MCARLO is a computer program for generating time histories of pertinent variables in a man-machine control task. The optimal control model forms the basis for the Monte-Carlo simulation equations. This report gives the modeling formulation and requisite discretization of the equations, a description of the MCARLO subroutines, and input deck setup and a sample problem with solution.
TECHNICAL REPORT TD-CR-77-2

MCARLO: A COMPUTER PROGRAM FOR GENERATING MONTE-CARLO TRAJECTORIES IN A TIME-VARYING MAN/MACHINE CONTROL TASK

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138

10 June 1977

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for:
Aeroballistics Directorate
Technology Laboratory

Redstone Arsenal, Alabama 35809
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COMPUTER PROGRAM ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>2. PROBLEM FORMULATION AND ALGORITHMS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 System-Display Dynamics</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Human Operator Internal Model</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Human Limitations</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Discretized Equations</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Human Operator Model Equations</td>
<td>9</td>
</tr>
<tr>
<td>2.6 Special Considerations</td>
<td>11</td>
</tr>
<tr>
<td>2.7 Summary of Human Model Computations</td>
<td>12</td>
</tr>
<tr>
<td>3. PROGRAM DESCRIPTION</td>
<td>14</td>
</tr>
<tr>
<td>3.1 MAIN Program</td>
<td>14</td>
</tr>
<tr>
<td>3.2 Subroutine SYSTM</td>
<td>14</td>
</tr>
<tr>
<td>3.3 Subroutine UPDATE</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Subroutine MAN</td>
<td>17</td>
</tr>
<tr>
<td>3.5 Subroutine INFORM</td>
<td>17</td>
</tr>
<tr>
<td>3.6 Subroutine PRINTR</td>
<td>18</td>
</tr>
<tr>
<td>3.7 Program Operation</td>
<td>18</td>
</tr>
<tr>
<td>4. INPUT DECK SETUP</td>
<td>19</td>
</tr>
<tr>
<td>4.1 Control Cards</td>
<td>19</td>
</tr>
<tr>
<td>4.2 System Parameter Cards</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Man-Model Parameter Cards</td>
<td>22</td>
</tr>
<tr>
<td>4.4 Entering Parameter Data</td>
<td>24</td>
</tr>
<tr>
<td>4.5 User Written Routines</td>
<td>24</td>
</tr>
<tr>
<td>5. SAMPLE PROBLEM</td>
<td>25</td>
</tr>
<tr>
<td>5.1 Sample Problem Description</td>
<td>25</td>
</tr>
<tr>
<td>5.2 User Written Subroutines for the Sample Problem</td>
<td>28</td>
</tr>
</tbody>
</table>
5.3 Input deck for the Sample Problem 29
5.4 Output listing for the Sample Problem 30

6. COMMON BLOCK USAGE 47

7. MCARLO LISTING ... 49
1. COMPUTER PROGRAM ABSTRACT

PROGRAM NAME: MCARLO

ORIGINATOR: Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Massachusetts 02138
(617) 491-1850
David L. Kleinman, Sheldon Baron, and Jeffrey E. Berliner

CONTRACT MONITOR: U. S. Army Missile Command
Aeroballistics Directorate
(205) 876-1951
Richard E. Dickson

CONTRACT NUMBER: DAAH01-76-C-0194

PROGRAM ABSTRACT

MCARLO is a computer program for generating simulated time histories of pertinent variables in a man-machine control task. The optimal control model (OCM) forms the basis for the Monte-Carlo simulation equations. The ensemble statistics of such time functions must agree with the covariance propagation results obtained via more direct methods, e.g., using TIVAR.

The MCARLO program is written in the FORTRAN-IV-EXTENDED computer programming language, and is designed for efficient batch operation on a Control Data CDC-6600 computer. Data input to the program is provided on standard punched cards and output is generated via the lineprinter.

In this manual we give the modeling formulation and requisite discretization of the equations, a description of the MCARLO subroutines, the input deck setup and a sample problem with solution.
2. PROBLEM FORMULATION AND ALGORITHMS

The major aspects of computer simulation for a man-machine system are shown in Figure 1. The modeling issues are discussed below.

2.1 System-Display Dynamics

There are no modeling restrictions on the system being controlled, other than the generation of a set of NY displayed elements y_t at time t from:

- $u(t) =$ human's control inputs, NU vector
- $w(t) =$ random input disturbances, NW vector
- $z(t) =$ "deterministic" inputs, NZ vector.

In its most general mathematical form, the system/display dynamics might be modeled by:

\[
\dot{x}(t) = f(t, x(t), u(t), w(t), z(t)); \quad x_0 = x(t_0) \quad (1)
\]

\[
y(t) = h(t, x(t), u(t)) \quad (2)
\]

where $x(t) =$ NX system state vector. The vector $w(t)$ consists of independent zero mean white Gaussian noise inputs with covariance

\[
E[w_i(t) w_j(\sigma)] = W_{ij}^0(t) \delta(\tau-\sigma) \quad i=1, \ldots, NW \quad (3)
\]

For the special case of a linear time-varying system, the equations (1)-(2) become:

\[
\dot{x}(t) = A_s x(t) + B_s u(t) + E_s w(t) + F_s z(t) \quad (4)
\]

\[
y(t) = C_s x(t) + D_s u(t) \quad (5)
\]

The system parameters, which may be time varying, are:

- $A_s =$ NX by NX state matrix
- $B_s =$ NX by NU control matrix
- $E_s =$ NX by NW noise matrix
- $F_s =$ NX by NZ bias input matrix
- $C_s =$ NY by NX state display matrix
Figure 1. Major Aspects of Computer Simulation for a Man-Machine System
A means for updating the system parameters, as a function of time, must be included along with the system description. Since the form of updating is highly dependent upon the system model, a general updating scheme is feasible for only the highly structured linear case.

2.2 Human Operator Internal Model

In the OCM, the human is assumed to have an internal characterization of the input-output response of the system. This "internal model" is assumed to be linear, in state variable form,

\[
\dot{x}_m(t) = A_m x_m(t) + B_m u_m(t) + E_m w_m(t) + F_m z_m(t) \quad (6)
\]

\[
y_m(t) = C_m x_m(t) + D_m u_m(t) \quad (7)
\]

where

- \(x_m(t) \) = internal model states, NXM vector
- \(z_m(t) \) = model deterministic inputs, NZM vector
- \(w_m(t) \) = model Gaussian white noise inputs, NWM vector

\[
\text{E}[w_{mi}(t) w_{mj}(\sigma)] = W_{mi}(t) \delta(t-\sigma); \quad i=1, \ldots, \text{NWM} \quad (8)
\]

The model inputs \(u_m(t) \) and displayed outputs \(y_m(t) \) are assumed to be the same as the actual system inputs \(u(t) \) and displays \(y(t) \) to avoid numerous conceptual problems. Thus,

\[
u_m(t) = u(t) \quad \text{and} \quad \text{NUM} = \text{NU}
\]

\[
y_m(t) = y(t) \quad \text{and} \quad \text{NYM} = \text{NY}.
\]

The internal model parameters, which can be time-varying, are:

- \(A_m \) = NXM by NXM model state matrix
- \(B_m \) = NXM by NUM model control matrix
- \(E_m \) = NXM by NWM model noise matrix
- \(F_m \) = NXM by NZM model bias input matrix
The choice of model parameter matrices is somewhat subjective. In the general non-linear case, these matrices typically would approximate the partial derivatives of \(f \) and \(h \) in Equations (1)-(2), i.e.,

\[
A_m = \frac{\partial f}{\partial x}, \text{ etc.}
\]

In the linear system case of Equations (4)-(5), the model typically would reflect an appropriate lower order characterization of the true system dynamics. Of course, a not unreasonable choice for the model matrices is:

\[
A_m = A_s, \text{ etc.}
\]

Here, the model parameter is assumed to be same as the associated system parameter. This is a convenient assumption as it greatly simplifies the process of updating model matrices for time varying systems.

The internal model is used within the OCM to help generate a (continuous time) human operator control input via:

\[
\dot{u}(t) = -L_c \begin{bmatrix} \hat{x}_m(t) \\ u(t) \end{bmatrix} + L_{c2} v_u(t)
\]

The NUM by (NXM+NUM) feedback gains

\[
L_c = \begin{bmatrix} T_N^{-1}L_{opt} & T_N^{-1} \end{bmatrix} = \begin{bmatrix} L_{c1} & L_{c2} \end{bmatrix}
\]

are generated via auxiliary programs that solve the optimal control problem for the model equations. The model is also needed in the construction of the Kalman filter-predictor that generates the model state estimate \(\hat{x}_m(t) \).

2.3 Human Limitations

The human generates \(\hat{x}_m(t) \) on the basis of the delayed and noisy perceived information:

\[
y_{pi}(t) = N_i[y_{i}(t-\tau)] + v_{yi}(t) \quad i=1,\ldots,NY
\]
where

\[T = \text{the human's time delay}, \]

\[v_y(t) = \text{the observation or sensor noise at time } t, \]

and \(N_i(\cdot) \) is the non-linear observation threshold:

\[
N_i(x) = \begin{cases}
 x-a_i & x > a_i \\
 0 & |x| \leq a_i \\
 x+a_i & x < -a_i
\end{cases}
\] (12)

In a simulation model, it is possible to implement the non-linear observations using Equations (11) and (12). However, in a man-machine context we find it more convenient to replace \(N_i(\cdot) \) by an equivalent gain, \(\hat{N}_i \). The random input describing function:

\[
\hat{N}_i = \text{erfc} \frac{|x|}{a_t/2}
\] (13)

is used. \(N_i \) is interpreted as the probability that the human will respond to \(y_i \), given its present value at time \(t \).

Each sensor noise \(v_{y_i}(t) \) is a zero-mean, white Gaussian noise with covariance:

\[
E[v_{y_i}(t) v_{y_i}(\sigma)] = \frac{v_{y_i}^2(t)}{f_i(t)} \delta(t-\sigma)
\] (14)

that contains both an additive and a ratioed component:

\[
V_{y_i}(t) = V_{y_i}(t) + \frac{1}{\rho_{y_i}} E[y_{i2}(t-)]
\] (15)

The quantity \(f_i > 0 \) is the attentional allocation to the displayed variable \(y_i \). The \(f_i \) are constrained by:

\[
\frac{1}{f_T} \sum_{i=1}^{NY} f_i(t) = f_T = \text{constant total attention}
\] (16a)

\[
f_{i+1}(t) = f_i(t) \quad i=1,3,\ldots,NY-1
\] (16b)

to indicate that position-velocity pairs are obtained simultaneously form the display elements.
The neuro-motor interface portion of the model is given by Equation (9). The motor noises $v_{ui}(t)$, $i=1,...,NU$ are zero-mean white Gaussian, with covariance:

$$E[v_{ui}(t) v_{ui}(\sigma)] = \rho_{ui}(t) \delta(t-\sigma)$$

that contains an additive and a ratioed component,

$$\rho_{ui}(t) = \rho_{ui}(t) + \pi \text{Var}[u_i(t)]$$

2.4 Discretized Equations

The implementation of the human operator simulation on a digital computer requires the discretization of both system and model equations. Given a computer time step Δ, the system must generate $y(k) = y(t_0+k\Delta) = y(t)$ from the inputs $u(k-1)$, $w(k-1)$, and $z(k-1)$ which are assumed to be piecewise-constant over the previous time interval, e.g.,

$$u(t) = u(k-1) \quad t_0+(k-1)\Delta \leq t \leq t_0+k\Delta$$

For the case in which the system is described by the linear equations (4)-(5), the discretization chosen is:

$$x(k+1) = \phi_s x(k) + \Gamma_s u(k) + \Delta[E_s w(k) + F_s z(k)]$$

$$y(k) = C_s x(k) + D_s u(k-1)$$

where $x(0) = x(t_0) = \text{initial state}$. The discrete system matrices ϕ_s and Γ_s are:

$$\phi_s = e^{At} ; \quad \Gamma_s = \int_0^{\Delta} e^{At} \text{Bsd} \text{d}t$$

Discretization of the linear model equations (6)-(7) is done in a manner similar to the above. Thus

$$x_m(k+1) = \phi_m x_m(k) + \Gamma_m u(k) + \Delta[E_m w_m + F_m z_m(k)]$$

$$y(k) = C_m x_m(k) + D_m u(k-1)$$
where
\[\phi_m = e^{A_m \Delta} ; \quad \Gamma_m = \int_0^\Delta e^{A_m \sigma} B_m d\sigma \] (25)

The human operator model must generate a control input \(u(k) \), to use over the time interval \((t, t+\Delta)\), via
\[\frac{u(k) - u(k-1)}{\Delta} = -L \begin{bmatrix} \hat{x}_m(k) \\ u(k-1) \end{bmatrix} + L_2v_u(k) \] (26)

Note that it is the control input itself that is considered to be piecewise constant for interface with the system model. This is in contrast to the covariance propagation approach where control-rate is assumed piecewise constant with:
\[\dot{u}(k) = -L_d \begin{bmatrix} \hat{x}(k) \\ u(k) \end{bmatrix} + L_d v_u(k) \] (27)

The gains \(L=[L_1\mid L_2] \) in Equation (26) are computed from either the gains \(L_d \) or \(L_c \) according to
\[L = \frac{1}{2} L_d \] (28a)

or
\[L = \frac{1}{2} \hat{L}_d \] (28b)

respectively, where \(\hat{L}_d \) are the equivalent discrete gains:
\[\hat{L}_d = L_c \left[\frac{1}{\delta} \int_0^\delta e^{A \sigma} d\sigma \right] \] (29)

\[\bar{A} = \begin{bmatrix} A_m & B_m \\ -L_c1 & -L_c2 \end{bmatrix} \]

The discretized observations are:
\[y_{pi}(k) = \hat{N}_i y_i(k-N) + v_{yi}(k) \] (30)
where \(N = \text{integer}[T/\Delta] \) and the covariance of the piecewise-constant white noise \(v_{yi}(k) \) is \(\Delta^{-1}[v_{yi}(k)/\gamma_i(k)] \) to account for the finite time step. Similarly, the covariance of the motor noise \(v_u(k) \) now becomes \(V_u/\Delta \).

2.5 Human Operator Model Equations

Equations (23), (24), and (26) may be combined into an augmented man-model equation, suitable for Monte-Carlo simulation. Defining the augmented state \(x(k) = [x(k), u(k-1)] \), and input \(w = [w, v_u] \), we obtain

\[
\begin{align*}
 x(k+1) &= \phi x(k) + \Gamma u_c(k) + Ew(k) + Fz_m(k) \\
 y(k) &= Cx(k)
\end{align*}
\]

(31)

where \(u_c(k) = L_i \hat{x}_m(k) \) is the "commanded" control. The augmented matrices are obtained by rewriting Equation (26),

\[
 u(k) = (I-\Delta L_2)u(k-1) + \Delta u_c(k) + \Delta L_2 v_u(k)
\]

(26a)

and combining with Equation (23), yielding:

\[
\begin{align*}
 \Gamma &= \Delta \begin{bmatrix} \Gamma_m \\ \Gamma_0 \end{bmatrix} \\
 F &= \Delta \begin{bmatrix} F_m \\ 0 \end{bmatrix} \\
 E &= \Delta \begin{bmatrix} E_m \\ \Gamma_m L_2 \end{bmatrix} \\
 \phi &= \begin{bmatrix} \phi_m \\ \Gamma_m (I-\Delta L_2) \end{bmatrix} \\
 C &= \begin{bmatrix} C_m \\ D_m \end{bmatrix}
\end{align*}
\]

(33)

The equations (31)-(32) are similar to the discretized equations that occur in the covariance propagation studies using the OCM. Borrowing heavily from earlier efforts, it is easy to write the equations for the Kalman filter-predictor combination that generates the state estimate \(\hat{x}(k) \). For compatibility with the covariance propagation modeling, we use the a posteriori estimate

\[
\hat{x}(k) = \hat{x}(k|k) = \mathbb{E}[x(k) | y_p^{(0)}, \ldots, y_p(k)]
\]

(34)
The Kalman filter generates the (a posteriori) estimate of the delayed state,

$$\hat{p}(k|k) = E[x(k-N)|y_p(0), ... , y_p(k)]$$ (35a)

and the (a priori) one-step ahead prediction

$$\hat{p}(k+1|k) = E[x(k+1-N)|y_p(0), ... , y_p(k)]$$ (35b)

by means of the usual update and propagate set of equations. These are, respectively:

$$\hat{p}(k|k) = \hat{p}(k|k-1) + G_k v(k)$$ (36a)

$$\hat{p}(k+1|k) = \Phi \hat{p}(k|k) + \Gamma u_c(k-N)$$ (36b)

where $v(k)$ is the innovations, or residual sequence

$$v(k) = y_p(k) - C \hat{p}(k|k-1)$$ (37)

and the initial condition is

$$\hat{p}(0|-1) = \text{given} = \bar{x}(0)$$ (38)

The filter gain G_k is

$$G_k = k|k-1C'[C_k|k-1C' + \frac{1}{\Delta}v_y(k)]^{-1}$$ (39)

where the update-propagate sequence for generating the Riccati solution Σ is:

$$\Sigma_{k+1|k} = (I-G_kC) \Sigma_{k|k-1} (I-G_kC)' + G_k \frac{v_y(k)}{\Delta} \Sigma_{k|k-1} G_k'$$ (40a)

$$\Sigma_{k|k} = \Phi \Sigma_{k|k-1} \Phi' + EWE' + FZF'$$ (40b)

and

$$W = \text{diag}[w_{mi}(k)/\Delta, v_{ui}(k)/\Delta]$$

$$Z = \text{diag}[T_{cor}/\Delta, z_{i2}(k)]$$

are "pseudo-noise" covariance matrices. The "correlation time",

$$T_{cor} = 1 \text{ sec.}$$

The predictor forms the estimate $\bar{x}(k)$ from $\hat{p}(k|k)$ using:

\footnote{For simplicity, the RIDF gain N_i is included with v_y, rather than with C. This is the usual practice in the OCM.}

- 10 -
\[
\hat{x}(k) = \phi^N \hat{x}(k|k) + \sum_{i=0}^{N-1} \phi^i \Gamma u_c(k-i-1) \quad N > 0
\]

If \(N = 0 \), \(\hat{x}(k) = \hat{x}(k|k) \).

2.6 Special Considerations

There are several issues in the simulation of the above equations that remain to be resolved. Some are unique to the man-machine problem.

