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SUMMARY

The extreme sensitivity of superconducting magnetic gradio-
meters affords means of measuring gradients of fluctuating magnetic
fields generated by ocean waves. The fields fluctuate in concert
with motions of ocean waves, so that reading fluctuations of
magnetic fields above an ocean tells the motion of seawater below
its surface. As a first step in developing requisite experimental
and analytical techniques, we plan to use a superconducting mag-
netic gradiometer to measure fluctuating gradients of magnetic
fields generated at a fixed point above the surface by waves
passing the oceanographic tower operated by the Naval Undersea
Center.*

The response of a superconducting magnetic gradiometer to
ambient magnetic fields having gradients that are sensibly con-
stant over the length of its axis (typically 25 cm or so) is
a sum of two terms. One term is proportional to the magnetic
field at the midpoint of the axis, and the other term, to a
gradient of the magnetic field at the midpoint. The term pro-
portional to the magnetic field results from slight differences
in area and orientation of the loops forming the pickup cir-
cuit of the gradiometer and vanishes for a perfectly balanced
gradiometer. The term proportional to a gradient of the mag-
netic field depends on five independent elements of a symmetric
matrix having a vanishing trace that represents gradients of
the ambient field at the midpoint.

The five elements define location, orientation, and moment
of a dipole positioned on a sphere of unit radius about the
midpoint that gives gradients at the midpoint equal to gradients
of the ambient field there. The construct of an equivalent
dipole concisely describes the gradient response. For example,
fluctuations in location, orientation, and moment of an equi-
valent dipole describe gradients from fluctuating magnetization
currents in magnetic objects as well as from fluctuations in

position and orientation of a gradiometer.

i Gy vt

*
The tower is located about one mile off Mission Beach near
San Diego, California, in 18 m cf water.




Moreover, it provides a rationale for two techniques that
afford means of suppressing gradient fluctuations from nearby
magnetic objects; namely, (1) using a gradiometer axis having
coplanar pickup loops (transverse configuration) and aligning
it for a null response and (2) using a magnetic dipole to
cancel steady gradients. Transverse gradients of the magnetic
field of a dipole vanish in certain directions, so that aligninc
a gradiometer measuring transverse gradients for a null response
suppresses fluctuating gradients from magnetic objects. Placinqg
an opposing dipole at the location of an equivalent dipole
nullifies gradients at the field point and so suppresses appar-
ent gradient fluctuations owing to changes in gradiometer orien
tation.

Preliminary tests of suppression techniques conducted with
our gradiometer, which has two coplanar pickup loops spaced
25 cm between centers, demonstrate that their effectiveness is
limited only by precision of requisite alignments. Aligning
the gradiometer within a few degrees (v 0.1 radian) for a null
response to gradient fluctuations from a spherical iron shell
having a radius of 0.74 m and placed 4.5 m north of the gradio-
meter reduces RMS fluctvations in the frequency band 0.001 to
0.01 Hz by about a factor of ten. Crude positioning of a coil
approximating an opposing magnetic dipole at the location of
an equivalent dipole reduces steady gradients from the sphere
by a factor of 100.

Design of the gradiometer, insofar as practical, eliminates
sources of instrument noise driven by fluctuations of ambient
temperature and pressure and of the earth's magnetic field by
using materials within the helium bath that are free of para-
magnetic impurities. A rectangular block of high-purity crys-
talline silicon, for example, supports the two niobium wire
pickup loops on a lateral face. Spectra that characterize
noise in the frequency range 5 X 10"4 to 20 Hz of the gradio-
meter operating in a magnetically quiet environment are effec-
tively white at frequencies above about 0.1 Hz with a spectral

vi




density* of 0.03 (pT/m)z/Hz and are of the form S(f) = S(f_)
(fo/f)Y at frequencies below 0.1 Hz. A value of 1.3 for vy
with S(fo) = 0.002 (pT/m)z/Hz at fo = 1 Hz is representative.
Intrinsic noise of the superconducting quantum interference
device (SQUID) used in the instrument to sense magnetic flux
dominates spectra observed in a quiet environment at fregencies
below 0.1 Hz.

As shown in the following figure, spectral density of
inherent noise of the instrument is well below the level of
spectral densities of gradients expected from oceanic internal
waves passing the oceanographic tower operated by the Naval
Undersea Center. To measure gradients from waves passing the
tower, we plan to jut the gradiometer over water on a rigid
nonmagnetic cantilever extending horizontally 25 meters from
the centerline of the tower off its south face. Measurements
of steady gradients from magnetization currents in the steel
structure of the tower show that gradients at positions in a
vertical plane of symmetry of the structure are represented
by gradients of equivalent dipoles located in the plane of
symmetry. Aligning the gradiometer with a precision of 0.01
radians, or 0.6 degrees, for a null response from the equiva-
lent dipole keeps noise from fluctuating magnetization currents
in the tower below the level of instrument noise. Structural
design of the cantilever limits translational and rotational
RMS fluctuations of the instrument to 0.1 mm and a few seconds
of arc ( 10°° radians) in the bandwidth 0.002 to 0.005 Hz and,
together with a coil positioned on the cantilever to reduce
steady gradients from the tower, keeps noise from irregular
motions of the instrument in the steady gradients below the

level of instrument noise.

* .
We use MKS units throughout and conform to the international
convention suggesting use of the unit Tesla, which is a

Weber/m? and so 1 pT/m = 10 121/m = 10

-10 3

G.cm = 10 ~“gamma/m.
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Three typical spectra of fluctuating gradients of magnetic
fields expected 7 m above the surface from internal waves passing
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| compared to the inherent noise spectrum of the instrument. Spectra
are estimates based on spectral measurements of isotherm displace-

ments made during August 1972. Serial numbers marking spectra tell

the month, day, and local time at the beginninag of corresponding
time series; for example, 08211540 means August 21 at 15:40 hours

(PST) .
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Section I
INTRODUCTION

The unprecedented sensitivity of superconducting magnetic
gradiometers affords means of measuring fluctuating gradients
of magnetic fields generated by ocear waves. Seawater moving
across the earth's magnetic field drives electric currents
that produce weak magnetic fields above the oceans. The fields
fluctuate in concert with motions of ocean waves, so that
reading fluctuations of magnetic fields above an ocean tells
the motion of seawater below its surface. Podney (1975) among
others describes the fluctuating magnetic field that results

from a wave progressing horizontally in a stratified ocean.

Our aim is to tell motions of seawater from measurements
of fluctuating magnetic fields over oceans. As a first step
in developing requisite experimental and analytical techniques,
we plan to use a superconducting magnetic gradiometer to mea-
sure fluctuating gradients of magnetic fields generated at a
fixed point above the surface by waves passing the oceanographic
tower operated by the Naval Undersea Center. The tower is loca-
ted about one mile off Mission Beach near San Diego, California
in 18 m of water. Successful completion of the first step pro-
vides the experience and information necessary for planning,
carrying out, and interpreting measurements over the open ocean
using an airborne gradiometer. Measurements at a fixed point
above the surface, in effect, provide the code for reading
motions of seawater in rmeasurements made over an open ocean

from aircraft.

The tower provides a stable platform for jutting the instru-
ment over water on a cantilever support. Surface and internal

waves passing the tower have simple spectra that are well




caaracterized by past measurements using thermistor chains and

current meters (Cox, 1962; La Fond, 1962; Winant and Olson,

1976; and ziemer, 1976) and piovide a readily accessible source
for first measurements. Nonetheless, magnetization currents

in the steel structure of the tower make the task of measuring
fluctuating gradients from the waves an exacting one. To pre-

pare for carrying out measurements at the tower, wve completed

the following tasks:

o Specification, procurement, and acceptance tests of

a suitable superconducting magnetic gradiometer*

o Land based trials of the gradiometer conducted to
estimate spectra of inherent instrument noise in a
guiet environment and to determine effectiveness of
techniques designed to suppress noise from nearby

magnetic objects

o Specification of fluctuating radients of magnetic

fields expected from waves passing the tower.

o Use of a fluxgate gradiometer to measure gradients
of the steady magnetic field produced by magnetiza-
tion currents in the steel structure of the tower
(Gillespie and Podney, 1976)

o Design of a rigid nonmagnetic cantilever re-

guired to project the instrument over water**

Ziemer and Gillespie (1976) describe early planning for

measurements at the tower and present a chronology of the

design specification, procurement, and acceptance tests of

the gradiometer. Here, we describe use of the instrument

* Superconducting Technology, Inc. constructed the instrument.

** Mechanics Research, Inc. developed a structural design to
meet stability requirements set by Physical Dynamics, Inc.
(Haire and Van Lerberg, 1976)
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to measure gradients of ambient magnetic fields and develop a
procedure for operating at the tower that suppresses noise
from magnetization currents in the steel structure. The pro-

cedure unites results of the last three tasks.

We first describe design features of the instrument in
Section II. Insofar as practical, the uaesign eliminates sources
of instrument noise driven by fluctuations ot ambient tempera-
ture and pressure and cf the earth's magnetic field by using
raterials within the helium bath that are free of paramagnetic
impurities. Two loops of niobium wire mounted on a lateral
face of a rectangular block (2 X 2 X 12 in.) of high-purity
crystalline silicon, for example, form the pickup circuit of

the gradiometer.

Section II1I gives a formulation describing instrument
response to ambient magnetic gradients that are sensibly con-
stant over the distance separating centers of the pickup loops.
Because the loops are coplanar, the gradiometer responds to
a transverse gradient of the magnetic field at the point mid-
way between centers of the loops. Slight differences in area
and orientation of the loops give an imbalance response pro-
portional to the magnetic field at the midpoint as well. The
gradient field of a magnetic dipole located on a sphere of
unit radius about the midpoint describes the part of the re-

sponse owing to ambient gradients.

Section IV describes procedures for making mechanical and
electronic adjustments to nullify the part of the response owing
to imbalance. Moving three small niobium Jdisks mounted on
slides near one loop adjusts its effective area and orientation
and balances response of the loops to a uniform magnetic flux.
Electronically substracting a fraction of thefmagnetic field

componeats measured by a triaxial fluxgate magnetometer near
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the midpoint from the gradiometer response provides 't raiier
balarcing. Procedures for balancing a gradiometer in both

uniform and nonuniform ambient magnetic fields are presented.

In Section V, we present the first measurements of spectra
that characterize noise in the frequency range 5 X 10—4 to 20
Hz of a superconducting magnetic gradiometer operating 1in a
magnetically quiet environment. Spectra are effectively white
at frequencies above about 0.1 Hz with a spectral density* of
0.03 (pT/m)z/Hz and are of the form S(f) = S(fo)(fo/f)Y at
frequencies below 0.1 Hz. A value of 1.3 for y with S(fo) =
0.002 (pT/m)z/Hz at fO = 1 Hz is representative of values
observed during guiet periods. Intrinsic noise of the super-
conducting quantum interference device (SQUID) used in he
instrument to sense magnetic flux then dominates observead
spectra at frequencies below 0.1 Hz. Use of a dc-type SQUID

(Clarke et. al., 1975) would improve instrument performance

nearly tenfold.

In Section VI, we give a rationale for two techniques
that provide means of suppressing noise from nearby magnetic
objects; namely, (1) alianing the gradiometer to obtain a null
response, and (2) using a magnetic dipole to cancel steady gra-
dients. We describe noise from nearby magnetic objects in terms
of gradient fluctuations corresponding to small changes in loca-
tion, orientation, and moment of a magnetic dipole located on
a sphere of unit radius about the midpoint of the gradiometer
axis. Because transverse gradients of the magnetic field of
a dipole vanish in certain directions, response of a gradio-
meter measuring transverse dgradients vanishes at certain orien-
tations. Aligning it for null response Suppresses noise from
magnetic objects. Placing an oppositely directed dipole at the
location of an equivalent dipole nullifies steady gradients at
the midpoint and so suppresses apparent gradient fluctuations

owing to changes in gradiometer orientation.

* We use MKS units throughout and conform to the international
convention suggesting use of the unit Tesla, which is a
Weber/m2 and so 1pT/m = 10”120 /m = 10 1%/cm = 10_3gamma/m.



Section VII yrresents results of preliminary tests of noise
suppression techniques. Our field tests show that the construct
of an equivalent dipole gives a useful description of the re-
sponse to gradients that are sensibly constant over the length
of a gradiometer axis. Preliminary tests using crude means
of aligning the gradiometer reduce noise power by a factor of
100 and suggest that reduction of noise is limited by align-

ment precision alone.

Finally, Section VIII describes a procedure for operating
at the tower that both uses the techniques to suppress noise
from magnetization currents in the steel structure and gives
a maximum response to gradients from internal waves. We plan
to jut the gradiometer over water on a rigid nonmagnetic canti-
lever extending horizontally 25 meters from the centerline of
the tower off its south face. Figure 1 shows that spectral
densities of gradients expected from internal waves are well
above the level of instrument noise. Aligning the gradiometer
for a null response with a precision of 0.01 radians, or 0.6
degrees, keeps noise from fluctuating magnetization currents
in the tower below the level of instrument noise. Limiting
translational and rota“-ional RMS fluctuations of the instrument
to 0.1 mm and a few seconds of arc ( lO_Sradians) in the band-
width 0.002 to 0.005 Hz keeps noise from irregular motions of
the instrument in the steady gradient field of the tower below

the level of. instrument noise.
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Section II
INSTRUMENT DESCRIPTION

As shown in Figure 2a, the instrument comprises a gradio-
meter probe immersed in a bath of liquid helium contained
in the interior vessel of a Dewar made of a fiber glass
laminate. A wrapping of about 50 alternating layers of
fiber glass cloth and aluminized Mylar covering the interior
vessel reduces radiative heat flow across the vacuum separa-
ting the inner vessel and outer jacket of the Dewar. The
outer jacket is 26" in diameter and 42" in length, and the
Dewar weighs about 250 lbs. Liquid helium in the reservoir,
which has a capacity of 160 liters, boils off to the atmo-

sphere at a rate somewhat iess than 3 liters per day.

The probe supports a rectangular block (2" X 2" X 12")
of high-purity, crystalline silicon. Two loops of niobium
wire mounted on a lateral face of the block form the pickup
circuit of the gradiometer. Three small niobium disks
mounted on slides near the top loop provide means of adjusting
the effective area and orientation of the loop in order to
balance response of the loops to a uniform magnetic flux.
A niobium capsule fixed midway between loop centers contains
a torodial, point-contact type SQUID that senses differential
magnetic flux threading the pickup loops.

The silicon block is housed at the foot of the probe in
a tube 3" in diameter and 15" long, which fits into a
matching socket fixed to the bottom of the helium reservoir.
Both the housing and its socket are made of a laminate
reinforced with Kevlar* cloth. Four fiber glass rods with
reinforcing spacers attach the foot of the probe to its

top plate, which bolts to the top of the Dewar. The top

* FKevlar is a trade name for an organic fiber manufactured
by the Du Pont Co.




plate cof the probe holds an rf electronics box used to drive
the SQUID, three removable brass micrometers used to adjust
slides during balancing, and a three-axis fluxgate magneto-
meter used both to orient the gradiometer axis and to pro-

vide vernier balancing, as described subsequently.

A. DESIGN FEATURES

Because susceptibility of paramagnetic substances is
inversely proportional to temperature at temperatures of a
few degrees Kelvin, we use, where practical, materials with-
in the helium bath that are free of paramagne:ic impurities
in order to eliminate noise from magnetization currents
driven by fluctuations of ambient temperature and pressure
and of the earth's magnetic field. 1In addition to its high
purity, crystalline silicon has a high thermal conductivity
that smooths thermal gradients in the neighborhood of the

gradiometer pickup loops.

Although the laminate reinforced with Kevlar cloth is
effectively free of paramagnetic impurities, the fiber
glass laminate is contaminated. Susceptibility of the fiber
glass laminate, resulting from paramagnetic impurities, is
about 2 x 1074

fiber glass interior vessel, such as quartz, are as yet im-

at 4.2°K. Nonetheless, alternatives to a

practical for the large capacity Dewars required for operating

at remote field sites.

Fluctuations of the earth's magnetic field also drive
eddy currents in the aluminized Mylar layers .rapped around
the interior vessel to reduce radiative heat flow. Because
dielectric materials are poor reflectors, conducting layers
are required to reflect radiant heat. Noise resulting from

fluctuating eddy currents, however, does not markedly in-




crease with decreasing frequency because amplitude of eddy

current fluctuations is proportional to excitation frequency.
B. SUPERCONDUCTING CIRCUIT

Figure 2b is a diagram of the superconducting circuit.
Two coplanar pickup loops, each 1.45 cm in diameter and

spaced 25 cm between centers, are oppositely wound in series,
so that fluctuations of the super current, Il’ in the pickup
circuit are driven by fluctuations in the net ambient flux
threading the pickup loops. Fluctuations in the net flux
are coupled to the SQUID sensor through an rfi transformer
containing a normal metal shield between its superconducting
windings that attenuates interference at radio frequencies
(above 19 KHz). The flux coupled to the sensor is the pro-
duct of the super current, 12, in the coupling circuit and
the mutual inductance between the sensor and the field

coil. The SQUID sensor itself is effectively an open circuit

for low frequency fluctuations (Zimmerman, 1971).

Because the net voltage around each superconducting cir-
cuit vanishes, the fiux coupled to the sensor, ¢s, is pro-
portional to the net flux threading the pickup loops, ¢p;
namely,

1/2
£ e Kth BLS/LP) 2122 (la)
2
P (1+21)(1+22)-Kt 2122

©

©

where 21 = Ll/Lp; 22 = L2/Lf; Lp, Ls’ Lf, Ll’ and L2 are

self inductances of the circuit components labeled in Figure
2b;and the coefficients Kt and Ks are a measure of coupling
between windings of the rfi transformer and between the field

coil and the SQUID sensor, respectively. Equation la shows




that the flux coupled to the sensor is greatest for 21 = 22
- (l—Ktz)_l/z, at fixed values of Lp and Ls’ and that its

greatest value is given by

¢ K 1/2 K
s - -8 (Ly/L) / t (1b)

$ ) ;~ _. 2,1/2
P - “1+(1 Kt )

In our instrument, Lp = 300 nH, LS = 0.05 nH, KS = 0.7,
and windings in the rfi transformer are adjusted to give a
maximum flux ratio of

v 3

= = 2.26 X 10 (2)

with Kt = 0.8.

From the diameter and spacing of the pickup loops, we find
that an ambient gradient* of 5.32 pT/m produces a net ambient
flux of one quantum, ¢o' at the pickup loops. Equation 2 then
tells us that a gradient of 1 pT/m at most applies a flux of
4.25 X 10—4 ¢o/(pT/m)at the SQUID sensor. A change in flux of
one quantum applied to the SQUID gives an output of 12.7 voits.
At hest, then, we expect a calibration constant of 5.4 mvV/ (pT/m) .
Our measured value is 4.5 mV/(pT/m) ! 15%, which indicates that

the instrument is operating with nearly the maximum flux ratio.

* We use MKS units throughout and conform to the international
convention suggesting use of the unit Tesla, which3is a
- ...]_0 -
Weber/m2 and so 1pT/m = 10 12T/m = 10 G/cm = 10 “gamma/m

and 0_ = 2.07 X 10 prm’.




Section III
INSTRUMENT RESPONSE TO AMBIENT MAGNETIC GRALDIENTS

We describe the response of an axis of a superconducting
magnetic gradiometer to ambient magnetic gradients in terms
of the differential magnetic flux threading the two pickup
loops whose centers are separated by a distance 2s. Areas
of the loops are Al and A2, and respectivc normals to the
plane of each locp are directed along unit vectors nl and 32,
as shown in Figure 3. Pickup loops are connectad in opposi-
tion, so that the instrument responds to the differential

magnetic flux threading the loops; namely, ¢ = ¢l = ¢2.

