008710</td>
</tr>
</tbody>
</table>

STATION 8

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.8066843</td>
<td>-4.7207584</td>
<td>4.7891788</td>
<td>189.6965790</td>
<td>1.0000000</td>
</tr>
<tr>
<td>1.7867089</td>
<td>-0.3762742</td>
<td>1.7867775</td>
<td>-77.8431091</td>
<td>0.3730864</td>
</tr>
<tr>
<td>0.1978083</td>
<td>-0.1310782</td>
<td>0.2372965</td>
<td>236.4693298</td>
<td>0.0495485</td>
</tr>
<tr>
<td>-0.0117244</td>
<td>-0.0276652</td>
<td>0.0277718</td>
<td>183.5665131</td>
<td>0.0057878</td>
</tr>
<tr>
<td>0.0084314</td>
<td>-0.0057278</td>
<td>0.0099443</td>
<td>122.0210491</td>
<td>0.0020764</td>
</tr>
<tr>
<td>0.0046946</td>
<td>-0.00064113</td>
<td>0.0079463</td>
<td>143.7868347</td>
<td>0.0016592</td>
</tr>
<tr>
<td>0.0059827</td>
<td>-0.00014264</td>
<td>0.0061504</td>
<td>76.5897359</td>
<td>0.0012842</td>
</tr>
<tr>
<td>0.0058798</td>
<td>-0.00016484</td>
<td>0.0059238</td>
<td>106.1567335</td>
<td>0.0012369</td>
</tr>
<tr>
<td>0.0054092</td>
<td>-0.0008308</td>
<td>0.0054726</td>
<td>81.2680969</td>
<td>0.0011427</td>
</tr>
<tr>
<td>0.0069205</td>
<td>-0.0011486</td>
<td>0.0070152</td>
<td>99.4233398</td>
<td>0.0014648</td>
</tr>
</tbody>
</table>

STATION 9

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.4361496</td>
<td>-1.2663260</td>
<td>1.9117072</td>
<td>228.5956421</td>
<td>0.9784515</td>
</tr>
<tr>
<td>1.9012839</td>
<td>0.4627401</td>
<td>1.9567947</td>
<td>-76.3211823</td>
<td>1.0000000</td>
</tr>
<tr>
<td>-0.2739782</td>
<td>-0.0837021</td>
<td>0.2864787</td>
<td>-73.0117035</td>
<td>0.1640200</td>
</tr>
<tr>
<td>-0.0536059</td>
<td>-0.0473846</td>
<td>0.0154649</td>
<td>228.5250549</td>
<td>0.0365631</td>
</tr>
<tr>
<td>-0.0036424</td>
<td>0.0342192</td>
<td>0.0344125</td>
<td>-6.0758619</td>
<td>0.0175861</td>
</tr>
<tr>
<td>-0.0486374</td>
<td>0.0091863</td>
<td>0.0494977</td>
<td>259.3017578</td>
<td>0.0252953</td>
</tr>
<tr>
<td>0.0084202</td>
<td>-0.0289197</td>
<td>0.0282058</td>
<td>162.6307220</td>
<td>0.0144143</td>
</tr>
<tr>
<td>0.0112917</td>
<td>-0.0050772</td>
<td>0.0123806</td>
<td>170.4072418</td>
<td>0.0063270</td>
</tr>
<tr>
<td>0.0042988</td>
<td>-0.0254356</td>
<td>0.0257963</td>
<td>50.4138336</td>
<td>0.0131829</td>
</tr>
<tr>
<td>0.0137325</td>
<td>0.0077968</td>
<td>0.0157915</td>
<td>60.4138336</td>
<td>0.0030701</td>
</tr>
</tbody>
</table>
Station 10

$$A_0 = 34.9860229$$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>PHI</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>-2.2796931</td>
<td>0.2039624</td>
<td>2.2860888</td>
<td>-84.5697391</td>
</tr>
<tr>
<td>-2.1698074</td>
<td>0.694715</td>
<td>2.7504483</td>
<td>-74.6153317</td>
</tr>
<tr>
<td>-0.3524024</td>
<td>-0.1595188</td>
<td>0.3868251</td>
<td>245.46549726</td>
</tr>
<tr>
<td>0.1728295</td>
<td>-0.0118087</td>
<td>0.1732365</td>
<td>93.9284821</td>
</tr>
<tr>
<td>-0.0039592</td>
<td>0.0551648</td>
<td>0.0553067</td>
<td>-4.1050692</td>
</tr>
<tr>
<td>0.0780106</td>
<td>0.0224963</td>
<td>0.0811895</td>
<td>73.9132718</td>
</tr>
<tr>
<td>0.0069553</td>
<td>0.0280481</td>
<td>0.0298010</td>
<td>13.1561584</td>
</tr>
<tr>
<td>0.0357608</td>
<td>0.0012623</td>
<td>0.357031</td>
<td>87.9783478</td>
</tr>
<tr>
<td>-0.0105172</td>
<td>0.0089013</td>
<td>0.0132695</td>
<td>-52.4273529</td>
</tr>
<tr>
<td>0.0129197</td>
<td>-0.0011896</td>
<td>0.0129743</td>
<td>95.2609558</td>
</tr>
</tbody>
</table>

Station 11

$$A_0 = 40.3416443$$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>PHI</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>-3.0961714</td>
<td>1.2363281</td>
<td>3.3338442</td>
<td>-68.2327118</td>
</tr>
<tr>
<td>-2.6404209</td>
<td>0.6432902</td>
<td>2.7176542</td>
<td>-76.3076324</td>
</tr>
<tr>
<td>-0.4049754</td>
<td>-0.4475855</td>
<td>0.6036174</td>
<td>222.1401367</td>
</tr>
<tr>
<td>0.0306133</td>
<td>-0.0461915</td>
<td>0.0554150</td>
<td>146.4656372</td>
</tr>
<tr>
<td>0.1252972</td>
<td>-0.2158247</td>
<td>0.2495590</td>
<td>149.8625793</td>
</tr>
<tr>
<td>0.1024629</td>
<td>-0.0254310</td>
<td>0.1055135</td>
<td>103.9663848</td>
</tr>
<tr>
<td>0.0641405</td>
<td>-0.0390110</td>
<td>0.0750723</td>
<td>121.3084564</td>
</tr>
<tr>
<td>0.0010315</td>
<td>-0.0392041</td>
<td>0.0405385</td>
<td>165.2580566</td>
</tr>
<tr>
<td>0.0371099</td>
<td>-0.0429722</td>
<td>0.0567785</td>
<td>139.1867218</td>
</tr>
<tr>
<td>-0.0055227</td>
<td>-0.0281254</td>
<td>0.0286625</td>
<td>191.1092834</td>
</tr>
</tbody>
</table>

Station 12

$$A_0 = 15.1531467$$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>PHI</td>
<td>RATIO</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>-4.2959366</td>
<td>13.1468153</td>
<td>13.8390002</td>
<td>-18.5556421</td>
<td>1.0000000</td>
</tr>
<tr>
<td>-3.9540501</td>
<td>0.7510318</td>
<td>4.0279227</td>
<td>-79.2415866</td>
<td>0.2910000</td>
</tr>
<tr>
<td>-0.3705888</td>
<td>0.5471836</td>
<td>0.6609067</td>
<td>214.1134033</td>
<td>0.0477848</td>
</tr>
<tr>
<td>-0.0164340</td>
<td>-0.0444608</td>
<td>0.0474008</td>
<td>200.2856598</td>
<td>0.0034272</td>
</tr>
<tr>
<td>-0.0054827</td>
<td>0.0113497</td>
<td>0.0126046</td>
<td>-25.7836151</td>
<td>0.0009113</td>
</tr>
<tr>
<td>0.0297508</td>
<td>0.0097892</td>
<td>0.0313200</td>
<td>71.7867584</td>
<td>0.0022645</td>
</tr>
<tr>
<td>0.0016600</td>
<td>0.0133093</td>
<td>0.0134125</td>
<td>2.1093483</td>
<td>0.0009679</td>
</tr>
<tr>
<td>0.0240062</td>
<td>0.0060478</td>
<td>0.0247563</td>
<td>75.3596328</td>
<td>0.0017899</td>
</tr>
<tr>
<td>0.0023791</td>
<td>-0.0078063</td>
<td>0.0381078</td>
<td>163.03693</td>
<td>0.0005700</td>
</tr>
<tr>
<td>-0.0015144</td>
<td>-0.004872</td>
<td>0.0047358</td>
<td>198.6474751</td>
<td>0.0003424</td>
</tr>
</tbody>
</table>
STATION 13 \(A_0 = 14.6387329 \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.0683117</td>
<td>12.3609266</td>
<td>12.7360525</td>
<td>-13.9405718</td>
<td>0.0000000</td>
</tr>
<tr>
<td>-3.6057901</td>
<td>-0.7387867</td>
<td>3.6806965</td>
<td>258.4208984</td>
<td>0.2869982</td>
</tr>
<tr>
<td>-0.1978170</td>
<td>-0.3508309</td>
<td>0.4027578</td>
<td>209.4165344</td>
<td>0.0316234</td>
</tr>
<tr>
<td>-0.0111755</td>
<td>-0.0461688</td>
<td>0.0475021</td>
<td>193.6071014</td>
<td>0.0037297</td>
</tr>
<tr>
<td>0.0133389</td>
<td>-0.0326380</td>
<td>0.0352586</td>
<td>157.7704163</td>
<td>0.0027684</td>
</tr>
<tr>
<td>-0.0020485</td>
<td>-0.0065694</td>
<td>0.0068813</td>
<td>197.3187408</td>
<td>0.0005403</td>
</tr>
<tr>
<td>0.0107518</td>
<td>-0.0086541</td>
<td>0.0138020</td>
<td>128.8303528</td>
<td>0.0010837</td>
</tr>
<tr>
<td>-0.0046484</td>
<td>-0.0016559</td>
<td>0.0049345</td>
<td>250.3928070</td>
<td>0.0038747</td>
</tr>
<tr>
<td>-0.0063981</td>
<td>-0.0050375</td>
<td>0.0081432</td>
<td>128.2147675</td>
<td>0.0006394</td>
</tr>
<tr>
<td>-0.0042478</td>
<td>-0.0011064</td>
<td>0.0043895</td>
<td>255.4011841</td>
<td>0.0003447</td>
</tr>
</tbody>
</table>