2.6.1 Storage of Delayed Quantities

The simulation equation (41) requires knowledge of the commanded control \(u_c(k-1), \ldots, u_c(k-N) \). The update equation (36b) requires \(u_c(k-N) \). Similarly, the computation of \(v(k) \) is based on the delayed quantity \(y(k-N) \). To meet these requirements we retain in storage, at time \(k \),

\[
PASTUC = \begin{bmatrix} u_c(k-N) & \ldots & u_c(k) \end{bmatrix}
\]

\[
PASTY = \begin{bmatrix} y(k-N) & \ldots & y(k) \end{bmatrix}
\]

2.6.2 On-line Variance Estimation

The diagonal observation noise covariance matrix \(\bar{V}_y \) in Equations (39) and (40a) is given by:

\[
\bar{V}_{yi}(k) = \frac{V_{yi}(k)}{f_i(k) \hat{N}_{i}(k-N)} \quad i = 1, \ldots, NYM
\]

where \(f_i(k) \) is the fractional attention to \(y_{pi} \) at time \(k \geq N \), and:

\[
V_{yi}(k) = V_{yi}(k) + \pi_{oi} y_i E[y_i^2(k-N)]
\]

\[
\hat{N}_{i}(k-N) = \text{erfc} \left(\frac{|y_{i}(k-n)|}{a_i \sqrt{2}} \right)
\]

Similarly, the covariance of the motor noise:

\[
V_{ui}(k) = V_{ui}(k) + \pi_{oi} \text{Var}[u_{i}(k-1)] \quad i = 1, \ldots, NUM
\]

Both Equations (44) and (45) require process (i.e. ensemble) statistics at time \(k \). However, these are not available from a single Monte-Carlo trajectory, and their precomputation for subsequent read-in is unfeasible. The approach we have taken is to obtain temporal approximations using filtered past data. An approximation...
\(a(k) = E[y_i^2(k-N)] \)

is obtained via 1st-order filtering of \(y_i^2(k-N) \),

\[
a(k) = e^{-\Delta/\tau_m}a(k-1) + (1 - e^{-\Delta/\tau_m})y_i^2(k-N)
\]

(46)

with initial condition \(a(N-1) = y_i^2(0) \). The approximate variance of \(u_i^2(k-1) \)
is found using a two-step procedure that estimates (through filtering) the mean and mean-square, and then computes the variance. The time constant \(\tau_m = 0.5 \text{ sec.} \)

2.6.3 Pseudo-Random Noise Sequence

The Monte-Carlo simulation of the human operator equations must generate discrete white-noise sequences for observation noise and motor noise that have specified variances \(\bar{V}_{y_i}/\Delta \) and \(V_{0i}/\Delta \), respectively. This accomplished by picking, at time \(k \),

\[
V_{ui}(k) = \frac{V_{0i}^{1/2}}{\Delta} \xi(k)
\]

where \(\xi(k) = N(0,1) \) is a unit variance, zero mean, Gaussian random variable. \(\xi(k) \) is generated by averaging 12 uniformly distributed \((-1/2, +1/2)\) independent random variables. A slight modification is made when choosing the observation noise sequence, to reflect more precisely the underlying multiplicative noise process. We pick

\[
V_{yi}(k) = \frac{\bar{V}_{yi}^{1/2}}{\Delta} \xi(k)
\]

where

\[
\bar{V}_{yi}(k) = \frac{V_{yi} + \pi \rho_i y_i^2(k-n)}{f_i(k) \tilde{N}_i^2(k-N)}
\]

depends only on the instantaneous value of \(y_i(k-N) \).

2.7 Summary of Human Model Computations

The major part of the man-machine simulation is the implementation of the equations of the OCM, where a control input \(u_k \) is generated from the observations \(y_k \). The steps in this process are summarized below.
1. Storage of $y(k)$ in the $(N+1)$-st column of PASTY, Eq. (42b).

2. Computation of $a(k)$ via Eq. (46), and the observation noise covariance $\mathbf{V}_y(k)$ using Eqs. (43)-(44).

3. Computation of the residuals
 \[v(k) = y(k-N) + v_y(k) - C\hat{p}(k|k-1) \]
 (47)

4. Compute the filter gain G_k via Eq. (3a) and update the Riccati equation (40a) to obtain $\Sigma_k|k$.

5. Obtain the a posteriori estimate $\hat{p}(k|k)$, Eq. (36a).

6. Obtain the state estimate $\hat{x}(k)$ via Eq. (41).

7. Compute the new commanded control,
 \[u_c(k) = -L\hat{x}(k) \]
 and store it in the $(N+1)$-st column of PASTUC.

8. Generate the piecewise constant control $u(k)$ to use over the upcoming time interval $[k,k+1]$ from Eq. (26a).

9. Update the estimate of $\text{Var}[u(k)]$ for use at the next time step.

10. Propagate Σ and \hat{p} using Eqs. (40b) and (36b).

11. Do a stack pushdown (i.e., column shift to the left) on PASTY and PASTUC to get ready for the next time step.
3. PROGRAM DESCRIPTION

The computer program MCARLO has been developed for simulating the human operator equations, and controlling the parameter updating processes. The program consists of six major routines that are highly modular in structure:

1. MAIN
2. SYSTM
3. UPDATE
4. MAN
5. INFORM
6. PRINTR

along with numerous minor, user supplied routines. The function of each of the above routines is discussed.

3.1 MAIN Program

The MAIN program initializes time and controls the overall program flow according to Figure 1. It calls the required subroutines for system propagation, and information storage. Time is incremented, \(t = t + \Delta \), and the cycle repeats. When \(t > t_f \), the printout routine is called.

3.2 Subroutine SYSTM

Subroutine SYSTM is a user-oriented routine that simulates the response of the actual system. Given the control input \(u \), and the external or disturbance inputs \(w \) and \(z \) over the time interval \((t - \Delta, t] \), SYSTM returns the value of \(y \) at time \(t \). At the first time step, \(t = t_o \), only internal initializations are performed. The present implementation requires SYSTM to compute and return (at time \(t \)) the values of \(w \) and \(z \) for its own use over the next time interval. As an alternate approach, a separate subroutine EXTINP might perform this function once \(NW \) and \(NZ \) are known.

The SYSTM subroutine is entirely self-contained. As such it is possible to replace it, in its entirety, by user written routine that simulates the
given system. The only requirement is the generation of \(y(t) \) from control input \(u(t) \) and the disturbance inputs. If the system is time-varying, the logic for updating system parameters must be included within the SYSTM routine. The system simulation can thus be as complicated or as simple as the problem may warrant.

The SYSTM subroutine now contained in the MCARLO program treats the general linear case

\[
\begin{align*}
\dot{x}(t) &= A_s x(t) + B_s u(t) + E_s w(t) + F_s z(t) \\
x(t^+) &= x(t^-) + \delta x(t) ; \quad x(t_0^-) = 0 \\
y(t) &= C_s x(t) + D_s u(t) \\
cov[w_i(t)] &= W_{ii}(t)
\end{align*}
\]

where any parameter matrix can be time-varying. The method by which parameters are updated is similar to the alphanumeric code/index scheme used in TIVAR. Parameters can be changed at time \(t \) via external or card inputs. They can also be changed periodically via an internal — user supplied — subroutine SYSNEW. Table 1a defines the parameter codes for SYSTM. Note that mnemonics \(A \) and not \(AS \), etc., have been used for compatibility with TIVAR deck setups.

At time \(t \) the subroutine updates the pertinent variables and (if necessary) computes new discretize equations. The state is propagated using the transition matrix method. At time \(t_o \) matrices \(A, B, C \) must be input for proper initialization. Unless input, \(D, E, F, W_0 \), \(x \) are assumed to be zero. Finally, the parameters associated with codes 1-7 are stored in common blocks. This makes them accessible to other subroutines for the special case when \(\text{model} = \text{system} \).

\((2)\) An analog simulation or a "real" system with A/D interface provides an interesting possibility.
Table Ia: PARAMETER CODES IN SYSTM

<table>
<thead>
<tr>
<th>CODE</th>
<th>KEY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>System A_s matrix, NX by NX</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>Control B_s matrix, NX by NU</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>Output C_s matrix, NY by NX</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>Output D_s matrix, NY by NU</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>Noise E_s matrix, NX by NW</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>Bias input F_s matrix NX by NZ</td>
</tr>
<tr>
<td>WO</td>
<td>7</td>
<td>Noise covariances W_{si}, NW vector</td>
</tr>
<tr>
<td>XINC</td>
<td>8</td>
<td>Increment δx to system state, NX vector</td>
</tr>
<tr>
<td>INT</td>
<td>9</td>
<td>Transfer to subroutine SYSNEW</td>
</tr>
<tr>
<td>PRINT</td>
<td>10</td>
<td>Printout interval for data</td>
</tr>
</tbody>
</table>

Table Ib: PARAMETER CODES IN UPDATE

<table>
<thead>
<tr>
<th>CODE</th>
<th>KEY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>1</td>
<td>Model A_m matrix, NXM by NXM</td>
</tr>
<tr>
<td>BM</td>
<td>2</td>
<td>Control B_m matrix, NXM by NUM</td>
</tr>
<tr>
<td>CM</td>
<td>3</td>
<td>Output C_m matrix, NYM by NXM</td>
</tr>
<tr>
<td>DM</td>
<td>4</td>
<td>Output D_m matrix, NYM by NUM</td>
</tr>
<tr>
<td>EM</td>
<td>5</td>
<td>Noise E_m matrix, NXM by NWM</td>
</tr>
<tr>
<td>FM</td>
<td>6</td>
<td>Bias input F_m matrix, NXM by NZM</td>
</tr>
<tr>
<td>WOM</td>
<td>7</td>
<td>Model noise covariances W_{m}, NWM vector</td>
</tr>
<tr>
<td>XHINC</td>
<td>8</td>
<td>Increment $\delta \hat{x}$ to $\hat{p}_{k</td>
</tr>
<tr>
<td>TD</td>
<td>9</td>
<td>Human's time delay τ</td>
</tr>
<tr>
<td>MNA</td>
<td>10</td>
<td>Additive NUM motor noise variances V_u</td>
</tr>
<tr>
<td>MNR</td>
<td>11</td>
<td>Motor noise ratios ρ_u, NUM vector</td>
</tr>
<tr>
<td>SNA</td>
<td>12</td>
<td>Additive NYM sensor noise variances V_y</td>
</tr>
<tr>
<td>SNR</td>
<td>13</td>
<td>Sensor noise ratios ρ_y, NYM vector</td>
</tr>
<tr>
<td>TH</td>
<td>14</td>
<td>Observational thresholds, a_i, NYM vector</td>
</tr>
<tr>
<td>ATTN</td>
<td>15</td>
<td>Attention allocations, f_i, NYM vector</td>
</tr>
<tr>
<td>CGAIN</td>
<td>16</td>
<td>Continuous control gains L_c, NUM by NTOT</td>
</tr>
<tr>
<td>DGAIN</td>
<td>17</td>
<td>Discrete control gains L_d, NUM by NTOT</td>
</tr>
<tr>
<td>INT</td>
<td>18</td>
<td>Transfer to subroutine MANNEW</td>
</tr>
<tr>
<td>PRINT</td>
<td>19</td>
<td>Printout interval for data</td>
</tr>
</tbody>
</table>
3.3 **Subroutine UPDATE**

The two major functions of this subroutine are to update the (time-varying) parameters in the human operator model, and to compute the discretized model equations. The parameters are updated using an alphanumeric code/index scheme. Parameters can be changed at time t via external or card inputs. They can also be changed periodically via an internal -- user supplied -- subroutine MANNEW. Table Ib defines the codes for UPDATE. The parameters are described in Sections 2.2 - 2.3.

The discretization of the human operator model equations follows the approach in Sections 2.4 - 2.5. A change in either A_m or B_m necessitates a recomputation of the discrete system matrices Φ_m and/or Γ_m. If continuous time feedback gains L_c are input, UPDATE computes the equivalent discretized gains \hat{L}_d using the "average gain" method.

UPDATE initializes all of the man-model parameters to zero, with the exception of A_m, B_m, C_m, L_d or L_c which must be input at time t_0. The subroutine can equate any of the first seven code parameters to their linear system counterparts.

3.4 **Subroutine MAN**

This is the major computational subroutine in the MCARLO program. It performs all of the human model computations summarized in Section 2.7. Thus, the basic function of MAN is to output (at time t) the NU control u to apply to the system over $(t, t+\Delta]$. The dynamic inputs to MAN include the NY observations $y(t)$, and the value of the deterministic input z over $(t, t+\Delta]$. This latter requirement is expected to be relaxed through future modeling efforts.

3.5 **Subroutine INFORM**

This subroutine is used to store data for subsequent printing and/or plotting. Data is stored on disk files every $(\text{NPRNT})\Delta$ seconds starting at $t=t_0$. For convenience, printed and plotted variables are stored on separate

(3) Initial $f_1 = 1$
files. The value of NPRNT is an input parameter to MAIN, but can be changed via either system or update. For the system, any component of x, y or u may be output as data. For the man-model, any component of \(\hat{x} \), \(\hat{y} \) or \(\nu \) may be output where \(\hat{y} = C\hat{x} \).

3.6 Subroutine PRINTR

This routine, called the first time \(t \geq t_p \), outputs the stored time histories of the selected variables. For plotted variables, an automatic scaling feature is used.

3.7 Program Operation

MCARLO has been designed to generate Monte-Carlo time histories of the signals in a man-machine control task. Each run of MCARLO generates one sample path. To obtain more elements in the ensemble it is necessary to make additional computer runs, using different values for the random number generator seed. The sample waveforms can all be stored for later ensemble averaging. As the number of samples \(N \to \infty \), the sample statistics should converge to the ensemble (covariance) statistics that are computed by TIVAR.
4. INPUT DECK SETUP

There are three sections of input data for MCARLO as discussed below. In addition, there are three user-written subroutines: SYSNEW, MANNEW, and FDET.

4.1 Control Cards

There are 5 major control cards that are required by the MAIN program.

Card 1 - Title Information
Column 1: blank
Columns 2-80: alphanumeric title information

Card 2 - Random Number Seed, I10 Format
Field 1: IXYZ = any integer

Card 3 - Time Information, 3E10.0, I10 Format
Field 1: DEL = discrete time step (sec)
Field 2: TO = initial time (sec)
Field 3: TF = final time (sec)
Field 4: NPRNT = printout frequency (integer)

Card 4 - Print/Plot Information for System Variables, 3(20I1) Format
Field 1: Print/Plot codes for states 1 - NX
Field 2: Print/Plot codes for outputs 1 - NY
Field 3: Print/Plot codes for controls 1 - NU

Card 5 - Print/Plot Information for Model Variables, 3(20I1) Format
Field 1: Print/Plot codes for state estimates 1 - NXM
Field 2: Print/Plot codes for output estimates 1 - NYM
Field 3: Print/Plot codes for KF residuals 1 - NYM

Note that on cards 4-5 each column of an associated field corresponds to one state, output estimate, etc. A single integer governs the printing or plotting of the time history of the variable:
0, or blank = no printing or plotting of the variable
1 = print time history vs. time
3 = plot time history vs. time
2 = print and plot time history vs. time

A maximum of 10 of any variables (e.g. states or outputs) can be printed on wide paper.

4.2 **System Parameter Cards**

These cards are used to change system parameters in the linear case. If the user supplies his own SYSTM subroutine, this section of data is omitted, or replaced by problem specific data cards.

Card 1 - Frequencies for internal time breaks, NDTS, 10I5 Format

The 10 fields are associated with the 10 system parameter cards (see Table IIa) on a one-to-one basis. The I-th field is associated with Code I. NDTS(I) is the frequency (number of time steps) at which subroutine SYSNEW is to be called internally with KEY=I, starting at time TO. Calling SYSNEW with KEY=I sets ISFLAG(I)=1 for one time step. The actual parameter values must be changed internally by user-written code. If no code is supplied, the associated parameters retain their value.

Remaining Cards - These are used to change system parameters via external read-in at specified times. The deck setup follows a standard form.

Time Card - Cols. 1-4 Alphanumeric TIME

Cols. 11-20 Time of external break E10.0

Code Card - Cols. 1-5 One of the Alphanumeric codes in Table IIa

Cols. 8-10 Index NQQ for dimension information, I3

Parameter Cards - The new parameter values required by the code.
Table IIa: SYSTEM PARAMETER CARD INPUTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>KEY</th>
<th>INDEX</th>
<th>INPUT DATA</th>
<th>INITIAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>NX</td>
<td>(A_s)_ij i=1,...,NX, j=1,...,NX</td>
<td>undef</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>NU</td>
<td>(B_s)_ij i=1,...,NX, j=1,...,NU</td>
<td>undef</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>NY</td>
<td>(C_s)_ij i=1,...,NY, j=1,...,NX</td>
<td>undef</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>NY</td>
<td>(C_s)_ij i=1,...,NY, j=1,...,NU</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>NW</td>
<td>(E_s)_ij i=1,...,NX, j=1,...,NW</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>NZ</td>
<td>(F_s)_ij i=1,...,NX, j=1,...,NZ</td>
<td>0</td>
</tr>
<tr>
<td>WO</td>
<td>7</td>
<td>NW</td>
<td>(WO)_i i=1,...,NW</td>
<td>0</td>
</tr>
<tr>
<td>XINC</td>
<td>8</td>
<td>---</td>
<td>(δx)_i i=1,...,NW</td>
<td>---</td>
</tr>
<tr>
<td>INT</td>
<td>9</td>
<td>KEY</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PRINT</td>
<td>10</td>
<td>NPRNT</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table IIb: MAN-MODEL PARAMETER CARD INPUTS

<table>
<thead>
<tr>
<th>CODE</th>
<th>KEY</th>
<th>INDEX</th>
<th>INPUT DATA</th>
<th>INITIAL VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>1</td>
<td>NXM</td>
<td>(A_m)_ij i=1,...,NXM, j=1,...,N XM</td>
<td>undef</td>
</tr>
<tr>
<td>BM</td>
<td>2</td>
<td>NUM</td>
<td>(B_m)_ij i=1,...,N XM, j=1,...,NUM</td>
<td>undef</td>
</tr>
<tr>
<td>CM</td>
<td>3</td>
<td>NYM</td>
<td>(C_m)_ij i=1,...,NYM, j=1,...,N XM</td>
<td>undef</td>
</tr>
<tr>
<td>DM</td>
<td>4</td>
<td>NYM</td>
<td>(D_m)_ij i=1,...,NYM, j=1,...,NUM</td>
<td>0</td>
</tr>
<tr>
<td>EM</td>
<td>5</td>
<td>NWM</td>
<td>(E_m)_ij i=1,...,N XM, j=1,...,N WM</td>
<td>0</td>
</tr>
<tr>
<td>FM</td>
<td>6</td>
<td>NZM</td>
<td>(F_m)_ij i=1,...,N ZM, j=1,...,N ZM</td>
<td>0</td>
</tr>
<tr>
<td>WOM</td>
<td>7</td>
<td>NWM</td>
<td>(WO_m)_i i=1,...,N WM</td>
<td>0</td>
</tr>
<tr>
<td>XHINC</td>
<td>8</td>
<td>---</td>
<td>(δp)_i i=1,...,N XM</td>
<td>0</td>
</tr>
<tr>
<td>TD</td>
<td>9</td>
<td>---</td>
<td>τ</td>
<td>0</td>
</tr>
<tr>
<td>MNA</td>
<td>10</td>
<td>---</td>
<td>V_ui i=1,...,NUM</td>
<td>0</td>
</tr>
<tr>
<td>MNR</td>
<td>11</td>
<td>---</td>
<td>ρ_ui i=1,...,NUM in dB</td>
<td>- dB</td>
</tr>
<tr>
<td>SNA</td>
<td>12</td>
<td>---</td>
<td>V_yi i=1,...,NYM</td>
<td>0</td>
</tr>
<tr>
<td>SNR</td>
<td>13</td>
<td>---</td>
<td>ρ_yi i=1,...,NYM</td>
<td>- dB</td>
</tr>
<tr>
<td>TH</td>
<td>14</td>
<td>---</td>
<td>a_i i=1,...,NYM</td>
<td>0</td>
</tr>
<tr>
<td>ATTN</td>
<td>15</td>
<td>---</td>
<td>f_i i=1,...,NYM</td>
<td>1</td>
</tr>
<tr>
<td>CGAIN</td>
<td>16</td>
<td>---</td>
<td>(L_c)_ij i=1,...,NUM, j=1,...,N XM+NUM</td>
<td>undef</td>
</tr>
<tr>
<td>DGAIN</td>
<td>17</td>
<td>---</td>
<td>(L_d)_ij i=1,...,NUM< j=1,...,N XM+NUM</td>
<td>undef</td>
</tr>
<tr>
<td>INT</td>
<td>18</td>
<td>KEY</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PRINT</td>
<td>19</td>
<td>NPRNT</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

If <0, model parameters are automatically equated to system parameters, and no input data is needed.
The sequence of code card followed by new parameter values is repeated for all items that the user wishes to change at the given time. To change parameters at the next time, input a new time card, followed by a code card, input the parameter values, code card, etc. When using external (card) updates, the following rules must be observed:

1. \(\text{NX + NU} \leq 15 \)
2. Time breaks must occur in increasing order.
3. Parameter cards should occur in the sequence listed in Table IIIa. Thus, codes with lower KEY numbers should be read in first.
4. The parameter cards must be input immediately following the associated code card.
5. The last system parameter card must be an end-system card, containing the alphanumeric ENDS in cols. 1-4.
6. If they occur at the same time, external updates take precedence over internal updates.

