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PRANDTL EQUATION IN THE THEORY OF A WING WITH A FINITE SPAN!

by D. I. Sherman

Presented by Academician L. S. Leybenzon

Footnote: 1Given at a seminar of the Institute of Mechanics of the AS

USSR in December 1947. End footnote

§1. Prandtl [ 1) obtained the following singular
integro-differential equation for determining circulation in a flow

about a wing with a finite span:

g
< X

‘ L, i’: S 5». N - .;. . .
3 f::f'l“?‘*lf-m'. SRigs N

Here 2a is the wingspan, b0(x) is the chord of its profile and

FTD-ID(RS)I-0185-77
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a (x) its geometric angle of attack, V is the velocity >f the air flow

rT—

at infinity, m is a certain constant (approximately equal to 2»), and
"T(x) is the unknown air flow circulation along the ving profile. As

usual, the diverging integral on the left side of the equation should

- be considered in the sense of the main Cauchy value.

Equation (1) has been the object of many studies. This equation
i was transformed into an integral Fredholm equation with a continuous

kernel! in a relatively recent study by I. N. Vekua [ 2].

Footnote: !L. G. Magnaradze [ 3] obtained a similar Predholm equation

5 with somewhat different assumptions before I. N. Vekua. End footnote

1 In this case, in accordance vith the statement of the problem, I. N.

|
| Vekua considers that b (%) has the forn

f. y ﬂ:?- "y : ' . :
2A=TTE . Cesa<a, @

vhere l’ﬁq is an even analytical function in segment a<x<a,

which assumes positive values in it. The angle of attack «(x) and

unknown circulation I'(X) are also assumed to be even functions in

the same segment.

FTD-ID(RS)I-0185-77
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In practice it is extremely significant when l’(‘) is the

rational function

with real coefficients a and b,

G. Shmidt (4] found a sufficiently effective solution (in
squares) for this case (at b,=0) ., Then L. I. Sedov found this

solution solution in a different manner.

I. N. Vekua found that the kernel of the Fredholm equation to
which he had reduced equation (1) is degenerate if p(x)'is rational.
Therefore, using the method he proposed, in this case the solution

can also be obtained in finite form.

This report presents a somevhat different approach to solving
equation (1) wvhen functionm p(X) is rational. We feel that this

approach may sometimes have certan advantages over the others, since

FTD-ID(RS)I-0185-TT7
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it can be directly (vithout using a conformal expression) transferred

to the more complex situation in which the segment joining points t =
-a and t = a is curvilinear, and coefficients a, b, and the free
term in (1) are complex. We encounter this type of complex Prandtl

equation in certain problems of the elasticity theory.

In conclusion, we will indicate an approximate method of solving

equation (1) which is suitable for any function &(x), and which, in

our ofinion, can have sufficiently effective results.

We will drawv a profile along real segment (-a, a) on plane

zax-}-i) ’ VF:? is arbitrarily used to mean that branch of
this function which assumes positive values on the upper bank of the

profiletl,

Footnote: 10bviously, in this case Va@=—x*  in formula (2) should
be considered to be the limiting value of Va@—2 on the upper bank

of the profile. End footnote

For definiteness we will say that n; = n, = n. We can consider

the other cases in a similar fashion.

o R
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We will introduce the function

at regular intervals on plane z everyvwhere outside of the profile.
. : : - :
Then, considering the conditions which are normally accepted in wing 7

theory

M= =Tlay=0 5

we will write equation (1) in the following form, after

transformation:

,.,. S
l.,"-
-\s«'~g'

f 0'(m = ﬁ,:; mz X
)

=

(“ a<t<a

s & ,.‘Z’xc«r

where indices i and e indicate that the limiting values of the

functions to which they are assigned are takenm cn the upper and lower

banks of the profile, respectively.
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Then setting

S ———

et '1,- 0(:) 00 N Ry or <, '-_..usa‘r Py E S
Y@= -; = )_ja.zu— o (z) > l:.z*'z“,s;.v A o8

K"a \#.,,

we will have

VOV O—fG fO2aVa R hm

Function Y() is regular on plane z outside of profile (-a, a),
with the exception of an infinitely distant point whers it obviously
has a pole on the order of 2(n-1). We will introduce a new function
which is also regular outside the profile, but which returns to zero
at infinity:

2(n—13)