STATION 14 \(A_0 = 18.6674194 \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.3165741</td>
<td>12.3558550</td>
<td>12.7932320</td>
<td>-15.0252333</td>
<td>0.0000000</td>
</tr>
<tr>
<td>-3.7300339</td>
<td>-0.7245859</td>
<td>3.7907599</td>
<td>259.0065918</td>
<td>0.2970133</td>
</tr>
<tr>
<td>-0.2268665</td>
<td>-0.3501016</td>
<td>0.4117804</td>
<td>212.9435262</td>
<td>0.0326095</td>
</tr>
<tr>
<td>-0.0109534</td>
<td>-0.0573655</td>
<td>0.0584019</td>
<td>190.8098907</td>
<td>0.0045651</td>
</tr>
<tr>
<td>0.0089840</td>
<td>-0.0269448</td>
<td>0.0284030</td>
<td>161.5604095</td>
<td>0.0022202</td>
</tr>
<tr>
<td>0.0008049</td>
<td>-0.0112847</td>
<td>0.0113134</td>
<td>175.9201355</td>
<td>0.0008433</td>
</tr>
<tr>
<td>0.0058211</td>
<td>-0.0045196</td>
<td>0.0073696</td>
<td>127.8259088</td>
<td>0.0005761</td>
</tr>
<tr>
<td>0.0016236</td>
<td>-0.0024253</td>
<td>0.0045450</td>
<td>200.9294834</td>
<td>0.0003553</td>
</tr>
<tr>
<td>-0.0012039</td>
<td>-0.0028799</td>
<td>0.0031214</td>
<td>157.3127699</td>
<td>0.0002440</td>
</tr>
<tr>
<td>-0.0010307</td>
<td>-0.0023727</td>
<td>0.0025869</td>
<td>203.4801636</td>
<td>0.0002022</td>
</tr>
</tbody>
</table>

STATION 15 \(A_0 = -0.0176909 \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PHI</th>
<th>RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0103698</td>
<td>-0.0756623</td>
<td>0.0763695</td>
<td>172.195381</td>
<td>1.0000000</td>
</tr>
<tr>
<td>0.0144975</td>
<td>-0.0140639</td>
<td>0.0146339</td>
<td>68.1742333</td>
<td>0.144917</td>
</tr>
<tr>
<td>-0.0003934</td>
<td>0.00010045</td>
<td>0.0010788</td>
<td>-21.3594806</td>
<td>0.0141261</td>
</tr>
<tr>
<td>0.0008102</td>
<td>-0.0004531</td>
<td>0.0009283</td>
<td>240.7874298</td>
<td>0.0121552</td>
</tr>
<tr>
<td>0.0001319</td>
<td>-0.0007743</td>
<td>0.0002186</td>
<td>142.8869676</td>
<td>0.0028622</td>
</tr>
<tr>
<td>0.0007655</td>
<td>0.0004679</td>
<td>0.0007669</td>
<td>86.5120850</td>
<td>0.0010423</td>
</tr>
<tr>
<td>-0.0000288</td>
<td>0.0004759</td>
<td>0.0007559</td>
<td>-0.3570089</td>
<td>0.0062313</td>
</tr>
<tr>
<td>0.00001418</td>
<td>0.0001749</td>
<td>0.0002552</td>
<td>140.9597321</td>
<td>0.0029842</td>
</tr>
<tr>
<td>0.0003694</td>
<td>0.0000019</td>
<td>0.0003694</td>
<td>89.7012482</td>
<td>0.0043371</td>
</tr>
<tr>
<td>0.0002440</td>
<td>0.0000810</td>
<td>0.0002571</td>
<td>71.6364288</td>
<td>0.0033660</td>
</tr>
</tbody>
</table>
IV. GRP SAMPLE ANALYSIS

The GRP program was executed using data representing a relatively new rotor blade. The results were compared with results predicted by the blade’s manufacturer. The rotor blade was an unsymmetrical blade. The rotor radius was divided into three sections. Sections one and three were made of the same type airfoil. The blade included a sweep tip design. The blade and helicopter configuration analyzed are typical of a helicopter that could be used by the U.S. Navy in a LAMPS type mission.

For the analysis, the blade was divided into 15 segments. The program used the manufacturer’s values for the First and Second Moment of Inertia about the Flapping Hinge, vice local blade mass densities. The GRP assumed uniform inflow for all flight velocities. It used a rigid blade analysis while the actual blade does have live twist. The program was run at five different flight weights, ranging from 16,359 to 20,829 pounds. A flat plate area of 35.8 square feet was used at all speeds. The GRP was run for forward flight speeds of 40 to 160 knots at ten knot increments. The program was executed at sea level, tropical day condition. The manufacturer’s predicted rotor horsepower was obtained from his Shaft Horsepower versus True Airspeed curves and was corrected to rotor horsepower by using the manufacturer’s Mechanical Efficiency curves.

The results of the analysis are shown in the next several tables. Table VI illustrates a comparison of the GRP required rotor horsepower divided by the manufacturer’s required rotor horsepower. The GRP agreed within an average of two percent on the entire range from 40 to 160 knots. The GRP agreed within an average of one percent for the cruise range between 70 and 140 knots. It can be seen that between 40 to 60 knots there is a much larger difference
between the two required horsepowers. It is felt that the inflow in this region is not uniform as assumed, but highly mixed and irregular. Also, the GRP results were less than the manufacturer's horsepower in the 150 to 160 knot range. This area represents the region of top speed for the helicopter, and much of the retreating blade is in the stall region. Also, it is expected that there is a change in fuselage attitude at this high speed, which would increase the flat plate area above what was used in the program. The GRP program's maximum endurance velocities agreed exactly with those predicted by the manufacturer.

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>GRP RHP</th>
<th>MANUFACTURER'S RHP</th>
<th>RATIO (GRP/MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1105</td>
<td>1152</td>
<td>.96</td>
</tr>
<tr>
<td>50</td>
<td>1006</td>
<td>1041</td>
<td>.97</td>
</tr>
<tr>
<td>60</td>
<td>960</td>
<td>973</td>
<td>.99</td>
</tr>
<tr>
<td>70</td>
<td>955</td>
<td>958</td>
<td>1.00</td>
</tr>
<tr>
<td>80</td>
<td>984</td>
<td>971</td>
<td>1.01</td>
</tr>
<tr>
<td>90</td>
<td>1047</td>
<td>1034</td>
<td>1.01</td>
</tr>
<tr>
<td>100</td>
<td>1142</td>
<td>1109</td>
<td>1.03</td>
</tr>
<tr>
<td>110</td>
<td>1273</td>
<td>1237</td>
<td>1.03</td>
</tr>
<tr>
<td>120</td>
<td>1438</td>
<td>1396</td>
<td>1.03</td>
</tr>
<tr>
<td>130</td>
<td>1643</td>
<td>1583</td>
<td>1.03</td>
</tr>
<tr>
<td>140</td>
<td>1893</td>
<td>1852</td>
<td>1.02</td>
</tr>
<tr>
<td>150</td>
<td>2300</td>
<td>2216</td>
<td>1.04</td>
</tr>
<tr>
<td>160</td>
<td>2567</td>
<td>2745</td>
<td>.94</td>
</tr>
</tbody>
</table>

109.
TABLE II WEIGHT = 17321 LBS

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>GRP RHP</th>
<th>MANUFACTURER'S RHP</th>
<th>RATIO (GRP/MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1185</td>
<td>1247</td>
<td>.95</td>
</tr>
<tr>
<td>50</td>
<td>1075</td>
<td>1122</td>
<td>.96</td>
</tr>
<tr>
<td>60</td>
<td>1018</td>
<td>1038</td>
<td>.98</td>
</tr>
<tr>
<td>70</td>
<td>1008</td>
<td>1009</td>
<td>1.00</td>
</tr>
<tr>
<td>80</td>
<td>1028</td>
<td>1028</td>
<td>1.00</td>
</tr>
<tr>
<td>90</td>
<td>1086</td>
<td>1078</td>
<td>1.01</td>
</tr>
<tr>
<td>100</td>
<td>1176</td>
<td>1153</td>
<td>1.02</td>
</tr>
<tr>
<td>110</td>
<td>1303</td>
<td>1264</td>
<td>1.03</td>
</tr>
<tr>
<td>120</td>
<td>1465</td>
<td>1445</td>
<td>1.01</td>
</tr>
<tr>
<td>130</td>
<td>1669</td>
<td>1633</td>
<td>1.02</td>
</tr>
<tr>
<td>140</td>
<td>1921</td>
<td>1902</td>
<td>1.01</td>
</tr>
<tr>
<td>150</td>
<td>2227</td>
<td>2257</td>
<td>.99</td>
</tr>
<tr>
<td>160</td>
<td>2598</td>
<td>2791</td>
<td>.93</td>
</tr>
</tbody>
</table>

TABLE III WEIGHT = 19246 LBS

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>GRP RHP</th>
<th>MANUFACTURER'S RHP</th>
<th>RATIO (GRP/MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1366</td>
<td>1449</td>
<td>.94</td>
</tr>
<tr>
<td>50</td>
<td>1229</td>
<td>1301</td>
<td>.94</td>
</tr>
<tr>
<td>60</td>
<td>1148</td>
<td>1186</td>
<td>.97</td>
</tr>
<tr>
<td>70</td>
<td>1118</td>
<td>1142</td>
<td>.98</td>
</tr>
<tr>
<td>80</td>
<td>1126</td>
<td>1153</td>
<td>.98</td>
</tr>
<tr>
<td>90</td>
<td>1172</td>
<td>1199</td>
<td>.98</td>
</tr>
<tr>
<td>100</td>
<td>1255</td>
<td>1273</td>
<td>.99</td>
</tr>
<tr>
<td>110</td>
<td>1375</td>
<td>1387</td>
<td>.99</td>
</tr>
<tr>
<td>120</td>
<td>1530</td>
<td>1557</td>
<td>.98</td>
</tr>
<tr>
<td>130</td>
<td>1731</td>
<td>1746</td>
<td>.99</td>
</tr>
<tr>
<td>140</td>
<td>1983</td>
<td>2038</td>
<td>.97</td>
</tr>
<tr>
<td>150</td>
<td>2290</td>
<td>2440</td>
<td>.94</td>
</tr>
<tr>
<td>160</td>
<td>2665</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table IV