The program reads all of the system update cards at the first time step, and stores all the information on a disk file for sequential read-in.

4.3 Man-Model Parameter Cards

These cards are used to change man-model parameters either internally in periodic mode, or via external card inputs. The deck setup is virtually identical in form to the previous section.

Cards 1-2 - Frequencies for internal time breaks, NDTM, 1915 Format

The 19 fields, spread over 2 cards, are associated with the 19 man-model parameter codes (see Table IIIb) on a one-to-one basis. NDTM(I) is the frequency (number of time steps) at which the user supplied subroutine MANNEW is to be called internally with KEY=I. The operation is similar to that for SYSNEW.
Remaining Cards - These are used to change man-model parameters via external read-in at specified times. The deck setup follows the standard form as in the previous section 4.2:

Time Card - Cols. 1-4 Alphanumeric TIME
Cols. 11-20 Time of external break E10.0

Code Card - Cols. 1-5 One of the Alphanumeric codes in Table IIb
Cols. 8-10 Index NQQ for dimension information

Parameter Cards - As required by the associated code.

The sequence of code card - parameter card is repeated for all items the user wishes to change at the given time. To change parameters at the next time, the above three part sequence is repeated. The following rules must be observed:

1. $N_{XM} + NUM \leq 15$

 $NUM = NU$
 $NYM = NY$
 $NZM = NZ$ (or $NZM = 0$)

2. Time breaks must occur in increasing order.

3. Parameter codes should occur in the sequence listed in Table IIb. Thus, codes should be sorted for reading according to increasing KEY numbers.

4. The parameter cards must be input immediately following the associated code card, unless $NQQ < 0$ for codes 1-7.

5. The last man-model parameter card must be an end-man card, containing the alphanumeric ENDM in cols. 1-4.

6. If they occur at the same time, external updates take precedence over internal updates.
A useful option is included for any of codes 1-7. If the specified
NQQ < 0, man-model parameters are automatically set equal to the
corresponding system parameters in the linear case. Also, no read-in of
model parameters is done.

4.4 Entering Parameter Data

Data is entered on the parameter cards in 8E10.0 Format, i.e., in
floating point fields of 10 columns with a maximum of 8 fields per card. The
numbers may be either in fixed-point (decimal) form or in scientific
(exponential) form with the exponent right justified in the field. Matrices
are entered one row at a time. If a row contains more than 8 entries,
continue on a second card for that row. A new row always begins on a new
card. Vectors are entered in similar 8E10.0 format: the first entry in the
first field, second entry in the second field, etc.

4.5 User Written Routines

The three user written routines are SYSNEW(KEY), MANNEW (KEY), and
FDET(K,T). The purpose of the first two routines for changing system and
man-model parameters has been discussed earlier. The function FDET(K,T) is
used to generate the time history of the deterministic (bias) inputs z_i(t).
Thus, at time T, and for inputs K, K=1,...,NZ,

FDET(K,T) = z_K(T)

The user must supply his own code for FDET.
5. SAMPLE PROBLEM

A sample problem illustrating many of the features of the MCARLO program is given in this section. A description of the problem is presented first, followed by a listing of the user written subroutines, the input data deck, and a listing of the output.

5.1 Sample Problem Description

This problem analyzes an AAA tracking task. The controller tracks the azimuth angle of a target which is executing a level fly-by. The key element illustrated by this problem is the use of the FDET function to generate the time history of the deterministic input, i.e. the azimuth trajectory of the target.

The controller is explicitly presented with a display of the azimuth sighting error, and is assumed to derive the corresponding error rate. His task is to minimize this error by controlling a set of rate-aided second-order sight dynamics, his control being a hand-crank.

The target being tracked is executing a constant speed straight and level fly-by of 44 sec duration. The range of the target at crossover, \(R_c \), is 3000 ft, and the speed, \(V \), is 733 ft/sec producing a maximum azimuth angular velocity of about 14 deg/sec at crossover. Initially, 22 sec before crossover, the target is 16,126 ft from the crossover point, its azimuth angular position is \(-79.46 \) deg, and its azimuth angular velocity is \(0.4683 \) deg/sec.

The system states are defined as follows:

\[
\begin{align*}
 x_1 & = \text{target azimuth angular position (degrees)} \\
 x_2 & = \text{target azimuth angular velocity (deg/sec)} \\
 x_3 & = \text{sight azimuth angular position (degrees)} \\
 x_4 & = \text{sight azimuth angular velocity (deg/sec)} \\
 x_5 & = \text{integral of the control input}
\end{align*}
\]
It is assumed that the controller employs a "constant velocity" model of the target position. Consequently, the state space equations for the first two states (the deterministic states) are:

\begin{align*}
\dot{x}_1(t) &= x_2(t) \\
\dot{x}_2(t) &= z(t),
\end{align*}

where \(z(t) \), the deterministic input is the azimuth angular acceleration of the target. Thus, \(z(t) \) is given by:

\[z(t) = -2\left(\frac{V}{R_c}\right)^2 \frac{D(t)/R_c}{(1 + (D(t)/R_c)^2)^2} \]

where

\begin{align*}
V &= \text{the speed of the target} = 733 \text{ ft/sec} \\
R_c &= \text{the range of the target at crossover} = 3000 \text{ ft} \\
D(t) &= \text{the distance of the target from the crossover point} \\
&= D_0 + Vt = -16,126 + 733t
\end{align*}

The FDET function computes \(z(t) \) according to Eq. 47.

The transfer function relating the sight position to the control input is:

\[\frac{x_3(s)}{u(s)} = \frac{64(s+1)}{s(s^2+12s+64)} = \frac{64}{s^2+12s+64} \]

Consequently, the state space equations for the last three states (the controllable states) are:

\begin{align*}
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= -64x_3(t) - 12x_4(t) + 64x_5(t) + 64u(t) \\
\dot{x}_5 &= u(t)
\end{align*}

The displayed outputs are the azimuth sighting error and error rate and are given by:
\[y_1(t) = x_1(t) - x_3(t) \]
\[y_2(t) = x_2(t) - x_4(t) \]

Regarding the human's inherent limitations, the observation noise to signal ratio (SNR) and motor noise ratio (MNR) are set to the nominal values of -20dB and -25dB, respectively. The perceptual time delay (TD) is set to 0.20 sec. Observational thresholds are set at 0.05 deg for \(y_1 \) (corresponding to 1% of the field of view of the gunsight), and 0.025 deg for \(y_2 \) (corresponding to a nominal differential threshold for motion).

The control gains, CGAIN, computed by another program, were chosen by setting the cost on error to unity, and adjusting the cost on control rate to produce a neuro-motor lag \(T_N \) of 0.1 sec.

Finally, since the mean initial states are far from zero, the human's estimator requires some time to settle down. The presence of the human's time delay further compounds this problem. To provide an initializing transition period while the human's estimator settles down, the sample problem is started at \(t = -6.0 \) sec, at which time the target is 20,524 ft from the crossover point, its azimuth angular position is -81.684 deg and its azimuth angular velocity is 0.2928 deg/sec. During this initialization period, the human's time delay is set to zero, and printouts are suppressed. At \(t = 0 \), however, the time delay is set to 0.20 sec, and the printout interval is set to 1 sec.

The states are incremented, XINC, so that the initial angular position and velocity of the target are correct, and the human's state estimates are incremented, XHINC, so that the initial error and error rate are zero.
5.2 User Written Subroutines for the Sample Problem

C MCP - PROBLEM DEPENDENT SUBPROGRAMS FOR MCARLO

INCLUDES:

1 - FUNCTION FDET
2 - SUBROUTINE SYSNEW
3 - SUBROUTINE MANNEW

FUNCTION FDET(NQT,T)
C GENERATES DETERMINISTIC INPUT

DATA
1 XO, YO, VO /-16126.0, 3000.0, 733.0/,
2 R /57.296/

X=XO+V0*T
A=X/Y0
B=1.0+A*A
C=(V0/Y0)/B
D=-2.0*A*C*C
FDET=R*D
RETURN
END

SUBROUTINE SYSNEW(NQQ)
C INTERNAL UPDATES TO THE SYSTEM
RETURN
END

SUBROUTINE MANNEW(NQQ)
C INTERNAL UPDATES TO THE MAN
RETURN
END
5.3 Input deck for the Sample Problem

P-I-D CONTROLLER. MONTE-CARLO SIMULATION

<table>
<thead>
<tr>
<th>A</th>
<th>0.0</th>
<th>1.0</th>
<th>0.0</th>
<th>64.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.0</td>
<td>0.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

XINC
-81.684 0.2928 -81.684 0.2928 0.0

ENDS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AM 0
BM 0
CM 0
DM 0
FM 0

XHINC
-81.684 0.2928 -81.684 0.2928 0.0

TD 0.00

CGAIN
-15.39 6.359 0.6404 9.034

MNR -25.0
SNR -20.0
TH 0.05 0.025

TIME
0 0.0

TD 0.20

PRINT 20

ENDM
5.4 Output listing for the Sample Problem

STARTING MCARLO

2-Dec-76 14:20

P-I-D CONTROLLER. MONTE-CARLO SIMULATION

<table>
<thead>
<tr>
<th>Random Number Seed:</th>
<th>56315</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration Time Step:</td>
<td>0.050</td>
</tr>
<tr>
<td>Initial Time:</td>
<td>-6.000</td>
</tr>
<tr>
<td>Terminal Time:</td>
<td>44.000</td>
</tr>
<tr>
<td>Printout Frequency:</td>
<td>120</td>
</tr>
</tbody>
</table>

SYSTEM INTERNAL BREAKS INDEX CODE NDT

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM EXTERNAL BREAK AT T= -6.000

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM EXTERNAL BREAK AT T= -6.000

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM EXTERNAL BREAK AT T= -6.000

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XINC</td>
<td></td>
</tr>
</tbody>
</table>

HUMAN INTERNAL BREAKS INDEX CODE NDT

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>BM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>CM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>DM</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>FM</td>
<td></td>
</tr>
</tbody>
</table>