‘l"(z)‘-‘!’(z)~ zc, - ek  \ @ ]

where, at suitable values of constants ";, the second term on the

right side expresses the main part of the expansion (together with

the free term) of function ¥() in the vicinity of an infinitely J

far-off point. Here from (8) we will have

2n—-1) -
w-(o+~r(t>-fm Si oAl 08

Wwhence, after simple computations, vwe will have
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whereupon!
- 'fj{:\'g. j“‘, '_/*'; x.“ ‘8 \:(l':‘{-‘ s zn) 2 i
j'm(z)_':,,‘; 1 _a-_ Va—r n-fmdt c.=l‘ 2 (—-l)hcha ¢;+u.—v'~
A S AT i S
-ﬁf '.'".-" : 'l “3 s .-,:".'"..‘ % | v.. : c;: < “ o % ¢ - A (12)" a

vhere C is a new random constant and 'E(j)::-;- P ‘—':'_‘ depending on

whether k is even or odd.

Pcotnote: 1As formulae (12) show, each of the constants

’c,(l,=l.3;s..':2;!;—:'lj i and o ®=2857%2@—~1) is expressed by all
Gl =02 .0, 5@ 1) and oy, (=13, ,2n-3), respectively,

beginning with ky= k-1. Constant c, depends on the same

&, (kx_.'=1.‘3-7;-.2n7—3). as cp and, therefore, can be expressed by

GR=2...,2(a—1)

Thus, we will have all 2n random constants:
=12 3m_1) and C. The conditions for finding them are

given below. Henceforth constants «(*=01_..,2(r-1) will not be

necessary.
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We note that constant ¢, (at ky = k, = 0) in formula (12)

should be considered to be equal to zero. End footnote

Including C in constant c, and using the previous designations for

it, based on formulae (7) and (9) we will have

u\\/ al ’,.," S

za.z"—:w'(z)g{ z:.? o (z) +

Z c,z"- Q 3)

Frem equation (13) we will have

uI ,7-- 2

e

here 'ﬁ; is a new random constant and, furthermore, tha following

designations are introduced
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i T b
'T(z)—-(Va*—- T gy — Pl —a) -n)'; _
z ll) n Y~—7—— _‘(‘—_ ..)+.r. »

= o+ L 3‘:,;} s

g(z) = zb3§‘ '. -
Ve 0 3

where % are the roots to polynomial g(z) which, by definition, lie
outside of segment (-a, a) and are assumed to ke simple for

convenience; B.(8=0,1,..., 2n) are certain constants, the first

of which By, is real; z, is the initial point of integration and!

s ;Va’—tx:.

Footnote: 1We should take ™ to be the value of the selected branch

Vat =z at ‘z-“-c.._'v,".- End footnote

32. Analytical function T(z) will be single-valued on a planre on

which 2n more other profiles2 are drawn in a certain fashion from

points a, along with the above profile alcng the real segment (-a,

a).

oo i dnai e adh

e
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Footnote: 2At least one of these profiles should be drawn to an

infinitely distant point. End footnote

Here, obviously, the integration curve in (14), which joins z
and z,, should neither intersect the profiles, nor, generally

speaking, contain points %.

In accordance with formula (4), we will select the constants
alk=01,", 2n) so that function ®(2) is regular at points

z=ua, and returns to zero at infinity.

We will first! assume that B, > -~1.

Footnote: 1Based on the assumptions made with respect to coefficients

@ and v, constant B, > 0. However, here we are only considering the

more general case which is of interest in several other problems. End

fcotnote
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In this case, setting ¢cu =0, ve will take an infinitely

distant point as zg5. Then

0@ =T\ Mae o . roag?
- <15 ' (o e oo Gl

Expanding the right side of this formula into a series at
sufficiently large values of modulus z, it is easy to prove that

®(2) is single-valued in the vicinity of an infinitely far-off point

and returns to zero at infinity.

Further, near 2z=oa we will have

where ¢, and 3; are certain constants.

IfRe(vl.)<0(t’==l.'.:.. ?)l),theu in order for function ®(2) to be

regular at points z=aqa, the following equalities must be

observed
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QM ., ;
Lr‘(?.‘"f“,« i AT S ST (R

-

We will allow that this system can be solved relative to

constants (@& =0L...,28—1). rhen, determining the latter from it and

substituting their values im (16), we will find the required function
(2).