The relations

<bl= f dﬁlﬁl.i('ﬁ+§+)pl,t) (3a)
(il
and
<b2= / dﬁzﬁz-?y('ﬁ-‘éﬂ’)z,t) " (3b)
B2

express magnetic flux threading each loop in terms of integrals
of the density of magnetic flux, b(R+°+5l,t) and b(R-s¥32,t),

at points within each loop. Here, R is a position vector loca-

ting the point midway between loop centers; vectors 2 and -3

locate loop centers with respect to the midpoint; pl and p2

are radius vectors locating points within a loov contour; and
integrals extend over the area of each loop. By expanding

flux densities in Taylor's series about the midpoint, we express

the flux threading each loop as
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where g(ﬁ,t) is the magnetic flux density at the point midway
between loor centers. For symmetrical pickup loops, integral
terms of odd order in Equations 3c and 3d vanish because inte-
grands are periodic.
If area and orientation of the loops are identical so that
— — — — A S
Al = A2 = A and n; =n, =n, then the relation
00
a =2 2m-1
e -1 E (s.V) nB(R,t)
2sA s pz1 (2m-1)! (3e)
oo M - 2(m=-k)+1 [
LSy @ [o@n2asd,e
-k)+1]!(2k)!
SA m=]k=][2(m k)+1]! (2k) A

gives the response, and so to first order

0/2sa ¥ (2.-HA.B(R,t). (3f)




Hicher order terms are negligible provided gradients of the am-
bient field are sensibly constent over the distance between pickup
loops. Specifically, we require that (s/R)2(<l, where R is a
characteristic scale of the ambient field. 1In the field of a

dipole, for example, R is distance from the dipole.

Because of slight differences in area and orientation of
the pickup loops, however, the response includes an imbalance
or error term. Using loop number two as a reference and de-

fining A = A, and f = ﬁz, we then express the response of a

2

gradiometer axis, 7 (8,R;R,t) = ¢/2sA, to first order as

T(3,8;R,t) T I (8,A;R,t) + 3-B(R,t) (4a)
where

-

r(8,8:R,t) = (8- HAD(R,t) (4b)
and

. A

= 1 [ 1 f,-8 (4c)

2s A

-
To a first order apprcximation, then, the gradient term r(s,4;R,t)
of the response depends on gradients at the point midway between
loop centers, and the imbalance or error term, 3-b, is proportional

to the magnetic field at the midpoint.
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We represent gradients of magnetic fields in free space

by a matrix G having elements gij(ﬁ,t), where

s A i

9i9 = ¥3r(XyoR)lo (i,5 =1,2,3) (5a)
in an orthogcnal basis {Qi} . An element gij represents the
gradient in a direction Qi of the component of magnetic field
in a direction Qj' Consequently, the relation
r(s,n) = E
i,3

expresses the gradient in a direction 8 of the component of
magnetic field in a direction fi in terms of matrix elements

N . A
in a basis {x.

it where s, and n., are components of the unit

vectors § and i in the same basis.
By choosing a basis fixed at the point midway between
loop centers with its §3 axis aligned along the gradiometer axis
s and its X, axis aligned along n X s, then, we obtain the expansion

2 DA = s =
(s,n;R,t) n2 923(th) + n3 933(R,t) (6)

for the gradient term of the response. For coplanar pickup
loops (transverse configuration), n, vanishes and n, = 1l; for
coaxial pickup loops (longitudinal configuration), n, vanishes
and n,y = 1. A perfectly balanced gradiometer axis having a
transverse configuration, then, measures skew elements of a
gradient matrix, and one having a longitudinal configuration

measures diagonal elements.

The axis of our gradiometer has a transverse configuration,

so that its response to ambient gradients that are sensibly




constant over the distance between centers of the pickup loops
(25 cm) is the sum of a transverse gradient at the point mid-
way between pickup loops and aa imbalance term that is pro-

portional to the magnetic field at the midpoint, as expressed

by the relation
D(8,A;R,t) = g 5(R,t) + §-b(R,t) (7)

The imbalance part of the response resulting from small
differences in orientation aud area of the pickup loops, in
effect, is the response of a magnetometer that measures the
component of magnetic field in a direction 5 at the midpoint.
The gradient part of the response is equivalent to a gradient
of the field of a magnetic dipole located on a sphere of

unit radius about the midpoint.

A. EQUIVALENT DIPOLE OF A GRADIENT FIELD

Because a maonetic field in free space is both nondiver-
gent and irrotational, its gradients are elements of a
symmetric matrix that has a vanishing trace. A matrix that
is both real and symmetric is diagonal in an orthogecnal
basis comprised of principal axes with diagonal elements
or eigenvalues Al' Az, and A3. Since its trace vanishes,

Al + Az + A3 = 0.

We express gradie :s at a point of a magnetic field,
then, in terms of their eigenvalues, Ai' and eigeavectors
éi' which define directions of principal axes, by using

the matrix product

G = RAR, (8)




where the matrix G represents gradients in a fiducial hasis
{Qi} . The matrix R represents a rotation from the fiducial
basis to a basis comprised of eigenvectors @i, in which gra-
dients are represented by the diagonal matrix / having ele-
1’ Az, and A3. Components of eigenvectors in the
fiducial basis form the columns of the matrix R; namely,

ments A

riy = Qi'ék' A real matrix representing a rotation is
orthogonal, so that RR = RR = I, where tilde marks a trans-

posed matrix and I is the unit matrix.

By adding a magnetic dipole to a gradient field, we find
that the relation

I = R(A - RaAdRa)R

gives gradients at a field point. Here, Ad is a diagonal matrix
whose elements are eigenvalues of the gradients of the dipole
field at the po.nt, and the matrix R, specifies a rotation from
principal axes of the ambient gradient field to principal axes
of the dipole gradient field zt the point. Equation 9 tells

us that gradients of an ambient field are equal to gradients

of a dipole field at a point whenever Ra=I and Ad=A. At each
point of an ambient field, then, we use the conditions Ra=I and
Ad=A to define location, orientation, and moment of a dipole
positioned on a sphere of unit radius about the point so that
gradients of th:» dipole field at the point are equal to ambient

gradients.*

Gradients at each point of an ambient field, then, are
equivalent to the gradient field of a magnetic dipole located
on a sphere of unit radius surrounding the point. Because
the sense of an eigenvector is indeterminate, the dipole has
three images, so that gradients at a point of an ambient field
are equivalent to the gradient field of a dipole located at

* Equality of eigenvalues at a point is always possible because -
eigenvalues are ordered, and their sum vanishes.
‘The Appendix describes mea%s %f aetermlnlnq location, orienta-
tion, and moment of an equivalent dipole from gradients of
the ambient field.

13

(9)



any one of four positions on the sphere. Radius of the sphere
is arbitrary provided the ratio m/r4 is constant, where m is
the moment of the dipole and r, its distance from the field
point. Location, orientation, and moment of equivalent dipoles

change continuously from point to point.
B. GRADIENT FIELD OF A MAGNETIC DIPOLE

As illustrated in Figure 4, we specify location of a mag-
netic dipole, m, with respect to the gradiometer basis Qi
in terms of polar angles ¢ and 6 defining direction of the
position vector r and specify its orientation with respect
to the position vector in terms of the polar angle x and
azimuthial angle Q2. The basis Qi is defined so that the
y3 axies points along the p051tlon vector, the y2 axis, along

r X m, and the yl axis, along (r X m) X r.

As shown in the Appendix, the matrix

cosY 0 siny
Gy(g,x) =g 0 cosy 0 (10a)
siny 0 -2cosy

represents gradients at position r of a dipole field in the

. N
basis yi . wWhere

3p._m -
©_ and u, = 471 x 10 " H/m. (10b)

41y

Equation 10a tells us that longitudinal gradients result from
the component of the dipole along r and that transverse gra-
dients result from the component perpendicular to r. None-
theless, each component produces both longitudinal and trans=

verse gradients in the gradiometer basis.

14




Three consecutive rotations represented by the matrix
R(¢, 6, Q) = 2(¢ + 1/2)X(8)2(Q) (11la)

bring the gradiometer basis into coincidence with the basis
A

B

il where

cos Y -sin Y 0
Z2(p) = sin cos Y 0 (11b)
0 0 0
and represents a rotation through an angle § about the Q3

axis of the gradiometer basis and

l 0 0 i
X(p) = 0 cos y =-sin ¢ (11lc)
0 sin Y cos

and represents a rotation about the Ql axis.
Consequently, the matrix
G, (¢, 8, % g,x) = R(6, 8, Q)G (g, XIR(¢, 6, Q) (12a)

represents gradients of the dipole field in the gradiometer
basis. We then find that

G, = g cos X [I - 3/2 A, (¢, 9)] (12b)

+g siny Fos Q A2(¢, 8) - sin Q A3(¢, eﬂ i

where I denotes the unit matrix,

LS



2cosz¢sin29 sin2¢sin28 cos¢$sin28 |
Al(¢, ) = sin2¢sin28 2sin2¢sin28 sin¢sin26

cos$sin28 sin¢sin26 2c0528 J

-sin2¢sinbd cos2¢$sinb -sinédcosh
A2(¢, 8) = cos2¢sinb sin2¢sinb cosécosh

-sin¢cosh cos$cosh 0 .

and

cosz¢sin26 (1/2)sin2¢sin25 cos¢cos26

A3(¢, 8) = (1/2)sin2¢sin26 sin2¢sin2e sing¢cos26
cospcos2B sin¢cos26 -sin26

The first term of Equation 12b results from the component of
the dipole along Y, and the second term, from the component
perpendicular to T. We see that each component produces both

longitudinal and transverse gradients in the gradiometer basis.
C. GRADIENT RESPONSE

From Equation 12b, then, we find that the relation

9,3 = g cosy sin¢ sin26

Nfw

+ g siny(cosficos$¢ cos6-sinQ sin¢ cos26)

expresses the gradient term of the instrument response in terms
of the five parameters ¢, 6, 9, x, and g that specify location,
orientation, and moment of a dipole. Because gradients at a
point are equivalent to the gradient field of a dipole located
on a sphere of unit radius about the point, Equation 13 com-

pletely specifies the gradient response.
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The construct of an equivalent dipole furnishes a convenient
transformation of the five independent elements of a matrix
representing gradients of a magnetic field in free space to
five parameters (¢, 6, O, x, and g) that provide ready means
of describing the gradient response. For example, Equation
13 tells us that a dipole located along the Ql axis of the
gradiometer basis (¢ = 0 and 6 = 7m/2) gives a null response
whatever its orientation. Moreover, oppositely rocated and
oppositely directed dipoles (¢3¢ + w, B8—=271-6, and Q- -Q)

.give the same gradient respoase.

The gradient field of a dipole represents gradients of a
magnetic field at a point in free space even though the actual
source of the field is not a dipole. Because of the principal
of superposition, separate equivalent dipoles represent gra-
dients from distinct sources. The gradient field of a dipole
describing gradients resulting from a sum of distinct sources
is simply the sum of fields of equivalent dipoles representing
gradients from each source, but the dipoles themselves are not
simply additive unless they are located colinearly. Nonethe-
less, fields of a sum of equivalent dipoles conveniently de-

scribe contributions of distinct scurces.

D. INSTRUMENT CALIBRA" 7N

To calibrate the gradiometer, we use a current oscillating
in a coil placed equidistant from the center of each pickup
loop with its dipole moment parallel to the line joining centers
of the pickup loops. We face the plane containing pickup
loops toward the: coil to obtain a maximum response and keep
the distance from the midpoint of the gradiometer axis to the
center of the coil much larger than both the spacing between
centers of the pickup loops (25 cm) and the radius of the
coil (21 cm).

17




The coil, in effect, is a dipole located along the'&? axis

of the gradiometer basis and directed parallel to the Q3 axis,

so that ¢ = 3n/2, 6 = n/2, O = 3nr/2, and ¥ = n/2. The expression

: ) 3uom(t)
23 4TTr4

obtained from Equation 13 then gives the gradient produced at
the gradiometer, where m(t) is the dipole moment of the coil
and 1+ is its distance from the gradiometer. Equation 13 also
shows that misalignment of the coil and gradiometer adds terms
of second order in angular deviations and so produces negligi-
ble error for reasonably precise alignment. Errors result
largely from uncertainties in the distance of the coil from

the gradiometer.

By measuring current in the coil and output voltage of
the gradiometer at several values of r, we find that a gra-
dient of 1 nT/m gives an output voltage of 4.5 V + 15%. Cali-
bration is independent of frequency and of the quantum state
of the SQUID sensor.

We also use the dipole used for calibration to align the
triaxial fluxgate magnetometer with respect to the gradiometer
basis. Turning the gradiometer about its axis until a null
response is obtained aligns the plane containing pickup loops
with the plane defined by the dipole moment of the calibration
coil and the gradiometer axis. Oscillating magnetic field

components along the 2. and QZ axes of the gradiometer basis

d:
then vanish, so we align corresponding axes of the fluxgate

magnetometer to obtain null responses as well.
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Section 1V
GRADIOMETER BALANCING

Both mechanical and electronic means of balancing the
gradiometer are available. We balance mechanically by using
micrometers on the top plate of the probe to move three small
niobium disks mounted on slides near the top pickup loop.
Because a superconducting disk distorts the magnetic field
in its vicinity, movement of the disks adjusts the effective
orientation and area of the loop. Axes of the disks are
mutually orthogonal, so that movement cf each disk, in effect,

adjusts the corresponding component of the imbalance vector

-

5.

Because precision of disk movements is limited, however,
we use the triaxial fluxgate magnetometer mounted on the top
plate of the probe to provide vernier balancing electroni-
cally. We balance electronically by subtracting an adjustable
fraction of the magnetic field components measured by the

fluxgate magnetometer from the gradiometer response.

To make mechanical and electronic balance adjustments, we
rotate the gradiometer axis in the earth's steady magnetic
field. Because gradients of the earth's steady magnetic
field are small ¢~10 pT/m), rotation in the earth's field fur-
nishes a time varying field that is nearly uniform, so that the

gradiometer response effectively results from imbalance alone.
A. BALANCING IN A UNIFORM MAGNETIC FIELD
Rotating a gradiometer about an axis in a direction {

in a uniform magnetic field, B, produces a response owing to
imbalance of its pickup loops that is expressed in terms of

19



the angle of rotation @ by the relation

-~ > = ‘A A -9
§*B = (B-ﬁ)(ﬁ'éo) #* [QX(§XQ}EOCOSQ + (ﬁxg)-ﬁosinﬂ ,

}

whereagO is the initial position of the imbalance vector g.
The imbalance vector is fixed to the gradiometer, so that
E; depends on initial orientation of the gradiometer. As is
evident from Equation 15, we define a fiducial basis using

the vectors B and 6.

As vefore, we choose a right-handed basis fixed to the
point midway between centers of the pickup loops with its

Q3 axis along their line of centers and its R axis normal

2
to the plane containing pickup loops. We denote components
of the imbalance vector in the gradiometer basis by 61, 62,
and 63«

In our balancing procedure, the axis of rotation is
vertical, and the earth's magnetic field provides an effec-
tively uniform field. We use two initial orientations of
the gradiometer basis in order to make sequential and inde-

pendent adjustments of components of the imbalance vector.

First, we initially orient the gradiometer with the Q3
axis directed vertically upwards; the 92 axis, northwevd;
and the Ql axis, eastward. Rotating the gradiometer about

its Q3 axis through an angle @ then gives the response
5B = —63Bsin8 + (dlsin o+ 62cosQ)BcosB ’
where B is the local dip angle of the earth's magnetic field

and B is its magnitude. Equation 16 tells us that a cosine
response corresponds to the 62 component of the imbalance
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vector and that a sine response corresponds to the §. com-

1

ponent. The 63 component determines a reference level of

the sinusoidal response. To nullify components 61 and 62
of the imbalance vector, we first adjust the niobium disk
having its axis parallel to‘Ql until rotation produces a
cosine response and then adjust the disk having its axis

parallel to X, until rotation produces a flat response.

2

A

Next, we initially align the gradiometer with the X3
axis parallel to the earth's magnetic field and the‘Q2

axis directed westward. Rotating the gradiometer about a
vertical axis through an angle Q then gives the response

-— e
-5.B = (dlcose + 8,sinB) BsinB + IEZSinQ

3

(17)
-(8,sing - 63coss)cosd] BcosB

Equation 17 tells us that a cosine response corresponds to
components 61 and 63 of the imbalance vector and that a sine
response corresponds to the 62 component. To complete balanc-
ing the gradiometer, then, we only adjust the disk having its
axis parallel to ﬁ} until rotation produces a flat response,

because the first procedure nullifies components 61 and 62.
B. LIMITS ON GRADIOMETER BALANCE

Both limited precision of disk movements and mutual in-
ductances between disks limit the balance attainable mechani-
cally, and so prevent attainment of precisely flat responses
during rotations. Mechanical &djustments reducc components
of the imbalance vector to values of the order of 107° m 1 .
To reduce imbalance further, we electronically subtract

a fraction of magnetic field components measured by the flux-

* Balance of a gradiometer is also commonly expressed in terms
of a common mode rejection ratio (CMRR) that is the magnitude
of the imbalance vector multiplied by the distance between
centers of its pickup loops. For our gradiometer, an im-
balance of 10-3 m~! gives a CMRR of 2.5 ppm.
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gate magnetometer from the gradiometer response during rota-
tions, after reachinc¢ the limit of mechanical adjustments.
Combined mechanical and electronic adjustments reduce com-

ponents of the imbalance vector to values of about 4 X 10"6

-1
m .

Further refinement of gradiometer balance presently is
limited by hysteresis observed during rotation when the im-
balance is somewhat less than 10"5 m—l. The record in Figure
5 illustrates the effect. The trace records gradiometer re-
sponse during a clockwise rotation followed by a counter clock-
wise rotation with the gradiometer axis vertical. Rotations
are made stepwise in sixteen increments of 22.50, as shown in
Figure 6, starting with the QE axis pointing northward. Spikes
in Figure 5 mark movements between incremental positions and
result from eddy currents excited in aluminized Mylar layers
used to insulate the helium reservoir. Plateaus mark values
recorded while dwelling at incremental positions. As is
evident, values recorded at incremental positions are not
unique and depend on the sense of rotation; namely; the value
recorded at a position during a clockwise rotation differs
from the value recorded at the same position during a counter

clockwise rotation.

Figure 7 shows the hysteretic signature of the effect.
The tracé records response during a stepwise oscillation of
the Q} axis about position 5 marked in Figure 6. Oscillation
begins with a clockwise movement of two increments from position
5 to position 7, then reverses with a counter clockwise movement
to position 5, continues with a counter clockwise movement of
two increments to position 3, returns to oosition 5 with a clock-
wise movement, and repeats the cycle thereafter. As is evident
in Figure 7, the value recorded at nosition 5 depends on the

direction of approach; namely, the value recorded during a
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clockwise crossing differs from the value recorded during a
counter clockwise crossing. The difference depends on ampli-
tude of the oscillation.

We observe a similar hysteretic signature when oscillations
are made with a crescent wrench taped to the top of the Dewar
and so suspect that the hysteretic eftect results from ferro-
magnetic contaminants in the vicinity of the pickup loops.
Although hysteresis precludes further reduction of gradiometer
imbalance, the residual imbalance is insignificant for our

immediate purposes.

Eddy currents excited in the aluminized Mylar insulation
during rotations do not limit refinement of gradiometer balance
but do require that rotations be made stepwise. Continuous
rotation, in effect, averages values at spikes and plateaus
and so is misleading for purposes of refining balance. The
response resulting from eddy currents,Ze,is consistent with

the description given by the relation

I, =¢ 438.3) = CcBcosB A(Z—Q) GhR (18)
dt t

where B is the earth's magnetic field; A, the effective area

of eddy current loops; C, a coupling constant; and Q is the

angle of rotation, reckoned positive for a clockwise rotation.
The vector representing effective area of eddy current loops

is normal to the plane containing pickup loops. Allowing

for a difference in rates of movement between increment posi-
tions, Figure 5 shows that spikes resulting from eddy currents
are greatest at n/2 and 37n/2, least at 0 and 7, and of opposite
seise for clockwise and counter clockwise rotations, as described

by Equation 18.
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Gradients of the earth's magnetic field are a more
fundamental limit on refinement of gradiometer balance. Gra-
dients of the earth's magnetic field are of the order of 10 pT/m
and so give a response comparable to the response owing to im-

balance when magnitude of the imbalance vector is about 5 X 10_7

m or less. In the absence of the limit imposed by hysteresis,
reduction of gradiometer imbalance below about 10_6 m_l is

limited by gradients of the earth's magnetic field.