HUMAN EXTERNAL BREAK AT T= -6.000

<table>
<thead>
<tr>
<th>INDEX</th>
<th>CODE</th>
<th>NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>XHINC</td>
<td></td>
</tr>
<tr>
<td>Time (sec)</td>
<td>Code</td>
<td>Value 1</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>-6.000</td>
<td>TD</td>
<td>0.000E-01</td>
</tr>
<tr>
<td>-2.500</td>
<td>MNR</td>
<td>0.000E+01</td>
</tr>
<tr>
<td>0.000</td>
<td>TD</td>
<td>0.000E+01</td>
</tr>
<tr>
<td>-9.863</td>
<td>PRINT</td>
<td>3.199E+00</td>
</tr>
<tr>
<td>-1.112</td>
<td>U</td>
<td>2.335E-02</td>
</tr>
<tr>
<td>TIME</td>
<td>STATE 1</td>
<td>STATE 2</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>0.00</td>
<td>-7.947E+01</td>
<td>4.677E-01</td>
</tr>
<tr>
<td>1.00</td>
<td>-7.898E+01</td>
<td>5.118E-01</td>
</tr>
<tr>
<td>2.00</td>
<td>-7.784E+01</td>
<td>6.197E-01</td>
</tr>
<tr>
<td>3.00</td>
<td>-7.706E+01</td>
<td>6.197E-01</td>
</tr>
<tr>
<td>4.00</td>
<td>-7.721E+01</td>
<td>6.868E-01</td>
</tr>
<tr>
<td>5.00</td>
<td>-7.648E+01</td>
<td>7.653E-01</td>
</tr>
<tr>
<td>6.00</td>
<td>-7.567E+01</td>
<td>8.577E-01</td>
</tr>
<tr>
<td>7.00</td>
<td>-7.477E+01</td>
<td>9.675E-01</td>
</tr>
<tr>
<td>8.00</td>
<td>-7.374E+01</td>
<td>1.099E+00</td>
</tr>
<tr>
<td>9.00</td>
<td>-7.257E+01</td>
<td>1.258E+00</td>
</tr>
<tr>
<td>10.00</td>
<td>-7.125E+01</td>
<td>1.454E+01</td>
</tr>
<tr>
<td>11.00</td>
<td>-6.965E+01</td>
<td>1.696E+00</td>
</tr>
<tr>
<td>12.00</td>
<td>-6.782E+01</td>
<td>2.000E+00</td>
</tr>
<tr>
<td>13.00</td>
<td>-6.564E+01</td>
<td>2.388E+00</td>
</tr>
<tr>
<td>14.00</td>
<td>-6.303E+01</td>
<td>2.890E+00</td>
</tr>
<tr>
<td>15.00</td>
<td>-5.984E+01</td>
<td>3.548E+00</td>
</tr>
<tr>
<td>16.00</td>
<td>-5.590E+01</td>
<td>4.421E+00</td>
</tr>
<tr>
<td>17.00</td>
<td>-5.095E+01</td>
<td>5.584E+00</td>
</tr>
<tr>
<td>18.00</td>
<td>-4.467E+01</td>
<td>7.117E+00</td>
</tr>
<tr>
<td>19.00</td>
<td>-3.667E+01</td>
<td>9.054E+00</td>
</tr>
<tr>
<td>20.00</td>
<td>-2.658E+01</td>
<td>1.125E+01</td>
</tr>
<tr>
<td>21.00</td>
<td>-1.436E+01</td>
<td>1.317E+01</td>
</tr>
<tr>
<td>22.00</td>
<td>-6.721E+01</td>
<td>1.400E+01</td>
</tr>
<tr>
<td>23.00</td>
<td>1.310E+01</td>
<td>1.325E+01</td>
</tr>
<tr>
<td>24.00</td>
<td>2.500E+01</td>
<td>1.136E+01</td>
</tr>
<tr>
<td>25.00</td>
<td>3.581E+01</td>
<td>9.160E+00</td>
</tr>
<tr>
<td>26.00</td>
<td>4.401E+01</td>
<td>7.204E+00</td>
</tr>
<tr>
<td>27.00</td>
<td>5.515E+01</td>
<td>6.618E+00</td>
</tr>
<tr>
<td>28.00</td>
<td>6.945E+01</td>
<td>5.671E+00</td>
</tr>
<tr>
<td>29.00</td>
<td>7.956E+01</td>
<td>5.956E+00</td>
</tr>
<tr>
<td>30.00</td>
<td>6.279E+01</td>
<td>2.919E+00</td>
</tr>
<tr>
<td>31.00</td>
<td>6.546E+01</td>
<td>2.410E+00</td>
</tr>
<tr>
<td>32.00</td>
<td>6.767E+01</td>
<td>2.018E+00</td>
</tr>
<tr>
<td>33.00</td>
<td>6.954E+01</td>
<td>1.710E+00</td>
</tr>
<tr>
<td>34.00</td>
<td>7.113E+01</td>
<td>1.465E+00</td>
</tr>
<tr>
<td>35.00</td>
<td>7.250E+01</td>
<td>1.267E+00</td>
</tr>
<tr>
<td>36.00</td>
<td>7.368E+01</td>
<td>1.068E+00</td>
</tr>
<tr>
<td>37.00</td>
<td>7.472E+01</td>
<td>9.355E-01</td>
</tr>
<tr>
<td>38.00</td>
<td>7.564E+01</td>
<td>8.627E-01</td>
</tr>
<tr>
<td>39.00</td>
<td>7.646E+01</td>
<td>7.969E-01</td>
</tr>
<tr>
<td>40.00</td>
<td>7.719E+01</td>
<td>6.905E-01</td>
</tr>
<tr>
<td>41.00</td>
<td>7.785E+01</td>
<td>6.228E-01</td>
</tr>
<tr>
<td>42.00</td>
<td>7.848E+01</td>
<td>5.645E-01</td>
</tr>
<tr>
<td>43.00</td>
<td>7.896E+01</td>
<td>5.139E-01</td>
</tr>
<tr>
<td>TIME</td>
<td>OUTPUT 1</td>
<td>OUTPUT 2</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>0.00</td>
<td>1.374E-01</td>
<td>5.519E-02</td>
</tr>
<tr>
<td>1.00</td>
<td>1.656E-01</td>
<td>-4.155E-01</td>
</tr>
<tr>
<td>2.00</td>
<td>2.326E-03</td>
<td>-2.295E-02</td>
</tr>
<tr>
<td>3.00</td>
<td>3.037E-02</td>
<td>-1.395E-01</td>
</tr>
<tr>
<td>4.00</td>
<td>5.052E-02</td>
<td>-9.001E-02</td>
</tr>
<tr>
<td>5.00</td>
<td>2.552E-02</td>
<td>-5.922E-02</td>
</tr>
<tr>
<td>6.00</td>
<td>3.871E-02</td>
<td>-2.284E-02</td>
</tr>
<tr>
<td>7.00</td>
<td>8.750E-02</td>
<td>-1.538E-01</td>
</tr>
<tr>
<td>8.00</td>
<td>1.187E-02</td>
<td>4.863E-02</td>
</tr>
<tr>
<td>9.00</td>
<td>-3.470E-03</td>
<td>-9.822E-03</td>
</tr>
<tr>
<td>10.00</td>
<td>-1.513E-02</td>
<td>-1.561E-01</td>
</tr>
<tr>
<td>11.00</td>
<td>-1.551E-02</td>
<td>1.587E-01</td>
</tr>
<tr>
<td>12.00</td>
<td>-1.125E-02</td>
<td>3.106E-01</td>
</tr>
<tr>
<td>13.00</td>
<td>-1.234E-02</td>
<td>3.062E-02</td>
</tr>
<tr>
<td>14.00</td>
<td>1.711E-01</td>
<td>5.383E-01</td>
</tr>
<tr>
<td>15.00</td>
<td>1.513E-02</td>
<td>1.693E-01</td>
</tr>
<tr>
<td>16.00</td>
<td>1.836E-01</td>
<td>1.468E-01</td>
</tr>
<tr>
<td>17.00</td>
<td>3.834E-01</td>
<td>5.525E-01</td>
</tr>
<tr>
<td>18.00</td>
<td>2.285E-01</td>
<td>3.866E-01</td>
</tr>
<tr>
<td>19.00</td>
<td>2.084E-01</td>
<td>3.483E-01</td>
</tr>
<tr>
<td>20.00</td>
<td>7.453E-01</td>
<td>1.676E-02</td>
</tr>
<tr>
<td>21.00</td>
<td>1.853E-01</td>
<td>1.686E+00</td>
</tr>
<tr>
<td>22.00</td>
<td>3.329E-01</td>
<td>6.198E-01</td>
</tr>
<tr>
<td>23.00</td>
<td>-3.137E-01</td>
<td>9.963E-01</td>
</tr>
<tr>
<td>24.00</td>
<td>-2.618E-01</td>
<td>5.649E-01</td>
</tr>
<tr>
<td>25.00</td>
<td>-2.212E-01</td>
<td>4.583E-01</td>
</tr>
<tr>
<td>26.00</td>
<td>-7.117E-01</td>
<td>7.491E-01</td>
</tr>
<tr>
<td>27.00</td>
<td>-5.173E-01</td>
<td>4.380E-01</td>
</tr>
<tr>
<td>28.00</td>
<td>-1.845E-01</td>
<td>4.247E-02</td>
</tr>
<tr>
<td>29.00</td>
<td>-3.179E-01</td>
<td>6.614E-01</td>
</tr>
<tr>
<td>30.00</td>
<td>-3.509E-02</td>
<td>2.130E-02</td>
</tr>
<tr>
<td>31.00</td>
<td>-1.338E-01</td>
<td>2.827E-01</td>
</tr>
<tr>
<td>32.00</td>
<td>-7.900E-02</td>
<td>6.138E-02</td>
</tr>
<tr>
<td>33.00</td>
<td>-7.917E-02</td>
<td>2.728E-02</td>
</tr>
<tr>
<td>34.00</td>
<td>-1.501E-01</td>
<td>4.204E-01</td>
</tr>
<tr>
<td>35.00</td>
<td>-5.901E-02</td>
<td>-8.793E-02</td>
</tr>
<tr>
<td>36.00</td>
<td>-7.014E-02</td>
<td>-8.296E-02</td>
</tr>
<tr>
<td>37.00</td>
<td>-4.147E-02</td>
<td>-1.846E-02</td>
</tr>
<tr>
<td>38.00</td>
<td>-1.335E-02</td>
<td>9.882E-02</td>
</tr>
<tr>
<td>39.00</td>
<td>-1.330E-02</td>
<td>5.629E-02</td>
</tr>
<tr>
<td>40.00</td>
<td>-1.702E-02</td>
<td>9.026E-02</td>
</tr>
<tr>
<td>41.00</td>
<td>3.559E-02</td>
<td>5.811E-02</td>
</tr>
<tr>
<td>42.00</td>
<td>2.873E-02</td>
<td>2.686E-02</td>
</tr>
<tr>
<td>43.00</td>
<td>2.873E-02</td>
<td>2.686E-02</td>
</tr>
<tr>
<td>TIME</td>
<td>CONTROL</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>1.485E-01</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>4.880E-01</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>5.266E-01</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>6.098E-01</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>6.487E-01</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>7.193E-01</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>8.189E-01</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>8.221E-01</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>1.016E+00</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>1.137E+00</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>1.304E+00</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>1.553E+00</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>1.752E+00</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>2.160E+00</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>2.563E+00</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>3.119E+00</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>3.814E+00</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>4.742E+00</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>5.922E+00</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td>7.472E+00</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>9.740E+00</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td>1.151E+01</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>1.352E+01</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td>1.364E+01</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>1.246E+01</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td>1.050E+01</td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>8.561E+00</td>
<td></td>
</tr>
<tr>
<td>27.00</td>
<td>6.933E+00</td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td>5.321E+00</td>
<td></td>
</tr>
<tr>
<td>29.00</td>
<td>4.479E+00</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>3.609E+00</td>
<td></td>
</tr>
<tr>
<td>31.00</td>
<td>2.831E+00</td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>2.292E+00</td>
<td></td>
</tr>
<tr>
<td>33.00</td>
<td>1.832E+00</td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>1.385E+00</td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>1.036E+00</td>
<td></td>
</tr>
<tr>
<td>36.00</td>
<td>8.241E+00</td>
<td></td>
</tr>
<tr>
<td>37.00</td>
<td>1.073E+00</td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td>9.637E-01</td>
<td></td>
</tr>
<tr>
<td>39.00</td>
<td>8.556E-01</td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>7.459E-01</td>
<td></td>
</tr>
<tr>
<td>41.00</td>
<td>6.493E-01</td>
<td></td>
</tr>
<tr>
<td>42.00</td>
<td>5.538E-01</td>
<td></td>
</tr>
<tr>
<td>43.00</td>
<td>5.449E-01</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>XMHAT 1</td>
<td>XMHAT 3</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0.00</td>
<td>-7.975E+01</td>
<td>-7.980E+01</td>
</tr>
<tr>
<td>1.00</td>
<td>-7.911E+01</td>
<td>-7.924E+01</td>
</tr>
<tr>
<td>2.00</td>
<td>-7.847E+01</td>
<td>-7.848E+01</td>
</tr>
<tr>
<td>3.00</td>
<td>-7.782E+01</td>
<td>-7.786E+01</td>
</tr>
<tr>
<td>4.00</td>
<td>-7.718E+01</td>
<td>-7.723E+01</td>
</tr>
<tr>
<td>5.00</td>
<td>-7.656E+01</td>
<td>-7.649E+01</td>
</tr>
<tr>
<td>6.00</td>
<td>-7.596E+01</td>
<td>-7.561E+01</td>
</tr>
<tr>
<td>7.00</td>
<td>-7.476E+01</td>
<td>-7.477E+01</td>
</tr>
<tr>
<td>8.00</td>
<td>-7.372E+01</td>
<td>-7.380E+01</td>
</tr>
<tr>
<td>9.00</td>
<td>-7.256E+01</td>
<td>-7.257E+01</td>
</tr>
<tr>
<td>10.00</td>
<td>-7.122E+01</td>
<td>-7.120E+01</td>
</tr>
<tr>
<td>11.00</td>
<td>-6.962E+01</td>
<td>-6.965E+01</td>
</tr>
<tr>
<td>12.00</td>
<td>-6.784E+01</td>
<td>-6.782E+01</td>
</tr>
<tr>
<td>13.00</td>
<td>-6.560E+01</td>
<td>-6.568E+01</td>
</tr>
<tr>
<td>14.00</td>
<td>-6.290E+01</td>
<td>-6.296E+01</td>
</tr>
<tr>
<td>15.00</td>
<td>-5.981E+01</td>
<td>-5.998E+01</td>
</tr>
<tr>
<td>16.00</td>
<td>-5.584E+01</td>
<td>-5.590E+01</td>
</tr>
<tr>
<td>17.00</td>
<td>-5.095E+01</td>
<td>-5.109E+01</td>
</tr>
<tr>
<td>18.00</td>
<td>-4.931E+01</td>
<td>-4.932E+01</td>
</tr>
<tr>
<td>19.00</td>
<td>-3.670E+01</td>
<td>-3.685E+01</td>
</tr>
<tr>
<td>20.00</td>
<td>-2.652E+01</td>
<td>-2.672E+01</td>
</tr>
<tr>
<td>21.00</td>
<td>-1.464E+01</td>
<td>-1.523E+01</td>
</tr>
<tr>
<td>22.00</td>
<td>-6.236E+00</td>
<td>-1.045E+00</td>
</tr>
<tr>
<td>23.00</td>
<td>1.317E+00</td>
<td>1.346E+01</td>
</tr>
<tr>
<td>24.00</td>
<td>2.546E+00</td>
<td>2.585E+01</td>
</tr>
<tr>
<td>25.00</td>
<td>3.675E+00</td>
<td>3.613E+01</td>
</tr>
<tr>
<td>26.00</td>
<td>4.408E+00</td>
<td>4.419E+01</td>
</tr>
<tr>
<td>27.00</td>
<td>5.020E+01</td>
<td>5.110E+01</td>
</tr>
<tr>
<td>28.00</td>
<td>5.542E+01</td>
<td>5.599E+01</td>
</tr>
<tr>
<td>29.00</td>
<td>5.973E+01</td>
<td>5.934E+01</td>
</tr>
<tr>
<td>30.00</td>
<td>6.308E+01</td>
<td>6.326E+01</td>
</tr>
<tr>
<td>31.00</td>
<td>6.570E+01</td>
<td>6.571E+01</td>
</tr>
<tr>
<td>32.00</td>
<td>6.786E+01</td>
<td>6.801E+01</td>
</tr>
<tr>
<td>33.00</td>
<td>6.973E+01</td>
<td>6.974E+01</td>
</tr>
<tr>
<td>34.00</td>
<td>7.130E+01</td>
<td>7.137E+01</td>
</tr>
<tr>
<td>35.00</td>
<td>7.276E+01</td>
<td>7.279E+01</td>
</tr>
<tr>
<td>36.00</td>
<td>7.385E+01</td>
<td>7.387E+01</td>
</tr>
<tr>
<td>37.00</td>
<td>7.487E+01</td>
<td>7.491E+01</td>
</tr>
<tr>
<td>38.00</td>
<td>7.582E+01</td>
<td>7.579E+01</td>
</tr>
<tr>
<td>39.00</td>
<td>7.650E+01</td>
<td>7.657E+01</td>
</tr>
<tr>
<td>40.00</td>
<td>7.731E+01</td>
<td>7.731E+01</td>
</tr>
<tr>
<td>41.00</td>
<td>7.794E+01</td>
<td>7.797E+01</td>
</tr>
<tr>
<td>42.00</td>
<td>7.853E+01</td>
<td>7.852E+01</td>
</tr>
<tr>
<td>43.00</td>
<td>7.906E+01</td>
<td>7.906E+01</td>
</tr>
<tr>
<td>TIME</td>
<td>YMHAT 1</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>5.440E-02</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1.286E-01</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>6.699E-02</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>3.072E-02</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>4.954E-02</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>1.996E-02</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>-6.729E-02</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>1.933E-02</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>4.155E-02</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>2.371E-02</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>7.715E-02</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>1.180E-02</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>2.016E-02</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>6.200E-02</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>1.700E-01</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>5.368E-02</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>1.293E-01</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>3.162E-01</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>1.494E-01</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td>2.030E-01</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>5.901E-01</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td>9.277E-01</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>2.861E-01</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td>-3.876E-01</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>-5.335E-01</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td>-1.058E-01</td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>-1.514E-01</td>
<td></td>
</tr>
<tr>
<td>27.00</td>
<td>-2.592E-01</td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td>-4.654E-01</td>
<td></td>
</tr>
<tr>
<td>29.00</td>
<td>-6.010E-01</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>-1.746E-01</td>
<td></td>
</tr>
<tr>
<td>31.00</td>
<td>-1.552E-02</td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>-1.482E-02</td>
<td></td>
</tr>
<tr>
<td>33.00</td>
<td>-3.513E-03</td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>-6.806E-02</td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>-2.637E-02</td>
<td></td>
</tr>
<tr>
<td>36.00</td>
<td>-2.666E-02</td>
<td></td>
</tr>
<tr>
<td>37.00</td>
<td>-3.475E-02</td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td>-3.197E-02</td>
<td></td>
</tr>
<tr>
<td>39.00</td>
<td>-2.213E-02</td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>-1.101E-03</td>
<td></td>
</tr>
<tr>
<td>41.00</td>
<td>-2.961E-02</td>
<td></td>
</tr>
<tr>
<td>42.00</td>
<td>-1.100E-02</td>
<td></td>
</tr>
<tr>
<td>43.00</td>
<td>-1.246E-03</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>INOVAT 1</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>4.335E+03</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>8.887E-02</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>-2.526E+02</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>-6.851E-02</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>-2.569E-01</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>-1.350E-01</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>2.387E-02</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>-7.828E-01</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>2.523E-01</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>1.157E+03</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>-9.278E+00</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>3.482E-01</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>2.497E-02</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>-2.527E-01</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>9.503E+02</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>-1.960E-01</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>2.483E-01</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>-3.536E-02</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>3.922E-01</td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td>1.561E-01</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>-1.411E-01</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td>6.618E-01</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>-5.703E-02</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td>-7.549E-01</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>-4.178E-01</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td>2.654E+01</td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>-1.585E-01</td>
<td></td>
</tr>
<tr>
<td>27.00</td>
<td>-1.565E-01</td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td>2.572E-01</td>
<td></td>
</tr>
<tr>
<td>29.00</td>
<td>-1.941E-01</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>-1.921E-01</td>
<td></td>
</tr>
<tr>
<td>31.00</td>
<td>7.584E-02</td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>-3.820E-02</td>
<td></td>
</tr>
<tr>
<td>33.00</td>
<td>-9.707E-02</td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>-1.796E-01</td>
<td></td>
</tr>
<tr>
<td>35.00</td>
<td>1.117E+01</td>
<td></td>
</tr>
<tr>
<td>36.00</td>
<td>-2.200E-01</td>
<td></td>
</tr>
<tr>
<td>37.00</td>
<td>-5.386E-02</td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td>-5.220E-02</td>
<td></td>
</tr>
<tr>
<td>39.00</td>
<td>1.576E-01</td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>3.340E-01</td>
<td></td>
</tr>
<tr>
<td>41.00</td>
<td>-9.230E-02</td>
<td></td>
</tr>
<tr>
<td>42.00</td>
<td>1.300E-01</td>
<td></td>
</tr>
<tr>
<td>43.00</td>
<td>-1.188E+00</td>
<td></td>
</tr>
</tbody>
</table>
Report No. 3463

Bolt Beranek and Newman Inc.

X 0.00E-01

-1.686E+00 X

X 9.963E-01

OUTPUT 2

X 4.30E+01

- 43 -
INOVAT 1
STOPPING MCARLO
6. COMMON BLOCK USAGE

Named COMMON blocks are used to store most data arrays and to pass information among the various subroutines. These are described below.

1. /PLOT1/
 Required inputs for lineprint plot subroutine

2. /INOU/ KIN, KOUT, KPTR, KPUNCH, KDISK, IPOS, IGOS
 Logical unit numbers for I-O devices and disks for storage of system parameters and generated data.

3. /INFO/
 Storage of print/plot information including number of variables, min and max values for plot scaling, etc.

4. /TIMES/ TIME, DEL, TO, TF, NPRNT
 Time information \(t, \Delta, t_0, t_f \), printout frequency

5. /MAIN1/ NDIM, NDIM1, COM1 /MAIN2/ COM2
 Common blocks required for library subroutines

6. /SYSX/ NX, NU, BS, AS
 Linear System state parameters \(BS=B_S, AS=A_S \)

7. /SYSAD/ BD, AD
 Discrete System parameters \(BD=\Gamma_S, AD=\phi_S \)

8. /SYSY/ NY, DS, CS
 Linear System output parameters \(DS=D_S, CS=C_S \)

9. /SYSW/ NW, W0, ES /SYSZ/ NZ, FS
 External System input parameters \(W0=W_0, ES=E_S, FS=F_S \)

10. /SYSINC/ XINC
 State increment \(\delta x \)

11. /MANX/ NXM, NUM, BM, AM
 Man-model state parameters \(BM=B_m, AM=A_m \)
12. /MANAD/ BD, AD
 Augmented discretized Man-model parameters BD=Γ', AD=Δ'

13. /MANY/ NYM, DM, CM
 Man-model output parameters DM=D_m, CM=C_m (augmented)

14. /MANW/ NWM, WOM, EM /MANZ/ NZM, FM
 Man-model external input parameters WOM=W_m, EM=E_m, FM=F_m

15. /RATIOS/ PU, VU, PY, VY, TH, ATTN, SIGMA
 Model parameters ρ_u, ρ_y, V_u, V_y, a, f, Σ_{k=1}^\infty

16. /MANINC/ TD, NPRED, XHINC
 Man-model parameters TD=T, NPRED=[T/Δ]=N, XHINC=δp

17. /GAINBK/ CGN
 CGN = discrete control gains L_d or equivalent discrete
gains L_d computed from L_c
7. MCARLO LISTING

C NO TABS

C MCARLO - TIME VARYING MONTE CARLO MAN/MACHINE SIMULATION
C INCLUDES
C 1 - BLOCK DATA MCDAT - INITIALIZES VARIOUS COMMON BLOCKS
C 2 - MAIN - CALLS SUBROUTINE MCARLO
C 3 - SUBROUTINE MCARLO - PRIMARY SUBPROGRAM
C
C ALSO REQUIRES THE FOLLOWING SUBPROGRAM FILES
C
C MCCMP - COMPUTATIONS FOR MCARLO
C INCLUDES
C 1 - SUBROUTINE SYSTM - PROPAGATES THE SYSTEM'S RESPONSE
C 2 - SUBROUTINE MAN - PROPAGATES THE MAN'S RESPONSE
C 3 - FUNCTION GAUSS - PICKS A NUMBER FROM A GAUSSIAN DISTRIBUTION
C
C MCP - PROBLEM DEPENDENT SUBPROGRAMS FOR MCARLO
C INCLUDES
C 1 - SUBROUTINE FDET - GENERATES DETERMINISTIC INPUT
C 2 - SUBROUTINE SYSNEW - INTERNAL UPDATES TO THE SYSTEM
C 3 - SUBROUTINE MANNEW - INTERNAL UPDATES TO THE MAN
C
C MCIO - I/O FOR MCARLO
C INCLUDES
C 1 - SUBROUTINE UPDATE - PERFORM EXTERNAL UPDATES
C 2 - SUBROUTINE INFORM - DO OUTPUT FOR A SINGLE TIME STEP
C 3 - SUBROUTINE PUTOUT - SAVES OUTPUT ON FILES
C 4 - SUBROUTINE PRINTR - PRINT THE OUTPUT AT THE END OF A RUN
C
C KPLOT - LINEPRINTER PLOTTING PACKAGE
C INCLUDES
C 1 - SUBROUTINE KPLOT
C 2 - SUBROUTINE ADJUST
C 3 - SUBROUTINE QINIT
C 4 - SUBROUTINE KPLOTC
C 5 - SUBROUTINE QPLOT
C 6 - SUBROUTINE PLACE
C 7 - SUBROUTINE QPRINT
C
C BLOCK DATA MCDAT
C INITIALIZES VARIOUS COMMON BLOCKS

COMMON
1 /INUO/ KIN, KOUT, KPTR, KPUNCH,
1 KDISK, IFOS, IGOS
2 /PLOT1/ NV, NH, NCPW, LW, XL, XH, YL, YH, NXES, NDIR, IST,
2 NGLV, NGLH, BSYM, GSYM, PSYM, ND1, ND2, NOUT