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>GRP RHP</th>
<th>MANUFACTURER'S RHP</th>
<th>RATIO (GRP/MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1407</td>
<td>1496</td>
<td>.94</td>
</tr>
<tr>
<td>50</td>
<td>1264</td>
<td>1340</td>
<td>.94</td>
</tr>
<tr>
<td>60</td>
<td>1178</td>
<td>1231</td>
<td>.96</td>
</tr>
<tr>
<td>70</td>
<td>1142</td>
<td>1173</td>
<td>.97</td>
</tr>
<tr>
<td>80</td>
<td>1149</td>
<td>1179</td>
<td>.98</td>
</tr>
<tr>
<td>90</td>
<td>1193</td>
<td>1221</td>
<td>.98</td>
</tr>
<tr>
<td>100</td>
<td>1274</td>
<td>1299</td>
<td>.98</td>
</tr>
<tr>
<td>110</td>
<td>1392</td>
<td>1414</td>
<td>.98</td>
</tr>
<tr>
<td>120</td>
<td>1546</td>
<td>1566</td>
<td>.99</td>
</tr>
<tr>
<td>130</td>
<td>1747</td>
<td>1773</td>
<td>.99</td>
</tr>
<tr>
<td>140</td>
<td>1999</td>
<td>2048</td>
<td>.98</td>
</tr>
<tr>
<td>150</td>
<td>2305</td>
<td>2477</td>
<td>.93</td>
</tr>
<tr>
<td>160</td>
<td>2682</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>GRP RHP</th>
<th>MANUFACTURER'S RHP</th>
<th>RATIO (GRP/MAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1532</td>
<td>1627</td>
<td>.94</td>
</tr>
<tr>
<td>50</td>
<td>1370</td>
<td>1457</td>
<td>.94</td>
</tr>
<tr>
<td>60</td>
<td>1269</td>
<td>1338</td>
<td>.95</td>
</tr>
<tr>
<td>70</td>
<td>1222</td>
<td>1267</td>
<td>.96</td>
</tr>
<tr>
<td>80</td>
<td>1219</td>
<td>1258</td>
<td>.97</td>
</tr>
<tr>
<td>90</td>
<td>1256</td>
<td>1297</td>
<td>.97</td>
</tr>
<tr>
<td>100</td>
<td>1330</td>
<td>1375</td>
<td>.97</td>
</tr>
<tr>
<td>110</td>
<td>1445</td>
<td>1477</td>
<td>.98</td>
</tr>
<tr>
<td>120</td>
<td>1598</td>
<td>1638</td>
<td>.98</td>
</tr>
<tr>
<td>130</td>
<td>1798</td>
<td>1866</td>
<td>.96</td>
</tr>
<tr>
<td>140</td>
<td>2045</td>
<td>2157</td>
<td>.95</td>
</tr>
<tr>
<td>150</td>
<td>2354</td>
<td>2589</td>
<td>.91</td>
</tr>
<tr>
<td>160</td>
<td>2747</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE VI RATIO COMPARISON

<table>
<thead>
<tr>
<th>VELOCITY</th>
<th>16359</th>
<th>17321</th>
<th>19246</th>
<th>19658</th>
<th>20829</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>.96</td>
<td>.95</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
<td>.95</td>
</tr>
<tr>
<td>50</td>
<td>.97</td>
<td>.96</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
<td>.95</td>
</tr>
<tr>
<td>60</td>
<td>.99</td>
<td>.98</td>
<td>.97</td>
<td>.96</td>
<td>.95</td>
<td>.97</td>
</tr>
<tr>
<td>70</td>
<td>1.00</td>
<td>1.00</td>
<td>.98</td>
<td>.97</td>
<td>.96</td>
<td>.98</td>
</tr>
<tr>
<td>80</td>
<td>1.01</td>
<td>1.00</td>
<td>.98</td>
<td>.97</td>
<td>.97</td>
<td>.99</td>
</tr>
<tr>
<td>90</td>
<td>1.01</td>
<td>1.01</td>
<td>.98</td>
<td>.98</td>
<td>.97</td>
<td>.99</td>
</tr>
<tr>
<td>100</td>
<td>1.03</td>
<td>1.02</td>
<td>.99</td>
<td>.98</td>
<td>.97</td>
<td>1.00</td>
</tr>
<tr>
<td>110</td>
<td>1.03</td>
<td>1.03</td>
<td>.99</td>
<td>.99</td>
<td>.98</td>
<td>1.00</td>
</tr>
<tr>
<td>120</td>
<td>1.03</td>
<td>1.01</td>
<td>.98</td>
<td>.99</td>
<td>.98</td>
<td>1.00</td>
</tr>
<tr>
<td>130</td>
<td>1.03</td>
<td>1.02</td>
<td>.99</td>
<td>.99</td>
<td>.96</td>
<td>1.00</td>
</tr>
<tr>
<td>140</td>
<td>1.02</td>
<td>1.01</td>
<td>.97</td>
<td>.98</td>
<td>.95</td>
<td>.99</td>
</tr>
<tr>
<td>150</td>
<td>1.04</td>
<td>.99</td>
<td>.94</td>
<td>.93</td>
<td>.91</td>
<td>.96</td>
</tr>
<tr>
<td>160</td>
<td>.94</td>
<td>.93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.94</td>
</tr>
</tbody>
</table>

AVERAGES FOR ENTIRE SPEED RANGE

| AVERAGE | 1.00 | .99 | .97 | .97 | .96 | .98 |

AVERAGES FOR CRUISE RANGE 70 - 140 KNOTS

| AVERAGE | 1.02 | 1.01 | .98 | .98 | .97 | .99 |
V. CONCLUSIONS

The logic and theory used in the GRP program was investigated and found to be sound. However, there were three discrepancies in the Navy's version of the program that did require attention. The calculations in the reverse flow section on the rotor were incorrect, the calculation of the chord at the 75 percent radius position was incorrect and the original Trim Option for reducing moments would not work. All of the above discrepancies were corrected.

Three desirable features were added to the GRP program. First, the ability to analyze a rotor blade composed of more than one airfoil type was added. The program will now accept up to five different airfoil data input decks for use in analyzing a rotor system. Secondly, the program would only calculate performance in level flight. The ability to calculate performance in climbs and descents has been added. Lastly, the program will now calculate the aerodynamics for a swept tip rotor blade design.

The results of the sample analysis described in Section IV indicates that the program does produce highly accurate performance predictions. The averaged GRP rotor horsepower was within two percent of the manufacturer's data. The results were within one percent when compared in the area of normal cruise flight. The GRP, in this analysis, assumed uniform inflow, constant flat plate area and a rigid rotor blade. It is felt that while complicated, computer-time-consuming procedures can be taken to reduce these assumptions, they are not warranted if the GRP is to be used strictly as a helicopter performance prediction program.
DIMENSION SWPCOS (15), UR (15), UTUR (15), SWEEP (73, 15)
DIMENSION XDA (73, 15), XLAO (15), XLA (15, 18), XLB (15, 18), DUM (73)
DIMENSION V (200), T9 (9), FC (73, 9), XMES (7)
LOGICAL XDB, CONE, XINV, MCONV, ALFA, PRINT, USVL, TEST
REAL MU, LAMBD, MUSQ, MUL, LOAD, LAMI,
 IGC, LRF, LATD, LDNG, INPL
REAL MU, LMR, MG
INTEGER CASE
JOY = 0
JEB = 0

C***READ IN BLADE CURVE DATA ****************************

DO 2000 N = 1, 200
 READ (5, 169) WBLADE
 IF (WBLADE .NE. 0.) GO TO 10
 WRITE (6, 79) NBLDAT
 READ (5, 69) NZ
 IF (WBLADE .NE. 0.) WRITE (6, 79) NZ
 DO 61 I = 1, NZ
 READ (5, 69) J, (CLT (N, I, K), K = 1, J)
 IF (WBLADE .NE. 0.) WRITE (6, 79) J, (CLT (N, I, K), K = 1, J)
 CONTINUE
 READ (5, 69) NZ
 IF (WBLADE .NE. 0.) WRITE (6, 79) NZ
 DO 63 I = 1, NZ
 READ (5, 69) J, (CDT (N, I, K), K = 1, J)
 IF (WBLADE .NE. 0.) WRITE (6, 79) J, (CDT (N, I, K), K = 1, J)
 CONTINUE

C***ZERO OUT LOADER AREA******************************

DO 59 I = 1, 200
 V (I) = 0.