C. BALANCING IN A NONUNIFORM MAGNETIC FIELD

Because a matrix representing gradierts of a magnetic field
in free space is symmetric, it is diagonal in a basis comprised
of principal axes. Transverse gradients vanish along principal
axes, so that a perfectly balanced gradiometer having a trans-
verse configuration gives a null response when its axis is
aligned along a principal axis of an ambient gradient field.
The Appendix describes both a means of determining directions
of principal axes of a gradient field from values of its matrix
elements measured in a fiducial basis and response of a per-
fectly balanced gradiometer during rotation about an arbitrary

axis.

To refine balance of our gradiometer in the presence of a
nonuniform magnetic field, then, we align its axis along a
principal axis of the ambient gradient field and rotate it
about its axis. Because transverse gradients vanish along
a principal axis, the response during rotation results from
imbalance alone. We then adjust components of the imbalance
vector to obtain a flat response during rotation. Precise
determination of directions of principal axes, however, re-
quires a finely balanced gradiometer, so we devis2 an iterative

procedure.
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We suppose that directions of principal axes of the ambient
gradient field are known approximately. For example, two prin-
cipal axes of the earth's dipolar magnetic field lie in a ver-
tical plane containing the magnetic field vector, and the third
principal axis is normal to the plane.* If ambient gradients
exceed about 10 nT/m, then we use the gradiometer itself to
estimate approximate directions of principal axes, because
magnitude of its imbalance vector without refinement is at
most about 10_4 m_l. Rotating the gradiometer about its axis
when it is aligned with the local magnetic field vector gives
an estimate of the magnitude of ambient gradients, since the

response owing to imbalance then vanishes.
The relation

_ 2 2 ,1/2 -

with
tanQ ) = v;3/Y,3

gives the response owing to ambient gradients when the gradio-
meter is rotated through an angle Q about its axis. Coeffi-
cients Y13 and Y,y are elements of the matrix representing

the ambient gradient field in the basis defined by initial
orientation of the gradiometer. If the gradiometer axis is
aligned along a principal axis of the ambient gradient field,
then Y13 and Yo3 venish, so that the response owing to ambient
gradients during rotation is flat. If polar angles defining
direction of the axis of rotation in a fiducial basis deviate

by amounts A¢ and A6, respectively, from polar angles defining

*The Appendix describes the gradient field of a magnetic dipole
in terms of its eigenvalues and directions of its principal
axes.
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direction of the principal axis corresponding to eigenvalue

A3 say, then

~ i _ :
Y13 = 1/2 [§A3 (2)\1 + A3)cos2W9] 51n6p(A¢)
-1/2(2)\1 + A3)Sln2Wp(A9)

and

Yyq = -1/2(2)\l + A3)sin2WpsinOp(A¢)

¥1/2 [3hg + (22 + x3)coszwp_} (48)

where ¢p’ Op and Wp are Euler angles(defined in Figure Al)
specifying a rotation from the fiducial basis to the basis
comprised of principal axes and Al, Az, and A3 are corresponding

eigenvalues.

A A
We choose a fiducial basislxi‘ with its X, axis directed

vertically downwards, its X, axis, northward, and its Q} axis,
eastward. To align the gradiometer axis with a principal axis,
we start with the gradiometer basis coincident with thc fiducial
basis and first rotate the gradiometer through an angle 6

P
about the X

1
axis, where the polar angles ¢ and 8 approximately define

axis and then through an angle ¢ about the/)?3

direction of the principal axis in the fiducial basis. We then
rotate the gradiometer about its axis and mark the amplitude

of its response. We next make an incremental rotation $¢

about the'?

3
axis and mark the amplitude of its reszponse. We continue

axis and again rotate the gradiometer about its
making incremental rotations about th: ﬁ} axis followed by

rotations about the gradiometer axis until we determine the
polar angle ¢ + 8¢ at which amplitude of the response is least.
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With the gradiometer axis fixed at the polar angle ¢ + 8¢,
we carry out a similar procedure to determine the polar angle
6 + 80 at which amplitude of the response is least and so
locate the polar angles ¢ + 6¢ and 6 + 60 defining direction

of the principal axis more precisely.

The response resulting from imbalance is seiasibly constant
for incremental changes 8¢ and 66 in the polar angles, but
the response resulting from ambient gradients changes warkedly
for small deviations of the axis of rotation from the princi-
pal axis. Nonetcheless, imbalance eventually masks changes
in amplitude of the response to rotation as the axis of rota-
tion approaches the principal axis. When incremental changes
in polar angles defining direction of the axis of rotation
produce imperceptible changes in amplitude of the response,
we then adjust components 61 and 62 of the imbalance vector
to reduce the response owing to imbalance, following a pro-

cedure similar to that used in a uniform field.

After refining 'he balance, we refine alignment of the
gradiometer axis with the principal axis by again making in-
cremental changes in polar angles until we determine the
direction of the axis of rotation for which amplitude of the
response is least. We then again refine the balance and re-

peat the procedure until further refinements are imperceptible.

The iterative procedure affords means of reducing components
61 and 62 of the imbalance vector. To rvduce the 63 component,
we rotate the gradiometer about its.ﬁi axis through an angle

x after aligning its axis with the principal axis. The relation

9,3(x) = 1/2 I3A3 + (20 + A3)coszwp] sin2y (20)
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gives the response resulting from ambient gradients. The
response resulting from imbalance, however, is sinusoidal
with respect to x rather than 2y. Consequently, we adjust
the 63 component of the imbalance vector during rotation

until the response is proportional to sin 2y.

Because our present means of rotating the gradiometer only
provides for rotation about a horizontal and a vertical axis,

the suggested procedure for balancing in a nonuniform ambient

magnetic field is as yet untried.




Section V

INSTRUMENT PERFORMANCE

Past reports (Clarke, 1974; Wynn et al., 1975; Zimmerman

and Frederick, 1971) have specified performance of super-

conducting magnetic gradiometers in terms of a noise level
without regard to spectral shape. Recent measurements (Clarke
et al., 1975) of noise spectra of a superconducting quantum
interference device (SQUID), however, show that their noise
power density increases approximately in inverse proportion

to frequency as frequency falls below about 1 Hz. Moreover,
fluctuations of. ambient temperature and pressure and of the
earth's magnetic field drive fluctuating magnetization currents
and eddy currents in materials within the Dewar that generate
noise whose power density characteristically increases with
decreasing frequency as well. Characterizing instrument
performance in terms of a noise level, then, is inadequate

in the freqguency range of interest (f<«l Hz).

In what follows, we first present spectral data in the

? Hz to 20 Hz that characterize per-

frequency range 5 X 10~
formance of the instrument, which is designed insofar as prac-
tical to eliminate sources of noise driven by fluctuations of
ambient temperature and pressure and of the earth's magnetic
field, and demonstrate that its performance in a magnetically
guiet environment is limited by noise of its SQUID sensor at
frequencies below about 0.1 Hz. We then compare performance
demonstrated using a torodial point-contact type SQUID sensor
with performance expected using a chin-film dc type SQUID, in
order to mark limits on enhancing instrument performance.

Finally, we delineate improvements in instrument design.
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A. GRADIOMETER NOISE SPECTRA IN A MAGNETICALLY QUIET ENVIRONMENT

To characterize performance of the gradiometer in the fre-
quency range 5 X 10“4 Hz to 20 Hz, we made a number of records*
of its output, ranging from 12 to 24 hours in duration, for
a variety of ambient conditions during an observational period
of several weeks at the La Posta Astrogeophysical Observatory,
which is located in the mountains about 70 miles east of San
Diego, California, at an altitude of 1188 m MSL. Coordinates
of the observatory are 116° 25' 6" west longitude and 32° 40"

39" north geodetic latitude (Bleiweiss and Wefer, 1975). We

present spectral data based on a five hour long segment of a
record that is representative of the lowest instrument noise

consistently observed.

Figure 8 shows the spectral power density in the frequency

4

range 5 X 10" ° Hz to 20 Hz characterizing performance of the

instrument during a quiet period observed at night. We esti-
mate the spectrum below 0.1 Hz using a standard fast Fourier
Transform algorithm and average ten successive estimates made

N

from 1/2 hour segments of the time series. We obtain spectral

data at frequencies above 0.1 HX using a real-time spectrum
analyzer having an averaging capability.

For frequencies below 0.1 Hz, we assume a spectrum of the
form S(f) = S(fo)(fo/f)Y and then u;e a least squares criterion
to fit averaged spectral data to a straight line in logarithmic
coordinates to obtain values of y and S(fo). Values corresponding
to the spectrum shown in Figure 8 are Yy = 1.3 and S(fo) = 0.002
(pT/m)z/Hz at fo = 1 Hz, for f<0.1l Hz. Spectral power densities

* We use a low-pass filter having its half-power point at 0.3
Hz to preclude aliasing anc digitally record on magnetic
tape once a second to obtaia data at frequencies below 0.1 Hz.
We obtain spectral data at frequencies above 0.1 Hz using a
real-time spectrum analyzer having an averaging capability.
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in the frequency range 0.1 Hz to 20 Hz correspond to a white
noise level of 0.03 (pT/m)z/Hz. Additional estimates made
near lO2 Hz and lO3 Hz correspond to the same white noise
level.

We present spectra characterizing instrument performance
during quiet times in order to demonstrate that the inherent
noise spectrum of the gradiometer is in practice limited by
the intrinsic noise spectrum of the SQUID sensor alone at
frequencies below 0.1 Hz. Data* points in Figure 9 depict
the spectrum of in:rinsic noise of a torodial, point-contact
type SQUID having the same design as that used in the gradio-
meter. The solid line delineates the spectrum of gradiometer
noise shown in Figure 8. Figure 9 shows that the spectrum
of gradiometer noise closely approaches that of the SQUID at
frequencies below 0.1 Hz. Parameters characterizing the form
of the SQUID spectrum have the values vy = 1.1 and S(fo) = 2.4
X 10-3(pT/m)2/Hz at fO = 1 Hz as compared to the values Yy
= 1.3 and S(f) = 2.1 X 1073 (pT/m ®/Hz at £_ = 1 Hz of the

gradiometer s| *ctrum.

At frequencies above 0.1 Hz, however, the gradiometer noise
level is appreciably higher than the SQUID noise level. The
increase in gradiometer white noise over that of the SQUID
largely results from Johnson noise coming from the normal
metal shield in the transformer. We expect the shield to
increase the noise level by a factor of two or so, which is
comparable to the observed increase of nearly a factor of
four. Without an rfi transformer, we would expect to attain

a white noise level limitzd by intrinsic white noise of the

* Data presented in Figures 9 and 10 are provided by courtesy
of John Clarke and his research group at the University of
California, Berkeley, California.
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SQUID sensor. Presuming a maximum flux ratio of (d)s/tbp)rl
= 4.52 x 1073
Equation lb with Kt = 1), then, we wogﬁd expegt a white noise
level for the gradiometer of about 10 ~(pT/m)“/Hz, which is
comparable to the noise level of 3 X lo_z(pT/m»NHE'reported

without an rfi transformer (obtained from

by Wynn et al., (1975) that largely results from intrinsic

noise of their sensor.

Although intrinsic noise of the SQUID sensor dominates
the noise spectrum of the gradiometer below 0.1 Hz during
guiet observational periods, we observe occasional increases
in slope and level of spectra below 0.1 Hz that apparently
are associated with semidiurnal effects. We expect to charec-
terize sources of noise driven by fluctuating ambient condi-
tions by spectrally analyzing fluctuations of ambient tempera-
ture and pressure and of the earth's magnetic field recorded
at the field site.

B. INSTRUMENT IMPROVEMENT
Because intrinsic noise of its SQUID sensor limits instru-

ment performance, replacing the torodial point-contact type
SQUID in the instrument with a thin-film dc type SQUID (Clarke

et al., 1975) is an immediate means of enhancing instrumen*

performance. Measurements of noise spectra of the two types

of SQUID sensors show that spectral density of the thin-film

dc type, in units of ¢§/Hz, is appreciably smaller than spec-
tral density of the torodial point-contact type at frequencies
below about 0.1 Hz (Clarke, personal communication, 1975).
Moreover, self-inductance of a thin-film dc type SQUID is about
1 nH compared to 0.05 nH for a torodial point-contact type.
Equation 1b then tells us that coupling of flux to a thin-film
dc type sensor is greater than coupling to a torodial point-contact
type sensor, in the same superconducting circuit. WNamely, equi-
valent noise energy in the pickup loops, ¢;/Lp, is proportional
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to noise energy of the SQUID sensor, ¢§/LS, for fixed values
of the coupling coefficients Ks and Kt. The ratio ¢§/Ls pro-
vides a figure-of-merit for comparing performance of SQUID

sen3sors (Classen, 1975).

Data points in Figure 10 depict the spectrum of intrinsic
noise of a thin-film dc type SQUID in units of ¢i/Hz marked
on the right hand coordinate scale. The light dashed curve
delineates the spectrum of intrinsic noise of a torodial
point-contact type sensor, in units of ®§/Hz, as depicted by
data points in Figure 9. The solid line marks the spectrum
of inherent noise of the gradiometer in units of (pT/m)z/Hz,
marked on the left hand coordinate scale, as depicted by data
points in Figure 8. The heavy dashed curve marks the spectrum
of inherent noise expected of a gradiometer operating with a
thin-film dc type SQUID. We obtain the expected gradiometer
noise spectrum in units of (pT/m)2/Hz from the spectrum of
intrinsic noise of a thin-film dc type sensor in units of
3 o/ (pT/m),
which accounts for the change in self-inductance of the SQUID

¢g/Hz by using the conversion factor 1.56 X 10
in the superconducting circuit.

At frequencies belcw 10—3 Hz, then, intrinsic anoise of
the t..in-film dc type SQUID limits expected performance of
the gradiometer, and at frequencies above 10-3 Hz, Johnson
noise from the normal metal shield in the rfi transformer
limits performance. Figure 10 shows that the expected en-
hancement of instrument performance is substantial at fre-
quencies ! 2low about 0.1 Hz. For example, in the frequency
band from 0.001 to 0.01 Hz, RMS instrument noise is reduced
from 0.17 pT/m to 0.017 pT/m, a tenfold enhancement of per-

formance.




We suggest two improvements in instrument design -- one
trivial and the other substantial. First, scoring aluminized
Mylar layers wrapped arcurnd the interior vessel of the Dewar
reduces strength of eddy currents excited in the superinsula-
tion. Second, a triaxial superconducting magnetometer should
be incorporated at the midpoint of the gradiometer axis both
to provide nore accurate means of balancing and aligning the
gradiometer, and to afford measurement of the magnetic field

as well as its gradients at a point.
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Section VI

TECHNIQUES FOR SUPPREFSSING NOISE FROM NEARBY MAGNETIC OBJECTS

Fluctuating gradients of magnetic fields resulting from
ionospheric currents are too small to be directly observed
at the ground. Nonetheless, ionospheric currents excite
magnetization and eddy currents in magnetic objects near a
gradiometer and so indirectly produce local, fluctuating
gradients. Moreover, objects magnetized by the earth's
magnetic field produce sharp, steady gradients in their
vicinity. Slight, irregular movements of a gradiometer near
magnetic objects, then, produce gradient fluctuations as

well.*

Fluctuating gradients owing to nearby magnetic objects
can mask ambient gradient fluctuations of interest. Con-
sequently, we consider techniques for suppressing gradient
fluctuations resulting from small, irregular movements of
a gradiometer relative to a steady gradient field and from

fluctuating magnetization currents.

As we have shown, gradients of a magnetic field at a
point in free space are equivalent to the gradient field of
a magnetic dipole locited on a sphere of unit radius about
the point. Changes in location, orientation, and moment of
an equivalent dipole then describe gradient fluctuations owing
to magnetic objects. Two techniques for suppressing fluctua-
tions are available: (1) .aligning the gradiometer to obtain
a null response ard (2) using a magnetic dipole to cancel

gradients of an equivalent dipole.

* Because of residual gradiometer imbalance, irregular move-
ments in a uniform magnetic field also produce gradient
fluctuations, but the fluctuations are comparitively negli-
gible for ambient gradients exceeding 10 pT/m.
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A. SUPPRESSION OF NOISE FROM IRREGULAR MOVEMENTS

Small displacements of a gradiometer in a steady gradient
field produce small changes in location, orientation, and
moment of the equivalent dipole describing gradients of the
ambient field in the neighborhood of the gradiometer. Changes
in location result both from virtual rotations of the dipole
accompanying small displacements at fixed gradiometer orien-
tation and from actual gradiometer rotations, but changes in

orientation and moment result from displacement alone.

From Equation 12a that gives gradients in a gradiometer
basis in terms of the gradient field of a dipole, we find that
the relation

Gy, + 66, = RORG(GYO + 5Gy)ﬁ6R0 (23a)
expresses gradients in the gradiometer basis following a small

displacement from an initial point marked by subscript zero,

where

+ 8xG. (g

: (23b)
vo y'9or Xg * T/2)

sg, = 84 G
Yy g,

The matrix RG represents an infinitesimal rotatio that we
express in terms of angular deviations in location and orien-

tation of the dipole by the sum

RG = I + Gecosrox - (5¢s1n60cosQO + 5651n90)cy

(23c)

+ [GQ + 5¢(coseo-sin6051nno)] €
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where

0 0 0 0 1 0 -1
= |0 0 -1f, e, =)0 0 of,and ¢, =|1 0 0} (23
0o 1 0 -1 0 0 0 0

From Equation 23a we then find that th> relation

b— -4 ﬁﬂ . -
de g Gxo + dex(¢O, 60, Qo' Io' Xo + m/2)
+(6951n60cos¢0 - 6651n¢0)(exGx0 - Gxoex) (24)
+(66cos¢o + 6951n6051n¢0)(enyo - Gxoey)
+(8¢ + GQcoseo)(eszo - Gxoez)

gives first order changes of gradients in the gradiometer basis
following a small displacement in a steady gradient field, which
is represented by the matrix Gxo at the initial point. Equation
24 shows that changes in gradients are proportional to the

initial values represented by the matrix Gxo

To suppress gradient fluctuations resulting from irregular
motions, then, we first judiciously choose initial orientation
of the gradiometer basis with respect to the equivalent dipole.
We align the gradiometer so that the equivalent dipole lies
along the Ql axis with its axis in the plane containing pick-
up loops, which is normal to the Qz axis of the gradiometer
basis. Namely, we take ¢O = 0, 60 = /2, and QO = /2, SO
that

—2cosxO 0 siny
Gxo = 9 0 cosX, 0 . (25)
siny 0 cosx,,

37



Slight deviations in initial alignment give fluctuations of

second order during irregular motions and so are negligible.

Gradient changes resulting from small displacements or

rotations from the initial orientation are then given by the

~expression
= 894 ' _
GGX g x0 o éxGxo + dQ(sxGxo Gxoex)
+508(e_G - G_ ¢ =
( y XO X0 Y) * 6¢(€szo Gxosz) !
where
' 2siny 0 cosx,
Gxo = 9, 0 -siny 0 z
L cosx,, 0 —51nx0J
0 —sinxr 0
€y xo_Gxo€x= 9g -siny g 0 '
0 0
FZsin 0 3cosy ]
Xa o
Enyo—Gxo y= 9q 0 0 0 '
_3cosx0 C -ZSlnXOd
and
0 —3cosx0 0
€,G,0 Cxobz ™ 9 -3cosy, 0 siny .
0 sinx0 0

As a result, we see that changes in the transverse gradient,
93¢ measured by the gradiometer result from effective rota-

tions about the gradiometer axis alone; namely,*

* The same result is obtained by dif ‘erentiating Equation 13
that gives the gradient response in terms of parameterg
specifying location, orientation, and moment of an equivalent

dipole.
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6923 = 6¢go sinxo . (27)

Magnitude of a gradient fluctuation is then the product of
an effective angular deviation and a transverse gradient
resulting from the component of the equivalent dipole along
the gradiometer axis (the QB axis). The effective angular
deviation 8¢ is a sum of an angular deviation 8¢,owing to
virtual rotation of the equivalent dipole accompanying dis-
placement and an actual angular deviation 6¢a owing to rota-

tion of the gradiometer basis.