DATA
1 NV, NH, NXES, NDIR, NGLV, NGLH, BSYM, GSYM, PSYM, IST, ND1
1 / 51, 101, 1, 10, 20, 20, 1H+, 1H+, 1HX, 11, 1/
PROGRAM MCMAIN
1 (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT,
2 DISK, POS, GOS, TAPE7=DISK, TAPE8=POS, TAPE9=GOS)

C MAIN PROGRAM
C CALLS SUBROUTINE MCARLO

CALL MCARLO
END
SUBROUTINE MCARLO
C PRIMARY SUBPROGRAM

DIMENSION
1 TITLE(8), X(30), Y(30), U(30), W(30), Z(30),
2 XMHAT(30), YMHAT(30), RES(30)

COMMON
1 /INOUC/ KIN, KOUT, KPTR, KPUNCH, KDISK, IPOS, IGOS
2 /PLOT1/ NV, NH, NCPW, LW, XL, XH, YL, YH, NXES, NDIR, IST,
3 /MAIN1/ NDIM, NDIM1, COM1(15,15), COM2(15,15), STORE(1800)
4 /MAIN2/ COM2(15,15), STORE(1800)
5 /TIMES/ TIME, DEL, TO, TEND, NPRNT
6 /INFO/ NREC, NPRINT, NPLCT, LPRNTS(60), LPRNTM(60),
7 /FILES/ KKB, NAMIN, NAMOUT, NAMDYN, NAMPCH, NAMDSK,
8 /COMP1/ X, Y, U, W, Z, XMHAT, YMHAT, RES

DATA
1 KIN, KOUT, KPTR, NOUT /5, 6, 6, 6/, KPUNCH, KDISK, IPOS, IGOS /6, 7, 8, 9/

C SET NDIM
NDIM=15
NDIM1=NDIM+1

C WRITE DAYTIM
150 CALL PAGEFD(KOUT,1)
WRITE (KOUT,1500)
1500 FORMAT (1H ,/,1H ,15H STARTING MCARLO)
CALL DAYTIM(KOUT)

C ZERO THE VECTORS
200 DO 220 I=1,30
X(I)=0.0
Y(I)=0.0
W(I)=0.0
Z(I)=0.0
U(I)=0.0
220 CONTINUE
ISTEP=0

C GET TITLE AND RANDOM NUMBER SEED
300 READ (KIN,1040) (TITLE(I), I=1,8)
IF (EOF(KIN)) 1000,350
1040 FORMAT (8A10)
350 WRITE (KOUT,1045) (TITLE(I), I=1,8)
1045 FORMAT (/,1H ,8A10,/,1H)
READ (KIN,1051) IDUM
1051 FORMAT (110)
WRITE (KOUT,1052) IDUM
1052 FORMAT (21H RANDOM NUMBER SEED= ,110)
CALL RANSET(IDUM)

C SPECIFY DEL, TO, TEND, AND NPRNT
330 READ (KIN,1060) DEL, TO, TEND, NPRNT
1060 FORMAT (3E10.0,I10)
TEND=IFIX((TEND-TO+0.0001)/DEL)*DEL+TO
WRITE (KOUT,1065) DEL, TO, TEND, NPRNT
1065 FORMAT (25H INTEGRATION TIME STEP = ,F10.3,/, 17H INITIAL TIME = ,F10.3,/,
17H TERMINAL TIME = F10.3/
22H PRINTOUT FREQUENCY = 15

IDENTIFY VARIABLES FOR OUTPUT
READ (KIN,1070) LPRNTS
READ (KIN,1070) LPRNTM

SET THE TIME AND ENTER THE MAIN COMPUTATIONAL LOOP
TIME=TO

START BY UPDATING THE SYSTEM
CALL SYSTM(TIME,X,Y,U,W,Z)

UPDATE THE MAN
CALL MAN(IDUM,Y,U,Z,XMHAT,YMHAT,RES)

CALL INFORM TO DO A PRINTOUT IF ONE IS DUE AT THIS TIME
CALL INFORM(ISTEP,X,Y,U,XMHAT,YMHAT,RES)

UPDATE THE TIME
ISTEP=ISTEP+1
TIME=DEL*ISTEP+TO

IF THE TIME IS NOT EXPIRED DO ANOTHER ITERATION
IF (TIME+0.0001 .GE. TEND) GO TO 800
GO TO 600

TIME IS EXPIRED. DO OUTPUT AND START AGAIN
CALL PRINTR(NPRINT,NPLOT,X,Z)
GO TO 200

INPUT FILE IS EMPTY
WRITE MESSAGE AND EXIT
WRITE (KOUT,9000)
FORMAT (1H ,15HST0PPING MCARLO)
CALL EXIT
END
SUBROUTINE SYSTM(T,X,Y,U,W,Z)
INTEGRATES SYSTEM EQUATIONS ONE TIME STEP
HANLDES EXTERNAL AND INTERNAL SYSTEM UPDATES
THIS VERSION IS FOR A LINEAR SYSTEM USING TRANSITION MATRIX
PROPAGATION
A MORE GENERAL VERSION WOULD USE RUNGE-KUTTA.

DIMENSION
1 X(30), Y(30), U(30), W(30), Z(30),
2 DUM(26), NSTEP(10), ISFLAG(16), AINT(15,15), MDUM(16),
3 XMEAN(30), YMEAN(30), UMEAN(30),
4 XRMS(30), YRMS(30), URMS(30)

INTEGER
1 SCODE(IO)

COMMON
1 /INOU/ KIN, KOUT, KPTR, KPUNCH,
1 KDISK
5 /TIMES/ TIME, DEL, TO, TEND, NPRNT
8 /SYSX/ NX, NU, BS(15,4), AS(15,15)
9 /SYSAD/ BD(15,4), AD(15,15)
A /SYSY/ NY, DS(15,4), CS(15,15)
B /SYSW/ NW, W0(4), ES(15,4)
C /SYSZ/ NZ, FS(15,4)
D /SYSINC/ XINC(15)

DATA
1 NSCODE, LTIME, LEND
1 /10, 4HTIME, 4HENDS/, SCODE
2 /1HA, 1HB, 1HC, 1HD, 1HE,
2 1HF, 2HW0, 4HXINC, 3HINT, 5HPRINT/

IF (T GT. TO+0.0001) GO TO 100

C INITIALIZATION
C SPECIFY THE SYSTEM INTERNAL BREAKS
READ (KIN,1050) (NSTEP(I), I=1,NSCODE)
1050 FORMAT (16I5)
WRITE (KOUT,1060)
1060 FORMAT (24H SYSTEM INTERNAL BREAKS,17H INDEX CODE NDT)
DO 65 I=1,NSCODE
IF (NSTEP(I) LE. 0) GO TO 65
WRITE (KOUT,1070) I, SCODE(I), NSTEP(I)
1070 FORMAT (28X,I2,3X,A5,1X,I5)
65 CONTINUE

C WRITE THE NEXT BATCH OF INPUT CARDS UNTIL AN 'END' CARD
REWIND KDISK
READ (KIN,1075) MDUM
1075 FORMAT (16A5)
WRITE (KDISK,1075) MDUM
II=MDUM(1)
IF (II.EQ.LEND) GO TO 80
GO TO 72
80 TNEXT=TO
REWIND KDISK
KIN1=KIN
C
INITIALIZE SOME MORE QUANTITIES
NW=0
NZ=0
DO 85 I=1,15
XINC(I)=0.0
DO 85 J=1,4
DS(I,J)=0.0
85 CONTINUE
RNPTS=DEL/(TEND-TO)
DO 90 I=1,30
XMEAN(I)=0.0
YMEAN(I)=0.0
UMEAN(I)=0.0
XRMS(I)=0.0
YRMS(I)=0.0
URMS(I)=0.0
90 CONTINUE
C TAKE CARE OF INTERNAL SYSTEM BREAKS
100 DO 105 I=1,NSCODE
 ISFLAG(I)=0
 IF (NSTEP(I) .EQ. 0) GO TO 105
 ITME=IFIX((T-TO+0.0001)/DEL)
 IF (MOD(ITME,NSTEP(I)) .EQ. 0) CALL SYSNEW(I)
105 CONTINUE
C TAKE CARE OF EXTERNAL SYSTEM BREAKS
110 IF (T+0.0001 .LT. TNEXT) GO TO 500
120 READ (KDISK,1130) IDEN, NQQ, BRKT
1130 FORMAT (A5,2X,I3,E10.0)
130 IF (IDEN.NE.LEND) GO TO 140
 TNEXT=1.0E+05
 GO TO 110
140 IF (IDEN .NE. LTIME) GO TO 150
 TNEXT=BRKT
 GO TO 110
C SEARCH THROUGH THE UPDATE CODES, SCODE(KEY)
150 DO 160 KEY=1,NSCODE
 IF (IDEN.EQ.SCODE(KEY)) GO TO 170
160 CONTINUE
C CODE WAS ILLEGAL
WRITE (KOUT,1165) IDEN
1165 FORMAT (23H ILLEGAL INPUT CODE OF ,A5)
 CALL EXIT
C DO THE SPECIFIED SYSTEM EXTERNAL UPDATE
170 ISFLAG(KEY)=1
 IO=2
 KIN=KDISK
WRITE (KOUT,1175) TIME, IDEN, NQQ
1175 FORMAT (/,28H SYSTEM EXTERNAL BREAK AT T= ,F8.3,4X,4HC0DE,2X,A5,4X,7HINDEX= ,I3)
 GO TO (1,2,3,4,5,6,7,8,9,10), KEY
C SYSTEM DYNAMICS - A, B, C, D, E
1 NX=NQQ
 CALL MATIO(AS,NX,NX,IO)
 GO TO 120
2 NU=NQQ
 CALL MATIO(BS,NX,NU,IO)
 GO TO 120
3 NY=NQQ
 CALL MATIO(CS,NY,NX,IO)
GO TO 120
NY=NQQ
CALL MATIO(DS,NY,NU,IO)
GO TO 120
NW=NQQ
IF (NW.GT.0) CALL MATIO(ES,NX,NW,IO)
GO TO 120
C DETERMINISTIC INPUT (F MATRIX) - F
NZ=NQQ
IF (NZ.GT.0) CALL MATIO(FS,NX,NZ,IO)
GO TO 120
C DRIVING NOISE - WO
NW=NQQ
IF (NW.GT.0) CALL VECTIO(W0,NW,IO)
GO TO 120
C INCREMENT TO STATES - XINC
CALL VECTIO(XINC,NX,IO)
GO TO 120
C CALL AN INTERNAL UPDATE - INT
CALL SYSNEW(NQQ)
GO TO 120
C SET PRINT INTERVAL - PRINT
NPRNT=NQQ
GO TO 120
C NO MORE SYSTEM EXTERNAL UPDATES AT THIS TIME
KIN=KIN1
C COMPUTE DISCRETE SYSTEM MATRICES
IF (ISFLAG(1).EQ.0) GO TO 510
CALL DSSRT(NX,AS,DEL,AD,AINT,5)
510 IF (ISFLAG(1)+ISFLAG(2).EQ.0) GO TO 520
CALL MMUL(AINT,BS,NX,NX,NU,BD)
520 IF (ISFLAG(8).EQ.0) GO TO 540
DO 530 1=1,NX
X(I)=X(I)+XINC(I)
530 CONTINUE
C COMPUTATION OF TIME AVERAGES
IF (T.LT.TO+0.0001) GO TO 630
DO 550 1=1,NX
XMEAN(I)=XMEAN(I)+X(I)*RNPTS
XRMS(I)=XRMS(I)+X(I)**2*RNPTS
550 CONTINUE
DO 560 1=1,NY
YMEAN(I)=YMEAN(I)+Y(I)*RNPTS
YRMS(I)=YRMS(I)+(Y(I)**2)*RNPTS
560 CONTINUE
DO 570 1=1,NU
UMEAN(I)=UMEAN(I)+U(I)*RNPTS
URMS(I)=URMS(I)+(U(I)**2)*RNPTS
570 CONTINUE
C COMPUTE XRMS, YRMS URMS AT THE END OF THE RUN
IF (TIME+DEL+0.0001.LT.TEND) GO TO 590
DO 575 1=1,NX
XRMS(I)=SQRT(XRMS(I)-XMEAN(I)**2)
575 CONTINUE
DO 580 1=1,NY
YRMS(I)=SQRT(YRMS(I)-YMEAN(I)**2)
580 CONTINUE
DO 585 I=1,NU
URMS(I)=SQRT(URMS(I)-UMEAN(I)**2)
585 CONTINUE

C OUTPUT THE MEAN AND RMS VALUES OF THE X, Y AND U VECTORS
IO=3
WRITE (KOUT,2000)
2000 FORMAT (17H MEAN OF X VECTOR)
CALL VECTIO(XMEAN,NX,IO)
WRITE (KOUT,2010)
2010 FORMAT (23H RMS VALUES OF X VECTOR)
CALL VECTIO(XRMS,NX,IO)
WRITE (KOUT,2020)
2020 FORMAT (17H MEAN OF Y VECTOR)
CALL VECTIO(YMEAN,NY,IO)
WRITE (KOUT,2030)
2030 FORMAT (23H RMS VALUES OF Y VECTOR)
CALL VECTIO(YRMS,NY,IO)
WRITE (KOUT,2040)
2040 FORMAT (17H MEAN OF U VECTOR)
CALL VECTIO(UMEAN,NU,IO)
WRITE (KOUT,2050)
2050 FORMAT (23H RMS VALUES OF U VECTOR)
CALL VECTIO(URMS,NU,IO)

C INTEGRATE SYSTEM EQUATIONS
590 DO 600 I=1,NX
DUM(I)=0.0
600 CONTINUE
IF (NW .GT. 0)
IF (NZ .GT. 0)
DO 605 I=1,NX
DUM(I)=DUM(I)*DEL
605 CONTINUE
CALL VMAT2(DUM,AD,X,NX,NX,DUM)
CALL VMAT2(DUM,BD,U,NX,NU,X)
CALL VMAT1(CS,X,NY,NX,DUM)
CALL VMAT2(DUM,DS,U,NY,NU,Y)

C X(T+DEL) AND Y(T+DEL) HAVE JUST BEEN COMPUTED
C NOW OBTAIN W AND Z OVER (T,T+DEL) FOR THE NEXT STEP
630 IF (T+0.0001 .GE. TEND) GO TO 650
IF (NW .EQ. 0) GO TO 640
DO 635 I=1,NW
C1=SQRT(W0(I)/DEL)
W(I)=GAUSS(IXYZ)*C1
635 CONTINUE
640 IF (NZ .EQ. 0) GO TO 650
DO 645 I=1,NZ
Z(I)=FDET(I,T)
645 CONTINUE
650 RETURN
END
SUBROUTINE MAN(IDUM,Y,U,Z,XH,YHAT,RES)
C INTEGRATES MAN EQUATIONS ONE TIME STEP
C CALLS SUBROUTINES FOR EXTERNAL AND INTERNAL MAN UPDATES

DIMENSION
1 Y(30), U(30), Z(30), PASTY(15,11), P(30), XH(30), YHAT(30),
2 VU0(4), RES(30), IMFLAG(32), AVGY2(30), AVGU(4), AVGU2(4),
3 VYO(30), FGAIN(15,15), PASTUC(4,11)

COMMON
1 /INOU/ KIN, KOUT, KPTR, KPUUNCH,
1 /MAIN1/ NDIM, NDIM1, COM1(1)
4 /MAIN2/ COM2(1)
5 /TIMES/ TIME, DEL, TO, TEND, NPRNT
F /MANX/ NXM, NUM, BM(15,4), AM(225)
F /MANAD/ BD(15,4), AD(15,15)
G /MANY/ NWM, WM(8), EM(60)
I /MANZ/ NZM, PM(60)
J /MANINC/ TD, NPRED, XHINC(30)
K /RATIOS/ PU(30), VU(30), PY(30), VY(30), TH(30), ATTN(30),
K SIGMA(15,15)
L /GAINBK/ CGN(225)

C INITIALIZE VECTORS AND MATRICES IF TIME IS LESS THAN TO
C IF (TIME .GT. TO+.0001) GO TO 100
DO 10 I=1,30
10 P(I)=0.0
 XH(I)=0.0
 YHAT(I)=0.0
 RES(I)=Y(I)
 AVGY2(I)=Y(I)*Y(I)
CONTINUE
DO 11 I=1,4
 DO 11 J=1,11
11 PASTUC(I,J)=0.0
CONTINUE
VU0(I)=0.0
AVGU(I)=0.0
AVGU2(I)=0.0
12 CONTINUE
KOUNT=0
CALL IDENT(NDIM,SIGMA,1.0E-05)
 TCOH=1.0
 TMEM=0.5
 ALPHA=EXP(-DEL/TMEM)
 TPR=TMEM
 DO 13 I=1,15
 PASTY(I,J)=Y(I)
13 CONTINUE

C DO EXTERNAL AND INTERNAL MAN UPDATES
CALL UPDATE(IMFLAG)
NTOT=NXM+NUM
IF (IMFLAG(8) .EQ. 1) CALL VADD(NXM,1.0,P,XHINC)
 TPR=TPR*ALPHA+DEL
 LOC=NPRED+1
 DO 110 I=1,NYM
 PASTY(I,LOC)=Y(I)
110 C2=PASTY(I,1)
 AVGY2(I)=ALPHA*AVGY2(I)+C2*C2*DEL
 C1=ABS(C2)
 C1=XGAIN(TH(I),0.0,C1)
 C3=C1*C1*ATTN(I)

- 57 -
\[C = P(Y(I)) \]

\[\text{IF (KOUNT .LT. NPRED) C1=1.0E+10} \]

\[VY0(I)=(C2*C2*C1+VY(I))/C3 \]

\[\text{RES(I)=SQRT(VY0(I)/DEL)*GAUSS(IDUM)+C2} \]

\[\text{RES(I)=RES(I)-DOT3(NTOT,CM(I),P)} \]

\[VY0(I)=(AVGY2(I)*C1/TPR+VY(I))/C3 \]

\[110 \text{ CONTINUE} \]

C

UPDATE THE KALMAN FILTER ESTIMATES

CALL MMUL(CM, SIGMA, NYM, NTOT, NTOT, COM1)

CALL MAT2(NYM, NTOT, COM1, CM, FGAIN)

DO 120 I = 1, NYM

\[\text{FGAIN(I,I)=FGAIN(I,I)+VY0(I)/DEL} \]

\[120 \text{ CONTINUE} \]

CALL GMINV(NYM, NYM, FGAIN, COM2, MRANK, 0)

CALL MMUL(FGAIN, CM, NTOT, NYM, NYM)

CALL MMUL(COM2, SIGMA, NTOT, NTOT, COM1)

DO 130 I = 1, NYM

\[C1=VY0(I)/DEL \]

\[130 \text{ CONTINUE} \]

CALL MAT2(NTOT, NYM, FGAIN, SIGMA, SIGMA)

CALL MAT6S(NTOT, NTOT, COM1, COM2, SIGMA)

C

OBTAIN PREDICTION OF CURRENT STATE

DO 140 I = 1, NTOT

\[YHAT(I)=0.0 \]

\[XH(I)=P(I) \]

\[140 \text{ CONTINUE} \]

IF (NPRED.EQ.0) GO TO 170

LOC1=NPRED+1

DO 150 L=1, NPRED

CALL VMAT1(AD, XH, NTOT, NTOT, YHAT)