Considering By, > -1 like before, we will examine the case in
which certain of Re(v)>0. We vill say that Re(y,)=n,+p,

vhere 7, is the largest whole number contained in the real part of v,

and 0<p, <1, It is easy to see that the corresponding equations

in (18) will look different in this case.

Substituting formula (16) in form

i ket e 1{'9) :

R~ "SR Y] i

on the basis of (17) and observing that the function included under
the sign of the integral in these equations is is absolutely
integrable at 2z=u,, instead of certain of (18) we will obtain the
following equations vhich provide regularity of ,,?‘_(z) at the points

in question:
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";\‘ W R/ ks o i,
o B ST A PR ;
by G s dt =0, : (20)
r % 4%
-.i,{ 0 & e } SR e
If lm(v.)=u,éo., for any value of k, the corresponding

equation from the latter must be replaced by condition _‘#.5_‘-‘?:0-',

Now we will proceed to the case of p, < -1, for brevity limiting

ourselves to the assumption that Re(v)<O(R=1,..., 29). ° Let Bo =

= (ng*ug) , vhere ny is a positive integer and 0 < ug < 1.

Taking zg = 0 in (14) as the initial point of integration in
this case, instead of (18) we will have the following equations (also
following from the condition of regularity of ®(z) at the points in

question) s

C‘, ST > ¥ing Ural T “
Q04 ton'=0, ‘®=1:0m 2. . @l
‘i‘q L :‘+ .n 1’ < " ( oY "' ‘-" " ) - aba - p " )

Subsequently, designating A as a fixed number with a rather
large modulus and considering the expansion
Q) _‘}"’: %

@ . ,t+y+z~—

e Bk e

s il

il oo i il
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in the vicinity of an infinitely distant point, where ¢ are certain

constants, we will rewrite (14) as follows

r() e ,2+k+l.

() = r'(z)[ o(odt+S{o(o ! 2> gt }4:+

f A, B R T S ¥ -
‘_.""\\ AR ST 5y s Lo uy

N Qit:)' \ u"/tl‘_"‘{a“‘ ' Sioh £ ety
i+ rw. u L ‘~.-‘/"('+*+Po)l_'.+:'f_t’:~,
(ﬂ « ¢ 1y s, e b y RO oy

-

!

Y
5

EH 3 S -j—ca ._\**’:.'.'.. . (22)

'f*“ ﬁ ?‘(x+&+mA'+“'- ] Sat LR
Whence it is clear that in order for 0(2) to return to zero at

infinity, the following equation must be added to system (21)

n,—1

0(0 o0 _ -~ +c:-—o
r(o S T 2 :’+'+" }a"' 2(l+t+p.u"'"" (23)

Determining constants c:(k=0, 1;...,2n), from them, we will find

®(2).

In particular, at pg = 0 it is necessary to require observation

of equality e€a-1 =0 instead of (23).
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As ve saw, function ®(2), wvas regular in the vicinity of an
infinitely far-off point in all the cases in question., Furthermore,

under the conditions (18), (20) or (21), (23) (and the partial
changes in them), which we will consider to be satisfied for each
case, AQ%Q does not have peculiarities on the plane with profile
(-a, a). Consequently, it is single-valued on it. Whence it follows
that the integral in (14), taken for segment (-a, a), should be equal

to zero. The latter, in turn, makes it possible to easily deternmine

that the unknown function T{#. determined by ®(2) on the basis of

(6), satisfies equations (5).

Note. In conclusion we will briefly discuss the case when p(t)
is any analytical function in segment (-a, a). We will say that
function p(t) assumes identical values at the geometrically
coinciding points on the upper and lower banks of profile (-a, a).
Then, using the conformal reflection of the plane with the same
profile on the circumference of a single circle, after certain

computations we will have

FTD-ID(RS)I-0185-77
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vhere Vﬂ—ﬁ’ is an imaginary positive number on the upper bank of

the profile.

Now we will designate X(f) as the sum n+¢1 of the first terms

(including the first term) of series (24) and we will assume that

function p(t) is approximately equal to X(f) (which is permissible
in practice, beginning with a certain n). Noting that here

) =1.(8), ve will transform equation (1) into a form

analogous to (8), setting

?(zl= x(z)",ﬁﬁ? (0"(:) 7953

From this point on we continue analogously to the above

procedure,

Institute of Mechanics of the AS USSR

FTD-ID(RS)I-0185-77
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