To suppress gradient fluctuations resulting from effective
rotations about the gradiometer axis, we position a dipole
along the‘fc\l axis of the gradiometer basis with its axis
parallel to the §3 axis and adjust its moment so that it can-

cels the component of the equivalent dipole along the 93 axis.

Specifically, we position the dipole so that ¢g = 0, eg = n/2,
Qg = /2, and xg = 1/2 and adjust its moment so that gg = 94

sinxo. Changes in the transverse gradient measured by the
gradiometer that result from small displacements in the steady

gradient field of the dipole are then expressed by the relation

d o _md :
6923 - 6¢ 9051HXO ’
(28)
d _ d
where §¢ = 6¢v + 6¢a .
Consequently, small displacements in the steady ambient
field with the cancelling dipole in position give gradient
changes expressed by the sum
5g.. + 6g3. = (8¢~ 66%)g_sinx (29)
923 923 \ v'7o o’ )
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Although angular deviations owing to actual rotation of the
gradiometer are the same for both the equivalent dipole and
the cancelling dipole and so cancel, angular deviations owing
to virtual rotations accompanying displacement differ to the
extent that curvature of the ambient field deviates locally

from curvature of the cancelling dipole field.

Because we can position a dipole used to cancel gradients
at a point at different distances from the point by adjusting
its moment*, we can adjust the difference in angular deviations
owing to virtuel rotations accompanying small displacements.

We place the dipole close to the point of cancellation, if the

equivalent dipole representing the ambient gradient field
rotates markedly during a small displacement, and far from
the point, if it rotates slightly. Namely, we choose the
distance from the point of cancellation to make curvatures

of the dipole and ambient magnetic fields comparable.

Although initial misalignment of the cancelling dipole
gives gradient fluctuations of second order in angular devia-
tions and so is negligible for reasonably precise alignment,
small displacements and/or rotations of the cancelling dipole
itself relative to the ambient field produce additional gra-
dient fluctuations of first order and so degrade its effective-
ness. Fluctuations of the moment of the cancelling dipole,
however, produce gradient fluctuations of second order. To
be effective then, positioning of a dipole to cancel ambient
transverse gradients must be steady with respect to the ambient
field and reasonably precise, but its moment may fluctuate.
Ideally, a cancelling dipole should be rigidly fixed to a
magnetic object producing a local gradient field.

The ratio m/r4 is constant.
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B. SUPPRESSION OF NOISE FROM FLUCTUATING MAGNETIZATION

In the absence of magnetic objects, the ambient magnetic
field. ﬁ(t), is effectively uniform and ccmprises the earth's
steady magnetic field, ﬁo’ and a small fluctuating magnetic
field, b(t), resulting from electric currents in the iono-
sphere. A magnetic object distorts the ambient field and so
produces steady gradients of the magnetic field in its vici-
nity as well as gradients that fluctuate as the uniform am-
bient field fluctuates. An object having a large magnetic
permeability, for example, warps the surrounding magnetic
field until resulting field lines are nearly normal to its

surface.

Gradients of the magnetic field in the vicinity of a
stationary magnetic object fluctuate as the undisturb:d am-
bient field, which magnetizes the object, chano s in strength
and direction in response to ionosphere curre.ts. Magni-
tudes of gradients are proportional to the strength of the
ambient field éivided by a characteristic length o* z=n object
and decrease with distance from an object as a of its

characteristic length divided by distance.

For example, a spherical iron shell magnetized by a uni-
form magnetic field, ﬁ(t), produces an induced magnetic field
outside the shell that is described by the field of a magnetic
dipole located at the center of the sphere. The dipnole points
along the uniform magnetizina field, and its moment m(t) is

given bv the expression

i 3
me) = 3TX |1 - (5—> Rgﬁ(t) ; (30a)
8 R
(0]
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where

(R, /R_)°
+ x!1 - —— . (30b)
1+13/2y)

o
i
w

Hexi=e, RO is the outer radius of the shell; Ri’ its inner radius;

and y its maanetic susceptibility. Because maagnetic suscenti-
bility of iron is large (x~1000), H(t) = 47ROB(t).

Gradients of the magnetic field surrcunding an iron sphere,
then, are everywhere described by‘the gradient field of a mag-
netic dipole thut is fixed at the center of the sphere and
changes its direction and moment in response to changes in
direction and strength of the uniform ambient magnetic field.
The equivalent dipole rébreéeﬁting'gradients at each point of
the field is the actual dipole and so lies along a radial

vector emanating from the center of the sphere.

Consequently, we find from Equation 13 that the transverse
gradient measured by the gradiometer at a position defined by

a radial vector T is expressed as

g, (T,t) = g(t){sinx(t)[cosﬂ(t)cos¢cose = sinQ(t)sin¢cosZB] 57
(3la)

- %cosx(t)sin¢sin26} ,

where

2\ 4
g(t) ¥ SB(E) (—43) (31b)
r

R
o

y(t) and Q(t) specify direction of the dipole axis with respect

to the radial vector T, and ¢ and 6 specify direction of the
radial vector in the gradiometer basis. Equation 3la tells us
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that aligning the Ql axis of the gradiometer basis along a
radial vector (¢ = 0 and 6 = 71,/2) gives a null response what-
ever the dipole orientation an’ <o completely suppresses
noise from fluctuating magne . :ion currents in the sphere.
Slight misalignment of the gradiome:er, however, gives the

response
Agz3‘?,t) = g(t)sinx(t)[AmsinQ(t)-Aecch(tﬂ '

where A¢ and A6 specify misaligniment of the Ql axis and radial

vector T.

Nonetheless, the fluctuating part of the earth's magnetic
field is much smaller than the steady part, so that

g(t) = 9q + 8g(t), with Gg(t)/gO = b,,(t)/BO
(2 xB) (B X b (t)
x(t) = x, + 8x(t), with 8x(t) = & 5 2 5
B _siny B
o) (o] -3
and
(¢ x B)) B (t)
Q(t) = Q_ + 8a(t), with 6Q(t)siny = .
o o .
B siny B
o o o
Here, X, and QO give the direction of ﬁo with respect to T,
4
LA
!
« R, \r
R B b(t) |
b (t) xE B ’
7 B2 o]
o
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gy

which is the component of the fluctuating part of the field
parallel to ﬁo’ and
B x (0 xB)
0 0
2 ’

B
o}

by (t) =

which is the component perpendicular to ﬁo. Consequently,
allowing for slight misalignment, Equation 31lc shows that gra-
dient fluctuations resulting from fluctuating magnetization
currents in an iron sphere are of second order and so negli-
gible when the Ql axis of the gradiometer is aligned along a

radial vector.

For an intricately shaped object, we surmise that an equi-
valent dipole describing gradients at a point near the object
changes not only its orientation and moment but also its loca-
tion as strength and direction of the earth's magnetic field
fluctuates. Gradient fluctuations resulting from fluctuating
magnetization currents are then, in effect, equivalent to
fluctuations resulting from irregular motions. Fluctuating
magnetization currents in an intricately shaped magnetic

object produce virtual rotation of an equivalent dipole.

Aligning the gradiometer so that the equivalent dipole
determined from the steady gradient field of a magnetic object

lies along the X, axis of the gradiometer basis with its axis

1
in the plane containing pickup loops nullifies gradient fluctua-
tions resulting from fluctuations of the dipole orientation

and moment produced by fluctuations of the earth's magnetic
field. Vvirtual rotations of the equivalent dipole produced by

fluctuations of the earth's magnetic field then give gradient
changes expressed by the relation
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6923 = 6¢)vm9051nx0 ) (33)

where 6¢vm is the apparent angle of rotation about the gra-
diometer axis.
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Section VII

FRELIMINARY TESTS OF NOISE SUPPRESSION TECHNIQUES

Our field tests* of noise suppression techniques are
necessarily preliminary because the wooden gimbal used to
orient the gradiometer provides only vertical and horizontal
axes of rotation and so both restricts gradiometer orienta-
tion (three axes of rotation provide vuirestricted orientation)
and limits precision of alignment to about 0.1 radian or a
few degrees. We report results of tests of two techniques:
(1) use of a current in a coil approximating a magnetic di-
pole to cancel the steady gradient field at a point near a
magnetic object and (2) aligning the gradiometer to suppress
gradient fluctuations from fluctuating magnetization currents
in an iron sphere. 1In each case, we first summarily describe
the technique, give a detsiled procedure, and then present

results of preliminary tests.
A. CANCELLING STEADY GRADIENTS

To cancel steady gradients at a point near a magnetic
object, we place a coil at the position of an equivalient
dipole corresponding to gradients at the point and adjust
current in the coil to nullify the gradients. We determine
positions of equivalent dipoles by measuring gracients in a
fiducial basis, calculating corresponding eigenvalues and
eigenvectors, and transforming to a description in terms of
location, orientation, and moment of associated equivalent
dipoles. After placing the coil at a position determined
from gradients measured in the fiducial basis, we drive an

cscillating current in the coil and adjust its loca%tion and

* We do tests at the La Posta Astrogeophysical Observatory
located in the mountains about 70 miles east of San Diego,
California. Coordinates of the observatory are 116° 25' 6"
west longitude and 32° 40' 39" north geodetic latitude
(Bleiweiss and Wefer, 1975).
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orientation to obtain a null response at the ¢radiometer with
the gradiometer basis aligned along principal axes of the
ambient gradient field. We *hen tilt the gradiometer away
from principal axes and adjust a steady current in the ccil
until rotating the gradiometer about its axis gives a null

response.
1. Procedure

To determine the five independent steady gradients Yij
defined in a fiducial basis {?i} , we rotate the gradiometer
about each one of three axes forming a linearly independent

triad. Rotating the gradiometer through an angle ( about its

axis gives the sinusoidal response expressed by the relation
9y3 = U cos = V sin Q (34a)

Amplitudes U and V depend on initial orientation of the gradioreter
basis. Measuring amplitude and phase cf the sirnusoidal re-
sponse developed during a complete rotation determines the

coefficients U and V corresponding to an initial orientation.

For the three axes of rotation, we choose the 93 axis of
the fiducial basis and two axes defined by the two sets of
polar angles (8,m/2) and (6,0) with respect to the fiducial
basis. When the gradiometer basis is initially coincident
with the fiducial basis, coefficients U and V are equal to the
gradients Y3 and Yi3¢ respectively. Rotating the gradiometer
about its axis then, in effect, measures the gradients Y3 and
Y13- When the axis of the gradiometer is aligned with an axis
of rotation defined by polar angles 6 and 7m/2, the coefficients
are given by the relations

) B ) | L
U = cosb 7(722 y33)51n28 (34b)

Y23
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and

vV = Yl3cosU - lesinﬂ
Rotating the gradiometer then gives a measure of Y12 and the
difference (YZZ-Y33)’ once Y, and Yi3 are determined. Finally,
when the gradiometer axis is aligned along an axis of rotation
defined by polar angles 6 and 0, the coefficients are given
by the relations

U= Y23cosﬂ + 71251n8

and

1 .
cos26 + E(Yll'Y33)51“28

<
n

Y13

Rotating the gradiometer then gives a measure of the difference
(Yll—y33), once Y,3s Yq3v and Y,, are determined. Because the
sum of longitudinal gradients vanishes, the three rotations give
a measurement of the independent gradients Y110 Y337 le, Y13’
and Y53 defined in the fiducial basis.

From the five gradients, we determine three eigenvalues
(A1>A2>A3), corresponding eigenvectors (61, @2, @3), and
three Euler angles (¢, 0, ¥) that specify a rotation Rp(@,
0, ¥) from a fiducial basis to the basis comprised of prin-
cipal axes defined by the eigenvectors*. Namely, we establish

the relation
G = R_AR
P P

that gives the matrix G describing gradients in the fiducial

basis in terms of Rp and the diagonal matrix A whose elements
are the eigenvalues Al, AZ' and A3. Gradients in the fiducial
basis, however, are also equal to gradients of the field of a

magnetic dipole.

* The Appendix delineates calculation of eigenvalues, eigen-
vectors, and Euler angles from gradients of an ambient field.
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The relation

G = R(¢, 6, DY (a)AY (0)R($, 6, Q) (35a)

gives gradients of the field of a magnetic dipole located
with respect to a fiducial busis by polar angles ¢ and 8
defining direction of its position vector r and oriented with
respect to the position vector by the azimuthal angle Q@ and
polar angle ¥, as defined in Figure 4. The matrix R(¢, 0, Q)
represents three consecutive rotations, as defined by EQuation

1la, that bring the fiducial basis into coincidence with the

hasis Qi} defined in Fiagure 4. and
cosao 0 -sina

Y(a) = 0 1 0 (35b)
sina 0 cosa

and represents a rotation through an angle -a about the §é axis
that brings the basis Qi into coincidence with principal axes
of the gradient field of the dipole when tan 2a = (2/3) tany.

Eigenvalues of the gradient field of a dipole equal eigenvalues

of an ambient gradient field when

A, A, l1/2
K|
tany = 5 , O<xem (35c)
A
and
U _3m 2 1/2
g =g = [A7+ X Ay , (35d)
4nr

where m is the moment of the dipole and r, its distance from

the field point.
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Consequently, Equations 35 and 35a tell us that gradients
of a dipole field equal gradients of an ambient field when
location (¢, €), orientation (x, Q), and moment of the dipole

are determined by the relation
R,(®, 0, ¥) = R(0, 0, )Y (o) (36a)

together with Equations 35c and 35d. Polar angles ®m and em
specifying direction cf the dipole axis in the fiducial basis

are determined by the relaticn
P(¢, 8, AY(x) = Z(fbm + N/Z)X(Gm), (364d)

where matrices Z(y) and X(y) are given by Equations 1llb and
llc.

From Equations 35a and 36a, we then find that gradients of
the field of an arbitrarily positioned dipole are expressed in
the basis comprised of principal axes of an ambient gradient
field by the relation

o~

= Y_RRYAYRR Y (37a)
where elements of the diagonal matrix Ad are eigenvalues of the
gradient field of the dipole and subscript e marks matrices
corresponding to an equivalent dipole. If a dipole is near
the position of an equivalent dipole, then R = ReRG’ Y =YeY6’
and A, = (g/geNA + 8A), so that
o~ & O Vgl hud
= +
r (g/ge)YeRGYGYéA GA)YeYGRGYe (37b)
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WA ey

where the ratio g/ge gives magnitude of gradients of the di-

pole field relative to ambient gradients and 6A is proportional

to 6¥.

o~

The matrix product YeRG?GYe represents an infinitesimal
rotation that we express in terms of angular deviations in

location and orientation of the dipole by the sum

YeRGYGYe =1 + wa €4 + Gwy Ey + Gwz €, ¢

where

wa = 5¢(cos8e51nae+51n8e51nﬂecosae)

+808cosf) coso_ + S{sino '
e e e

Gwy = 6¢51n8e51n9e - 5851nQe-6a ’
Gwz = 5¢(coseecosae - 51n6651n9651nae)
-GecosQe51nae + GQcosae :

elementary matrices €t ey, and €, are given by Equation 23d,

and we find from Eguation 364 that

5Q (5¢m—6¢)cosee+68m51n(¢e-¢me)51n8e

and

Sy = Gem[}058ecosﬂesin(¢me-¢e)—51n9ecos(¢me—¢eﬂ

—6851nQe + (5¢m—6¢)51neecosﬂe
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Consequently, we find from Equation 37b that
I'= (g/g ) (A + 8A + 6T) (38a)
and, to first order in angular deviations, that the relation

- = )
0 (Ay=Ap) 80, (A=) by,
(9/9,) 6T = (g/g_) | (A;=4,) 80, 0 (Ay=A3) 80 (38b)

(A3-Al)5wy (Ay=A3) 60, 0

3

gives transverse gradients in the basis comprised of principal
axes of an ambient gradient field. Specifically, the exbres-

sion
9o3 = (9/9,) (A,=A5) 60, (38¢c)

gives response of the gradiometer when the gradiometer
basis coincides with the basis comprised of principal axes

of an ambient gradient field, and the expression
923 = (g/ge) [ (AZ-A:;)(SU)XCOSU) - (A3'Al)6l’)y51nw] (384)

gives resnonse when the gradiometer is rotated through an

angle y about its axis. Equation 38b tells us that true align-
ment of a dipole at the position of an equivalent dipole gives
a null response whatever the dipole moment. Moreover, large

dipole moments provide means of discerning minute misalignment.
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To position and align the moment of a coil approximating
a magnetic dipole precisely at the location and orientation
of an equivalent dipole of an ambient gradient field, then,
we first align the gradiometer basis coincident with the
basis comprised of principal axes of the ambient gradient
field, as described subsequently, and place the coil at the
location and orientation of an equivalent dipole determined
from measurements of gradients in a fiducial basis. We then
drive the coil with current oscillating at a frequency of
say 5 Hz and adjust location and orientation of the coil un-
til the peak at 5 Hz in the spectrum of gradiometer response
(as displayed by a real-time spectrum analyzer)  falls below
the noise level of the instrument. The plane defined
by the dipole axis, %, and position vector, r, is then nor-

mal to the eigenvector e Next, we rotate the gradiometer

90 degrees about its axig, so that pickup loops face the
dipole, and again adjust location of the coil until the spec-
tral peak falls below the level of instrument noise. Princi-
pal axes of the gradient field of the dipole are then coinci-
dent with principal axes of the ambient gradient field, so
that the matrix 8T vanishes, but the matrix A does not neces-
sarily vanish. Finally, we return the gradiometer to the
fiducial basis and adjust a steady current in the coil until
rotating the gradiometer about its axis gives a minimum re-
sponse so that g/ge = -1, The response during rotation is

then proportional to geéx.

To align the gradiometer basis precisely coincident with
the basis comprised of principal axes of an ambient gradient
field, we initially align the basis with principal axes de-
termined from measurements of gradients in a fiducial basis,

so that the matrix

r =A- 61
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represents gradients in the gradiometer basis, where elements
of the diagonal matrix A are eigenvalues of the ambient gra-
dient field and

0 (Al—AZ)GTZ (AB—AI)GTY
§1 = (Al-AZ)GTZ 0 (AZ—AB)GTX (39Db)
(Aj—xl)dry (Az—ka)GTX 0

Angular deviations are given by the relations

GTX = §¢sinOsin¥ + S0cosV (39c)

th = §dsinOcos¥Y - S0sinV¥ (39d)
and

GTZ = §bécosO + &Y (39e)

where 8¢, 80, and 8¥ are deviations in the Euler angles

¢, 0, and ¥ that define a rotation from the fiducial basis
to the basis comprised of principal axes of the ambient gra-
dient field.

Rotating the gradiometer about its axis through an angle

¢y then gives the response expressed by the relation

gza(w) = (AB—Az)éTxcosw - (Al—AB)GTyslnw (40a)
Equation 40a tells us that true alignment of the gradiometer
axis with the eigenvector 63 gives « null response during rota-

tion of the gradiometer about its axis, so we adjust angular

deviations 8¢ and 80 until rotation giwves a null response.
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Similarly, rotating about the X. axis of the gradiometer basis

2
gives the response expressed by the relation

g23(w) = (AB—AZ)GTxcosw + (AZ-A1)61251nw (40b)
Equation 40b tells us that true alignment of the QZ axis cf
the gradiometer basis with the eigenvector 62 gives a null
response during rotation and so affords means of adjusting

the angular deviation §VY.