CALL VMAT2(YHAT, BD, PASTUC(1, L), NTOT, NUM, XH)

\[150 \text{ CONTINUE} \]

DO 170 I = 1, NUM

\[\text{DEL2=-0.5*DEL} \]

\[C1=ABS(VU0(I)) \]

\[\text{PASTUC(I,LOC)=DEL2*PASTUC(I,LOC)} \]

\[\text{YHAT(I)=DEL2*(U(I)+SQRT(C1/DEL)*GAUSS(IDUM))} \]

\[U(I)=U(I)+PASTUC(I,LOC) \]

\[170 \text{ CONTINUE} \]

C

PROPAGATE SIGMA, P

CALL VMAT1(AD, P, NTOT, NTOT, YHAT)

CALL VMAT2(YHAT, BD, PASTUC, NTOT, NUM, P)

CALL VMAT1(CM, XH, NYM, NTOT, YHAT)

CALL MMUL(AD, SIGMA, NTOT, NTOT, COM1)

NWU=NWM+NUM

\[II=1 \]

DO 200 I = 1, NWU

\[\text{C1=WOM(I)*DEL} \]

\[200 \text{ CONTINUE} \]
II=II+NDIM
CONTINUE
CALL MAT2(NTOT,NWU,COM2,EM,SIGMA)
IF (NZM.EQ.0) GO TO 220
II=1
DO 210 I=1,NZM
C1=Z(I)*Z(I)*TCOR*DEL
CALL VSCE2(COM2(II),FM(II),NXM,C1)
II=II+NDIM
210 CONTINUE
CALL MAT6S(NXM,NZM,COM2,FM,SIGMA)
220 CALL MAT6S(NTOT,NTOT,COM1,AD,SIGMA)
IF (NPRED.EQ.0) GO TO 235
CALL EQUATE(PASTY,PASTY(1,2),NYM,NPRED)
DO 230 I=1,NPRED
DO 230 J=1,NUM
PASTUC(J,I)=PASTUC(J,I+1)
230 CONTINUE
235 KOUNT=KOUNT+1
IF (KOUNT.NE.NPRED) KOUNT=NPRED
RETURN
C DUMMY CALL TO MAT6 TO FORCE LOADING
CALL MAT6(NTOT,NTOT,COM1,COM1,COM1)
END
FUNCTION GAUSS(DUM)
C RETURNS A GAUSSIAN RANDOM VARIABLE
C WITH ZERO MEAN AND UNIT STD DEVIATION
C BY SUMMING 12 UNIFORMLY DISTRIBUTED VARIABLES

A=0.0
DO 50 I=1,12
A=A+RANF(DUM)
50 CONTINUE
GAUSS=A-6.0
RETURN
END
SUBROUTINE UPDATE(IMFLAG)

PERFORM EXTERNAL UPDATES TO THE MAN

DIMENSION

IMFLAG(20), MCODE(20), NSTEP(32)

COMMON

/KIN, KOUT, KPTR, KPUNCH,

/KDISK

/NDIM, NDIM1, COM1(1)

/TIME, DEL, TO, TEND, NPRNT

/NX, NU, B(15,4), A(1)

/NY, D(15,4), C(1)

/NW, W0(4), E(1)

/NZ, F(1)

/NDIM1, C0M1(1)

/MAIN1/

/NTIME/ TIME, DEL, TO, TEND, NPRNT

/NX, NU, B(15,4), A(1)

/NY, D(15,4), C(1)

/NW, W0(4), E(1)

/NZ, F(1)

/NX, NUM, BM(15,4), AM(15,15)

/NYM, FM(15,4)

/NX, NUM, BM(15,4), AM(15,15)

/NYM, FM(15,4)

/NON(15,15)

/TORD, NPRED, XHINC(30)

/PU(30), VU(30), PI(30), VY(30), TH(30), ATTN(30),

/SIGMA(15,15)

/CGN(15,15)

/NMCODE, LEND, PI, LTIME

/4HENDM, 3.14159, 4HTIME/

/MEDM

/2HAM, 2HBM, 2HCM, 2HDM, 2HEM, 2HFM, 3HWOM, 5HXHINC,

/2HTD, 3HMNA, 3HMNR, 3HSNA, 3HSNR, 2HTH, 4HATTN,

/5HCAGAIN, 5HDBGAIN, 3HINT, 5HPRINT, 5HDUMMY/

IF (TIME .GT. TO+0.0001) GO TO 100

C INITIALIZATION

C SPECIFY THE MAN INTERNAL BREAKS

READ (KIN,1050) (NSTEP(I), I=1,NMCODE)

FORMAT (1615)

WRITE (KOUT,1060) (NSTEP(I), I=1,NMCODE)

FORMAT (23H HUMAN INTERNAL BREAKS,17H INDEX CODE NDT)

DO 65 I=1,NMCODE

IF (NSTEP(I) .LE. 0) GO TO 65

WRITE (KOUT,1070) I, MCODE(I), NSTEP(I)

FORMAT (27X,12,3X,AS,1X,15)

CONTINUE

C PARAMETER INITIALIZATION

TNEXT=TO

DO 80 I=1,30

PU(I)=0.0

VU(I)=0.0

PI(I)=0.0

VY(I)=0.0

TH(I)=0.0

ATTN(I)=1.0

CONTINUE
NPRED=0
DO 85 I=1,NDIM
DO 85 J=1,4
DM(I,J)=0.0
CONTINUE
TD=0.0
NWM=0
NZM=0

C TAKE CARE OF INTERNAL MAN BREAKS
100 DO 105 I=1,NMCODE
IMFLAG(I)=0
IF (NSTEP(I) .EQ. 0) GO TO 105
ITIME=IFIX((TIME-TO+0.0001)/DEL)
IF (MOD(ITIME,NSTEP(I)) .EQ. 0) CALL MANNEW(I)
CONTINUE

C TAKE CARE OF EXTERNAL MAN BREAKS
110 IF (TIME+0.0001 .LT. TNEXT) GO TO 500
120 READ (KIN,1130) IDEN, NQQ, BRKT
1130 FORMAT (A5,2X,I3,E10.0)
130 IF (IDEN.NE.LEND) GO TO 140
135 TNEXT=1.0E+05
GO TO 110
140 IF (IDEN.NE.LTIME) GO TO 150
TNEXT=BRKT
GO TO 110

C SEARCH THROUGH THE UPDATE CODES
150 DO 160 KEY=1,NMCODE
IF (IDEN.EQ.MCODE(KEY)) GO TO 170
CONTINUE

C CODE WAS ILLEGAL
WRITE (KOUT,1165) IDEN
1165 FORMAT (23H ILLEGAL INPUT CODE OF ,A5)
CALL EXIT

C DO THE SPECIFIED MAN EXTERNAL UPDATE
170 IMFLAG(KEY)=1
WRITE (KOUT,1175) TIME, IDEN, NQQ
1175 FORMAT (/27H HUMAN EXTERNAL BREAK AT T= ,F8.3,4X,4HC0DE,2X,A5,
1 4X,7HINDEX= ,13)
1180 FORMAT (21H HUMAN MODEL = SYSTEM)
IO=2
GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), KEY

C SYSTEM DYNAMICS - AM, BM, CM, DM, EM
1 NXM=NQQ
IF (NXM.LE.0) GO TO 201
CALL MATIO(AM,NXM,NXM,IO)
GO TO 120
201 NXM=NX
CALL EQUATE(AM,A,NXM,NXM)
GO TO 120
2 NUM=NQQ
IF (NUM.LE.0) GO TO 202
CALL MATIO(BM,NXM,NUM,IO)
GO TO 120
202 NUM=NU
CALL EQUATE(BM,B,NXM,NUM)
GO TO 120
3 NYM=NQQ
IF (NYM.LE.0) GO TO 203
CALL MATIO(CM,NYM,NXM,IO)
GO TO 120
NYM=NY
CALL EQUATE(CM,C,NYM,NXM)
GO TO 120
NYM=NQQ
IF (NYM.LE.0) GO TO 204
CALL MATIO(DM,NYM,NUM,IO)
GO TO 120
NYM=NY
CALL EQUATE(DM,D,NYM,NXM)
GO TO 120
NYM=NQQ
IF (NYM.LE.0) GO TO 204
CALL MATIO(EM,NYM,NWM,IO)
GO TO 120
NYM=NQ
IF (NYM.GT.0) CALL EQUATE(DM,D,NXM,NYM)
GO TO 120
5
NWM=NQQ
IF (NWM.LE.0) GO TO 205
CALL MATIO(EM,NXM,NWM,IO)
GO TO 120
NWM=NW
IF (NWM.GT.0) CALL EQUATE(EM,E,NXM,NWM)
GO TO 120

C
DETERMINISTIC INPUT (FM MATRIX) - FM
NZM=NQQ
IF (NZM.LE.0) GO TO 206
CALL MATIO(FM,NXM,NZM,IO)
GO TO 120
NZM=NZ
IF (NZM.GT.0) CALL EQUATE(FM,F,NXM,NZM)
GO TO 120

C
DRIVING NOISE - WOM
NWM=NQQ
IF (NWM.LE.0) GO TO 207
CALL VECTIO(WOM,NWM,IO)
GO TO 120
NWM=NW
IF (NWM.GT.0) CALL EQUATE(WOM,W0,NWM,1)
GO TO 120

C
INCREMENT TO STATE ESTIMATES - XHINC
8
CALL VECTIO(XHINC,NXM,IO)
GO TO 120

C
TIME DELAY - TD
9
CALL VECTIO(TD,1,IO)
NPRED=IFIX(TD/DEL+0.5001)
TD=DEL*NPRED
GO TO 120

C
NOISES - MNA, MNR, SNA, SNR
10
CALL VECTIO(VU,NUM,IO)
GO TO 120
11
CALL VECTIO(PU,NUM,IO)
DO 211 i=1,NUM
PU(i)=PI*10.0**(PU(i)/10.0)
211 CONTINUE
GO TO 120
12
CALL VECTIO(VY,NYM,IO)
GO TO 120
13
CALL VECTIO(PY,NYM,IO)
DO 213 i=1,NYM
PY(i)=PI*10.0**(PY(i)/10.0)
213 CONTINUE
GO TO 120

C
THRESHOLDS AND ATTENTION - TH, ATTN
14
CALL VECTIO(TH,NYM,IO)
GO TO 120

- 63 -
15 CALL VECTIO(ATTN, NYM, IO)
 GO TO 120

C CONTINUOUS AND DISCRETE CONTROL GAINS - CGAIN, DGAIN
16 CALL MATIO(CGN, NUM, NUM+NXM, IO)
 GO TO 120
17 CALL MATIO(CGN, NUM, NUM+NXM, IO)
 GO TO 120

C CALL AN INTERNAL MAN UPDATE - INT
18 CALL MANNEW(NQQ)
 GO TO 120

C PRINT INTERVAL - PRINT
19 NPRNT=NQQ
 GO TO 120

C NO MORE MAN UPDATES AT THIS TIME
500 CONTINUE
C UPDATE VARIOUS MAN PARAMETERS
 NTOT=NXM+NUM
C COMPUTE DISCRETE MAN MATRICES
 IF (IMFLAG(1)+IMFLAG(2) .EQ. 0) GO TO 520
 DO 510 I=1, NUM
 II=NXM+I
 DO 505 J=1, NXM
 AD(II,J)=0.0
 505 CONTINUE
 DO 506 K=1, NUM
 BD(II,K)=0.0
 506 CONTINUE
 BD(II,I)=1.0
 510 CONTINUE
 CALL DSCRT(NXM, AM, DEL, AD, COM1, 5)
 CALL MMUL(COM1, BM, NXM, NUM, BD)
 CALL EQUATE(AM(1,NXM+1), BM, NXM, NUM)

C INCORPORATE NEW CGAINS
520 IF (IMFLAG(16).EQ.0) GO TO 540
 CALL MSCALE(AM(NXM+1,1), CGN, NUM, NTOT, -1.0)
 CALL DSCRT(NTOT, AM, DEL, CGN, COM1, 5)
 CALL MMUL(AM(NXM+1,1), COM1, NUM, NTOT, NTOT, CGN)
 DO 525 I=1, NUM
 II=I+NXM
 DO 525 J=1, NTOT
 AM(I,J)=0.0
 CGN(I,J)=-CGN(I,J)/DEL
 525 CONTINUE
 WRITE (KOUT, 5250)
5250 FORMAT (37H EQUIVALENT DISCRETE GAINS GENERATED)
 IO=3
 CALL MATIO(CGN, NUM, NTOT, IO)

C UPDATE EM AND CM
540 CALL MMUL(BD, CGN(1, NXM+1), NTOT, NUM, NUM, EM(1, NWM+1))
 CALL EQUATE(CM(1, NXM+1), DM, NYM, NUM)
 DO 550 J=1, NUM
 JJ=J+NXM
 QJ=J+NWM
 DO 550 I=1, NTOT
 EM(I,JQ)=0.5*EM(I,JQ)
 AD(I,J)=BD(I,J)-DEL*EM(I,JQ)
 550 CONTINUE
 IF (IMFLAG(5)+IMFLAG(7).EQ.0) GO TO 570
 IF (NWM.LE.0) GO TO 570
 GO TO 120
DO 560 J=1,NWM
DO 560 I=IQ,NTOT
560 EM(I,J)=0.0
570 CONTINUE
RETURN
END
SUBROUTINE INFORM(ISTEP,X,Y,U,XH,YH,RES)
C DO OUTPUT FOR A SINGLE TIME STEP

DIMENSION
1 X(1), Y(1), U(1), XH(1), YH(1), RES(1), DUM1(21), DUM2(21)

COMMON
1 /INOU/
KIN, KOUT, KPTR, KPUNCH,
1 KDISK, IPOS, IGOS
5 /TIMES/
TIME, DEL, TO, TEND, NPRNT
6 /INFO/
NREC, NPRINT, NPLOT, LPP(20,6), IP(6), IG(6),
6 SMIN(21), SMAX(21)

C CHECK IF TIME FOR SOME OUTPUT
IF (MOD(ISTEP,NPRNT) .NE. 0) RETURN

C DO SOME INITIALIZATION
IF (TIME .GT. TO+0.0001) GO TO 100
NPRINT=1
NPLOT=1
REWRITE IPOS
REWRITE IGOS
DO 8 I=1,21
SMIN(I)=1.OE+20
SMAX(I)=-1.OE+20
CONTINUE
DO 10 I=1,6
IP(I)=0
IG(I)=0
DO 9 J=1,20
L1=LPP(J,I)
IF (L1.EQ.1 .OR. L1.EQ.2) IP(I)=IP(I)+1
IF (L1.EQ.2 .OR. L1.EQ.3) IG(I)=IG(I)+1
CONTINUE
NPRINT=NPRINT+IP(I)
NPLOT=NPLOT+IG(I)
CONTINUE

NREC=0
IF (ISTEP.EQ.0) RETURN

C DO OUTPUT FOR THE CURRENT TIME
100 DUM1(1)=TIME
DUM2(1)=TIME
IF (SMIN(1).GE.TIME) SMIN(1)=TIME
SMAX(1)=TIME
LOC1=1
LOC2=1
DO 160 J=1,6
DO 160 I=1,20
L1=LPP(I,J)
IF (L1.GE.3) GO TO 140
IF (L1.LE.2) GO TO 160
LOC1=LOC1+1
IF (J.EQ.1) DUM1(LOC1)=X(I)
IF (J.EQ.2) DUM1(LOC1)=Y(I)
IF (J.EQ.3) DUM1(LOC1)=U(I)
IF (J.EQ.4) DUM1(LOC1)=XH(I)
IF (J.EQ.5) DUM1(LOC1)=YH(I)
IF (J.EQ.6) DUM1(LOC1)=RES(I)
CONTINUE
140 IF (L1.EQ.1) GO TO 160
LOC2=LOC2+1
IF (J.EQ.1) DUM2(LOC2)=X(I)
IF (J.EQ.2) DUM2(LOC2)=Y(I)
IF (J.EQ.3) DUM2(LOC2)=U(I)
IF (J.EQ.4) DUM2(LOC2)=XH(I)
IF (J.EQ.5) DUM2(LOC2)=YH(I)
IF (J.EQ.6) DUM2(LOC2)=RES(I)
C1=DUM2(LOC2)
IF (SMIN(LOC2).GE.C1) SMIN(LOC2)=C1
IF (SMAX(LOC2).LE.C1) SMAX(LOC2)=C1
CONTINUE
IF (LOC1.GT.1) CALL PUTOUT(DUM1,NPRINT,IPQS)
IF (LOC2.GT.1) CALL PUTOUT(DUM2,NPLOT,IGQS)
NREC=NREC+1
RETURN
END
SUBROUTINE PUTOUT(DUM,NVAR,IDISK)
SUBROUTINE TO SAVE OUTPUT ON A FILE

DIMENSION
1 DUM(1)

WRITE (IDISK) (DUM(I), I=1,NVAR)
RETURN

END
SUBROUTINE PRINTR(NPRINT,NPLOT,DUM1,DUM2)
PRINT THE OUTPUT AT THE END OF A RUN

DIMENSION
1 DUM1(I), DUM2(1), GRAPH(1350), TITLE(6), LET(11)

COMMON
1 /INOU/ KIN, KOUT, KPTR, KPUNCH,
1 KDISK, IP0S, IG0S
1 /PLOT1/ NV, NH, NCPW, LW, XL, XH, YL, YH, NXES, NDIR, IST,
1 NGLV, NGLH, BSYM, GSYM, PSYM, ND1, ND2, NOUT
3 /MAIN1/ NDIM, NDIM1, STORE(I)
4 /MAIN2/ COM2(1)
6 /INFO/ NREC, II, I2, LPP(20,6), IP(6), IG(6),
6 SMIN(21), SMAX(21)

DATA
1 TITLE
1 /8H STATE , 8H OUTPUT , 8HCONTROL , 8H XMHAT /
1 8H YMHAT , 8H INOVAT /

IF (NPRINT.EQ.1) GO TO 51
REWIND IPOS
DO 10 I=1,NREC
READ (IPOS) (DUM1(KK), KK=1,NPRINT)
II=I
DO 9 L=1,NPRINT
STORE(II)=DUM1(L)
9 II=II+NREC
10 CONTINUE

IBEG=NREC+1
DO 50 I=1,6
M=0
DO 30 L=1,20
IQ=LPP(L,1)
IF (IQ.EQ.0 .OR. IQ.EQ.3) GO TO 30
M=M+1
LET(M)=L
30 CONTINUE
IF (M.EQ.0) GO TO 50
CALL PAGEFD(KOUT,1)
WRITE (KOUT,1035) (TITLE(I), LET(J),J=1,M)
1035 FORMAT (1H ,3X,4HTIME,2X,10(A8,I2,2X))
LIM1=IBEG
LIM2=IBEG+(M-1)*NREC
DO 40 L=1,NREC
WRITE (KOUT,1045) STORE(L), (STORE(J), J=LIM1,LIM2,NREC)
40 CONTINUE
50 IBEG=IBEG+M*NREC