C SET UP CONSTANTS AND AUTOMATIC INPUT
PI = 3.14159265
TWOPI = 6.28318531
BC = 57.2957795
XXXX = 1.0
BTOL = .001
BPTOL = .001
YITOL = 100.
XDTOL = .50
TOLAB = .25
BGL = 90.
G = 32.2
IGC = 1.
FTRL = 15.0
DPST = 15.0
BIN = .000001
BPIN = .000001
XITLIM = 15.0
BPPIN = .000001
XMSEG = 15.0
HIS = 7.53
AIS = -1.2
SKIPIN = 1.0
PCNV = 1.0
CASE = 0
DO 9000 I = 1,15
9000 RB(I) = 1.0
HIALPA = 30.
LOALPA = -30.
TPSWST = 16.0
T75 = 5.0
LAMBDAP = -0.020
C **
C***** READ IN CASE DATA **
1000 CALL LOADED(Y)
CASE = CASE + 1
WTPST = TPSWST
TIPSW = TIPSWP/RC
I = SPAR
J = 1
DO 9002 J = 1, I
9002 RB(J) = 0.0
MNITN = 0.0
RD = -ABS(RD)
IF (FPAREA .NE. 0.) RD = -5*RHO*(VEL*1.689)**2*ABS(FPAREA)
IF (ABIT.EQ.0.) GO TO 999
AIS = 0.
B1S = 0.
999 NPRNT = PRINT
DO 810 II = 1, 7
NPRNT = NPRNT - 10**((7 - II)
IF (NPRNT) 811, 812, 812
811 XMES(I) = 0.0
NPRNT = PRINT
GO TO 810
812 XMES(I) = 1.0
810 CONTINUE
C **
C***** PRINT HEADING BEFORE EACH CASE *************
WRITE (6, 80)
C SET UP CONTROL VARIABLES ACCORDING TO INPUT OPTIONS
TOLAB = ABS(TOLAB)
SHIN = XITLIM.LT.0.
A1B1 = ABIT.NE.0.
TIP(TOP.NE.0.) ATEST = -50.
ALFA = XITLIM.NE.0..AND.(ALOPT.NE.0..OR.TOP.NE.0.)
ERNT=TRAN.NE.0.
USVL=USVL.NE.0.
D3B=D3B.NE.0.
IF (PPSI.EQ.0.) PPSI=DPsi
IF (ATEST.EQ.0.) ATEST=5.
NSEG=NSDSEG
PC=PCRC
XPSSI=DPsi/RC
K=360.0/DPsi*.1
KP1=K+1
OM=OMEGAR/R
R4=R**4
R5=R**5
OMS=OM**2
FAC=2./(RC*OM)
ITLIM=ABS(XITLIM)
ITN=0
WSIAS=ABS(SPAR)
WTRL=FTLR
IF (SHIM) NTRL=1
TEST=.TRUE.
MCONV=.TRUE.
IDPSS=DPsi
IPS1(I)=0
DO 997 I=2, NPS1
997 IPS1(I)=IPS1(I-1)+IDPSS
NC=XNB
C***** ZERO OUT LAMBDA*S IF NOT TO BE USED ***
550 IF (USVL) GO TO 551
DO 550 I=2,KP1
DO 550 J=1,NSEG
551 XDA(I,J)=0.
C***** READ HARMONICS OF LAMBDA IF DESIRED ***
503 READ (5,502) XLAO(I)
READ (5,502) XLAB(I,J), J=1,NHARM
C***** COMPUTE VARIABLE LAMBDA*S IF TO BE USED *************************************
504 IF (.NOT. USVL) GO TO 507
XI=0.
DO 506 I=2,KP1
XI=XI+XPSSI
DO 506 J=1,NSEG
XDA(I,J)=-XLAO(J)
ABS=0.
DO 506 L=1,NHARM
ARG=ARG+XI

506 XDA(I,J) = XDA(I,J) - XLA(J,L) * COS(ARG) - XLB(J,L) * SIN(ARG)

C**** READ BIVARIANT SPAR DATA IF DESIRED ****************************

507 IF (BSPH.EQ.0.) GO TO 508

BSPL=0.

READ (5,169) WRSPAR

READ (5,69) NZ

IF (WRSPA=3.EQ.0.0) GOTO 9006

WRITE (6,74)

WRITE (6,69) NZ

9006 DO 509 I=1,NZ

READ (5,69) J, (BSCLT(1,I,KK), KK=1,J)

509 IF (WRSPA .NE. 0.0) WRITE (6,69) J, (BSCLT(1,I,KK), KK=1,J)

READ (5,69) NZ

IF (WRSPA .NE. 0.0) WRITE (6,69) NZ

DO 510 I=1,NZ

READ (5,69) J, (BSCDT(1,I,KK), KK=1,J)

510 IF (WRSPA .NE. 0.0) WRITE (6,69) J, (BSCDT(1,I,KK), KK=1,J)

C GRAVITY ANGLE COMPUTATIONS

508 IF (BGL.EQ.90.0) GO TO 301

AA=COS (AG/RC)

BB=COS (BG/RC)

CC=COS (CG/RC)

AA2=AA**2

BB2=BB**2

CC2=CC**2

HW=SQRT (1.0 + AA2*BB2*CC2)

HX=BB*SQRT (CC2*(AA2-1.0) + 1.0)

HY=CC*SQRT (AA2*(BB2-1.0) + 1.0)

HZ=AA*SQRT (BB2*(CC2-1.0) + 1.0)

GO TO 302

301 HW=1.0

HX=0.0

HY=0.0

HZ=1.0

C COMPUTE X*S AND CHORDS

302 D=ER

X(1)=DX(1)/2.0

XX(1)=X(1)+ER

DO 1 I=2,NSEG

D=D+DX(I-1)

X(I)=X(I-1)+(DX(I-1)+DX(I))/2.0

1 XX(I)=X(I)+ER

SUM=D*DX(NSEG)

IF (ABS (C(1)-C(2)) .GT. 0.0000001) GO TO 199

DO 12 I=2,NSEG

12 C(I)=C(I-1)

199 DO 86 I=1,NSEG

IF (X(I) .LT. 0.86, 88, 87

86 86, 88, 87
CONTINUE
87 C75=C(I-1)+((.75-X(I-1))/(X(I)-X(I-1)))*(C(I)-C(I-1))
GO TO 89
88 C75=C(I)
89 C752=2.*C75**2
BG=G*B/OMEGAB**2

C PRE-COMPUTATION OF FREQUENTLY USED COMBINATIONS
XLP=RHO*OMEGAR**2/24.
DO 2 I=1,NSEG
CDX(I)=C(I)**2+DX(I)
CR(I)=C(I)/R
CRDX(I)=CR(I)*DX(I)
2 XLPC(I)=XLP*C(I)

C COMPUTE 1ST AND 2ND MOMENTS
RR2=.5*RHO*R**2
RR5=RR2*R**3
IF(SMOM.NE.0.) GO TO 96
S=IMASS(I)/RR2*X(I)*DX(I)
SR=S*X(I)
DO 3 I=2,NSEG
DXD=IMASS(I)/RR2*X(I)*EX(I)
S=S+DXD
3 SR=SR+DXD*X(I)
SMOM=SR*RR5
S=S/SR
PMOM=S**PMOM/R
GO TO 97
96 SR=SMOM/RR5
S=PMOM*R/SMOM

C COMPUTE SIGMA
97 RS=RS-L
IF(RSL.EQ.0.) RS=XNB*C75/(PI*R)

C COMPUTE TWISTS
IF(TWIST.EQ.0.0) GO TO 102
DO 101 I=1,NSEG
101 TW(I)=(XX(I)-.75)*TWIST
102 HK=TWOFI*BR2*OMEGAR**2
IF(D3B) PHD3B=PHD3B/RC
X=SN=SNK(XDPSI)
XCOS=COS(XDPSI)

C**** COMPUTE MU AND LAMBDA **
IF(.NOT.LAMBDA.AND..NOT.USVL) GO TO 777
IF.(.NOT.ALFA.AND..NOT.USVL) GO TO 777
ALLR=ALL/R
CAL=COS(ALLR)
MU=VEL*CAL/OMEGAR*1.689
MUS=MU**2
IF(USVL) GO TO 104
XLNSD=MU*SN(ALLR)/CAL-RL/(HK*2.*MU)
IF(MU.LT.1) XLMBD = XLMBD/2.
DO 1603 ITOM = 1,100
LAMBD = MU*SIN(ALL)/(CAL-RL)/(CAL**2.*HK*SQRT(MU**2+XLMBD**2))
IF(ABS(LAMBD-XLMBD).LT..0001) GO TO 104
1603 XLMBD = LAMBD
WRITE (6,1604) LAMBD,XLMBD
GO TO 104
777 IF(UIN.EQ.0.) GO TO 103
MU = MUL
MUSQ = MU**2
VEL = SQRT((MUSQ+LAMBD**2)*(OMEGAR*.5921)**2)
GO TO 104
103 MUSQ = (VEL/(OMEGAR*.5921))**2-LAMBD**2
MU = SQRT(MUSQ)
C**** COMPUTE TIP MACH NO. ********************************
104 XMTIP = OMEGAR/SPSD
MUY = VELY/OMEGAR*1.689
C PRINT INPUT
DO 198 I=1,NSEG
198 NN(I)=1
GO TO 1002
1001 WRITE (6,58) I
1002 WRITE (6,200) (NN(I),I=1,NSEG)
WRITE (6,201) (XMASS(I),I=1,NSEG)
WRITE (6,202) (DX(I),I=1,NSEG)
WRITE (6,203) (XX(I),I=1,NSEG)
WRITE (6,204) (C(I),I=1,NSEG)
WRITE (6,205) (TW(I),I=1,NSEG)
WRITE (6,206) (RB(I),I=1,NSEG)
RB(1) = 1.0
WRITE (6,1010) CASE
WRITE (6,207) OMEGAR,AG,R,BGL,SPSD,CG,RHO,TD31
WRITE (6,208) G,ER,NB,DELX,XMTIP,SMOM,RS,SM,BMOM,VEL,HK,IDPSI,FDM
CASE
IF(SPH,IGC,PC,TD31,PHD3B
WRITE (6,285) PSCG,VELY
WRITE (6,227) PSME,PSIS
WRITE (6,228) WLCG,PHIS
WRITE (6,222) WLMR,THPS
WRITE (6,221) BTOL,BPTOL,NTRL
C**** PRINT MAJOR OR ITERATION OPTIONS IF USED **************
IF(XITIL.I.EQ.0.) GO TO 1600
WRITE (6,38) RL,RD,XITIL,XITOL,XDTOL
IF(SHIN) WRITE (6,25)
IF(NOSHIN) WRITE (6,585)
IF(A1B1) WRITE (6,95) RA1S,RB1S,TOLAB
IF(ALFA) WRITE (6,39) ALL
C**** SET UP CASE AND COMPUTE STARTING VALUES ***************
1600 CONTINUE
29 LL=0
 A1R=A1S/RC
 B1R=B1S/RC
 CB=COS(B1R)
 SB=SIN(B1R)
 IF(BIN.EQ.0..OR.INT.NE.0) GO TO 210
 B(1)=BIN
 EP(1)=BP1N
 BPP(1)=BP1PP
 BIN=0.
 GO TO 114
210 IF(PCNV.NE.0.0) GO TO 113
 GAM=5.73*C75*RHO*RI*4/SNOM
 T7R=T75/RC
 HA=GAM/2.*(T7R*((1.0+MUSQ)/4.0)+LAMBDA/3.0)
 BPP(1)=MU*(B./3.*T7R+2.*LAMBDA)/(1.-.5*MUSQ)
 B(1)=-4./3.*MU*HA/(1.+5.*MUSQ)
 B(1)=HA-BPP(1)
 GO TO 114
113 B(1)=B(KP1)
 BP(1)=BP(KP1)
 BPP(1)=BPP(KP1)
114 PSI=0.0
 LL=LL+1
 XH3 = 0.0
 XH5 = 0.0
 XLH1 = 0.0
 XLH2 = 0.0
 HMR = (WMR-WLCG)/(12.*R)
 LMR = (PSCG-PHAR)/(12.*R)
 PSO = PSIS/OM
 PSHO = PHS/OM
 THFO = THPS/OM
 PMEOR = FMOM*ER/(RHO*E*PH4)
 ERPI = E/TWOP1
 SUM = 0.0
 SUM1 = 0.0
 SUM2 = 0.0
 SUM3 = 0.0
 SUM4 = 0.0
 RCFFS=RCPPM/60.
C **
C BEGIN CASE **
C DO 30 I=2,KP1
 PSI=PSI+XNPST
 B(I)=B(I-1)+BP(I-1)*XSIN+(1.-XCOS)*BPP(I-1)
 BD(I)=B(I)*RC
 BP(I)=BP(I-1)*XCOS+BPP(I-1)*XSIN
 YSIN=SIN(B(I))
C **
C CALCULATIONS FOR DELTA 3 BAR
TD3=TD3L
IF(D3B) TD3=TD3+TD3B*SIN(PSI+PHD3BR)

