EFFECTS OF NOSET-A ON Rhesus Monkey Visual Evoked Response and Sidman Avoidance Task

J. L. Maitsson
J. W. Crock, Jr.
L. J. Jenkins, Jr.

March 1977

ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE
Defense Nuclear Agency
Bethesda, Maryland 20014

Approved for public release; distribution unlimited
Research was conducted according to the principles enunciated in the "Guide for the Care and Use of Laboratory Animals," prepared by the Institute of Laboratory Animal Resources, National Research Council.
Title: Visual Evoked Response and Sidman Avoidance Task

Performing Organization: Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, Bethesda, Maryland 20014

Director: Defense Nuclear Agency (DNA), Washington, D.C. 20305

Report Date: March 1977

Approved for distribution: Approved for public release; distribution unlimited

Abstract:

One male rhesus monkey (*Macaca mulatta*) was exposed to NOSET-A aerosol for 4 hours at a concentration of 2.4 ppm. Visual evoked response and Sidman avoidance task (free operant avoidance) data were collected after 2 hours and 4 hours of exposure. The visual evoked response was not affected, but a significant increase in response rate on the Sidman avoidance task occurred.
SUMMARY
(Nontechnical)

NOSET-A contains triethylene glycol dinitrate, an organic dinitrate derived from nonvicinal diol, whereas the better known compounds, ethylene glycol dinitrate and propylene glycol dinitrate, are derived from nitration of vicinal diol. Both ethylene glycol dinitrate and propylene glycol dinitrate may cause severe debilitating headaches, vasodilatation, hypotension, and methemoglobin formation. In experimental animals, parenteral doses of NOSET-A also cause hypotension and methemoglobinemia. Unlike the vicinal dinitrates, NOSET-A causes emaciation and neurologic toxicity in chronically treated rabbits. Chronic exposure to vapor concentrations as low as 0.5 ppm has caused depression of a rhesus monkey's cued avoidance behavior.

In this experiment, one male rhesus monkey (Macaca mulatta) was exposed to NOSET-A aerosol for 4 hours at a concentration of 2.4 ppm. Visual evoked response and Sidman avoidance task (free operant avoidance) data were collected after 2 hours and again after 4 hours of exposure. The visual evoked response was not affected, but a significant increase in response rate on the Sidman avoidance task occurred. These data indicate that NOSET-A has neurobehavioral effects of potentially serious consequence, and that further testing, such as measurement of peripheral nerve conduction velocities and behavioral tests requiring a high degree of sensorimotor integration, is necessary.
PREFACE

This research was sponsored by the U. S. Naval Medical Research and Development Command. The chamber NOSET-A concentrations were controlled by R. A. Jones, and analyzed by L. Kurlansik. C. G. Franz and C. R. Curran were especially helpful in selection of the Sidman avoidance task for behavior control, and in assisting with the training schedule. Technicians B. A. Dennison and W. N. Fry were responsible for the day-to-day training and stabilization of the monkey, and operated the data collection equipment.
TABLE OF CONTENTS

Summary (Nontechnical) ... 1
Preface .. 2
Introduction .. 5
Methods ... 6
Results and Discussion ... 8
References .. 11

LIST OF FIGURES

Figure 1. Visual evoked response from epidural bipolar temporo-occipital lead, occipital electrode positive 8
Figure 2. Sidman avoidance score 9
INTRODUCTION

NOSET-A contains triethylene glycol dinitrate (TEGDN), an organic dinitrate derived from nonvicinal diol, whereas the better known compounds, ethylene glycol dinitrate and propylene glycol dinitrate, are derived from nitration of vicinal diol. Like ethylene glycol dinitrate and propylene glycol dinitrate, exposure to triethylene glycol dinitrate causes vasodilatation, hypotension, and methemoglobin formation. In addition, TEGDN causes emaciation and neurologic toxicity in chronically treated rabbits. Acute NOSET-A intoxication leads to death from the combined effects of respiratory depression, tremoring and methemoglobinemia. In a rhesus monkey, chronic exposure to NOSET-A vapor concentrations as low as 0.5 ppm caused depression of cued avoidance behavior. *

The visual evoked response (VER) has been utilized in toxicology and pharmacology to study the central nervous system effects of numerous chemicals including propylene glycol dinitrate, carbon monoxide, ethanol, pentobarbital, LSD and chlorpromazine, and diazepam. Because selected VER criteria can be objectively quantified and statistically evaluated, the VER was studied in the following NOSET-A experiment.

The natural VER variability due to change in level of arousal was minimized by having the monkey perform a shock avoidance task (Sidman) during the period the electroencephalogram (EEG) was collected for VER analysis. As a separate indicator of toxic effect, the Sidman avoidance task performance was monitored for deviations from normal response rate, and to detect incapacitation, should it occur.

METHODS

A 10-kg male rhesus monkey (Macaca mulatta) was exposed to NOSET-A aerosol at 2.4 ppm on two occasions, 1 week apart.

The Rochester-type inhalation exposure chamber, approximately 2 m3 in volume, was modified for continuous use. A strobe light source was located outside the chamber and behind the monkey. The chamber windows were covered with white cardboard to eliminate visual distraction of the monkey and to provide a diffuse reflective surface so that the light from the strobe would be uniformly distributed throughout the chamber, thereby reducing VER variability from changes in light intensity and direction of the animal's gaze. Air was passed through a gas washing bottle containing NOSET-A, delivering an aerosol into the chamber. To maintain aerosol concentrations at 2.4 ppm dilution, air was passed through the chamber at 0.5 to 1.0 m3/min. The chamber atmosphere was monitored chromatographically. Chamber atmosphere samples were drawn by valve through a seven-part automatic switching valve into a calibrated sample loop and then to a chromatograph equipped with a 6 ft x 1/4 in. (1.8 m x .6 cm) glass column containing 2.92 percent OV-17 on Anakrom Q 70/80 mesh. The system operated at a temperature of 110$^\circ$C, using nitrogen at 70 ml/min and an electron capture detector at 150$^\circ$C with a voltage of 20 V dc. Long lines and switching valves were heated to prevent condensation. A second method of analysis was to draw a known volume of the atmosphere through a bubbler equipped with a coarse frit and containing ethyl alcohol as the absorbing media. The sample was then read at 220 nm on a spectrophotometer ($A=1650$).