IF (NPLOT.EQ.1) RETURN
REWIND IGOS
DO 50 I=1,NREC
READ (IG0S) (DUM2(KK),KK=1,NPLOT)
II=I
DO 59 L=1,NPLOT
STORE(II)=DUM2(L)
59 II=II+NREC
60 CONTINUE
ND2=NREC
XH=SMAX(1)
XL=SMIN(1)
M=1
DO 70 I=1,6
DO 70 L=1,20
IQ=LPP(L,1)
IF (IQ.LT.2) GO TO 70
M=M+1
YH=SMAX(M)
YL=SMIN(M)
IBEG=(M-1)*NREC+1
CALL KPL0T(GRAPH,STORE,STORE(IBEG),0,0,0,0,0)
WRITE (KOUT,1082) TITLE(I), L
1082 FORMAT (/1H,A8,I3)
70 CONTINUE
RETURN
END
SUBROUTINE KPLOT(W,X,Y,NTAPE,IX,IY,NVAR,Y1)

COMMON /PLOT1/
 1 NV, NH, NCFW, LW, VLH(4), NXES, NDIR, IST, NGLV, NGLH, BSYM, GSYM,
 2 PSYM, NDIM1, NDIM2, NO

DIMENSION W(1), X(1), Y(1), Y1(NVAR), STORE(70), Q(4), IPX(4), K(3)

EQUIVALENCE (Q(1), XL1), (Q(2), XH1), (Q(3), YL1), (Q(4), YH1)
EQUIVALENCE (ISC, K(1)), (JSC, K(3)),

DATA IPX/3, 4, 1, 2/

C IF (NH.GT.121) NH=121
C NCPW IS THE NUMBER OF CHARACTERS PER WORD
C (60 BIT WORD 6 BIT DISPLAY CODE ON CDC)

NCPW=10
LW=NH/NCPW+1
IF ((IST/10).GT.0) NCOUNT=0
NCOUNT=NCOUNT+1
IF (NCOUNT.EQ.10) IST=1
L=1
DO 10 1=1, 1
Q(I)=-1.0E08*(-1)**I
K(L)=1
IF (VLH(L).EQ.VLH(L+1)) GO TO 10
K(L)=0
Q(I)=VLH(I)

10 IF (I.EQ.2) L=3
IF (NTAPE.EQ.0) GO TO 1200
C SKIP THIS PART IF PLOTTING FROM CORE

IFLAG=0
GO TO 40
1600 IFLAG=1
40 NN=0
REWIND NTAPE
50 READ (NTAPE) Y1
C GO TO 2800 ON EOF
IF (EOF(NTAPE)) 2800, 100
100 NN=NN+1
IF (NN.LT.NDIM1) GO TO 50
IF (IFLAG.EQ.1) GO TO 1700
IF (ISC+JSC.EQ.0) GO TO 1710
600 YL1=AMIN1(YL1, Y1(IY))
YH1=AMAX1(YH1, Y1(IY))
600 YL1=AMIN1(YL1, Y1(IY))
YH1=AMAX1(YH1, Y1(IY))
200 READ (NTAPE) Y1
C RESUME HERE
1200 IF (ISC.EQ.0) GO TO 1400
DO 1300 I=NDIM1, NDIM2
XL1=AMIN1(XL1, X1(I))
XH1=AMAX1(XH1, X1(I))
1300 XH1=AMAX1(XH1, X1(I))
1400 IF (JSC.EQ.0) GO TO 1700
DO 1500 I=NDIM1, NDIM2
YL1=AMIN1(YL1, Y1(IY))
YH1=AMAX1(YH1, Y1(IY))
1500 YH1=AMAX1(YH1, Y1(IY))
1700 IF (ISC.EQ.1) CALL ADJUST(XH1, XL1)
IF (JSC.EQ.1) CALL ADJUST(YH1, YL1)
1710 IF (NDIR/10) 1720, 1740, 1720
1720 TMP=XL1
XL1=XH1
XH1=TMP
1740 IF (NDIR-10*(NDIR/10)) 1760, 1780, 1760
1760 TMP=YL1
YL1=YH1
YH1=TMP
1780 J=7*(NCOUNT-1)+1
IF (J.EQ.1) CALL QINIT(W)
STORE(J)=PSYM
DO 1800 I=1,4
IF (NXES.EQ.0) L=I+J
IF (NXES.GT.0) L=IPX(I)+J
1800 STORE(L)=Q(I)
STORE(J+5)=(NH-1)/(STORE(J+2)-STORE(J+1))
STORE(J+6)=(NV-1)/(STORE(J+4)-STORE(J+3))
2200 IF (NTAPE.EQ.0) GO TO 2500

C SKIP THIS PART IF PLOTTING FROM CORE
DO 2400 I=NDIM1,NDIM2
IF (NXES.EQ.0) CALL KPLOT(1,STORE(J),W,Y1(IX),Y1(IY))
IF (NXES.GT.0) CALL KPLOT(1,STORE(J),W,Y1(IY),Y1(IX))
2400 READ (NTAPE) Y1
IF (EOF(NTAPE)) 2800, 2700

C SKIP THIS PART IF PLOTTING FROM A FILE
DO 2600 I=NDIM1,NDIM2
IF (NXES.EQ.0) CALL KPLOT(1,STORE(J),W,X(I),Y(I))
2600 IF (NXES.GT.0) CALL KPLOT(1,STORE(J),W,Y(I),X(I))

C RESUME HERE
2700 IF ((IST-10*(IST/10)).GT.0) CALL QPRINT(W,NO,NCOUNT,STORE)
RETURN

C ERROR MESSAGE
2800 WRITE (NO,2900)
2900 FORMAT(/32H INSUFFICIENT DATA ON INPUT FILE,/,1H ,28H PLOTTING ROUTINE TERMINATED)
RETURN
END
SUBROUTINE ADJUST(XH1, XL1)
IF (XH1 .EQ. XL1) XL1 = 0.9 * XL1 - 10.0
A = IFIX (100.0 + ALOG10 (XH1 - XL1)) - 100.0
XH1T = XH1 * 10.0 ** (1.0 - A)
XL1T = XL1 * 10.0 ** (1.0 - A)
IF (XH1T .GE. 0.0) XH1T = IFIX (XH1T + 0.9)
XH1T = IFIX (XH1T)
IF (XL1T .LE. 0.0) XL1T = IFIX (XL1T - 0.9)
XL1T = IFIX (XL1T)
XH1 = XH1T * 10.0 ** (A - 1.0)
XL1 = XL1T * 10.0 ** (A - 1.0)
RETURN
END
SUBROUTINE QINIT(IMAGE)

COMMON /PLOT1/

1 NV, NH, NCPW, LW, Q(4), NXES, NDIR, IST, NGLV, NGLH, BSYM, GSYM

DIMENSION IMAGE(I)

DATA IBLNK/10H

N=LW*NV
DO 100 I=1,N

100 IMAGE(I)=IBLNK
DO 101 I=1, NH
CALL QPLOT(IMAGE,I,1,BSYM)

101 CALL QPLOT(IMAGE,I,NV,BSYM)
DO 102 I=1, NV
CALL QPLOT(IMAGE,1,I,BSYM)

102 CALL QPLOT(IMAGE,NH,I,BSYM)

1800 IF (NGLV.EQ.0) GO TO 2000
NGLV1=NGLV+1
NH1=NH-1
DO 1900 I=NGLV1,NH1,NGLV

1900 CALL QPLOT(IMAGE,I,J,GSYM)

2000 IF (NGLH.EQ.0) RETURN
NGLH1=NGLH+1
NV1=NV-1
DO 2100 I=NGLH1,NV1,NGLH

2100 CALL QPLOT(IMAGE,J,I,GSYM)
RETURN
END
SUBROUTINE KPL0TC(W,IMAGE,X,Y)

DIMENSION W(1), IMAGE(1)
COMMON /PLOT1/ NV, NH

J=(X-W(2))*W(6)+1.5
IF ((J.LE.0).OR.(J.GT.NH)) RETURN
I=NV-IFIX((Y-W(4))*W(7)+0.5)
IF ((I.LE.0).OR.(I.GT.NV)) RETURN
CALL QPLOT (IMAGE,J,I,W(1))
RETURN
END
SUBROUTINE QPLOT(IMAGE, J, I, SYM)

COMMON /PLOT1/ NV, NH, NCPW, LW
DIMENSION IMAGE(I)

II = J/NCPW
L = J - NCPW*II
II = II + 1
IF (L) 101, 101, 102
101 L = NCPW
II = II - 1
102 IW = II + (I - 1)*LW
CALL PLACE(IMAGE(IW), L, SYM, 1)
103 RETURN
END
SUBROUTINE PLACE(A,N,B,M)
C THE MTH CHAR OF B REPLACES
C THE NTH CHARACTER OF A
C CHAR POSITIONS ARE 1 TO 10 FROM LEFT TO RIGHT
COMMON/INOU/KIN,KOUT
INTEGER A, B, BX, BY
DATA MASK/77B/
C CHECK FOR VALID ARGUMENTS
IF (N.GT.10 .OR. M.GT.10) GO TO 900
IF (N.LT.1 .OR. M.LT.1) GO TO 900
C NULL ALL BUT THE MTH CHAR OF B, PUT IT IN BX
C NULL THE NTH CHAR OF A
NSHFT=60-6*N
MSHFT=60-6*M
MASKBY = SHIFT(MASK,NSHFT)
MASKB = SHIFT(MASK,MSHFT)
MASKA = COMPL(MASKBY)
A = AND(A,MASKA)
BX = AND(B,MASKB)
C SHIFT THE MTH CHAR OF BX TO THE NTH POSITION
C PUT IT IN BY AND NULL ALL BUT THE NTH CHAR
MNSHFT=6*(M-N)
BY = SHIFT(BX,MNSHFT)
BY = AND(BY,MASKBY)
C COMBINE A AND BY
A = OR(A,BY)
RETURN
C N OR M OUT OF BOUNDS
900 WRITE (KOUT,1900)
1900 FORMAT (1H 'ERROR IN SUBR. PLACE,/
 24H N OR M IS OUT OF BOUNDS)
 CALL EXIT
END
SUBROUTINE QPRINT(IMAGE, NO, NCOUNT, STORE)

DIMENSION IMAGE(1), STORE(1)
COMMON /PLOT1/ NV, NH, NCPW, LW

CALL PAGEFD(NO, 1)
DO 110 I = 1, NCOUNT
 IB = I * (I - 1) + 1
110 WRITE (NO, 102) STORE(IB + 1), STORE(IB), STORE(IB), STORE(IB + 2)
NCANT = NV - NCOUNT
IA = 1
DO 150 I = 1, NV
 IB = I * LW
 IF (I .GT. NCOUNT) GO TO 120
 IBASE = (I - 1) * 7 + 1
 WRITE (NO, 103) STORE(IBASE), STORE(IBASE + 4), (IMAGE(J), J = IA, IB)
 GO TO 150
120 IF (I .GT. NCANT) GO TO 130
 WRITE (NO, 105) (IMAGE(J), J = IA, IB)
 GO TO 150
130 IBASE = (I - 1 - NCANT) * 7 + 1
 WRITE (NO, 103) STORE(IBASE), STORE(IBASE + 3), (IMAGE(J), J = IA, IB)
150 IA = IA + LW
102 FORMAT(1H, 11X, 1PE10.3, 1X, A1, 77X, A1, 1PE10.3)
103 FORMAT(1H, A1, 1PE9.2, 1X, 12A10, A1)
105 FORMAT(1H, 11X, 12A10, A1)
RETURN
END
SUBROUTINE DSCRT(N,A,DEL,EA,EAINT,NT)
DIMENSION A(1), EA(1), EAINT(1), COEF(30)
C
SETS EA=EXP(A*DEL), EAINT=INTEGRAL EA 0 TO DEL
COMMON/MAIN1/NDIM, NDIM1
NN=N*NDIM
NTM1=NT-1
COEF(NT)=1.
DO 10 I=1, NTM1
II=NT-I
10 COEF(II)=DEL*COEF(II+1)/FLOAT(I)
C
NT MUST BE AT LEAST 3
II=1
DO 30 I=1,N,
DO 20 J=1,NN,NDIM
20 EAINT(J)=A(J)*COEF(1)
EAINT(II)=EAINT(II)+COEF(1)
30 II=II+NDIM1
DO 60 L=3,NT
T1=COEF(L)
CALL MMUL(A,EINT,N,N,N,EA)
IF(L.EQ.NT)GO TO 70
II=1
DO 60 I=1,N,
DO 50 J=1,NN,NDIM
50 EAINT(J)=EA(J)
EAINT(II)=EAINT(II)+T1
60 II=II+NDIM1
70 DO 80 II=1, NN, NDIM1
EA(II)=EA(II)+T1
80 CONTINUE
RETURN
END
SUBROUTINE GMINV(NR,NC,A,U,MR,MT)

DIMENSION A(1),U(1),S(30)
COMMON/MAIN1/NDIM,NDIM1
COMMON/INOU/KIN,KOUT
TOL=1.E-12
MR=NC
NRM1=NR-1
TOL1=1.E-20
JJ=1
DO 100 J=1,NC
FAC=DOT(NR,A(JJ),A(JJ))
JM1=J-1
JCM=JJ+NRM1
JJ=JJ+JM1
DO 20 I=JJ,JCM
U(I)=0.
U(JCM)=1.0
IF(J.EQ.I) GO TO 54
KK=1
DO 30 K=1,JM1
IF(S(K).EQ.1.0) GO TO 30
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
KK=KK+NDIM
30
DO 50 L=1,2
K=KK
50
FAC=TOL1/FAC
FAC=DOT(NR,A(JJ),A(JJ))
IF(FAC.GT.TOL1) GO TO 70
DO 55 I=JJ,JRM
A(I)=0.
S(J)=0.
KK=1
DO 65 K=1,JM1
IF(S(K).EQ.0.) GO TO 65
TEMP=-DOT(K,U(KK),U(JJ))
CALL VADD(NR,TEMP,A(JJ),A(KK))
KK=KK+NDIM
65
FAC=DOT(J,U(JJ),U(JJ))
MR=MR-1
GO TO 75
70
S(J)=1.0
KK=1
DO 72 K=1,JM1
IF(S(K).EQ.1.) GO TO 72
TEMP=-DOT(NR,A(JJ),A(KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
72
FAC=1./SQRT(FAC)
DO 80 I=JJ,JRM
A(I)=A(I)*FAC
80
DO 85 I=JJ,JCM
U(I)=U(I)*FAC
85
JJ=JJ+JM1
IF(MR.EQ.NR.OR.MR.EQ.NC) GO TO 120
IF(MT.NE.0) WRITE (KOUT,110) NR,NC,MR
110
FORMAT(I3,1HX,I2,8H RANK,I2)
120
NEND=NC*NDIM
JJ=1
DO 135 J=1,NC
DO 125 I=1,NR
II=I-J
S(I)=0.
DO 125 KK=JJ,NEND,NDIM
125 S(I)=S(I)+A(II+KK)*U(KK)
II=J
DO 130 I=1,NR
U(II)=S(I)
130 II=II+NDIM
135 JJ=JJ+NDIM1
RETURN
END
SUBROUTINE MAT2(N1,N2,X,Y,Z)
C Z=XY' X,Y=N1*N2,Z=Z
C Z AND Y CAN BE EQUIVALENT
DIMENSION X(1),Y(1),Z(1)
COMMON/MAIN1/NDIM,NDIM1
NN2=N2*NDIM
II=1
DO 10 I=1,N1
 IJ=II
 DO 5 J=I,N1
 Z(IJ)=DOT2(NN2,X(I),Y(J))
 5 IJ=IJ+NDIM
 J=II
 IJ=I
 3 IJ=IJ-NDIM
 IF(IJ.LT.I) GO TO 10
 J=J-1
 10 II=II+NDIM1
RETURN
END
SUBROUTINE MAT5A(X,Y,N1,N2,N3,Z)

C

Z=XT*Y X=N2*N1, Y=N2*N3

DIMENSION X(1),Y(1),Z(1)

COMMON/MAIN1/NDIM

N1M1=N1-1

NN3=N3*NDIM

DO 1 I=1,NN3,NDIM

II=I+N1M1

DO 1 J=I,II

1 Z(J)=0.0

ENTRY MAT5AS

NN3=N3*NDIM

DO 10 K=1,N2

KK=K

DO 8 I=1,N1

C1=X(KK)

IF(C1.NE.0.0) CALL VADD1(NN3,C1,Z(I),Y(K))

8 KK=KK+NDIM

10 CONTINUE

RETURN

END
SUBROUTINE MAT6(N1,N2,X,Y,Z)
C Z=X*Y , WHERE X=N1*N2, Y=N1*N2, Z=Z'=N1*N1
DIMENSION X(1), Y(1), Z(1)
COMMON /MAIN1/ NDIM, NDIM1
NN1=N1*NDIM
DO 1 I=1,N1
DO 1 J=I,NN1,NDIM
Z(J)=0.0
1 CONTINUE
ENTRY MAT6S
Z=Z+X*Y'
NN2=N2*NDIM
NN1=N1*NDIM
DO 6 K=1,NN2,NDIM
 KK=K-1
 J=1
 DO 6 I=1,N1
 C1=Y(I+KK)
 IF (C1.NE.0.0) CALL VADD(I,C1,Z(J),X(K))
5 J=J+NDIM
6 CONTINUE
IF (N1.EQ.1) RETURN
NN2=NDIM1+1
DO 10 K=NN2,NN1,NDIM1
 I=K
 J=K
8 I=I-1
 J=J-NDIM
 Z(J)=Z(I)
 IF (J.GT.NDIM) GO TO 8
7 CONTINUE
10 RETURN
END
SUBROUTINE MMUL(X,Y,N1,N2,N3,Z)
DIMENSION X(1),Y(1),Z(1)
COMMON/MAIN1/NDIM
N1M1=N1-1
NN3=N3*NDIM
DO 1 I=1,NN3,NDIM
II=I+N1M1
DO 1 J=I,II
1 Z(J)=0.0
ENTRY MMULS
NN3=N3*NDIM
KK=0
DO 10 K=1,N2
DO 8 I=1,N1
C1=X(I+KK)
IF(C1.NE.0.0) CALL VADD1(NN3,C1,Z(I),Y(K))
8 CONTINUE
10 KK=KK+NDIM
RETURN
END
SUBROUTINE DIAG2(N,A,B,C1,C2)

C
A = C1*B + C2*I
C
A, B ARE N*N MATRICES; I IS N*N IDENTITY MATRIX

DIMENSION A(1), B(1)
COMMON /MAIN1/ NDIM, NDIM1

NN=N*NDIM
NM1=N-1
II=1
IF (C1 .EQ. 1.0) GO TO 10
DO 5 J=1,NN,NDIM
 K=J+NM1
 DO 4 I=J,K
 A(I)=C1*B(I)
 A(II)=A(II)+C2
 4 II=II+NDIM1
 5 RETURN
10 DO 7 J=1,NN,NDIM
 K=J+NM1
 DO 6 I=J,K
 A(I)=B(I)
 A(II)=A(II)+C2
 6 II=II+NDIM1
 7 RETURN
END
SUBROUTINE IDENT(N,A,C1)
DIMENSION A(1)
COMMON/MAIN1/NDIM,NDIM1
NN=N*NDIM
II=1
DO 1 I=1,N
DO 2 J=I,NN,NDIM
 A(J)=0.0
 A(II)=C1
 II=II+NDIM1
1 RETURN
END
SUBROUTINE EQUATE(A,B,NR,NC)
A=B
MATRIX EQUATE
DIMENSION A(1), B(1)
call Mscale(A,B,NR,NC,1.0)
RETURN
END
SUBROUTINE MSCALE(A,B,NR,NC,C1)
C
A=C1*B
C
A AND B MAY BE EQUIVALENT
DIMENSION A(1), B(1)
COMMON /MAIN1/ NDIM