C BEGIN SPANWISE INTEGRATION

DO 28 N=1,NSEG
ME=IB (N)
UP(N) = (LAMBDA+ (ER+ X (N) *YCS) * (PHSO*SIN+ THFO*ZCS) - LMR*
1THFO) *YCS-X (N) *BP (I) -(MU*ZCS-MUY*ZSN) *YSIN
IF (USVL) UP(N) = UP(N) - XDA (I, N) *YCS / OMEGAR+ VEL*SIN (ALL/RC)/ OMEGAR
IF (RCPPM . NE. 0.) UP(N) = UP(N) - RCPPS*YCS/OMEGAR
UT(N) = (1. - ZSO) *(ER+ X (N) *YCS) + (MU-HMR*THFO) * ZSN+ (MUY+LMR * PSO
1+LMB*PSO) *ZCS
UR (N) = MU*ZCS*YCS - (LAMBDA+ (ER+ X (N) *YCS) * (PHSO*SIN+ THFO*ZCS)
1) - LMB*THFO) *YSIN

C CALCULATIONS FOR TIP SWEEP
TP (N . LT. WTIP) GOTO 9007
UTS=UR(N) * COS(TIPS) + UT(N) * SIN(TIPS)
UT(N) = UTS
UT(N) = UT(N) + USQ
USQ=UP(N) ** 2 + UT(N) ** 2 + UR(N) ** 2
U(N) = SQRT (USQ)
U(N) = SIGN (U(N) , UT(N))
UTUR (N) = SORT (UT(N) ** 2 + U(N) ** 2)
UTUR (N) = SIGN (UTUR (N) , UT(N))
SWPCOS(N) = ABS (UT(N)) / UTUR (N)
SWEEP(I, N) = ATAN2 (SORT (1. - SWPCOS(N) ** 2), SWPCOS(N)) * RC
PHI (I, N) = ATAN2 (UP(N) , UTUR (N)) * RC

2222 XMACH (I, N) = XMACH(I, N)
XMACH = ABS (XMACH(I, N))
THETAR (N) = (TW(N) - ATS*GOS-B1S*ZSN-A2S*COS (PSI2) - B2S*SIN (PSI2) - TD3)
1*BD(I) + T75) / RC
AL (I, N) = PHI (I, N) + ATAN2 (ABS (SWPCOS(N)) * SIN (THETAR (N)) , COS (THETAR (GPRO43000)
1(N))) * RC
ABAL = ABS (AL(I, N))
TP (ABAL GT . 180.) AL (I, N) = SIGN (ABAL-360. , - AL(I, N))
IF (RAD=AL(I, N) / RC
ALTA = ABS (AL(I, N))
TP (AL(I, N) . GT. HIALPA . OR. AL(I, N) . LT. LOALPA) XMACH=0.
IF (N . LE. NSPAR) GO TO 27

GPRO043000
GPRO043010
GPRO043020
GPRO043030
GPRO043040
GPRO043050
GPRO043060
GPRO043070
GPRO043080
GPRO043090
GPRO043100
GPRO043110
GPRO043120
GPRO043130
GPRO043140
GPRO043150
GPRO043160
GPRO043170
GPRO043180
GPRO043190
GPRO043200
GPRO043210
GPRO043220
GPRO043230
GPRO043240
GPRO043250
GPRO043260
GPRO043270
GPRO043280
GPRO043290
GPRO043300
GPRO043310
GPRO043320
GPRO043330
GPRO043340
GPRO043350
GPRO043360
GPRO043370
IP (SYM .= NE. 0.) ALTAB=AL(I,N)
CALL BLIN4 (CLT, NE, 5, 15, 100, CL(I,N), ALTAB, XMACHT, L1)
CALL BLIN4 (CDT, NE, 5, 15, 100, CD(I,N), ALTAB, XMACHT, L2)
IF (L1 + L2 .EQ. 2) GOTO 107
106 IF (IERR .EQ. 0) GOTO 8001
WRITE (6, 8823) ALTAB, XMACHT, LL, N, XX(N), IPSI(I), L1, L2
IF (IERR .EQ. 1) GOTO 5000
8001 WRITE (6, 8822) ALTAB, XMACHT, LL, N, XX(N), IPSI(I), L1, L2
IF (IERR .EQ. 0) GOTO 5000
107 CD(I,N) = CD(I,N) + DBL
IP (N .EQ. 1) CL(I,1) = 0.0
GOTO 172
27 IF (SYMPR .NE. 0.) ALTAB=AL(I,N)
CALL BLIN4 (BSCDT, 1, 1, 5, 1, CL(I,N), ALTAB, XMACHT, L1)
CALL BLIN4 (BSCDT, 1, 1, 5, 1, CD(I,N), ALTAB, XMACHT, L2)
IP (L1 + L2 .EQ. 2) GOTO 172
IERR=0
GOTO 106
172 IF (N .EQ. NSEG) CL(I,N) = 0.
IF (ABS(SWCOS(N)) .LT. 5) CL(I,N) = 5*CL(I,N)
IF (ABS(SWCOS(N)) .LT. 3) CL(I,N) = 0.0
IF (AL(I,N) .GE. 0 .OR. SYM .NE. 0.) GOTO 5
CL(I,N) = -CL(I,N)
5 UCD(N) = ABS(U(N)) * CRDX(N)
LOAD(I,N) = CL(I,N) + UTUR(N) + CD(I,N) * UP(N) * ABS(U(N)) * XLFC(N)
CU = CD(I,N) * UTUR(N) * UCD(N)
H(1) = H(1) + CU
H(2) = H(2) + CU * X(N)
CU = CL(I,N) * UP(N) * UCD(N)
H(3) = H(3) + CU
H(4) = H(4) + CU * X(N)
CU = (CL(I,N) * UP(N) + CD(I,N) * UE(N)) * UCD(N)
H(5) = H(5) + CU
H(6) = H(6) + CU * X(N)
28 AN = AN + CU * X(N)
AN = AN / SR
C COMPUTE FORCE COEFFICIENTS AROUND AZIMUTH
COL(I) = (ER * H(3) + H(4) * YCOS / TWOPi)
C0D(I) = (ER * H(1) + H(2) * YCOS / TWOPi)
CQ(I) = COD(I) - COL(I)
C2(I) = YCOS / TWOPi
H13 = H(1) - H(3)
CX(I) = (H(5) * YSIN * ZCOS - ZSIN) * H(1) + H(3) * ZSIN / TWOPi
CY(I) = (H(5) * YSIN * ZCOS - H(1) * ZSIN) / TWOPi
HEY = -H(5) * ER * YCOS - H(6)
C*** PRINT TRANSIENT AND/OR DEBUGGING IF DESIRED
IF ((XMESS(2).EQ.0).AND.I.EQ.2) WRITE (6,94) B(1),BP(1),BPP(1)
 NPSI=IPS(1)
 IF (XMESS(1).EQ.0) GO TO 299
 IF (I.EQ.2) GO TO 298
 WRITE (6,58)
 298 WRITE (6,91) NPSI,LL,B(1),BP(1),BPP(1),(UP(N),UT(N),U(N),PHI(I,N),
 1AL(I,N),XMACH(I,N),CL(I,N),CD(I,N),LOAD(I,N),N=1,NSEG)
 GO TO 30
 299 WRITE (6,92) NPSI,LL,B(1),BP(1),BPP(1)
 30 CONTINUE
C***
C SAVE STARTING VALUES AT PSI = 0
B0(LL)=B(1)
BP0(LL)=BP(1)
IF (LL.LT.2) GO TO 113
C TEST FOR FLAPPING CONVERGENCE
CONV=(ABS(B(KP1)-B(1)).LE.BTOL).AND.(ABS(KP1-EP(1)).LE.BTOL)
IF (CONV) GO TO 711
IF (LL.LT.NTRL) GO TO 113
IF (.NOT.(SHIN.AND.LT.LT.ILIM).AND.PRINT) WRITE (6,34)
C***
C COMPUTE AND PRINT HARM. ANAL. OF BETA IN DEGREES
C
711 BDD(1)=B(1)*RC
CALL HANG(6,0,0,0,A0,BUF1,BUF2,BUF3,BUF4,BUF5)
IF (.NOT.A1B1) GO TO 164
C COMPUTE DELTA A1S AND B1S
DA1S = (BUF1(1)-RA1S)*IGC
DB1S = (BUF2(1)-RB1S)*IGC
C INTEGRATE FORCE COEFFICIENTS AROUND AZIMUTH
164 XCO=CO(1)
XCO=CO(1)
XCO=CO(1)
XCO=CO(1)
XCY = CY (2)
XMR = XR (2)
XCP = CP (2)
NH = HM (2)
XHL = HL (2)
DO 601 I = 1, KP1
XCQL = XQL + CQL (I)
XCQD = XQD + CQD (I)
XQ = XQ (I)
XZ = XZ (I)
XCX = CX (I)
CY = CY (I)
XR = XR (I)
XM = Xm (I)
XH = XH (I)
601 XCP = XCP (I)
C*** COMPUTE TOTAL FORCES