2. Results of Preliminary Tests

The wooden gimbal used to orient the gradiometer provides
only vertical and horizontal axes of rotation and so pre-
cludes aligning the gradiometer basis coincident with the
basis comprised of principal axes of an ambient gradient
field. Although we can not use the present gimbal to test
thoroughly the procedure outlined above for cancelling am-
bient gradients, our preliminary tests show that a steady
current in a coil placed approximately in the position of
an equivalent dipole reduces ambient gradients by about a
factor of 100.

To facilitate positioning the coil, we first chose to cancel
ambient gradients resulting from an iron sphere, which was placed
4.5 m north of the gradiometer and has a radius of 0.74 m. Magni-
tude of the earth's magnetic field is about 4.5 X 104 nT at
the test site, so that the dipole induced at the center of
the sphere by the earth's magnetic field produces gradients
having magnitudes proportional to

3B (r) °
g = ﬁ; T = 133 nT/m
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The relation

9,3 = 9 [sinxcosﬂcos@cos¢—(sinxsichosZG + %cosxsinze)sin¢] (41la)
gives the gradiometer response to the induced dipole, where
polar angles ¢ and 6 c.ecify direction, in the gradiometer
basis, of the position vector r pointing from the dipole to
the gradiometer, as shown in Figure 4, and angles x .ad @
define direction of the dipole axis, which is parallel to the
earth's magnetic field, with respect to the position vector.
Because of rough terrain at the test site, the center of the
sphere is somewhat above the center of the gradiometer, but
we place the sphere so that the position vector and gradio-
meter axis lie approximately in a vertical plane containing
the earth's magnetic field vector. Then §: T 37/2, and so

1 s o .
953 E(Al—kj;51n2(9 a)sind |, (41b)

where the expression

1/2 ]

A=), = g(4+5cos’y) (41c)

1 73
gives the difference in eigenvalues Al and A3 of gradients of the
induced dipole field and the angle a,determined by the relation
tan 2o = (2/3)tany, gives inclination of the eigenvector $3 to the
position vector, as shown in Figure 1ll,and x = n~(¢d+6d).
The local dip angle of the earth's magnetic field, ¢d’ is
about 55° at the site, and the dip angle of the position vec-

tor, ed, is about 5o or so.

Rotating the gradiometer about its axis (0<¢<2m) and
measuring amplitude of the response 3jives a gradient magnitude
of 56 nT/m, and so we conclude from Equation 41b that 6-a ¥ llo,
which tells us that the gradiometer axis is tilted somewhat
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from vertical. Because alignment procedures at the
site are crude at present, we exvect angular deviations

of the order of 0.1 radians or a few degrees.

To cancel gradients of the induced dipole field, we place
a coil about 5.6 m north of the gradiometer and align its
axic parallei to the earth's magnetic field vector. The coil
comprises 1000 turns of wire wound on an aluminum frame about
0.97 m in diameter. After making slight adjustments in lateral
position and orientation of the coil, we find that a current
of 0.6 A in th: coil reduces amplitude of the response to rota-
tion of the gradiometer about its axis from 56 nT/m to 0.49 nT/m,
or by a factor of 100. For a current of 0.6 A, the moment of
the coil is 444 A m2, and so

3uom
v 135 nT/m ,

9
S 4tr
with r = 5.6 m, which is nearly equal to the strength of gra-
dients produced by the sphere, g = 133 nT/m.

Because a magnetic dipole parallel to thz earth's magnetic
field at the center of an iron sphere describes the gradient
field surrounding the sphere, rlacing a coil at the position
of an equivalent dipole of the gradient field is straightfor-
ward. For irregularly shaped magnetic objects, however, de-
termination of location and orientation of equivalent dipoles
requires measurement of gradients in a fiducial basis. As a
first test of cancellation techniques for irregularly shaped
objects, we placed a collection of 0il drums and steel nlanks
approximately 5 m north of the gradiometer.
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We define a fiducial basis by rotating the gradiometer
about its axis, when vertical, until a null response 1is
obtained, so that g,, vanishes in the fiducial basis. To
measure gradients in the fiducial basis, we rot~“e the gra—
diometer first through an angle ¢ about its axis (the x3
axis of the gradiometer basis) and then through an angle 6
about the 22 axis of the gradiometer basis, so that the

expression
: 1 ‘ ‘
9yq = [112c052¢ - 5(2Yll+y33)31n2¢]snn6 = YlBsin¢cosﬂ (42a)

gives its response in terms of gradients, ”ij’ in the fiducial
pasis and angles of rotation. Rotations about the gradiometer
axis, 6 = 0, and about horizontal axes corresponding to ¢ = 0

and ¢ = 1/4 then determine gradients Y13 and Y12 and the sum

2Yll + Y33° Next, we rotate the gradiometer through an angle
Y about the xl axis of the gradiometer basis, so that the
expression
1 .
9y3 = 5(Yll + 2y33)51n2w (42b)

gives its response in terms of gradients in the fiducial basis
and the angle of rotation and so determines the sum Y1 + 2Y33-
Since Y54 vanishes, the procedure measures the four nonvanishing

gradients in the fiducial basis.

From gradients measured in the fiducial basis, we find, as
described in the Appendix, location, orientation, and gradient
strength g of the two pairs of equivalent dipoles corresponding
to the collection of magnetic objects. The gradient strength
of the objects is about 67 nT/m, and the plane containing axes
of equivalent dipoles is no longer vertical as for the iron
sphere but is tilted about 30° from vertical about the xl axis
of the fiducial hasis.
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Because the gimbal used to orient the coil provides only
a horizontal axis of rotation, it precludes accurately aligning
the axis of the coil in a tilted plane. Crude placement of
the coil at the position of an equivalent dipole, however,

reduced gradients by about a factor of 30.
B. ALIGNING FOR NULL RESPONSE

To suppress gradient fluctuations resulting from fluctuating

magnetization currents in nearby magnetic objects, we orient
the gradiometer so that an equivalent dipole corresponding to
the steady gradient field of the objects lies along the Ql

axis of the gradiometer basis with its axis in the plane con-
taining pickup loops. To align the gradiometer, we bcgin by
following the procedure described for cancelling steady gra-
dients. Namely, we align the gradiometer basis cojncident

with the basis comprised of principal axes of the steady gra-
dient field and precisely position a coil at the location and

orienta*tion of an equivalent dipole.

With a current oscillating in the coil, we then tilt the
gradiometer about the Qz axis of the gradiometer basis and
rotate it about its axis until a maximum response is attained
so that pickup loops face the coil. Next, we point the axis
of the coil directly toward the gradiometer and turn the gra-
diometer about the Ql axis of the gradiometer basis until a
null response is obtained. The axis of the coil then lies

along the Qz axis of the gradiometer basis.

Finally, we return the axis of the coil to its initial
position and turn the gradiometer about its axis until a null
response is obtained. The coil then lies along the Ql axis
of the gradiometer basis with its axis in the plane containing
pickup loops. The response tnen vanishes for every orien-
tation of the coil.
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1. Procedure

To align the gradiometer for a null response from a current
oscillating in a coil positioned at the location and orienta-
tion of an equivalent dipole, we first align the gradiometer
basis coincident with the basis comprised of principal axes
and then turn the gradiometer through an angle 7m/2 - o about
the §2 axis of the gradiometer basis, so that the coil then

lies along the X, axis of the gradiometer basis with its axis

I
in the plane containing pickup loops. The matrix

Ra(¢a’ ea’ wa) = Rp(¢, 0, ¥)Y(n/2 - o) (43a)

represents consecutive rotations of the gradiometer from a
fiducial basis first to the basis comprised of principal axes
(represented by Rp) and then about the QZ axis of the gradio-
metar basis through the angle /2 - a. Angles ¢, 0, and V¥
are Euler angles specifying a rotation to the basis comprised
of principal axes, and the angles ¢a, Ga, and wa are Euler
angles specifying the rotation that aligns the gradiometer

for a null response; namely,

R_ (9, B, V) = Z(6, + 1/2)X(8,)2(V,) (43b)

From Equation 36a that specifies location and orientation
of an equivalent dipole in terms of Euler angles defining a
rotation to a basis comprised of principal axes, we then find
that '
R_(6_, 6_, ¥) = R(¢, 0, QY(n/2) , (44a)

so that the relations

cosea = ginfBcosf ’ (44Db)
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] ) 1 - = —-ai
51nfa51n(¢ ¢a) sinQ (44c)
sinﬂacos(¢ - ¢a) = =cosfcosfl (444)
coswa = ginfsin(¢ - ¢a) (44¢)
and
. - . I _ \
51nwa c05651nea 51n6coseacos(¢ ¢a) (44f£)

give Euler angles ¢a' Oa, and wa in terms of angles ¢, 6, and

Q that specify location and orientation of an equivalent dipole.

When the gradiometer is aligned for a null response, gra-

dients are given by the relation
I = R_GR (45a)
a a
wihere the relation
G = R(¢, 6, Q)Gy(g,x)R(¢, 6, Q) (45b)
with Gy(g,x) given by Equation 1l0a, gives gradients in the
fiducial basis resulting from current in the coil positioned

at the location and orientation of an equivalent dipole. For

true alignment, then,

-2cosy 0 -siny
INE Y(ﬂ/Z)Gy(g,x)Y(n/Z) =g 0 cosy 0 (45c)
-siny 0 cosy

where x is the polar angle giving inclination of the a:is of
the coil to its position vector. Equation 45c shows that gra-
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dients are then independent of the azimuthal angle & and
that the gradiometer response vanishes whatever the polar angle

x and so vanishes for every orientation of the coil.

For misalignment of the gradiormeter, R. = R__R_., where
a ao aé

Raé represents an infinitesimal rotation. We then find that

I = Fo - géFa (46a)
where
0 siny O -2siny 0 3cosy 0 3cosy O
éra=8Ax siny 0 0 *éAY 0 0 0 -6A, | 3cosx 0 51nx(46b
0 0 0 3cosy 0 2siny 0 siny 0
éAx = 6¢81n6a81nwa + 66coswa . (46cC)
GAY = 6¢31n6acoswa - 6631nwa ' (46d)
and
6AZ = 6¢cosea + Sy . (46e)

To make adjustments of 8¢ and 66, then, f{irst we orient
the gradiometer for a null response and turn it about ils axis
to obtain a maximum response from current oscillating in the
coil, so that pickup loops face the coil. 1Its response is

then given by

953 = 9 [—51nx + (6¢sin6acoswa - 6651nwh)3cosx] (47)

We then point the axis of the coil directly at the gradiometer
so that x = 0 and adjust 8¢ and 66 to obtain a null response.
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The axis of the coil then lies along the Qz axis of the gra-

diometer basis.

To adjust Sy, we return the axis of the coil to its initial
orientation and turn the gradiometer about its axis to obtain
a null response. The coil then lies along the Ql axis of the
gradiometer basis with its axis in the plane containing pickup
loops. Finaily, we point the axis of the coil in several di-
rections to ensure that the response is null for every orienta-

tion of the ccil. |

2. Results of Preliminary Tests

Although we can not thoroughly test the alignment procedure
outlined above for suppressing noise from fluctuating magneti-
zation currents in magnetic objects because the gimbal used to
orient the cradiometer precludes making the required alignments
precisely, our preliminary tests show that crude alignment of
the gradiometer reduces noise power from fluctuating magneti-

zation currents in an iron sphere by a factor of about 100.

As a first test of noise suppression afforded by aligning
a gradiometer for a null response, we placed an iron sphere,
having a radius of 0.46 m, at distances of 3.7 m and 1.8 m
north of the gradiometer. At each distance, we place the
sphere so that the axis of the gradiometer and the position
vector directed from the center of the sphere to the gradio-
meicr lie approximately in a vertical plane containing the

earth's magnetic field vector.

The magnetic dipole induced at the center of the sphere
by the earth's magnetic field then gives a gradiometer response

described by the relation

/2

Lol d

= %(4 + 5coszx)l

903 sin2(6 - a)sing (48a)
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where ¢ and 6 are polar angles specifying direction of the

position vector in the gradiometer basis; the relaticn tan 2a
(2/3) tany determines the angle o; and x = 7 - (¢d + ed),
where ¢d is the local dip angle of the earth's magnetic field

and 0 the dip angle of the position vector. The relation

dl

A\ 4
_ 38 (X
9 = Ro(r ) (48b)

gives gradient strength of the induced dipole, where B = 4.5 X
104 nT is the strength of the earth's magnetic field at the
site, RO is the radius of the sphere, and r, its distance from
the gradiometer. At the distance r = 3.7m, g = 70 nT/m, and at
ry = 1.8m, g = 1252 nT/m.

Rotating the gradiometer about its axis and measuring am-
plitude of the response gives a gradient magnitude of 7.8 nT/m,

with r = 3.7m, and a magnitude of 136 nT/m, with r = 1.8m.

The center of the sphere lies somewhat below the qra-

diometer in each case, ed - -50, and so for ¢d = 550, we con-

clude from Equation 48a that in each case 6 - a = 30, which
again tells us that the gradiometer axis is tilted somewhat
from vertical and that 8 = m/2 - A8 with A8 = 10°.

To examine the affect of gradiometer alignment or suppressing
noise from fluctuations in strength and direction of the dipole
induced in the sphere that result from fluctuations in strength
and direction of the earth's magnetic field, we express gradio-
meter response in terms of components of the fluctuating di-
pole in the gradiometer basis. Namely, we write the fluctuating

gradiometer response as

o

59,4 (t) = 59, () (3 )(cos26 -1)cososin2¢

+dgz(t)(
-693(t)(

o

)[5cosze L 1 - Blogk2d = l)c052¢] Gon® (49a)

ol B

)(Scosze + 3)sinfsin¢ ,
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wleare

b.(t)

and bi(t) are components of the fluctuating part of the earth's
magnetic field ir the gradiometer basis. For 6 = n/2 - A6,
then, Equation 49a tells us that

8§g,3(t) = §g4y(t)sing + é—g-[dgl(t)Ssinmb + dgz(t)(3-5c082¢d (49c)

Moreover, Equation 48a shows that rotating the gradiometer
about its axis until response to steady gradients vanishes
gives the zero position for the angle ¢. For ¢ = 0, response

to gradient fluctuations is suppressed; namely,
6923(t) = —dgz(t)Ae ' (50a)

and for ¢ = m/2, response to gradient fluctuation is unsup-

pressed; namely,

6923(t) = 693(t) + 46g2(t)A6 (50b)

To investigate the effect of suppressing noise by aligning
a gradiometer for a null response, then, we compare spectra
of gradiometer response for the two alignments ¢ = 0 and ¢ =
n/2 with the iron sphere placed 1.8m north of the gradiometer.
Figurel2a shows a spectrum obtained for the alignment ¢ = n/2,
and Figurel2b shows a spectrum obtained the following day for
the alignment ¢ = 0. The heavy solid line in each figure de-
lineates the spectrum of inherent instrument noise observed in
a magnetically quiet environment, as shown in Figure 8 .
Heavy broken lines delineate the spectrum expected without
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effective suppression, which we determine from spectra of
fluctuating components of the earth's magnetic field reported
by Davidson, 1964, by using Equation 49b and presuming that
variations in direction of the fluctuating magnetic field are
isotropic. Light broken lines mark spectra expected with
noise power reduced by a factor (AO)Z, as specified by Equa-

tion 50a, with A6 = 0.1 radians.

From Figures 124 and 12b, we first observe that spectral
density of estiinated spectra increases with decreasing fre-
quency at about the same rate as spectral density of magnetic
field fluctuations; namely, spectral densities are proportional
to (l/f)z'6 (Davidson, 1964). Next, we see that magnitudes
of observed spectra, in both cases, are about at the level
expected when gradient fluctuations are reduced by a factor (Aa)2
with A6 = 0.1 radians. Finally, the expected increase in level of

observed spectra for ¢ = n/2 is not evident in Figure 12a.

Equation 50b then suggests the conclusion that the verti-
cal component of the fluctuating magnetic field is suppressed
at the test site. The conclusion is consistent with data from
magnetic observatories (Campbell, 1975) that show the vertical
component of magnetic field fluctuations at mid latitudes is

appreciably smaller than the horizontal component.

The slight increase in level at high frequencies of the
observed spectrum shown in Figure 12b results from a class
Pc 5 micropulsation event (Campbell, 1967; Saito, 1969)
evident in the time series record shown in Figure '13.
Pulsations begin at about 0400 hrs (PST) on 6 February 1976
and continue for~ 5000 seconds as a damped sinusoidal oscil=~
lation having a period of roughly 500 seconds. Maximum peak-

to-peak amplitude of the pulsation is about 350 nT.



Spectra of gradiometer response observed when the iron
sphere is placed 3.7 m north of the gradiometer are indistin-
guishable from spectra observed in a magnetically quiet en-
vironment. Moving the sphere from 1.8 m to 3.7 m reduces
noise power by a factor of (3.7/1.8)8 or about 300, and so

we expect spectral levels comparable to inherent noise of

the instrument.
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Section VIII
OPERATION AT THE OCEANOGRAPHIC TOWER

Our field tests show that the construct of an equivalent
dipole provides a useful means of describing response of the
gradiometer to ambient gradients that are sensibly constant
over the distance separating pickup loops (25 cm). Pre-
liminary tests of noise suppression techniques, developed by
describing 7radiometer response in terms of an equivalent
dipole, demonstrate reduction of noise power by a factor of
100 using crude means of aligning the gradiometer and suggest
that reduction of noise is limited by alignmen’ precision
alone. By improving alignment to a precision of lO_3 radians
or 0.05 degrees, we expect to reduce noise power by a factor

of 106.

dere, we use the construct of an equivalent dipole to
estimate stalbility and alignment required to suppress noise
enough to afford certain measurement of fluctuating gradients
of magnetic fields generated above the surface by oceanic
internal waves passing the oceanographic tower operated by
the Naval Undersea Center. The tower is locaced about one
mile offshore near San Diego, California in water 18 m deep.
Although internal waves passing the tower provide a well
characterized and readily accessible source for first measure-
ments of gradients of magnetic fields generated by internal
waves, magnetization currents in the steel structure of the
tower produce steady as well as fluctuating local gradients
that make the task of measuring fluctuating gradients from

internal waves an exacting one.
In what follows, we first describe gradients of the steady

magnetic field near the tower, give typical spectra of fluc-
tuating gradients expected from internal waves passing the
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tower, and then specify stability and alianment recquired to
afford certain measurement of fluctuating gradients from

internal waves.
A. GRADIENTS OF THE STEADY MAGNETIC FIELD NEAR THE TOWER

To obtain requisite information for assessing effects of
gradients resulting from magnetization currents in the tower
structure, we used a fluxgate gradiometer to measure the
steady gradient field in the vicinity of the tcwer (Gillespie
and Podney, 1976). We measured steady gradients at nine posi-
tions due west of the tower in a vertical plane containing its
centerline. The pair of coo:dinates (ZZ’ Z3) specify a posi-
tion, where the coordinate 22 gives its horizontal distance
in meters due west of the centerline of the tower and the

coordinate 2 its height in meters above the ocean bottom.

3!
The water depth is about 18 m.

Table I lists eigenvalues (Al, Az, A3) and polar angles
(¢1, el; ¢2, 62; ¢3, 63) giving directions of a set of eigen-
vectors (él, 82' 83) of the steady gradient field at the nine
positions. Figure 14 defines the fiducial basis used to
reckon directions of eigenvectors. The Q3 axis is directed
vertically downward; the Ql axis, northward; and the QZ axis,
eastward. Table I shows that the eigenvector 82 points nearly
northward and 10 to 20 degrees above horizontal. The plane
cortaining axes of equivalent dipoles, which is normal to gz,
is then tilted 10 to 20 degrees about a horizontal axis pointing
eastward and so is close to a vertical plane of symmetry of
the tower structure. The structure comprises four steel pilings

set in a square array aligned north-south and east-west.
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Table II lists parameters specifying location, orientation,
and gradient strength of the equivalent dipole corresponding

to the set of eigenvectors (@l, 62, €,) at each position. It

)
shows that the position vector locatigg equivalent dipoles
lies in the vertical plane of symmetry of the tower structure
(¢ = 90°) . Figure 15 depicts location and orientation in the
plane of symmetry of the equivalent dipole for each position.
Dashed lines indicate locations of dipole images. Lengths

of vectors indicating orientation of dipole axes are propor-
tional to respective dipole moments. Gradient strength, g,

of equivalent dipoles decreases with increasing horizontal
-n

distance, 22, from the tower centerline in proportion to 22

with n = 2.55.