NN=NC*NDIM
IF (C1 .EQ. 1.0) GO TO 10
IF (C1 .EQ. 0.0) GO TO 20
IF (C1 .EQ. -1.) GO TO 30
DO 5 I=1,NR
DO 5 J=I,NN,NDIM
5 A(J)=C1*B(J)
RETURN
DO 15 I=1,NR
DO 15 J=I,NN,NDIM
15 A(J)=B(J)
RETURN
DO 25 I=1,NR
DO 25 J=I,NN,NDIM
25 A(J)=0.0
RETURN
DO 35 I=1,NR
DO 35 J=I,NN,NDIM
35 A(J)=-B(J)
RETURN
END
FUNCTION DOT(NR,A,B)
DOUBLE PRECISION DDT1, DBLE
DIMENSION A(1),B(1)
DDT1=0.0D0
IF (NR .LE. 0) GO TO 2
DO 1 I=1,NR
1 DDT1=DDT1+DBLE(A(I)*B(I))
2 DOT=DDT1
RETURN
END
FUNCTION DOT2(NN,A,B)
DOUBLE PRECISION DDT2, DBLE
DIMENSION A(1),B(1)
COMMON /MAIN1/ NDIM
DDT2=0.0D0
IF (NN .LE. 0) GO TO 2
DO 1 I=1,NN,NDIM
 DDT2=DDT2+DBLE(A(I)*B(I))
1 DOT2=DDT2
2 RETURN
END
FUNCTION DOT3(N,A,B)
DOUBLE PRECISION DDT3, DBLE
DIMENSION A(1),B(1)
COMMON /MAIN1/ NDIM
DDT3=0.0D0
IF (N .LE. 0) GO TO 2
II=1
DO 1 I=1,N
 DDT3=DDT3+DBLE(A(II)*B(I))
 II=II+NDIM
1 DOT3=DDT3
2 RETURN
END
SUBROUTINE VADD(N,C1,A,B)
DIMENSION A(1),B(1)
DO 1 I=1,N
 A(I)=A(I)+C1*B(I)
1 RETURN
END
SUBROUTINE VADD1(NN, C1, A, B)
DIMENSION A(1), B(1)
COMMON/MAIN1/NDIM
DO 1 I=1, NN, NDIM
 A(I)=A(I)+C1*B(I)
1 RETURN
END
SUBROUTINE VSSCALE(X,Y,N,C1)
DIMENSION X(1),Y(1)
L=0
IF(C1.EQ.1.0) GO TO 5
IF(C1.EQ.0.0) GO TO 8
IF(C1.EQ.-1.) GO TO 13
L=L+1
X(L)=C1*Y(L)
IF(L.LT.N) GO TO 1
RETURN
L=L+1
X(L)=Y(L)
IF(L.LT.N) GO TO 5
RETURN
L=L+1
X(L)=0.0
IF(L.LT.N) GO TO 8
RETURN
L=L+1
X(L)=-Y(L)
IF(L.LT.N) GO TO 13
RETURN
END
SUBROUTINE VMAT1(A,X,N1,N2,Y)
Y=AX
DIMENSION A(1),X(1),Y(1)
COMMON/MAIN1/NDIM
DO 1 I=1,N1
 Y(I)=0.0
 II=I
 DO 1 J=1,N2
 Y(I)=Y(I)+A(II)*X(J)
 II=II+NDIM
1 RETURN
END
SUBROUTINE VMAT2(Z,A,X,N1,N2,Y)
Y=Z+AX
DIMENSION A(1),X(1),Z(1),Y(1)
COMMON/MAIN1/NDIM
DO 1 I=1,N1
 Y(I)=Z(I)
 II=I
DO 1 J=1,N2
 Y(I)=Y(I)+A(II)*X(J)
 II=II+NDIM
1 RETURN
END
FUNCTION XGAIN(TH,XM,XS)
DIMENSION A(5)
DATA A/.2258368,-.2521287,1.259695,-1.287822,.9406461/
IF (TH.GT.0.) GO TO 2
XGAIN=1.0
RETURN
Y=XM
NS=2
IF(XS.LT.1.0E-10)XS=1.0E-10
IF(Y.EQ.0.) NS=1
ANS=0.
RMS=XS**2+XM**2
DO 1 I=1,NS
 Z=.707*(TH+Y)/XS
 TEMP=EXP(-Z**2)
 X=1./(1.+327591*ABS(Z))
 P=X*(((A(5)*X+A(4))*X+A(3))*X+A(2))*X+A(1))*1.128379
 ERF=1.-P*TEMP
 IF (Z.LT.0.) ERF=-ERF
 ANS=ANS+(RMS+TH*Y)*(1.-ERF)-XS*Y*TEMP*.7975
 Y=-Y
1 CONTINUE
XGAIN=ANS/RMS/FLOAT(NS)
IF(XGAIN.LT.1.E-6) XGAIN=1.E-6
RETURN
END
SUBROUTINE MATI0(X,NR,NC,10)
C BATCH ORIENTED MATRIX I/O
C I0=1 INPUT ONLY
C I0=2 INPUT AND OUTPUT
C I0=3 OUTPUT ONLY
C I0=4 PUNCH

DIMENSION X(1)
COMMON /MAIN1/ NDIM
COMMON /INOU/ KIN, KOUT, KPTR, KPUNCH

JEND=NC*NDIM
GO TO (5,5,20,40) I0

C********INPUT
5 DO 10 I=1,NR
10 READ (KIN,1000) (X(IJ), IJ=I,JEND,NDIM)
 IF (I0 .EQ. 1) RETURN

C********OUTPUT
20 DO 30 I=1,NR
30 WRITE (KOUT,2000) (X(IJ), IJ=I,JEND,NDIM)
 CONTINUE
 RETURN

C********PUNCH
40 DO 50 I=1,NR
50 WRITE (KPUNCH,3000) (X(IJ),IJ=I,JEND,NDIM)
 CONTINUE
 RETURN

1000 FORMAT (6E10.0)
2000 FORMAT (1H ,1P10E13.3)
3000 FORMAT (1P8E10.3)
END
SUBROUTINE VECTIO(X,N,IO)
C BATCH ORIENTED VECTOR I/O
C IO=1 INPUT ONLY
C IO=2 INPUT AND OUTPUT
C IO=3 OUTPUT ONLY
C IO=4 PUNCH

DIMENSION X(1)
COMMON /INOU/ KIN, KOUT, KPTR, KPUNCH

GO TO (10,10,20,40) IO

C********INPUT
10 READ (KIN,1000) (X(I), I=1,N)
 IF (IO .EQ. 1) RETURN

C********OUTPUT
20 WRITE (KOUT,2000) (X(I), I=1,N)
 RETURN

C********PUNCH
40 WRITE (KPUNCH,3000) (X(I), I=1,N)
 RETURN

1000 FORMAT (8E10.0)
2000 FORMAT (1H , 1P10E13.3)
3000 FORMAT (1P8E10.3)
END
SUBROUTINE PAGEFD(KFIL,KCOUNT)
 C
 WRITES KCOUNT FORMFEEDS (1 IN COL 1) ON FILE KFIL
ENTRY FORMFD
 100 IF (KCOUNT.LE.0) RETURN
 DO 200 I=1,KCOUNT
 WRITE (KFIL,1000)
 1000 FORMAT (1H1)
 200 CONTINUE
RETURN
END
SUBROUTINE DAYTIM(KFIL)
C WRITES THE DATE AND THE TIME ON FILE KFIL
10 CALL TIME(LTIME)
 CALL DATE(LDATE)
 WRITE (KFIL,1000) LDATE, LTIME
1000 FORMAT(1H,A10,2X,A10)
 RETURN
END
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant Secretary of Defense for Manpower and Reserve Affairs</td>
<td>Department of Defense, Washington, D.C. 20301</td>
<td>1</td>
</tr>
<tr>
<td>HQ DA DAPE-PBR, Mr. Barber</td>
<td>Washington, D.C. 20310</td>
<td>1</td>
</tr>
<tr>
<td>Commander US Army Materiel Development and Readiness Command</td>
<td>5001 Eisenhower Avenue Alexandria, Virginia 22333</td>
<td>2</td>
</tr>
<tr>
<td>US Army Medical R&D Command Atttn: Behavior Sciences Rch Br.</td>
<td>Washington, D.C. 20012</td>
<td>1</td>
</tr>
<tr>
<td>Fighter Weapons Systems Command</td>
<td>3801 Eisenhower Avenue Alexandria, Virginia 22333</td>
<td>1</td>
</tr>
<tr>
<td>National Academy of Sciences</td>
<td>Washington, D.C. 20315</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-FA, Mr. Sorin Frankford Arsenal Philadelphia Pennsylvania 19137</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-PTA, Mr. Carlock Picatinny Arsenal Dover New Jersey 07801</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-HI, Mr. Galbaun Rock Island Arsenal Rock Island Illinois 61201</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-FA, Mr. J. Erickson US Army Tank-Automotive Research and Development Command Warren Mississippi 48090</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-ME, Mr. Antenucci, c/o DRXFB-TO US Army Mobility Equipment Research and Development Command Fort Belvoir Virginia 22060</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: ATRA-CTD-MO US Army Air Defense School Fort Bliss Texas 79916</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-AM, Mr. Miles US Army Systems Analysis Activity Aberdeen Proving Ground Maryland 21005</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-FA, Mr. Baron US Army Mobility Equipment Research and Development Command Fort Belvoir New Jersey 07703</td>
<td>1</td>
</tr>
<tr>
<td>Chief Human Engineering Laboratory Detachment</td>
<td>Attn: DRXHE-RB US Army Ballistic Research Laboratory Aberdeen Proving Ground Maryland 21005</td>
<td>1</td>
</tr>
<tr>
<td>Army Research Institute Field Unit</td>
<td>No. of Copies</td>
<td>Director</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Attn: Dr. Robert W. Bauer</td>
<td>1</td>
<td>US Army Human Engineering Laboratory</td>
</tr>
<tr>
<td>Building 2423</td>
<td></td>
<td>Attn: DRXHE-DRD</td>
</tr>
<tr>
<td>Fort Knox, Kentucky 40121</td>
<td></td>
<td>Aberdeen Proving Ground Maryland 21005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medical Library, Building 148</td>
</tr>
<tr>
<td>Department of Transportation Library</td>
<td>1</td>
<td>Naval Submarine Medical Research Laboratory</td>
</tr>
<tr>
<td>Reference and Research Branch, TAD-494.6</td>
<td></td>
<td>Box 900, Submarine Base New London</td>
</tr>
<tr>
<td>800 Independence Avenue SW</td>
<td></td>
<td>Croton, Connecticut 06340</td>
</tr>
<tr>
<td>Washington, D.C. 20591</td>
<td></td>
<td>Code 455</td>
</tr>
<tr>
<td>US Postal Service Laboratory</td>
<td>1</td>
<td>Office of Naval Research Washington, D.C. 20360</td>
</tr>
<tr>
<td>Attn: Mr. D.Y. Cornog Chief, HF Group</td>
<td></td>
<td>Dr. Marshall J. Farr Associate Director, Personnel and Training</td>
</tr>
<tr>
<td>11711 Parklawn Drive</td>
<td></td>
<td>Code 458</td>
</tr>
<tr>
<td>Rockville, Maryland 20852</td>
<td></td>
<td>Office of Naval Research Washington, D.C. 20360</td>
</tr>
<tr>
<td>Mr. Edgar M. Johnson</td>
<td>1</td>
<td>Commandant US Army Artillery and Missile School</td>
</tr>
<tr>
<td>1320 Wilson Boulevard</td>
<td></td>
<td>ARI Field Unit P. O. Box 6057 Fort Bliss, Texas 79916</td>
</tr>
<tr>
<td>Arlington, Virginia 22209</td>
<td></td>
<td>Commander Fort Huachuca Support Command, US Army</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>1</td>
<td>Attn: Tech References Division Fort Huachuca, Arizona 85613</td>
</tr>
<tr>
<td>Civil Aeromedical Institute Library</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td>AC-101.1, P. O. Box 25082</td>
<td></td>
<td>Fort Huachuca Support Command, US Army</td>
</tr>
<tr>
<td>Oklahoma City, Oklahoma 73125</td>
<td></td>
<td>Attn: Technical Library White Sands Missile Range New Mexico 88002</td>
</tr>
<tr>
<td>Department of Operations Analysis Naval Postgraduate School</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td>Naval Postgraduate School</td>
<td>1</td>
<td>USA Air Mobility Research and Development Laboratory</td>
</tr>
<tr>
<td>Attn: Professor James K. Arima Monterey, California 93940</td>
<td></td>
<td>Attn: Dr. Richard S. Dunn Ames Research Center Moffett Field, California 94035</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td>Commander US Army Electronics Command</td>
</tr>
<tr>
<td>USAVSCOM</td>
<td></td>
<td>Attn: DRSEL-VL-E Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>Attn: DRSAVE-R, Mr. S. Moreland P. O. Box 209 St. Louis, Missouri 63166</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td>Director</td>
<td></td>
<td>USA Air Mobility Research and Development Laboratory</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>1</td>
<td>Attn: Dr. Richard S. Dunn Ames Research Center Moffett Field, California 94035</td>
</tr>
<tr>
<td>Attn: Code 5132A</td>
<td></td>
<td>Commander US Army Electronics Command</td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
<td>Attn: DRSEL-VL-E Fort Monmouth, New Jersey 07703</td>
</tr>
<tr>
<td>Commanding Officer Naval Training Equipment Center</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td>Attn: Technical Library Orange, Florida 32813</td>
<td></td>
<td>Military Psychology and Leadership United States Military Academy West Point, New York 10996</td>
</tr>
<tr>
<td>6770 AMRL</td>
<td>1</td>
<td>Commander Watervliet Arsenal Attn: SWENV-ROT Watervliet, New York 12189</td>
</tr>
<tr>
<td>Attn: MHHE</td>
<td></td>
<td>Commander Frankford Arsenal Attn: Library (C2500, Building 51-2) Philadelphia, Pennsylvania 19137</td>
</tr>
<tr>
<td>MHHE, Dr. M. J. Warrick</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>ARI Field Unit</td>
<td>AFT Knox, Kentucky 40121</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Tank-Automotive Command</td>
<td>Attn: DRSTA-RHFL, Research Library</td>
<td>1</td>
</tr>
<tr>
<td>Warren, Mississippi 48090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Tank-Automotive Command</td>
<td>Attn: DRSTA-R</td>
<td>1</td>
</tr>
<tr>
<td>Warren, Mississippi 48090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director of Graduate Studies and Research</td>
<td>Attn: Behavioral Sciences Representative</td>
<td>1</td>
</tr>
<tr>
<td>US Army Command and General Staff College</td>
<td>Fort Leavenworth, Kansas 66027</td>
<td></td>
</tr>
<tr>
<td>US Army Agency for Aviation Safety</td>
<td>Attn: Librarian</td>
<td>1</td>
</tr>
<tr>
<td>Fort Rucker, Alabama 36360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief</td>
<td>Army Research Institute</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 476</td>
<td>Fort Rucker, Alabama 36360</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Aeromedical Research Laboratory</td>
<td>Attn: Dr. Kent Kimball Library</td>
<td>1</td>
</tr>
<tr>
<td>Fort Rucker, Alabama 36360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief</td>
<td>Army Research Institute</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 577</td>
<td>Fort Rucker, Alabama 36360</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Natick Research and Development Command</td>
<td>Attn: Tech Library (DRXNM-STL)</td>
<td>1</td>
</tr>
<tr>
<td>Natick, Massachusetts 01760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Natick Research and Development Command</td>
<td>Behavioral Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Natick, Massachusetts 01760</td>
<td>DRXNM-PB</td>
<td>1</td>
</tr>
<tr>
<td>Natick, Massachusetts 01760</td>
<td>DRXNM-PB</td>
<td>1</td>
</tr>
<tr>
<td>US Army Medical Bioengineering Research and Development Laboratory</td>
<td>Fort Detrick, Building 568</td>
<td>1</td>
</tr>
<tr>
<td>Frederick, Maryland 21701</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orlando, Florida 32813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Infantry School Library</td>
<td>Infantry Hall</td>
<td>1</td>
</tr>
<tr>
<td>Fort Benning, Georgia 31905</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager</td>
<td>Office of the Project Manager for Training Devices</td>
<td></td>
</tr>
<tr>
<td>Attn: DRCPM-TND, Dr. R.E. Odom</td>
<td>Fort Benning, Georgia 31905</td>
<td>1</td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td>Cameron Station</td>
<td>12</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Army Materiel and Readiness Command</td>
<td>Attn: DRCRD</td>
<td>1</td>
</tr>
<tr>
<td>5001 Eisenhower Avenue</td>
<td>Alexandria, Virginia 22333</td>
<td>1</td>
</tr>
<tr>
<td>Bolt, Beranek and Newman Inc.</td>
<td>Dr. S. Baron</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Dr. D. Kleimann</td>
<td>Dr. J. Baliser</td>
<td>1</td>
</tr>
<tr>
<td>50 Moulton Street</td>
<td>Cameron Station</td>
<td>1</td>
</tr>
<tr>
<td>Cambridge, Maryland 02138</td>
<td>DRXHE-ME, Mr. Choikin</td>
<td>1</td>
</tr>
<tr>
<td>DRCPM-HYE</td>
<td>DRCHR</td>
<td>1</td>
</tr>
<tr>
<td>-AH</td>
<td>DRCDL</td>
<td>1</td>
</tr>
<tr>
<td>-NPE</td>
<td>5001 Eisenhower Avenue</td>
<td></td>
</tr>
<tr>
<td>-LDE</td>
<td>Alexandria, Virginia 22333</td>
<td></td>
</tr>
<tr>
<td>-ROLL-E</td>
<td>Bolt, Beranek and Newman Inc.</td>
<td></td>
</tr>
<tr>
<td>-RK</td>
<td>Dr. S. Baron</td>
<td></td>
</tr>
<tr>
<td>-HEL-T</td>
<td>Dr. D. Kleimann</td>
<td></td>
</tr>
<tr>
<td>-TOE</td>
<td>50 Moulton Street</td>
<td></td>
</tr>
<tr>
<td>-M1</td>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>DRSM-LP, Mr. Voigt</td>
<td>CAMEN</td>
<td>1</td>
</tr>
<tr>
<td>DRXPM-X, Dr. McDaniel</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-T, Dr. Kobler</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-H</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-Y</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TD</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TDC</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TDX</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TDS</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TW</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TE</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TG</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TL</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TPN, L. Aymett</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TBD</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>-TI</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>(Record Set)</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
<tr>
<td>(Reference Copy)</td>
<td>DRSM-LP, Mr. Voigt</td>
<td>1</td>
</tr>
</tbody>
</table>