1750 F = XNB/XK*HK
PB = P*R
CMF = OM/550, 0 = XC*PR
HP = O*OMF
PF = XCQD*PR*OMF
ZF = XCM*P
XF = XCM*P
YF = XCY*F
RM = XXR*PR
PM = XCP*PR
XH = XHL*PR
XM = XM (PR)
AX = ALLR
IF (. NOT. US, OL, OR, UVL, LT, 0.) AX = ATAN (LAMBDA/MU - (ZF/HK)) / (2.*MU*SQRT (LGRF 05690)
LAMBDA**2 + MUSQ))
ALS = AX*RC
ALC = ALS - B1S
AR = ATAN (RD/RL)
XRC = SQRT (ZF**2 + XF**2)
RR = SQRT (RL**2 + RD**2)
CA = COS (AX)
SA = SIN (AX)
XCL = -ZF*CA + XF*SA
XCD = -ZF*SA - XF*CA
AC = ATAN2 (XCD, XCL)
VAC = MU*OMEGAR/CA/1.688
IF (. NOT. ALPA, MU = VEL/VAC*MU
MUS = MU**2
EQD = 326.*RF/VAC*XCD

GRF 05360
GRF 05370
GRF 05380
GRF 05390
GRF 05400
GRF 05410
GRF 05420
GRF 05430
GRF 05440
GRF 05450
GRF 05460
GRF 05470
GRF 05480
GRF 05490
GRF 05500
GRF 05510
GRF 05520
GRF 05530
GRF 05540
GRF 05550
GRF 05560
GRF 05570
GRF 05580
GRF 05590
GRF 05600
GRF 05610
GRF 05620
GRF 05630
GRF 05640
GRF 05650
GRF 05660
GRF 05670
GRF 05680
GRF 05690
GRF 05700
GRF 05710
GRF 05720
GRF 05730
GRF 05740
GRF 05750
GRF 05760
GRF 05770
GRF 05780
GRF 05790
GRF 05800
GRF 05810
GRF 05820
GRF 05830
GRF 05840

125.
C *** ALTER PARAMETERS ACCORDING TO OPTIONS ****************************

C***

51
RSF=RS*5.73
DTH=16.**MU/(6.-3.*MUSQ)+RSF/(12.**MUSQ)
DRL=4.*MU/(2.-MUSQ)+1./MU+RSF/(8.*MUSQ)
HR=HK*RS/2.
HJ=.47+.28*MUSQ
HR5=HR*5.73
DRTH=HR5*(-3.+48*MUSQ)
DRL=HR5*HJ
ABF=0.
LAB=4.*MUSQ/(MUSQ-2.)-RSF/(8.*MU)-1.
DRE=-DRL*MU
IF (.NOT.AB1) GO TO 52
FEI = ATAN(Z(C75+R4/1760.,((3.- 8.*ER +6.*ER**2)/(ER**R *PMOM * 1 (1.0)))))
A1S = A1S-(DA1S*COS(FEI) +DB1S* SIN(FEI))
ABF = DA1S* SIN(FEI) - DB1S*COS(FEI)
B1S = B1S+ABF
ABF = ABF/RC
52
DELR=RR-XRC-DRB*ABF
DELA=AR-RC-DBA*ABF
DRLTH=DBL*DATH-DRTH*DAL
DTH=(RL-XCL-DRB*ABF)/DRL*ICG*(1.-TOP)
DLMDA=(RL-XCL-DRB*ABF)/DRL*ICG*TOP
IF (ALFA) GO TO 888
DTH=(DRL*DELA-DAL*DEL)/DRLTH*RC*ICG
DLMDA=(DATH+DELH-DRTH*DELA)/DRLTH*ICG
IF (.NOT.UFL) GO TO 888
DALFA=DLMDA/MU
ALLR=ALLR+DALFA
888
IF (ABS(DTH/10.)<.GT..5) DTH = SIGN(.5*10.,DTH)
IF (ABS(DLMDA/0.0200.)<.GT..4) DLMDA = SIGN(.4*0.0200,DLMDA)
T5=T5+DTH
311
LAMBD=2LAMDA+DLMDA
ITN=ITN+1
C *** TEST FOR LIFT CURVE SLOPE LESS THAN ACCEPTABLE MINIMUM ****************************
IF (.NOT.TEST) WRITE (6,951) A, ATEST
952 TEMP=XCL-DRB*ABF
DTP=DTH
C ***
C PRINT INITIAL BETA, *, AND **, AND SUMMARY OF FINAL REV.
C ***
115 IF (XMESS(6).EQ.1..AND.MCONV) GC TO 2501
GO TO 1501
2501 WRITE (6,58)
WRITE (6,134)
LI=LI-1
DO 132 I=1,LI
132 WRITE (6,133) I,B0(I),BP0(I),BPPO(I)
LI= LL + 1
WRITE (6,135) LL
MM=K/2+1
DO 136 I=1,MM
L=I+MM-1
WRITE (6,137) IPSI(I),B(I),BP(I),BPPO(I),IPSIL(I),BL(BL),BP(L),BPPO(L)
WRITE (6,161) A0 (BUF1(I),I=1,6)
WRITE (6,162) (BUF2(I),I=1,6)
C ***
1501 IF (XMESS(5).EQ.1..AND.MCONV) GC TO 2502
GO TO 1502
C** COMPUTE AND PRINT AVERAGES*******************************
2502 WRITE(6,58)
WRITE (6,148)
DO 143 I=2,KP1
143 WRITE (6,148) IPSI(I),(FC(I,J),J=1,8)
DO 602 I=1,8
WRITE (6,149) (AV(I),I=1,8)
DO 603 I=1,8
WRITE (6,145) (AV(I),I=1,8)
602 AV(I)=TP(I)/XX
DO 604 I=1,8
603 AV(I)=XNB*AV(I)
WRITE (6,146) (AV(I),I=1,8)
DO 604 I=1,8
604 AV(I)=AV(I)/RS
WRITE (6,147) (AV(I),I=1,8)
MM=K/2 + 1
I=MM + 1
DO 151 J=I,KP1
IF (CQD(I) .LT. CQD(J)) GO TO 152
151 CONTINUE
GO TO 154
152 I = J
154 BCDOS=CDQ(I)*XNB/RS
WRITE (6,153)BCDOS,IPSJ(I)
C ***
C COMPUTE AND PRINT HARM. ANAL. OF CZ IF DESIRED
C ***
1502 IF (XMES(3).EQ.1..AND.MCONV) GO TO 2503
2503 DO 902 I=1..K
902 C2(I)=C2(I+1)
WRITE (6,58)
WRITE (6,901)
CALL HARM (K,6,CZ,DP5,BO,BUP1,BUP2,BUP3,BUP4,BUP5,L)
AO=AO*HK
DO 900 I=1,6
BUFI(I)=BUP1(I)*HK
900 BUFI(I)=BUP2(I)*HK
WRITE (6,161) AO,(BUFI(I),I=1,6)
WRITE (6,162) (BUP2(I),I=1,6)
C ***
C ** PRINT DATA SECTION AT SPECIFIED INTERVAL IF DESIRED **
C ***
1503 IF (XMES(7).EQ.1..AND.MCONV) GO TO 2505
2505 WRITE (6,58)
NP=ABS(PSI)/PSI+1.1
NPL1=NP-1
NPL12=NPL1+2
KL=N1-NPL1
DO 73 I=NP,KL,NPL12
J=I+NPL1
PSI=IPS1(I)
WRITE (6,171) PSI(I),IPS1(J)
73 WRITE (6,72) (XI(N),AI(N),XMACH(N),CI(N),CD(N),CP1(I,N),
PHI(I,N),
LOAD(I,N),SWEPP(I,N),AI(J,N),XMACH(J,N),CI(J,N),CD(J,N),PHI(J,N),
N=1,NSEG)
C ***
C ** COMPUTE AND PRINT HARMONICS OF AIR LOADS IF DESIRED **
C ***
523 IF (XMES(3).EQ.1..AND.MCONV) GO TO 2506
2506 WRITE (6,519)
DO 521 N=1,NSEG
DO 520 I=1,K
520 DUM(I)=LOAD(I+1,N)
NH=MIN1(180.,PSI+1,10.)
CALL HARM (K,NH,DUM,PSI,BO,BUP1,BUP2,BUP3,BUP4,BUP5,L)
WRITE (6,522) N,BO,(BUP1(I),I=1,NH)
WRITE (6,522) N,BUP2(I),BUP3(I),BUP4(I),BUP5(I),I=1,NH)
521 CONTINUE
C ***
C ** GO TO RESTART PROCEDURE IF INDICATED **
C ***
47 IF (XITLIM.WE.0..AND.ITN.LE.ITLIM.AND.MCONV.AND.TEST) GO TO 1
1 1111
GO TO 77
1111 JEB = JEB + 1
GO TO 6969
77 JOY = 1
6969 IF (JOY.GT.0) GO TO 5000
C*** MONTON OPTION**
** IF (TRIM .EQ. 0.) GO TO 1710
** MONTN=MONTN + 1
** IF (MONTN.GT. 1) GO TO 1710
** A1S = A1S
** B1S = B1S
** RM1 = RM
** EM1 = PM
** A1S = IGC * (A1S-.0006*RM)
** B1S = IGC * (B1S+.0007*PM)
** GO TO 1710
1701 A1S2 = A1S
** RM2 = RM
** PM2 = PM
** B1S2 = B1S
** A1S = IGC * (A1S2*RM1-PM1*B1S1)/(RM1-PM2)
** A1S = IGC * (A1S2*RM1-PM2*B1S1)/(RM1-PM2)
** CONTINUE
** IF (JEB.LE.15) GO TO 70
** WRITE (6,808)
C ***
C GO TO NEXT CASE IF LOC .LT. 99 NOT EQ. ANY NEG NUMBER