In a vertical plane of symmetry of the tower structure,
then, gradients from magnetization currents in the structure
are represented by gradients of a dipole located in the plane
of symmetry. Asymmetry of the superstructure of the tower,
however, tilts the axis of the equivalent dipole a few degrees

out of the plane of symmetry.

B. SPECTRA OF FLUCTUATING GRADIENTS EXPECTED FROM INTERNAL
WAVES PASSING THE TOWER

Magnetic fields generated above the surface by progressive
waves in a stratified ocean are circularly polarized in a
vertical plane normal to wave crests, and their magnitudes
decrease exponentially with height, h, above the surface as
e_kh, where k denotes wave number (Podney, 1975). As a result,

gradients parallel to wave crests vanish, and the matrix

(Podney, 1976) _

p—cc

sin(wt-k-T+n) 0 cos(wt-k-T+n)
G(h,?,t;i,w) = g(E,w)e—kh 0 0 0 (51)

- . -
cos (wt=-k.r+n) 0 -sin(wt-k.r+n)
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represents gradients at a height h above the surface in a basis
having its 23 axis pointing vertically downward; its 21 axis,

in the direction of wave propagation %; and its 2 axis, parallel

2
to wave crests. The scalar g(k,w) gives the strength of gra-
dients generated at the surface by a wave having a frequency

w and wave vector'?, and n(?) is a phase shift.

From l'quations 51 and 12b, we conclude that an equivalent
dipole representing gradients generated at a point above the
surface by an ocean wave circles a sphere of unit radius about the
point on a great circle path in a vertical plane normal to
wave crests. The axis of the dipole is tangent to the sphere
in a vertical plane normal to wave crests, y = /2 and Q = /2,
and circles the sphere at a frequency equal to one half the
wave frequency; namely, 26(t) = wt - kT + n. Its moment is

proportional to wave amplitude.

For surface waves, the relation

N R U _ow 1/2
g(k,w) = gm,m(o )B El+f)zsin2¢>d+(l-f)zcosz(bdcoszeh] (52a)
4

gives the strength of gradients generated at the surface by a
surface wave that has a wave height £(k,w) and heads at an

angle 6, east of magn2tic north. Here, B denotes maynitude of

h
the earth's magnetic field; ¢d' its dip angle; o, the electrical

condnctivity of seawater (~4 mhos/m); and

-kD
g = _kDe , (52b)
sinh kD
where D denotes water depth. The relation
BOE s <2 cotpcos8y (52c)
1+f
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gives the phase shift.

For internal waves, the relation

U _ow 2 5 2 1/2
B(sin ¢ gHcos” ¢ 4c08 Bh ) In(d,k) (53a)

24

g, (k,w) = £ (d/K,w) 5

gives the strength of gradients generated at the surface by
an nth mode internal wave that has a displacement En(d,i,m)
at a depth d(0<d<D) and heads at an angle eh,n east of magne-
tic north. Here,
D
I_(d,k) = —~—l———\g®n(c,k)e_kckdc , (53b)
®n(d,k)

where @n(c,k) is an eigenfunction giving the profile of an
nth mode wave. Eigenfunctions vanish at the surface and
bottom of an ocean and are orthonormal with respect to the

weight function Nz(z); namely; @n(O,k) = @n(D,k) = 0, and

D
2 _
~j‘ o (z,k)o (z,kK)IN (z)dz = § / (53c)

O

where N(z) is the Brunt-vidisdla frequency profile of a thermo-

cline. The relation

tan n, = —cot¢dcoseh n (53d)
1

gives the phase shift.
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We use Equation 53a to estimate spectra of fluctuating
gradients expected from irternal waves. It shows
that strength of gradients generated at the surface is pro-
portional to wave displacement at depth and that the coef-
ficient depends on a weighted integral of an eigenfunction
over depth, as expressed by Equation 53b. From spectral
measurements of isotherm displacements at the top of the
thermocline together with the measured thermocline profile,
then, we compute spectra of fluctuating gradients expected
from internal waves passing the tower.* The waves pass
the tower in packets of long-crested first-mode waves
running close to due east, sO eh‘z m/2. Magnitude of the
earth's magnetic field at the tower is about 47,200 nT
and its dip angle is about 61° (Gillespie and Podney, 1976).

Figure 1 shows three typical spectra of transverse gra-
dients expected 7 m above the surface from internal waves passing
the tower compared toO the inherent noice spectrum of the instru-
ment. Spectra shown in Figure 1 give the expected spectral re-
sponse when pickup loops of the gradiometer face in the direction
of wave propagation or, more specifically, when the Ql axis of
the gradiometer basis is parallel to wave crests. As is evident,
spectral densities of fluctuating gradients expected from inter-=

nal waves are well above the ievel of instrument noise.

* Fluctuating gradients from surface waves are neglibly
small at frequencies of internal waves at the tower.
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C. ALIGNMENT AND STABTLITY REQUIREMENTS

We plan to jut the gradiometer over water on a rigid noun-
magnetic cantilever extending horizontally 25 meters from the
centerline of the tower in a vertical plane of symmetry. The
gradient field of a dipole located in the plane of symmetry
and having a gradient strength, g, of about 200 nT/m or 2 X
lO5 pT/m gives gradients at the position of the gradiometer
from magnetization currents in the tower structure. We re-
present fluctuations in responée of the gradiometer, which
result both from fluctuations in its position and orientation
and from fluctuations in nragnetization currents in the tower,
in terms of fluctuations in location, orientation, and gra-

dient strength of the dipole.

1. Alignment

Without aligning the gradiometer to suppress noise from

fluctuating magnetization currents in the tower, we expect

a spectral density of fluctuating gradients, NI’ given by
the relation
- | 2
NI(f) = gz[b(f)/B]2 = 1.25 X 10 4(l/f)2 6(PT/m) /Hz , (54a)
where the relation
2 =
b“(£f) = 6.31 x 10°%(1/6)2°®  (nT)2/H2 (54b)

gives the spectral density of magnetic field fluctuatioas
owing to changing ionospheric currents as reported by David-
3on, 1964. We see from Figure 1 and Equation 54a, then,

that gradient fluctuations from fluctuating magnetization
currents in the tower mask gradient fluctuations expected
from internal waves unless the gradiometer is aligned to
suppress gradient fluctuations from magnetization currents in
the tower.
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By aligning the gradiometer for a null resvonse with a
precision of 0.01 radians or 0.6 degrees, liowever, we re-
duce the spectral density of gradient fluctuations owing to
fluctuating magnetization currents in the tower by a factor
of 10-4, which then puts it below the level of instrument
noise. We align for a null response by orienting the gra-
diometer so that the dipole representing gradients of magne-
tization currents in the tower is located along the Ql axis
of the gradiometer basis with its axis in the plane containing
pickup loops. The plane containing pickup loops is then close

to a vertical nlane of symmetry of the tower structure.

In order to align the gradiometer for a null response and
at the same time to face pickup loops in the direction of in-
ternal wave propagation, we choose the plane of symmetry so
that internal waves cross the plane at nearly normal inci-
dence. Namely, we extend the cantilever from either the
north or the south side of the tower. Aligning the gradio-
meter for a anull response to suppress gradient fluctuations
from fluctuating magnetization currents in the tower then
gives a near maximum response to gradient fluctuations from

internal waves as well.

2. Stability

When the gradiometer is aligned for a null response, it
responds only to displacements and changes in orientation that
produce an effective rotation about the gradiometer axis of
the equivalent dipole representing gradients from magnetiza-

tion currents in the tower. Namely, the relation

923(t) = §¢(t) g siny (55)
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then gives gradient fluctuations resulting from irregular motions,
where §¢(t) is the effective angle of rotation about the gradio-
meter axis, g is the gradient strength of the equivalent dipole,
and the angle y gives inclination of its axis to the position
vector locating the dipole in the gradiometer basis. Our measure-
ments give g = 2 X 105 pT/m and x = 115°. From Equation 55a,

we then expect a spectral density of fluctuating gradients re-

sulting from irregular motion, N, given by the relaticn
N (E) = 0.770(£) (pT/m)%/Hz (55b)

where ¢(f) is a spectral density of fluctuations in the effective

angle of rotation about the gradiometer axis, in units of (seconds
2

of arc)“/Hz.

To keep spectral density of gradient fluctuations from irre-
gular motions at the level of instrument noise in the bandwidth
of gradient fluctuations expected from internal waves, nominally
2 X 10—3 Hz to 5 X 10"3 Hz, the cantilever must limit angular
deviations of effective rotations about the gradiometer axis to
a few seconds of arc or about 10-5 radians in the bandwidth. We
require, then, that st:uctural design of the cantilever limit
rotational and translational fluctuations of the instrument
relative to the tower to 10"5 radians ( 2 seconds of arc) and
0.1 mm in the bandwidth of gradient fluctuations expected from
internal waves. A displacement of 0.1 mm at a radius of 25 m

gives an angular deviation of about 1 second of arc.

3. Cantilever Design

Figure 16 shows an elevation and top view of the structural

desian developed by Mechanics Research, Inc. (Haire and Van Lerbery,

1976) to give the requisite stability under wave, wind, and thermal
loads expected during operations at the tower. The cantilever is

a four-sided truss space frame extending about 20 meters from the

i




An 8 m base section made of tubilar aluminum
and a 12 m outer secvtion made

face of the tower.

attaches to the tower supports,

of a fiberglass laminate supports the instrument at the tip of

the cantilever. The instrument Dewar fits in a fiberglass gim-

three independent axes of rotation provide means

bal mount wnose
A catwalk running

of orienting the gradiometer axis as necessary.
the length of the cantilever provides access to the instrument.
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Section IX
CONCLUSION

At present, we describe the response of a superconducting
magnetic gradiometer in terms of the magretic field and its
gradients at the midpoint of the gradiometer axis. The descrip-
tion is a useful approximation provided gradients of the ambient
magynetic field are sensibly constant over the length of the
gradiometer axis. The part of the response proportional to
the magnetic field at the midpoint results from slight dif-
ferences in area and orientation of the loops forming the pick-
up circuit of the gradiometer and vanishes for a perfectly
balanced gradiometer. The part proportional to a gradient of
the magnetic field at the midpoint. depends of five independent
elements of a matrix representing gradients of the ambient mag-

netic field at the midpoint.

To concisely describe the gradient response, we use the
five elements to define location, orientation, and moment of
an equivalent magnetic dipole that gives gradients at the mid-
point equal to gradients of the ambient field. Constructing
an equivalent dipole lets us visualize the response to ambient
gradients. For example, the gradient fiell <f a dipole fluc-
tuating about a mean location, orientation, and moment repre-
sents fluctuating gradients from nearby magnetic objects. A
dipole circling a sphere of unit radius about the midpoint on
a great circle path in a vertical plane normal to wave crests
represents gradients from an ocean wave. A swarn >t divoles
circling the sphere represents gradients fror 2 ficid of ran-

dom waves.

Results of preliminary tests of grad.un=t:>r response are
consistent with the description based nn a [irct order ap;.» xi-
mation. Nonetheless, the results are not precise ~..cuch
delimit the range of validity of the first orsder description.

We plan further tests using more accurate gimbals ard aligqnment
procedures both to determine a more precise description of
gradiometer response and to mark limits of valid:'y of the first

order description.
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FIGURE CAPTIONS

Figure 1 Three typical spectra of fluctuating gradients of
magnetic fields expected 7 m above the surface from internal waves
passing the oceanographic tower operated by the Naval Under-

sea Center as compared to the inherent noise spectrum of the
instrument. G5Spectra are estimates based on spectral measure-
ments of isotherm displacements made during Pugust 1972.

Serial numbers marking spectra tell the month, day, and local

time at the beginning of corresponding time series; for example,
08211540 means Auvust 21 at 15:40 hours (PST).

Figure 2a Illustration of the instrument showinc Dewar con-
struction and principal components of the gradiometer probe.
A wrapping of alternating layers of fiber glass cloth and
aluminized Mylar, which is not shown, insulates the interior
vessel. The Dewar stands 48" high, is 26" in diameter, and
weighs about 250 lbs.

Figure 2b Diagram of the superconducting circuit of the gra-
diometer. Two coplanar pickup loops, having a combined sc¢lf
inductance Lp’ are oppositely wound in series and connected
to the primary winding (having a self inductance Ll) of a
transformer containing a normal metal shield between its
superconducting windings that attenuates radio frequency
interference (rfi). The secondary winding of the transformer
has a self inductance L2 and 1is connected to a field coil,
having a self inductance Lf, that couples flux to a super-
conducting quantum interference device (SQUID). The SQUID
has a self inductance LS and is driven by a tank circuit
connected to roem temperature electronics. The rfi trans-
s former, SQUID, and tank circuit are encapsulated in a super-
l conducting shield. A super current I1 flows in the pickup
circuit, and a super current Iy, in the coupling circuit.
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Figure 3 Geometry of pickup loops comprising an axis of a
superconducting magnetic gradiometer. Centers of the two
pickup loops are separated by a distance 2s, and their areas

are Al and AZ' Normals tc the plane of each loop are directed

along unit vectors ﬂl and 32,

locate points within a loop contour. The gradiometer basis

and radial vectors 61 and Bé

A J 1 3 .
X;( 1s fixed midway between centers of the loops and 1is

located with respect to a fiducial basis by the vector R.

Figure 4 Vector diagram depicting location and orientation
of a magnetic dipole, 1i, with respect to the gradiometer
basis {Qi} . Polar angles ¢ and 6 specify direction of the
position vector T locating the dipole. The polar angle ¥
and azimuthial angle ( specify direction of the dipole axis
with respect to the position vector. The 93 axis of the
basis Qi points along the position vector; the 92 axis,

: A
along P x ﬁ; and the 91 axis, along (2 X m) X r.

Figure 5 Record of gradiometer response during a clockwise
rotation followed by a counter clockwise rotation about its
axis. Rotations are made stepwise in sixteen increments of
22.50, pausing at positions numbered 1 through 16 that cor-
respond to numbered positions in Figure 6. Spikes mark move-
ments between incremental positions, and flats mark values

recorded while pausing.

Figure 6 Orientation of positions 1 through 16 with respect
to magnetic north. Rotations begin with the §2 axis of the
gradiometer basis pointing northward and proceed through posi-
tions 1, 2, 3, ..., 16, 1 during a clockwise rotation and
through positions 1, 16, 15, ..., 2, 1 during a counter clock-

wise rotation.
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Figure 7 Signature of hysteresis observed during rotation at
an imbalance somewhat less than 10"5 m_l. The trace records
gradiometer response during a stepwise oscillation of the QZ
axis of the¢ gradiometer basis about position 5 marked in
Figure 6, beginning with a clockwise movement to position 7.
Numbered flats mark values recorded while dwelling at cor-
responding positions. Spikes mark movements between positions

in the sense denoted by vertical arrows.

Figure 8 Data depicting the noise spectrum of the gradiometer
operating in a magnetically quiet environment. We use a
calibration of 4.5 mvV/{(pT/m) to obtain spectral density in
units of (pT/m)z/Hz, marked on the left hand coordinate scale,
and a calibration of 12.7 V/d)O to obtain spectral density in
units of ¢02/Hz, marked on the right hand coordinate scale.
Points marked by a circular dot e represent data obtained from
digital records. Points marked by a triangular dot ¥ repre-
sent data obtained from a real-time spectrum analyzer. Error

bars mark limits corresponding to two standard deviations.

Figure 9 Data depicting the spectrum of intrinsic noise of
the SQUID sensor compared to the noise spectrum of the gradio-
meter operating in a magnetically quiet environment. The left
hand coordinate scale gives spectral density in units of (pT/
m)z/Hz, and the right hand scale, in units of ¢02/Hz. The
conversion factor is 3.5 X 10-4¢o/(pT/m). The solid line de-
lineates the spectrum of inherent gradiometer noise shown in
Figure 8, as represented by the spectral form S(f) = (2.1 X
10-3)/fl'3(pT/m)2/Hz, for f«0.1 Hz, and S(f) = 0.03(pT/m)2/
Hz, for f»*0.1 Hz.
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Figure 10 Expected enhancement of instrument performance fror
use of a thin-film dc type SQUID sensor. Data points depict
the spectrum of intrinsic noise of a thin-film dc type SQUID
in units of @oz/Hz marked on the right hand coordinate scale,
and the heavy dashed line marks a corresponding expected
spectrum of gradiometer noise in units of (pT/m)2/Hz marked

on the left hand coordinate scale. The light dashed curve
delineates the spectrum of intrinsic noise of a torodial
point-contact type sensor as used in the instrument, in units
of ¢02/Hz, and the solid line marks the corresponding spectrum

of inherent gradiometer noise in units of (pT/m)z/Hz.

Figure 11 Magnetic dipole describing the induced gradient
field at a radial position r outside an iron sphere magnetized
by the earth's magnetic field. Eigenvectors él and 33 mark
principal axes in a meridian plane for several values of the
angle y = m - (¢d + ed). The dip angle, ¢d’ of the earth's
macnetic field at the site is about 550, and the dip angle

G of the position vector, r, is iSo or so. The angle a

dl
between eigenvector éB ard the position vector 1is about 68°
o
= = :5
for Bd 0 and ¢d

Figure 12a Spectrum of gradient fluctuations from an iron
sphere placed 1.8 m north of the gradiometer with pickup
loops facing nominally north-south so that ¢ = n/2. The
corresponding time series, called POSTA 9, begins 4 February
1976 a*- 16:22 hours (PST) and ends 5 February 1976 at 09:40
hours (PST). The heavy solid line delineates the spectrum of
inherent instrument noise shown in Figuv2 8, and light and
heavy dashed lines mark spectra expected with and without
suppression of noise, respectively, owing to aligning for a

null response.
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Figure 12b Spectrum of aradient fluctuations from an iron
sphere placed 1.8 m north of the gradiometer with pickup loops
facing nominally east-west so that ¢ = 0. The corresponding
time series, called POSTA 10, begins 5 February 1976 at 15:15
hours (PST) and ends 6 February 1976 at 16:37 hours (PST).

The heavy solid line delineates the spectrum of inherent instru-
ment noise shown in Figure 8, and light and heavy dashed lines
mark spectra expected with and without suppression of noise,

respectively, owing to aligning for a null response.

Figure 13 Section of time series record POSTA 10 showing a
class P> 5 micropulsation event recorded on 6 February 1976.
Pulsations begin at about 0400 hours (PST) and continue for
~F "0 seconds as a damped sinusoidal oscillation having a
peri.d of roughly 500 seconds. (Gradient magnitudes marked
on the left hand coordinate scale are relative to an arbi-

trary zero.)

Figure 14 Fiducial basis {Qi} used to define measurements of
gradients in the vicinity cf the oceanographic tower. The

2. axis points vertically downward; the Ql axis, northward;

3
and the 92 axis, eastward. Polar angles (¢l, 61; ¢2, 82; ¢3,
83) specifying directions of the set of eigenvectors (él’ éz,

@3) at each position are listed in Table I. Eigenvector 32
points nearly northward and 10° to 20° above horizontal, and

eigenvector a points nearly due west and 57 to 15° below

1
horizontal.

Figure 15 Location and orientation in the vertical plane of
symmetry of an equivalent dipole for gradients at each position
near the oceanographic tower. Heavy dashed lines mark loca-
tions of dipole images. Lengths of vectors indicating orien-
tation of dipoles are proportional to respective dipole

moments and decrease with increasing horizontal distance, -
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Zz, from the tower centerline in proportion to z, with n = 2.55.