Electroencephalogram (EEG), visual evoked response (VER) and Sidman avoidance task data were collected for 1 hour before the NOSET-A aerosol was introduced into the chamber (D_0) and again after 2 hours (D_2) and 4 hours (D_4) of exposure to the aerosol. This provided three 1-hour data periods. Control data were obtained the day before the exposure experiment.
The EEG was recorded from a single bipolar temporo-occipital lead. Electrodes were chronically implanted stainless screws machined to a 'T' shape. They were implanted so that the top of the 'T's rested on the dura mater, and the bases were wired to an electrical plug affixed to the skull with dental acrylic.

The strobe flashed at a rate of 1/sec throughout the 1-hour data collection periods, and was off between periods. The EEG was amplified 1.2×10^4 times, band-pass filtered at 0.8 Hz to 90 Hz, and analyzed by a special purpose computer for visual evoked responses. Each individual VER was a composite of 100 samples, and there were 12 to 18 VERs collected during each data period. The filtered electroencephalogram was also recorded on paper for visual analysis.

Nonparametric Friedman and Wilcoxon statistical analysis was utilized. To be considered statistically significant (1) the Friedman test had to show a significant variation among the six blocks of data (D_0, D_2, D_4) from the control day and day of exposure, and (2) the Wilcoxon test between data blocks had to be significant in two directions, the exposure data had to vary significantly from the control data of that day (e.g., D_0-D_2, exposure day), and the exposure data had to vary significantly from its paired control block of the preceding day (e.g., D_2 control-D_2 exposure).

Three waveform amplitudes of the VER were analyzed (designated A, B, and C waves). The A wave was positive at the occiput, had a latency of about 50 msec, and was measured base line to highest peak. The B wave was negative, had a latency of about 75 msec, and was measured peak to valley. The C wave was positive, had a latency of 100-200 msec, and was measured valley to highest peak (Figure 1).

Each 1-hour data period consisted of three 15-minute Sidman avoidance sessions (S^D), with a 5-minute rest period (S^A) between sessions. Visual evoked responses were collected only during Sidman avoidance sessions. The monkey could avoid a 0.2-sec shock indefinitely as long as the interval between
responses did not exceed 10 sec (response-shock interval 10 sec, shock-shock interval 1 sec). A cue light next to the response lever remained on continuously throughout the Sidman avoidance session. Sidman data were evaluated by one way analyses of variance. The control data (D₀, D₂, D₄ control day, D₀ exposure day) were first examined for homogeneity, then grouped and compared to the exposure data (D₂, D₄ exposure day).

RESULTS AND DISCUSSION

Exposure to 2.4 ppm NOSET-A aerosol for 2 to 4 hours caused no significant changes in electroencephalogram or any component of the visual evoked response, but the rate of Sidman avoidance responding was significantly increased (Figure 2). If NOSET-A had a diffuse effect throughout the brain at this concentration, the EEG or VER should have been affected. However, if the locus of action was specific, the effect might be missed by assessing only the visual system and the temporal and occipital cortex. It can be inferred, then, that the change in Sidman avoidance rate was not due to a diffuse change in the

Figure 1. Visual evoked response from epidural bipolar temporo-occipital lead, occipital electrode positive
central nervous system, but perhaps to a peripheral nervous system effect or to a psychologic change due to sensory detection of the aerosol.

In the Sidman avoidance task no exteroceptive stimulus warns the monkey of impending shock. When the shock occurs, it is so brief that the animal does not terminate the shock but rather postpones the next shock by pressing the lever. The motivating drive state appears to be anxiety, and the monkey

Figure 2. Sidman avoidance score. Each bar is total lever presses in 15-minute session, three sessions per 1-hour data block.
presses the lever to reduce the level of anxiety.13 NOSET-A may increase the Sidman response rate by causing a centrally mediated change in anxiety level that is ameliorated by faster responding. Alternately, the anxiety level may have been increased by noxious effects of the aerosol such as eye or respiratory irritation, headache, or by other undefinable symptoms that may distress monkeys. This anxiety hypothesis is considerably weakened by the observation that NOSET-A had no effect on the VER, and anxiety and numerous other psychologic events are known to affect VERs.16

Andersen and Mehl1 felt that NOSET-A has an effect on the peripheral nervous system, since it causes tremors in rats rather than tonoclonic convulsions, and a phrenic nerve-diaphragm preparation showed selective inhibition of the phrenic nerve but not the diaphragm. Intact rats were also hyper-reactive to auditory and tactile stimuli.

The dose of NOSET-A causing gross motor tremor in rats is an order of magnitude greater than that causing the altered Sidman rate in the rhesus monkey. However, a subtle peripheral nervous system effect, coupled with hyper-reactivity to sensory stimuli, would explain why task performance could change without significant changes occurring in the electroencephalogram and visual evoked response.

The results of this experiment tend to corroborate rather than refute the observations of Andersen and Mehl1 and Curran et al.,* that NOSET-A has neurobehavioral effects of potentially serious consequence. The future focus of research might profitably include electrophysiological studies of peripheral nerve conduction and behavioral tests requiring a high degree of sensorimotor integration.

* See footnote page 5
REFERENCES