5000 JOY = 0
** JEB = 0
** IF (XEND.EQ.2.) GO TO 2000
** IF (XEND.GE.0.) GO TO 1000
** WRITE (6,5001)
6666 STOP
25 FORMAT (66X,28HUSING SHORT ITERATION SCHEME)
34 FORMAT (//,1H42(1H*,5X,25HFLAPSING DID NOT CONVERGE,5X,42(1H*))
38 FORMAT (16H REQUIRED LIFT =F9.2, 8X15H REQUIRED DRAG =F8.2, 10X23G)
1HMAJOR ITERATION LIMIT =13/16H LIFT TOLERANCE=F9.2, 8X15H DRAG TOL=G)
2ERANCE=F8.2)
39 FORMAT (53H0ALPHA OPTION HAS BEEN REQUESTED -- - INPUT ALPHA = F8.2)
48 FORMAT (1H0,119(1H*))
56 FORMAT (1H0,39(1H*),5X,32H MAJOR ITERATION DID NOT CONVERGE,5X,38(1HGR)
58 FORMAT (1H1)
69 FORMAT (12.10P7.0./ (F9.0,9F7.0))
71 FORMAT (//29X6HPSI = I4,9H DEGREES4X6HPSI = I4,9H DEGREES)
72 FORMAT (132H0 X ALPHA MACH CL CD PHI L(LB/G)
1N SWEEP ALPHA MACH CL CD PHI L(LB/IN)
2 SWEEP (//(F7.4,2X,6F8.3,F10.2,5X,6F8.3,F10.2))
173 FORMAT (1H1,50X,ELADE DATA/*)
74 FORMAT (1H1, 50X, 'SPAR DATA' /) GRP0300
79 FORMAT (1X, T2, 7X, 10F10.3 // (10X, 10F10.3)) GRP0310
80 FORMAT (1H1, 25HNAVAL AIR SYSTEMS COMMAND, 4X, 17HAIRFRAME DIVISION/ GRP0320
14X, 19HAERO + HYDRO BRANCH, 4X, 19PERFORMANCE SECTION, 4X, 16ROTARY/ GRP08320
5X, UNITED STATES NAVY DEPARTMENT OF DEFENSE(?) / 531GRP0340
3, 16INPUT QUANTITIES) GRP08350
91 FORMAT (7HPSI = I3, 9H DEGREES, 5H DEGREES 5H 11=Q3, 5X7HBETA = F11.8, 5X8HBETAGRP 08360
1A* = F11.8, 5X, 9HBETA** = F11.8 GRP08370
/ 0X10QO UP UT CD LOAD(LB/IN) / PPHA 4CH NO. CL CD PHI ALGPR08380
4/ (9P12.7) GRP08400
92 FORMAT (7HPSI = I3, 9H DEGREES, 5H DEGREES 5H 11=Q3, 5X7HBETA = F11.8, 5X8HBETAGRP 08410
1A* = F11.8, 5X, 9HBETA** = F11.8 GRP08420
94 FORMAT (11HBETA (0) = ,F11.8, 5X, 11HBETA* (0) = ,F11.8, 5X, 12HBETA** (0) / GRP08430
1) = F11.8 GRP08440
95 FORMAN (11HBETA REQUESTED A1 = P10.4, 6X16HBETA REQUESTED B1 = F9.4, 8X25HTOCRPR08450
1ERANCE ON A1 AND B1 = p6.3) GRP08460
133 FORMAT (1HO29X, I2, 3X, 3F17.7) GRP08470
134 FORMAT (1HO28X, 3HREV, 12X, 7HBETA (0) , 10X, 8HEETA* (0) , 8 X, 9HBETA**GRP 08480
1(0) GRP08490
135 FORMAT (29H0EQUILIBRIUM SOLUTION REV = I2 / 4HPSI5X4HBETA8X5HGPR08500
1BETA*6X6HBETA** 30X3HPSI5X4HBETA8X5HBETA*6X6HBETA** GRP08510
137 FORMAT (14, 3F12.7, 28X13, 3F12.7) GRP08520
142 FORMAT (6HO ATS, 11X, 3HB1S, 11X, 3HA2S, 11X, 3HB2S, 11X, 10HTHETA .75-, 9PR08530
111IT, 7LAMBDA (S) , 11X, 6HMU(body) 1S, 11X, 6HMU(y) S/ 1X, P6.2, 3F14.2, P18.2, 2P21.4, 2P16.4, GRP08540
146 FORMAT (11, 3F14.8 (1PE12.4)) GRP08550
145 FORMAT (15H0 AVERAGE , 1X, 1S (1PE12.4)) GRP08560
146 FORMAT (15H0 (B) * AVE. , 1X, 1S (1PE12.4)) GRP08570
147 FORMAT (15H0 (B) *AV/SIG , 1X, 1S (1PE12.4)) GRP08580
148 FORMAT (15HO /2X17HFORCE INTEGRATION/8X3HPSI10X2HQC 10X3HCL 9X3HCQ 9X2GRP08600
1HCQ, 10X, 2HCX 10X, 2HCY, 9X, 4HCQMS, 8X, 4HCQMS//) GRP08610
153 FORMAT (15H0 /34X18HMAX BD/COD/SIGMA = F8.6, 10H AT PSI = 1I3) GRP08620
150 FORMAT (15H0 (36X48HOURIER COEFFICIENTS (WITH RESPECT TO THE SHAPT))/16XGRP08630
173HBETA (DEG) = A0-A1*COS (PSI) -B1*SIN (PSI) -A2*COS (2*PSI) -B2*SIN (2*GRP08640
2PSI)) GRP08650
161 FORMAT (1HO 6X2HA012X2HA112X2HA212X2HA312X2HA412X2HA512X2HA6//7(1PEGRP08660
114.4)) GRP08670
162 FORMAT (1HO20X 2HB112X2HB212X2HB312X2HB412X2HB512X2HB6//14XG (GRP08680
11PE14.4)) GRP08690
169 FORMAT (1P10.0) GRP08700
180 FORMAT (10H0CT =1PE14.6, 7XH0CT* =1PE14.6//10H CT/SIGMA=1PE14.6 7X9HCGRP08710
1L* =1PE14.6, 7X10HC*/*SIGMA=1PE14.6, 7X9HCGRP08720
2H/SIGMA=1PE14.6, 7X10HCL*/SIGMA=1PE14.6, 7X9HCGRP08730
3H CO =1PE14.6, 7X, 10HCQ*/SIGMA=1PE14.6) GRP08740
181 FORMAT (1HO 8X, 12HLOAD =F11.3, 8H POUNDS, 8X, 12HY FORC= 1, F11.3, 8H POUNDS, 8X, DUGPR08750
180 =F11.3, 8H POUNDS, 8X, 12HY FORCE =F11.3, 8H POUNDS, 8X, 12HY FORCE =F11.3, 8H POUNDS, 8X, DUGPR08770
312HRROLL MOM =F11.3, 11H PT-POUNDS) GRP08780
182 FORMAT(1H0.7X,12HPOW3R=PA. =F11.3.8H GRRP08790
1POUNDS.8X,12DPITCH ANG=PA. =F11.3.11H R-P-POUNDS/8X,12DDEW IV DRA=GRIP08800
2F11.3.8H POUNDS.8X,12DEW IV L/D =F11.3.16X. 12DEW IV P.A. =F11GRRP08810
3,10H SQ. FEET/8X.12HALPHA(S) =F11.3.9H DEGREES/7X.12THRU=GRP08820
4T =F11.3.8H POUNDS.8X,12HTCQ=U= F11.3.11H P-POUNDS) GRRP08830
183 FORMAT (1H0.7X,12HALPHA Deg=PA. =F11.3.9H DEGREES /7X.12HFORCE =GRP08840
1F11.3.8H Pounds/8X,12HPS=GRP08850
2T. DIS. =F11.3.9H PERCENT/7X12H(A)CTUAL =F11.3.7H KNOTS/12X12=HRGRP08860
3N. DIS. =F11.3.9H PERCENT/47X.
425HSHEARS HUB PITCH MOME=PT10.2X4X 6HFT-LBS //47X
525HSHEARS HUB ROLL MOME=PT10.2X4X 6HFT-LBS //147X,
6'MAJOR ITERATIONS USED =,.14//119(1H*)
200 FORMAT (/5X7HSTATION15I7)
201 FORMAT (1H0.7X,12HOMASS SLUG/FT 15F7.4)
202 FORMAT (8HDELA 6X15F7.4)
203 FORMAT (12HDEC 15F7.4)
204 FORMAT (1HHOCHORD PFR3X15F7.4)
205 FORMAT (11H0THST DEG. 3X15F7.4)
206 FORMAT (/3H BLADE DECK/,IX 15F7.0)
207 FORMAT (1H0.7X.18H OMEGA-R =F8.2.5X,30H FT/SEC GRRP08900
1 =F8.2.5X.9H DEGREES/10X18H RADIUSGRP08990
2 =F8.2.7X.27H FEET =F8.2.5X.9H DEGREES/10X18H SPEED OF SOUND =F8.2.5X.30H GRRP09010
4PEET/SEC 15H CG =F8.2.5X.9H DEGREESGRP09020
5/10X18H rRO =F13.7,30H SLUGS/CUBIC FT.
6 =F8.2.5X.9H TAN DELTA 3 =F8.2.5X.9H GRRP09040
208 FORMAT (1H0.7X.18H rG =F8.2.5X.30H FEET/SEC SQ. =F8.2.5X.30H GRRP09050
1 =F8.2.5X.18H E/R =F10.4//10X18H NO. BLADES (B) =GRP09060
2 =F8.2.5X.12H DELTA DRAG =F10.4//10X18H TIP MACH NO. =F1GRP09070
3 =F10.4.33X.15H MOM-1NERTIA =F13.7,15H SLUG FEET SQ. //10X18H SGRP09080
4 =F10.4.33X.15H SUM (DY)+E/R =F10.4//10X18H A (B) GRRP09090
5 =F13.7,3X.4H DRAG FEET 18X15H VELOCITY =F8.2.7X.25HKGPR09100
6/12X16HTHRTS FACTOR =F9.0 34X15H DELTA PSI =GRP09110