Coordinates (22’ Z3) specify a position: 22 gives its horizontal
distance in meters due west of the centerline of the tower and
Zq gives its height in meters above the ocean bottom. Positions
are nominally spaced at 2 m intervals vertically and 3 m inter-

valc horizontally.

Figure 16 Elevation and top view of the cantilever support for
the gradiometer.
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APPENDIX

GRADIENTS OF MAGNETIC FIELDS IN FREE SPACE

We represent gradients of a magnetic field, B(R;t),

by a matrix G having elements gij(ﬁ,t), where

A=A A oL
gij = xi-v(xj b), (1,3 = 1,2,3) (la)
. . A
in an orthogonal basis {xi }. An element gij represents

the gradient in a direction Qi of the component of magnetic

field in a direction Qj' The relation

N 1
T = Y 9w (1b)
i,J
then, gives the gradient in a direction G of the component
of magnetic field in a direction 0, where u, and v, are
e
components of the unit vectors G and Q in the ba51s{ xi} .

We express F(G,Q) as a matrix product by using the relation
r,%) = tov , (1c)

where U and V are column matrices representing unit vectors

G and 0, respectively, and tilde marks a transposed matrix.

Equation la sinows that the sum of diagonal elements of
a gradient matrix vanishes because the divergence of a
magnetic field vanishes. Moreover, the vector identity
A A -
i2 = gL, = . ) = 2
glj gjl (Xl X Xj) (V X b) (2)
tells us that matrices representing gradients of an irrota-

tional magnetic field are symmetric; namely, G = G.
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A magnetic field in free space is botl rondivergent and
irrotational ané so is the gradient of a harmonic function,
Y namelv, b = ;1, where xzw = (. Conseauently, gradients
of a magnetic field in free space are represented by a
symmetric matrix that has a vanishing trace*, whose elements

are given by

2
g, = —— (3)

ol axiaxj

Cnly five of the nine elements of a matrix representing
gradients of a magnetic field in free space, then, are

independent.

An axis of a perfect gradiometer that is aligned in a
direction QiAand senses the component of magnetic field 1in
a direction xj measures the element gij of a gradient matrix.
A gradiometer comprising two orthogonal axes that measure
longitudinal elements 991 and 959 together with three mutu-
ally orthogonal axes that measure transverse elements 912,
9937 and 9537 then, determines gradients of a magnetic field
in free space in the orthogonal basis defined by its axes.

Because of Equation lb, matrix elements measi*red 1n the
gradiometer basis in turn determine gradients in everv

A

direction G of the component of magnetic field in arv direction V.

A. GRADIOMETER ROTATIONS

As a gradiometer rotates, matrix elements measured in
the gradiometer basis change continuously. We describe
gradiometer rotations by a matrix R that reoresents a rotation

from a basi £.1 to a basis ¢
rom a basis i} sis { vy ¢

* The trace of a matrix is the sum of its diagonal elements.
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The matrix R is orthoagonal*, and its elements are aiven by

A
..o X, e (4)
1] 1]
For a vector represented by a column matrix UX in a
basis {Qi }, the relation
Uy = RUX (5a)
A . . . . A
gives its representation U  1n a basis Yiq e where R rep=-
. A .
resents rotation from the ba51s{ Xi} to the hasis Qi }.
Because the matrix product expressed by Fauation lc is in-
variant, we find that the relation
G. = RG_R (5b)
y X

specifies the matrix G representing gradients of a magnetic
field in a bisis {Qi} in tefms of their representation G,

in a basis {xi} . Elements of a gradient matrix measured

in one basis then determine the gradient matrix in every

other basis obtained by rotating the gradiometer.

We express a matrix representing a rotation as the pro-
duct of three matrices representing three successive, inde-
pendent rotations through the Eulerian angles ¢, 0, and Y
defined in Figure Al by the product (Indritz, 1963)

* The relation RR = RR = I, where I denotes the unit matrix,

defines an orthogonal matrix.
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%

R(¢, O, ¥) = Z(9) X(0) 2(¥) (6a)

where
cos ¢ -sin ¢ 0
Z(d) =] sin & cos ¢ 0 (6b)
0 0 1

and represents a rotation through an angle ¢ about a z-axis,

and

1 0 0
X(0) = 0 cos O -sin O (6c)
0 sin 0 cos 0O
I
and represents a rotation through an angle 0 about an Xx-axis.
We note that Z(¢) = Z(-%) and ¥(©) = X(-0), so that R(®, O,
¥) = R(-¥, -0, -9).

A rotation specified by Euler angles ¢, 6, and ¥, however,
is equivalent to rotation through an angle ¢ about some axis
specified by polar angles ¢O and BO with respect to the fi-
ducial basis (Goldstein, 1959). Namely,

z(¢) = P(d, ORI, O, VIP(6,,0,) (7a)
so that
R(b,, 8,: ) = Plog, 8)2(0)F (0, 8,) = R(e, 0, %), (7D)

where P(¢ ) ) = Z(¢ +ﬂ/2)X(9 ) and represents a rotation
from the flduc1al ba31s to a ba31s having its z-axis aligned
with the axis of rotation. From Equation 7b we find that
angles ¢ p , and ¢ are expressed in terms of Euleriar angles

o
spec1fy1ng the same rotation by the relations
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¢) = (p_..:__\i (Ba)

© 2

tan 0 = _t_a..rl__Q_[...z_ (8b)

. (¢ + ¥ )

sin{—mm

2
and
cos ¢/2 = cos 0/2 cos("’ * “’) (8c)
2

To make the dependence on the angle of rotation ¢ explicit,

we write a rotation matrix as the sum

R(¢o, Go; o) = El(¢o, 60) + E2(¢O, Go)cos¢ + Q(¢O,80)sin¢ (9a)
where
El(¢o, 80) = P(¢O, Qo)exszeyp(¢o, 60) ’ (9b)
E2(¢o, 90) = I = El(¢o, 90) i (9c)
and
Q(¢O, 90) = P(¢O, OO)GZP(¢O, 90) (9d)
with
0 0 0 0 0 1 0-1 0
€ = 0o 0 -1 e, = 0 0 O yande_, ={ 1 0 O
0 1 0 Y -1 0 o 1o o o

The matrix Q corresponds to a sum of differential rotations
abcut x,v, and z axes of the fiducial basis, as expressed by

g
l
|
1

the expansion
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Q(¢o, 80) = €, 51n00 cos¢o + Ey 51n80 51n¢o + €, coseo, (10a)

and for an infinitesimal rotation Ad,
R(¢o, BO;A¢) =1 + Q(¢o, 80)A¢ (10b)

Having presented means for describing gradiometer rota-
tions, we now investigate changes in gradient signals pro-
duced by changes in orientation of a gradiometer. We first
consider rotation about an axis of the gradiometer basis

and then about an arbitrary axis.

1. Rotation about a gradiometer axis

Naming of axes of a gradiometer basis is arbitrary, and
so we call the axis of rotation the z-axis. Following
rotation of a gradicmeter through an angle ¢ about its z-
axis, the gradient matrix measured in the gradiometer basis,
I'(¢), is expressed in terms cf its initial value G by the

relation
r(¢) = 2(6)G2(¢) . (11a)

Consequently, its elements Yij are given in terms of their

initial values gij’ by the relations

I 5 2 1/2
Vi *=dggie T | %12 + (971+933/2) compty = (12a)
2 .| 12
Yp2 = "933/2 | 912 * (911493372 EoER 0y, = W) =2h)
Y33 T 933 (1ze)
: , 1172
Y12 = | 912 * (911%933/2 B lo T ®) (12d)

— e ame, S e s M




Yi5 = (975 * g2 2sin(o, + @) (12e)
and

Ypy = (935 + g2 )Y %cos (o, + @) (12f)
where

taa 2¢; = 97,/ (917 * 933/2) (129)
and

tan ¢, = 913/g23 (12h)

We observe that the longitudinal gradient Y33 is con-
stant, that longitudinal gradients Y11 and Yoo Vary sinusoi-
dally about the mean value (gll + 922)/2, and that transverse
gradients vary sinusoidally about zero. As a result, we can
always find a null position for a transverse gradient by
rotating a gradiometer about any one of its axes, since
specification of a z-axis is arbitrary. We can not find
a null position for longitudinal gradients unless giz;z
9119227 g§3 23922933, or gi3 23911933‘ Because the sum of
diagonal elements vanishes, however, at least two of the

conditions are satisfied.*

2. Rotation about an arbitrary axis

During rotation of a gradiometer about an axis other than

one of its three mutually perpendicular axes, each element

* Nonetheless, determination of a null position for longi-
tudinal gradients is impractical because mean values of
gsinusoidal oscillations are experimentally indeterminant.

i
§
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of the gradient matrix oscillates about a nonzero mean value.

Oscillations are a sum of sinusoids having arguments ¢ and

2¢, where ¢ is the angle of rotation. Amplitudes of sinusoi-

dal oscillations depend on initial orientation of the gradio-

meter and polar angles ¢o and 90 specifying the axis of

rotation with respect to its initial orientation.

The relation

M. r 0,5 ¢) = R(d_, 85 $IGR(S . 65 &)

gives the gradient matrix obtained by rotating a gradio-
meter through an angle ¢ about an axis specified by polar
angles 9 and eo with respect to its initial oricntation in
terms of the initial value G. When the rotation matrix
R(¢o, 90; ¢) is expressed explicitly in terms of the rota-
tion angle by Equation 9a, we find that F(¢o, 60; d)

is expressed as a sum of sinusoids with arguments ¢ and 2¢

by the relation

F(¢o, 90; $) = E.GE

16E1 + 1/2(E2GE2 - QGQ) + 1/2(E2GE2 +

QGC)cos 2¢ + 1/2(E2GQ - QGEz)sin 20 +
(ElGE2 + E

2GEl)cos¢ + (E;GQ - QGE,)=in¢ ,

(13a)

(13b)

where matrices F, (¢, 90), E, (¢, 90), and Q(¢o, 905 are given

by Eguations 9b, 9c, and 9d.

Because mean values and amplitudes of sinusoidal com-
ponents depend on polar angles ¢o and 90 and on the initial
matrix G, we can not always find & null position for trans-

verse gradients by rotating a gradiometer about an axis
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other than one of its three mutually perpendicular axes.

Nonetheless, for axes of rotation lying within a narrow
cone about a gradiometer axis, defined by 9§ << 1 for a
o

z-axis, we find from Equation 9a that

R(¢0. o7 o) T 2(d) (I + eo E(¢0, rb)! R eo<< 1, (14a)
where

E(¢0, ¢) = I sin(¢—¢0)+sin¢0 e, ¥ cos(¢—¢0)—cos¢o] ey,(l4b)
so that

F(¢0: 90; ¢) = T (o) + 90 T(¢)E(¢0: ¢)-E(¢0: ¢)T(¢)] , (idc)

where TI'(¢) is given by Equation lla. We conclude from Equa-
tion l4c that transverse gradients vanish during rotation
of a gradiometer about an axis lying within a narrow cone

about any one of its three mutually perpendicular axes.

3. Infinitesimal rotations

For an infinitesimal rotation through an angle A¢ about
an axis specified bv polar angles ¢0 and 60, we find from
Equations 13a and 10b that the differential of the gradient

matrix is given by

F(¢0, 90; Ad) - G = A¢ GQ(¢0, 90) = Q(¢o, GO)G ' (15a)
where the matrix Q(¢0, 60) is expressed as a sum of differ-
ential rotations about x,y and z axes of the fiducial basi~

by Equation 10a. From Equations 15a and 10a, we then find

that differentials of the matrix elements are given by
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Agyy = 2(gy, Ad, — 93 A¢y)

Ag,y = 2(gyy Doy = gy, A0,)

Agy3 = 2(gy5 B, = gp3 Bb)

37
Agypy = 913 By = 9p3 Doy *+ (355 — 9004,

bgyy = =95 B0, + (977 ~ 933080, + 95380,

and

g,y = (333 = 9pp) B0, + 955 B0, = 93300,
where

A¢x = Apsin 80 cos ¢o

A¢y = Adsin 80 sin ¢o
and

A¢z = Adpcos 80

A. PRINCIPAL AXES OF A GRADIENT FIELD

Because a gradient matrix is both real and symmetric,
it is diagonal in an orthogonal basis comprised of principal
axes with diagonal elements or eigenvalues Al, Az, and A3.
Since the trace of a gradient matrix vanishes, Al + xz +
A3 = 0. The diagonal matrix A and a matrix R specifying
rotation from a gradiometer basis to the basis comprised
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OE-Yel

(154)

(15e)

(15f)

(159)

(15h)

(151)
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of principal axes determine the matrix G measurea in a
gradiometer basis; namely, A = RGR, so that G = RAR. As

a result, two eigenvalues and three Euler angles specifying
orientation of principal axes with respect to a gradiometer
basis are a set of five independent scalars that determine

gradients measured in a gradiometer basis.

If orientation of both the gradiometer basis and princi-
pal axes is specified with respect to an arbitrary fiducial
basis by matrices Rg and Rp, respectively, then Rp = R _R,

g

and so G = ﬁngAﬁpRg. On the one hand, if principal axes

are taken as the fiducial basis, then Rp = I and G = ﬁgARg,
and on the other hand, if the gradiometer basis is taken as
the fiducial basis, then Rg =TI and G = RpAﬁp. For a gradio-
meter aligned along principal axes, Rg = Rp and so G = A.
Transverse gradients then vanish, and longitudinal gradients

equal the eigenvalues Al' lz, and A3.

Eigenvalues of a gradient matrix are roots of the charac-

teristic equation

det(G - AT) = (A = A (A = A,) (A = A3) = 0 (162)
or

3 B g 2 2 . 2 . .2 .

A7 = Ay * 933 t Bga¥ay * 91y * 91y ¥ TppinUet &0 (66)

Roots of the characteristic equation are ordered, and we

name them so that A1:>A2:>A3. Because the sum of eigen-
values vanishes, at least one root is positive and one is
negative, so that Al and A3 are, respectively, the greatest
positive root and smallest negative root of the characteristic

equation.
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Direction cosines of corresponding eigenvectors ék'
which define directions of principal axes, form the columns
of the matrix R specifying rotation from a gradiometer basis
Ro Rhe hasis comprised of principal axes; namely, i =
X.€ep . Elements of the kth column of R are a solution of
the system of three homogenous equations

" -y L.
Zgijrjk = Ar s 1=1,2,3, (17
]

obtained from the matrix equation GR = RA. The characteris-

tic equation assures existence of a solution.

Consequently, we find from Equation 17 that polar
angles ¢, and ek specifying the direction of Qk with respect

to the gradiometer basis are determined by the relations

tan6, cosé, = 913 = 922) * 912923 (18a)
(A = 911) Ok - g22)'932
and
tano, sing, = 9y3k = 911) * 912913 (18b)
(A :

K T %11 g T 92207912

We observe that polar angles ¢é = ¢k+n and eﬁ = n—ek as
well as ¢k and Ok are solutioni of Equitions 18a and 18b for
each eigenvalue, so that both eg and -ex are eigenvectors
corresponding to eigenvalue Ak, as is also evident from
Equation 17. Because the sense of an eigenvector is inde-
terminant, we can combine three eigenvectors in eight ways
to form eight orthogonal bases comprised of pnrincipal axes.
Four of the eiocht bases are right-handed, and four are left-

t handed. We exclude left-handed bases and find that four

right-handed, orthogonal bases comprised of principal axes
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|
-

LA

are defined by the four sets of eigenvectors:gq ((/a\ r €5, €4),
1 2 3
@, b, by, b, 6,8, ana -6, &, &)
ll 2! —3 ’ ll 2! 3 14 ll 2! 3 .

To determine a first set of eigenvectors, we choose
él and 63 so that Os;Hlsén/z and 0$;63$§n/2 and require

right-handedness, namely that éz =&, x & so that

3 i

cos 62 = sin 63 sin 81 51n(d>1 - ¢3) (19)

From Equations 18a and 18b, we then find a unique set of
polar angles (¢l, 61; ¢2, 82; ¢3, 83k defining directions
of the set of eigenvectors (el, €y e3). Polar angles
defining directions of the other three sets of eigenvectors
are then directly determined. For example, polAar angles
for the set (@i, —éz, —QA) are given by the set (¢l, el;
¢)2+TT, n""ez,' (I)3+T', TT"63).

By expressing elements rix of the matrix R specifying
rotation from the gradiometer basis to the basis defined
by the set of eigenvectors (él, éz, 53) in terms of Euler
angles ¢, O, and ¥, we find that the Euler andqles specifvinc

the rotation are deternined by the relations

¢ = ¢y + /2, (20a)

0 =64, (20b)

cosY = sinelsin(¢1~¢3) 5 (20c)
and

sin¥ = sinezsin(¢3—¢2) s (20d)
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Euler angles specifying rotation from the gradiometer basis

A A

to bases defined by the sets of eigenvectors (él’ “€ey -e3),

(-él’ -éz, é3), and (-él, éz, -é3) are given in terms of
those of the first set by the sets (¢ + n, 7 - O, ™ - vy,

(6, 0O, m + ¥), and (d + n, n = 0, 2m = ¥), respectively.

As we show subsequently, eigenvalues of a gradient field
at a point are equal to eigenvalues of the gradient field
produced by a magnetic dipole located on a sphere of unit
radius about the field point. Because four sets of eigen-
vectors correspond to the same set of eigenvalues, a magnetic
dipole located at any one of four poeitions on the unit
sphere produces the same magnetic f:cld gradients at the

field point.
C. GRADIENT FIELD OF A MAGNETIC DIPOLE

We examine the gradient field of a magnetic dipole both
to illustrate means of describing gradients of magnetic
fieids in free space and to provide the basis for demonstra-
ting that gradients of a magnetic field at a point in free
space are equal to gradients produced by a macnetic dipole

located on a sphere of unit radius about the point.

The gradient of the harmonic function

il 7
p = —e— , u. = 4u X 10 H/m , (21a)
3 o)
4m r
gives, in MKS units, the magnetic field produced at a posi-

tion T hy a magnetic dipole of moment m. The relation

b s Bt -2 x x|, (21b)

]
<3
§ =3

]
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then, expresses the magnetic field b as a sum of components
parallel and perpendicular to the unit vector’@, where Q =
r/r and m = m/m. Equation 21b tells us that the magnetic
field produced at a position r by a dipole of strength m

is a sum of fields produced by one dipole of strength

m cos x directed along r and another of strength m sin ¥

directed perpendicular to r, where cos ¥ =‘9-QL

To examine gradients of the magnetic field of a dipole,
we consider the gradient field in three right-handed, ortho-
gonal bases: (1) a basis {Qj} with its QB axis alignea
along the dipole axis ﬁ, whiéh we call the dipole basis;

(2) a basis-{@i} witlh its 93 axis aligned along the po: ition
vector r, which we call the position-vector basis: and
(3) a basis {Qi} with its QB axis aligned in an arbitrary

direction.

1. Dipole basis

We choot2 a basis {Qi}with the QB axis directed along
the dipole axis Q; the §2 axis, along A x ?; and the Ql
axis, along (h X 9) X m. From Equation 3 and the harmonic
potential function_of a dipole expressed by Equatinn 2la,

A

the magnetic field of a dipole in the basis {xi

then, we find that the matrix Gx representing gradients of
{ is expressed

as

cosy (1l - Ssinzx) 0 siny (1l - 5coszx)

(@]
]
(]

0 Ccos) 0 ) (22a)

siny (1l - 5c032x) 0 cosy (-2 + Ssinzx)
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A A
where cosy = m-r and

;o (3,)
47 r4

We then find, from Equation 16b, that its eigenvalues

are given by

Al = 3 ’(4 + Scosz)()l/2 -~ cosy
Az = g CcosY

and
A3 = -g |(4 + Scoszx)l/2 # cosxi

Figure A7 delineates Al/g, A?/g, and A3/g as functions of
x and shows that Al is positive, A3 is negative, and Az

is positive for 0< y< n/2 and negative for mn/2<y<m.

Moreover, the set of Euler angles (n/2, 0, n/2), where

O =y + a and
tan 2a = (2/3)tany (0< < n/2)

specifies a rotation from the dipole basis to the basis
comprised of principal axes defined by the set of eigen-
vectors (@l, gz, 23), as illustrated in Figure A3. The

angle o between the eigenvector é3 and the position vector

(22b)

(23a)

(22b)

(24a)

r ranges from 0 to n/2 as x ranges from 0 to m. The relation

tanB = (1/2)tany

121
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determines the angle B between the magnetic field vector and
the position vector, which ranges from 0 to = and as ¥

ranges from 0 to m.

The sets of Euler ang'es (3n/2, m - 0, n/2), (n/2, O,

3n/2), and (3n/2, m - 0, 3./2) specify rotations to bases

defined by the sets of eigenvectors (él' —éz; -é3), (—@l,

A A A
e, e3), and (-el, éz,
depicts orientation of principal axes, marked by eigen-

vectors él and é3, for several values of the angle .

-é3), respectively. Figure A4

Principal axes corresponding to eigenvalues A] and A3 lie

in a meridian plane of the dipole, the plane defined by the
dipole axis and the position vector, and the principal axis

corresponding to eigenvalue Az is normal to a meridian plane.

2. Position-vector basis

We next choose an orthogonal basis {Qi} in which the
§3 axis is directed along r and orientation of the dipole
is specified by polar angles Q@ and X, as shown in Figure

A5. The matrix R(%, x) defined by
R(Q, X) = 2(Q + 7/2)X(x)2Z(n/2) (25)

. g . A . .
specifies a rotation that brings the basis {yi* into coin-

cidence with the basis {Qi}‘
Consequently, the relatioa
G, = R(%, X)G R(2, Xx) (26a)

determines the matrix G_ representing gradients of a dipole
field in the basis {Qi} in terms of their representation
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o T

Gx in the basis {Qi} , as given by Equation 22a. We then
find that

cos X 0 sin X cos
Gy = g 0 cos ¥ sin x sin Q (26Db)
sin x cos © sin x sin Q -2 cos ¥

Expression 26b tells us that longitudinal gradients in
the basis {Qi} result from a dipole of strength m cos ¥
directed along Y3 and that transverse gradients result from
dipoles of strength m sin x cos Q@ and m sin x sin Q directed
along the 9 and 92 axes, respectively. Eigenvalues and
corresponding principal axes, of course, are the same as
given before. The set of Euler angles (Q + n/2, -a, -v/2),
however, specifies rotaticr from the position-vector basis
to the basis comprised of principal axes defined by the set

of eigenvectors (él' é2’ é3).

3. Arbitrary basis

Finally, we choose an arbitrary orthogonal basis {éi}
in which orientation of the dipole is specified by polar
angles ¢m and em and direction of the position vector is
specified by polar angles ¢r and er, as shown in Figure AG6.

The matrix R(¢>rr er) defined by

R(¢r, er) = Z(d)r + H/Z)X(er) (27a)

PN . . . A :
specifies a rotation that brings the basis {zl} into coin-

cidence with the basis {Qi} defined in Figure A5 provided

cos § sin ¥ = sin emsln(¢m - ¢r) (27b)
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gsin © sin y = sin Orcosﬂm - coser51n8mcos(¢m = ¢r) (27¢)

and

cos X = cosercosem + 51n8r51n8mcos(¢m - ¢r) (274)

The relation

G, = R(¢,_, 8 IR(2, X)GR(2, XIR(6,, 6.) , (28a)
then, determines the matrix Gz representing gradients of a
dipole field in an arbitrary basis %i in terms of their

. As a result, we find

representation Gx in the basis Qi
that

G, = g cos X iI - 3/2 Ay (¢r, Or)l

(28b)
+g sin x |cos @ A2(¢r, Or) - sin @ A3(¢r, Or) e
where I denotes the unit matrix,
~2cosz¢ S0 €in2¢ sinZe cos¢$_sin26
r r r r r r
B . 2 e : .
A1(¢r, Or) = 51n2¢r sin er 2sin ¢r51n er 51n¢r51n28r (28¢)
, . . 2
_cos¢r51n28r 51n¢r51n28r 2cos Or
-51n2¢r51n8r c052¢r51n8r —51n¢rcoser
A2(¢r, er) = cosz¢r51n8r 51n2¢r51n8r cc:s¢rcoser (284)
L_—smcbrcoser cos¢rcoser 0
and 2
cos ¢rsin28r (1/2bin2¢rsin28r cos¢rc0528r
i . . P .
A3(¢r, er) h/2k1n2¢r51n28r sin ¢r51n29r 51n¢rc0526r (28e)

cos¢rcoszer 51n¢rc0528r -51n28r
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In an arbitrary basis, then, either of two sets of
four independent angles, (¢r, Or; Q, x) or (¢r, er; ¢m, em),
and the scale factor g determine gradients of the magnetic
field of a dipole. Because five independent matrix elements
determine gradients of a magnetic field in free space, gra-
dients at a point in free space are equivalent to the gra-
dient field of a magnetic dipole located on a sphere of
unit radius about the point. By reguiring G = GZ for a
matrix repcesenting gradients of a magnetic field, we can
in principle determine a set of four angles (¢r, Gr; ¢m’ Bm),
which specify location and orientation of a dipole, ard a
scale factor g by solving the system of five equations obtained
by equating matriwu elements. Choosing a unit radius in the
scale factor g then determines the strength of an equivalent
dipole. Nonetheless, the direct approach soon becomes fouled
by algebra, and we choose another approach to obtain equiva-

lent dipoles of a gradient field in free space.
D. EQUIVALENT DIPOLES OF A GRADIENT FIELD

We seek location, orientation, and strength of a magnetic
dipole that produces gradients, represented by a matrix Gd’
at a point in free space that are the same as gradients
represented by a matrix G: namely, we ask that the differen-
tial matrix AG vanish, where AG = G - Gg. If elements of a
matrix vanish in one basis, they vanish in all bases, and so
we require elements of the differential matrix *o vanish in a
basis in which G is diagonal.

The relations

~

and

G = RAR (29b)
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31

express matrices Gd and G in terms of their respective dia-
gonal matrices Ad and A and matrices Rd and R that specify
rotations from a fiducial basis to bases comprised of their
respective principal axes. Rotation to principal axes of

the dipole field is the resultant of two consecutive rotations

expressed by the matrix product

Rd = RR(S ’ (29c)
where RG represents a rotation from principal axes of the
gradient field represented by G to principal axes of the
gradient field of the dipole. Consequently, we express
the differential matrix AG as
AG = R(A - RdAdKG)R 129d)

Expression 29d tells us that the differential matrix vanishes
if both the principal axes of the two gradient fields coin-
cide, Ry = I, and their eigenvalues are equal, Ad = A.

1. Dipole orientation and location

To determine orientation and location of an equivalent
dipole, then, we first find eigenvalues (X, A,, A3) of the
gradient field represented by the matrix G and a corresponding
set of Euler angles ¢, 6, and Y that specify rotation from a
fiducial basis to principal axes defined by the set of eigen-
vector : (él, éz, é3). Namely, we use Equations 16b, 18a, 20a,
20b, 20c,_and 20d to find the set of five independent scalars
(Al, A3, o, 6, ¥) from the five independent elements (gll’
933+ 9127 9137 923) of the matrix G. We recall that the set
of Buler angles specifies one of four possible rotations to

a basis comprised of principal axes because the sense of an
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eigenvector is indeterminant.

Because eigenvalues of the matrix G are ordered (A1>
Az >A3) and their sum vanishes, we find from Equations
23a. 23b, and 23c that they are equal to eigenvalues of
the gradient field of a dipole at a position for which

1/2
Ao A
tanx=<Z__l___3__/_. ’0<X."n-
Y2

and

The set of five scalars (g, x, ¢, 0, ¥), then, specifies the
gradient field represented by the matrix G.

Figure A7 shows orientation and location of the dipole
ﬁl
Al’ Az, and A3 and whose principal axes coincide with the
set of eigenvectors (él, éz, 63). The dipole axis and

that produces a gradient field whose eigenvalues are

position vector fi lie in the plane normal to the eigen-
vector 62. Equation 30a determines the angle x between the
dipcle axis and position vector, and Equation 30b, magnitude
of the dipole moment. Dashed lines in Figure A7 delineate
orientation and location of dipoles that produce gradient
fields, having eigenvalues Al’ Az, and A3, whose principal
axes coincide with the sets of eigenvectors ( él’ -62, -é3),
(-&,, &,,
the four equivalent dipoles lie in the plane normal to the

—é3), and (—él, —62, 63) as noted. As is evident,

eigenvector @2, and they fcrm the two pairs (ﬁi, fi; -ﬁl,
-f&) and (ﬁé, ?2; ~mi, , ¥f2) with the first pair associated
with the eigenvector éé and the second,with the eigenvector

-&
2.

(30a)

(30b)
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We observe from Figure A7 that column matrices

”sin(a+x)1 -sina
M = 0 and = 0
p | °p
cos (a+y) -CcoSsa

give direction cosines of the dipole axis and position vec-
tor m and r, respectively, in the basis defined by the set
of eigenvectors (él’,éz’ 33). Consequently, in the fiducial
pasis ihe matrices M = RM_and p = RpP give orientation and
location of the dinole whose principal axes, defined

by the eigenvectors (61, 62, é3), coincide with those of the
gradient field represented by the matrix G. The matrix

R describes rotation from the fiducial basis to principal

axes of G as specified by the Euler and angles ¢, Y, and O.

In the fiducial basis, we then find that polar angyles
¢, and 6 defining direction of the dipole dl are determined

by the relations

cosem = cos0O cos(a+y) + sin¥ sin0® sin(a+x)
: JE— .
51n0m cos(cbm @) cosY sin(a+y)
and
sin@msin(¢m-¢) = sin¥ cos® sin(a+y)-sin® cos (a+X)

and that polar angles ¢ and er defining direction of the

-

position vector r, are determined by the relations

-coser = cosO coso + sin¥ sind sinc
-sinercos(¢r-¢) = cosY sino
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(32a)

(32b)

(32c)

(32d)

(32e)




and
-sinersin(¢r—¢) = gin¥ cos® sina - sinf@cosa . (32f)

Equations 32a through 32f give a prescription for
transforming the set of five scalars (g, x, &, Y, 0) to
the set (g, ¢_, B8_, ¢

r i m
field represented by the matrix G in terms of the gradient

’ em) that specifies the gradient

field of its equivalent dipole ml located at position fl.
The set (g, n+¢r, n—er, n+¢m, n—em) corresponds to the

equivalent dipole -m, located at position -fl. We obtain
1

1
the set (g, ¢rl erl ¢ml

located at position f2 by adding 7 to the angle

6;) corresponding to the equivalent
dipole Mz
Y in Equations 32a through 32f. Finally, the set

(g, ﬂ+¢;, n—e;, w+¢;, n—e;) corresponds to the eguivalent
dipole —ﬁz located at -fz.

2. Alignment errors

A dipole placed at the position of an equivalent dipole
cancells gradients at the corresponding field point. Because
positioning is imperfect, however, errors in aligning a can-
celling dipole leave residual gradients at the field point.

We describe residual gradients resulting f m errors in align-
ment in terms of infinitesimal rotation c¢ . principal axes
from true alignment and infinitesimal deviation of eigen-

values from true values.

The matrix

£ Ré « I = A¢Q(¢Ol eO) (33)
i specifies an infinitesimal rotation from principal axes of
i the gradient field represented by the matrix G through an

angle A¢ about an axis specified by polar angles ¢O and 60
with respect to the principal axes, where Q(¢O, 60) is
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expressed by Equatioa 10a. Eigenvalues of the gradient field
of the cancelling dipole deviate from those of the gradient
field represented by the matrix G by an amount AAd = Ad-A.

From Equation 29d, we then find that the relation
6G = R | -aAg + 86(AQ - QM| R (34a)

gives residual gradients resulting from alignment errors.
The difference in eigenvalues results from deviations in
the scale factor, Ag, and in the angle x as expressed by

the relation

Aqy g
AN, = A(——9>+ AY . (34b)
\g/ a‘x

In the basis comprised of principal axes of the matrix

G, then, residual gradients are given by

, e
\ 70 46
pay, = -8 \-172( 223} fann, ) ax (35a)
i 1l g
b 21, +15
‘ , 1/2
bg,, = (Ay+hy) —z— + /&1*3 Ay (35b)
| 3N, +4) 1/2
Agan = -2y (A2 4 172 (22 /x A / Ax (25¢)
33 3 7 T i*3
itAg
Mgy, = = (2h+X3)Ad, (35d)
bgyg= (Ay=hyldeg (35€)

and
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Ag23 = (Al+2k3)A¢l '

where

A¢l =

A¢2 =

A¢3 = A¢p cosb
and Al’ AZ’ and X

(o]

3

Ao 51n60 cos¢>O

Ad Slneo 51n¢o

are eigenvalues of G.

131

(35f)

(359)

(35h)

(351)



TABLE OF ROTATIONS

A
ROTATION ABOUT AN X3 AXIS

The matrix

cos¢ -sin¢ 0
Z(¢) = sing cos¢ 0
0 0 1

represents a positive rotation through an angle ¢ about the

Q3 axis of a basis. The relation
I = Z(¢)GZ()

gives gradients; Yij’ in the rotated bhasis in terms of gra-

dients, gij' in the initial basis, and so
Y = l(g + ) + l(g - g,,)cos2¢ + g,,51in2¢
11 - 2911 7 922 2911 22/ ¢°F 12
Y = l(g * @, ) = l(g - g,,)cos2¢ - g,,sin2¢
22 2'°11 22 2'°11 22 12
933
Y = g,,C082¢ - l(g - g,,)s1in2¢
12 12 2711 22

Yl3 = gl3cos¢ + g2351n¢

Y23 = g23cos¢ - g1351n¢
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A
ROTATION ABOUT AN X ., AXIS

1
The matrix
1 0 0
X(0) = ¢ cost -sinf
0 sin® cosf

represents a positive rotation through ar angle 6 about the

Ql axis of a basis. The relation

I' = X(0)GX(0)

gives gradients, Yij’ in the rotated basis in terms of gra-

dients, gij’ in the initial basis, and so

911

Y = l(g + g,,) + l(g - g,,)cos26 + g,,sin26
29 2°°22 33 2722 33 23

Y = -l-(g + g,.) - -l-(g - g,,)Cc0s26 - g.,sin26
33 2'°22 33 2722 33 23

Yip = g12c056 + gl351n9

gl3cose = glzsine

)sin26

1
cosd - 5(g,, = 933

923
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ROTATION ABOUT AN '>‘<2 AXIS

The matrix

cos| 0 siny
Y(p) = Z(n/2)X(Y)Z(n/2) = 0 i 0

~siny 0 cosy

represents a positive ro*ation through an angle { about the

Qq aixis of a basis. The relation
I = Y($)GY(y)

gives gradients, Yij’ in the rotated basis in terms of gra-

dients, gii’ in the initial basis, and so
Y . }(g + g,,) + l(g - g,,)cos2! -~ g.,.sin2y
1~ 2 T 953 T 2l T @93 ' 13
922
Y = l(g + g,,) -l4q - g,,)cos2y + ¢ 21
33 2| 33 20 = Ll 33 " I i
Y12 = 915608¢ - gy3sind

1 .
= 2 = =
Y13 gl3cos*w + 2(gl] g33)51n2w

Y93 = g23cosw + glzslnw
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FIGURE CAPTTONS

figure Al Three successive ependent rotations through

the Eulerian angles ¢, 0, and % specifying a rotation

from the basis {Qi} to a basis{ Qi} . Rotations are made con-
secutively in the following order: (1) rotation through the
anagle ¢ abcut the Q3 axis, represented by the matrix Z(¢);

(2) rotation through the angle O about an Ql axis in the di-
rection Q3 X 93, represented by the matrix X(0): and (3) ro-
tation throuah the angle Y about the 93 axis, represented by

the matrix Z(¥). Positive rotations are right handed.

Figure AZ Eigenvalues Al, Az, and A3 of the gradient field

of a magnetic dipole having a unit gradient strength, g, shown
as functions of the polar angle x between the axis of the di-
pole and a position vector emanating from the dipole. Eigen-
values are indexed so that Al> A2>-A3. The determinant, det
G, of a matrix representing gradients at a position in a di-
pole field is positive for x> /2 and negative for x < m/2.

Its trace vanishes and so Al + A2 + A3 = 0.

Figure A3 Basis comprised of principal axes defined by the
set of eigenvectors (él, éZ’ 33) at a position r in the field
of a magnetic dipole m. Eigenvectors @l and 33 ére in the
meridian plane normal to the 92 axis, and eiganvector 32
points along the negative 92 axis. The angle a between eigen-
vector é3 and the position vector ¥ ranges from 0 to 7/2 as
the polar angle x ranges from 0 to 7, and the angle B between
the magnetic field vector b and the position vector ranges

from 0 to w,
Figure A4 Orientation of principal axes, marked by eigen-

vectors él and 63, depicted for several headings in a meri-
dian plane of the field of a magnetic dipole m.
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Figure A5 Definition of the position-vector basis {Qi} . The ?3
axis points along the position vector r, and polar angles {
and x specify orientation of the dipole m in the basis Qi}

Figure A6 Polar angles (¢m, 0o ¢rr ﬂr) specifying direction
of the dipole axis and position vector in a basis rz

i
Polar angles ¢m and Hm give direction of the dipole m, and

polar angles ¢r and er give direction of the position vector r.

Figure A7 Location and orientation of the magnetic dipole ﬁl

that produces a gradient field having principal axes coincident

with the set of eigenvectors (él, e, @3) The dipole axis

and position vector are in the plane normal to the eigenvector
A

e,
that produce the same gradient field. They form the two pairs

Dashed lines mark location and orientation of image dipoles
(m,, ry; -my —rl) and (nd,, ryi -mz,-rz) with the first pailr

associated with the eigenvector @2 and the second, with the

. A
eigenvector —€,-
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FIGURE A4
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FIGURE A5
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FIGURE A7




BASE UNITS:
Quantity
length
mass
time

eiectric current
thermouynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity (of a radioactive source)
anguler acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency
illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

SI PREFIXES:

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
cendela

radian
steradian

metre per second squared
disintegratior per second
radian per second squared
radian per second

square metre

kilogram per cubic: metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

rewton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesle

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt par metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocz] metre

joule

__Multiplication Factors

1 000 000 000 000 = 10"

1 000 000 000 =
1 000 000 =
1000 =

100 =

10 =

01 =

0.01 =

0.001

0.000 001
0.000 0H0 0N

0.000 10O OO 101
1.000 000 0OV OOV 001
.00 000 000 1O HOD 001

* To be avolded where possible.

LIS SN B B

#

10
e
100
10
10!
10™!
-2
0™
10-*
10-9
10-"
-

BTl

S1 Symbol

m

kg

8

A

K

mol

cd

rad

st

¥

S

H

\Y

\Y

)

Hz

Ix

Im

wb

T

A

w

Pa

[

)

Pa

)
Profix
tore
Rige
mega
kilo
hecto*
deks*
deci®
centi®
milll
micro
nano
rlt.o
amto

atto

Formula

m/s
(disintegration)/s
rad/s
rad/s
m
kg/m
A-slV
AN
Vim
V.siA
WIA
VIA
WIA
N'm
JK
kg-m/s
(cycleys
Im/m
cd/m
cdesr
A)m
Vs
Wbim
Jis
N/m
As
Nem
Wisr
Jkg-K
N/m
Wim-K
mis
Pa:s
mis
WIA

m
(wave)m
Nm

S1 Symbol

T
G
M
k L
h
de
d
¢
m

"
n

}l