7 =F9.0/12X16HFLAP DAMPER =F9.0.7X10HFT. LB. RADIANS/SEC.GRRP09120
8 =F9.0.6X14HFT. LB./RADIANS/12X16HT. GAIN CON. =GRP09130
9 =F8.2.37X13HCONING =F9.0.5X17HDEGREES/12X16HTN 3 D BAR =GRP09140
* =F8.2.37X15HDB3 BAR PHASE = F9.0.5X17HDEGREES) =GRP09150
211 FORMAT (1H0.7X,12HTOLERENCE ON BETA = F8.5X,20HTOLERENCE ON BETA* = F8.5X.27HFLAPPING ITERATION LIMIT = 12)
225 FORMAT (12X16HPS(CG) =F8.3.8X19HINCHES 10X GRRP09160
113HV(Y) =F9.3.6X 14HKNOTS
226 FORMAT (12X16HFS(MR) =F8.3.8X19HINCHES 10X GRRP09170
227 FORMAT (12X16HHL(CG) =F8.3.8X19HINCHES 10X GRRP09180
228 FORMAT (12X16HHL(MR) =F8.3.8X19HINCHES 10X GRRP09190
113THETA =F9.3.6X 14HRADIANS/SEC)
500 FORMAT (1H3
501 FORMAT (E15.6)
502 FORMAT (5E14.6) GRP0280
519 FORMAT (1H1/////27X22HHARMONICS OF AIR LOADS) GRP0290
522 FORMAT (// BHSTATIONI3,5X5AH0 = F11.7//10X,H1A,14X,1HB,14X,1HC,13X) GRP0300
3 38PHI, 11X, 5HRATIO (5F15.7) GRP0310
585 FORMAT (1H) GRP0320
808 FORMAT (1HD19X44SUBROUTINE PTONE CALLED MORE THAN 15 TIMES) GRP0330
901 FORMAT (42X35HARMONIC ANALYSIS OF DIMENSIONAL CZ//27X6HCZ = A0*A1GRP0340
1*COS (PSI) +B1*PSI +A2*COS (2*PSI) +B2*SIN (2*PSI) +C2*PSI +D2 + GRP0350
951 FORMAT (19HOLIFT CURVE SLOPE (F6.2,30H) LESS THAN MINIMUM ACCEPTABLE) GRP0360
1E VALUE (F4.2,1H) 67H, STALL CRITERION HAS BEEN VIOLATED -- WILL GGRP0370
20 TO NEXT CASE (IF ANY)) GRP0380
1010 FORMAT (5H0CASE NO.13) GRP0390
1604 FORMAT (4H0C1ROUBLE WITH LAMBDA CCONV. STATEMENT 225 2F10.6) GRP0400
5001 FORMAT (47H1END GENERALIZED ROTOR PERFORMANCE CALCULATIONS) GRP0410
8821 FORMAT (///,1X,1CL AND / OR CDLookup PROBLEM WITH BLADE DATA*) GRP0420
8822 FORMAT (///,12,1CL AND / OR CDLOOKUP PROBLEM WITH SPAR DATA*) GRP0430
8823 FORMAT (82X,17H NATURE OF PROBLEM /8X,4HALF /7X,8H MACH NO. /8X,4HR) GRP0440
1EV, 6X, 7HSEGMENT, 12H BLADE STA, 6X, 3H PSI, 10X, 2HCL, 10X, 2HCD GRP0450
2//, 1X, 2P12, 3, 2P12, 4, 112, 5X, 17, 5X, 17, 3 //, 1*NO PROBLEM, 2*LO MACH, 3*HI MACH, 4*LO ALPHA, 5*HI ALPHA*) GRP0460
8 END SUBROUTINE LOADED (UNPUT)
DIMENSION UNPUT(5), C(5)
WRITE (6,2) GRP0470
2 FORMAT (1H1,18HINPUT CARD LISTING //) GRP0480
6 READ (5,1) NNUM, NLOC, (C(I),I=1,5)
1 FORMAT (12,14,5P12.0,16) GRP0490
IF (NNUM.GT.5) NNUM=NNUM/10 GRP0500
J=1ABS (NNUM) GRP0510
WRITE (6,3) NNUM, NLOC, (C(I),I=1,J) GRP0520
3 FORMAT (1X,12,14,5P20.10) GRP0530
IF (NLOC.GT.0) LOC=NLOC GRP0540
DO 4 I=1,J GRP0550
4 UNPUT (LOC)=C (I) GRP0560
LOC=LOC+1 GRP0570
IF (NNUM) 5,7,6 GRP0580
7 WRITE (6,8) GRP0590
8 FORMAT (180,52X,21H WORD COUNT IS MISSING) GRP0600
5 RETURN GRP0610
END C ***GRP0620
SUBROUTINE BLIN4 (T, NB, NBD, M, K, X, Z, L) GRP0630
DIMENSION T(NBD, M) GRP0640
IF (Z-T(NB,1))/10.5.5 GRP0650
5 DO 1 J = 2, 6 GRP0660
IF (T(NB,J-2) 1,2,2 GRP0670
1 CONTINUE GRP0680
GO TO 11 GRP0690
2 UZ=T(NB,J,2) GRP0700

```
EZ=I(NB,J-1,2)
N=T(NB,J,1)+2,+1
7 DO 3 I = 5,4,2
IF (T(NB,J,1)-X) 3,4,4
3 CONTINUE
GO TO 13
4 UZUX=T(NB,J,I)
UZUY=T(NB,J,I+1)
UZLX=T(NB,J,I-2)
UZLY=T(NB,J,I-1)
N=T(NB,J-1,2)+1
9 DO 6 I = 5,2
IF (T(NB,J-1,I)-X) 6,8,8
6 CONTINUE
GO TO 13
8 EZUX=T(NB,J-1,1)
EZUY=T(NB,J-1,I+1)
EZLX=T(NB,J-1,I-2)
EZLY=T(NB,J-1,I-1)
UY = UZLY-UZUY / (UZUX-UZLX) * (UZUX-X) + UZUY
EY = EZLY-EZUY / (EZUX-EZLX) * (EZUX-X) + EZUY
Y = (UY-EY) / (UZ-EZ) * (Z-EZ) + EY
L = 1
RETURN
10 L = 2
RETURN
11 L = 3
RETURN
12 L = 4
RETURN
13 L = 5
RETURN
END

C ************************************************************
SUBROUTINE HARM(K,NH,Y,ALPHA,A0,A,B,C,PHI,RATIO,LL)
DIMENSION A(1),B(1),C(1),PHI(1),RATIO(1),Y(1)
PT = 3.14159
NK = NH
15 IF (NK) 15,15,18
NH = K / 2
18 IF (NH - K / 2) 10,10,210
10 LK = K / 2
M = LK * 2
IF (K - M) 60,30,60
HAN = NH
CAP = K / 2
IF (HAN - CAP) 40,35,40
```
35 NK = NH - 1
40 K1 = K / 2
 IF(NH.LT.K1) GO TO 60
 A(K1) = 0.0
 B(K1) = 0.0
 DO 50 I = 1, K
50 A(K1) = A(K1) + (-1.0)**(I - 1) * Y(I)
 A(K1) = A(K1) / FLOAT(K)
60 AO = 0.0
 DO 70 N = 1, K
 AO = AO + Y(N)
 DO 90 J = 1, NK
 A(J) = 0.0
 B(J) = 0.0
 DO 90 I = 1, K
 PSI = 6.2831853 / FLOAT(K)
 T = FLOAT(J) * FLOAT(I - 1)
 A(J) = A(J) + Y(I) * COS(T * PSI)
 B(J) = B(J) + Y(I) * SIN(T * PSI)
 DO 100 J = 1, NK
 A(J) = A(J) + 2.0 / FLOAT(K)
 100 B(J) = B(J) + 2.0 / FLOAT(K)
 DO 195 J = 1, NH
 TT = FLOAT(J) * ALPHA / 57.29579
 APR = A(J) * COS(TT) - B(J) * SIN(TT)
 BPR = A(J) * SIN(TT) + B(J) * COS(TT)
 A(J) = -APR
 B(J) = -BPR
 DO 110 J = 1, NH
110 C(J) = SQRT(A(J) ** 2 + B(J) ** 2)
 G = C(J)
 DO 140 J = 2, NH
 IF(G - C(J)) EQ.0.0 THEN GO TO 150
130 G = C(J)
140 CONTINUE
 DO 150 J = 1, NH
 IF(G) EQ.0.0 THEN GO TO 152
151 RATIO(J) = 9999999.999999
 IF(C(J) EQ.0.0) THEN RATIO(J) = 1.0
 GO TO 150
152 RATIO(J) = C(J) / G
 CONTINUE
 DO 180 J = 1, NH
 IF(B(J) EQ.0.0) GO TO 190
 IF(B(J)) EQ.0.0 THEN GO TO 180
 PHN = A(J) / B(J)
 PHI(J) = ATAN(PHN)
 IF(B(J)) LT 170, 190, 180
170 PHI(J) = PHI(J) + 3.14159265
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, California 93940 |
| 3. | 1 | Department Chairman, Code 67
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 4. | 1 | Professor L.V. Schmidt, Code 67SX
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 5. | 1 | Professor M.P. Platzer, Code 67PL
Department of Aeronautics
Naval Postgraduate School
Monterey, California 93940 |
| 6. | 2 | Commanding Officer
Attn: Mr. George Unger, AIR-530132B
Naval Air System Command
Washington, D.C. 20361 |
| 7. | 1 | Lt James W. Loiselle, USN
2512 Granada Circle
Spring Valley, California 92077 |